xref: /linux/drivers/net/ethernet/wangxun/libwx/wx_hw.c (revision 7110f24f9e33979fd704f7a4a595a9d3e9bdacb7)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2015 - 2022 Beijing WangXun Technology Co., Ltd. */
3 
4 #include <linux/etherdevice.h>
5 #include <linux/netdevice.h>
6 #include <linux/if_ether.h>
7 #include <linux/if_vlan.h>
8 #include <linux/iopoll.h>
9 #include <linux/pci.h>
10 
11 #include "wx_type.h"
12 #include "wx_lib.h"
13 #include "wx_hw.h"
14 
15 static int wx_phy_read_reg_mdi(struct mii_bus *bus, int phy_addr, int devnum, int regnum)
16 {
17 	struct wx *wx = bus->priv;
18 	u32 command, val;
19 	int ret;
20 
21 	/* setup and write the address cycle command */
22 	command = WX_MSCA_RA(regnum) |
23 		  WX_MSCA_PA(phy_addr) |
24 		  WX_MSCA_DA(devnum);
25 	wr32(wx, WX_MSCA, command);
26 
27 	command = WX_MSCC_CMD(WX_MSCA_CMD_READ) | WX_MSCC_BUSY;
28 	if (wx->mac.type == wx_mac_em)
29 		command |= WX_MDIO_CLK(6);
30 	wr32(wx, WX_MSCC, command);
31 
32 	/* wait to complete */
33 	ret = read_poll_timeout(rd32, val, !(val & WX_MSCC_BUSY), 1000,
34 				100000, false, wx, WX_MSCC);
35 	if (ret) {
36 		wx_err(wx, "Mdio read c22 command did not complete.\n");
37 		return ret;
38 	}
39 
40 	return (u16)rd32(wx, WX_MSCC);
41 }
42 
43 static int wx_phy_write_reg_mdi(struct mii_bus *bus, int phy_addr,
44 				int devnum, int regnum, u16 value)
45 {
46 	struct wx *wx = bus->priv;
47 	u32 command, val;
48 	int ret;
49 
50 	/* setup and write the address cycle command */
51 	command = WX_MSCA_RA(regnum) |
52 		  WX_MSCA_PA(phy_addr) |
53 		  WX_MSCA_DA(devnum);
54 	wr32(wx, WX_MSCA, command);
55 
56 	command = value | WX_MSCC_CMD(WX_MSCA_CMD_WRITE) | WX_MSCC_BUSY;
57 	if (wx->mac.type == wx_mac_em)
58 		command |= WX_MDIO_CLK(6);
59 	wr32(wx, WX_MSCC, command);
60 
61 	/* wait to complete */
62 	ret = read_poll_timeout(rd32, val, !(val & WX_MSCC_BUSY), 1000,
63 				100000, false, wx, WX_MSCC);
64 	if (ret)
65 		wx_err(wx, "Mdio write c22 command did not complete.\n");
66 
67 	return ret;
68 }
69 
70 int wx_phy_read_reg_mdi_c22(struct mii_bus *bus, int phy_addr, int regnum)
71 {
72 	struct wx *wx = bus->priv;
73 
74 	wr32(wx, WX_MDIO_CLAUSE_SELECT, 0xF);
75 	return wx_phy_read_reg_mdi(bus, phy_addr, 0, regnum);
76 }
77 EXPORT_SYMBOL(wx_phy_read_reg_mdi_c22);
78 
79 int wx_phy_write_reg_mdi_c22(struct mii_bus *bus, int phy_addr, int regnum, u16 value)
80 {
81 	struct wx *wx = bus->priv;
82 
83 	wr32(wx, WX_MDIO_CLAUSE_SELECT, 0xF);
84 	return wx_phy_write_reg_mdi(bus, phy_addr, 0, regnum, value);
85 }
86 EXPORT_SYMBOL(wx_phy_write_reg_mdi_c22);
87 
88 int wx_phy_read_reg_mdi_c45(struct mii_bus *bus, int phy_addr, int devnum, int regnum)
89 {
90 	struct wx *wx = bus->priv;
91 
92 	wr32(wx, WX_MDIO_CLAUSE_SELECT, 0);
93 	return wx_phy_read_reg_mdi(bus, phy_addr, devnum, regnum);
94 }
95 EXPORT_SYMBOL(wx_phy_read_reg_mdi_c45);
96 
97 int wx_phy_write_reg_mdi_c45(struct mii_bus *bus, int phy_addr,
98 			     int devnum, int regnum, u16 value)
99 {
100 	struct wx *wx = bus->priv;
101 
102 	wr32(wx, WX_MDIO_CLAUSE_SELECT, 0);
103 	return wx_phy_write_reg_mdi(bus, phy_addr, devnum, regnum, value);
104 }
105 EXPORT_SYMBOL(wx_phy_write_reg_mdi_c45);
106 
107 static void wx_intr_disable(struct wx *wx, u64 qmask)
108 {
109 	u32 mask;
110 
111 	mask = (qmask & U32_MAX);
112 	if (mask)
113 		wr32(wx, WX_PX_IMS(0), mask);
114 
115 	if (wx->mac.type == wx_mac_sp) {
116 		mask = (qmask >> 32);
117 		if (mask)
118 			wr32(wx, WX_PX_IMS(1), mask);
119 	}
120 }
121 
122 void wx_intr_enable(struct wx *wx, u64 qmask)
123 {
124 	u32 mask;
125 
126 	mask = (qmask & U32_MAX);
127 	if (mask)
128 		wr32(wx, WX_PX_IMC(0), mask);
129 	if (wx->mac.type == wx_mac_sp) {
130 		mask = (qmask >> 32);
131 		if (mask)
132 			wr32(wx, WX_PX_IMC(1), mask);
133 	}
134 }
135 EXPORT_SYMBOL(wx_intr_enable);
136 
137 /**
138  * wx_irq_disable - Mask off interrupt generation on the NIC
139  * @wx: board private structure
140  **/
141 void wx_irq_disable(struct wx *wx)
142 {
143 	struct pci_dev *pdev = wx->pdev;
144 
145 	wr32(wx, WX_PX_MISC_IEN, 0);
146 	wx_intr_disable(wx, WX_INTR_ALL);
147 
148 	if (pdev->msix_enabled) {
149 		int vector;
150 
151 		for (vector = 0; vector < wx->num_q_vectors; vector++)
152 			synchronize_irq(wx->msix_q_entries[vector].vector);
153 
154 		synchronize_irq(wx->msix_entry->vector);
155 	} else {
156 		synchronize_irq(pdev->irq);
157 	}
158 }
159 EXPORT_SYMBOL(wx_irq_disable);
160 
161 /* cmd_addr is used for some special command:
162  * 1. to be sector address, when implemented erase sector command
163  * 2. to be flash address when implemented read, write flash address
164  */
165 static int wx_fmgr_cmd_op(struct wx *wx, u32 cmd, u32 cmd_addr)
166 {
167 	u32 cmd_val = 0, val = 0;
168 
169 	cmd_val = WX_SPI_CMD_CMD(cmd) |
170 		  WX_SPI_CMD_CLK(WX_SPI_CLK_DIV) |
171 		  cmd_addr;
172 	wr32(wx, WX_SPI_CMD, cmd_val);
173 
174 	return read_poll_timeout(rd32, val, (val & 0x1), 10, 100000,
175 				 false, wx, WX_SPI_STATUS);
176 }
177 
178 static int wx_flash_read_dword(struct wx *wx, u32 addr, u32 *data)
179 {
180 	int ret = 0;
181 
182 	ret = wx_fmgr_cmd_op(wx, WX_SPI_CMD_READ_DWORD, addr);
183 	if (ret < 0)
184 		return ret;
185 
186 	*data = rd32(wx, WX_SPI_DATA);
187 
188 	return ret;
189 }
190 
191 int wx_check_flash_load(struct wx *hw, u32 check_bit)
192 {
193 	u32 reg = 0;
194 	int err = 0;
195 
196 	/* if there's flash existing */
197 	if (!(rd32(hw, WX_SPI_STATUS) &
198 	      WX_SPI_STATUS_FLASH_BYPASS)) {
199 		/* wait hw load flash done */
200 		err = read_poll_timeout(rd32, reg, !(reg & check_bit), 20000, 2000000,
201 					false, hw, WX_SPI_ILDR_STATUS);
202 		if (err < 0)
203 			wx_err(hw, "Check flash load timeout.\n");
204 	}
205 
206 	return err;
207 }
208 EXPORT_SYMBOL(wx_check_flash_load);
209 
210 void wx_control_hw(struct wx *wx, bool drv)
211 {
212 	/* True : Let firmware know the driver has taken over
213 	 * False : Let firmware take over control of hw
214 	 */
215 	wr32m(wx, WX_CFG_PORT_CTL, WX_CFG_PORT_CTL_DRV_LOAD,
216 	      drv ? WX_CFG_PORT_CTL_DRV_LOAD : 0);
217 }
218 EXPORT_SYMBOL(wx_control_hw);
219 
220 /**
221  * wx_mng_present - returns 0 when management capability is present
222  * @wx: pointer to hardware structure
223  */
224 int wx_mng_present(struct wx *wx)
225 {
226 	u32 fwsm;
227 
228 	fwsm = rd32(wx, WX_MIS_ST);
229 	if (fwsm & WX_MIS_ST_MNG_INIT_DN)
230 		return 0;
231 	else
232 		return -EACCES;
233 }
234 EXPORT_SYMBOL(wx_mng_present);
235 
236 /* Software lock to be held while software semaphore is being accessed. */
237 static DEFINE_MUTEX(wx_sw_sync_lock);
238 
239 /**
240  *  wx_release_sw_sync - Release SW semaphore
241  *  @wx: pointer to hardware structure
242  *  @mask: Mask to specify which semaphore to release
243  *
244  *  Releases the SW semaphore for the specified
245  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
246  **/
247 static void wx_release_sw_sync(struct wx *wx, u32 mask)
248 {
249 	mutex_lock(&wx_sw_sync_lock);
250 	wr32m(wx, WX_MNG_SWFW_SYNC, mask, 0);
251 	mutex_unlock(&wx_sw_sync_lock);
252 }
253 
254 /**
255  *  wx_acquire_sw_sync - Acquire SW semaphore
256  *  @wx: pointer to hardware structure
257  *  @mask: Mask to specify which semaphore to acquire
258  *
259  *  Acquires the SW semaphore for the specified
260  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
261  **/
262 static int wx_acquire_sw_sync(struct wx *wx, u32 mask)
263 {
264 	u32 sem = 0;
265 	int ret = 0;
266 
267 	mutex_lock(&wx_sw_sync_lock);
268 	ret = read_poll_timeout(rd32, sem, !(sem & mask),
269 				5000, 2000000, false, wx, WX_MNG_SWFW_SYNC);
270 	if (!ret) {
271 		sem |= mask;
272 		wr32(wx, WX_MNG_SWFW_SYNC, sem);
273 	} else {
274 		wx_err(wx, "SW Semaphore not granted: 0x%x.\n", sem);
275 	}
276 	mutex_unlock(&wx_sw_sync_lock);
277 
278 	return ret;
279 }
280 
281 /**
282  *  wx_host_interface_command - Issue command to manageability block
283  *  @wx: pointer to the HW structure
284  *  @buffer: contains the command to write and where the return status will
285  *   be placed
286  *  @length: length of buffer, must be multiple of 4 bytes
287  *  @timeout: time in ms to wait for command completion
288  *  @return_data: read and return data from the buffer (true) or not (false)
289  *   Needed because FW structures are big endian and decoding of
290  *   these fields can be 8 bit or 16 bit based on command. Decoding
291  *   is not easily understood without making a table of commands.
292  *   So we will leave this up to the caller to read back the data
293  *   in these cases.
294  **/
295 int wx_host_interface_command(struct wx *wx, u32 *buffer,
296 			      u32 length, u32 timeout, bool return_data)
297 {
298 	u32 hdr_size = sizeof(struct wx_hic_hdr);
299 	u32 hicr, i, bi, buf[64] = {};
300 	int status = 0;
301 	u32 dword_len;
302 	u16 buf_len;
303 
304 	if (length == 0 || length > WX_HI_MAX_BLOCK_BYTE_LENGTH) {
305 		wx_err(wx, "Buffer length failure buffersize=%d.\n", length);
306 		return -EINVAL;
307 	}
308 
309 	status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
310 	if (status != 0)
311 		return status;
312 
313 	/* Calculate length in DWORDs. We must be DWORD aligned */
314 	if ((length % (sizeof(u32))) != 0) {
315 		wx_err(wx, "Buffer length failure, not aligned to dword");
316 		status = -EINVAL;
317 		goto rel_out;
318 	}
319 
320 	dword_len = length >> 2;
321 
322 	/* The device driver writes the relevant command block
323 	 * into the ram area.
324 	 */
325 	for (i = 0; i < dword_len; i++) {
326 		wr32a(wx, WX_MNG_MBOX, i, (__force u32)cpu_to_le32(buffer[i]));
327 		/* write flush */
328 		buf[i] = rd32a(wx, WX_MNG_MBOX, i);
329 	}
330 	/* Setting this bit tells the ARC that a new command is pending. */
331 	wr32m(wx, WX_MNG_MBOX_CTL,
332 	      WX_MNG_MBOX_CTL_SWRDY, WX_MNG_MBOX_CTL_SWRDY);
333 
334 	status = read_poll_timeout(rd32, hicr, hicr & WX_MNG_MBOX_CTL_FWRDY, 1000,
335 				   timeout * 1000, false, wx, WX_MNG_MBOX_CTL);
336 
337 	buf[0] = rd32(wx, WX_MNG_MBOX);
338 	if ((buf[0] & 0xff0000) >> 16 == 0x80) {
339 		wx_err(wx, "Unknown FW command: 0x%x\n", buffer[0] & 0xff);
340 		status = -EINVAL;
341 		goto rel_out;
342 	}
343 
344 	/* Check command completion */
345 	if (status) {
346 		wx_err(wx, "Command has failed with no status valid.\n");
347 		wx_dbg(wx, "write value:\n");
348 		for (i = 0; i < dword_len; i++)
349 			wx_dbg(wx, "%x ", buffer[i]);
350 		wx_dbg(wx, "read value:\n");
351 		for (i = 0; i < dword_len; i++)
352 			wx_dbg(wx, "%x ", buf[i]);
353 		wx_dbg(wx, "\ncheck: %x %x\n", buffer[0] & 0xff, ~buf[0] >> 24);
354 
355 		goto rel_out;
356 	}
357 
358 	if (!return_data)
359 		goto rel_out;
360 
361 	/* Calculate length in DWORDs */
362 	dword_len = hdr_size >> 2;
363 
364 	/* first pull in the header so we know the buffer length */
365 	for (bi = 0; bi < dword_len; bi++) {
366 		buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
367 		le32_to_cpus(&buffer[bi]);
368 	}
369 
370 	/* If there is any thing in data position pull it in */
371 	buf_len = ((struct wx_hic_hdr *)buffer)->buf_len;
372 	if (buf_len == 0)
373 		goto rel_out;
374 
375 	if (length < buf_len + hdr_size) {
376 		wx_err(wx, "Buffer not large enough for reply message.\n");
377 		status = -EFAULT;
378 		goto rel_out;
379 	}
380 
381 	/* Calculate length in DWORDs, add 3 for odd lengths */
382 	dword_len = (buf_len + 3) >> 2;
383 
384 	/* Pull in the rest of the buffer (bi is where we left off) */
385 	for (; bi <= dword_len; bi++) {
386 		buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
387 		le32_to_cpus(&buffer[bi]);
388 	}
389 
390 rel_out:
391 	wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
392 	return status;
393 }
394 EXPORT_SYMBOL(wx_host_interface_command);
395 
396 /**
397  *  wx_read_ee_hostif_data - Read EEPROM word using a host interface cmd
398  *  assuming that the semaphore is already obtained.
399  *  @wx: pointer to hardware structure
400  *  @offset: offset of  word in the EEPROM to read
401  *  @data: word read from the EEPROM
402  *
403  *  Reads a 16 bit word from the EEPROM using the hostif.
404  **/
405 static int wx_read_ee_hostif_data(struct wx *wx, u16 offset, u16 *data)
406 {
407 	struct wx_hic_read_shadow_ram buffer;
408 	int status;
409 
410 	buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
411 	buffer.hdr.req.buf_lenh = 0;
412 	buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
413 	buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
414 
415 	/* convert offset from words to bytes */
416 	buffer.address = (__force u32)cpu_to_be32(offset * 2);
417 	/* one word */
418 	buffer.length = (__force u16)cpu_to_be16(sizeof(u16));
419 
420 	status = wx_host_interface_command(wx, (u32 *)&buffer, sizeof(buffer),
421 					   WX_HI_COMMAND_TIMEOUT, false);
422 
423 	if (status != 0)
424 		return status;
425 
426 	*data = (u16)rd32a(wx, WX_MNG_MBOX, FW_NVM_DATA_OFFSET);
427 
428 	return status;
429 }
430 
431 /**
432  *  wx_read_ee_hostif - Read EEPROM word using a host interface cmd
433  *  @wx: pointer to hardware structure
434  *  @offset: offset of  word in the EEPROM to read
435  *  @data: word read from the EEPROM
436  *
437  *  Reads a 16 bit word from the EEPROM using the hostif.
438  **/
439 int wx_read_ee_hostif(struct wx *wx, u16 offset, u16 *data)
440 {
441 	int status = 0;
442 
443 	status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
444 	if (status == 0) {
445 		status = wx_read_ee_hostif_data(wx, offset, data);
446 		wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
447 	}
448 
449 	return status;
450 }
451 EXPORT_SYMBOL(wx_read_ee_hostif);
452 
453 /**
454  *  wx_read_ee_hostif_buffer- Read EEPROM word(s) using hostif
455  *  @wx: pointer to hardware structure
456  *  @offset: offset of  word in the EEPROM to read
457  *  @words: number of words
458  *  @data: word(s) read from the EEPROM
459  *
460  *  Reads a 16 bit word(s) from the EEPROM using the hostif.
461  **/
462 int wx_read_ee_hostif_buffer(struct wx *wx,
463 			     u16 offset, u16 words, u16 *data)
464 {
465 	struct wx_hic_read_shadow_ram buffer;
466 	u32 current_word = 0;
467 	u16 words_to_read;
468 	u32 value = 0;
469 	int status;
470 	u32 i;
471 
472 	/* Take semaphore for the entire operation. */
473 	status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
474 	if (status != 0)
475 		return status;
476 
477 	while (words) {
478 		if (words > FW_MAX_READ_BUFFER_SIZE / 2)
479 			words_to_read = FW_MAX_READ_BUFFER_SIZE / 2;
480 		else
481 			words_to_read = words;
482 
483 		buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
484 		buffer.hdr.req.buf_lenh = 0;
485 		buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
486 		buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
487 
488 		/* convert offset from words to bytes */
489 		buffer.address = (__force u32)cpu_to_be32((offset + current_word) * 2);
490 		buffer.length = (__force u16)cpu_to_be16(words_to_read * 2);
491 
492 		status = wx_host_interface_command(wx, (u32 *)&buffer,
493 						   sizeof(buffer),
494 						   WX_HI_COMMAND_TIMEOUT,
495 						   false);
496 
497 		if (status != 0) {
498 			wx_err(wx, "Host interface command failed\n");
499 			goto out;
500 		}
501 
502 		for (i = 0; i < words_to_read; i++) {
503 			u32 reg = WX_MNG_MBOX + (FW_NVM_DATA_OFFSET << 2) + 2 * i;
504 
505 			value = rd32(wx, reg);
506 			data[current_word] = (u16)(value & 0xffff);
507 			current_word++;
508 			i++;
509 			if (i < words_to_read) {
510 				value >>= 16;
511 				data[current_word] = (u16)(value & 0xffff);
512 				current_word++;
513 			}
514 		}
515 		words -= words_to_read;
516 	}
517 
518 out:
519 	wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
520 	return status;
521 }
522 EXPORT_SYMBOL(wx_read_ee_hostif_buffer);
523 
524 /**
525  *  wx_init_eeprom_params - Initialize EEPROM params
526  *  @wx: pointer to hardware structure
527  *
528  *  Initializes the EEPROM parameters wx_eeprom_info within the
529  *  wx_hw struct in order to set up EEPROM access.
530  **/
531 void wx_init_eeprom_params(struct wx *wx)
532 {
533 	struct wx_eeprom_info *eeprom = &wx->eeprom;
534 	u16 eeprom_size;
535 	u16 data = 0x80;
536 
537 	if (eeprom->type == wx_eeprom_uninitialized) {
538 		eeprom->semaphore_delay = 10;
539 		eeprom->type = wx_eeprom_none;
540 
541 		if (!(rd32(wx, WX_SPI_STATUS) &
542 		      WX_SPI_STATUS_FLASH_BYPASS)) {
543 			eeprom->type = wx_flash;
544 
545 			eeprom_size = 4096;
546 			eeprom->word_size = eeprom_size >> 1;
547 
548 			wx_dbg(wx, "Eeprom params: type = %d, size = %d\n",
549 			       eeprom->type, eeprom->word_size);
550 		}
551 	}
552 
553 	if (wx->mac.type == wx_mac_sp) {
554 		if (wx_read_ee_hostif(wx, WX_SW_REGION_PTR, &data)) {
555 			wx_err(wx, "NVM Read Error\n");
556 			return;
557 		}
558 		data = data >> 1;
559 	}
560 
561 	eeprom->sw_region_offset = data;
562 }
563 EXPORT_SYMBOL(wx_init_eeprom_params);
564 
565 /**
566  *  wx_get_mac_addr - Generic get MAC address
567  *  @wx: pointer to hardware structure
568  *  @mac_addr: Adapter MAC address
569  *
570  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
571  *  A reset of the adapter must be performed prior to calling this function
572  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
573  **/
574 void wx_get_mac_addr(struct wx *wx, u8 *mac_addr)
575 {
576 	u32 rar_high;
577 	u32 rar_low;
578 	u16 i;
579 
580 	wr32(wx, WX_PSR_MAC_SWC_IDX, 0);
581 	rar_high = rd32(wx, WX_PSR_MAC_SWC_AD_H);
582 	rar_low = rd32(wx, WX_PSR_MAC_SWC_AD_L);
583 
584 	for (i = 0; i < 2; i++)
585 		mac_addr[i] = (u8)(rar_high >> (1 - i) * 8);
586 
587 	for (i = 0; i < 4; i++)
588 		mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8);
589 }
590 EXPORT_SYMBOL(wx_get_mac_addr);
591 
592 /**
593  *  wx_set_rar - Set Rx address register
594  *  @wx: pointer to hardware structure
595  *  @index: Receive address register to write
596  *  @addr: Address to put into receive address register
597  *  @pools: VMDq "set" or "pool" index
598  *  @enable_addr: set flag that address is active
599  *
600  *  Puts an ethernet address into a receive address register.
601  **/
602 static int wx_set_rar(struct wx *wx, u32 index, u8 *addr, u64 pools,
603 		      u32 enable_addr)
604 {
605 	u32 rar_entries = wx->mac.num_rar_entries;
606 	u32 rar_low, rar_high;
607 
608 	/* Make sure we are using a valid rar index range */
609 	if (index >= rar_entries) {
610 		wx_err(wx, "RAR index %d is out of range.\n", index);
611 		return -EINVAL;
612 	}
613 
614 	/* select the MAC address */
615 	wr32(wx, WX_PSR_MAC_SWC_IDX, index);
616 
617 	/* setup VMDq pool mapping */
618 	wr32(wx, WX_PSR_MAC_SWC_VM_L, pools & 0xFFFFFFFF);
619 	if (wx->mac.type == wx_mac_sp)
620 		wr32(wx, WX_PSR_MAC_SWC_VM_H, pools >> 32);
621 
622 	/* HW expects these in little endian so we reverse the byte
623 	 * order from network order (big endian) to little endian
624 	 *
625 	 * Some parts put the VMDq setting in the extra RAH bits,
626 	 * so save everything except the lower 16 bits that hold part
627 	 * of the address and the address valid bit.
628 	 */
629 	rar_low = ((u32)addr[5] |
630 		  ((u32)addr[4] << 8) |
631 		  ((u32)addr[3] << 16) |
632 		  ((u32)addr[2] << 24));
633 	rar_high = ((u32)addr[1] |
634 		   ((u32)addr[0] << 8));
635 	if (enable_addr != 0)
636 		rar_high |= WX_PSR_MAC_SWC_AD_H_AV;
637 
638 	wr32(wx, WX_PSR_MAC_SWC_AD_L, rar_low);
639 	wr32m(wx, WX_PSR_MAC_SWC_AD_H,
640 	      (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
641 	       WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
642 	       WX_PSR_MAC_SWC_AD_H_AV),
643 	      rar_high);
644 
645 	return 0;
646 }
647 
648 /**
649  *  wx_clear_rar - Remove Rx address register
650  *  @wx: pointer to hardware structure
651  *  @index: Receive address register to write
652  *
653  *  Clears an ethernet address from a receive address register.
654  **/
655 static int wx_clear_rar(struct wx *wx, u32 index)
656 {
657 	u32 rar_entries = wx->mac.num_rar_entries;
658 
659 	/* Make sure we are using a valid rar index range */
660 	if (index >= rar_entries) {
661 		wx_err(wx, "RAR index %d is out of range.\n", index);
662 		return -EINVAL;
663 	}
664 
665 	/* Some parts put the VMDq setting in the extra RAH bits,
666 	 * so save everything except the lower 16 bits that hold part
667 	 * of the address and the address valid bit.
668 	 */
669 	wr32(wx, WX_PSR_MAC_SWC_IDX, index);
670 
671 	wr32(wx, WX_PSR_MAC_SWC_VM_L, 0);
672 	wr32(wx, WX_PSR_MAC_SWC_VM_H, 0);
673 
674 	wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
675 	wr32m(wx, WX_PSR_MAC_SWC_AD_H,
676 	      (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
677 	       WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
678 	       WX_PSR_MAC_SWC_AD_H_AV),
679 	      0);
680 
681 	return 0;
682 }
683 
684 /**
685  *  wx_clear_vmdq - Disassociate a VMDq pool index from a rx address
686  *  @wx: pointer to hardware struct
687  *  @rar: receive address register index to disassociate
688  *  @vmdq: VMDq pool index to remove from the rar
689  **/
690 static int wx_clear_vmdq(struct wx *wx, u32 rar, u32 __maybe_unused vmdq)
691 {
692 	u32 rar_entries = wx->mac.num_rar_entries;
693 	u32 mpsar_lo, mpsar_hi;
694 
695 	/* Make sure we are using a valid rar index range */
696 	if (rar >= rar_entries) {
697 		wx_err(wx, "RAR index %d is out of range.\n", rar);
698 		return -EINVAL;
699 	}
700 
701 	wr32(wx, WX_PSR_MAC_SWC_IDX, rar);
702 	mpsar_lo = rd32(wx, WX_PSR_MAC_SWC_VM_L);
703 	mpsar_hi = rd32(wx, WX_PSR_MAC_SWC_VM_H);
704 
705 	if (!mpsar_lo && !mpsar_hi)
706 		return 0;
707 
708 	/* was that the last pool using this rar? */
709 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
710 		wx_clear_rar(wx, rar);
711 
712 	return 0;
713 }
714 
715 /**
716  *  wx_init_uta_tables - Initialize the Unicast Table Array
717  *  @wx: pointer to hardware structure
718  **/
719 static void wx_init_uta_tables(struct wx *wx)
720 {
721 	int i;
722 
723 	wx_dbg(wx, " Clearing UTA\n");
724 
725 	for (i = 0; i < 128; i++)
726 		wr32(wx, WX_PSR_UC_TBL(i), 0);
727 }
728 
729 /**
730  *  wx_init_rx_addrs - Initializes receive address filters.
731  *  @wx: pointer to hardware structure
732  *
733  *  Places the MAC address in receive address register 0 and clears the rest
734  *  of the receive address registers. Clears the multicast table. Assumes
735  *  the receiver is in reset when the routine is called.
736  **/
737 void wx_init_rx_addrs(struct wx *wx)
738 {
739 	u32 rar_entries = wx->mac.num_rar_entries;
740 	u32 psrctl;
741 	int i;
742 
743 	/* If the current mac address is valid, assume it is a software override
744 	 * to the permanent address.
745 	 * Otherwise, use the permanent address from the eeprom.
746 	 */
747 	if (!is_valid_ether_addr(wx->mac.addr)) {
748 		/* Get the MAC address from the RAR0 for later reference */
749 		wx_get_mac_addr(wx, wx->mac.addr);
750 		wx_dbg(wx, "Keeping Current RAR0 Addr = %pM\n", wx->mac.addr);
751 	} else {
752 		/* Setup the receive address. */
753 		wx_dbg(wx, "Overriding MAC Address in RAR[0]\n");
754 		wx_dbg(wx, "New MAC Addr = %pM\n", wx->mac.addr);
755 
756 		wx_set_rar(wx, 0, wx->mac.addr, 0, WX_PSR_MAC_SWC_AD_H_AV);
757 
758 		if (wx->mac.type == wx_mac_sp) {
759 			/* clear VMDq pool/queue selection for RAR 0 */
760 			wx_clear_vmdq(wx, 0, WX_CLEAR_VMDQ_ALL);
761 		}
762 	}
763 
764 	/* Zero out the other receive addresses. */
765 	wx_dbg(wx, "Clearing RAR[1-%d]\n", rar_entries - 1);
766 	for (i = 1; i < rar_entries; i++) {
767 		wr32(wx, WX_PSR_MAC_SWC_IDX, i);
768 		wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
769 		wr32(wx, WX_PSR_MAC_SWC_AD_H, 0);
770 	}
771 
772 	/* Clear the MTA */
773 	wx->addr_ctrl.mta_in_use = 0;
774 	psrctl = rd32(wx, WX_PSR_CTL);
775 	psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
776 	psrctl |= wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT;
777 	wr32(wx, WX_PSR_CTL, psrctl);
778 	wx_dbg(wx, " Clearing MTA\n");
779 	for (i = 0; i < wx->mac.mcft_size; i++)
780 		wr32(wx, WX_PSR_MC_TBL(i), 0);
781 
782 	wx_init_uta_tables(wx);
783 }
784 EXPORT_SYMBOL(wx_init_rx_addrs);
785 
786 static void wx_sync_mac_table(struct wx *wx)
787 {
788 	int i;
789 
790 	for (i = 0; i < wx->mac.num_rar_entries; i++) {
791 		if (wx->mac_table[i].state & WX_MAC_STATE_MODIFIED) {
792 			if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
793 				wx_set_rar(wx, i,
794 					   wx->mac_table[i].addr,
795 					   wx->mac_table[i].pools,
796 					   WX_PSR_MAC_SWC_AD_H_AV);
797 			} else {
798 				wx_clear_rar(wx, i);
799 			}
800 			wx->mac_table[i].state &= ~(WX_MAC_STATE_MODIFIED);
801 		}
802 	}
803 }
804 
805 /* this function destroys the first RAR entry */
806 void wx_mac_set_default_filter(struct wx *wx, u8 *addr)
807 {
808 	memcpy(&wx->mac_table[0].addr, addr, ETH_ALEN);
809 	wx->mac_table[0].pools = 1ULL;
810 	wx->mac_table[0].state = (WX_MAC_STATE_DEFAULT | WX_MAC_STATE_IN_USE);
811 	wx_set_rar(wx, 0, wx->mac_table[0].addr,
812 		   wx->mac_table[0].pools,
813 		   WX_PSR_MAC_SWC_AD_H_AV);
814 }
815 EXPORT_SYMBOL(wx_mac_set_default_filter);
816 
817 void wx_flush_sw_mac_table(struct wx *wx)
818 {
819 	u32 i;
820 
821 	for (i = 0; i < wx->mac.num_rar_entries; i++) {
822 		if (!(wx->mac_table[i].state & WX_MAC_STATE_IN_USE))
823 			continue;
824 
825 		wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
826 		wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
827 		memset(wx->mac_table[i].addr, 0, ETH_ALEN);
828 		wx->mac_table[i].pools = 0;
829 	}
830 	wx_sync_mac_table(wx);
831 }
832 EXPORT_SYMBOL(wx_flush_sw_mac_table);
833 
834 static int wx_add_mac_filter(struct wx *wx, u8 *addr, u16 pool)
835 {
836 	u32 i;
837 
838 	if (is_zero_ether_addr(addr))
839 		return -EINVAL;
840 
841 	for (i = 0; i < wx->mac.num_rar_entries; i++) {
842 		if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
843 			if (ether_addr_equal(addr, wx->mac_table[i].addr)) {
844 				if (wx->mac_table[i].pools != (1ULL << pool)) {
845 					memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
846 					wx->mac_table[i].pools |= (1ULL << pool);
847 					wx_sync_mac_table(wx);
848 					return i;
849 				}
850 			}
851 		}
852 
853 		if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE)
854 			continue;
855 		wx->mac_table[i].state |= (WX_MAC_STATE_MODIFIED |
856 					   WX_MAC_STATE_IN_USE);
857 		memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
858 		wx->mac_table[i].pools |= (1ULL << pool);
859 		wx_sync_mac_table(wx);
860 		return i;
861 	}
862 	return -ENOMEM;
863 }
864 
865 static int wx_del_mac_filter(struct wx *wx, u8 *addr, u16 pool)
866 {
867 	u32 i;
868 
869 	if (is_zero_ether_addr(addr))
870 		return -EINVAL;
871 
872 	/* search table for addr, if found, set to 0 and sync */
873 	for (i = 0; i < wx->mac.num_rar_entries; i++) {
874 		if (!ether_addr_equal(addr, wx->mac_table[i].addr))
875 			continue;
876 
877 		wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
878 		wx->mac_table[i].pools &= ~(1ULL << pool);
879 		if (!wx->mac_table[i].pools) {
880 			wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
881 			memset(wx->mac_table[i].addr, 0, ETH_ALEN);
882 		}
883 		wx_sync_mac_table(wx);
884 		return 0;
885 	}
886 	return -ENOMEM;
887 }
888 
889 static int wx_available_rars(struct wx *wx)
890 {
891 	u32 i, count = 0;
892 
893 	for (i = 0; i < wx->mac.num_rar_entries; i++) {
894 		if (wx->mac_table[i].state == 0)
895 			count++;
896 	}
897 
898 	return count;
899 }
900 
901 /**
902  * wx_write_uc_addr_list - write unicast addresses to RAR table
903  * @netdev: network interface device structure
904  * @pool: index for mac table
905  *
906  * Writes unicast address list to the RAR table.
907  * Returns: -ENOMEM on failure/insufficient address space
908  *                0 on no addresses written
909  *                X on writing X addresses to the RAR table
910  **/
911 static int wx_write_uc_addr_list(struct net_device *netdev, int pool)
912 {
913 	struct wx *wx = netdev_priv(netdev);
914 	int count = 0;
915 
916 	/* return ENOMEM indicating insufficient memory for addresses */
917 	if (netdev_uc_count(netdev) > wx_available_rars(wx))
918 		return -ENOMEM;
919 
920 	if (!netdev_uc_empty(netdev)) {
921 		struct netdev_hw_addr *ha;
922 
923 		netdev_for_each_uc_addr(ha, netdev) {
924 			wx_del_mac_filter(wx, ha->addr, pool);
925 			wx_add_mac_filter(wx, ha->addr, pool);
926 			count++;
927 		}
928 	}
929 	return count;
930 }
931 
932 /**
933  *  wx_mta_vector - Determines bit-vector in multicast table to set
934  *  @wx: pointer to private structure
935  *  @mc_addr: the multicast address
936  *
937  *  Extracts the 12 bits, from a multicast address, to determine which
938  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
939  *  incoming rx multicast addresses, to determine the bit-vector to check in
940  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
941  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
942  *  to mc_filter_type.
943  **/
944 static u32 wx_mta_vector(struct wx *wx, u8 *mc_addr)
945 {
946 	u32 vector = 0;
947 
948 	switch (wx->mac.mc_filter_type) {
949 	case 0:   /* use bits [47:36] of the address */
950 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
951 		break;
952 	case 1:   /* use bits [46:35] of the address */
953 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
954 		break;
955 	case 2:   /* use bits [45:34] of the address */
956 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
957 		break;
958 	case 3:   /* use bits [43:32] of the address */
959 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
960 		break;
961 	default:  /* Invalid mc_filter_type */
962 		wx_err(wx, "MC filter type param set incorrectly\n");
963 		break;
964 	}
965 
966 	/* vector can only be 12-bits or boundary will be exceeded */
967 	vector &= 0xFFF;
968 	return vector;
969 }
970 
971 /**
972  *  wx_set_mta - Set bit-vector in multicast table
973  *  @wx: pointer to private structure
974  *  @mc_addr: Multicast address
975  *
976  *  Sets the bit-vector in the multicast table.
977  **/
978 static void wx_set_mta(struct wx *wx, u8 *mc_addr)
979 {
980 	u32 vector, vector_bit, vector_reg;
981 
982 	wx->addr_ctrl.mta_in_use++;
983 
984 	vector = wx_mta_vector(wx, mc_addr);
985 	wx_dbg(wx, " bit-vector = 0x%03X\n", vector);
986 
987 	/* The MTA is a register array of 128 32-bit registers. It is treated
988 	 * like an array of 4096 bits.  We want to set bit
989 	 * BitArray[vector_value]. So we figure out what register the bit is
990 	 * in, read it, OR in the new bit, then write back the new value.  The
991 	 * register is determined by the upper 7 bits of the vector value and
992 	 * the bit within that register are determined by the lower 5 bits of
993 	 * the value.
994 	 */
995 	vector_reg = (vector >> 5) & 0x7F;
996 	vector_bit = vector & 0x1F;
997 	wx->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
998 }
999 
1000 /**
1001  *  wx_update_mc_addr_list - Updates MAC list of multicast addresses
1002  *  @wx: pointer to private structure
1003  *  @netdev: pointer to net device structure
1004  *
1005  *  The given list replaces any existing list. Clears the MC addrs from receive
1006  *  address registers and the multicast table. Uses unused receive address
1007  *  registers for the first multicast addresses, and hashes the rest into the
1008  *  multicast table.
1009  **/
1010 static void wx_update_mc_addr_list(struct wx *wx, struct net_device *netdev)
1011 {
1012 	struct netdev_hw_addr *ha;
1013 	u32 i, psrctl;
1014 
1015 	/* Set the new number of MC addresses that we are being requested to
1016 	 * use.
1017 	 */
1018 	wx->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
1019 	wx->addr_ctrl.mta_in_use = 0;
1020 
1021 	/* Clear mta_shadow */
1022 	wx_dbg(wx, " Clearing MTA\n");
1023 	memset(&wx->mac.mta_shadow, 0, sizeof(wx->mac.mta_shadow));
1024 
1025 	/* Update mta_shadow */
1026 	netdev_for_each_mc_addr(ha, netdev) {
1027 		wx_dbg(wx, " Adding the multicast addresses:\n");
1028 		wx_set_mta(wx, ha->addr);
1029 	}
1030 
1031 	/* Enable mta */
1032 	for (i = 0; i < wx->mac.mcft_size; i++)
1033 		wr32a(wx, WX_PSR_MC_TBL(0), i,
1034 		      wx->mac.mta_shadow[i]);
1035 
1036 	if (wx->addr_ctrl.mta_in_use > 0) {
1037 		psrctl = rd32(wx, WX_PSR_CTL);
1038 		psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
1039 		psrctl |= WX_PSR_CTL_MFE |
1040 			  (wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT);
1041 		wr32(wx, WX_PSR_CTL, psrctl);
1042 	}
1043 
1044 	wx_dbg(wx, "Update mc addr list Complete\n");
1045 }
1046 
1047 /**
1048  * wx_write_mc_addr_list - write multicast addresses to MTA
1049  * @netdev: network interface device structure
1050  *
1051  * Writes multicast address list to the MTA hash table.
1052  * Returns: 0 on no addresses written
1053  *          X on writing X addresses to MTA
1054  **/
1055 static int wx_write_mc_addr_list(struct net_device *netdev)
1056 {
1057 	struct wx *wx = netdev_priv(netdev);
1058 
1059 	if (!netif_running(netdev))
1060 		return 0;
1061 
1062 	wx_update_mc_addr_list(wx, netdev);
1063 
1064 	return netdev_mc_count(netdev);
1065 }
1066 
1067 /**
1068  * wx_set_mac - Change the Ethernet Address of the NIC
1069  * @netdev: network interface device structure
1070  * @p: pointer to an address structure
1071  *
1072  * Returns 0 on success, negative on failure
1073  **/
1074 int wx_set_mac(struct net_device *netdev, void *p)
1075 {
1076 	struct wx *wx = netdev_priv(netdev);
1077 	struct sockaddr *addr = p;
1078 	int retval;
1079 
1080 	retval = eth_prepare_mac_addr_change(netdev, addr);
1081 	if (retval)
1082 		return retval;
1083 
1084 	wx_del_mac_filter(wx, wx->mac.addr, 0);
1085 	eth_hw_addr_set(netdev, addr->sa_data);
1086 	memcpy(wx->mac.addr, addr->sa_data, netdev->addr_len);
1087 
1088 	wx_mac_set_default_filter(wx, wx->mac.addr);
1089 
1090 	return 0;
1091 }
1092 EXPORT_SYMBOL(wx_set_mac);
1093 
1094 void wx_disable_rx(struct wx *wx)
1095 {
1096 	u32 pfdtxgswc;
1097 	u32 rxctrl;
1098 
1099 	rxctrl = rd32(wx, WX_RDB_PB_CTL);
1100 	if (rxctrl & WX_RDB_PB_CTL_RXEN) {
1101 		pfdtxgswc = rd32(wx, WX_PSR_CTL);
1102 		if (pfdtxgswc & WX_PSR_CTL_SW_EN) {
1103 			pfdtxgswc &= ~WX_PSR_CTL_SW_EN;
1104 			wr32(wx, WX_PSR_CTL, pfdtxgswc);
1105 			wx->mac.set_lben = true;
1106 		} else {
1107 			wx->mac.set_lben = false;
1108 		}
1109 		rxctrl &= ~WX_RDB_PB_CTL_RXEN;
1110 		wr32(wx, WX_RDB_PB_CTL, rxctrl);
1111 
1112 		if (!(((wx->subsystem_device_id & WX_NCSI_MASK) == WX_NCSI_SUP) ||
1113 		      ((wx->subsystem_device_id & WX_WOL_MASK) == WX_WOL_SUP))) {
1114 			/* disable mac receiver */
1115 			wr32m(wx, WX_MAC_RX_CFG,
1116 			      WX_MAC_RX_CFG_RE, 0);
1117 		}
1118 	}
1119 }
1120 EXPORT_SYMBOL(wx_disable_rx);
1121 
1122 static void wx_enable_rx(struct wx *wx)
1123 {
1124 	u32 psrctl;
1125 
1126 	/* enable mac receiver */
1127 	wr32m(wx, WX_MAC_RX_CFG,
1128 	      WX_MAC_RX_CFG_RE, WX_MAC_RX_CFG_RE);
1129 
1130 	wr32m(wx, WX_RDB_PB_CTL,
1131 	      WX_RDB_PB_CTL_RXEN, WX_RDB_PB_CTL_RXEN);
1132 
1133 	if (wx->mac.set_lben) {
1134 		psrctl = rd32(wx, WX_PSR_CTL);
1135 		psrctl |= WX_PSR_CTL_SW_EN;
1136 		wr32(wx, WX_PSR_CTL, psrctl);
1137 		wx->mac.set_lben = false;
1138 	}
1139 }
1140 
1141 /**
1142  * wx_set_rxpba - Initialize Rx packet buffer
1143  * @wx: pointer to private structure
1144  **/
1145 static void wx_set_rxpba(struct wx *wx)
1146 {
1147 	u32 rxpktsize, txpktsize, txpbthresh;
1148 	u32 pbsize = wx->mac.rx_pb_size;
1149 
1150 	if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags)) {
1151 		if (test_bit(WX_FLAG_FDIR_HASH, wx->flags) ||
1152 		    test_bit(WX_FLAG_FDIR_PERFECT, wx->flags))
1153 			pbsize -= 64; /* Default 64KB */
1154 	}
1155 
1156 	rxpktsize = pbsize << WX_RDB_PB_SZ_SHIFT;
1157 	wr32(wx, WX_RDB_PB_SZ(0), rxpktsize);
1158 
1159 	/* Only support an equally distributed Tx packet buffer strategy. */
1160 	txpktsize = wx->mac.tx_pb_size;
1161 	txpbthresh = (txpktsize / 1024) - WX_TXPKT_SIZE_MAX;
1162 	wr32(wx, WX_TDB_PB_SZ(0), txpktsize);
1163 	wr32(wx, WX_TDM_PB_THRE(0), txpbthresh);
1164 }
1165 
1166 #define WX_ETH_FRAMING 20
1167 
1168 /**
1169  * wx_hpbthresh - calculate high water mark for flow control
1170  *
1171  * @wx: board private structure to calculate for
1172  **/
1173 static int wx_hpbthresh(struct wx *wx)
1174 {
1175 	struct net_device *dev = wx->netdev;
1176 	int link, tc, kb, marker;
1177 	u32 dv_id, rx_pba;
1178 
1179 	/* Calculate max LAN frame size */
1180 	link = dev->mtu + ETH_HLEN + ETH_FCS_LEN + WX_ETH_FRAMING;
1181 	tc = link;
1182 
1183 	/* Calculate delay value for device */
1184 	dv_id = WX_DV(link, tc);
1185 
1186 	/* Delay value is calculated in bit times convert to KB */
1187 	kb = WX_BT2KB(dv_id);
1188 	rx_pba = rd32(wx, WX_RDB_PB_SZ(0)) >> WX_RDB_PB_SZ_SHIFT;
1189 
1190 	marker = rx_pba - kb;
1191 
1192 	/* It is possible that the packet buffer is not large enough
1193 	 * to provide required headroom. In this case throw an error
1194 	 * to user and a do the best we can.
1195 	 */
1196 	if (marker < 0) {
1197 		dev_warn(&wx->pdev->dev,
1198 			 "Packet Buffer can not provide enough headroom to support flow control. Decrease MTU or number of traffic classes\n");
1199 		marker = tc + 1;
1200 	}
1201 
1202 	return marker;
1203 }
1204 
1205 /**
1206  * wx_lpbthresh - calculate low water mark for flow control
1207  *
1208  * @wx: board private structure to calculate for
1209  **/
1210 static int wx_lpbthresh(struct wx *wx)
1211 {
1212 	struct net_device *dev = wx->netdev;
1213 	u32 dv_id;
1214 	int tc;
1215 
1216 	/* Calculate max LAN frame size */
1217 	tc = dev->mtu + ETH_HLEN + ETH_FCS_LEN;
1218 
1219 	/* Calculate delay value for device */
1220 	dv_id = WX_LOW_DV(tc);
1221 
1222 	/* Delay value is calculated in bit times convert to KB */
1223 	return WX_BT2KB(dv_id);
1224 }
1225 
1226 /**
1227  * wx_pbthresh_setup - calculate and setup high low water marks
1228  *
1229  * @wx: board private structure to calculate for
1230  **/
1231 static void wx_pbthresh_setup(struct wx *wx)
1232 {
1233 	wx->fc.high_water = wx_hpbthresh(wx);
1234 	wx->fc.low_water = wx_lpbthresh(wx);
1235 
1236 	/* Low water marks must not be larger than high water marks */
1237 	if (wx->fc.low_water > wx->fc.high_water)
1238 		wx->fc.low_water = 0;
1239 }
1240 
1241 static void wx_configure_port(struct wx *wx)
1242 {
1243 	u32 value, i;
1244 
1245 	value = WX_CFG_PORT_CTL_D_VLAN | WX_CFG_PORT_CTL_QINQ;
1246 	wr32m(wx, WX_CFG_PORT_CTL,
1247 	      WX_CFG_PORT_CTL_D_VLAN |
1248 	      WX_CFG_PORT_CTL_QINQ,
1249 	      value);
1250 
1251 	wr32(wx, WX_CFG_TAG_TPID(0),
1252 	     ETH_P_8021Q | ETH_P_8021AD << 16);
1253 	wx->tpid[0] = ETH_P_8021Q;
1254 	wx->tpid[1] = ETH_P_8021AD;
1255 	for (i = 1; i < 4; i++)
1256 		wr32(wx, WX_CFG_TAG_TPID(i),
1257 		     ETH_P_8021Q | ETH_P_8021Q << 16);
1258 	for (i = 2; i < 8; i++)
1259 		wx->tpid[i] = ETH_P_8021Q;
1260 }
1261 
1262 /**
1263  *  wx_disable_sec_rx_path - Stops the receive data path
1264  *  @wx: pointer to private structure
1265  *
1266  *  Stops the receive data path and waits for the HW to internally empty
1267  *  the Rx security block
1268  **/
1269 int wx_disable_sec_rx_path(struct wx *wx)
1270 {
1271 	u32 secrx;
1272 
1273 	wr32m(wx, WX_RSC_CTL,
1274 	      WX_RSC_CTL_RX_DIS, WX_RSC_CTL_RX_DIS);
1275 
1276 	return read_poll_timeout(rd32, secrx, secrx & WX_RSC_ST_RSEC_RDY,
1277 				 1000, 40000, false, wx, WX_RSC_ST);
1278 }
1279 EXPORT_SYMBOL(wx_disable_sec_rx_path);
1280 
1281 /**
1282  *  wx_enable_sec_rx_path - Enables the receive data path
1283  *  @wx: pointer to private structure
1284  *
1285  *  Enables the receive data path.
1286  **/
1287 void wx_enable_sec_rx_path(struct wx *wx)
1288 {
1289 	wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_RX_DIS, 0);
1290 	WX_WRITE_FLUSH(wx);
1291 }
1292 EXPORT_SYMBOL(wx_enable_sec_rx_path);
1293 
1294 static void wx_vlan_strip_control(struct wx *wx, bool enable)
1295 {
1296 	int i, j;
1297 
1298 	for (i = 0; i < wx->num_rx_queues; i++) {
1299 		struct wx_ring *ring = wx->rx_ring[i];
1300 
1301 		j = ring->reg_idx;
1302 		wr32m(wx, WX_PX_RR_CFG(j), WX_PX_RR_CFG_VLAN,
1303 		      enable ? WX_PX_RR_CFG_VLAN : 0);
1304 	}
1305 }
1306 
1307 void wx_set_rx_mode(struct net_device *netdev)
1308 {
1309 	struct wx *wx = netdev_priv(netdev);
1310 	netdev_features_t features;
1311 	u32 fctrl, vmolr, vlnctrl;
1312 	int count;
1313 
1314 	features = netdev->features;
1315 
1316 	/* Check for Promiscuous and All Multicast modes */
1317 	fctrl = rd32(wx, WX_PSR_CTL);
1318 	fctrl &= ~(WX_PSR_CTL_UPE | WX_PSR_CTL_MPE);
1319 	vmolr = rd32(wx, WX_PSR_VM_L2CTL(0));
1320 	vmolr &= ~(WX_PSR_VM_L2CTL_UPE |
1321 		   WX_PSR_VM_L2CTL_MPE |
1322 		   WX_PSR_VM_L2CTL_ROPE |
1323 		   WX_PSR_VM_L2CTL_ROMPE);
1324 	vlnctrl = rd32(wx, WX_PSR_VLAN_CTL);
1325 	vlnctrl &= ~(WX_PSR_VLAN_CTL_VFE | WX_PSR_VLAN_CTL_CFIEN);
1326 
1327 	/* set all bits that we expect to always be set */
1328 	fctrl |= WX_PSR_CTL_BAM | WX_PSR_CTL_MFE;
1329 	vmolr |= WX_PSR_VM_L2CTL_BAM |
1330 		 WX_PSR_VM_L2CTL_AUPE |
1331 		 WX_PSR_VM_L2CTL_VACC;
1332 	vlnctrl |= WX_PSR_VLAN_CTL_VFE;
1333 
1334 	wx->addr_ctrl.user_set_promisc = false;
1335 	if (netdev->flags & IFF_PROMISC) {
1336 		wx->addr_ctrl.user_set_promisc = true;
1337 		fctrl |= WX_PSR_CTL_UPE | WX_PSR_CTL_MPE;
1338 		/* pf don't want packets routing to vf, so clear UPE */
1339 		vmolr |= WX_PSR_VM_L2CTL_MPE;
1340 		vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1341 	}
1342 
1343 	if (netdev->flags & IFF_ALLMULTI) {
1344 		fctrl |= WX_PSR_CTL_MPE;
1345 		vmolr |= WX_PSR_VM_L2CTL_MPE;
1346 	}
1347 
1348 	if (netdev->features & NETIF_F_RXALL) {
1349 		vmolr |= (WX_PSR_VM_L2CTL_UPE | WX_PSR_VM_L2CTL_MPE);
1350 		vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1351 		/* receive bad packets */
1352 		wr32m(wx, WX_RSC_CTL,
1353 		      WX_RSC_CTL_SAVE_MAC_ERR,
1354 		      WX_RSC_CTL_SAVE_MAC_ERR);
1355 	} else {
1356 		vmolr |= WX_PSR_VM_L2CTL_ROPE | WX_PSR_VM_L2CTL_ROMPE;
1357 	}
1358 
1359 	/* Write addresses to available RAR registers, if there is not
1360 	 * sufficient space to store all the addresses then enable
1361 	 * unicast promiscuous mode
1362 	 */
1363 	count = wx_write_uc_addr_list(netdev, 0);
1364 	if (count < 0) {
1365 		vmolr &= ~WX_PSR_VM_L2CTL_ROPE;
1366 		vmolr |= WX_PSR_VM_L2CTL_UPE;
1367 	}
1368 
1369 	/* Write addresses to the MTA, if the attempt fails
1370 	 * then we should just turn on promiscuous mode so
1371 	 * that we can at least receive multicast traffic
1372 	 */
1373 	count = wx_write_mc_addr_list(netdev);
1374 	if (count < 0) {
1375 		vmolr &= ~WX_PSR_VM_L2CTL_ROMPE;
1376 		vmolr |= WX_PSR_VM_L2CTL_MPE;
1377 	}
1378 
1379 	wr32(wx, WX_PSR_VLAN_CTL, vlnctrl);
1380 	wr32(wx, WX_PSR_CTL, fctrl);
1381 	wr32(wx, WX_PSR_VM_L2CTL(0), vmolr);
1382 
1383 	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1384 	    (features & NETIF_F_HW_VLAN_STAG_RX))
1385 		wx_vlan_strip_control(wx, true);
1386 	else
1387 		wx_vlan_strip_control(wx, false);
1388 
1389 }
1390 EXPORT_SYMBOL(wx_set_rx_mode);
1391 
1392 static void wx_set_rx_buffer_len(struct wx *wx)
1393 {
1394 	struct net_device *netdev = wx->netdev;
1395 	u32 mhadd, max_frame;
1396 
1397 	max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
1398 	/* adjust max frame to be at least the size of a standard frame */
1399 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
1400 		max_frame = (ETH_FRAME_LEN + ETH_FCS_LEN);
1401 
1402 	mhadd = rd32(wx, WX_PSR_MAX_SZ);
1403 	if (max_frame != mhadd)
1404 		wr32(wx, WX_PSR_MAX_SZ, max_frame);
1405 }
1406 
1407 /**
1408  * wx_change_mtu - Change the Maximum Transfer Unit
1409  * @netdev: network interface device structure
1410  * @new_mtu: new value for maximum frame size
1411  *
1412  * Returns 0 on success, negative on failure
1413  **/
1414 int wx_change_mtu(struct net_device *netdev, int new_mtu)
1415 {
1416 	struct wx *wx = netdev_priv(netdev);
1417 
1418 	WRITE_ONCE(netdev->mtu, new_mtu);
1419 	wx_set_rx_buffer_len(wx);
1420 
1421 	return 0;
1422 }
1423 EXPORT_SYMBOL(wx_change_mtu);
1424 
1425 /* Disable the specified rx queue */
1426 void wx_disable_rx_queue(struct wx *wx, struct wx_ring *ring)
1427 {
1428 	u8 reg_idx = ring->reg_idx;
1429 	u32 rxdctl;
1430 	int ret;
1431 
1432 	/* write value back with RRCFG.EN bit cleared */
1433 	wr32m(wx, WX_PX_RR_CFG(reg_idx),
1434 	      WX_PX_RR_CFG_RR_EN, 0);
1435 
1436 	/* the hardware may take up to 100us to really disable the rx queue */
1437 	ret = read_poll_timeout(rd32, rxdctl, !(rxdctl & WX_PX_RR_CFG_RR_EN),
1438 				10, 100, true, wx, WX_PX_RR_CFG(reg_idx));
1439 
1440 	if (ret == -ETIMEDOUT) {
1441 		/* Just for information */
1442 		wx_err(wx,
1443 		       "RRCFG.EN on Rx queue %d not cleared within the polling period\n",
1444 		       reg_idx);
1445 	}
1446 }
1447 EXPORT_SYMBOL(wx_disable_rx_queue);
1448 
1449 static void wx_enable_rx_queue(struct wx *wx, struct wx_ring *ring)
1450 {
1451 	u8 reg_idx = ring->reg_idx;
1452 	u32 rxdctl;
1453 	int ret;
1454 
1455 	ret = read_poll_timeout(rd32, rxdctl, rxdctl & WX_PX_RR_CFG_RR_EN,
1456 				1000, 10000, true, wx, WX_PX_RR_CFG(reg_idx));
1457 
1458 	if (ret == -ETIMEDOUT) {
1459 		/* Just for information */
1460 		wx_err(wx,
1461 		       "RRCFG.EN on Rx queue %d not set within the polling period\n",
1462 		       reg_idx);
1463 	}
1464 }
1465 
1466 static void wx_configure_srrctl(struct wx *wx,
1467 				struct wx_ring *rx_ring)
1468 {
1469 	u16 reg_idx = rx_ring->reg_idx;
1470 	u32 srrctl;
1471 
1472 	srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1473 	srrctl &= ~(WX_PX_RR_CFG_RR_HDR_SZ |
1474 		    WX_PX_RR_CFG_RR_BUF_SZ |
1475 		    WX_PX_RR_CFG_SPLIT_MODE);
1476 	/* configure header buffer length, needed for RSC */
1477 	srrctl |= WX_RXBUFFER_256 << WX_PX_RR_CFG_BHDRSIZE_SHIFT;
1478 
1479 	/* configure the packet buffer length */
1480 	srrctl |= WX_RX_BUFSZ >> WX_PX_RR_CFG_BSIZEPKT_SHIFT;
1481 
1482 	wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
1483 }
1484 
1485 static void wx_configure_tx_ring(struct wx *wx,
1486 				 struct wx_ring *ring)
1487 {
1488 	u32 txdctl = WX_PX_TR_CFG_ENABLE;
1489 	u8 reg_idx = ring->reg_idx;
1490 	u64 tdba = ring->dma;
1491 	int ret;
1492 
1493 	/* disable queue to avoid issues while updating state */
1494 	wr32(wx, WX_PX_TR_CFG(reg_idx), WX_PX_TR_CFG_SWFLSH);
1495 	WX_WRITE_FLUSH(wx);
1496 
1497 	wr32(wx, WX_PX_TR_BAL(reg_idx), tdba & DMA_BIT_MASK(32));
1498 	wr32(wx, WX_PX_TR_BAH(reg_idx), upper_32_bits(tdba));
1499 
1500 	/* reset head and tail pointers */
1501 	wr32(wx, WX_PX_TR_RP(reg_idx), 0);
1502 	wr32(wx, WX_PX_TR_WP(reg_idx), 0);
1503 	ring->tail = wx->hw_addr + WX_PX_TR_WP(reg_idx);
1504 
1505 	if (ring->count < WX_MAX_TXD)
1506 		txdctl |= ring->count / 128 << WX_PX_TR_CFG_TR_SIZE_SHIFT;
1507 	txdctl |= 0x20 << WX_PX_TR_CFG_WTHRESH_SHIFT;
1508 
1509 	ring->atr_count = 0;
1510 	if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags) &&
1511 	    test_bit(WX_FLAG_FDIR_HASH, wx->flags))
1512 		ring->atr_sample_rate = wx->atr_sample_rate;
1513 	else
1514 		ring->atr_sample_rate = 0;
1515 
1516 	/* reinitialize tx_buffer_info */
1517 	memset(ring->tx_buffer_info, 0,
1518 	       sizeof(struct wx_tx_buffer) * ring->count);
1519 
1520 	/* enable queue */
1521 	wr32(wx, WX_PX_TR_CFG(reg_idx), txdctl);
1522 
1523 	/* poll to verify queue is enabled */
1524 	ret = read_poll_timeout(rd32, txdctl, txdctl & WX_PX_TR_CFG_ENABLE,
1525 				1000, 10000, true, wx, WX_PX_TR_CFG(reg_idx));
1526 	if (ret == -ETIMEDOUT)
1527 		wx_err(wx, "Could not enable Tx Queue %d\n", reg_idx);
1528 }
1529 
1530 static void wx_configure_rx_ring(struct wx *wx,
1531 				 struct wx_ring *ring)
1532 {
1533 	u16 reg_idx = ring->reg_idx;
1534 	union wx_rx_desc *rx_desc;
1535 	u64 rdba = ring->dma;
1536 	u32 rxdctl;
1537 
1538 	/* disable queue to avoid issues while updating state */
1539 	rxdctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1540 	wx_disable_rx_queue(wx, ring);
1541 
1542 	wr32(wx, WX_PX_RR_BAL(reg_idx), rdba & DMA_BIT_MASK(32));
1543 	wr32(wx, WX_PX_RR_BAH(reg_idx), upper_32_bits(rdba));
1544 
1545 	if (ring->count == WX_MAX_RXD)
1546 		rxdctl |= 0 << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1547 	else
1548 		rxdctl |= (ring->count / 128) << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1549 
1550 	rxdctl |= 0x1 << WX_PX_RR_CFG_RR_THER_SHIFT;
1551 	wr32(wx, WX_PX_RR_CFG(reg_idx), rxdctl);
1552 
1553 	/* reset head and tail pointers */
1554 	wr32(wx, WX_PX_RR_RP(reg_idx), 0);
1555 	wr32(wx, WX_PX_RR_WP(reg_idx), 0);
1556 	ring->tail = wx->hw_addr + WX_PX_RR_WP(reg_idx);
1557 
1558 	wx_configure_srrctl(wx, ring);
1559 
1560 	/* initialize rx_buffer_info */
1561 	memset(ring->rx_buffer_info, 0,
1562 	       sizeof(struct wx_rx_buffer) * ring->count);
1563 
1564 	/* initialize Rx descriptor 0 */
1565 	rx_desc = WX_RX_DESC(ring, 0);
1566 	rx_desc->wb.upper.length = 0;
1567 
1568 	/* enable receive descriptor ring */
1569 	wr32m(wx, WX_PX_RR_CFG(reg_idx),
1570 	      WX_PX_RR_CFG_RR_EN, WX_PX_RR_CFG_RR_EN);
1571 
1572 	wx_enable_rx_queue(wx, ring);
1573 	wx_alloc_rx_buffers(ring, wx_desc_unused(ring));
1574 }
1575 
1576 /**
1577  * wx_configure_tx - Configure Transmit Unit after Reset
1578  * @wx: pointer to private structure
1579  *
1580  * Configure the Tx unit of the MAC after a reset.
1581  **/
1582 static void wx_configure_tx(struct wx *wx)
1583 {
1584 	u32 i;
1585 
1586 	/* TDM_CTL.TE must be before Tx queues are enabled */
1587 	wr32m(wx, WX_TDM_CTL,
1588 	      WX_TDM_CTL_TE, WX_TDM_CTL_TE);
1589 
1590 	/* Setup the HW Tx Head and Tail descriptor pointers */
1591 	for (i = 0; i < wx->num_tx_queues; i++)
1592 		wx_configure_tx_ring(wx, wx->tx_ring[i]);
1593 
1594 	wr32m(wx, WX_TSC_BUF_AE, WX_TSC_BUF_AE_THR, 0x10);
1595 
1596 	if (wx->mac.type == wx_mac_em)
1597 		wr32m(wx, WX_TSC_CTL, WX_TSC_CTL_TX_DIS | WX_TSC_CTL_TSEC_DIS, 0x1);
1598 
1599 	/* enable mac transmitter */
1600 	wr32m(wx, WX_MAC_TX_CFG,
1601 	      WX_MAC_TX_CFG_TE, WX_MAC_TX_CFG_TE);
1602 }
1603 
1604 static void wx_restore_vlan(struct wx *wx)
1605 {
1606 	u16 vid = 1;
1607 
1608 	wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), 0);
1609 
1610 	for_each_set_bit_from(vid, wx->active_vlans, VLAN_N_VID)
1611 		wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), vid);
1612 }
1613 
1614 static void wx_store_reta(struct wx *wx)
1615 {
1616 	u8 *indir_tbl = wx->rss_indir_tbl;
1617 	u32 reta = 0;
1618 	u32 i;
1619 
1620 	/* Fill out the redirection table as follows:
1621 	 *  - 8 bit wide entries containing 4 bit RSS index
1622 	 */
1623 	for (i = 0; i < WX_MAX_RETA_ENTRIES; i++) {
1624 		reta |= indir_tbl[i] << (i & 0x3) * 8;
1625 		if ((i & 3) == 3) {
1626 			wr32(wx, WX_RDB_RSSTBL(i >> 2), reta);
1627 			reta = 0;
1628 		}
1629 	}
1630 }
1631 
1632 static void wx_setup_reta(struct wx *wx)
1633 {
1634 	u16 rss_i = wx->ring_feature[RING_F_RSS].indices;
1635 	u32 random_key_size = WX_RSS_KEY_SIZE / 4;
1636 	u32 i, j;
1637 
1638 	/* Fill out hash function seeds */
1639 	for (i = 0; i < random_key_size; i++)
1640 		wr32(wx, WX_RDB_RSSRK(i), wx->rss_key[i]);
1641 
1642 	/* Fill out redirection table */
1643 	memset(wx->rss_indir_tbl, 0, sizeof(wx->rss_indir_tbl));
1644 
1645 	for (i = 0, j = 0; i < WX_MAX_RETA_ENTRIES; i++, j++) {
1646 		if (j == rss_i)
1647 			j = 0;
1648 
1649 		wx->rss_indir_tbl[i] = j;
1650 	}
1651 
1652 	wx_store_reta(wx);
1653 }
1654 
1655 static void wx_setup_mrqc(struct wx *wx)
1656 {
1657 	u32 rss_field = 0;
1658 
1659 	/* Disable indicating checksum in descriptor, enables RSS hash */
1660 	wr32m(wx, WX_PSR_CTL, WX_PSR_CTL_PCSD, WX_PSR_CTL_PCSD);
1661 
1662 	/* Perform hash on these packet types */
1663 	rss_field = WX_RDB_RA_CTL_RSS_IPV4 |
1664 		    WX_RDB_RA_CTL_RSS_IPV4_TCP |
1665 		    WX_RDB_RA_CTL_RSS_IPV4_UDP |
1666 		    WX_RDB_RA_CTL_RSS_IPV6 |
1667 		    WX_RDB_RA_CTL_RSS_IPV6_TCP |
1668 		    WX_RDB_RA_CTL_RSS_IPV6_UDP;
1669 
1670 	netdev_rss_key_fill(wx->rss_key, sizeof(wx->rss_key));
1671 
1672 	wx_setup_reta(wx);
1673 
1674 	if (wx->rss_enabled)
1675 		rss_field |= WX_RDB_RA_CTL_RSS_EN;
1676 
1677 	wr32(wx, WX_RDB_RA_CTL, rss_field);
1678 }
1679 
1680 /**
1681  * wx_configure_rx - Configure Receive Unit after Reset
1682  * @wx: pointer to private structure
1683  *
1684  * Configure the Rx unit of the MAC after a reset.
1685  **/
1686 void wx_configure_rx(struct wx *wx)
1687 {
1688 	u32 psrtype, i;
1689 	int ret;
1690 
1691 	wx_disable_rx(wx);
1692 
1693 	psrtype = WX_RDB_PL_CFG_L4HDR |
1694 		  WX_RDB_PL_CFG_L3HDR |
1695 		  WX_RDB_PL_CFG_L2HDR |
1696 		  WX_RDB_PL_CFG_TUN_TUNHDR;
1697 	wr32(wx, WX_RDB_PL_CFG(0), psrtype);
1698 
1699 	/* enable hw crc stripping */
1700 	wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_CRC_STRIP, WX_RSC_CTL_CRC_STRIP);
1701 
1702 	if (wx->mac.type == wx_mac_sp) {
1703 		u32 psrctl;
1704 
1705 		/* RSC Setup */
1706 		psrctl = rd32(wx, WX_PSR_CTL);
1707 		psrctl |= WX_PSR_CTL_RSC_ACK; /* Disable RSC for ACK packets */
1708 		psrctl |= WX_PSR_CTL_RSC_DIS;
1709 		wr32(wx, WX_PSR_CTL, psrctl);
1710 	}
1711 
1712 	wx_setup_mrqc(wx);
1713 
1714 	/* set_rx_buffer_len must be called before ring initialization */
1715 	wx_set_rx_buffer_len(wx);
1716 
1717 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1718 	 * the Base and Length of the Rx Descriptor Ring
1719 	 */
1720 	for (i = 0; i < wx->num_rx_queues; i++)
1721 		wx_configure_rx_ring(wx, wx->rx_ring[i]);
1722 
1723 	/* Enable all receives, disable security engine prior to block traffic */
1724 	ret = wx_disable_sec_rx_path(wx);
1725 	if (ret < 0)
1726 		wx_err(wx, "The register status is abnormal, please check device.");
1727 
1728 	wx_enable_rx(wx);
1729 	wx_enable_sec_rx_path(wx);
1730 }
1731 EXPORT_SYMBOL(wx_configure_rx);
1732 
1733 static void wx_configure_isb(struct wx *wx)
1734 {
1735 	/* set ISB Address */
1736 	wr32(wx, WX_PX_ISB_ADDR_L, wx->isb_dma & DMA_BIT_MASK(32));
1737 	if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
1738 		wr32(wx, WX_PX_ISB_ADDR_H, upper_32_bits(wx->isb_dma));
1739 }
1740 
1741 void wx_configure(struct wx *wx)
1742 {
1743 	wx_set_rxpba(wx);
1744 	wx_pbthresh_setup(wx);
1745 	wx_configure_port(wx);
1746 
1747 	wx_set_rx_mode(wx->netdev);
1748 	wx_restore_vlan(wx);
1749 
1750 	if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags))
1751 		wx->configure_fdir(wx);
1752 
1753 	wx_configure_tx(wx);
1754 	wx_configure_rx(wx);
1755 	wx_configure_isb(wx);
1756 }
1757 EXPORT_SYMBOL(wx_configure);
1758 
1759 /**
1760  *  wx_disable_pcie_master - Disable PCI-express master access
1761  *  @wx: pointer to hardware structure
1762  *
1763  *  Disables PCI-Express master access and verifies there are no pending
1764  *  requests.
1765  **/
1766 int wx_disable_pcie_master(struct wx *wx)
1767 {
1768 	int status = 0;
1769 	u32 val;
1770 
1771 	/* Always set this bit to ensure any future transactions are blocked */
1772 	pci_clear_master(wx->pdev);
1773 
1774 	/* Exit if master requests are blocked */
1775 	if (!(rd32(wx, WX_PX_TRANSACTION_PENDING)))
1776 		return 0;
1777 
1778 	/* Poll for master request bit to clear */
1779 	status = read_poll_timeout(rd32, val, !val, 100, WX_PCI_MASTER_DISABLE_TIMEOUT,
1780 				   false, wx, WX_PX_TRANSACTION_PENDING);
1781 	if (status < 0)
1782 		wx_err(wx, "PCIe transaction pending bit did not clear.\n");
1783 
1784 	return status;
1785 }
1786 EXPORT_SYMBOL(wx_disable_pcie_master);
1787 
1788 /**
1789  *  wx_stop_adapter - Generic stop Tx/Rx units
1790  *  @wx: pointer to hardware structure
1791  *
1792  *  Sets the adapter_stopped flag within wx_hw struct. Clears interrupts,
1793  *  disables transmit and receive units. The adapter_stopped flag is used by
1794  *  the shared code and drivers to determine if the adapter is in a stopped
1795  *  state and should not touch the hardware.
1796  **/
1797 int wx_stop_adapter(struct wx *wx)
1798 {
1799 	u16 i;
1800 
1801 	/* Set the adapter_stopped flag so other driver functions stop touching
1802 	 * the hardware
1803 	 */
1804 	wx->adapter_stopped = true;
1805 
1806 	/* Disable the receive unit */
1807 	wx_disable_rx(wx);
1808 
1809 	/* Set interrupt mask to stop interrupts from being generated */
1810 	wx_intr_disable(wx, WX_INTR_ALL);
1811 
1812 	/* Clear any pending interrupts, flush previous writes */
1813 	wr32(wx, WX_PX_MISC_IC, 0xffffffff);
1814 	wr32(wx, WX_BME_CTL, 0x3);
1815 
1816 	/* Disable the transmit unit.  Each queue must be disabled. */
1817 	for (i = 0; i < wx->mac.max_tx_queues; i++) {
1818 		wr32m(wx, WX_PX_TR_CFG(i),
1819 		      WX_PX_TR_CFG_SWFLSH | WX_PX_TR_CFG_ENABLE,
1820 		      WX_PX_TR_CFG_SWFLSH);
1821 	}
1822 
1823 	/* Disable the receive unit by stopping each queue */
1824 	for (i = 0; i < wx->mac.max_rx_queues; i++) {
1825 		wr32m(wx, WX_PX_RR_CFG(i),
1826 		      WX_PX_RR_CFG_RR_EN, 0);
1827 	}
1828 
1829 	/* flush all queues disables */
1830 	WX_WRITE_FLUSH(wx);
1831 
1832 	/* Prevent the PCI-E bus from hanging by disabling PCI-E master
1833 	 * access and verify no pending requests
1834 	 */
1835 	return wx_disable_pcie_master(wx);
1836 }
1837 EXPORT_SYMBOL(wx_stop_adapter);
1838 
1839 void wx_reset_misc(struct wx *wx)
1840 {
1841 	int i;
1842 
1843 	/* receive packets that size > 2048 */
1844 	wr32m(wx, WX_MAC_RX_CFG, WX_MAC_RX_CFG_JE, WX_MAC_RX_CFG_JE);
1845 
1846 	/* clear counters on read */
1847 	wr32m(wx, WX_MMC_CONTROL,
1848 	      WX_MMC_CONTROL_RSTONRD, WX_MMC_CONTROL_RSTONRD);
1849 
1850 	wr32m(wx, WX_MAC_RX_FLOW_CTRL,
1851 	      WX_MAC_RX_FLOW_CTRL_RFE, WX_MAC_RX_FLOW_CTRL_RFE);
1852 
1853 	wr32(wx, WX_MAC_PKT_FLT, WX_MAC_PKT_FLT_PR);
1854 
1855 	wr32m(wx, WX_MIS_RST_ST,
1856 	      WX_MIS_RST_ST_RST_INIT, 0x1E00);
1857 
1858 	/* errata 4: initialize mng flex tbl and wakeup flex tbl*/
1859 	wr32(wx, WX_PSR_MNG_FLEX_SEL, 0);
1860 	for (i = 0; i < 16; i++) {
1861 		wr32(wx, WX_PSR_MNG_FLEX_DW_L(i), 0);
1862 		wr32(wx, WX_PSR_MNG_FLEX_DW_H(i), 0);
1863 		wr32(wx, WX_PSR_MNG_FLEX_MSK(i), 0);
1864 	}
1865 	wr32(wx, WX_PSR_LAN_FLEX_SEL, 0);
1866 	for (i = 0; i < 16; i++) {
1867 		wr32(wx, WX_PSR_LAN_FLEX_DW_L(i), 0);
1868 		wr32(wx, WX_PSR_LAN_FLEX_DW_H(i), 0);
1869 		wr32(wx, WX_PSR_LAN_FLEX_MSK(i), 0);
1870 	}
1871 
1872 	/* set pause frame dst mac addr */
1873 	wr32(wx, WX_RDB_PFCMACDAL, 0xC2000001);
1874 	wr32(wx, WX_RDB_PFCMACDAH, 0x0180);
1875 }
1876 EXPORT_SYMBOL(wx_reset_misc);
1877 
1878 /**
1879  *  wx_get_pcie_msix_counts - Gets MSI-X vector count
1880  *  @wx: pointer to hardware structure
1881  *  @msix_count: number of MSI interrupts that can be obtained
1882  *  @max_msix_count: number of MSI interrupts that mac need
1883  *
1884  *  Read PCIe configuration space, and get the MSI-X vector count from
1885  *  the capabilities table.
1886  **/
1887 int wx_get_pcie_msix_counts(struct wx *wx, u16 *msix_count, u16 max_msix_count)
1888 {
1889 	struct pci_dev *pdev = wx->pdev;
1890 	struct device *dev = &pdev->dev;
1891 	int pos;
1892 
1893 	*msix_count = 1;
1894 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
1895 	if (!pos) {
1896 		dev_err(dev, "Unable to find MSI-X Capabilities\n");
1897 		return -EINVAL;
1898 	}
1899 	pci_read_config_word(pdev,
1900 			     pos + PCI_MSIX_FLAGS,
1901 			     msix_count);
1902 	*msix_count &= WX_PCIE_MSIX_TBL_SZ_MASK;
1903 	/* MSI-X count is zero-based in HW */
1904 	*msix_count += 1;
1905 
1906 	if (*msix_count > max_msix_count)
1907 		*msix_count = max_msix_count;
1908 
1909 	return 0;
1910 }
1911 EXPORT_SYMBOL(wx_get_pcie_msix_counts);
1912 
1913 /**
1914  * wx_init_rss_key - Initialize wx RSS key
1915  * @wx: device handle
1916  *
1917  * Allocates and initializes the RSS key if it is not allocated.
1918  **/
1919 static int wx_init_rss_key(struct wx *wx)
1920 {
1921 	u32 *rss_key;
1922 
1923 	if (!wx->rss_key) {
1924 		rss_key = kzalloc(WX_RSS_KEY_SIZE, GFP_KERNEL);
1925 		if (unlikely(!rss_key))
1926 			return -ENOMEM;
1927 
1928 		netdev_rss_key_fill(rss_key, WX_RSS_KEY_SIZE);
1929 		wx->rss_key = rss_key;
1930 	}
1931 
1932 	return 0;
1933 }
1934 
1935 int wx_sw_init(struct wx *wx)
1936 {
1937 	struct pci_dev *pdev = wx->pdev;
1938 	u32 ssid = 0;
1939 	int err = 0;
1940 
1941 	wx->vendor_id = pdev->vendor;
1942 	wx->device_id = pdev->device;
1943 	wx->revision_id = pdev->revision;
1944 	wx->oem_svid = pdev->subsystem_vendor;
1945 	wx->oem_ssid = pdev->subsystem_device;
1946 	wx->bus.device = PCI_SLOT(pdev->devfn);
1947 	wx->bus.func = PCI_FUNC(pdev->devfn);
1948 
1949 	if (wx->oem_svid == PCI_VENDOR_ID_WANGXUN) {
1950 		wx->subsystem_vendor_id = pdev->subsystem_vendor;
1951 		wx->subsystem_device_id = pdev->subsystem_device;
1952 	} else {
1953 		err = wx_flash_read_dword(wx, 0xfffdc, &ssid);
1954 		if (err < 0) {
1955 			wx_err(wx, "read of internal subsystem device id failed\n");
1956 			return err;
1957 		}
1958 
1959 		wx->subsystem_device_id = swab16((u16)ssid);
1960 	}
1961 
1962 	err = wx_init_rss_key(wx);
1963 	if (err < 0) {
1964 		wx_err(wx, "rss key allocation failed\n");
1965 		return err;
1966 	}
1967 
1968 	wx->mac_table = kcalloc(wx->mac.num_rar_entries,
1969 				sizeof(struct wx_mac_addr),
1970 				GFP_KERNEL);
1971 	if (!wx->mac_table) {
1972 		wx_err(wx, "mac_table allocation failed\n");
1973 		kfree(wx->rss_key);
1974 		return -ENOMEM;
1975 	}
1976 
1977 	bitmap_zero(wx->state, WX_STATE_NBITS);
1978 	bitmap_zero(wx->flags, WX_PF_FLAGS_NBITS);
1979 	wx->misc_irq_domain = false;
1980 
1981 	return 0;
1982 }
1983 EXPORT_SYMBOL(wx_sw_init);
1984 
1985 /**
1986  *  wx_find_vlvf_slot - find the vlanid or the first empty slot
1987  *  @wx: pointer to hardware structure
1988  *  @vlan: VLAN id to write to VLAN filter
1989  *
1990  *  return the VLVF index where this VLAN id should be placed
1991  *
1992  **/
1993 static int wx_find_vlvf_slot(struct wx *wx, u32 vlan)
1994 {
1995 	u32 bits = 0, first_empty_slot = 0;
1996 	int regindex;
1997 
1998 	/* short cut the special case */
1999 	if (vlan == 0)
2000 		return 0;
2001 
2002 	/* Search for the vlan id in the VLVF entries. Save off the first empty
2003 	 * slot found along the way
2004 	 */
2005 	for (regindex = 1; regindex < WX_PSR_VLAN_SWC_ENTRIES; regindex++) {
2006 		wr32(wx, WX_PSR_VLAN_SWC_IDX, regindex);
2007 		bits = rd32(wx, WX_PSR_VLAN_SWC);
2008 		if (!bits && !(first_empty_slot))
2009 			first_empty_slot = regindex;
2010 		else if ((bits & 0x0FFF) == vlan)
2011 			break;
2012 	}
2013 
2014 	if (regindex >= WX_PSR_VLAN_SWC_ENTRIES) {
2015 		if (first_empty_slot)
2016 			regindex = first_empty_slot;
2017 		else
2018 			regindex = -ENOMEM;
2019 	}
2020 
2021 	return regindex;
2022 }
2023 
2024 /**
2025  *  wx_set_vlvf - Set VLAN Pool Filter
2026  *  @wx: pointer to hardware structure
2027  *  @vlan: VLAN id to write to VLAN filter
2028  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
2029  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
2030  *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
2031  *                 should be changed
2032  *
2033  *  Turn on/off specified bit in VLVF table.
2034  **/
2035 static int wx_set_vlvf(struct wx *wx, u32 vlan, u32 vind, bool vlan_on,
2036 		       bool *vfta_changed)
2037 {
2038 	int vlvf_index;
2039 	u32 vt, bits;
2040 
2041 	/* If VT Mode is set
2042 	 *   Either vlan_on
2043 	 *     make sure the vlan is in VLVF
2044 	 *     set the vind bit in the matching VLVFB
2045 	 *   Or !vlan_on
2046 	 *     clear the pool bit and possibly the vind
2047 	 */
2048 	vt = rd32(wx, WX_CFG_PORT_CTL);
2049 	if (!(vt & WX_CFG_PORT_CTL_NUM_VT_MASK))
2050 		return 0;
2051 
2052 	vlvf_index = wx_find_vlvf_slot(wx, vlan);
2053 	if (vlvf_index < 0)
2054 		return vlvf_index;
2055 
2056 	wr32(wx, WX_PSR_VLAN_SWC_IDX, vlvf_index);
2057 	if (vlan_on) {
2058 		/* set the pool bit */
2059 		if (vind < 32) {
2060 			bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
2061 			bits |= (1 << vind);
2062 			wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
2063 		} else {
2064 			bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
2065 			bits |= (1 << (vind - 32));
2066 			wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
2067 		}
2068 	} else {
2069 		/* clear the pool bit */
2070 		if (vind < 32) {
2071 			bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
2072 			bits &= ~(1 << vind);
2073 			wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
2074 			bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_H);
2075 		} else {
2076 			bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
2077 			bits &= ~(1 << (vind - 32));
2078 			wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
2079 			bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_L);
2080 		}
2081 	}
2082 
2083 	if (bits) {
2084 		wr32(wx, WX_PSR_VLAN_SWC, (WX_PSR_VLAN_SWC_VIEN | vlan));
2085 		if (!vlan_on && vfta_changed)
2086 			*vfta_changed = false;
2087 	} else {
2088 		wr32(wx, WX_PSR_VLAN_SWC, 0);
2089 	}
2090 
2091 	return 0;
2092 }
2093 
2094 /**
2095  *  wx_set_vfta - Set VLAN filter table
2096  *  @wx: pointer to hardware structure
2097  *  @vlan: VLAN id to write to VLAN filter
2098  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
2099  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
2100  *
2101  *  Turn on/off specified VLAN in the VLAN filter table.
2102  **/
2103 static int wx_set_vfta(struct wx *wx, u32 vlan, u32 vind, bool vlan_on)
2104 {
2105 	u32 bitindex, vfta, targetbit;
2106 	bool vfta_changed = false;
2107 	int regindex, ret;
2108 
2109 	/* this is a 2 part operation - first the VFTA, then the
2110 	 * VLVF and VLVFB if VT Mode is set
2111 	 * We don't write the VFTA until we know the VLVF part succeeded.
2112 	 */
2113 
2114 	/* Part 1
2115 	 * The VFTA is a bitstring made up of 128 32-bit registers
2116 	 * that enable the particular VLAN id, much like the MTA:
2117 	 *    bits[11-5]: which register
2118 	 *    bits[4-0]:  which bit in the register
2119 	 */
2120 	regindex = (vlan >> 5) & 0x7F;
2121 	bitindex = vlan & 0x1F;
2122 	targetbit = (1 << bitindex);
2123 	/* errata 5 */
2124 	vfta = wx->mac.vft_shadow[regindex];
2125 	if (vlan_on) {
2126 		if (!(vfta & targetbit)) {
2127 			vfta |= targetbit;
2128 			vfta_changed = true;
2129 		}
2130 	} else {
2131 		if ((vfta & targetbit)) {
2132 			vfta &= ~targetbit;
2133 			vfta_changed = true;
2134 		}
2135 	}
2136 	/* Part 2
2137 	 * Call wx_set_vlvf to set VLVFB and VLVF
2138 	 */
2139 	ret = wx_set_vlvf(wx, vlan, vind, vlan_on, &vfta_changed);
2140 	if (ret != 0)
2141 		return ret;
2142 
2143 	if (vfta_changed)
2144 		wr32(wx, WX_PSR_VLAN_TBL(regindex), vfta);
2145 	wx->mac.vft_shadow[regindex] = vfta;
2146 
2147 	return 0;
2148 }
2149 
2150 /**
2151  *  wx_clear_vfta - Clear VLAN filter table
2152  *  @wx: pointer to hardware structure
2153  *
2154  *  Clears the VLAN filer table, and the VMDq index associated with the filter
2155  **/
2156 static void wx_clear_vfta(struct wx *wx)
2157 {
2158 	u32 offset;
2159 
2160 	for (offset = 0; offset < wx->mac.vft_size; offset++) {
2161 		wr32(wx, WX_PSR_VLAN_TBL(offset), 0);
2162 		wx->mac.vft_shadow[offset] = 0;
2163 	}
2164 
2165 	for (offset = 0; offset < WX_PSR_VLAN_SWC_ENTRIES; offset++) {
2166 		wr32(wx, WX_PSR_VLAN_SWC_IDX, offset);
2167 		wr32(wx, WX_PSR_VLAN_SWC, 0);
2168 		wr32(wx, WX_PSR_VLAN_SWC_VM_L, 0);
2169 		wr32(wx, WX_PSR_VLAN_SWC_VM_H, 0);
2170 	}
2171 }
2172 
2173 int wx_vlan_rx_add_vid(struct net_device *netdev,
2174 		       __be16 proto, u16 vid)
2175 {
2176 	struct wx *wx = netdev_priv(netdev);
2177 
2178 	/* add VID to filter table */
2179 	wx_set_vfta(wx, vid, VMDQ_P(0), true);
2180 	set_bit(vid, wx->active_vlans);
2181 
2182 	return 0;
2183 }
2184 EXPORT_SYMBOL(wx_vlan_rx_add_vid);
2185 
2186 int wx_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
2187 {
2188 	struct wx *wx = netdev_priv(netdev);
2189 
2190 	/* remove VID from filter table */
2191 	if (vid)
2192 		wx_set_vfta(wx, vid, VMDQ_P(0), false);
2193 	clear_bit(vid, wx->active_vlans);
2194 
2195 	return 0;
2196 }
2197 EXPORT_SYMBOL(wx_vlan_rx_kill_vid);
2198 
2199 static void wx_enable_rx_drop(struct wx *wx, struct wx_ring *ring)
2200 {
2201 	u16 reg_idx = ring->reg_idx;
2202 	u32 srrctl;
2203 
2204 	srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
2205 	srrctl |= WX_PX_RR_CFG_DROP_EN;
2206 
2207 	wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
2208 }
2209 
2210 static void wx_disable_rx_drop(struct wx *wx, struct wx_ring *ring)
2211 {
2212 	u16 reg_idx = ring->reg_idx;
2213 	u32 srrctl;
2214 
2215 	srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
2216 	srrctl &= ~WX_PX_RR_CFG_DROP_EN;
2217 
2218 	wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
2219 }
2220 
2221 int wx_fc_enable(struct wx *wx, bool tx_pause, bool rx_pause)
2222 {
2223 	u16 pause_time = WX_DEFAULT_FCPAUSE;
2224 	u32 mflcn_reg, fccfg_reg, reg;
2225 	u32 fcrtl, fcrth;
2226 	int i;
2227 
2228 	/* Low water mark of zero causes XOFF floods */
2229 	if (tx_pause && wx->fc.high_water) {
2230 		if (!wx->fc.low_water || wx->fc.low_water >= wx->fc.high_water) {
2231 			wx_err(wx, "Invalid water mark configuration\n");
2232 			return -EINVAL;
2233 		}
2234 	}
2235 
2236 	/* Disable any previous flow control settings */
2237 	mflcn_reg = rd32(wx, WX_MAC_RX_FLOW_CTRL);
2238 	mflcn_reg &= ~WX_MAC_RX_FLOW_CTRL_RFE;
2239 
2240 	fccfg_reg = rd32(wx, WX_RDB_RFCC);
2241 	fccfg_reg &= ~WX_RDB_RFCC_RFCE_802_3X;
2242 
2243 	if (rx_pause)
2244 		mflcn_reg |= WX_MAC_RX_FLOW_CTRL_RFE;
2245 	if (tx_pause)
2246 		fccfg_reg |= WX_RDB_RFCC_RFCE_802_3X;
2247 
2248 	/* Set 802.3x based flow control settings. */
2249 	wr32(wx, WX_MAC_RX_FLOW_CTRL, mflcn_reg);
2250 	wr32(wx, WX_RDB_RFCC, fccfg_reg);
2251 
2252 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2253 	if (tx_pause && wx->fc.high_water) {
2254 		fcrtl = (wx->fc.low_water << 10) | WX_RDB_RFCL_XONE;
2255 		wr32(wx, WX_RDB_RFCL, fcrtl);
2256 		fcrth = (wx->fc.high_water << 10) | WX_RDB_RFCH_XOFFE;
2257 	} else {
2258 		wr32(wx, WX_RDB_RFCL, 0);
2259 		/* In order to prevent Tx hangs when the internal Tx
2260 		 * switch is enabled we must set the high water mark
2261 		 * to the Rx packet buffer size - 24KB.  This allows
2262 		 * the Tx switch to function even under heavy Rx
2263 		 * workloads.
2264 		 */
2265 		fcrth = rd32(wx, WX_RDB_PB_SZ(0)) - 24576;
2266 	}
2267 
2268 	wr32(wx, WX_RDB_RFCH, fcrth);
2269 
2270 	/* Configure pause time */
2271 	reg = pause_time * 0x00010001;
2272 	wr32(wx, WX_RDB_RFCV, reg);
2273 
2274 	/* Configure flow control refresh threshold value */
2275 	wr32(wx, WX_RDB_RFCRT, pause_time / 2);
2276 
2277 	/*  We should set the drop enable bit if:
2278 	 *  Number of Rx queues > 1 and flow control is disabled
2279 	 *
2280 	 *  This allows us to avoid head of line blocking for security
2281 	 *  and performance reasons.
2282 	 */
2283 	if (wx->num_rx_queues > 1 && !tx_pause) {
2284 		for (i = 0; i < wx->num_rx_queues; i++)
2285 			wx_enable_rx_drop(wx, wx->rx_ring[i]);
2286 	} else {
2287 		for (i = 0; i < wx->num_rx_queues; i++)
2288 			wx_disable_rx_drop(wx, wx->rx_ring[i]);
2289 	}
2290 
2291 	return 0;
2292 }
2293 EXPORT_SYMBOL(wx_fc_enable);
2294 
2295 /**
2296  * wx_update_stats - Update the board statistics counters.
2297  * @wx: board private structure
2298  **/
2299 void wx_update_stats(struct wx *wx)
2300 {
2301 	struct wx_hw_stats *hwstats = &wx->stats;
2302 
2303 	u64 non_eop_descs = 0, alloc_rx_buff_failed = 0;
2304 	u64 hw_csum_rx_good = 0, hw_csum_rx_error = 0;
2305 	u64 restart_queue = 0, tx_busy = 0;
2306 	u32 i;
2307 
2308 	/* gather some stats to the wx struct that are per queue */
2309 	for (i = 0; i < wx->num_rx_queues; i++) {
2310 		struct wx_ring *rx_ring = wx->rx_ring[i];
2311 
2312 		non_eop_descs += rx_ring->rx_stats.non_eop_descs;
2313 		alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed;
2314 		hw_csum_rx_good += rx_ring->rx_stats.csum_good_cnt;
2315 		hw_csum_rx_error += rx_ring->rx_stats.csum_err;
2316 	}
2317 	wx->non_eop_descs = non_eop_descs;
2318 	wx->alloc_rx_buff_failed = alloc_rx_buff_failed;
2319 	wx->hw_csum_rx_error = hw_csum_rx_error;
2320 	wx->hw_csum_rx_good = hw_csum_rx_good;
2321 
2322 	for (i = 0; i < wx->num_tx_queues; i++) {
2323 		struct wx_ring *tx_ring = wx->tx_ring[i];
2324 
2325 		restart_queue += tx_ring->tx_stats.restart_queue;
2326 		tx_busy += tx_ring->tx_stats.tx_busy;
2327 	}
2328 	wx->restart_queue = restart_queue;
2329 	wx->tx_busy = tx_busy;
2330 
2331 	hwstats->gprc += rd32(wx, WX_RDM_PKT_CNT);
2332 	hwstats->gptc += rd32(wx, WX_TDM_PKT_CNT);
2333 	hwstats->gorc += rd64(wx, WX_RDM_BYTE_CNT_LSB);
2334 	hwstats->gotc += rd64(wx, WX_TDM_BYTE_CNT_LSB);
2335 	hwstats->tpr += rd64(wx, WX_RX_FRAME_CNT_GOOD_BAD_L);
2336 	hwstats->tpt += rd64(wx, WX_TX_FRAME_CNT_GOOD_BAD_L);
2337 	hwstats->crcerrs += rd64(wx, WX_RX_CRC_ERROR_FRAMES_L);
2338 	hwstats->rlec += rd64(wx, WX_RX_LEN_ERROR_FRAMES_L);
2339 	hwstats->bprc += rd64(wx, WX_RX_BC_FRAMES_GOOD_L);
2340 	hwstats->bptc += rd64(wx, WX_TX_BC_FRAMES_GOOD_L);
2341 	hwstats->mprc += rd64(wx, WX_RX_MC_FRAMES_GOOD_L);
2342 	hwstats->mptc += rd64(wx, WX_TX_MC_FRAMES_GOOD_L);
2343 	hwstats->roc += rd32(wx, WX_RX_OVERSIZE_FRAMES_GOOD);
2344 	hwstats->ruc += rd32(wx, WX_RX_UNDERSIZE_FRAMES_GOOD);
2345 	hwstats->lxonoffrxc += rd32(wx, WX_MAC_LXONOFFRXC);
2346 	hwstats->lxontxc += rd32(wx, WX_RDB_LXONTXC);
2347 	hwstats->lxofftxc += rd32(wx, WX_RDB_LXOFFTXC);
2348 	hwstats->o2bgptc += rd32(wx, WX_TDM_OS2BMC_CNT);
2349 	hwstats->b2ospc += rd32(wx, WX_MNG_BMC2OS_CNT);
2350 	hwstats->o2bspc += rd32(wx, WX_MNG_OS2BMC_CNT);
2351 	hwstats->b2ogprc += rd32(wx, WX_RDM_BMC2OS_CNT);
2352 	hwstats->rdmdrop += rd32(wx, WX_RDM_DRP_PKT);
2353 
2354 	if (wx->mac.type == wx_mac_sp) {
2355 		hwstats->fdirmatch += rd32(wx, WX_RDB_FDIR_MATCH);
2356 		hwstats->fdirmiss += rd32(wx, WX_RDB_FDIR_MISS);
2357 	}
2358 
2359 	for (i = 0; i < wx->mac.max_rx_queues; i++)
2360 		hwstats->qmprc += rd32(wx, WX_PX_MPRC(i));
2361 }
2362 EXPORT_SYMBOL(wx_update_stats);
2363 
2364 /**
2365  *  wx_clear_hw_cntrs - Generic clear hardware counters
2366  *  @wx: board private structure
2367  *
2368  *  Clears all hardware statistics counters by reading them from the hardware
2369  *  Statistics counters are clear on read.
2370  **/
2371 void wx_clear_hw_cntrs(struct wx *wx)
2372 {
2373 	u16 i = 0;
2374 
2375 	for (i = 0; i < wx->mac.max_rx_queues; i++)
2376 		wr32(wx, WX_PX_MPRC(i), 0);
2377 
2378 	rd32(wx, WX_RDM_PKT_CNT);
2379 	rd32(wx, WX_TDM_PKT_CNT);
2380 	rd64(wx, WX_RDM_BYTE_CNT_LSB);
2381 	rd32(wx, WX_TDM_BYTE_CNT_LSB);
2382 	rd32(wx, WX_RDM_DRP_PKT);
2383 	rd32(wx, WX_RX_UNDERSIZE_FRAMES_GOOD);
2384 	rd32(wx, WX_RX_OVERSIZE_FRAMES_GOOD);
2385 	rd64(wx, WX_RX_FRAME_CNT_GOOD_BAD_L);
2386 	rd64(wx, WX_TX_FRAME_CNT_GOOD_BAD_L);
2387 	rd64(wx, WX_RX_MC_FRAMES_GOOD_L);
2388 	rd64(wx, WX_TX_MC_FRAMES_GOOD_L);
2389 	rd64(wx, WX_RX_BC_FRAMES_GOOD_L);
2390 	rd64(wx, WX_TX_BC_FRAMES_GOOD_L);
2391 	rd64(wx, WX_RX_CRC_ERROR_FRAMES_L);
2392 	rd64(wx, WX_RX_LEN_ERROR_FRAMES_L);
2393 	rd32(wx, WX_RDB_LXONTXC);
2394 	rd32(wx, WX_RDB_LXOFFTXC);
2395 	rd32(wx, WX_MAC_LXONOFFRXC);
2396 }
2397 EXPORT_SYMBOL(wx_clear_hw_cntrs);
2398 
2399 /**
2400  *  wx_start_hw - Prepare hardware for Tx/Rx
2401  *  @wx: pointer to hardware structure
2402  *
2403  *  Starts the hardware using the generic start_hw function
2404  *  and the generation start_hw function.
2405  *  Then performs revision-specific operations, if any.
2406  **/
2407 void wx_start_hw(struct wx *wx)
2408 {
2409 	int i;
2410 
2411 	/* Clear the VLAN filter table */
2412 	wx_clear_vfta(wx);
2413 	WX_WRITE_FLUSH(wx);
2414 	/* Clear the rate limiters */
2415 	for (i = 0; i < wx->mac.max_tx_queues; i++) {
2416 		wr32(wx, WX_TDM_RP_IDX, i);
2417 		wr32(wx, WX_TDM_RP_RATE, 0);
2418 	}
2419 }
2420 EXPORT_SYMBOL(wx_start_hw);
2421 
2422 MODULE_LICENSE("GPL");
2423