xref: /linux/drivers/net/ethernet/via/via-velocity.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * This code is derived from the VIA reference driver (copyright message
3  * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4  * addition to the Linux kernel.
5  *
6  * The code has been merged into one source file, cleaned up to follow
7  * Linux coding style,  ported to the Linux 2.6 kernel tree and cleaned
8  * for 64bit hardware platforms.
9  *
10  * TODO
11  *	rx_copybreak/alignment
12  *	More testing
13  *
14  * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
15  * Additional fixes and clean up: Francois Romieu
16  *
17  * This source has not been verified for use in safety critical systems.
18  *
19  * Please direct queries about the revamped driver to the linux-kernel
20  * list not VIA.
21  *
22  * Original code:
23  *
24  * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
25  * All rights reserved.
26  *
27  * This software may be redistributed and/or modified under
28  * the terms of the GNU General Public License as published by the Free
29  * Software Foundation; either version 2 of the License, or
30  * any later version.
31  *
32  * This program is distributed in the hope that it will be useful, but
33  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
34  * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
35  * for more details.
36  *
37  * Author: Chuang Liang-Shing, AJ Jiang
38  *
39  * Date: Jan 24, 2003
40  *
41  * MODULE_LICENSE("GPL");
42  *
43  */
44 
45 #include <linux/module.h>
46 #include <linux/types.h>
47 #include <linux/bitops.h>
48 #include <linux/init.h>
49 #include <linux/mm.h>
50 #include <linux/errno.h>
51 #include <linux/ioport.h>
52 #include <linux/pci.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/delay.h>
58 #include <linux/timer.h>
59 #include <linux/slab.h>
60 #include <linux/interrupt.h>
61 #include <linux/string.h>
62 #include <linux/wait.h>
63 #include <linux/io.h>
64 #include <linux/if.h>
65 #include <linux/uaccess.h>
66 #include <linux/proc_fs.h>
67 #include <linux/inetdevice.h>
68 #include <linux/reboot.h>
69 #include <linux/ethtool.h>
70 #include <linux/mii.h>
71 #include <linux/in.h>
72 #include <linux/if_arp.h>
73 #include <linux/if_vlan.h>
74 #include <linux/ip.h>
75 #include <linux/tcp.h>
76 #include <linux/udp.h>
77 #include <linux/crc-ccitt.h>
78 #include <linux/crc32.h>
79 
80 #include "via-velocity.h"
81 
82 
83 static int velocity_nics;
84 static int msglevel = MSG_LEVEL_INFO;
85 
86 /**
87  *	mac_get_cam_mask	-	Read a CAM mask
88  *	@regs: register block for this velocity
89  *	@mask: buffer to store mask
90  *
91  *	Fetch the mask bits of the selected CAM and store them into the
92  *	provided mask buffer.
93  */
94 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
95 {
96 	int i;
97 
98 	/* Select CAM mask */
99 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
100 
101 	writeb(0, &regs->CAMADDR);
102 
103 	/* read mask */
104 	for (i = 0; i < 8; i++)
105 		*mask++ = readb(&(regs->MARCAM[i]));
106 
107 	/* disable CAMEN */
108 	writeb(0, &regs->CAMADDR);
109 
110 	/* Select mar */
111 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
112 }
113 
114 /**
115  *	mac_set_cam_mask	-	Set a CAM mask
116  *	@regs: register block for this velocity
117  *	@mask: CAM mask to load
118  *
119  *	Store a new mask into a CAM
120  */
121 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
122 {
123 	int i;
124 	/* Select CAM mask */
125 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
126 
127 	writeb(CAMADDR_CAMEN, &regs->CAMADDR);
128 
129 	for (i = 0; i < 8; i++)
130 		writeb(*mask++, &(regs->MARCAM[i]));
131 
132 	/* disable CAMEN */
133 	writeb(0, &regs->CAMADDR);
134 
135 	/* Select mar */
136 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
137 }
138 
139 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
140 {
141 	int i;
142 	/* Select CAM mask */
143 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
144 
145 	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
146 
147 	for (i = 0; i < 8; i++)
148 		writeb(*mask++, &(regs->MARCAM[i]));
149 
150 	/* disable CAMEN */
151 	writeb(0, &regs->CAMADDR);
152 
153 	/* Select mar */
154 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
155 }
156 
157 /**
158  *	mac_set_cam	-	set CAM data
159  *	@regs: register block of this velocity
160  *	@idx: Cam index
161  *	@addr: 2 or 6 bytes of CAM data
162  *
163  *	Load an address or vlan tag into a CAM
164  */
165 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
166 {
167 	int i;
168 
169 	/* Select CAM mask */
170 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
171 
172 	idx &= (64 - 1);
173 
174 	writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
175 
176 	for (i = 0; i < 6; i++)
177 		writeb(*addr++, &(regs->MARCAM[i]));
178 
179 	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
180 
181 	udelay(10);
182 
183 	writeb(0, &regs->CAMADDR);
184 
185 	/* Select mar */
186 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
187 }
188 
189 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
190 			     const u8 *addr)
191 {
192 
193 	/* Select CAM mask */
194 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
195 
196 	idx &= (64 - 1);
197 
198 	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
199 	writew(*((u16 *) addr), &regs->MARCAM[0]);
200 
201 	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
202 
203 	udelay(10);
204 
205 	writeb(0, &regs->CAMADDR);
206 
207 	/* Select mar */
208 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
209 }
210 
211 
212 /**
213  *	mac_wol_reset	-	reset WOL after exiting low power
214  *	@regs: register block of this velocity
215  *
216  *	Called after we drop out of wake on lan mode in order to
217  *	reset the Wake on lan features. This function doesn't restore
218  *	the rest of the logic from the result of sleep/wakeup
219  */
220 static void mac_wol_reset(struct mac_regs __iomem *regs)
221 {
222 
223 	/* Turn off SWPTAG right after leaving power mode */
224 	BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
225 	/* clear sticky bits */
226 	BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
227 
228 	BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
229 	BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
230 	/* disable force PME-enable */
231 	writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
232 	/* disable power-event config bit */
233 	writew(0xFFFF, &regs->WOLCRClr);
234 	/* clear power status */
235 	writew(0xFFFF, &regs->WOLSRClr);
236 }
237 
238 static const struct ethtool_ops velocity_ethtool_ops;
239 
240 /*
241     Define module options
242 */
243 
244 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
245 MODULE_LICENSE("GPL");
246 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
247 
248 #define VELOCITY_PARAM(N, D) \
249 	static int N[MAX_UNITS] = OPTION_DEFAULT;\
250 	module_param_array(N, int, NULL, 0); \
251 	MODULE_PARM_DESC(N, D);
252 
253 #define RX_DESC_MIN     64
254 #define RX_DESC_MAX     255
255 #define RX_DESC_DEF     64
256 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
257 
258 #define TX_DESC_MIN     16
259 #define TX_DESC_MAX     256
260 #define TX_DESC_DEF     64
261 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
262 
263 #define RX_THRESH_MIN   0
264 #define RX_THRESH_MAX   3
265 #define RX_THRESH_DEF   0
266 /* rx_thresh[] is used for controlling the receive fifo threshold.
267    0: indicate the rxfifo threshold is 128 bytes.
268    1: indicate the rxfifo threshold is 512 bytes.
269    2: indicate the rxfifo threshold is 1024 bytes.
270    3: indicate the rxfifo threshold is store & forward.
271 */
272 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
273 
274 #define DMA_LENGTH_MIN  0
275 #define DMA_LENGTH_MAX  7
276 #define DMA_LENGTH_DEF  6
277 
278 /* DMA_length[] is used for controlling the DMA length
279    0: 8 DWORDs
280    1: 16 DWORDs
281    2: 32 DWORDs
282    3: 64 DWORDs
283    4: 128 DWORDs
284    5: 256 DWORDs
285    6: SF(flush till emply)
286    7: SF(flush till emply)
287 */
288 VELOCITY_PARAM(DMA_length, "DMA length");
289 
290 #define IP_ALIG_DEF     0
291 /* IP_byte_align[] is used for IP header DWORD byte aligned
292    0: indicate the IP header won't be DWORD byte aligned.(Default) .
293    1: indicate the IP header will be DWORD byte aligned.
294       In some environment, the IP header should be DWORD byte aligned,
295       or the packet will be droped when we receive it. (eg: IPVS)
296 */
297 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
298 
299 #define FLOW_CNTL_DEF   1
300 #define FLOW_CNTL_MIN   1
301 #define FLOW_CNTL_MAX   5
302 
303 /* flow_control[] is used for setting the flow control ability of NIC.
304    1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
305    2: enable TX flow control.
306    3: enable RX flow control.
307    4: enable RX/TX flow control.
308    5: disable
309 */
310 VELOCITY_PARAM(flow_control, "Enable flow control ability");
311 
312 #define MED_LNK_DEF 0
313 #define MED_LNK_MIN 0
314 #define MED_LNK_MAX 5
315 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
316    0: indicate autonegotiation for both speed and duplex mode
317    1: indicate 100Mbps half duplex mode
318    2: indicate 100Mbps full duplex mode
319    3: indicate 10Mbps half duplex mode
320    4: indicate 10Mbps full duplex mode
321    5: indicate 1000Mbps full duplex mode
322 
323    Note:
324    if EEPROM have been set to the force mode, this option is ignored
325    by driver.
326 */
327 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
328 
329 #define VAL_PKT_LEN_DEF     0
330 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
331    0: Receive frame with invalid layer 2 length (Default)
332    1: Drop frame with invalid layer 2 length
333 */
334 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
335 
336 #define WOL_OPT_DEF     0
337 #define WOL_OPT_MIN     0
338 #define WOL_OPT_MAX     7
339 /* wol_opts[] is used for controlling wake on lan behavior.
340    0: Wake up if recevied a magic packet. (Default)
341    1: Wake up if link status is on/off.
342    2: Wake up if recevied an arp packet.
343    4: Wake up if recevied any unicast packet.
344    Those value can be sumed up to support more than one option.
345 */
346 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
347 
348 static int rx_copybreak = 200;
349 module_param(rx_copybreak, int, 0644);
350 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
351 
352 /*
353  *	Internal board variants. At the moment we have only one
354  */
355 static struct velocity_info_tbl chip_info_table[] = {
356 	{CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
357 	{ }
358 };
359 
360 /*
361  *	Describe the PCI device identifiers that we support in this
362  *	device driver. Used for hotplug autoloading.
363  */
364 static DEFINE_PCI_DEVICE_TABLE(velocity_id_table) = {
365 	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
366 	{ }
367 };
368 
369 MODULE_DEVICE_TABLE(pci, velocity_id_table);
370 
371 /**
372  *	get_chip_name	- 	identifier to name
373  *	@id: chip identifier
374  *
375  *	Given a chip identifier return a suitable description. Returns
376  *	a pointer a static string valid while the driver is loaded.
377  */
378 static const char __devinit *get_chip_name(enum chip_type chip_id)
379 {
380 	int i;
381 	for (i = 0; chip_info_table[i].name != NULL; i++)
382 		if (chip_info_table[i].chip_id == chip_id)
383 			break;
384 	return chip_info_table[i].name;
385 }
386 
387 /**
388  *	velocity_remove1	-	device unplug
389  *	@pdev: PCI device being removed
390  *
391  *	Device unload callback. Called on an unplug or on module
392  *	unload for each active device that is present. Disconnects
393  *	the device from the network layer and frees all the resources
394  */
395 static void __devexit velocity_remove1(struct pci_dev *pdev)
396 {
397 	struct net_device *dev = pci_get_drvdata(pdev);
398 	struct velocity_info *vptr = netdev_priv(dev);
399 
400 	unregister_netdev(dev);
401 	iounmap(vptr->mac_regs);
402 	pci_release_regions(pdev);
403 	pci_disable_device(pdev);
404 	pci_set_drvdata(pdev, NULL);
405 	free_netdev(dev);
406 
407 	velocity_nics--;
408 }
409 
410 /**
411  *	velocity_set_int_opt	-	parser for integer options
412  *	@opt: pointer to option value
413  *	@val: value the user requested (or -1 for default)
414  *	@min: lowest value allowed
415  *	@max: highest value allowed
416  *	@def: default value
417  *	@name: property name
418  *	@dev: device name
419  *
420  *	Set an integer property in the module options. This function does
421  *	all the verification and checking as well as reporting so that
422  *	we don't duplicate code for each option.
423  */
424 static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, const char *devname)
425 {
426 	if (val == -1)
427 		*opt = def;
428 	else if (val < min || val > max) {
429 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
430 					devname, name, min, max);
431 		*opt = def;
432 	} else {
433 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
434 					devname, name, val);
435 		*opt = val;
436 	}
437 }
438 
439 /**
440  *	velocity_set_bool_opt	-	parser for boolean options
441  *	@opt: pointer to option value
442  *	@val: value the user requested (or -1 for default)
443  *	@def: default value (yes/no)
444  *	@flag: numeric value to set for true.
445  *	@name: property name
446  *	@dev: device name
447  *
448  *	Set a boolean property in the module options. This function does
449  *	all the verification and checking as well as reporting so that
450  *	we don't duplicate code for each option.
451  */
452 static void __devinit velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag, char *name, const char *devname)
453 {
454 	(*opt) &= (~flag);
455 	if (val == -1)
456 		*opt |= (def ? flag : 0);
457 	else if (val < 0 || val > 1) {
458 		printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
459 			devname, name);
460 		*opt |= (def ? flag : 0);
461 	} else {
462 		printk(KERN_INFO "%s: set parameter %s to %s\n",
463 			devname, name, val ? "TRUE" : "FALSE");
464 		*opt |= (val ? flag : 0);
465 	}
466 }
467 
468 /**
469  *	velocity_get_options	-	set options on device
470  *	@opts: option structure for the device
471  *	@index: index of option to use in module options array
472  *	@devname: device name
473  *
474  *	Turn the module and command options into a single structure
475  *	for the current device
476  */
477 static void __devinit velocity_get_options(struct velocity_opt *opts, int index, const char *devname)
478 {
479 
480 	velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
481 	velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
482 	velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
483 	velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
484 
485 	velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
486 	velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
487 	velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
488 	velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
489 	velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
490 	opts->numrx = (opts->numrx & ~3);
491 }
492 
493 /**
494  *	velocity_init_cam_filter	-	initialise CAM
495  *	@vptr: velocity to program
496  *
497  *	Initialize the content addressable memory used for filters. Load
498  *	appropriately according to the presence of VLAN
499  */
500 static void velocity_init_cam_filter(struct velocity_info *vptr)
501 {
502 	struct mac_regs __iomem *regs = vptr->mac_regs;
503 	unsigned int vid, i = 0;
504 
505 	/* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
506 	WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
507 	WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
508 
509 	/* Disable all CAMs */
510 	memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
511 	memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
512 	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
513 	mac_set_cam_mask(regs, vptr->mCAMmask);
514 
515 	/* Enable VCAMs */
516 	for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) {
517 		mac_set_vlan_cam(regs, i, (u8 *) &vid);
518 		vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
519 		if (++i >= VCAM_SIZE)
520 			break;
521 	}
522 	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
523 }
524 
525 static void velocity_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
526 {
527 	struct velocity_info *vptr = netdev_priv(dev);
528 
529 	spin_lock_irq(&vptr->lock);
530 	set_bit(vid, vptr->active_vlans);
531 	velocity_init_cam_filter(vptr);
532 	spin_unlock_irq(&vptr->lock);
533 }
534 
535 static void velocity_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
536 {
537 	struct velocity_info *vptr = netdev_priv(dev);
538 
539 	spin_lock_irq(&vptr->lock);
540 	clear_bit(vid, vptr->active_vlans);
541 	velocity_init_cam_filter(vptr);
542 	spin_unlock_irq(&vptr->lock);
543 }
544 
545 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
546 {
547 	vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
548 }
549 
550 /**
551  *	velocity_rx_reset	-	handle a receive reset
552  *	@vptr: velocity we are resetting
553  *
554  *	Reset the ownership and status for the receive ring side.
555  *	Hand all the receive queue to the NIC.
556  */
557 static void velocity_rx_reset(struct velocity_info *vptr)
558 {
559 
560 	struct mac_regs __iomem *regs = vptr->mac_regs;
561 	int i;
562 
563 	velocity_init_rx_ring_indexes(vptr);
564 
565 	/*
566 	 *	Init state, all RD entries belong to the NIC
567 	 */
568 	for (i = 0; i < vptr->options.numrx; ++i)
569 		vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
570 
571 	writew(vptr->options.numrx, &regs->RBRDU);
572 	writel(vptr->rx.pool_dma, &regs->RDBaseLo);
573 	writew(0, &regs->RDIdx);
574 	writew(vptr->options.numrx - 1, &regs->RDCSize);
575 }
576 
577 /**
578  *	velocity_get_opt_media_mode	-	get media selection
579  *	@vptr: velocity adapter
580  *
581  *	Get the media mode stored in EEPROM or module options and load
582  *	mii_status accordingly. The requested link state information
583  *	is also returned.
584  */
585 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
586 {
587 	u32 status = 0;
588 
589 	switch (vptr->options.spd_dpx) {
590 	case SPD_DPX_AUTO:
591 		status = VELOCITY_AUTONEG_ENABLE;
592 		break;
593 	case SPD_DPX_100_FULL:
594 		status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
595 		break;
596 	case SPD_DPX_10_FULL:
597 		status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
598 		break;
599 	case SPD_DPX_100_HALF:
600 		status = VELOCITY_SPEED_100;
601 		break;
602 	case SPD_DPX_10_HALF:
603 		status = VELOCITY_SPEED_10;
604 		break;
605 	case SPD_DPX_1000_FULL:
606 		status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
607 		break;
608 	}
609 	vptr->mii_status = status;
610 	return status;
611 }
612 
613 /**
614  *	safe_disable_mii_autopoll	-	autopoll off
615  *	@regs: velocity registers
616  *
617  *	Turn off the autopoll and wait for it to disable on the chip
618  */
619 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
620 {
621 	u16 ww;
622 
623 	/*  turn off MAUTO */
624 	writeb(0, &regs->MIICR);
625 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
626 		udelay(1);
627 		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
628 			break;
629 	}
630 }
631 
632 /**
633  *	enable_mii_autopoll	-	turn on autopolling
634  *	@regs: velocity registers
635  *
636  *	Enable the MII link status autopoll feature on the Velocity
637  *	hardware. Wait for it to enable.
638  */
639 static void enable_mii_autopoll(struct mac_regs __iomem *regs)
640 {
641 	int ii;
642 
643 	writeb(0, &(regs->MIICR));
644 	writeb(MIIADR_SWMPL, &regs->MIIADR);
645 
646 	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
647 		udelay(1);
648 		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
649 			break;
650 	}
651 
652 	writeb(MIICR_MAUTO, &regs->MIICR);
653 
654 	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
655 		udelay(1);
656 		if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
657 			break;
658 	}
659 
660 }
661 
662 /**
663  *	velocity_mii_read	-	read MII data
664  *	@regs: velocity registers
665  *	@index: MII register index
666  *	@data: buffer for received data
667  *
668  *	Perform a single read of an MII 16bit register. Returns zero
669  *	on success or -ETIMEDOUT if the PHY did not respond.
670  */
671 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
672 {
673 	u16 ww;
674 
675 	/*
676 	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
677 	 */
678 	safe_disable_mii_autopoll(regs);
679 
680 	writeb(index, &regs->MIIADR);
681 
682 	BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
683 
684 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
685 		if (!(readb(&regs->MIICR) & MIICR_RCMD))
686 			break;
687 	}
688 
689 	*data = readw(&regs->MIIDATA);
690 
691 	enable_mii_autopoll(regs);
692 	if (ww == W_MAX_TIMEOUT)
693 		return -ETIMEDOUT;
694 	return 0;
695 }
696 
697 /**
698  *	mii_check_media_mode	-	check media state
699  *	@regs: velocity registers
700  *
701  *	Check the current MII status and determine the link status
702  *	accordingly
703  */
704 static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
705 {
706 	u32 status = 0;
707 	u16 ANAR;
708 
709 	if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs))
710 		status |= VELOCITY_LINK_FAIL;
711 
712 	if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs))
713 		status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
714 	else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs))
715 		status |= (VELOCITY_SPEED_1000);
716 	else {
717 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
718 		if (ANAR & ADVERTISE_100FULL)
719 			status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
720 		else if (ANAR & ADVERTISE_100HALF)
721 			status |= VELOCITY_SPEED_100;
722 		else if (ANAR & ADVERTISE_10FULL)
723 			status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
724 		else
725 			status |= (VELOCITY_SPEED_10);
726 	}
727 
728 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
729 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
730 		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
731 		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
732 			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
733 				status |= VELOCITY_AUTONEG_ENABLE;
734 		}
735 	}
736 
737 	return status;
738 }
739 
740 /**
741  *	velocity_mii_write	-	write MII data
742  *	@regs: velocity registers
743  *	@index: MII register index
744  *	@data: 16bit data for the MII register
745  *
746  *	Perform a single write to an MII 16bit register. Returns zero
747  *	on success or -ETIMEDOUT if the PHY did not respond.
748  */
749 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
750 {
751 	u16 ww;
752 
753 	/*
754 	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
755 	 */
756 	safe_disable_mii_autopoll(regs);
757 
758 	/* MII reg offset */
759 	writeb(mii_addr, &regs->MIIADR);
760 	/* set MII data */
761 	writew(data, &regs->MIIDATA);
762 
763 	/* turn on MIICR_WCMD */
764 	BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
765 
766 	/* W_MAX_TIMEOUT is the timeout period */
767 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
768 		udelay(5);
769 		if (!(readb(&regs->MIICR) & MIICR_WCMD))
770 			break;
771 	}
772 	enable_mii_autopoll(regs);
773 
774 	if (ww == W_MAX_TIMEOUT)
775 		return -ETIMEDOUT;
776 	return 0;
777 }
778 
779 /**
780  *	set_mii_flow_control	-	flow control setup
781  *	@vptr: velocity interface
782  *
783  *	Set up the flow control on this interface according to
784  *	the supplied user/eeprom options.
785  */
786 static void set_mii_flow_control(struct velocity_info *vptr)
787 {
788 	/*Enable or Disable PAUSE in ANAR */
789 	switch (vptr->options.flow_cntl) {
790 	case FLOW_CNTL_TX:
791 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
792 		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
793 		break;
794 
795 	case FLOW_CNTL_RX:
796 		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
797 		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
798 		break;
799 
800 	case FLOW_CNTL_TX_RX:
801 		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
802 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
803 		break;
804 
805 	case FLOW_CNTL_DISABLE:
806 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
807 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
808 		break;
809 	default:
810 		break;
811 	}
812 }
813 
814 /**
815  *	mii_set_auto_on		-	autonegotiate on
816  *	@vptr: velocity
817  *
818  *	Enable autonegotation on this interface
819  */
820 static void mii_set_auto_on(struct velocity_info *vptr)
821 {
822 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs))
823 		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
824 	else
825 		MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs);
826 }
827 
828 static u32 check_connection_type(struct mac_regs __iomem *regs)
829 {
830 	u32 status = 0;
831 	u8 PHYSR0;
832 	u16 ANAR;
833 	PHYSR0 = readb(&regs->PHYSR0);
834 
835 	/*
836 	   if (!(PHYSR0 & PHYSR0_LINKGD))
837 	   status|=VELOCITY_LINK_FAIL;
838 	 */
839 
840 	if (PHYSR0 & PHYSR0_FDPX)
841 		status |= VELOCITY_DUPLEX_FULL;
842 
843 	if (PHYSR0 & PHYSR0_SPDG)
844 		status |= VELOCITY_SPEED_1000;
845 	else if (PHYSR0 & PHYSR0_SPD10)
846 		status |= VELOCITY_SPEED_10;
847 	else
848 		status |= VELOCITY_SPEED_100;
849 
850 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
851 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
852 		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
853 		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
854 			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
855 				status |= VELOCITY_AUTONEG_ENABLE;
856 		}
857 	}
858 
859 	return status;
860 }
861 
862 /**
863  *	velocity_set_media_mode		-	set media mode
864  *	@mii_status: old MII link state
865  *
866  *	Check the media link state and configure the flow control
867  *	PHY and also velocity hardware setup accordingly. In particular
868  *	we need to set up CD polling and frame bursting.
869  */
870 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
871 {
872 	u32 curr_status;
873 	struct mac_regs __iomem *regs = vptr->mac_regs;
874 
875 	vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
876 	curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
877 
878 	/* Set mii link status */
879 	set_mii_flow_control(vptr);
880 
881 	/*
882 	   Check if new status is consistent with current status
883 	   if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) ||
884 	       (mii_status==curr_status)) {
885 	   vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
886 	   vptr->mii_status=check_connection_type(vptr->mac_regs);
887 	   VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
888 	   return 0;
889 	   }
890 	 */
891 
892 	if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
893 		MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
894 
895 	/*
896 	 *	If connection type is AUTO
897 	 */
898 	if (mii_status & VELOCITY_AUTONEG_ENABLE) {
899 		VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
900 		/* clear force MAC mode bit */
901 		BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
902 		/* set duplex mode of MAC according to duplex mode of MII */
903 		MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs);
904 		MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
905 		MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs);
906 
907 		/* enable AUTO-NEGO mode */
908 		mii_set_auto_on(vptr);
909 	} else {
910 		u16 CTRL1000;
911 		u16 ANAR;
912 		u8 CHIPGCR;
913 
914 		/*
915 		 * 1. if it's 3119, disable frame bursting in halfduplex mode
916 		 *    and enable it in fullduplex mode
917 		 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
918 		 * 3. only enable CD heart beat counter in 10HD mode
919 		 */
920 
921 		/* set force MAC mode bit */
922 		BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
923 
924 		CHIPGCR = readb(&regs->CHIPGCR);
925 
926 		if (mii_status & VELOCITY_SPEED_1000)
927 			CHIPGCR |= CHIPGCR_FCGMII;
928 		else
929 			CHIPGCR &= ~CHIPGCR_FCGMII;
930 
931 		if (mii_status & VELOCITY_DUPLEX_FULL) {
932 			CHIPGCR |= CHIPGCR_FCFDX;
933 			writeb(CHIPGCR, &regs->CHIPGCR);
934 			VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
935 			if (vptr->rev_id < REV_ID_VT3216_A0)
936 				BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
937 		} else {
938 			CHIPGCR &= ~CHIPGCR_FCFDX;
939 			VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
940 			writeb(CHIPGCR, &regs->CHIPGCR);
941 			if (vptr->rev_id < REV_ID_VT3216_A0)
942 				BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
943 		}
944 
945 		velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000);
946 		CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
947 		if ((mii_status & VELOCITY_SPEED_1000) &&
948 		    (mii_status & VELOCITY_DUPLEX_FULL)) {
949 			CTRL1000 |= ADVERTISE_1000FULL;
950 		}
951 		velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000);
952 
953 		if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
954 			BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
955 		else
956 			BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
957 
958 		/* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */
959 		velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR);
960 		ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF));
961 		if (mii_status & VELOCITY_SPEED_100) {
962 			if (mii_status & VELOCITY_DUPLEX_FULL)
963 				ANAR |= ADVERTISE_100FULL;
964 			else
965 				ANAR |= ADVERTISE_100HALF;
966 		} else if (mii_status & VELOCITY_SPEED_10) {
967 			if (mii_status & VELOCITY_DUPLEX_FULL)
968 				ANAR |= ADVERTISE_10FULL;
969 			else
970 				ANAR |= ADVERTISE_10HALF;
971 		}
972 		velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR);
973 		/* enable AUTO-NEGO mode */
974 		mii_set_auto_on(vptr);
975 		/* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */
976 	}
977 	/* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
978 	/* vptr->mii_status=check_connection_type(vptr->mac_regs); */
979 	return VELOCITY_LINK_CHANGE;
980 }
981 
982 /**
983  *	velocity_print_link_status	-	link status reporting
984  *	@vptr: velocity to report on
985  *
986  *	Turn the link status of the velocity card into a kernel log
987  *	description of the new link state, detailing speed and duplex
988  *	status
989  */
990 static void velocity_print_link_status(struct velocity_info *vptr)
991 {
992 
993 	if (vptr->mii_status & VELOCITY_LINK_FAIL) {
994 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
995 	} else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
996 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->dev->name);
997 
998 		if (vptr->mii_status & VELOCITY_SPEED_1000)
999 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1000 		else if (vptr->mii_status & VELOCITY_SPEED_100)
1001 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1002 		else
1003 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1004 
1005 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1006 			VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1007 		else
1008 			VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1009 	} else {
1010 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1011 		switch (vptr->options.spd_dpx) {
1012 		case SPD_DPX_1000_FULL:
1013 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n");
1014 			break;
1015 		case SPD_DPX_100_HALF:
1016 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1017 			break;
1018 		case SPD_DPX_100_FULL:
1019 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1020 			break;
1021 		case SPD_DPX_10_HALF:
1022 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1023 			break;
1024 		case SPD_DPX_10_FULL:
1025 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1026 			break;
1027 		default:
1028 			break;
1029 		}
1030 	}
1031 }
1032 
1033 /**
1034  *	enable_flow_control_ability	-	flow control
1035  *	@vptr: veloity to configure
1036  *
1037  *	Set up flow control according to the flow control options
1038  *	determined by the eeprom/configuration.
1039  */
1040 static void enable_flow_control_ability(struct velocity_info *vptr)
1041 {
1042 
1043 	struct mac_regs __iomem *regs = vptr->mac_regs;
1044 
1045 	switch (vptr->options.flow_cntl) {
1046 
1047 	case FLOW_CNTL_DEFAULT:
1048 		if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1049 			writel(CR0_FDXRFCEN, &regs->CR0Set);
1050 		else
1051 			writel(CR0_FDXRFCEN, &regs->CR0Clr);
1052 
1053 		if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1054 			writel(CR0_FDXTFCEN, &regs->CR0Set);
1055 		else
1056 			writel(CR0_FDXTFCEN, &regs->CR0Clr);
1057 		break;
1058 
1059 	case FLOW_CNTL_TX:
1060 		writel(CR0_FDXTFCEN, &regs->CR0Set);
1061 		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1062 		break;
1063 
1064 	case FLOW_CNTL_RX:
1065 		writel(CR0_FDXRFCEN, &regs->CR0Set);
1066 		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1067 		break;
1068 
1069 	case FLOW_CNTL_TX_RX:
1070 		writel(CR0_FDXTFCEN, &regs->CR0Set);
1071 		writel(CR0_FDXRFCEN, &regs->CR0Set);
1072 		break;
1073 
1074 	case FLOW_CNTL_DISABLE:
1075 		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1076 		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1077 		break;
1078 
1079 	default:
1080 		break;
1081 	}
1082 
1083 }
1084 
1085 /**
1086  *	velocity_soft_reset	-	soft reset
1087  *	@vptr: velocity to reset
1088  *
1089  *	Kick off a soft reset of the velocity adapter and then poll
1090  *	until the reset sequence has completed before returning.
1091  */
1092 static int velocity_soft_reset(struct velocity_info *vptr)
1093 {
1094 	struct mac_regs __iomem *regs = vptr->mac_regs;
1095 	int i = 0;
1096 
1097 	writel(CR0_SFRST, &regs->CR0Set);
1098 
1099 	for (i = 0; i < W_MAX_TIMEOUT; i++) {
1100 		udelay(5);
1101 		if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1102 			break;
1103 	}
1104 
1105 	if (i == W_MAX_TIMEOUT) {
1106 		writel(CR0_FORSRST, &regs->CR0Set);
1107 		/* FIXME: PCI POSTING */
1108 		/* delay 2ms */
1109 		mdelay(2);
1110 	}
1111 	return 0;
1112 }
1113 
1114 /**
1115  *	velocity_set_multi	-	filter list change callback
1116  *	@dev: network device
1117  *
1118  *	Called by the network layer when the filter lists need to change
1119  *	for a velocity adapter. Reload the CAMs with the new address
1120  *	filter ruleset.
1121  */
1122 static void velocity_set_multi(struct net_device *dev)
1123 {
1124 	struct velocity_info *vptr = netdev_priv(dev);
1125 	struct mac_regs __iomem *regs = vptr->mac_regs;
1126 	u8 rx_mode;
1127 	int i;
1128 	struct netdev_hw_addr *ha;
1129 
1130 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1131 		writel(0xffffffff, &regs->MARCAM[0]);
1132 		writel(0xffffffff, &regs->MARCAM[4]);
1133 		rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1134 	} else if ((netdev_mc_count(dev) > vptr->multicast_limit) ||
1135 		   (dev->flags & IFF_ALLMULTI)) {
1136 		writel(0xffffffff, &regs->MARCAM[0]);
1137 		writel(0xffffffff, &regs->MARCAM[4]);
1138 		rx_mode = (RCR_AM | RCR_AB);
1139 	} else {
1140 		int offset = MCAM_SIZE - vptr->multicast_limit;
1141 		mac_get_cam_mask(regs, vptr->mCAMmask);
1142 
1143 		i = 0;
1144 		netdev_for_each_mc_addr(ha, dev) {
1145 			mac_set_cam(regs, i + offset, ha->addr);
1146 			vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1147 			i++;
1148 		}
1149 
1150 		mac_set_cam_mask(regs, vptr->mCAMmask);
1151 		rx_mode = RCR_AM | RCR_AB | RCR_AP;
1152 	}
1153 	if (dev->mtu > 1500)
1154 		rx_mode |= RCR_AL;
1155 
1156 	BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1157 
1158 }
1159 
1160 /*
1161  * MII access , media link mode setting functions
1162  */
1163 
1164 /**
1165  *	mii_init	-	set up MII
1166  *	@vptr: velocity adapter
1167  *	@mii_status:  links tatus
1168  *
1169  *	Set up the PHY for the current link state.
1170  */
1171 static void mii_init(struct velocity_info *vptr, u32 mii_status)
1172 {
1173 	u16 BMCR;
1174 
1175 	switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1176 	case PHYID_CICADA_CS8201:
1177 		/*
1178 		 *	Reset to hardware default
1179 		 */
1180 		MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1181 		/*
1182 		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1183 		 *	off it in NWay-forced half mode for NWay-forced v.s.
1184 		 *	legacy-forced issue.
1185 		 */
1186 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1187 			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1188 		else
1189 			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1190 		/*
1191 		 *	Turn on Link/Activity LED enable bit for CIS8201
1192 		 */
1193 		MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1194 		break;
1195 	case PHYID_VT3216_32BIT:
1196 	case PHYID_VT3216_64BIT:
1197 		/*
1198 		 *	Reset to hardware default
1199 		 */
1200 		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1201 		/*
1202 		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1203 		 *	off it in NWay-forced half mode for NWay-forced v.s.
1204 		 *	legacy-forced issue
1205 		 */
1206 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1207 			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1208 		else
1209 			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1210 		break;
1211 
1212 	case PHYID_MARVELL_1000:
1213 	case PHYID_MARVELL_1000S:
1214 		/*
1215 		 *	Assert CRS on Transmit
1216 		 */
1217 		MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1218 		/*
1219 		 *	Reset to hardware default
1220 		 */
1221 		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1222 		break;
1223 	default:
1224 		;
1225 	}
1226 	velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR);
1227 	if (BMCR & BMCR_ISOLATE) {
1228 		BMCR &= ~BMCR_ISOLATE;
1229 		velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR);
1230 	}
1231 }
1232 
1233 /**
1234  * setup_queue_timers	-	Setup interrupt timers
1235  *
1236  * Setup interrupt frequency during suppression (timeout if the frame
1237  * count isn't filled).
1238  */
1239 static void setup_queue_timers(struct velocity_info *vptr)
1240 {
1241 	/* Only for newer revisions */
1242 	if (vptr->rev_id >= REV_ID_VT3216_A0) {
1243 		u8 txqueue_timer = 0;
1244 		u8 rxqueue_timer = 0;
1245 
1246 		if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1247 				VELOCITY_SPEED_100)) {
1248 			txqueue_timer = vptr->options.txqueue_timer;
1249 			rxqueue_timer = vptr->options.rxqueue_timer;
1250 		}
1251 
1252 		writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1253 		writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1254 	}
1255 }
1256 
1257 /**
1258  * setup_adaptive_interrupts  -  Setup interrupt suppression
1259  *
1260  * @vptr velocity adapter
1261  *
1262  * The velocity is able to suppress interrupt during high interrupt load.
1263  * This function turns on that feature.
1264  */
1265 static void setup_adaptive_interrupts(struct velocity_info *vptr)
1266 {
1267 	struct mac_regs __iomem *regs = vptr->mac_regs;
1268 	u16 tx_intsup = vptr->options.tx_intsup;
1269 	u16 rx_intsup = vptr->options.rx_intsup;
1270 
1271 	/* Setup default interrupt mask (will be changed below) */
1272 	vptr->int_mask = INT_MASK_DEF;
1273 
1274 	/* Set Tx Interrupt Suppression Threshold */
1275 	writeb(CAMCR_PS0, &regs->CAMCR);
1276 	if (tx_intsup != 0) {
1277 		vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1278 				ISR_PTX2I | ISR_PTX3I);
1279 		writew(tx_intsup, &regs->ISRCTL);
1280 	} else
1281 		writew(ISRCTL_TSUPDIS, &regs->ISRCTL);
1282 
1283 	/* Set Rx Interrupt Suppression Threshold */
1284 	writeb(CAMCR_PS1, &regs->CAMCR);
1285 	if (rx_intsup != 0) {
1286 		vptr->int_mask &= ~ISR_PRXI;
1287 		writew(rx_intsup, &regs->ISRCTL);
1288 	} else
1289 		writew(ISRCTL_RSUPDIS, &regs->ISRCTL);
1290 
1291 	/* Select page to interrupt hold timer */
1292 	writeb(0, &regs->CAMCR);
1293 }
1294 
1295 /**
1296  *	velocity_init_registers	-	initialise MAC registers
1297  *	@vptr: velocity to init
1298  *	@type: type of initialisation (hot or cold)
1299  *
1300  *	Initialise the MAC on a reset or on first set up on the
1301  *	hardware.
1302  */
1303 static void velocity_init_registers(struct velocity_info *vptr,
1304 				    enum velocity_init_type type)
1305 {
1306 	struct mac_regs __iomem *regs = vptr->mac_regs;
1307 	int i, mii_status;
1308 
1309 	mac_wol_reset(regs);
1310 
1311 	switch (type) {
1312 	case VELOCITY_INIT_RESET:
1313 	case VELOCITY_INIT_WOL:
1314 
1315 		netif_stop_queue(vptr->dev);
1316 
1317 		/*
1318 		 *	Reset RX to prevent RX pointer not on the 4X location
1319 		 */
1320 		velocity_rx_reset(vptr);
1321 		mac_rx_queue_run(regs);
1322 		mac_rx_queue_wake(regs);
1323 
1324 		mii_status = velocity_get_opt_media_mode(vptr);
1325 		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1326 			velocity_print_link_status(vptr);
1327 			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1328 				netif_wake_queue(vptr->dev);
1329 		}
1330 
1331 		enable_flow_control_ability(vptr);
1332 
1333 		mac_clear_isr(regs);
1334 		writel(CR0_STOP, &regs->CR0Clr);
1335 		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1336 							&regs->CR0Set);
1337 
1338 		break;
1339 
1340 	case VELOCITY_INIT_COLD:
1341 	default:
1342 		/*
1343 		 *	Do reset
1344 		 */
1345 		velocity_soft_reset(vptr);
1346 		mdelay(5);
1347 
1348 		mac_eeprom_reload(regs);
1349 		for (i = 0; i < 6; i++)
1350 			writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
1351 
1352 		/*
1353 		 *	clear Pre_ACPI bit.
1354 		 */
1355 		BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1356 		mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1357 		mac_set_dma_length(regs, vptr->options.DMA_length);
1358 
1359 		writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1360 		/*
1361 		 *	Back off algorithm use original IEEE standard
1362 		 */
1363 		BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1364 
1365 		/*
1366 		 *	Init CAM filter
1367 		 */
1368 		velocity_init_cam_filter(vptr);
1369 
1370 		/*
1371 		 *	Set packet filter: Receive directed and broadcast address
1372 		 */
1373 		velocity_set_multi(vptr->dev);
1374 
1375 		/*
1376 		 *	Enable MII auto-polling
1377 		 */
1378 		enable_mii_autopoll(regs);
1379 
1380 		setup_adaptive_interrupts(vptr);
1381 
1382 		writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1383 		writew(vptr->options.numrx - 1, &regs->RDCSize);
1384 		mac_rx_queue_run(regs);
1385 		mac_rx_queue_wake(regs);
1386 
1387 		writew(vptr->options.numtx - 1, &regs->TDCSize);
1388 
1389 		for (i = 0; i < vptr->tx.numq; i++) {
1390 			writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1391 			mac_tx_queue_run(regs, i);
1392 		}
1393 
1394 		init_flow_control_register(vptr);
1395 
1396 		writel(CR0_STOP, &regs->CR0Clr);
1397 		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1398 
1399 		mii_status = velocity_get_opt_media_mode(vptr);
1400 		netif_stop_queue(vptr->dev);
1401 
1402 		mii_init(vptr, mii_status);
1403 
1404 		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1405 			velocity_print_link_status(vptr);
1406 			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1407 				netif_wake_queue(vptr->dev);
1408 		}
1409 
1410 		enable_flow_control_ability(vptr);
1411 		mac_hw_mibs_init(regs);
1412 		mac_write_int_mask(vptr->int_mask, regs);
1413 		mac_clear_isr(regs);
1414 
1415 	}
1416 }
1417 
1418 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1419 {
1420 	struct mac_regs __iomem *regs = vptr->mac_regs;
1421 	int avail, dirty, unusable;
1422 
1423 	/*
1424 	 * RD number must be equal to 4X per hardware spec
1425 	 * (programming guide rev 1.20, p.13)
1426 	 */
1427 	if (vptr->rx.filled < 4)
1428 		return;
1429 
1430 	wmb();
1431 
1432 	unusable = vptr->rx.filled & 0x0003;
1433 	dirty = vptr->rx.dirty - unusable;
1434 	for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1435 		dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1436 		vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1437 	}
1438 
1439 	writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1440 	vptr->rx.filled = unusable;
1441 }
1442 
1443 /**
1444  *	velocity_init_dma_rings	-	set up DMA rings
1445  *	@vptr: Velocity to set up
1446  *
1447  *	Allocate PCI mapped DMA rings for the receive and transmit layer
1448  *	to use.
1449  */
1450 static int velocity_init_dma_rings(struct velocity_info *vptr)
1451 {
1452 	struct velocity_opt *opt = &vptr->options;
1453 	const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1454 	const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1455 	struct pci_dev *pdev = vptr->pdev;
1456 	dma_addr_t pool_dma;
1457 	void *pool;
1458 	unsigned int i;
1459 
1460 	/*
1461 	 * Allocate all RD/TD rings a single pool.
1462 	 *
1463 	 * pci_alloc_consistent() fulfills the requirement for 64 bytes
1464 	 * alignment
1465 	 */
1466 	pool = pci_alloc_consistent(pdev, tx_ring_size * vptr->tx.numq +
1467 				    rx_ring_size, &pool_dma);
1468 	if (!pool) {
1469 		dev_err(&pdev->dev, "%s : DMA memory allocation failed.\n",
1470 			vptr->dev->name);
1471 		return -ENOMEM;
1472 	}
1473 
1474 	vptr->rx.ring = pool;
1475 	vptr->rx.pool_dma = pool_dma;
1476 
1477 	pool += rx_ring_size;
1478 	pool_dma += rx_ring_size;
1479 
1480 	for (i = 0; i < vptr->tx.numq; i++) {
1481 		vptr->tx.rings[i] = pool;
1482 		vptr->tx.pool_dma[i] = pool_dma;
1483 		pool += tx_ring_size;
1484 		pool_dma += tx_ring_size;
1485 	}
1486 
1487 	return 0;
1488 }
1489 
1490 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1491 {
1492 	vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1493 }
1494 
1495 /**
1496  *	velocity_alloc_rx_buf	-	allocate aligned receive buffer
1497  *	@vptr: velocity
1498  *	@idx: ring index
1499  *
1500  *	Allocate a new full sized buffer for the reception of a frame and
1501  *	map it into PCI space for the hardware to use. The hardware
1502  *	requires *64* byte alignment of the buffer which makes life
1503  *	less fun than would be ideal.
1504  */
1505 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1506 {
1507 	struct rx_desc *rd = &(vptr->rx.ring[idx]);
1508 	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1509 
1510 	rd_info->skb = dev_alloc_skb(vptr->rx.buf_sz + 64);
1511 	if (rd_info->skb == NULL)
1512 		return -ENOMEM;
1513 
1514 	/*
1515 	 *	Do the gymnastics to get the buffer head for data at
1516 	 *	64byte alignment.
1517 	 */
1518 	skb_reserve(rd_info->skb,
1519 			64 - ((unsigned long) rd_info->skb->data & 63));
1520 	rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data,
1521 					vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
1522 
1523 	/*
1524 	 *	Fill in the descriptor to match
1525 	 */
1526 
1527 	*((u32 *) & (rd->rdesc0)) = 0;
1528 	rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1529 	rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1530 	rd->pa_high = 0;
1531 	return 0;
1532 }
1533 
1534 
1535 static int velocity_rx_refill(struct velocity_info *vptr)
1536 {
1537 	int dirty = vptr->rx.dirty, done = 0;
1538 
1539 	do {
1540 		struct rx_desc *rd = vptr->rx.ring + dirty;
1541 
1542 		/* Fine for an all zero Rx desc at init time as well */
1543 		if (rd->rdesc0.len & OWNED_BY_NIC)
1544 			break;
1545 
1546 		if (!vptr->rx.info[dirty].skb) {
1547 			if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1548 				break;
1549 		}
1550 		done++;
1551 		dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1552 	} while (dirty != vptr->rx.curr);
1553 
1554 	if (done) {
1555 		vptr->rx.dirty = dirty;
1556 		vptr->rx.filled += done;
1557 	}
1558 
1559 	return done;
1560 }
1561 
1562 /**
1563  *	velocity_free_rd_ring	-	free receive ring
1564  *	@vptr: velocity to clean up
1565  *
1566  *	Free the receive buffers for each ring slot and any
1567  *	attached socket buffers that need to go away.
1568  */
1569 static void velocity_free_rd_ring(struct velocity_info *vptr)
1570 {
1571 	int i;
1572 
1573 	if (vptr->rx.info == NULL)
1574 		return;
1575 
1576 	for (i = 0; i < vptr->options.numrx; i++) {
1577 		struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1578 		struct rx_desc *rd = vptr->rx.ring + i;
1579 
1580 		memset(rd, 0, sizeof(*rd));
1581 
1582 		if (!rd_info->skb)
1583 			continue;
1584 		pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
1585 				 PCI_DMA_FROMDEVICE);
1586 		rd_info->skb_dma = 0;
1587 
1588 		dev_kfree_skb(rd_info->skb);
1589 		rd_info->skb = NULL;
1590 	}
1591 
1592 	kfree(vptr->rx.info);
1593 	vptr->rx.info = NULL;
1594 }
1595 
1596 /**
1597  *	velocity_init_rd_ring	-	set up receive ring
1598  *	@vptr: velocity to configure
1599  *
1600  *	Allocate and set up the receive buffers for each ring slot and
1601  *	assign them to the network adapter.
1602  */
1603 static int velocity_init_rd_ring(struct velocity_info *vptr)
1604 {
1605 	int ret = -ENOMEM;
1606 
1607 	vptr->rx.info = kcalloc(vptr->options.numrx,
1608 				sizeof(struct velocity_rd_info), GFP_KERNEL);
1609 	if (!vptr->rx.info)
1610 		goto out;
1611 
1612 	velocity_init_rx_ring_indexes(vptr);
1613 
1614 	if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1615 		VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1616 			"%s: failed to allocate RX buffer.\n", vptr->dev->name);
1617 		velocity_free_rd_ring(vptr);
1618 		goto out;
1619 	}
1620 
1621 	ret = 0;
1622 out:
1623 	return ret;
1624 }
1625 
1626 /**
1627  *	velocity_init_td_ring	-	set up transmit ring
1628  *	@vptr:	velocity
1629  *
1630  *	Set up the transmit ring and chain the ring pointers together.
1631  *	Returns zero on success or a negative posix errno code for
1632  *	failure.
1633  */
1634 static int velocity_init_td_ring(struct velocity_info *vptr)
1635 {
1636 	int j;
1637 
1638 	/* Init the TD ring entries */
1639 	for (j = 0; j < vptr->tx.numq; j++) {
1640 
1641 		vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1642 					    sizeof(struct velocity_td_info),
1643 					    GFP_KERNEL);
1644 		if (!vptr->tx.infos[j])	{
1645 			while (--j >= 0)
1646 				kfree(vptr->tx.infos[j]);
1647 			return -ENOMEM;
1648 		}
1649 
1650 		vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1651 	}
1652 	return 0;
1653 }
1654 
1655 /**
1656  *	velocity_free_dma_rings	-	free PCI ring pointers
1657  *	@vptr: Velocity to free from
1658  *
1659  *	Clean up the PCI ring buffers allocated to this velocity.
1660  */
1661 static void velocity_free_dma_rings(struct velocity_info *vptr)
1662 {
1663 	const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1664 		vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1665 
1666 	pci_free_consistent(vptr->pdev, size, vptr->rx.ring, vptr->rx.pool_dma);
1667 }
1668 
1669 static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1670 {
1671 	int ret;
1672 
1673 	velocity_set_rxbufsize(vptr, mtu);
1674 
1675 	ret = velocity_init_dma_rings(vptr);
1676 	if (ret < 0)
1677 		goto out;
1678 
1679 	ret = velocity_init_rd_ring(vptr);
1680 	if (ret < 0)
1681 		goto err_free_dma_rings_0;
1682 
1683 	ret = velocity_init_td_ring(vptr);
1684 	if (ret < 0)
1685 		goto err_free_rd_ring_1;
1686 out:
1687 	return ret;
1688 
1689 err_free_rd_ring_1:
1690 	velocity_free_rd_ring(vptr);
1691 err_free_dma_rings_0:
1692 	velocity_free_dma_rings(vptr);
1693 	goto out;
1694 }
1695 
1696 /**
1697  *	velocity_free_tx_buf	-	free transmit buffer
1698  *	@vptr: velocity
1699  *	@tdinfo: buffer
1700  *
1701  *	Release an transmit buffer. If the buffer was preallocated then
1702  *	recycle it, if not then unmap the buffer.
1703  */
1704 static void velocity_free_tx_buf(struct velocity_info *vptr,
1705 		struct velocity_td_info *tdinfo, struct tx_desc *td)
1706 {
1707 	struct sk_buff *skb = tdinfo->skb;
1708 
1709 	/*
1710 	 *	Don't unmap the pre-allocated tx_bufs
1711 	 */
1712 	if (tdinfo->skb_dma) {
1713 		int i;
1714 
1715 		for (i = 0; i < tdinfo->nskb_dma; i++) {
1716 			size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1717 
1718 			/* For scatter-gather */
1719 			if (skb_shinfo(skb)->nr_frags > 0)
1720 				pktlen = max_t(size_t, pktlen,
1721 						td->td_buf[i].size & ~TD_QUEUE);
1722 
1723 			pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i],
1724 					le16_to_cpu(pktlen), PCI_DMA_TODEVICE);
1725 		}
1726 	}
1727 	dev_kfree_skb_irq(skb);
1728 	tdinfo->skb = NULL;
1729 }
1730 
1731 /*
1732  *	FIXME: could we merge this with velocity_free_tx_buf ?
1733  */
1734 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1735 							 int q, int n)
1736 {
1737 	struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1738 	int i;
1739 
1740 	if (td_info == NULL)
1741 		return;
1742 
1743 	if (td_info->skb) {
1744 		for (i = 0; i < td_info->nskb_dma; i++) {
1745 			if (td_info->skb_dma[i]) {
1746 				pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1747 					td_info->skb->len, PCI_DMA_TODEVICE);
1748 				td_info->skb_dma[i] = 0;
1749 			}
1750 		}
1751 		dev_kfree_skb(td_info->skb);
1752 		td_info->skb = NULL;
1753 	}
1754 }
1755 
1756 /**
1757  *	velocity_free_td_ring	-	free td ring
1758  *	@vptr: velocity
1759  *
1760  *	Free up the transmit ring for this particular velocity adapter.
1761  *	We free the ring contents but not the ring itself.
1762  */
1763 static void velocity_free_td_ring(struct velocity_info *vptr)
1764 {
1765 	int i, j;
1766 
1767 	for (j = 0; j < vptr->tx.numq; j++) {
1768 		if (vptr->tx.infos[j] == NULL)
1769 			continue;
1770 		for (i = 0; i < vptr->options.numtx; i++)
1771 			velocity_free_td_ring_entry(vptr, j, i);
1772 
1773 		kfree(vptr->tx.infos[j]);
1774 		vptr->tx.infos[j] = NULL;
1775 	}
1776 }
1777 
1778 static void velocity_free_rings(struct velocity_info *vptr)
1779 {
1780 	velocity_free_td_ring(vptr);
1781 	velocity_free_rd_ring(vptr);
1782 	velocity_free_dma_rings(vptr);
1783 }
1784 
1785 /**
1786  *	velocity_error	-	handle error from controller
1787  *	@vptr: velocity
1788  *	@status: card status
1789  *
1790  *	Process an error report from the hardware and attempt to recover
1791  *	the card itself. At the moment we cannot recover from some
1792  *	theoretically impossible errors but this could be fixed using
1793  *	the pci_device_failed logic to bounce the hardware
1794  *
1795  */
1796 static void velocity_error(struct velocity_info *vptr, int status)
1797 {
1798 
1799 	if (status & ISR_TXSTLI) {
1800 		struct mac_regs __iomem *regs = vptr->mac_regs;
1801 
1802 		printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1803 		BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1804 		writew(TRDCSR_RUN, &regs->TDCSRClr);
1805 		netif_stop_queue(vptr->dev);
1806 
1807 		/* FIXME: port over the pci_device_failed code and use it
1808 		   here */
1809 	}
1810 
1811 	if (status & ISR_SRCI) {
1812 		struct mac_regs __iomem *regs = vptr->mac_regs;
1813 		int linked;
1814 
1815 		if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1816 			vptr->mii_status = check_connection_type(regs);
1817 
1818 			/*
1819 			 *	If it is a 3119, disable frame bursting in
1820 			 *	halfduplex mode and enable it in fullduplex
1821 			 *	 mode
1822 			 */
1823 			if (vptr->rev_id < REV_ID_VT3216_A0) {
1824 				if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1825 					BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1826 				else
1827 					BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1828 			}
1829 			/*
1830 			 *	Only enable CD heart beat counter in 10HD mode
1831 			 */
1832 			if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1833 				BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1834 			else
1835 				BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1836 
1837 			setup_queue_timers(vptr);
1838 		}
1839 		/*
1840 		 *	Get link status from PHYSR0
1841 		 */
1842 		linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1843 
1844 		if (linked) {
1845 			vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1846 			netif_carrier_on(vptr->dev);
1847 		} else {
1848 			vptr->mii_status |= VELOCITY_LINK_FAIL;
1849 			netif_carrier_off(vptr->dev);
1850 		}
1851 
1852 		velocity_print_link_status(vptr);
1853 		enable_flow_control_ability(vptr);
1854 
1855 		/*
1856 		 *	Re-enable auto-polling because SRCI will disable
1857 		 *	auto-polling
1858 		 */
1859 
1860 		enable_mii_autopoll(regs);
1861 
1862 		if (vptr->mii_status & VELOCITY_LINK_FAIL)
1863 			netif_stop_queue(vptr->dev);
1864 		else
1865 			netif_wake_queue(vptr->dev);
1866 
1867 	}
1868 	if (status & ISR_MIBFI)
1869 		velocity_update_hw_mibs(vptr);
1870 	if (status & ISR_LSTEI)
1871 		mac_rx_queue_wake(vptr->mac_regs);
1872 }
1873 
1874 /**
1875  *	tx_srv		-	transmit interrupt service
1876  *	@vptr; Velocity
1877  *
1878  *	Scan the queues looking for transmitted packets that
1879  *	we can complete and clean up. Update any statistics as
1880  *	necessary/
1881  */
1882 static int velocity_tx_srv(struct velocity_info *vptr)
1883 {
1884 	struct tx_desc *td;
1885 	int qnum;
1886 	int full = 0;
1887 	int idx;
1888 	int works = 0;
1889 	struct velocity_td_info *tdinfo;
1890 	struct net_device_stats *stats = &vptr->dev->stats;
1891 
1892 	for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1893 		for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1894 			idx = (idx + 1) % vptr->options.numtx) {
1895 
1896 			/*
1897 			 *	Get Tx Descriptor
1898 			 */
1899 			td = &(vptr->tx.rings[qnum][idx]);
1900 			tdinfo = &(vptr->tx.infos[qnum][idx]);
1901 
1902 			if (td->tdesc0.len & OWNED_BY_NIC)
1903 				break;
1904 
1905 			if ((works++ > 15))
1906 				break;
1907 
1908 			if (td->tdesc0.TSR & TSR0_TERR) {
1909 				stats->tx_errors++;
1910 				stats->tx_dropped++;
1911 				if (td->tdesc0.TSR & TSR0_CDH)
1912 					stats->tx_heartbeat_errors++;
1913 				if (td->tdesc0.TSR & TSR0_CRS)
1914 					stats->tx_carrier_errors++;
1915 				if (td->tdesc0.TSR & TSR0_ABT)
1916 					stats->tx_aborted_errors++;
1917 				if (td->tdesc0.TSR & TSR0_OWC)
1918 					stats->tx_window_errors++;
1919 			} else {
1920 				stats->tx_packets++;
1921 				stats->tx_bytes += tdinfo->skb->len;
1922 			}
1923 			velocity_free_tx_buf(vptr, tdinfo, td);
1924 			vptr->tx.used[qnum]--;
1925 		}
1926 		vptr->tx.tail[qnum] = idx;
1927 
1928 		if (AVAIL_TD(vptr, qnum) < 1)
1929 			full = 1;
1930 	}
1931 	/*
1932 	 *	Look to see if we should kick the transmit network
1933 	 *	layer for more work.
1934 	 */
1935 	if (netif_queue_stopped(vptr->dev) && (full == 0) &&
1936 	    (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1937 		netif_wake_queue(vptr->dev);
1938 	}
1939 	return works;
1940 }
1941 
1942 /**
1943  *	velocity_rx_csum	-	checksum process
1944  *	@rd: receive packet descriptor
1945  *	@skb: network layer packet buffer
1946  *
1947  *	Process the status bits for the received packet and determine
1948  *	if the checksum was computed and verified by the hardware
1949  */
1950 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1951 {
1952 	skb_checksum_none_assert(skb);
1953 
1954 	if (rd->rdesc1.CSM & CSM_IPKT) {
1955 		if (rd->rdesc1.CSM & CSM_IPOK) {
1956 			if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1957 					(rd->rdesc1.CSM & CSM_UDPKT)) {
1958 				if (!(rd->rdesc1.CSM & CSM_TUPOK))
1959 					return;
1960 			}
1961 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1962 		}
1963 	}
1964 }
1965 
1966 /**
1967  *	velocity_rx_copy	-	in place Rx copy for small packets
1968  *	@rx_skb: network layer packet buffer candidate
1969  *	@pkt_size: received data size
1970  *	@rd: receive packet descriptor
1971  *	@dev: network device
1972  *
1973  *	Replace the current skb that is scheduled for Rx processing by a
1974  *	shorter, immediately allocated skb, if the received packet is small
1975  *	enough. This function returns a negative value if the received
1976  *	packet is too big or if memory is exhausted.
1977  */
1978 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1979 			    struct velocity_info *vptr)
1980 {
1981 	int ret = -1;
1982 	if (pkt_size < rx_copybreak) {
1983 		struct sk_buff *new_skb;
1984 
1985 		new_skb = netdev_alloc_skb_ip_align(vptr->dev, pkt_size);
1986 		if (new_skb) {
1987 			new_skb->ip_summed = rx_skb[0]->ip_summed;
1988 			skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
1989 			*rx_skb = new_skb;
1990 			ret = 0;
1991 		}
1992 
1993 	}
1994 	return ret;
1995 }
1996 
1997 /**
1998  *	velocity_iph_realign	-	IP header alignment
1999  *	@vptr: velocity we are handling
2000  *	@skb: network layer packet buffer
2001  *	@pkt_size: received data size
2002  *
2003  *	Align IP header on a 2 bytes boundary. This behavior can be
2004  *	configured by the user.
2005  */
2006 static inline void velocity_iph_realign(struct velocity_info *vptr,
2007 					struct sk_buff *skb, int pkt_size)
2008 {
2009 	if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2010 		memmove(skb->data + 2, skb->data, pkt_size);
2011 		skb_reserve(skb, 2);
2012 	}
2013 }
2014 
2015 /**
2016  *	velocity_receive_frame	-	received packet processor
2017  *	@vptr: velocity we are handling
2018  *	@idx: ring index
2019  *
2020  *	A packet has arrived. We process the packet and if appropriate
2021  *	pass the frame up the network stack
2022  */
2023 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2024 {
2025 	void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
2026 	struct net_device_stats *stats = &vptr->dev->stats;
2027 	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2028 	struct rx_desc *rd = &(vptr->rx.ring[idx]);
2029 	int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2030 	struct sk_buff *skb;
2031 
2032 	if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
2033 		VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
2034 		stats->rx_length_errors++;
2035 		return -EINVAL;
2036 	}
2037 
2038 	if (rd->rdesc0.RSR & RSR_MAR)
2039 		stats->multicast++;
2040 
2041 	skb = rd_info->skb;
2042 
2043 	pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
2044 				    vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
2045 
2046 	/*
2047 	 *	Drop frame not meeting IEEE 802.3
2048 	 */
2049 
2050 	if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
2051 		if (rd->rdesc0.RSR & RSR_RL) {
2052 			stats->rx_length_errors++;
2053 			return -EINVAL;
2054 		}
2055 	}
2056 
2057 	pci_action = pci_dma_sync_single_for_device;
2058 
2059 	velocity_rx_csum(rd, skb);
2060 
2061 	if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2062 		velocity_iph_realign(vptr, skb, pkt_len);
2063 		pci_action = pci_unmap_single;
2064 		rd_info->skb = NULL;
2065 	}
2066 
2067 	pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
2068 		   PCI_DMA_FROMDEVICE);
2069 
2070 	skb_put(skb, pkt_len - 4);
2071 	skb->protocol = eth_type_trans(skb, vptr->dev);
2072 
2073 	if (rd->rdesc0.RSR & RSR_DETAG) {
2074 		u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG));
2075 
2076 		__vlan_hwaccel_put_tag(skb, vid);
2077 	}
2078 	netif_rx(skb);
2079 
2080 	stats->rx_bytes += pkt_len;
2081 	stats->rx_packets++;
2082 
2083 	return 0;
2084 }
2085 
2086 /**
2087  *	velocity_rx_srv		-	service RX interrupt
2088  *	@vptr: velocity
2089  *
2090  *	Walk the receive ring of the velocity adapter and remove
2091  *	any received packets from the receive queue. Hand the ring
2092  *	slots back to the adapter for reuse.
2093  */
2094 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2095 {
2096 	struct net_device_stats *stats = &vptr->dev->stats;
2097 	int rd_curr = vptr->rx.curr;
2098 	int works = 0;
2099 
2100 	while (works < budget_left) {
2101 		struct rx_desc *rd = vptr->rx.ring + rd_curr;
2102 
2103 		if (!vptr->rx.info[rd_curr].skb)
2104 			break;
2105 
2106 		if (rd->rdesc0.len & OWNED_BY_NIC)
2107 			break;
2108 
2109 		rmb();
2110 
2111 		/*
2112 		 *	Don't drop CE or RL error frame although RXOK is off
2113 		 */
2114 		if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2115 			if (velocity_receive_frame(vptr, rd_curr) < 0)
2116 				stats->rx_dropped++;
2117 		} else {
2118 			if (rd->rdesc0.RSR & RSR_CRC)
2119 				stats->rx_crc_errors++;
2120 			if (rd->rdesc0.RSR & RSR_FAE)
2121 				stats->rx_frame_errors++;
2122 
2123 			stats->rx_dropped++;
2124 		}
2125 
2126 		rd->size |= RX_INTEN;
2127 
2128 		rd_curr++;
2129 		if (rd_curr >= vptr->options.numrx)
2130 			rd_curr = 0;
2131 		works++;
2132 	}
2133 
2134 	vptr->rx.curr = rd_curr;
2135 
2136 	if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2137 		velocity_give_many_rx_descs(vptr);
2138 
2139 	VAR_USED(stats);
2140 	return works;
2141 }
2142 
2143 static int velocity_poll(struct napi_struct *napi, int budget)
2144 {
2145 	struct velocity_info *vptr = container_of(napi,
2146 			struct velocity_info, napi);
2147 	unsigned int rx_done;
2148 	unsigned long flags;
2149 
2150 	spin_lock_irqsave(&vptr->lock, flags);
2151 	/*
2152 	 * Do rx and tx twice for performance (taken from the VIA
2153 	 * out-of-tree driver).
2154 	 */
2155 	rx_done = velocity_rx_srv(vptr, budget / 2);
2156 	velocity_tx_srv(vptr);
2157 	rx_done += velocity_rx_srv(vptr, budget - rx_done);
2158 	velocity_tx_srv(vptr);
2159 
2160 	/* If budget not fully consumed, exit the polling mode */
2161 	if (rx_done < budget) {
2162 		napi_complete(napi);
2163 		mac_enable_int(vptr->mac_regs);
2164 	}
2165 	spin_unlock_irqrestore(&vptr->lock, flags);
2166 
2167 	return rx_done;
2168 }
2169 
2170 /**
2171  *	velocity_intr		-	interrupt callback
2172  *	@irq: interrupt number
2173  *	@dev_instance: interrupting device
2174  *
2175  *	Called whenever an interrupt is generated by the velocity
2176  *	adapter IRQ line. We may not be the source of the interrupt
2177  *	and need to identify initially if we are, and if not exit as
2178  *	efficiently as possible.
2179  */
2180 static irqreturn_t velocity_intr(int irq, void *dev_instance)
2181 {
2182 	struct net_device *dev = dev_instance;
2183 	struct velocity_info *vptr = netdev_priv(dev);
2184 	u32 isr_status;
2185 
2186 	spin_lock(&vptr->lock);
2187 	isr_status = mac_read_isr(vptr->mac_regs);
2188 
2189 	/* Not us ? */
2190 	if (isr_status == 0) {
2191 		spin_unlock(&vptr->lock);
2192 		return IRQ_NONE;
2193 	}
2194 
2195 	/* Ack the interrupt */
2196 	mac_write_isr(vptr->mac_regs, isr_status);
2197 
2198 	if (likely(napi_schedule_prep(&vptr->napi))) {
2199 		mac_disable_int(vptr->mac_regs);
2200 		__napi_schedule(&vptr->napi);
2201 	}
2202 
2203 	if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2204 		velocity_error(vptr, isr_status);
2205 
2206 	spin_unlock(&vptr->lock);
2207 
2208 	return IRQ_HANDLED;
2209 }
2210 
2211 /**
2212  *	velocity_open		-	interface activation callback
2213  *	@dev: network layer device to open
2214  *
2215  *	Called when the network layer brings the interface up. Returns
2216  *	a negative posix error code on failure, or zero on success.
2217  *
2218  *	All the ring allocation and set up is done on open for this
2219  *	adapter to minimise memory usage when inactive
2220  */
2221 static int velocity_open(struct net_device *dev)
2222 {
2223 	struct velocity_info *vptr = netdev_priv(dev);
2224 	int ret;
2225 
2226 	ret = velocity_init_rings(vptr, dev->mtu);
2227 	if (ret < 0)
2228 		goto out;
2229 
2230 	/* Ensure chip is running */
2231 	pci_set_power_state(vptr->pdev, PCI_D0);
2232 
2233 	velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2234 
2235 	ret = request_irq(vptr->pdev->irq, velocity_intr, IRQF_SHARED,
2236 			  dev->name, dev);
2237 	if (ret < 0) {
2238 		/* Power down the chip */
2239 		pci_set_power_state(vptr->pdev, PCI_D3hot);
2240 		velocity_free_rings(vptr);
2241 		goto out;
2242 	}
2243 
2244 	velocity_give_many_rx_descs(vptr);
2245 
2246 	mac_enable_int(vptr->mac_regs);
2247 	netif_start_queue(dev);
2248 	napi_enable(&vptr->napi);
2249 	vptr->flags |= VELOCITY_FLAGS_OPENED;
2250 out:
2251 	return ret;
2252 }
2253 
2254 /**
2255  *	velocity_shutdown	-	shut down the chip
2256  *	@vptr: velocity to deactivate
2257  *
2258  *	Shuts down the internal operations of the velocity and
2259  *	disables interrupts, autopolling, transmit and receive
2260  */
2261 static void velocity_shutdown(struct velocity_info *vptr)
2262 {
2263 	struct mac_regs __iomem *regs = vptr->mac_regs;
2264 	mac_disable_int(regs);
2265 	writel(CR0_STOP, &regs->CR0Set);
2266 	writew(0xFFFF, &regs->TDCSRClr);
2267 	writeb(0xFF, &regs->RDCSRClr);
2268 	safe_disable_mii_autopoll(regs);
2269 	mac_clear_isr(regs);
2270 }
2271 
2272 /**
2273  *	velocity_change_mtu	-	MTU change callback
2274  *	@dev: network device
2275  *	@new_mtu: desired MTU
2276  *
2277  *	Handle requests from the networking layer for MTU change on
2278  *	this interface. It gets called on a change by the network layer.
2279  *	Return zero for success or negative posix error code.
2280  */
2281 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2282 {
2283 	struct velocity_info *vptr = netdev_priv(dev);
2284 	int ret = 0;
2285 
2286 	if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
2287 		VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
2288 				vptr->dev->name);
2289 		ret = -EINVAL;
2290 		goto out_0;
2291 	}
2292 
2293 	if (!netif_running(dev)) {
2294 		dev->mtu = new_mtu;
2295 		goto out_0;
2296 	}
2297 
2298 	if (dev->mtu != new_mtu) {
2299 		struct velocity_info *tmp_vptr;
2300 		unsigned long flags;
2301 		struct rx_info rx;
2302 		struct tx_info tx;
2303 
2304 		tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2305 		if (!tmp_vptr) {
2306 			ret = -ENOMEM;
2307 			goto out_0;
2308 		}
2309 
2310 		tmp_vptr->dev = dev;
2311 		tmp_vptr->pdev = vptr->pdev;
2312 		tmp_vptr->options = vptr->options;
2313 		tmp_vptr->tx.numq = vptr->tx.numq;
2314 
2315 		ret = velocity_init_rings(tmp_vptr, new_mtu);
2316 		if (ret < 0)
2317 			goto out_free_tmp_vptr_1;
2318 
2319 		spin_lock_irqsave(&vptr->lock, flags);
2320 
2321 		netif_stop_queue(dev);
2322 		velocity_shutdown(vptr);
2323 
2324 		rx = vptr->rx;
2325 		tx = vptr->tx;
2326 
2327 		vptr->rx = tmp_vptr->rx;
2328 		vptr->tx = tmp_vptr->tx;
2329 
2330 		tmp_vptr->rx = rx;
2331 		tmp_vptr->tx = tx;
2332 
2333 		dev->mtu = new_mtu;
2334 
2335 		velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2336 
2337 		velocity_give_many_rx_descs(vptr);
2338 
2339 		mac_enable_int(vptr->mac_regs);
2340 		netif_start_queue(dev);
2341 
2342 		spin_unlock_irqrestore(&vptr->lock, flags);
2343 
2344 		velocity_free_rings(tmp_vptr);
2345 
2346 out_free_tmp_vptr_1:
2347 		kfree(tmp_vptr);
2348 	}
2349 out_0:
2350 	return ret;
2351 }
2352 
2353 /**
2354  *	velocity_mii_ioctl		-	MII ioctl handler
2355  *	@dev: network device
2356  *	@ifr: the ifreq block for the ioctl
2357  *	@cmd: the command
2358  *
2359  *	Process MII requests made via ioctl from the network layer. These
2360  *	are used by tools like kudzu to interrogate the link state of the
2361  *	hardware
2362  */
2363 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2364 {
2365 	struct velocity_info *vptr = netdev_priv(dev);
2366 	struct mac_regs __iomem *regs = vptr->mac_regs;
2367 	unsigned long flags;
2368 	struct mii_ioctl_data *miidata = if_mii(ifr);
2369 	int err;
2370 
2371 	switch (cmd) {
2372 	case SIOCGMIIPHY:
2373 		miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2374 		break;
2375 	case SIOCGMIIREG:
2376 		if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2377 			return -ETIMEDOUT;
2378 		break;
2379 	case SIOCSMIIREG:
2380 		spin_lock_irqsave(&vptr->lock, flags);
2381 		err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2382 		spin_unlock_irqrestore(&vptr->lock, flags);
2383 		check_connection_type(vptr->mac_regs);
2384 		if (err)
2385 			return err;
2386 		break;
2387 	default:
2388 		return -EOPNOTSUPP;
2389 	}
2390 	return 0;
2391 }
2392 
2393 /**
2394  *	velocity_ioctl		-	ioctl entry point
2395  *	@dev: network device
2396  *	@rq: interface request ioctl
2397  *	@cmd: command code
2398  *
2399  *	Called when the user issues an ioctl request to the network
2400  *	device in question. The velocity interface supports MII.
2401  */
2402 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2403 {
2404 	struct velocity_info *vptr = netdev_priv(dev);
2405 	int ret;
2406 
2407 	/* If we are asked for information and the device is power
2408 	   saving then we need to bring the device back up to talk to it */
2409 
2410 	if (!netif_running(dev))
2411 		pci_set_power_state(vptr->pdev, PCI_D0);
2412 
2413 	switch (cmd) {
2414 	case SIOCGMIIPHY:	/* Get address of MII PHY in use. */
2415 	case SIOCGMIIREG:	/* Read MII PHY register. */
2416 	case SIOCSMIIREG:	/* Write to MII PHY register. */
2417 		ret = velocity_mii_ioctl(dev, rq, cmd);
2418 		break;
2419 
2420 	default:
2421 		ret = -EOPNOTSUPP;
2422 	}
2423 	if (!netif_running(dev))
2424 		pci_set_power_state(vptr->pdev, PCI_D3hot);
2425 
2426 
2427 	return ret;
2428 }
2429 
2430 /**
2431  *	velocity_get_status	-	statistics callback
2432  *	@dev: network device
2433  *
2434  *	Callback from the network layer to allow driver statistics
2435  *	to be resynchronized with hardware collected state. In the
2436  *	case of the velocity we need to pull the MIB counters from
2437  *	the hardware into the counters before letting the network
2438  *	layer display them.
2439  */
2440 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2441 {
2442 	struct velocity_info *vptr = netdev_priv(dev);
2443 
2444 	/* If the hardware is down, don't touch MII */
2445 	if (!netif_running(dev))
2446 		return &dev->stats;
2447 
2448 	spin_lock_irq(&vptr->lock);
2449 	velocity_update_hw_mibs(vptr);
2450 	spin_unlock_irq(&vptr->lock);
2451 
2452 	dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2453 	dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2454 	dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2455 
2456 //  unsigned long   rx_dropped;     /* no space in linux buffers    */
2457 	dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2458 	/* detailed rx_errors: */
2459 //  unsigned long   rx_length_errors;
2460 //  unsigned long   rx_over_errors;     /* receiver ring buff overflow  */
2461 	dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2462 //  unsigned long   rx_frame_errors;    /* recv'd frame alignment error */
2463 //  unsigned long   rx_fifo_errors;     /* recv'r fifo overrun      */
2464 //  unsigned long   rx_missed_errors;   /* receiver missed packet   */
2465 
2466 	/* detailed tx_errors */
2467 //  unsigned long   tx_fifo_errors;
2468 
2469 	return &dev->stats;
2470 }
2471 
2472 /**
2473  *	velocity_close		-	close adapter callback
2474  *	@dev: network device
2475  *
2476  *	Callback from the network layer when the velocity is being
2477  *	deactivated by the network layer
2478  */
2479 static int velocity_close(struct net_device *dev)
2480 {
2481 	struct velocity_info *vptr = netdev_priv(dev);
2482 
2483 	napi_disable(&vptr->napi);
2484 	netif_stop_queue(dev);
2485 	velocity_shutdown(vptr);
2486 
2487 	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2488 		velocity_get_ip(vptr);
2489 	if (dev->irq != 0)
2490 		free_irq(dev->irq, dev);
2491 
2492 	/* Power down the chip */
2493 	pci_set_power_state(vptr->pdev, PCI_D3hot);
2494 
2495 	velocity_free_rings(vptr);
2496 
2497 	vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2498 	return 0;
2499 }
2500 
2501 /**
2502  *	velocity_xmit		-	transmit packet callback
2503  *	@skb: buffer to transmit
2504  *	@dev: network device
2505  *
2506  *	Called by the networ layer to request a packet is queued to
2507  *	the velocity. Returns zero on success.
2508  */
2509 static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2510 				 struct net_device *dev)
2511 {
2512 	struct velocity_info *vptr = netdev_priv(dev);
2513 	int qnum = 0;
2514 	struct tx_desc *td_ptr;
2515 	struct velocity_td_info *tdinfo;
2516 	unsigned long flags;
2517 	int pktlen;
2518 	int index, prev;
2519 	int i = 0;
2520 
2521 	if (skb_padto(skb, ETH_ZLEN))
2522 		goto out;
2523 
2524 	/* The hardware can handle at most 7 memory segments, so merge
2525 	 * the skb if there are more */
2526 	if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2527 		kfree_skb(skb);
2528 		return NETDEV_TX_OK;
2529 	}
2530 
2531 	pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2532 			max_t(unsigned int, skb->len, ETH_ZLEN) :
2533 				skb_headlen(skb);
2534 
2535 	spin_lock_irqsave(&vptr->lock, flags);
2536 
2537 	index = vptr->tx.curr[qnum];
2538 	td_ptr = &(vptr->tx.rings[qnum][index]);
2539 	tdinfo = &(vptr->tx.infos[qnum][index]);
2540 
2541 	td_ptr->tdesc1.TCR = TCR0_TIC;
2542 	td_ptr->td_buf[0].size &= ~TD_QUEUE;
2543 
2544 	/*
2545 	 *	Map the linear network buffer into PCI space and
2546 	 *	add it to the transmit ring.
2547 	 */
2548 	tdinfo->skb = skb;
2549 	tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
2550 	td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2551 	td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2552 	td_ptr->td_buf[0].pa_high = 0;
2553 	td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2554 
2555 	/* Handle fragments */
2556 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2557 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2558 
2559 		tdinfo->skb_dma[i + 1] = skb_frag_dma_map(&vptr->pdev->dev,
2560 							  frag, 0,
2561 							  skb_frag_size(frag),
2562 							  DMA_TO_DEVICE);
2563 
2564 		td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2565 		td_ptr->td_buf[i + 1].pa_high = 0;
2566 		td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag));
2567 	}
2568 	tdinfo->nskb_dma = i + 1;
2569 
2570 	td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2571 
2572 	if (vlan_tx_tag_present(skb)) {
2573 		td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb));
2574 		td_ptr->tdesc1.TCR |= TCR0_VETAG;
2575 	}
2576 
2577 	/*
2578 	 *	Handle hardware checksum
2579 	 */
2580 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2581 		const struct iphdr *ip = ip_hdr(skb);
2582 		if (ip->protocol == IPPROTO_TCP)
2583 			td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2584 		else if (ip->protocol == IPPROTO_UDP)
2585 			td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2586 		td_ptr->tdesc1.TCR |= TCR0_IPCK;
2587 	}
2588 
2589 	prev = index - 1;
2590 	if (prev < 0)
2591 		prev = vptr->options.numtx - 1;
2592 	td_ptr->tdesc0.len |= OWNED_BY_NIC;
2593 	vptr->tx.used[qnum]++;
2594 	vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2595 
2596 	if (AVAIL_TD(vptr, qnum) < 1)
2597 		netif_stop_queue(dev);
2598 
2599 	td_ptr = &(vptr->tx.rings[qnum][prev]);
2600 	td_ptr->td_buf[0].size |= TD_QUEUE;
2601 	mac_tx_queue_wake(vptr->mac_regs, qnum);
2602 
2603 	spin_unlock_irqrestore(&vptr->lock, flags);
2604 out:
2605 	return NETDEV_TX_OK;
2606 }
2607 
2608 static const struct net_device_ops velocity_netdev_ops = {
2609 	.ndo_open		= velocity_open,
2610 	.ndo_stop		= velocity_close,
2611 	.ndo_start_xmit		= velocity_xmit,
2612 	.ndo_get_stats		= velocity_get_stats,
2613 	.ndo_validate_addr	= eth_validate_addr,
2614 	.ndo_set_mac_address	= eth_mac_addr,
2615 	.ndo_set_rx_mode	= velocity_set_multi,
2616 	.ndo_change_mtu		= velocity_change_mtu,
2617 	.ndo_do_ioctl		= velocity_ioctl,
2618 	.ndo_vlan_rx_add_vid	= velocity_vlan_rx_add_vid,
2619 	.ndo_vlan_rx_kill_vid	= velocity_vlan_rx_kill_vid,
2620 };
2621 
2622 /**
2623  *	velocity_init_info	-	init private data
2624  *	@pdev: PCI device
2625  *	@vptr: Velocity info
2626  *	@info: Board type
2627  *
2628  *	Set up the initial velocity_info struct for the device that has been
2629  *	discovered.
2630  */
2631 static void __devinit velocity_init_info(struct pci_dev *pdev,
2632 					 struct velocity_info *vptr,
2633 					 const struct velocity_info_tbl *info)
2634 {
2635 	memset(vptr, 0, sizeof(struct velocity_info));
2636 
2637 	vptr->pdev = pdev;
2638 	vptr->chip_id = info->chip_id;
2639 	vptr->tx.numq = info->txqueue;
2640 	vptr->multicast_limit = MCAM_SIZE;
2641 	spin_lock_init(&vptr->lock);
2642 }
2643 
2644 /**
2645  *	velocity_get_pci_info	-	retrieve PCI info for device
2646  *	@vptr: velocity device
2647  *	@pdev: PCI device it matches
2648  *
2649  *	Retrieve the PCI configuration space data that interests us from
2650  *	the kernel PCI layer
2651  */
2652 static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
2653 {
2654 	vptr->rev_id = pdev->revision;
2655 
2656 	pci_set_master(pdev);
2657 
2658 	vptr->ioaddr = pci_resource_start(pdev, 0);
2659 	vptr->memaddr = pci_resource_start(pdev, 1);
2660 
2661 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2662 		dev_err(&pdev->dev,
2663 			   "region #0 is not an I/O resource, aborting.\n");
2664 		return -EINVAL;
2665 	}
2666 
2667 	if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2668 		dev_err(&pdev->dev,
2669 			   "region #1 is an I/O resource, aborting.\n");
2670 		return -EINVAL;
2671 	}
2672 
2673 	if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2674 		dev_err(&pdev->dev, "region #1 is too small.\n");
2675 		return -EINVAL;
2676 	}
2677 	vptr->pdev = pdev;
2678 
2679 	return 0;
2680 }
2681 
2682 /**
2683  *	velocity_print_info	-	per driver data
2684  *	@vptr: velocity
2685  *
2686  *	Print per driver data as the kernel driver finds Velocity
2687  *	hardware
2688  */
2689 static void __devinit velocity_print_info(struct velocity_info *vptr)
2690 {
2691 	struct net_device *dev = vptr->dev;
2692 
2693 	printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
2694 	printk(KERN_INFO "%s: Ethernet Address: %pM\n",
2695 		dev->name, dev->dev_addr);
2696 }
2697 
2698 static u32 velocity_get_link(struct net_device *dev)
2699 {
2700 	struct velocity_info *vptr = netdev_priv(dev);
2701 	struct mac_regs __iomem *regs = vptr->mac_regs;
2702 	return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2703 }
2704 
2705 /**
2706  *	velocity_found1		-	set up discovered velocity card
2707  *	@pdev: PCI device
2708  *	@ent: PCI device table entry that matched
2709  *
2710  *	Configure a discovered adapter from scratch. Return a negative
2711  *	errno error code on failure paths.
2712  */
2713 static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
2714 {
2715 	static int first = 1;
2716 	struct net_device *dev;
2717 	int i;
2718 	const char *drv_string;
2719 	const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data];
2720 	struct velocity_info *vptr;
2721 	struct mac_regs __iomem *regs;
2722 	int ret = -ENOMEM;
2723 
2724 	/* FIXME: this driver, like almost all other ethernet drivers,
2725 	 * can support more than MAX_UNITS.
2726 	 */
2727 	if (velocity_nics >= MAX_UNITS) {
2728 		dev_notice(&pdev->dev, "already found %d NICs.\n",
2729 			   velocity_nics);
2730 		return -ENODEV;
2731 	}
2732 
2733 	dev = alloc_etherdev(sizeof(struct velocity_info));
2734 	if (!dev) {
2735 		dev_err(&pdev->dev, "allocate net device failed.\n");
2736 		goto out;
2737 	}
2738 
2739 	/* Chain it all together */
2740 
2741 	SET_NETDEV_DEV(dev, &pdev->dev);
2742 	vptr = netdev_priv(dev);
2743 
2744 
2745 	if (first) {
2746 		printk(KERN_INFO "%s Ver. %s\n",
2747 			VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2748 		printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2749 		printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
2750 		first = 0;
2751 	}
2752 
2753 	velocity_init_info(pdev, vptr, info);
2754 
2755 	vptr->dev = dev;
2756 
2757 	ret = pci_enable_device(pdev);
2758 	if (ret < 0)
2759 		goto err_free_dev;
2760 
2761 	dev->irq = pdev->irq;
2762 
2763 	ret = velocity_get_pci_info(vptr, pdev);
2764 	if (ret < 0) {
2765 		/* error message already printed */
2766 		goto err_disable;
2767 	}
2768 
2769 	ret = pci_request_regions(pdev, VELOCITY_NAME);
2770 	if (ret < 0) {
2771 		dev_err(&pdev->dev, "No PCI resources.\n");
2772 		goto err_disable;
2773 	}
2774 
2775 	regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2776 	if (regs == NULL) {
2777 		ret = -EIO;
2778 		goto err_release_res;
2779 	}
2780 
2781 	vptr->mac_regs = regs;
2782 
2783 	mac_wol_reset(regs);
2784 
2785 	dev->base_addr = vptr->ioaddr;
2786 
2787 	for (i = 0; i < 6; i++)
2788 		dev->dev_addr[i] = readb(&regs->PAR[i]);
2789 
2790 
2791 	drv_string = dev_driver_string(&pdev->dev);
2792 
2793 	velocity_get_options(&vptr->options, velocity_nics, drv_string);
2794 
2795 	/*
2796 	 *	Mask out the options cannot be set to the chip
2797 	 */
2798 
2799 	vptr->options.flags &= info->flags;
2800 
2801 	/*
2802 	 *	Enable the chip specified capbilities
2803 	 */
2804 
2805 	vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2806 
2807 	vptr->wol_opts = vptr->options.wol_opts;
2808 	vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2809 
2810 	vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2811 
2812 	dev->irq = pdev->irq;
2813 	dev->netdev_ops = &velocity_netdev_ops;
2814 	dev->ethtool_ops = &velocity_ethtool_ops;
2815 	netif_napi_add(dev, &vptr->napi, velocity_poll, VELOCITY_NAPI_WEIGHT);
2816 
2817 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HW_VLAN_TX;
2818 	dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_FILTER |
2819 		NETIF_F_HW_VLAN_RX | NETIF_F_IP_CSUM;
2820 
2821 	ret = register_netdev(dev);
2822 	if (ret < 0)
2823 		goto err_iounmap;
2824 
2825 	if (!velocity_get_link(dev)) {
2826 		netif_carrier_off(dev);
2827 		vptr->mii_status |= VELOCITY_LINK_FAIL;
2828 	}
2829 
2830 	velocity_print_info(vptr);
2831 	pci_set_drvdata(pdev, dev);
2832 
2833 	/* and leave the chip powered down */
2834 
2835 	pci_set_power_state(pdev, PCI_D3hot);
2836 	velocity_nics++;
2837 out:
2838 	return ret;
2839 
2840 err_iounmap:
2841 	iounmap(regs);
2842 err_release_res:
2843 	pci_release_regions(pdev);
2844 err_disable:
2845 	pci_disable_device(pdev);
2846 err_free_dev:
2847 	free_netdev(dev);
2848 	goto out;
2849 }
2850 
2851 #ifdef CONFIG_PM
2852 /**
2853  *	wol_calc_crc		-	WOL CRC
2854  *	@pattern: data pattern
2855  *	@mask_pattern: mask
2856  *
2857  *	Compute the wake on lan crc hashes for the packet header
2858  *	we are interested in.
2859  */
2860 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2861 {
2862 	u16 crc = 0xFFFF;
2863 	u8 mask;
2864 	int i, j;
2865 
2866 	for (i = 0; i < size; i++) {
2867 		mask = mask_pattern[i];
2868 
2869 		/* Skip this loop if the mask equals to zero */
2870 		if (mask == 0x00)
2871 			continue;
2872 
2873 		for (j = 0; j < 8; j++) {
2874 			if ((mask & 0x01) == 0) {
2875 				mask >>= 1;
2876 				continue;
2877 			}
2878 			mask >>= 1;
2879 			crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
2880 		}
2881 	}
2882 	/*	Finally, invert the result once to get the correct data */
2883 	crc = ~crc;
2884 	return bitrev32(crc) >> 16;
2885 }
2886 
2887 /**
2888  *	velocity_set_wol	-	set up for wake on lan
2889  *	@vptr: velocity to set WOL status on
2890  *
2891  *	Set a card up for wake on lan either by unicast or by
2892  *	ARP packet.
2893  *
2894  *	FIXME: check static buffer is safe here
2895  */
2896 static int velocity_set_wol(struct velocity_info *vptr)
2897 {
2898 	struct mac_regs __iomem *regs = vptr->mac_regs;
2899 	enum speed_opt spd_dpx = vptr->options.spd_dpx;
2900 	static u8 buf[256];
2901 	int i;
2902 
2903 	static u32 mask_pattern[2][4] = {
2904 		{0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
2905 		{0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff}	 /* Magic Packet */
2906 	};
2907 
2908 	writew(0xFFFF, &regs->WOLCRClr);
2909 	writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
2910 	writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
2911 
2912 	/*
2913 	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
2914 	   writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
2915 	 */
2916 
2917 	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
2918 		writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
2919 
2920 	if (vptr->wol_opts & VELOCITY_WOL_ARP) {
2921 		struct arp_packet *arp = (struct arp_packet *) buf;
2922 		u16 crc;
2923 		memset(buf, 0, sizeof(struct arp_packet) + 7);
2924 
2925 		for (i = 0; i < 4; i++)
2926 			writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
2927 
2928 		arp->type = htons(ETH_P_ARP);
2929 		arp->ar_op = htons(1);
2930 
2931 		memcpy(arp->ar_tip, vptr->ip_addr, 4);
2932 
2933 		crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
2934 				(u8 *) & mask_pattern[0][0]);
2935 
2936 		writew(crc, &regs->PatternCRC[0]);
2937 		writew(WOLCR_ARP_EN, &regs->WOLCRSet);
2938 	}
2939 
2940 	BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
2941 	BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
2942 
2943 	writew(0x0FFF, &regs->WOLSRClr);
2944 
2945 	if (spd_dpx == SPD_DPX_1000_FULL)
2946 		goto mac_done;
2947 
2948 	if (spd_dpx != SPD_DPX_AUTO)
2949 		goto advertise_done;
2950 
2951 	if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
2952 		if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
2953 			MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
2954 
2955 		MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
2956 	}
2957 
2958 	if (vptr->mii_status & VELOCITY_SPEED_1000)
2959 		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
2960 
2961 advertise_done:
2962 	BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2963 
2964 	{
2965 		u8 GCR;
2966 		GCR = readb(&regs->CHIPGCR);
2967 		GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
2968 		writeb(GCR, &regs->CHIPGCR);
2969 	}
2970 
2971 mac_done:
2972 	BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
2973 	/* Turn on SWPTAG just before entering power mode */
2974 	BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
2975 	/* Go to bed ..... */
2976 	BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
2977 
2978 	return 0;
2979 }
2980 
2981 /**
2982  *	velocity_save_context	-	save registers
2983  *	@vptr: velocity
2984  *	@context: buffer for stored context
2985  *
2986  *	Retrieve the current configuration from the velocity hardware
2987  *	and stash it in the context structure, for use by the context
2988  *	restore functions. This allows us to save things we need across
2989  *	power down states
2990  */
2991 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
2992 {
2993 	struct mac_regs __iomem *regs = vptr->mac_regs;
2994 	u16 i;
2995 	u8 __iomem *ptr = (u8 __iomem *)regs;
2996 
2997 	for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
2998 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
2999 
3000 	for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3001 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3002 
3003 	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3004 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3005 
3006 }
3007 
3008 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3009 {
3010 	struct net_device *dev = pci_get_drvdata(pdev);
3011 	struct velocity_info *vptr = netdev_priv(dev);
3012 	unsigned long flags;
3013 
3014 	if (!netif_running(vptr->dev))
3015 		return 0;
3016 
3017 	netif_device_detach(vptr->dev);
3018 
3019 	spin_lock_irqsave(&vptr->lock, flags);
3020 	pci_save_state(pdev);
3021 
3022 	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3023 		velocity_get_ip(vptr);
3024 		velocity_save_context(vptr, &vptr->context);
3025 		velocity_shutdown(vptr);
3026 		velocity_set_wol(vptr);
3027 		pci_enable_wake(pdev, PCI_D3hot, 1);
3028 		pci_set_power_state(pdev, PCI_D3hot);
3029 	} else {
3030 		velocity_save_context(vptr, &vptr->context);
3031 		velocity_shutdown(vptr);
3032 		pci_disable_device(pdev);
3033 		pci_set_power_state(pdev, pci_choose_state(pdev, state));
3034 	}
3035 
3036 	spin_unlock_irqrestore(&vptr->lock, flags);
3037 	return 0;
3038 }
3039 
3040 /**
3041  *	velocity_restore_context	-	restore registers
3042  *	@vptr: velocity
3043  *	@context: buffer for stored context
3044  *
3045  *	Reload the register configuration from the velocity context
3046  *	created by velocity_save_context.
3047  */
3048 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3049 {
3050 	struct mac_regs __iomem *regs = vptr->mac_regs;
3051 	int i;
3052 	u8 __iomem *ptr = (u8 __iomem *)regs;
3053 
3054 	for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3055 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3056 
3057 	/* Just skip cr0 */
3058 	for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3059 		/* Clear */
3060 		writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3061 		/* Set */
3062 		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3063 	}
3064 
3065 	for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3066 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3067 
3068 	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3069 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3070 
3071 	for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3072 		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3073 }
3074 
3075 static int velocity_resume(struct pci_dev *pdev)
3076 {
3077 	struct net_device *dev = pci_get_drvdata(pdev);
3078 	struct velocity_info *vptr = netdev_priv(dev);
3079 	unsigned long flags;
3080 	int i;
3081 
3082 	if (!netif_running(vptr->dev))
3083 		return 0;
3084 
3085 	pci_set_power_state(pdev, PCI_D0);
3086 	pci_enable_wake(pdev, 0, 0);
3087 	pci_restore_state(pdev);
3088 
3089 	mac_wol_reset(vptr->mac_regs);
3090 
3091 	spin_lock_irqsave(&vptr->lock, flags);
3092 	velocity_restore_context(vptr, &vptr->context);
3093 	velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3094 	mac_disable_int(vptr->mac_regs);
3095 
3096 	velocity_tx_srv(vptr);
3097 
3098 	for (i = 0; i < vptr->tx.numq; i++) {
3099 		if (vptr->tx.used[i])
3100 			mac_tx_queue_wake(vptr->mac_regs, i);
3101 	}
3102 
3103 	mac_enable_int(vptr->mac_regs);
3104 	spin_unlock_irqrestore(&vptr->lock, flags);
3105 	netif_device_attach(vptr->dev);
3106 
3107 	return 0;
3108 }
3109 #endif
3110 
3111 /*
3112  *	Definition for our device driver. The PCI layer interface
3113  *	uses this to handle all our card discover and plugging
3114  */
3115 static struct pci_driver velocity_driver = {
3116 	.name		= VELOCITY_NAME,
3117 	.id_table	= velocity_id_table,
3118 	.probe		= velocity_found1,
3119 	.remove		= __devexit_p(velocity_remove1),
3120 #ifdef CONFIG_PM
3121 	.suspend	= velocity_suspend,
3122 	.resume		= velocity_resume,
3123 #endif
3124 };
3125 
3126 
3127 /**
3128  *	velocity_ethtool_up	-	pre hook for ethtool
3129  *	@dev: network device
3130  *
3131  *	Called before an ethtool operation. We need to make sure the
3132  *	chip is out of D3 state before we poke at it.
3133  */
3134 static int velocity_ethtool_up(struct net_device *dev)
3135 {
3136 	struct velocity_info *vptr = netdev_priv(dev);
3137 	if (!netif_running(dev))
3138 		pci_set_power_state(vptr->pdev, PCI_D0);
3139 	return 0;
3140 }
3141 
3142 /**
3143  *	velocity_ethtool_down	-	post hook for ethtool
3144  *	@dev: network device
3145  *
3146  *	Called after an ethtool operation. Restore the chip back to D3
3147  *	state if it isn't running.
3148  */
3149 static void velocity_ethtool_down(struct net_device *dev)
3150 {
3151 	struct velocity_info *vptr = netdev_priv(dev);
3152 	if (!netif_running(dev))
3153 		pci_set_power_state(vptr->pdev, PCI_D3hot);
3154 }
3155 
3156 static int velocity_get_settings(struct net_device *dev,
3157 				 struct ethtool_cmd *cmd)
3158 {
3159 	struct velocity_info *vptr = netdev_priv(dev);
3160 	struct mac_regs __iomem *regs = vptr->mac_regs;
3161 	u32 status;
3162 	status = check_connection_type(vptr->mac_regs);
3163 
3164 	cmd->supported = SUPPORTED_TP |
3165 			SUPPORTED_Autoneg |
3166 			SUPPORTED_10baseT_Half |
3167 			SUPPORTED_10baseT_Full |
3168 			SUPPORTED_100baseT_Half |
3169 			SUPPORTED_100baseT_Full |
3170 			SUPPORTED_1000baseT_Half |
3171 			SUPPORTED_1000baseT_Full;
3172 
3173 	cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
3174 	if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
3175 		cmd->advertising |=
3176 			ADVERTISED_10baseT_Half |
3177 			ADVERTISED_10baseT_Full |
3178 			ADVERTISED_100baseT_Half |
3179 			ADVERTISED_100baseT_Full |
3180 			ADVERTISED_1000baseT_Half |
3181 			ADVERTISED_1000baseT_Full;
3182 	} else {
3183 		switch (vptr->options.spd_dpx) {
3184 		case SPD_DPX_1000_FULL:
3185 			cmd->advertising |= ADVERTISED_1000baseT_Full;
3186 			break;
3187 		case SPD_DPX_100_HALF:
3188 			cmd->advertising |= ADVERTISED_100baseT_Half;
3189 			break;
3190 		case SPD_DPX_100_FULL:
3191 			cmd->advertising |= ADVERTISED_100baseT_Full;
3192 			break;
3193 		case SPD_DPX_10_HALF:
3194 			cmd->advertising |= ADVERTISED_10baseT_Half;
3195 			break;
3196 		case SPD_DPX_10_FULL:
3197 			cmd->advertising |= ADVERTISED_10baseT_Full;
3198 			break;
3199 		default:
3200 			break;
3201 		}
3202 	}
3203 
3204 	if (status & VELOCITY_SPEED_1000)
3205 		ethtool_cmd_speed_set(cmd, SPEED_1000);
3206 	else if (status & VELOCITY_SPEED_100)
3207 		ethtool_cmd_speed_set(cmd, SPEED_100);
3208 	else
3209 		ethtool_cmd_speed_set(cmd, SPEED_10);
3210 
3211 	cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3212 	cmd->port = PORT_TP;
3213 	cmd->transceiver = XCVR_INTERNAL;
3214 	cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3215 
3216 	if (status & VELOCITY_DUPLEX_FULL)
3217 		cmd->duplex = DUPLEX_FULL;
3218 	else
3219 		cmd->duplex = DUPLEX_HALF;
3220 
3221 	return 0;
3222 }
3223 
3224 static int velocity_set_settings(struct net_device *dev,
3225 				 struct ethtool_cmd *cmd)
3226 {
3227 	struct velocity_info *vptr = netdev_priv(dev);
3228 	u32 speed = ethtool_cmd_speed(cmd);
3229 	u32 curr_status;
3230 	u32 new_status = 0;
3231 	int ret = 0;
3232 
3233 	curr_status = check_connection_type(vptr->mac_regs);
3234 	curr_status &= (~VELOCITY_LINK_FAIL);
3235 
3236 	new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3237 	new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0);
3238 	new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3239 	new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3240 	new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3241 
3242 	if ((new_status & VELOCITY_AUTONEG_ENABLE) &&
3243 	    (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) {
3244 		ret = -EINVAL;
3245 	} else {
3246 		enum speed_opt spd_dpx;
3247 
3248 		if (new_status & VELOCITY_AUTONEG_ENABLE)
3249 			spd_dpx = SPD_DPX_AUTO;
3250 		else if ((new_status & VELOCITY_SPEED_1000) &&
3251 			 (new_status & VELOCITY_DUPLEX_FULL)) {
3252 			spd_dpx = SPD_DPX_1000_FULL;
3253 		} else if (new_status & VELOCITY_SPEED_100)
3254 			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3255 				SPD_DPX_100_FULL : SPD_DPX_100_HALF;
3256 		else if (new_status & VELOCITY_SPEED_10)
3257 			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3258 				SPD_DPX_10_FULL : SPD_DPX_10_HALF;
3259 		else
3260 			return -EOPNOTSUPP;
3261 
3262 		vptr->options.spd_dpx = spd_dpx;
3263 
3264 		velocity_set_media_mode(vptr, new_status);
3265 	}
3266 
3267 	return ret;
3268 }
3269 
3270 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3271 {
3272 	struct velocity_info *vptr = netdev_priv(dev);
3273 	strcpy(info->driver, VELOCITY_NAME);
3274 	strcpy(info->version, VELOCITY_VERSION);
3275 	strcpy(info->bus_info, pci_name(vptr->pdev));
3276 }
3277 
3278 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3279 {
3280 	struct velocity_info *vptr = netdev_priv(dev);
3281 	wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3282 	wol->wolopts |= WAKE_MAGIC;
3283 	/*
3284 	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
3285 		   wol.wolopts|=WAKE_PHY;
3286 			 */
3287 	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3288 		wol->wolopts |= WAKE_UCAST;
3289 	if (vptr->wol_opts & VELOCITY_WOL_ARP)
3290 		wol->wolopts |= WAKE_ARP;
3291 	memcpy(&wol->sopass, vptr->wol_passwd, 6);
3292 }
3293 
3294 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3295 {
3296 	struct velocity_info *vptr = netdev_priv(dev);
3297 
3298 	if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3299 		return -EFAULT;
3300 	vptr->wol_opts = VELOCITY_WOL_MAGIC;
3301 
3302 	/*
3303 	   if (wol.wolopts & WAKE_PHY) {
3304 	   vptr->wol_opts|=VELOCITY_WOL_PHY;
3305 	   vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3306 	   }
3307 	 */
3308 
3309 	if (wol->wolopts & WAKE_MAGIC) {
3310 		vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3311 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3312 	}
3313 	if (wol->wolopts & WAKE_UCAST) {
3314 		vptr->wol_opts |= VELOCITY_WOL_UCAST;
3315 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3316 	}
3317 	if (wol->wolopts & WAKE_ARP) {
3318 		vptr->wol_opts |= VELOCITY_WOL_ARP;
3319 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3320 	}
3321 	memcpy(vptr->wol_passwd, wol->sopass, 6);
3322 	return 0;
3323 }
3324 
3325 static u32 velocity_get_msglevel(struct net_device *dev)
3326 {
3327 	return msglevel;
3328 }
3329 
3330 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3331 {
3332 	 msglevel = value;
3333 }
3334 
3335 static int get_pending_timer_val(int val)
3336 {
3337 	int mult_bits = val >> 6;
3338 	int mult = 1;
3339 
3340 	switch (mult_bits)
3341 	{
3342 	case 1:
3343 		mult = 4; break;
3344 	case 2:
3345 		mult = 16; break;
3346 	case 3:
3347 		mult = 64; break;
3348 	case 0:
3349 	default:
3350 		break;
3351 	}
3352 
3353 	return (val & 0x3f) * mult;
3354 }
3355 
3356 static void set_pending_timer_val(int *val, u32 us)
3357 {
3358 	u8 mult = 0;
3359 	u8 shift = 0;
3360 
3361 	if (us >= 0x3f) {
3362 		mult = 1; /* mult with 4 */
3363 		shift = 2;
3364 	}
3365 	if (us >= 0x3f * 4) {
3366 		mult = 2; /* mult with 16 */
3367 		shift = 4;
3368 	}
3369 	if (us >= 0x3f * 16) {
3370 		mult = 3; /* mult with 64 */
3371 		shift = 6;
3372 	}
3373 
3374 	*val = (mult << 6) | ((us >> shift) & 0x3f);
3375 }
3376 
3377 
3378 static int velocity_get_coalesce(struct net_device *dev,
3379 		struct ethtool_coalesce *ecmd)
3380 {
3381 	struct velocity_info *vptr = netdev_priv(dev);
3382 
3383 	ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3384 	ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3385 
3386 	ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3387 	ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3388 
3389 	return 0;
3390 }
3391 
3392 static int velocity_set_coalesce(struct net_device *dev,
3393 		struct ethtool_coalesce *ecmd)
3394 {
3395 	struct velocity_info *vptr = netdev_priv(dev);
3396 	int max_us = 0x3f * 64;
3397 	unsigned long flags;
3398 
3399 	/* 6 bits of  */
3400 	if (ecmd->tx_coalesce_usecs > max_us)
3401 		return -EINVAL;
3402 	if (ecmd->rx_coalesce_usecs > max_us)
3403 		return -EINVAL;
3404 
3405 	if (ecmd->tx_max_coalesced_frames > 0xff)
3406 		return -EINVAL;
3407 	if (ecmd->rx_max_coalesced_frames > 0xff)
3408 		return -EINVAL;
3409 
3410 	vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3411 	vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3412 
3413 	set_pending_timer_val(&vptr->options.rxqueue_timer,
3414 			ecmd->rx_coalesce_usecs);
3415 	set_pending_timer_val(&vptr->options.txqueue_timer,
3416 			ecmd->tx_coalesce_usecs);
3417 
3418 	/* Setup the interrupt suppression and queue timers */
3419 	spin_lock_irqsave(&vptr->lock, flags);
3420 	mac_disable_int(vptr->mac_regs);
3421 	setup_adaptive_interrupts(vptr);
3422 	setup_queue_timers(vptr);
3423 
3424 	mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3425 	mac_clear_isr(vptr->mac_regs);
3426 	mac_enable_int(vptr->mac_regs);
3427 	spin_unlock_irqrestore(&vptr->lock, flags);
3428 
3429 	return 0;
3430 }
3431 
3432 static const char velocity_gstrings[][ETH_GSTRING_LEN] = {
3433 	"rx_all",
3434 	"rx_ok",
3435 	"tx_ok",
3436 	"rx_error",
3437 	"rx_runt_ok",
3438 	"rx_runt_err",
3439 	"rx_64",
3440 	"tx_64",
3441 	"rx_65_to_127",
3442 	"tx_65_to_127",
3443 	"rx_128_to_255",
3444 	"tx_128_to_255",
3445 	"rx_256_to_511",
3446 	"tx_256_to_511",
3447 	"rx_512_to_1023",
3448 	"tx_512_to_1023",
3449 	"rx_1024_to_1518",
3450 	"tx_1024_to_1518",
3451 	"tx_ether_collisions",
3452 	"rx_crc_errors",
3453 	"rx_jumbo",
3454 	"tx_jumbo",
3455 	"rx_mac_control_frames",
3456 	"tx_mac_control_frames",
3457 	"rx_frame_alignement_errors",
3458 	"rx_long_ok",
3459 	"rx_long_err",
3460 	"tx_sqe_errors",
3461 	"rx_no_buf",
3462 	"rx_symbol_errors",
3463 	"in_range_length_errors",
3464 	"late_collisions"
3465 };
3466 
3467 static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data)
3468 {
3469 	switch (sset) {
3470 	case ETH_SS_STATS:
3471 		memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings));
3472 		break;
3473 	}
3474 }
3475 
3476 static int velocity_get_sset_count(struct net_device *dev, int sset)
3477 {
3478 	switch (sset) {
3479 	case ETH_SS_STATS:
3480 		return ARRAY_SIZE(velocity_gstrings);
3481 	default:
3482 		return -EOPNOTSUPP;
3483 	}
3484 }
3485 
3486 static void velocity_get_ethtool_stats(struct net_device *dev,
3487 				       struct ethtool_stats *stats, u64 *data)
3488 {
3489 	if (netif_running(dev)) {
3490 		struct velocity_info *vptr = netdev_priv(dev);
3491 		u32 *p = vptr->mib_counter;
3492 		int i;
3493 
3494 		spin_lock_irq(&vptr->lock);
3495 		velocity_update_hw_mibs(vptr);
3496 		spin_unlock_irq(&vptr->lock);
3497 
3498 		for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++)
3499 			*data++ = *p++;
3500 	}
3501 }
3502 
3503 static const struct ethtool_ops velocity_ethtool_ops = {
3504 	.get_settings		= velocity_get_settings,
3505 	.set_settings		= velocity_set_settings,
3506 	.get_drvinfo		= velocity_get_drvinfo,
3507 	.get_wol		= velocity_ethtool_get_wol,
3508 	.set_wol		= velocity_ethtool_set_wol,
3509 	.get_msglevel		= velocity_get_msglevel,
3510 	.set_msglevel		= velocity_set_msglevel,
3511 	.get_link		= velocity_get_link,
3512 	.get_strings		= velocity_get_strings,
3513 	.get_sset_count		= velocity_get_sset_count,
3514 	.get_ethtool_stats	= velocity_get_ethtool_stats,
3515 	.get_coalesce		= velocity_get_coalesce,
3516 	.set_coalesce		= velocity_set_coalesce,
3517 	.begin			= velocity_ethtool_up,
3518 	.complete		= velocity_ethtool_down
3519 };
3520 
3521 #if defined(CONFIG_PM) && defined(CONFIG_INET)
3522 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3523 {
3524 	struct in_ifaddr *ifa = ptr;
3525 	struct net_device *dev = ifa->ifa_dev->dev;
3526 
3527 	if (dev_net(dev) == &init_net &&
3528 	    dev->netdev_ops == &velocity_netdev_ops)
3529 		velocity_get_ip(netdev_priv(dev));
3530 
3531 	return NOTIFY_DONE;
3532 }
3533 
3534 static struct notifier_block velocity_inetaddr_notifier = {
3535 	.notifier_call	= velocity_netdev_event,
3536 };
3537 
3538 static void velocity_register_notifier(void)
3539 {
3540 	register_inetaddr_notifier(&velocity_inetaddr_notifier);
3541 }
3542 
3543 static void velocity_unregister_notifier(void)
3544 {
3545 	unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3546 }
3547 
3548 #else
3549 
3550 #define velocity_register_notifier()	do {} while (0)
3551 #define velocity_unregister_notifier()	do {} while (0)
3552 
3553 #endif	/* defined(CONFIG_PM) && defined(CONFIG_INET) */
3554 
3555 /**
3556  *	velocity_init_module	-	load time function
3557  *
3558  *	Called when the velocity module is loaded. The PCI driver
3559  *	is registered with the PCI layer, and in turn will call
3560  *	the probe functions for each velocity adapter installed
3561  *	in the system.
3562  */
3563 static int __init velocity_init_module(void)
3564 {
3565 	int ret;
3566 
3567 	velocity_register_notifier();
3568 	ret = pci_register_driver(&velocity_driver);
3569 	if (ret < 0)
3570 		velocity_unregister_notifier();
3571 	return ret;
3572 }
3573 
3574 /**
3575  *	velocity_cleanup	-	module unload
3576  *
3577  *	When the velocity hardware is unloaded this function is called.
3578  *	It will clean up the notifiers and the unregister the PCI
3579  *	driver interface for this hardware. This in turn cleans up
3580  *	all discovered interfaces before returning from the function
3581  */
3582 static void __exit velocity_cleanup_module(void)
3583 {
3584 	velocity_unregister_notifier();
3585 	pci_unregister_driver(&velocity_driver);
3586 }
3587 
3588 module_init(velocity_init_module);
3589 module_exit(velocity_cleanup_module);
3590