1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2015 - 2022 Beijing WangXun Technology Co., Ltd. */ 3 4 #include <linux/etherdevice.h> 5 #include <linux/netdevice.h> 6 #include <linux/if_ether.h> 7 #include <linux/if_vlan.h> 8 #include <linux/iopoll.h> 9 #include <linux/pci.h> 10 11 #include "wx_type.h" 12 #include "wx_lib.h" 13 #include "wx_hw.h" 14 15 static int wx_phy_read_reg_mdi(struct mii_bus *bus, int phy_addr, int devnum, int regnum) 16 { 17 struct wx *wx = bus->priv; 18 u32 command, val; 19 int ret; 20 21 /* setup and write the address cycle command */ 22 command = WX_MSCA_RA(regnum) | 23 WX_MSCA_PA(phy_addr) | 24 WX_MSCA_DA(devnum); 25 wr32(wx, WX_MSCA, command); 26 27 command = WX_MSCC_CMD(WX_MSCA_CMD_READ) | WX_MSCC_BUSY; 28 if (wx->mac.type == wx_mac_em) 29 command |= WX_MDIO_CLK(6); 30 wr32(wx, WX_MSCC, command); 31 32 /* wait to complete */ 33 ret = read_poll_timeout(rd32, val, !(val & WX_MSCC_BUSY), 1000, 34 100000, false, wx, WX_MSCC); 35 if (ret) { 36 wx_err(wx, "Mdio read c22 command did not complete.\n"); 37 return ret; 38 } 39 40 return (u16)rd32(wx, WX_MSCC); 41 } 42 43 static int wx_phy_write_reg_mdi(struct mii_bus *bus, int phy_addr, 44 int devnum, int regnum, u16 value) 45 { 46 struct wx *wx = bus->priv; 47 u32 command, val; 48 int ret; 49 50 /* setup and write the address cycle command */ 51 command = WX_MSCA_RA(regnum) | 52 WX_MSCA_PA(phy_addr) | 53 WX_MSCA_DA(devnum); 54 wr32(wx, WX_MSCA, command); 55 56 command = value | WX_MSCC_CMD(WX_MSCA_CMD_WRITE) | WX_MSCC_BUSY; 57 if (wx->mac.type == wx_mac_em) 58 command |= WX_MDIO_CLK(6); 59 wr32(wx, WX_MSCC, command); 60 61 /* wait to complete */ 62 ret = read_poll_timeout(rd32, val, !(val & WX_MSCC_BUSY), 1000, 63 100000, false, wx, WX_MSCC); 64 if (ret) 65 wx_err(wx, "Mdio write c22 command did not complete.\n"); 66 67 return ret; 68 } 69 70 int wx_phy_read_reg_mdi_c22(struct mii_bus *bus, int phy_addr, int regnum) 71 { 72 struct wx *wx = bus->priv; 73 74 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0xF); 75 return wx_phy_read_reg_mdi(bus, phy_addr, 0, regnum); 76 } 77 EXPORT_SYMBOL(wx_phy_read_reg_mdi_c22); 78 79 int wx_phy_write_reg_mdi_c22(struct mii_bus *bus, int phy_addr, int regnum, u16 value) 80 { 81 struct wx *wx = bus->priv; 82 83 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0xF); 84 return wx_phy_write_reg_mdi(bus, phy_addr, 0, regnum, value); 85 } 86 EXPORT_SYMBOL(wx_phy_write_reg_mdi_c22); 87 88 int wx_phy_read_reg_mdi_c45(struct mii_bus *bus, int phy_addr, int devnum, int regnum) 89 { 90 struct wx *wx = bus->priv; 91 92 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0); 93 return wx_phy_read_reg_mdi(bus, phy_addr, devnum, regnum); 94 } 95 EXPORT_SYMBOL(wx_phy_read_reg_mdi_c45); 96 97 int wx_phy_write_reg_mdi_c45(struct mii_bus *bus, int phy_addr, 98 int devnum, int regnum, u16 value) 99 { 100 struct wx *wx = bus->priv; 101 102 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0); 103 return wx_phy_write_reg_mdi(bus, phy_addr, devnum, regnum, value); 104 } 105 EXPORT_SYMBOL(wx_phy_write_reg_mdi_c45); 106 107 static void wx_intr_disable(struct wx *wx, u64 qmask) 108 { 109 u32 mask; 110 111 mask = (qmask & U32_MAX); 112 if (mask) 113 wr32(wx, WX_PX_IMS(0), mask); 114 115 if (wx->mac.type == wx_mac_sp) { 116 mask = (qmask >> 32); 117 if (mask) 118 wr32(wx, WX_PX_IMS(1), mask); 119 } 120 } 121 122 void wx_intr_enable(struct wx *wx, u64 qmask) 123 { 124 u32 mask; 125 126 mask = (qmask & U32_MAX); 127 if (mask) 128 wr32(wx, WX_PX_IMC(0), mask); 129 if (wx->mac.type == wx_mac_sp) { 130 mask = (qmask >> 32); 131 if (mask) 132 wr32(wx, WX_PX_IMC(1), mask); 133 } 134 } 135 EXPORT_SYMBOL(wx_intr_enable); 136 137 /** 138 * wx_irq_disable - Mask off interrupt generation on the NIC 139 * @wx: board private structure 140 **/ 141 void wx_irq_disable(struct wx *wx) 142 { 143 struct pci_dev *pdev = wx->pdev; 144 145 wr32(wx, WX_PX_MISC_IEN, 0); 146 wx_intr_disable(wx, WX_INTR_ALL); 147 148 if (pdev->msix_enabled) { 149 int vector; 150 151 for (vector = 0; vector < wx->num_q_vectors; vector++) 152 synchronize_irq(wx->msix_q_entries[vector].vector); 153 154 synchronize_irq(wx->msix_entry->vector); 155 } else { 156 synchronize_irq(pdev->irq); 157 } 158 } 159 EXPORT_SYMBOL(wx_irq_disable); 160 161 /* cmd_addr is used for some special command: 162 * 1. to be sector address, when implemented erase sector command 163 * 2. to be flash address when implemented read, write flash address 164 */ 165 static int wx_fmgr_cmd_op(struct wx *wx, u32 cmd, u32 cmd_addr) 166 { 167 u32 cmd_val = 0, val = 0; 168 169 cmd_val = WX_SPI_CMD_CMD(cmd) | 170 WX_SPI_CMD_CLK(WX_SPI_CLK_DIV) | 171 cmd_addr; 172 wr32(wx, WX_SPI_CMD, cmd_val); 173 174 return read_poll_timeout(rd32, val, (val & 0x1), 10, 100000, 175 false, wx, WX_SPI_STATUS); 176 } 177 178 static int wx_flash_read_dword(struct wx *wx, u32 addr, u32 *data) 179 { 180 int ret = 0; 181 182 ret = wx_fmgr_cmd_op(wx, WX_SPI_CMD_READ_DWORD, addr); 183 if (ret < 0) 184 return ret; 185 186 *data = rd32(wx, WX_SPI_DATA); 187 188 return ret; 189 } 190 191 int wx_check_flash_load(struct wx *hw, u32 check_bit) 192 { 193 u32 reg = 0; 194 int err = 0; 195 196 /* if there's flash existing */ 197 if (!(rd32(hw, WX_SPI_STATUS) & 198 WX_SPI_STATUS_FLASH_BYPASS)) { 199 /* wait hw load flash done */ 200 err = read_poll_timeout(rd32, reg, !(reg & check_bit), 20000, 2000000, 201 false, hw, WX_SPI_ILDR_STATUS); 202 if (err < 0) 203 wx_err(hw, "Check flash load timeout.\n"); 204 } 205 206 return err; 207 } 208 EXPORT_SYMBOL(wx_check_flash_load); 209 210 void wx_control_hw(struct wx *wx, bool drv) 211 { 212 /* True : Let firmware know the driver has taken over 213 * False : Let firmware take over control of hw 214 */ 215 wr32m(wx, WX_CFG_PORT_CTL, WX_CFG_PORT_CTL_DRV_LOAD, 216 drv ? WX_CFG_PORT_CTL_DRV_LOAD : 0); 217 } 218 EXPORT_SYMBOL(wx_control_hw); 219 220 /** 221 * wx_mng_present - returns 0 when management capability is present 222 * @wx: pointer to hardware structure 223 */ 224 int wx_mng_present(struct wx *wx) 225 { 226 u32 fwsm; 227 228 fwsm = rd32(wx, WX_MIS_ST); 229 if (fwsm & WX_MIS_ST_MNG_INIT_DN) 230 return 0; 231 else 232 return -EACCES; 233 } 234 EXPORT_SYMBOL(wx_mng_present); 235 236 /* Software lock to be held while software semaphore is being accessed. */ 237 static DEFINE_MUTEX(wx_sw_sync_lock); 238 239 /** 240 * wx_release_sw_sync - Release SW semaphore 241 * @wx: pointer to hardware structure 242 * @mask: Mask to specify which semaphore to release 243 * 244 * Releases the SW semaphore for the specified 245 * function (CSR, PHY0, PHY1, EEPROM, Flash) 246 **/ 247 static void wx_release_sw_sync(struct wx *wx, u32 mask) 248 { 249 mutex_lock(&wx_sw_sync_lock); 250 wr32m(wx, WX_MNG_SWFW_SYNC, mask, 0); 251 mutex_unlock(&wx_sw_sync_lock); 252 } 253 254 /** 255 * wx_acquire_sw_sync - Acquire SW semaphore 256 * @wx: pointer to hardware structure 257 * @mask: Mask to specify which semaphore to acquire 258 * 259 * Acquires the SW semaphore for the specified 260 * function (CSR, PHY0, PHY1, EEPROM, Flash) 261 **/ 262 static int wx_acquire_sw_sync(struct wx *wx, u32 mask) 263 { 264 u32 sem = 0; 265 int ret = 0; 266 267 mutex_lock(&wx_sw_sync_lock); 268 ret = read_poll_timeout(rd32, sem, !(sem & mask), 269 5000, 2000000, false, wx, WX_MNG_SWFW_SYNC); 270 if (!ret) { 271 sem |= mask; 272 wr32(wx, WX_MNG_SWFW_SYNC, sem); 273 } else { 274 wx_err(wx, "SW Semaphore not granted: 0x%x.\n", sem); 275 } 276 mutex_unlock(&wx_sw_sync_lock); 277 278 return ret; 279 } 280 281 /** 282 * wx_host_interface_command - Issue command to manageability block 283 * @wx: pointer to the HW structure 284 * @buffer: contains the command to write and where the return status will 285 * be placed 286 * @length: length of buffer, must be multiple of 4 bytes 287 * @timeout: time in ms to wait for command completion 288 * @return_data: read and return data from the buffer (true) or not (false) 289 * Needed because FW structures are big endian and decoding of 290 * these fields can be 8 bit or 16 bit based on command. Decoding 291 * is not easily understood without making a table of commands. 292 * So we will leave this up to the caller to read back the data 293 * in these cases. 294 **/ 295 int wx_host_interface_command(struct wx *wx, u32 *buffer, 296 u32 length, u32 timeout, bool return_data) 297 { 298 u32 hdr_size = sizeof(struct wx_hic_hdr); 299 u32 hicr, i, bi, buf[64] = {}; 300 int status = 0; 301 u32 dword_len; 302 u16 buf_len; 303 304 if (length == 0 || length > WX_HI_MAX_BLOCK_BYTE_LENGTH) { 305 wx_err(wx, "Buffer length failure buffersize=%d.\n", length); 306 return -EINVAL; 307 } 308 309 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB); 310 if (status != 0) 311 return status; 312 313 /* Calculate length in DWORDs. We must be DWORD aligned */ 314 if ((length % (sizeof(u32))) != 0) { 315 wx_err(wx, "Buffer length failure, not aligned to dword"); 316 status = -EINVAL; 317 goto rel_out; 318 } 319 320 dword_len = length >> 2; 321 322 /* The device driver writes the relevant command block 323 * into the ram area. 324 */ 325 for (i = 0; i < dword_len; i++) { 326 wr32a(wx, WX_MNG_MBOX, i, (__force u32)cpu_to_le32(buffer[i])); 327 /* write flush */ 328 buf[i] = rd32a(wx, WX_MNG_MBOX, i); 329 } 330 /* Setting this bit tells the ARC that a new command is pending. */ 331 wr32m(wx, WX_MNG_MBOX_CTL, 332 WX_MNG_MBOX_CTL_SWRDY, WX_MNG_MBOX_CTL_SWRDY); 333 334 status = read_poll_timeout(rd32, hicr, hicr & WX_MNG_MBOX_CTL_FWRDY, 1000, 335 timeout * 1000, false, wx, WX_MNG_MBOX_CTL); 336 337 buf[0] = rd32(wx, WX_MNG_MBOX); 338 if ((buf[0] & 0xff0000) >> 16 == 0x80) { 339 wx_err(wx, "Unknown FW command: 0x%x\n", buffer[0] & 0xff); 340 status = -EINVAL; 341 goto rel_out; 342 } 343 344 /* Check command completion */ 345 if (status) { 346 wx_err(wx, "Command has failed with no status valid.\n"); 347 wx_dbg(wx, "write value:\n"); 348 for (i = 0; i < dword_len; i++) 349 wx_dbg(wx, "%x ", buffer[i]); 350 wx_dbg(wx, "read value:\n"); 351 for (i = 0; i < dword_len; i++) 352 wx_dbg(wx, "%x ", buf[i]); 353 wx_dbg(wx, "\ncheck: %x %x\n", buffer[0] & 0xff, ~buf[0] >> 24); 354 355 goto rel_out; 356 } 357 358 if (!return_data) 359 goto rel_out; 360 361 /* Calculate length in DWORDs */ 362 dword_len = hdr_size >> 2; 363 364 /* first pull in the header so we know the buffer length */ 365 for (bi = 0; bi < dword_len; bi++) { 366 buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi); 367 le32_to_cpus(&buffer[bi]); 368 } 369 370 /* If there is any thing in data position pull it in */ 371 buf_len = ((struct wx_hic_hdr *)buffer)->buf_len; 372 if (buf_len == 0) 373 goto rel_out; 374 375 if (length < buf_len + hdr_size) { 376 wx_err(wx, "Buffer not large enough for reply message.\n"); 377 status = -EFAULT; 378 goto rel_out; 379 } 380 381 /* Calculate length in DWORDs, add 3 for odd lengths */ 382 dword_len = (buf_len + 3) >> 2; 383 384 /* Pull in the rest of the buffer (bi is where we left off) */ 385 for (; bi <= dword_len; bi++) { 386 buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi); 387 le32_to_cpus(&buffer[bi]); 388 } 389 390 rel_out: 391 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB); 392 return status; 393 } 394 EXPORT_SYMBOL(wx_host_interface_command); 395 396 /** 397 * wx_read_ee_hostif_data - Read EEPROM word using a host interface cmd 398 * assuming that the semaphore is already obtained. 399 * @wx: pointer to hardware structure 400 * @offset: offset of word in the EEPROM to read 401 * @data: word read from the EEPROM 402 * 403 * Reads a 16 bit word from the EEPROM using the hostif. 404 **/ 405 static int wx_read_ee_hostif_data(struct wx *wx, u16 offset, u16 *data) 406 { 407 struct wx_hic_read_shadow_ram buffer; 408 int status; 409 410 buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD; 411 buffer.hdr.req.buf_lenh = 0; 412 buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN; 413 buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM; 414 415 /* convert offset from words to bytes */ 416 buffer.address = (__force u32)cpu_to_be32(offset * 2); 417 /* one word */ 418 buffer.length = (__force u16)cpu_to_be16(sizeof(u16)); 419 420 status = wx_host_interface_command(wx, (u32 *)&buffer, sizeof(buffer), 421 WX_HI_COMMAND_TIMEOUT, false); 422 423 if (status != 0) 424 return status; 425 426 *data = (u16)rd32a(wx, WX_MNG_MBOX, FW_NVM_DATA_OFFSET); 427 428 return status; 429 } 430 431 /** 432 * wx_read_ee_hostif - Read EEPROM word using a host interface cmd 433 * @wx: pointer to hardware structure 434 * @offset: offset of word in the EEPROM to read 435 * @data: word read from the EEPROM 436 * 437 * Reads a 16 bit word from the EEPROM using the hostif. 438 **/ 439 int wx_read_ee_hostif(struct wx *wx, u16 offset, u16 *data) 440 { 441 int status = 0; 442 443 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH); 444 if (status == 0) { 445 status = wx_read_ee_hostif_data(wx, offset, data); 446 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH); 447 } 448 449 return status; 450 } 451 EXPORT_SYMBOL(wx_read_ee_hostif); 452 453 /** 454 * wx_read_ee_hostif_buffer- Read EEPROM word(s) using hostif 455 * @wx: pointer to hardware structure 456 * @offset: offset of word in the EEPROM to read 457 * @words: number of words 458 * @data: word(s) read from the EEPROM 459 * 460 * Reads a 16 bit word(s) from the EEPROM using the hostif. 461 **/ 462 int wx_read_ee_hostif_buffer(struct wx *wx, 463 u16 offset, u16 words, u16 *data) 464 { 465 struct wx_hic_read_shadow_ram buffer; 466 u32 current_word = 0; 467 u16 words_to_read; 468 u32 value = 0; 469 int status; 470 u32 i; 471 472 /* Take semaphore for the entire operation. */ 473 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH); 474 if (status != 0) 475 return status; 476 477 while (words) { 478 if (words > FW_MAX_READ_BUFFER_SIZE / 2) 479 words_to_read = FW_MAX_READ_BUFFER_SIZE / 2; 480 else 481 words_to_read = words; 482 483 buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD; 484 buffer.hdr.req.buf_lenh = 0; 485 buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN; 486 buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM; 487 488 /* convert offset from words to bytes */ 489 buffer.address = (__force u32)cpu_to_be32((offset + current_word) * 2); 490 buffer.length = (__force u16)cpu_to_be16(words_to_read * 2); 491 492 status = wx_host_interface_command(wx, (u32 *)&buffer, 493 sizeof(buffer), 494 WX_HI_COMMAND_TIMEOUT, 495 false); 496 497 if (status != 0) { 498 wx_err(wx, "Host interface command failed\n"); 499 goto out; 500 } 501 502 for (i = 0; i < words_to_read; i++) { 503 u32 reg = WX_MNG_MBOX + (FW_NVM_DATA_OFFSET << 2) + 2 * i; 504 505 value = rd32(wx, reg); 506 data[current_word] = (u16)(value & 0xffff); 507 current_word++; 508 i++; 509 if (i < words_to_read) { 510 value >>= 16; 511 data[current_word] = (u16)(value & 0xffff); 512 current_word++; 513 } 514 } 515 words -= words_to_read; 516 } 517 518 out: 519 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH); 520 return status; 521 } 522 EXPORT_SYMBOL(wx_read_ee_hostif_buffer); 523 524 /** 525 * wx_init_eeprom_params - Initialize EEPROM params 526 * @wx: pointer to hardware structure 527 * 528 * Initializes the EEPROM parameters wx_eeprom_info within the 529 * wx_hw struct in order to set up EEPROM access. 530 **/ 531 void wx_init_eeprom_params(struct wx *wx) 532 { 533 struct wx_eeprom_info *eeprom = &wx->eeprom; 534 u16 eeprom_size; 535 u16 data = 0x80; 536 537 if (eeprom->type == wx_eeprom_uninitialized) { 538 eeprom->semaphore_delay = 10; 539 eeprom->type = wx_eeprom_none; 540 541 if (!(rd32(wx, WX_SPI_STATUS) & 542 WX_SPI_STATUS_FLASH_BYPASS)) { 543 eeprom->type = wx_flash; 544 545 eeprom_size = 4096; 546 eeprom->word_size = eeprom_size >> 1; 547 548 wx_dbg(wx, "Eeprom params: type = %d, size = %d\n", 549 eeprom->type, eeprom->word_size); 550 } 551 } 552 553 if (wx->mac.type == wx_mac_sp) { 554 if (wx_read_ee_hostif(wx, WX_SW_REGION_PTR, &data)) { 555 wx_err(wx, "NVM Read Error\n"); 556 return; 557 } 558 data = data >> 1; 559 } 560 561 eeprom->sw_region_offset = data; 562 } 563 EXPORT_SYMBOL(wx_init_eeprom_params); 564 565 /** 566 * wx_get_mac_addr - Generic get MAC address 567 * @wx: pointer to hardware structure 568 * @mac_addr: Adapter MAC address 569 * 570 * Reads the adapter's MAC address from first Receive Address Register (RAR0) 571 * A reset of the adapter must be performed prior to calling this function 572 * in order for the MAC address to have been loaded from the EEPROM into RAR0 573 **/ 574 void wx_get_mac_addr(struct wx *wx, u8 *mac_addr) 575 { 576 u32 rar_high; 577 u32 rar_low; 578 u16 i; 579 580 wr32(wx, WX_PSR_MAC_SWC_IDX, 0); 581 rar_high = rd32(wx, WX_PSR_MAC_SWC_AD_H); 582 rar_low = rd32(wx, WX_PSR_MAC_SWC_AD_L); 583 584 for (i = 0; i < 2; i++) 585 mac_addr[i] = (u8)(rar_high >> (1 - i) * 8); 586 587 for (i = 0; i < 4; i++) 588 mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8); 589 } 590 EXPORT_SYMBOL(wx_get_mac_addr); 591 592 /** 593 * wx_set_rar - Set Rx address register 594 * @wx: pointer to hardware structure 595 * @index: Receive address register to write 596 * @addr: Address to put into receive address register 597 * @pools: VMDq "set" or "pool" index 598 * @enable_addr: set flag that address is active 599 * 600 * Puts an ethernet address into a receive address register. 601 **/ 602 static int wx_set_rar(struct wx *wx, u32 index, u8 *addr, u64 pools, 603 u32 enable_addr) 604 { 605 u32 rar_entries = wx->mac.num_rar_entries; 606 u32 rar_low, rar_high; 607 608 /* Make sure we are using a valid rar index range */ 609 if (index >= rar_entries) { 610 wx_err(wx, "RAR index %d is out of range.\n", index); 611 return -EINVAL; 612 } 613 614 /* select the MAC address */ 615 wr32(wx, WX_PSR_MAC_SWC_IDX, index); 616 617 /* setup VMDq pool mapping */ 618 wr32(wx, WX_PSR_MAC_SWC_VM_L, pools & 0xFFFFFFFF); 619 if (wx->mac.type == wx_mac_sp) 620 wr32(wx, WX_PSR_MAC_SWC_VM_H, pools >> 32); 621 622 /* HW expects these in little endian so we reverse the byte 623 * order from network order (big endian) to little endian 624 * 625 * Some parts put the VMDq setting in the extra RAH bits, 626 * so save everything except the lower 16 bits that hold part 627 * of the address and the address valid bit. 628 */ 629 rar_low = ((u32)addr[5] | 630 ((u32)addr[4] << 8) | 631 ((u32)addr[3] << 16) | 632 ((u32)addr[2] << 24)); 633 rar_high = ((u32)addr[1] | 634 ((u32)addr[0] << 8)); 635 if (enable_addr != 0) 636 rar_high |= WX_PSR_MAC_SWC_AD_H_AV; 637 638 wr32(wx, WX_PSR_MAC_SWC_AD_L, rar_low); 639 wr32m(wx, WX_PSR_MAC_SWC_AD_H, 640 (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) | 641 WX_PSR_MAC_SWC_AD_H_ADTYPE(1) | 642 WX_PSR_MAC_SWC_AD_H_AV), 643 rar_high); 644 645 return 0; 646 } 647 648 /** 649 * wx_clear_rar - Remove Rx address register 650 * @wx: pointer to hardware structure 651 * @index: Receive address register to write 652 * 653 * Clears an ethernet address from a receive address register. 654 **/ 655 static int wx_clear_rar(struct wx *wx, u32 index) 656 { 657 u32 rar_entries = wx->mac.num_rar_entries; 658 659 /* Make sure we are using a valid rar index range */ 660 if (index >= rar_entries) { 661 wx_err(wx, "RAR index %d is out of range.\n", index); 662 return -EINVAL; 663 } 664 665 /* Some parts put the VMDq setting in the extra RAH bits, 666 * so save everything except the lower 16 bits that hold part 667 * of the address and the address valid bit. 668 */ 669 wr32(wx, WX_PSR_MAC_SWC_IDX, index); 670 671 wr32(wx, WX_PSR_MAC_SWC_VM_L, 0); 672 wr32(wx, WX_PSR_MAC_SWC_VM_H, 0); 673 674 wr32(wx, WX_PSR_MAC_SWC_AD_L, 0); 675 wr32m(wx, WX_PSR_MAC_SWC_AD_H, 676 (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) | 677 WX_PSR_MAC_SWC_AD_H_ADTYPE(1) | 678 WX_PSR_MAC_SWC_AD_H_AV), 679 0); 680 681 return 0; 682 } 683 684 /** 685 * wx_clear_vmdq - Disassociate a VMDq pool index from a rx address 686 * @wx: pointer to hardware struct 687 * @rar: receive address register index to disassociate 688 * @vmdq: VMDq pool index to remove from the rar 689 **/ 690 static int wx_clear_vmdq(struct wx *wx, u32 rar, u32 __maybe_unused vmdq) 691 { 692 u32 rar_entries = wx->mac.num_rar_entries; 693 u32 mpsar_lo, mpsar_hi; 694 695 /* Make sure we are using a valid rar index range */ 696 if (rar >= rar_entries) { 697 wx_err(wx, "RAR index %d is out of range.\n", rar); 698 return -EINVAL; 699 } 700 701 wr32(wx, WX_PSR_MAC_SWC_IDX, rar); 702 mpsar_lo = rd32(wx, WX_PSR_MAC_SWC_VM_L); 703 mpsar_hi = rd32(wx, WX_PSR_MAC_SWC_VM_H); 704 705 if (!mpsar_lo && !mpsar_hi) 706 return 0; 707 708 /* was that the last pool using this rar? */ 709 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0) 710 wx_clear_rar(wx, rar); 711 712 return 0; 713 } 714 715 /** 716 * wx_init_uta_tables - Initialize the Unicast Table Array 717 * @wx: pointer to hardware structure 718 **/ 719 static void wx_init_uta_tables(struct wx *wx) 720 { 721 int i; 722 723 wx_dbg(wx, " Clearing UTA\n"); 724 725 for (i = 0; i < 128; i++) 726 wr32(wx, WX_PSR_UC_TBL(i), 0); 727 } 728 729 /** 730 * wx_init_rx_addrs - Initializes receive address filters. 731 * @wx: pointer to hardware structure 732 * 733 * Places the MAC address in receive address register 0 and clears the rest 734 * of the receive address registers. Clears the multicast table. Assumes 735 * the receiver is in reset when the routine is called. 736 **/ 737 void wx_init_rx_addrs(struct wx *wx) 738 { 739 u32 rar_entries = wx->mac.num_rar_entries; 740 u32 psrctl; 741 int i; 742 743 /* If the current mac address is valid, assume it is a software override 744 * to the permanent address. 745 * Otherwise, use the permanent address from the eeprom. 746 */ 747 if (!is_valid_ether_addr(wx->mac.addr)) { 748 /* Get the MAC address from the RAR0 for later reference */ 749 wx_get_mac_addr(wx, wx->mac.addr); 750 wx_dbg(wx, "Keeping Current RAR0 Addr = %pM\n", wx->mac.addr); 751 } else { 752 /* Setup the receive address. */ 753 wx_dbg(wx, "Overriding MAC Address in RAR[0]\n"); 754 wx_dbg(wx, "New MAC Addr = %pM\n", wx->mac.addr); 755 756 wx_set_rar(wx, 0, wx->mac.addr, 0, WX_PSR_MAC_SWC_AD_H_AV); 757 758 if (wx->mac.type == wx_mac_sp) { 759 /* clear VMDq pool/queue selection for RAR 0 */ 760 wx_clear_vmdq(wx, 0, WX_CLEAR_VMDQ_ALL); 761 } 762 } 763 764 /* Zero out the other receive addresses. */ 765 wx_dbg(wx, "Clearing RAR[1-%d]\n", rar_entries - 1); 766 for (i = 1; i < rar_entries; i++) { 767 wr32(wx, WX_PSR_MAC_SWC_IDX, i); 768 wr32(wx, WX_PSR_MAC_SWC_AD_L, 0); 769 wr32(wx, WX_PSR_MAC_SWC_AD_H, 0); 770 } 771 772 /* Clear the MTA */ 773 wx->addr_ctrl.mta_in_use = 0; 774 psrctl = rd32(wx, WX_PSR_CTL); 775 psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE); 776 psrctl |= wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT; 777 wr32(wx, WX_PSR_CTL, psrctl); 778 wx_dbg(wx, " Clearing MTA\n"); 779 for (i = 0; i < wx->mac.mcft_size; i++) 780 wr32(wx, WX_PSR_MC_TBL(i), 0); 781 782 wx_init_uta_tables(wx); 783 } 784 EXPORT_SYMBOL(wx_init_rx_addrs); 785 786 static void wx_sync_mac_table(struct wx *wx) 787 { 788 int i; 789 790 for (i = 0; i < wx->mac.num_rar_entries; i++) { 791 if (wx->mac_table[i].state & WX_MAC_STATE_MODIFIED) { 792 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) { 793 wx_set_rar(wx, i, 794 wx->mac_table[i].addr, 795 wx->mac_table[i].pools, 796 WX_PSR_MAC_SWC_AD_H_AV); 797 } else { 798 wx_clear_rar(wx, i); 799 } 800 wx->mac_table[i].state &= ~(WX_MAC_STATE_MODIFIED); 801 } 802 } 803 } 804 805 /* this function destroys the first RAR entry */ 806 void wx_mac_set_default_filter(struct wx *wx, u8 *addr) 807 { 808 memcpy(&wx->mac_table[0].addr, addr, ETH_ALEN); 809 wx->mac_table[0].pools = 1ULL; 810 wx->mac_table[0].state = (WX_MAC_STATE_DEFAULT | WX_MAC_STATE_IN_USE); 811 wx_set_rar(wx, 0, wx->mac_table[0].addr, 812 wx->mac_table[0].pools, 813 WX_PSR_MAC_SWC_AD_H_AV); 814 } 815 EXPORT_SYMBOL(wx_mac_set_default_filter); 816 817 void wx_flush_sw_mac_table(struct wx *wx) 818 { 819 u32 i; 820 821 for (i = 0; i < wx->mac.num_rar_entries; i++) { 822 if (!(wx->mac_table[i].state & WX_MAC_STATE_IN_USE)) 823 continue; 824 825 wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED; 826 wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE; 827 memset(wx->mac_table[i].addr, 0, ETH_ALEN); 828 wx->mac_table[i].pools = 0; 829 } 830 wx_sync_mac_table(wx); 831 } 832 EXPORT_SYMBOL(wx_flush_sw_mac_table); 833 834 static int wx_add_mac_filter(struct wx *wx, u8 *addr, u16 pool) 835 { 836 u32 i; 837 838 if (is_zero_ether_addr(addr)) 839 return -EINVAL; 840 841 for (i = 0; i < wx->mac.num_rar_entries; i++) { 842 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) { 843 if (ether_addr_equal(addr, wx->mac_table[i].addr)) { 844 if (wx->mac_table[i].pools != (1ULL << pool)) { 845 memcpy(wx->mac_table[i].addr, addr, ETH_ALEN); 846 wx->mac_table[i].pools |= (1ULL << pool); 847 wx_sync_mac_table(wx); 848 return i; 849 } 850 } 851 } 852 853 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) 854 continue; 855 wx->mac_table[i].state |= (WX_MAC_STATE_MODIFIED | 856 WX_MAC_STATE_IN_USE); 857 memcpy(wx->mac_table[i].addr, addr, ETH_ALEN); 858 wx->mac_table[i].pools |= (1ULL << pool); 859 wx_sync_mac_table(wx); 860 return i; 861 } 862 return -ENOMEM; 863 } 864 865 static int wx_del_mac_filter(struct wx *wx, u8 *addr, u16 pool) 866 { 867 u32 i; 868 869 if (is_zero_ether_addr(addr)) 870 return -EINVAL; 871 872 /* search table for addr, if found, set to 0 and sync */ 873 for (i = 0; i < wx->mac.num_rar_entries; i++) { 874 if (!ether_addr_equal(addr, wx->mac_table[i].addr)) 875 continue; 876 877 wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED; 878 wx->mac_table[i].pools &= ~(1ULL << pool); 879 if (!wx->mac_table[i].pools) { 880 wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE; 881 memset(wx->mac_table[i].addr, 0, ETH_ALEN); 882 } 883 wx_sync_mac_table(wx); 884 return 0; 885 } 886 return -ENOMEM; 887 } 888 889 static int wx_available_rars(struct wx *wx) 890 { 891 u32 i, count = 0; 892 893 for (i = 0; i < wx->mac.num_rar_entries; i++) { 894 if (wx->mac_table[i].state == 0) 895 count++; 896 } 897 898 return count; 899 } 900 901 /** 902 * wx_write_uc_addr_list - write unicast addresses to RAR table 903 * @netdev: network interface device structure 904 * @pool: index for mac table 905 * 906 * Writes unicast address list to the RAR table. 907 * Returns: -ENOMEM on failure/insufficient address space 908 * 0 on no addresses written 909 * X on writing X addresses to the RAR table 910 **/ 911 static int wx_write_uc_addr_list(struct net_device *netdev, int pool) 912 { 913 struct wx *wx = netdev_priv(netdev); 914 int count = 0; 915 916 /* return ENOMEM indicating insufficient memory for addresses */ 917 if (netdev_uc_count(netdev) > wx_available_rars(wx)) 918 return -ENOMEM; 919 920 if (!netdev_uc_empty(netdev)) { 921 struct netdev_hw_addr *ha; 922 923 netdev_for_each_uc_addr(ha, netdev) { 924 wx_del_mac_filter(wx, ha->addr, pool); 925 wx_add_mac_filter(wx, ha->addr, pool); 926 count++; 927 } 928 } 929 return count; 930 } 931 932 /** 933 * wx_mta_vector - Determines bit-vector in multicast table to set 934 * @wx: pointer to private structure 935 * @mc_addr: the multicast address 936 * 937 * Extracts the 12 bits, from a multicast address, to determine which 938 * bit-vector to set in the multicast table. The hardware uses 12 bits, from 939 * incoming rx multicast addresses, to determine the bit-vector to check in 940 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set 941 * by the MO field of the MCSTCTRL. The MO field is set during initialization 942 * to mc_filter_type. 943 **/ 944 static u32 wx_mta_vector(struct wx *wx, u8 *mc_addr) 945 { 946 u32 vector = 0; 947 948 switch (wx->mac.mc_filter_type) { 949 case 0: /* use bits [47:36] of the address */ 950 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); 951 break; 952 case 1: /* use bits [46:35] of the address */ 953 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); 954 break; 955 case 2: /* use bits [45:34] of the address */ 956 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); 957 break; 958 case 3: /* use bits [43:32] of the address */ 959 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); 960 break; 961 default: /* Invalid mc_filter_type */ 962 wx_err(wx, "MC filter type param set incorrectly\n"); 963 break; 964 } 965 966 /* vector can only be 12-bits or boundary will be exceeded */ 967 vector &= 0xFFF; 968 return vector; 969 } 970 971 /** 972 * wx_set_mta - Set bit-vector in multicast table 973 * @wx: pointer to private structure 974 * @mc_addr: Multicast address 975 * 976 * Sets the bit-vector in the multicast table. 977 **/ 978 static void wx_set_mta(struct wx *wx, u8 *mc_addr) 979 { 980 u32 vector, vector_bit, vector_reg; 981 982 wx->addr_ctrl.mta_in_use++; 983 984 vector = wx_mta_vector(wx, mc_addr); 985 wx_dbg(wx, " bit-vector = 0x%03X\n", vector); 986 987 /* The MTA is a register array of 128 32-bit registers. It is treated 988 * like an array of 4096 bits. We want to set bit 989 * BitArray[vector_value]. So we figure out what register the bit is 990 * in, read it, OR in the new bit, then write back the new value. The 991 * register is determined by the upper 7 bits of the vector value and 992 * the bit within that register are determined by the lower 5 bits of 993 * the value. 994 */ 995 vector_reg = (vector >> 5) & 0x7F; 996 vector_bit = vector & 0x1F; 997 wx->mac.mta_shadow[vector_reg] |= (1 << vector_bit); 998 } 999 1000 /** 1001 * wx_update_mc_addr_list - Updates MAC list of multicast addresses 1002 * @wx: pointer to private structure 1003 * @netdev: pointer to net device structure 1004 * 1005 * The given list replaces any existing list. Clears the MC addrs from receive 1006 * address registers and the multicast table. Uses unused receive address 1007 * registers for the first multicast addresses, and hashes the rest into the 1008 * multicast table. 1009 **/ 1010 static void wx_update_mc_addr_list(struct wx *wx, struct net_device *netdev) 1011 { 1012 struct netdev_hw_addr *ha; 1013 u32 i, psrctl; 1014 1015 /* Set the new number of MC addresses that we are being requested to 1016 * use. 1017 */ 1018 wx->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev); 1019 wx->addr_ctrl.mta_in_use = 0; 1020 1021 /* Clear mta_shadow */ 1022 wx_dbg(wx, " Clearing MTA\n"); 1023 memset(&wx->mac.mta_shadow, 0, sizeof(wx->mac.mta_shadow)); 1024 1025 /* Update mta_shadow */ 1026 netdev_for_each_mc_addr(ha, netdev) { 1027 wx_dbg(wx, " Adding the multicast addresses:\n"); 1028 wx_set_mta(wx, ha->addr); 1029 } 1030 1031 /* Enable mta */ 1032 for (i = 0; i < wx->mac.mcft_size; i++) 1033 wr32a(wx, WX_PSR_MC_TBL(0), i, 1034 wx->mac.mta_shadow[i]); 1035 1036 if (wx->addr_ctrl.mta_in_use > 0) { 1037 psrctl = rd32(wx, WX_PSR_CTL); 1038 psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE); 1039 psrctl |= WX_PSR_CTL_MFE | 1040 (wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT); 1041 wr32(wx, WX_PSR_CTL, psrctl); 1042 } 1043 1044 wx_dbg(wx, "Update mc addr list Complete\n"); 1045 } 1046 1047 /** 1048 * wx_write_mc_addr_list - write multicast addresses to MTA 1049 * @netdev: network interface device structure 1050 * 1051 * Writes multicast address list to the MTA hash table. 1052 * Returns: 0 on no addresses written 1053 * X on writing X addresses to MTA 1054 **/ 1055 static int wx_write_mc_addr_list(struct net_device *netdev) 1056 { 1057 struct wx *wx = netdev_priv(netdev); 1058 1059 if (!netif_running(netdev)) 1060 return 0; 1061 1062 wx_update_mc_addr_list(wx, netdev); 1063 1064 return netdev_mc_count(netdev); 1065 } 1066 1067 /** 1068 * wx_set_mac - Change the Ethernet Address of the NIC 1069 * @netdev: network interface device structure 1070 * @p: pointer to an address structure 1071 * 1072 * Returns 0 on success, negative on failure 1073 **/ 1074 int wx_set_mac(struct net_device *netdev, void *p) 1075 { 1076 struct wx *wx = netdev_priv(netdev); 1077 struct sockaddr *addr = p; 1078 int retval; 1079 1080 retval = eth_prepare_mac_addr_change(netdev, addr); 1081 if (retval) 1082 return retval; 1083 1084 wx_del_mac_filter(wx, wx->mac.addr, 0); 1085 eth_hw_addr_set(netdev, addr->sa_data); 1086 memcpy(wx->mac.addr, addr->sa_data, netdev->addr_len); 1087 1088 wx_mac_set_default_filter(wx, wx->mac.addr); 1089 1090 return 0; 1091 } 1092 EXPORT_SYMBOL(wx_set_mac); 1093 1094 void wx_disable_rx(struct wx *wx) 1095 { 1096 u32 pfdtxgswc; 1097 u32 rxctrl; 1098 1099 rxctrl = rd32(wx, WX_RDB_PB_CTL); 1100 if (rxctrl & WX_RDB_PB_CTL_RXEN) { 1101 pfdtxgswc = rd32(wx, WX_PSR_CTL); 1102 if (pfdtxgswc & WX_PSR_CTL_SW_EN) { 1103 pfdtxgswc &= ~WX_PSR_CTL_SW_EN; 1104 wr32(wx, WX_PSR_CTL, pfdtxgswc); 1105 wx->mac.set_lben = true; 1106 } else { 1107 wx->mac.set_lben = false; 1108 } 1109 rxctrl &= ~WX_RDB_PB_CTL_RXEN; 1110 wr32(wx, WX_RDB_PB_CTL, rxctrl); 1111 1112 if (!(((wx->subsystem_device_id & WX_NCSI_MASK) == WX_NCSI_SUP) || 1113 ((wx->subsystem_device_id & WX_WOL_MASK) == WX_WOL_SUP))) { 1114 /* disable mac receiver */ 1115 wr32m(wx, WX_MAC_RX_CFG, 1116 WX_MAC_RX_CFG_RE, 0); 1117 } 1118 } 1119 } 1120 EXPORT_SYMBOL(wx_disable_rx); 1121 1122 static void wx_enable_rx(struct wx *wx) 1123 { 1124 u32 psrctl; 1125 1126 /* enable mac receiver */ 1127 wr32m(wx, WX_MAC_RX_CFG, 1128 WX_MAC_RX_CFG_RE, WX_MAC_RX_CFG_RE); 1129 1130 wr32m(wx, WX_RDB_PB_CTL, 1131 WX_RDB_PB_CTL_RXEN, WX_RDB_PB_CTL_RXEN); 1132 1133 if (wx->mac.set_lben) { 1134 psrctl = rd32(wx, WX_PSR_CTL); 1135 psrctl |= WX_PSR_CTL_SW_EN; 1136 wr32(wx, WX_PSR_CTL, psrctl); 1137 wx->mac.set_lben = false; 1138 } 1139 } 1140 1141 /** 1142 * wx_set_rxpba - Initialize Rx packet buffer 1143 * @wx: pointer to private structure 1144 **/ 1145 static void wx_set_rxpba(struct wx *wx) 1146 { 1147 u32 rxpktsize, txpktsize, txpbthresh; 1148 u32 pbsize = wx->mac.rx_pb_size; 1149 1150 if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags)) { 1151 if (test_bit(WX_FLAG_FDIR_HASH, wx->flags) || 1152 test_bit(WX_FLAG_FDIR_PERFECT, wx->flags)) 1153 pbsize -= 64; /* Default 64KB */ 1154 } 1155 1156 rxpktsize = pbsize << WX_RDB_PB_SZ_SHIFT; 1157 wr32(wx, WX_RDB_PB_SZ(0), rxpktsize); 1158 1159 /* Only support an equally distributed Tx packet buffer strategy. */ 1160 txpktsize = wx->mac.tx_pb_size; 1161 txpbthresh = (txpktsize / 1024) - WX_TXPKT_SIZE_MAX; 1162 wr32(wx, WX_TDB_PB_SZ(0), txpktsize); 1163 wr32(wx, WX_TDM_PB_THRE(0), txpbthresh); 1164 } 1165 1166 #define WX_ETH_FRAMING 20 1167 1168 /** 1169 * wx_hpbthresh - calculate high water mark for flow control 1170 * 1171 * @wx: board private structure to calculate for 1172 **/ 1173 static int wx_hpbthresh(struct wx *wx) 1174 { 1175 struct net_device *dev = wx->netdev; 1176 int link, tc, kb, marker; 1177 u32 dv_id, rx_pba; 1178 1179 /* Calculate max LAN frame size */ 1180 link = dev->mtu + ETH_HLEN + ETH_FCS_LEN + WX_ETH_FRAMING; 1181 tc = link; 1182 1183 /* Calculate delay value for device */ 1184 dv_id = WX_DV(link, tc); 1185 1186 /* Delay value is calculated in bit times convert to KB */ 1187 kb = WX_BT2KB(dv_id); 1188 rx_pba = rd32(wx, WX_RDB_PB_SZ(0)) >> WX_RDB_PB_SZ_SHIFT; 1189 1190 marker = rx_pba - kb; 1191 1192 /* It is possible that the packet buffer is not large enough 1193 * to provide required headroom. In this case throw an error 1194 * to user and a do the best we can. 1195 */ 1196 if (marker < 0) { 1197 dev_warn(&wx->pdev->dev, 1198 "Packet Buffer can not provide enough headroom to support flow control. Decrease MTU or number of traffic classes\n"); 1199 marker = tc + 1; 1200 } 1201 1202 return marker; 1203 } 1204 1205 /** 1206 * wx_lpbthresh - calculate low water mark for flow control 1207 * 1208 * @wx: board private structure to calculate for 1209 **/ 1210 static int wx_lpbthresh(struct wx *wx) 1211 { 1212 struct net_device *dev = wx->netdev; 1213 u32 dv_id; 1214 int tc; 1215 1216 /* Calculate max LAN frame size */ 1217 tc = dev->mtu + ETH_HLEN + ETH_FCS_LEN; 1218 1219 /* Calculate delay value for device */ 1220 dv_id = WX_LOW_DV(tc); 1221 1222 /* Delay value is calculated in bit times convert to KB */ 1223 return WX_BT2KB(dv_id); 1224 } 1225 1226 /** 1227 * wx_pbthresh_setup - calculate and setup high low water marks 1228 * 1229 * @wx: board private structure to calculate for 1230 **/ 1231 static void wx_pbthresh_setup(struct wx *wx) 1232 { 1233 wx->fc.high_water = wx_hpbthresh(wx); 1234 wx->fc.low_water = wx_lpbthresh(wx); 1235 1236 /* Low water marks must not be larger than high water marks */ 1237 if (wx->fc.low_water > wx->fc.high_water) 1238 wx->fc.low_water = 0; 1239 } 1240 1241 static void wx_configure_port(struct wx *wx) 1242 { 1243 u32 value, i; 1244 1245 value = WX_CFG_PORT_CTL_D_VLAN | WX_CFG_PORT_CTL_QINQ; 1246 wr32m(wx, WX_CFG_PORT_CTL, 1247 WX_CFG_PORT_CTL_D_VLAN | 1248 WX_CFG_PORT_CTL_QINQ, 1249 value); 1250 1251 wr32(wx, WX_CFG_TAG_TPID(0), 1252 ETH_P_8021Q | ETH_P_8021AD << 16); 1253 wx->tpid[0] = ETH_P_8021Q; 1254 wx->tpid[1] = ETH_P_8021AD; 1255 for (i = 1; i < 4; i++) 1256 wr32(wx, WX_CFG_TAG_TPID(i), 1257 ETH_P_8021Q | ETH_P_8021Q << 16); 1258 for (i = 2; i < 8; i++) 1259 wx->tpid[i] = ETH_P_8021Q; 1260 } 1261 1262 /** 1263 * wx_disable_sec_rx_path - Stops the receive data path 1264 * @wx: pointer to private structure 1265 * 1266 * Stops the receive data path and waits for the HW to internally empty 1267 * the Rx security block 1268 **/ 1269 int wx_disable_sec_rx_path(struct wx *wx) 1270 { 1271 u32 secrx; 1272 1273 wr32m(wx, WX_RSC_CTL, 1274 WX_RSC_CTL_RX_DIS, WX_RSC_CTL_RX_DIS); 1275 1276 return read_poll_timeout(rd32, secrx, secrx & WX_RSC_ST_RSEC_RDY, 1277 1000, 40000, false, wx, WX_RSC_ST); 1278 } 1279 EXPORT_SYMBOL(wx_disable_sec_rx_path); 1280 1281 /** 1282 * wx_enable_sec_rx_path - Enables the receive data path 1283 * @wx: pointer to private structure 1284 * 1285 * Enables the receive data path. 1286 **/ 1287 void wx_enable_sec_rx_path(struct wx *wx) 1288 { 1289 wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_RX_DIS, 0); 1290 WX_WRITE_FLUSH(wx); 1291 } 1292 EXPORT_SYMBOL(wx_enable_sec_rx_path); 1293 1294 static void wx_vlan_strip_control(struct wx *wx, bool enable) 1295 { 1296 int i, j; 1297 1298 for (i = 0; i < wx->num_rx_queues; i++) { 1299 struct wx_ring *ring = wx->rx_ring[i]; 1300 1301 j = ring->reg_idx; 1302 wr32m(wx, WX_PX_RR_CFG(j), WX_PX_RR_CFG_VLAN, 1303 enable ? WX_PX_RR_CFG_VLAN : 0); 1304 } 1305 } 1306 1307 void wx_set_rx_mode(struct net_device *netdev) 1308 { 1309 struct wx *wx = netdev_priv(netdev); 1310 netdev_features_t features; 1311 u32 fctrl, vmolr, vlnctrl; 1312 int count; 1313 1314 features = netdev->features; 1315 1316 /* Check for Promiscuous and All Multicast modes */ 1317 fctrl = rd32(wx, WX_PSR_CTL); 1318 fctrl &= ~(WX_PSR_CTL_UPE | WX_PSR_CTL_MPE); 1319 vmolr = rd32(wx, WX_PSR_VM_L2CTL(0)); 1320 vmolr &= ~(WX_PSR_VM_L2CTL_UPE | 1321 WX_PSR_VM_L2CTL_MPE | 1322 WX_PSR_VM_L2CTL_ROPE | 1323 WX_PSR_VM_L2CTL_ROMPE); 1324 vlnctrl = rd32(wx, WX_PSR_VLAN_CTL); 1325 vlnctrl &= ~(WX_PSR_VLAN_CTL_VFE | WX_PSR_VLAN_CTL_CFIEN); 1326 1327 /* set all bits that we expect to always be set */ 1328 fctrl |= WX_PSR_CTL_BAM | WX_PSR_CTL_MFE; 1329 vmolr |= WX_PSR_VM_L2CTL_BAM | 1330 WX_PSR_VM_L2CTL_AUPE | 1331 WX_PSR_VM_L2CTL_VACC; 1332 vlnctrl |= WX_PSR_VLAN_CTL_VFE; 1333 1334 wx->addr_ctrl.user_set_promisc = false; 1335 if (netdev->flags & IFF_PROMISC) { 1336 wx->addr_ctrl.user_set_promisc = true; 1337 fctrl |= WX_PSR_CTL_UPE | WX_PSR_CTL_MPE; 1338 /* pf don't want packets routing to vf, so clear UPE */ 1339 vmolr |= WX_PSR_VM_L2CTL_MPE; 1340 vlnctrl &= ~WX_PSR_VLAN_CTL_VFE; 1341 } 1342 1343 if (netdev->flags & IFF_ALLMULTI) { 1344 fctrl |= WX_PSR_CTL_MPE; 1345 vmolr |= WX_PSR_VM_L2CTL_MPE; 1346 } 1347 1348 if (netdev->features & NETIF_F_RXALL) { 1349 vmolr |= (WX_PSR_VM_L2CTL_UPE | WX_PSR_VM_L2CTL_MPE); 1350 vlnctrl &= ~WX_PSR_VLAN_CTL_VFE; 1351 /* receive bad packets */ 1352 wr32m(wx, WX_RSC_CTL, 1353 WX_RSC_CTL_SAVE_MAC_ERR, 1354 WX_RSC_CTL_SAVE_MAC_ERR); 1355 } else { 1356 vmolr |= WX_PSR_VM_L2CTL_ROPE | WX_PSR_VM_L2CTL_ROMPE; 1357 } 1358 1359 /* Write addresses to available RAR registers, if there is not 1360 * sufficient space to store all the addresses then enable 1361 * unicast promiscuous mode 1362 */ 1363 count = wx_write_uc_addr_list(netdev, 0); 1364 if (count < 0) { 1365 vmolr &= ~WX_PSR_VM_L2CTL_ROPE; 1366 vmolr |= WX_PSR_VM_L2CTL_UPE; 1367 } 1368 1369 /* Write addresses to the MTA, if the attempt fails 1370 * then we should just turn on promiscuous mode so 1371 * that we can at least receive multicast traffic 1372 */ 1373 count = wx_write_mc_addr_list(netdev); 1374 if (count < 0) { 1375 vmolr &= ~WX_PSR_VM_L2CTL_ROMPE; 1376 vmolr |= WX_PSR_VM_L2CTL_MPE; 1377 } 1378 1379 wr32(wx, WX_PSR_VLAN_CTL, vlnctrl); 1380 wr32(wx, WX_PSR_CTL, fctrl); 1381 wr32(wx, WX_PSR_VM_L2CTL(0), vmolr); 1382 1383 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 1384 (features & NETIF_F_HW_VLAN_STAG_RX)) 1385 wx_vlan_strip_control(wx, true); 1386 else 1387 wx_vlan_strip_control(wx, false); 1388 1389 } 1390 EXPORT_SYMBOL(wx_set_rx_mode); 1391 1392 static void wx_set_rx_buffer_len(struct wx *wx) 1393 { 1394 struct net_device *netdev = wx->netdev; 1395 u32 mhadd, max_frame; 1396 1397 max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 1398 /* adjust max frame to be at least the size of a standard frame */ 1399 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 1400 max_frame = (ETH_FRAME_LEN + ETH_FCS_LEN); 1401 1402 mhadd = rd32(wx, WX_PSR_MAX_SZ); 1403 if (max_frame != mhadd) 1404 wr32(wx, WX_PSR_MAX_SZ, max_frame); 1405 } 1406 1407 /** 1408 * wx_change_mtu - Change the Maximum Transfer Unit 1409 * @netdev: network interface device structure 1410 * @new_mtu: new value for maximum frame size 1411 * 1412 * Returns 0 on success, negative on failure 1413 **/ 1414 int wx_change_mtu(struct net_device *netdev, int new_mtu) 1415 { 1416 struct wx *wx = netdev_priv(netdev); 1417 1418 WRITE_ONCE(netdev->mtu, new_mtu); 1419 wx_set_rx_buffer_len(wx); 1420 1421 return 0; 1422 } 1423 EXPORT_SYMBOL(wx_change_mtu); 1424 1425 /* Disable the specified rx queue */ 1426 void wx_disable_rx_queue(struct wx *wx, struct wx_ring *ring) 1427 { 1428 u8 reg_idx = ring->reg_idx; 1429 u32 rxdctl; 1430 int ret; 1431 1432 /* write value back with RRCFG.EN bit cleared */ 1433 wr32m(wx, WX_PX_RR_CFG(reg_idx), 1434 WX_PX_RR_CFG_RR_EN, 0); 1435 1436 /* the hardware may take up to 100us to really disable the rx queue */ 1437 ret = read_poll_timeout(rd32, rxdctl, !(rxdctl & WX_PX_RR_CFG_RR_EN), 1438 10, 100, true, wx, WX_PX_RR_CFG(reg_idx)); 1439 1440 if (ret == -ETIMEDOUT) { 1441 /* Just for information */ 1442 wx_err(wx, 1443 "RRCFG.EN on Rx queue %d not cleared within the polling period\n", 1444 reg_idx); 1445 } 1446 } 1447 EXPORT_SYMBOL(wx_disable_rx_queue); 1448 1449 static void wx_enable_rx_queue(struct wx *wx, struct wx_ring *ring) 1450 { 1451 u8 reg_idx = ring->reg_idx; 1452 u32 rxdctl; 1453 int ret; 1454 1455 ret = read_poll_timeout(rd32, rxdctl, rxdctl & WX_PX_RR_CFG_RR_EN, 1456 1000, 10000, true, wx, WX_PX_RR_CFG(reg_idx)); 1457 1458 if (ret == -ETIMEDOUT) { 1459 /* Just for information */ 1460 wx_err(wx, 1461 "RRCFG.EN on Rx queue %d not set within the polling period\n", 1462 reg_idx); 1463 } 1464 } 1465 1466 static void wx_configure_srrctl(struct wx *wx, 1467 struct wx_ring *rx_ring) 1468 { 1469 u16 reg_idx = rx_ring->reg_idx; 1470 u32 srrctl; 1471 1472 srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx)); 1473 srrctl &= ~(WX_PX_RR_CFG_RR_HDR_SZ | 1474 WX_PX_RR_CFG_RR_BUF_SZ | 1475 WX_PX_RR_CFG_SPLIT_MODE); 1476 /* configure header buffer length, needed for RSC */ 1477 srrctl |= WX_RXBUFFER_256 << WX_PX_RR_CFG_BHDRSIZE_SHIFT; 1478 1479 /* configure the packet buffer length */ 1480 srrctl |= WX_RX_BUFSZ >> WX_PX_RR_CFG_BSIZEPKT_SHIFT; 1481 1482 wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl); 1483 } 1484 1485 static void wx_configure_tx_ring(struct wx *wx, 1486 struct wx_ring *ring) 1487 { 1488 u32 txdctl = WX_PX_TR_CFG_ENABLE; 1489 u8 reg_idx = ring->reg_idx; 1490 u64 tdba = ring->dma; 1491 int ret; 1492 1493 /* disable queue to avoid issues while updating state */ 1494 wr32(wx, WX_PX_TR_CFG(reg_idx), WX_PX_TR_CFG_SWFLSH); 1495 WX_WRITE_FLUSH(wx); 1496 1497 wr32(wx, WX_PX_TR_BAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1498 wr32(wx, WX_PX_TR_BAH(reg_idx), upper_32_bits(tdba)); 1499 1500 /* reset head and tail pointers */ 1501 wr32(wx, WX_PX_TR_RP(reg_idx), 0); 1502 wr32(wx, WX_PX_TR_WP(reg_idx), 0); 1503 ring->tail = wx->hw_addr + WX_PX_TR_WP(reg_idx); 1504 1505 if (ring->count < WX_MAX_TXD) 1506 txdctl |= ring->count / 128 << WX_PX_TR_CFG_TR_SIZE_SHIFT; 1507 txdctl |= 0x20 << WX_PX_TR_CFG_WTHRESH_SHIFT; 1508 1509 ring->atr_count = 0; 1510 if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags) && 1511 test_bit(WX_FLAG_FDIR_HASH, wx->flags)) 1512 ring->atr_sample_rate = wx->atr_sample_rate; 1513 else 1514 ring->atr_sample_rate = 0; 1515 1516 /* reinitialize tx_buffer_info */ 1517 memset(ring->tx_buffer_info, 0, 1518 sizeof(struct wx_tx_buffer) * ring->count); 1519 1520 /* enable queue */ 1521 wr32(wx, WX_PX_TR_CFG(reg_idx), txdctl); 1522 1523 /* poll to verify queue is enabled */ 1524 ret = read_poll_timeout(rd32, txdctl, txdctl & WX_PX_TR_CFG_ENABLE, 1525 1000, 10000, true, wx, WX_PX_TR_CFG(reg_idx)); 1526 if (ret == -ETIMEDOUT) 1527 wx_err(wx, "Could not enable Tx Queue %d\n", reg_idx); 1528 } 1529 1530 static void wx_configure_rx_ring(struct wx *wx, 1531 struct wx_ring *ring) 1532 { 1533 u16 reg_idx = ring->reg_idx; 1534 union wx_rx_desc *rx_desc; 1535 u64 rdba = ring->dma; 1536 u32 rxdctl; 1537 1538 /* disable queue to avoid issues while updating state */ 1539 rxdctl = rd32(wx, WX_PX_RR_CFG(reg_idx)); 1540 wx_disable_rx_queue(wx, ring); 1541 1542 wr32(wx, WX_PX_RR_BAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1543 wr32(wx, WX_PX_RR_BAH(reg_idx), upper_32_bits(rdba)); 1544 1545 if (ring->count == WX_MAX_RXD) 1546 rxdctl |= 0 << WX_PX_RR_CFG_RR_SIZE_SHIFT; 1547 else 1548 rxdctl |= (ring->count / 128) << WX_PX_RR_CFG_RR_SIZE_SHIFT; 1549 1550 rxdctl |= 0x1 << WX_PX_RR_CFG_RR_THER_SHIFT; 1551 wr32(wx, WX_PX_RR_CFG(reg_idx), rxdctl); 1552 1553 /* reset head and tail pointers */ 1554 wr32(wx, WX_PX_RR_RP(reg_idx), 0); 1555 wr32(wx, WX_PX_RR_WP(reg_idx), 0); 1556 ring->tail = wx->hw_addr + WX_PX_RR_WP(reg_idx); 1557 1558 wx_configure_srrctl(wx, ring); 1559 1560 /* initialize rx_buffer_info */ 1561 memset(ring->rx_buffer_info, 0, 1562 sizeof(struct wx_rx_buffer) * ring->count); 1563 1564 /* initialize Rx descriptor 0 */ 1565 rx_desc = WX_RX_DESC(ring, 0); 1566 rx_desc->wb.upper.length = 0; 1567 1568 /* enable receive descriptor ring */ 1569 wr32m(wx, WX_PX_RR_CFG(reg_idx), 1570 WX_PX_RR_CFG_RR_EN, WX_PX_RR_CFG_RR_EN); 1571 1572 wx_enable_rx_queue(wx, ring); 1573 wx_alloc_rx_buffers(ring, wx_desc_unused(ring)); 1574 } 1575 1576 /** 1577 * wx_configure_tx - Configure Transmit Unit after Reset 1578 * @wx: pointer to private structure 1579 * 1580 * Configure the Tx unit of the MAC after a reset. 1581 **/ 1582 static void wx_configure_tx(struct wx *wx) 1583 { 1584 u32 i; 1585 1586 /* TDM_CTL.TE must be before Tx queues are enabled */ 1587 wr32m(wx, WX_TDM_CTL, 1588 WX_TDM_CTL_TE, WX_TDM_CTL_TE); 1589 1590 /* Setup the HW Tx Head and Tail descriptor pointers */ 1591 for (i = 0; i < wx->num_tx_queues; i++) 1592 wx_configure_tx_ring(wx, wx->tx_ring[i]); 1593 1594 wr32m(wx, WX_TSC_BUF_AE, WX_TSC_BUF_AE_THR, 0x10); 1595 1596 if (wx->mac.type == wx_mac_em) 1597 wr32m(wx, WX_TSC_CTL, WX_TSC_CTL_TX_DIS | WX_TSC_CTL_TSEC_DIS, 0x1); 1598 1599 /* enable mac transmitter */ 1600 wr32m(wx, WX_MAC_TX_CFG, 1601 WX_MAC_TX_CFG_TE, WX_MAC_TX_CFG_TE); 1602 } 1603 1604 static void wx_restore_vlan(struct wx *wx) 1605 { 1606 u16 vid = 1; 1607 1608 wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), 0); 1609 1610 for_each_set_bit_from(vid, wx->active_vlans, VLAN_N_VID) 1611 wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), vid); 1612 } 1613 1614 static void wx_store_reta(struct wx *wx) 1615 { 1616 u8 *indir_tbl = wx->rss_indir_tbl; 1617 u32 reta = 0; 1618 u32 i; 1619 1620 /* Fill out the redirection table as follows: 1621 * - 8 bit wide entries containing 4 bit RSS index 1622 */ 1623 for (i = 0; i < WX_MAX_RETA_ENTRIES; i++) { 1624 reta |= indir_tbl[i] << (i & 0x3) * 8; 1625 if ((i & 3) == 3) { 1626 wr32(wx, WX_RDB_RSSTBL(i >> 2), reta); 1627 reta = 0; 1628 } 1629 } 1630 } 1631 1632 static void wx_setup_reta(struct wx *wx) 1633 { 1634 u16 rss_i = wx->ring_feature[RING_F_RSS].indices; 1635 u32 random_key_size = WX_RSS_KEY_SIZE / 4; 1636 u32 i, j; 1637 1638 /* Fill out hash function seeds */ 1639 for (i = 0; i < random_key_size; i++) 1640 wr32(wx, WX_RDB_RSSRK(i), wx->rss_key[i]); 1641 1642 /* Fill out redirection table */ 1643 memset(wx->rss_indir_tbl, 0, sizeof(wx->rss_indir_tbl)); 1644 1645 for (i = 0, j = 0; i < WX_MAX_RETA_ENTRIES; i++, j++) { 1646 if (j == rss_i) 1647 j = 0; 1648 1649 wx->rss_indir_tbl[i] = j; 1650 } 1651 1652 wx_store_reta(wx); 1653 } 1654 1655 static void wx_setup_mrqc(struct wx *wx) 1656 { 1657 u32 rss_field = 0; 1658 1659 /* Disable indicating checksum in descriptor, enables RSS hash */ 1660 wr32m(wx, WX_PSR_CTL, WX_PSR_CTL_PCSD, WX_PSR_CTL_PCSD); 1661 1662 /* Perform hash on these packet types */ 1663 rss_field = WX_RDB_RA_CTL_RSS_IPV4 | 1664 WX_RDB_RA_CTL_RSS_IPV4_TCP | 1665 WX_RDB_RA_CTL_RSS_IPV4_UDP | 1666 WX_RDB_RA_CTL_RSS_IPV6 | 1667 WX_RDB_RA_CTL_RSS_IPV6_TCP | 1668 WX_RDB_RA_CTL_RSS_IPV6_UDP; 1669 1670 netdev_rss_key_fill(wx->rss_key, sizeof(wx->rss_key)); 1671 1672 wx_setup_reta(wx); 1673 1674 if (wx->rss_enabled) 1675 rss_field |= WX_RDB_RA_CTL_RSS_EN; 1676 1677 wr32(wx, WX_RDB_RA_CTL, rss_field); 1678 } 1679 1680 /** 1681 * wx_configure_rx - Configure Receive Unit after Reset 1682 * @wx: pointer to private structure 1683 * 1684 * Configure the Rx unit of the MAC after a reset. 1685 **/ 1686 void wx_configure_rx(struct wx *wx) 1687 { 1688 u32 psrtype, i; 1689 int ret; 1690 1691 wx_disable_rx(wx); 1692 1693 psrtype = WX_RDB_PL_CFG_L4HDR | 1694 WX_RDB_PL_CFG_L3HDR | 1695 WX_RDB_PL_CFG_L2HDR | 1696 WX_RDB_PL_CFG_TUN_TUNHDR; 1697 wr32(wx, WX_RDB_PL_CFG(0), psrtype); 1698 1699 /* enable hw crc stripping */ 1700 wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_CRC_STRIP, WX_RSC_CTL_CRC_STRIP); 1701 1702 if (wx->mac.type == wx_mac_sp) { 1703 u32 psrctl; 1704 1705 /* RSC Setup */ 1706 psrctl = rd32(wx, WX_PSR_CTL); 1707 psrctl |= WX_PSR_CTL_RSC_ACK; /* Disable RSC for ACK packets */ 1708 psrctl |= WX_PSR_CTL_RSC_DIS; 1709 wr32(wx, WX_PSR_CTL, psrctl); 1710 } 1711 1712 wx_setup_mrqc(wx); 1713 1714 /* set_rx_buffer_len must be called before ring initialization */ 1715 wx_set_rx_buffer_len(wx); 1716 1717 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1718 * the Base and Length of the Rx Descriptor Ring 1719 */ 1720 for (i = 0; i < wx->num_rx_queues; i++) 1721 wx_configure_rx_ring(wx, wx->rx_ring[i]); 1722 1723 /* Enable all receives, disable security engine prior to block traffic */ 1724 ret = wx_disable_sec_rx_path(wx); 1725 if (ret < 0) 1726 wx_err(wx, "The register status is abnormal, please check device."); 1727 1728 wx_enable_rx(wx); 1729 wx_enable_sec_rx_path(wx); 1730 } 1731 EXPORT_SYMBOL(wx_configure_rx); 1732 1733 static void wx_configure_isb(struct wx *wx) 1734 { 1735 /* set ISB Address */ 1736 wr32(wx, WX_PX_ISB_ADDR_L, wx->isb_dma & DMA_BIT_MASK(32)); 1737 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) 1738 wr32(wx, WX_PX_ISB_ADDR_H, upper_32_bits(wx->isb_dma)); 1739 } 1740 1741 void wx_configure(struct wx *wx) 1742 { 1743 wx_set_rxpba(wx); 1744 wx_pbthresh_setup(wx); 1745 wx_configure_port(wx); 1746 1747 wx_set_rx_mode(wx->netdev); 1748 wx_restore_vlan(wx); 1749 1750 if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags)) 1751 wx->configure_fdir(wx); 1752 1753 wx_configure_tx(wx); 1754 wx_configure_rx(wx); 1755 wx_configure_isb(wx); 1756 } 1757 EXPORT_SYMBOL(wx_configure); 1758 1759 /** 1760 * wx_disable_pcie_master - Disable PCI-express master access 1761 * @wx: pointer to hardware structure 1762 * 1763 * Disables PCI-Express master access and verifies there are no pending 1764 * requests. 1765 **/ 1766 int wx_disable_pcie_master(struct wx *wx) 1767 { 1768 int status = 0; 1769 u32 val; 1770 1771 /* Always set this bit to ensure any future transactions are blocked */ 1772 pci_clear_master(wx->pdev); 1773 1774 /* Exit if master requests are blocked */ 1775 if (!(rd32(wx, WX_PX_TRANSACTION_PENDING))) 1776 return 0; 1777 1778 /* Poll for master request bit to clear */ 1779 status = read_poll_timeout(rd32, val, !val, 100, WX_PCI_MASTER_DISABLE_TIMEOUT, 1780 false, wx, WX_PX_TRANSACTION_PENDING); 1781 if (status < 0) 1782 wx_err(wx, "PCIe transaction pending bit did not clear.\n"); 1783 1784 return status; 1785 } 1786 EXPORT_SYMBOL(wx_disable_pcie_master); 1787 1788 /** 1789 * wx_stop_adapter - Generic stop Tx/Rx units 1790 * @wx: pointer to hardware structure 1791 * 1792 * Sets the adapter_stopped flag within wx_hw struct. Clears interrupts, 1793 * disables transmit and receive units. The adapter_stopped flag is used by 1794 * the shared code and drivers to determine if the adapter is in a stopped 1795 * state and should not touch the hardware. 1796 **/ 1797 int wx_stop_adapter(struct wx *wx) 1798 { 1799 u16 i; 1800 1801 /* Set the adapter_stopped flag so other driver functions stop touching 1802 * the hardware 1803 */ 1804 wx->adapter_stopped = true; 1805 1806 /* Disable the receive unit */ 1807 wx_disable_rx(wx); 1808 1809 /* Set interrupt mask to stop interrupts from being generated */ 1810 wx_intr_disable(wx, WX_INTR_ALL); 1811 1812 /* Clear any pending interrupts, flush previous writes */ 1813 wr32(wx, WX_PX_MISC_IC, 0xffffffff); 1814 wr32(wx, WX_BME_CTL, 0x3); 1815 1816 /* Disable the transmit unit. Each queue must be disabled. */ 1817 for (i = 0; i < wx->mac.max_tx_queues; i++) { 1818 wr32m(wx, WX_PX_TR_CFG(i), 1819 WX_PX_TR_CFG_SWFLSH | WX_PX_TR_CFG_ENABLE, 1820 WX_PX_TR_CFG_SWFLSH); 1821 } 1822 1823 /* Disable the receive unit by stopping each queue */ 1824 for (i = 0; i < wx->mac.max_rx_queues; i++) { 1825 wr32m(wx, WX_PX_RR_CFG(i), 1826 WX_PX_RR_CFG_RR_EN, 0); 1827 } 1828 1829 /* flush all queues disables */ 1830 WX_WRITE_FLUSH(wx); 1831 1832 /* Prevent the PCI-E bus from hanging by disabling PCI-E master 1833 * access and verify no pending requests 1834 */ 1835 return wx_disable_pcie_master(wx); 1836 } 1837 EXPORT_SYMBOL(wx_stop_adapter); 1838 1839 void wx_reset_misc(struct wx *wx) 1840 { 1841 int i; 1842 1843 /* receive packets that size > 2048 */ 1844 wr32m(wx, WX_MAC_RX_CFG, WX_MAC_RX_CFG_JE, WX_MAC_RX_CFG_JE); 1845 1846 /* clear counters on read */ 1847 wr32m(wx, WX_MMC_CONTROL, 1848 WX_MMC_CONTROL_RSTONRD, WX_MMC_CONTROL_RSTONRD); 1849 1850 wr32m(wx, WX_MAC_RX_FLOW_CTRL, 1851 WX_MAC_RX_FLOW_CTRL_RFE, WX_MAC_RX_FLOW_CTRL_RFE); 1852 1853 wr32(wx, WX_MAC_PKT_FLT, WX_MAC_PKT_FLT_PR); 1854 1855 wr32m(wx, WX_MIS_RST_ST, 1856 WX_MIS_RST_ST_RST_INIT, 0x1E00); 1857 1858 /* errata 4: initialize mng flex tbl and wakeup flex tbl*/ 1859 wr32(wx, WX_PSR_MNG_FLEX_SEL, 0); 1860 for (i = 0; i < 16; i++) { 1861 wr32(wx, WX_PSR_MNG_FLEX_DW_L(i), 0); 1862 wr32(wx, WX_PSR_MNG_FLEX_DW_H(i), 0); 1863 wr32(wx, WX_PSR_MNG_FLEX_MSK(i), 0); 1864 } 1865 wr32(wx, WX_PSR_LAN_FLEX_SEL, 0); 1866 for (i = 0; i < 16; i++) { 1867 wr32(wx, WX_PSR_LAN_FLEX_DW_L(i), 0); 1868 wr32(wx, WX_PSR_LAN_FLEX_DW_H(i), 0); 1869 wr32(wx, WX_PSR_LAN_FLEX_MSK(i), 0); 1870 } 1871 1872 /* set pause frame dst mac addr */ 1873 wr32(wx, WX_RDB_PFCMACDAL, 0xC2000001); 1874 wr32(wx, WX_RDB_PFCMACDAH, 0x0180); 1875 } 1876 EXPORT_SYMBOL(wx_reset_misc); 1877 1878 /** 1879 * wx_get_pcie_msix_counts - Gets MSI-X vector count 1880 * @wx: pointer to hardware structure 1881 * @msix_count: number of MSI interrupts that can be obtained 1882 * @max_msix_count: number of MSI interrupts that mac need 1883 * 1884 * Read PCIe configuration space, and get the MSI-X vector count from 1885 * the capabilities table. 1886 **/ 1887 int wx_get_pcie_msix_counts(struct wx *wx, u16 *msix_count, u16 max_msix_count) 1888 { 1889 struct pci_dev *pdev = wx->pdev; 1890 struct device *dev = &pdev->dev; 1891 int pos; 1892 1893 *msix_count = 1; 1894 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); 1895 if (!pos) { 1896 dev_err(dev, "Unable to find MSI-X Capabilities\n"); 1897 return -EINVAL; 1898 } 1899 pci_read_config_word(pdev, 1900 pos + PCI_MSIX_FLAGS, 1901 msix_count); 1902 *msix_count &= WX_PCIE_MSIX_TBL_SZ_MASK; 1903 /* MSI-X count is zero-based in HW */ 1904 *msix_count += 1; 1905 1906 if (*msix_count > max_msix_count) 1907 *msix_count = max_msix_count; 1908 1909 return 0; 1910 } 1911 EXPORT_SYMBOL(wx_get_pcie_msix_counts); 1912 1913 /** 1914 * wx_init_rss_key - Initialize wx RSS key 1915 * @wx: device handle 1916 * 1917 * Allocates and initializes the RSS key if it is not allocated. 1918 **/ 1919 static int wx_init_rss_key(struct wx *wx) 1920 { 1921 u32 *rss_key; 1922 1923 if (!wx->rss_key) { 1924 rss_key = kzalloc(WX_RSS_KEY_SIZE, GFP_KERNEL); 1925 if (unlikely(!rss_key)) 1926 return -ENOMEM; 1927 1928 netdev_rss_key_fill(rss_key, WX_RSS_KEY_SIZE); 1929 wx->rss_key = rss_key; 1930 } 1931 1932 return 0; 1933 } 1934 1935 int wx_sw_init(struct wx *wx) 1936 { 1937 struct pci_dev *pdev = wx->pdev; 1938 u32 ssid = 0; 1939 int err = 0; 1940 1941 wx->vendor_id = pdev->vendor; 1942 wx->device_id = pdev->device; 1943 wx->revision_id = pdev->revision; 1944 wx->oem_svid = pdev->subsystem_vendor; 1945 wx->oem_ssid = pdev->subsystem_device; 1946 wx->bus.device = PCI_SLOT(pdev->devfn); 1947 wx->bus.func = PCI_FUNC(pdev->devfn); 1948 1949 if (wx->oem_svid == PCI_VENDOR_ID_WANGXUN) { 1950 wx->subsystem_vendor_id = pdev->subsystem_vendor; 1951 wx->subsystem_device_id = pdev->subsystem_device; 1952 } else { 1953 err = wx_flash_read_dword(wx, 0xfffdc, &ssid); 1954 if (err < 0) { 1955 wx_err(wx, "read of internal subsystem device id failed\n"); 1956 return err; 1957 } 1958 1959 wx->subsystem_device_id = swab16((u16)ssid); 1960 } 1961 1962 err = wx_init_rss_key(wx); 1963 if (err < 0) { 1964 wx_err(wx, "rss key allocation failed\n"); 1965 return err; 1966 } 1967 1968 wx->mac_table = kcalloc(wx->mac.num_rar_entries, 1969 sizeof(struct wx_mac_addr), 1970 GFP_KERNEL); 1971 if (!wx->mac_table) { 1972 wx_err(wx, "mac_table allocation failed\n"); 1973 kfree(wx->rss_key); 1974 return -ENOMEM; 1975 } 1976 1977 bitmap_zero(wx->state, WX_STATE_NBITS); 1978 bitmap_zero(wx->flags, WX_PF_FLAGS_NBITS); 1979 wx->misc_irq_domain = false; 1980 1981 return 0; 1982 } 1983 EXPORT_SYMBOL(wx_sw_init); 1984 1985 /** 1986 * wx_find_vlvf_slot - find the vlanid or the first empty slot 1987 * @wx: pointer to hardware structure 1988 * @vlan: VLAN id to write to VLAN filter 1989 * 1990 * return the VLVF index where this VLAN id should be placed 1991 * 1992 **/ 1993 static int wx_find_vlvf_slot(struct wx *wx, u32 vlan) 1994 { 1995 u32 bits = 0, first_empty_slot = 0; 1996 int regindex; 1997 1998 /* short cut the special case */ 1999 if (vlan == 0) 2000 return 0; 2001 2002 /* Search for the vlan id in the VLVF entries. Save off the first empty 2003 * slot found along the way 2004 */ 2005 for (regindex = 1; regindex < WX_PSR_VLAN_SWC_ENTRIES; regindex++) { 2006 wr32(wx, WX_PSR_VLAN_SWC_IDX, regindex); 2007 bits = rd32(wx, WX_PSR_VLAN_SWC); 2008 if (!bits && !(first_empty_slot)) 2009 first_empty_slot = regindex; 2010 else if ((bits & 0x0FFF) == vlan) 2011 break; 2012 } 2013 2014 if (regindex >= WX_PSR_VLAN_SWC_ENTRIES) { 2015 if (first_empty_slot) 2016 regindex = first_empty_slot; 2017 else 2018 regindex = -ENOMEM; 2019 } 2020 2021 return regindex; 2022 } 2023 2024 /** 2025 * wx_set_vlvf - Set VLAN Pool Filter 2026 * @wx: pointer to hardware structure 2027 * @vlan: VLAN id to write to VLAN filter 2028 * @vind: VMDq output index that maps queue to VLAN id in VFVFB 2029 * @vlan_on: boolean flag to turn on/off VLAN in VFVF 2030 * @vfta_changed: pointer to boolean flag which indicates whether VFTA 2031 * should be changed 2032 * 2033 * Turn on/off specified bit in VLVF table. 2034 **/ 2035 static int wx_set_vlvf(struct wx *wx, u32 vlan, u32 vind, bool vlan_on, 2036 bool *vfta_changed) 2037 { 2038 int vlvf_index; 2039 u32 vt, bits; 2040 2041 /* If VT Mode is set 2042 * Either vlan_on 2043 * make sure the vlan is in VLVF 2044 * set the vind bit in the matching VLVFB 2045 * Or !vlan_on 2046 * clear the pool bit and possibly the vind 2047 */ 2048 vt = rd32(wx, WX_CFG_PORT_CTL); 2049 if (!(vt & WX_CFG_PORT_CTL_NUM_VT_MASK)) 2050 return 0; 2051 2052 vlvf_index = wx_find_vlvf_slot(wx, vlan); 2053 if (vlvf_index < 0) 2054 return vlvf_index; 2055 2056 wr32(wx, WX_PSR_VLAN_SWC_IDX, vlvf_index); 2057 if (vlan_on) { 2058 /* set the pool bit */ 2059 if (vind < 32) { 2060 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L); 2061 bits |= (1 << vind); 2062 wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits); 2063 } else { 2064 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H); 2065 bits |= (1 << (vind - 32)); 2066 wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits); 2067 } 2068 } else { 2069 /* clear the pool bit */ 2070 if (vind < 32) { 2071 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L); 2072 bits &= ~(1 << vind); 2073 wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits); 2074 bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_H); 2075 } else { 2076 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H); 2077 bits &= ~(1 << (vind - 32)); 2078 wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits); 2079 bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_L); 2080 } 2081 } 2082 2083 if (bits) { 2084 wr32(wx, WX_PSR_VLAN_SWC, (WX_PSR_VLAN_SWC_VIEN | vlan)); 2085 if (!vlan_on && vfta_changed) 2086 *vfta_changed = false; 2087 } else { 2088 wr32(wx, WX_PSR_VLAN_SWC, 0); 2089 } 2090 2091 return 0; 2092 } 2093 2094 /** 2095 * wx_set_vfta - Set VLAN filter table 2096 * @wx: pointer to hardware structure 2097 * @vlan: VLAN id to write to VLAN filter 2098 * @vind: VMDq output index that maps queue to VLAN id in VFVFB 2099 * @vlan_on: boolean flag to turn on/off VLAN in VFVF 2100 * 2101 * Turn on/off specified VLAN in the VLAN filter table. 2102 **/ 2103 static int wx_set_vfta(struct wx *wx, u32 vlan, u32 vind, bool vlan_on) 2104 { 2105 u32 bitindex, vfta, targetbit; 2106 bool vfta_changed = false; 2107 int regindex, ret; 2108 2109 /* this is a 2 part operation - first the VFTA, then the 2110 * VLVF and VLVFB if VT Mode is set 2111 * We don't write the VFTA until we know the VLVF part succeeded. 2112 */ 2113 2114 /* Part 1 2115 * The VFTA is a bitstring made up of 128 32-bit registers 2116 * that enable the particular VLAN id, much like the MTA: 2117 * bits[11-5]: which register 2118 * bits[4-0]: which bit in the register 2119 */ 2120 regindex = (vlan >> 5) & 0x7F; 2121 bitindex = vlan & 0x1F; 2122 targetbit = (1 << bitindex); 2123 /* errata 5 */ 2124 vfta = wx->mac.vft_shadow[regindex]; 2125 if (vlan_on) { 2126 if (!(vfta & targetbit)) { 2127 vfta |= targetbit; 2128 vfta_changed = true; 2129 } 2130 } else { 2131 if ((vfta & targetbit)) { 2132 vfta &= ~targetbit; 2133 vfta_changed = true; 2134 } 2135 } 2136 /* Part 2 2137 * Call wx_set_vlvf to set VLVFB and VLVF 2138 */ 2139 ret = wx_set_vlvf(wx, vlan, vind, vlan_on, &vfta_changed); 2140 if (ret != 0) 2141 return ret; 2142 2143 if (vfta_changed) 2144 wr32(wx, WX_PSR_VLAN_TBL(regindex), vfta); 2145 wx->mac.vft_shadow[regindex] = vfta; 2146 2147 return 0; 2148 } 2149 2150 /** 2151 * wx_clear_vfta - Clear VLAN filter table 2152 * @wx: pointer to hardware structure 2153 * 2154 * Clears the VLAN filer table, and the VMDq index associated with the filter 2155 **/ 2156 static void wx_clear_vfta(struct wx *wx) 2157 { 2158 u32 offset; 2159 2160 for (offset = 0; offset < wx->mac.vft_size; offset++) { 2161 wr32(wx, WX_PSR_VLAN_TBL(offset), 0); 2162 wx->mac.vft_shadow[offset] = 0; 2163 } 2164 2165 for (offset = 0; offset < WX_PSR_VLAN_SWC_ENTRIES; offset++) { 2166 wr32(wx, WX_PSR_VLAN_SWC_IDX, offset); 2167 wr32(wx, WX_PSR_VLAN_SWC, 0); 2168 wr32(wx, WX_PSR_VLAN_SWC_VM_L, 0); 2169 wr32(wx, WX_PSR_VLAN_SWC_VM_H, 0); 2170 } 2171 } 2172 2173 int wx_vlan_rx_add_vid(struct net_device *netdev, 2174 __be16 proto, u16 vid) 2175 { 2176 struct wx *wx = netdev_priv(netdev); 2177 2178 /* add VID to filter table */ 2179 wx_set_vfta(wx, vid, VMDQ_P(0), true); 2180 set_bit(vid, wx->active_vlans); 2181 2182 return 0; 2183 } 2184 EXPORT_SYMBOL(wx_vlan_rx_add_vid); 2185 2186 int wx_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 2187 { 2188 struct wx *wx = netdev_priv(netdev); 2189 2190 /* remove VID from filter table */ 2191 if (vid) 2192 wx_set_vfta(wx, vid, VMDQ_P(0), false); 2193 clear_bit(vid, wx->active_vlans); 2194 2195 return 0; 2196 } 2197 EXPORT_SYMBOL(wx_vlan_rx_kill_vid); 2198 2199 static void wx_enable_rx_drop(struct wx *wx, struct wx_ring *ring) 2200 { 2201 u16 reg_idx = ring->reg_idx; 2202 u32 srrctl; 2203 2204 srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx)); 2205 srrctl |= WX_PX_RR_CFG_DROP_EN; 2206 2207 wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl); 2208 } 2209 2210 static void wx_disable_rx_drop(struct wx *wx, struct wx_ring *ring) 2211 { 2212 u16 reg_idx = ring->reg_idx; 2213 u32 srrctl; 2214 2215 srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx)); 2216 srrctl &= ~WX_PX_RR_CFG_DROP_EN; 2217 2218 wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl); 2219 } 2220 2221 int wx_fc_enable(struct wx *wx, bool tx_pause, bool rx_pause) 2222 { 2223 u16 pause_time = WX_DEFAULT_FCPAUSE; 2224 u32 mflcn_reg, fccfg_reg, reg; 2225 u32 fcrtl, fcrth; 2226 int i; 2227 2228 /* Low water mark of zero causes XOFF floods */ 2229 if (tx_pause && wx->fc.high_water) { 2230 if (!wx->fc.low_water || wx->fc.low_water >= wx->fc.high_water) { 2231 wx_err(wx, "Invalid water mark configuration\n"); 2232 return -EINVAL; 2233 } 2234 } 2235 2236 /* Disable any previous flow control settings */ 2237 mflcn_reg = rd32(wx, WX_MAC_RX_FLOW_CTRL); 2238 mflcn_reg &= ~WX_MAC_RX_FLOW_CTRL_RFE; 2239 2240 fccfg_reg = rd32(wx, WX_RDB_RFCC); 2241 fccfg_reg &= ~WX_RDB_RFCC_RFCE_802_3X; 2242 2243 if (rx_pause) 2244 mflcn_reg |= WX_MAC_RX_FLOW_CTRL_RFE; 2245 if (tx_pause) 2246 fccfg_reg |= WX_RDB_RFCC_RFCE_802_3X; 2247 2248 /* Set 802.3x based flow control settings. */ 2249 wr32(wx, WX_MAC_RX_FLOW_CTRL, mflcn_reg); 2250 wr32(wx, WX_RDB_RFCC, fccfg_reg); 2251 2252 /* Set up and enable Rx high/low water mark thresholds, enable XON. */ 2253 if (tx_pause && wx->fc.high_water) { 2254 fcrtl = (wx->fc.low_water << 10) | WX_RDB_RFCL_XONE; 2255 wr32(wx, WX_RDB_RFCL, fcrtl); 2256 fcrth = (wx->fc.high_water << 10) | WX_RDB_RFCH_XOFFE; 2257 } else { 2258 wr32(wx, WX_RDB_RFCL, 0); 2259 /* In order to prevent Tx hangs when the internal Tx 2260 * switch is enabled we must set the high water mark 2261 * to the Rx packet buffer size - 24KB. This allows 2262 * the Tx switch to function even under heavy Rx 2263 * workloads. 2264 */ 2265 fcrth = rd32(wx, WX_RDB_PB_SZ(0)) - 24576; 2266 } 2267 2268 wr32(wx, WX_RDB_RFCH, fcrth); 2269 2270 /* Configure pause time */ 2271 reg = pause_time * 0x00010001; 2272 wr32(wx, WX_RDB_RFCV, reg); 2273 2274 /* Configure flow control refresh threshold value */ 2275 wr32(wx, WX_RDB_RFCRT, pause_time / 2); 2276 2277 /* We should set the drop enable bit if: 2278 * Number of Rx queues > 1 and flow control is disabled 2279 * 2280 * This allows us to avoid head of line blocking for security 2281 * and performance reasons. 2282 */ 2283 if (wx->num_rx_queues > 1 && !tx_pause) { 2284 for (i = 0; i < wx->num_rx_queues; i++) 2285 wx_enable_rx_drop(wx, wx->rx_ring[i]); 2286 } else { 2287 for (i = 0; i < wx->num_rx_queues; i++) 2288 wx_disable_rx_drop(wx, wx->rx_ring[i]); 2289 } 2290 2291 return 0; 2292 } 2293 EXPORT_SYMBOL(wx_fc_enable); 2294 2295 /** 2296 * wx_update_stats - Update the board statistics counters. 2297 * @wx: board private structure 2298 **/ 2299 void wx_update_stats(struct wx *wx) 2300 { 2301 struct wx_hw_stats *hwstats = &wx->stats; 2302 2303 u64 non_eop_descs = 0, alloc_rx_buff_failed = 0; 2304 u64 hw_csum_rx_good = 0, hw_csum_rx_error = 0; 2305 u64 restart_queue = 0, tx_busy = 0; 2306 u32 i; 2307 2308 /* gather some stats to the wx struct that are per queue */ 2309 for (i = 0; i < wx->num_rx_queues; i++) { 2310 struct wx_ring *rx_ring = wx->rx_ring[i]; 2311 2312 non_eop_descs += rx_ring->rx_stats.non_eop_descs; 2313 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed; 2314 hw_csum_rx_good += rx_ring->rx_stats.csum_good_cnt; 2315 hw_csum_rx_error += rx_ring->rx_stats.csum_err; 2316 } 2317 wx->non_eop_descs = non_eop_descs; 2318 wx->alloc_rx_buff_failed = alloc_rx_buff_failed; 2319 wx->hw_csum_rx_error = hw_csum_rx_error; 2320 wx->hw_csum_rx_good = hw_csum_rx_good; 2321 2322 for (i = 0; i < wx->num_tx_queues; i++) { 2323 struct wx_ring *tx_ring = wx->tx_ring[i]; 2324 2325 restart_queue += tx_ring->tx_stats.restart_queue; 2326 tx_busy += tx_ring->tx_stats.tx_busy; 2327 } 2328 wx->restart_queue = restart_queue; 2329 wx->tx_busy = tx_busy; 2330 2331 hwstats->gprc += rd32(wx, WX_RDM_PKT_CNT); 2332 hwstats->gptc += rd32(wx, WX_TDM_PKT_CNT); 2333 hwstats->gorc += rd64(wx, WX_RDM_BYTE_CNT_LSB); 2334 hwstats->gotc += rd64(wx, WX_TDM_BYTE_CNT_LSB); 2335 hwstats->tpr += rd64(wx, WX_RX_FRAME_CNT_GOOD_BAD_L); 2336 hwstats->tpt += rd64(wx, WX_TX_FRAME_CNT_GOOD_BAD_L); 2337 hwstats->crcerrs += rd64(wx, WX_RX_CRC_ERROR_FRAMES_L); 2338 hwstats->rlec += rd64(wx, WX_RX_LEN_ERROR_FRAMES_L); 2339 hwstats->bprc += rd64(wx, WX_RX_BC_FRAMES_GOOD_L); 2340 hwstats->bptc += rd64(wx, WX_TX_BC_FRAMES_GOOD_L); 2341 hwstats->mprc += rd64(wx, WX_RX_MC_FRAMES_GOOD_L); 2342 hwstats->mptc += rd64(wx, WX_TX_MC_FRAMES_GOOD_L); 2343 hwstats->roc += rd32(wx, WX_RX_OVERSIZE_FRAMES_GOOD); 2344 hwstats->ruc += rd32(wx, WX_RX_UNDERSIZE_FRAMES_GOOD); 2345 hwstats->lxonoffrxc += rd32(wx, WX_MAC_LXONOFFRXC); 2346 hwstats->lxontxc += rd32(wx, WX_RDB_LXONTXC); 2347 hwstats->lxofftxc += rd32(wx, WX_RDB_LXOFFTXC); 2348 hwstats->o2bgptc += rd32(wx, WX_TDM_OS2BMC_CNT); 2349 hwstats->b2ospc += rd32(wx, WX_MNG_BMC2OS_CNT); 2350 hwstats->o2bspc += rd32(wx, WX_MNG_OS2BMC_CNT); 2351 hwstats->b2ogprc += rd32(wx, WX_RDM_BMC2OS_CNT); 2352 hwstats->rdmdrop += rd32(wx, WX_RDM_DRP_PKT); 2353 2354 if (wx->mac.type == wx_mac_sp) { 2355 hwstats->fdirmatch += rd32(wx, WX_RDB_FDIR_MATCH); 2356 hwstats->fdirmiss += rd32(wx, WX_RDB_FDIR_MISS); 2357 } 2358 2359 for (i = 0; i < wx->mac.max_rx_queues; i++) 2360 hwstats->qmprc += rd32(wx, WX_PX_MPRC(i)); 2361 } 2362 EXPORT_SYMBOL(wx_update_stats); 2363 2364 /** 2365 * wx_clear_hw_cntrs - Generic clear hardware counters 2366 * @wx: board private structure 2367 * 2368 * Clears all hardware statistics counters by reading them from the hardware 2369 * Statistics counters are clear on read. 2370 **/ 2371 void wx_clear_hw_cntrs(struct wx *wx) 2372 { 2373 u16 i = 0; 2374 2375 for (i = 0; i < wx->mac.max_rx_queues; i++) 2376 wr32(wx, WX_PX_MPRC(i), 0); 2377 2378 rd32(wx, WX_RDM_PKT_CNT); 2379 rd32(wx, WX_TDM_PKT_CNT); 2380 rd64(wx, WX_RDM_BYTE_CNT_LSB); 2381 rd32(wx, WX_TDM_BYTE_CNT_LSB); 2382 rd32(wx, WX_RDM_DRP_PKT); 2383 rd32(wx, WX_RX_UNDERSIZE_FRAMES_GOOD); 2384 rd32(wx, WX_RX_OVERSIZE_FRAMES_GOOD); 2385 rd64(wx, WX_RX_FRAME_CNT_GOOD_BAD_L); 2386 rd64(wx, WX_TX_FRAME_CNT_GOOD_BAD_L); 2387 rd64(wx, WX_RX_MC_FRAMES_GOOD_L); 2388 rd64(wx, WX_TX_MC_FRAMES_GOOD_L); 2389 rd64(wx, WX_RX_BC_FRAMES_GOOD_L); 2390 rd64(wx, WX_TX_BC_FRAMES_GOOD_L); 2391 rd64(wx, WX_RX_CRC_ERROR_FRAMES_L); 2392 rd64(wx, WX_RX_LEN_ERROR_FRAMES_L); 2393 rd32(wx, WX_RDB_LXONTXC); 2394 rd32(wx, WX_RDB_LXOFFTXC); 2395 rd32(wx, WX_MAC_LXONOFFRXC); 2396 } 2397 EXPORT_SYMBOL(wx_clear_hw_cntrs); 2398 2399 /** 2400 * wx_start_hw - Prepare hardware for Tx/Rx 2401 * @wx: pointer to hardware structure 2402 * 2403 * Starts the hardware using the generic start_hw function 2404 * and the generation start_hw function. 2405 * Then performs revision-specific operations, if any. 2406 **/ 2407 void wx_start_hw(struct wx *wx) 2408 { 2409 int i; 2410 2411 /* Clear the VLAN filter table */ 2412 wx_clear_vfta(wx); 2413 WX_WRITE_FLUSH(wx); 2414 /* Clear the rate limiters */ 2415 for (i = 0; i < wx->mac.max_tx_queues; i++) { 2416 wr32(wx, WX_TDM_RP_IDX, i); 2417 wr32(wx, WX_TDM_RP_RATE, 0); 2418 } 2419 } 2420 EXPORT_SYMBOL(wx_start_hw); 2421 2422 MODULE_LICENSE("GPL"); 2423