1 /* 2 * This code is derived from the VIA reference driver (copyright message 3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for 4 * addition to the Linux kernel. 5 * 6 * The code has been merged into one source file, cleaned up to follow 7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned 8 * for 64bit hardware platforms. 9 * 10 * TODO 11 * rx_copybreak/alignment 12 * More testing 13 * 14 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk> 15 * Additional fixes and clean up: Francois Romieu 16 * 17 * This source has not been verified for use in safety critical systems. 18 * 19 * Please direct queries about the revamped driver to the linux-kernel 20 * list not VIA. 21 * 22 * Original code: 23 * 24 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc. 25 * All rights reserved. 26 * 27 * This software may be redistributed and/or modified under 28 * the terms of the GNU General Public License as published by the Free 29 * Software Foundation; either version 2 of the License, or 30 * any later version. 31 * 32 * This program is distributed in the hope that it will be useful, but 33 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 34 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 35 * for more details. 36 * 37 * Author: Chuang Liang-Shing, AJ Jiang 38 * 39 * Date: Jan 24, 2003 40 * 41 * MODULE_LICENSE("GPL"); 42 * 43 */ 44 45 #include <linux/module.h> 46 #include <linux/types.h> 47 #include <linux/bitops.h> 48 #include <linux/init.h> 49 #include <linux/dma-mapping.h> 50 #include <linux/mm.h> 51 #include <linux/errno.h> 52 #include <linux/ioport.h> 53 #include <linux/pci.h> 54 #include <linux/kernel.h> 55 #include <linux/netdevice.h> 56 #include <linux/etherdevice.h> 57 #include <linux/skbuff.h> 58 #include <linux/delay.h> 59 #include <linux/timer.h> 60 #include <linux/slab.h> 61 #include <linux/interrupt.h> 62 #include <linux/string.h> 63 #include <linux/wait.h> 64 #include <linux/io.h> 65 #include <linux/if.h> 66 #include <linux/uaccess.h> 67 #include <linux/proc_fs.h> 68 #include <linux/of_address.h> 69 #include <linux/of_device.h> 70 #include <linux/of_irq.h> 71 #include <linux/inetdevice.h> 72 #include <linux/platform_device.h> 73 #include <linux/reboot.h> 74 #include <linux/ethtool.h> 75 #include <linux/mii.h> 76 #include <linux/in.h> 77 #include <linux/if_arp.h> 78 #include <linux/if_vlan.h> 79 #include <linux/ip.h> 80 #include <linux/tcp.h> 81 #include <linux/udp.h> 82 #include <linux/crc-ccitt.h> 83 #include <linux/crc32.h> 84 85 #include "via-velocity.h" 86 87 enum velocity_bus_type { 88 BUS_PCI, 89 BUS_PLATFORM, 90 }; 91 92 static int velocity_nics; 93 static int msglevel = MSG_LEVEL_INFO; 94 95 static void velocity_set_power_state(struct velocity_info *vptr, char state) 96 { 97 void *addr = vptr->mac_regs; 98 99 if (vptr->pdev) 100 pci_set_power_state(vptr->pdev, state); 101 else 102 writeb(state, addr + 0x154); 103 } 104 105 /** 106 * mac_get_cam_mask - Read a CAM mask 107 * @regs: register block for this velocity 108 * @mask: buffer to store mask 109 * 110 * Fetch the mask bits of the selected CAM and store them into the 111 * provided mask buffer. 112 */ 113 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask) 114 { 115 int i; 116 117 /* Select CAM mask */ 118 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 119 120 writeb(0, ®s->CAMADDR); 121 122 /* read mask */ 123 for (i = 0; i < 8; i++) 124 *mask++ = readb(&(regs->MARCAM[i])); 125 126 /* disable CAMEN */ 127 writeb(0, ®s->CAMADDR); 128 129 /* Select mar */ 130 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 131 } 132 133 /** 134 * mac_set_cam_mask - Set a CAM mask 135 * @regs: register block for this velocity 136 * @mask: CAM mask to load 137 * 138 * Store a new mask into a CAM 139 */ 140 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask) 141 { 142 int i; 143 /* Select CAM mask */ 144 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 145 146 writeb(CAMADDR_CAMEN, ®s->CAMADDR); 147 148 for (i = 0; i < 8; i++) 149 writeb(*mask++, &(regs->MARCAM[i])); 150 151 /* disable CAMEN */ 152 writeb(0, ®s->CAMADDR); 153 154 /* Select mar */ 155 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 156 } 157 158 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask) 159 { 160 int i; 161 /* Select CAM mask */ 162 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 163 164 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, ®s->CAMADDR); 165 166 for (i = 0; i < 8; i++) 167 writeb(*mask++, &(regs->MARCAM[i])); 168 169 /* disable CAMEN */ 170 writeb(0, ®s->CAMADDR); 171 172 /* Select mar */ 173 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 174 } 175 176 /** 177 * mac_set_cam - set CAM data 178 * @regs: register block of this velocity 179 * @idx: Cam index 180 * @addr: 2 or 6 bytes of CAM data 181 * 182 * Load an address or vlan tag into a CAM 183 */ 184 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr) 185 { 186 int i; 187 188 /* Select CAM mask */ 189 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 190 191 idx &= (64 - 1); 192 193 writeb(CAMADDR_CAMEN | idx, ®s->CAMADDR); 194 195 for (i = 0; i < 6; i++) 196 writeb(*addr++, &(regs->MARCAM[i])); 197 198 BYTE_REG_BITS_ON(CAMCR_CAMWR, ®s->CAMCR); 199 200 udelay(10); 201 202 writeb(0, ®s->CAMADDR); 203 204 /* Select mar */ 205 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 206 } 207 208 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx, 209 const u8 *addr) 210 { 211 212 /* Select CAM mask */ 213 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 214 215 idx &= (64 - 1); 216 217 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, ®s->CAMADDR); 218 writew(*((u16 *) addr), ®s->MARCAM[0]); 219 220 BYTE_REG_BITS_ON(CAMCR_CAMWR, ®s->CAMCR); 221 222 udelay(10); 223 224 writeb(0, ®s->CAMADDR); 225 226 /* Select mar */ 227 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 228 } 229 230 231 /** 232 * mac_wol_reset - reset WOL after exiting low power 233 * @regs: register block of this velocity 234 * 235 * Called after we drop out of wake on lan mode in order to 236 * reset the Wake on lan features. This function doesn't restore 237 * the rest of the logic from the result of sleep/wakeup 238 */ 239 static void mac_wol_reset(struct mac_regs __iomem *regs) 240 { 241 242 /* Turn off SWPTAG right after leaving power mode */ 243 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, ®s->STICKHW); 244 /* clear sticky bits */ 245 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), ®s->STICKHW); 246 247 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, ®s->CHIPGCR); 248 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, ®s->CHIPGCR); 249 /* disable force PME-enable */ 250 writeb(WOLCFG_PMEOVR, ®s->WOLCFGClr); 251 /* disable power-event config bit */ 252 writew(0xFFFF, ®s->WOLCRClr); 253 /* clear power status */ 254 writew(0xFFFF, ®s->WOLSRClr); 255 } 256 257 static const struct ethtool_ops velocity_ethtool_ops; 258 259 /* 260 Define module options 261 */ 262 263 MODULE_AUTHOR("VIA Networking Technologies, Inc."); 264 MODULE_LICENSE("GPL"); 265 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver"); 266 267 #define VELOCITY_PARAM(N, D) \ 268 static int N[MAX_UNITS] = OPTION_DEFAULT;\ 269 module_param_array(N, int, NULL, 0); \ 270 MODULE_PARM_DESC(N, D); 271 272 #define RX_DESC_MIN 64 273 #define RX_DESC_MAX 255 274 #define RX_DESC_DEF 64 275 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors"); 276 277 #define TX_DESC_MIN 16 278 #define TX_DESC_MAX 256 279 #define TX_DESC_DEF 64 280 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors"); 281 282 #define RX_THRESH_MIN 0 283 #define RX_THRESH_MAX 3 284 #define RX_THRESH_DEF 0 285 /* rx_thresh[] is used for controlling the receive fifo threshold. 286 0: indicate the rxfifo threshold is 128 bytes. 287 1: indicate the rxfifo threshold is 512 bytes. 288 2: indicate the rxfifo threshold is 1024 bytes. 289 3: indicate the rxfifo threshold is store & forward. 290 */ 291 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold"); 292 293 #define DMA_LENGTH_MIN 0 294 #define DMA_LENGTH_MAX 7 295 #define DMA_LENGTH_DEF 6 296 297 /* DMA_length[] is used for controlling the DMA length 298 0: 8 DWORDs 299 1: 16 DWORDs 300 2: 32 DWORDs 301 3: 64 DWORDs 302 4: 128 DWORDs 303 5: 256 DWORDs 304 6: SF(flush till emply) 305 7: SF(flush till emply) 306 */ 307 VELOCITY_PARAM(DMA_length, "DMA length"); 308 309 #define IP_ALIG_DEF 0 310 /* IP_byte_align[] is used for IP header DWORD byte aligned 311 0: indicate the IP header won't be DWORD byte aligned.(Default) . 312 1: indicate the IP header will be DWORD byte aligned. 313 In some environment, the IP header should be DWORD byte aligned, 314 or the packet will be droped when we receive it. (eg: IPVS) 315 */ 316 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned"); 317 318 #define FLOW_CNTL_DEF 1 319 #define FLOW_CNTL_MIN 1 320 #define FLOW_CNTL_MAX 5 321 322 /* flow_control[] is used for setting the flow control ability of NIC. 323 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR. 324 2: enable TX flow control. 325 3: enable RX flow control. 326 4: enable RX/TX flow control. 327 5: disable 328 */ 329 VELOCITY_PARAM(flow_control, "Enable flow control ability"); 330 331 #define MED_LNK_DEF 0 332 #define MED_LNK_MIN 0 333 #define MED_LNK_MAX 5 334 /* speed_duplex[] is used for setting the speed and duplex mode of NIC. 335 0: indicate autonegotiation for both speed and duplex mode 336 1: indicate 100Mbps half duplex mode 337 2: indicate 100Mbps full duplex mode 338 3: indicate 10Mbps half duplex mode 339 4: indicate 10Mbps full duplex mode 340 5: indicate 1000Mbps full duplex mode 341 342 Note: 343 if EEPROM have been set to the force mode, this option is ignored 344 by driver. 345 */ 346 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode"); 347 348 #define WOL_OPT_DEF 0 349 #define WOL_OPT_MIN 0 350 #define WOL_OPT_MAX 7 351 /* wol_opts[] is used for controlling wake on lan behavior. 352 0: Wake up if recevied a magic packet. (Default) 353 1: Wake up if link status is on/off. 354 2: Wake up if recevied an arp packet. 355 4: Wake up if recevied any unicast packet. 356 Those value can be sumed up to support more than one option. 357 */ 358 VELOCITY_PARAM(wol_opts, "Wake On Lan options"); 359 360 static int rx_copybreak = 200; 361 module_param(rx_copybreak, int, 0644); 362 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames"); 363 364 /* 365 * Internal board variants. At the moment we have only one 366 */ 367 static struct velocity_info_tbl chip_info_table[] = { 368 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL}, 369 { } 370 }; 371 372 /* 373 * Describe the PCI device identifiers that we support in this 374 * device driver. Used for hotplug autoloading. 375 */ 376 377 static const struct pci_device_id velocity_pci_id_table[] = { 378 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) }, 379 { } 380 }; 381 382 MODULE_DEVICE_TABLE(pci, velocity_pci_id_table); 383 384 /** 385 * Describe the OF device identifiers that we support in this 386 * device driver. Used for devicetree nodes. 387 */ 388 static const struct of_device_id velocity_of_ids[] = { 389 { .compatible = "via,velocity-vt6110", .data = &chip_info_table[0] }, 390 { /* Sentinel */ }, 391 }; 392 MODULE_DEVICE_TABLE(of, velocity_of_ids); 393 394 /** 395 * get_chip_name - identifier to name 396 * @id: chip identifier 397 * 398 * Given a chip identifier return a suitable description. Returns 399 * a pointer a static string valid while the driver is loaded. 400 */ 401 static const char *get_chip_name(enum chip_type chip_id) 402 { 403 int i; 404 for (i = 0; chip_info_table[i].name != NULL; i++) 405 if (chip_info_table[i].chip_id == chip_id) 406 break; 407 return chip_info_table[i].name; 408 } 409 410 /** 411 * velocity_set_int_opt - parser for integer options 412 * @opt: pointer to option value 413 * @val: value the user requested (or -1 for default) 414 * @min: lowest value allowed 415 * @max: highest value allowed 416 * @def: default value 417 * @name: property name 418 * @dev: device name 419 * 420 * Set an integer property in the module options. This function does 421 * all the verification and checking as well as reporting so that 422 * we don't duplicate code for each option. 423 */ 424 static void velocity_set_int_opt(int *opt, int val, int min, int max, int def, 425 char *name, const char *devname) 426 { 427 if (val == -1) 428 *opt = def; 429 else if (val < min || val > max) { 430 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n", 431 devname, name, min, max); 432 *opt = def; 433 } else { 434 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n", 435 devname, name, val); 436 *opt = val; 437 } 438 } 439 440 /** 441 * velocity_set_bool_opt - parser for boolean options 442 * @opt: pointer to option value 443 * @val: value the user requested (or -1 for default) 444 * @def: default value (yes/no) 445 * @flag: numeric value to set for true. 446 * @name: property name 447 * @dev: device name 448 * 449 * Set a boolean property in the module options. This function does 450 * all the verification and checking as well as reporting so that 451 * we don't duplicate code for each option. 452 */ 453 static void velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag, 454 char *name, const char *devname) 455 { 456 (*opt) &= (~flag); 457 if (val == -1) 458 *opt |= (def ? flag : 0); 459 else if (val < 0 || val > 1) { 460 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n", 461 devname, name); 462 *opt |= (def ? flag : 0); 463 } else { 464 printk(KERN_INFO "%s: set parameter %s to %s\n", 465 devname, name, val ? "TRUE" : "FALSE"); 466 *opt |= (val ? flag : 0); 467 } 468 } 469 470 /** 471 * velocity_get_options - set options on device 472 * @opts: option structure for the device 473 * @index: index of option to use in module options array 474 * @devname: device name 475 * 476 * Turn the module and command options into a single structure 477 * for the current device 478 */ 479 static void velocity_get_options(struct velocity_opt *opts, int index, 480 const char *devname) 481 { 482 483 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname); 484 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname); 485 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname); 486 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname); 487 488 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname); 489 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname); 490 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname); 491 velocity_set_int_opt(&opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname); 492 opts->numrx = (opts->numrx & ~3); 493 } 494 495 /** 496 * velocity_init_cam_filter - initialise CAM 497 * @vptr: velocity to program 498 * 499 * Initialize the content addressable memory used for filters. Load 500 * appropriately according to the presence of VLAN 501 */ 502 static void velocity_init_cam_filter(struct velocity_info *vptr) 503 { 504 struct mac_regs __iomem *regs = vptr->mac_regs; 505 unsigned int vid, i = 0; 506 507 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */ 508 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, ®s->MCFG); 509 WORD_REG_BITS_ON(MCFG_VIDFR, ®s->MCFG); 510 511 /* Disable all CAMs */ 512 memset(vptr->vCAMmask, 0, sizeof(u8) * 8); 513 memset(vptr->mCAMmask, 0, sizeof(u8) * 8); 514 mac_set_vlan_cam_mask(regs, vptr->vCAMmask); 515 mac_set_cam_mask(regs, vptr->mCAMmask); 516 517 /* Enable VCAMs */ 518 for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) { 519 mac_set_vlan_cam(regs, i, (u8 *) &vid); 520 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8); 521 if (++i >= VCAM_SIZE) 522 break; 523 } 524 mac_set_vlan_cam_mask(regs, vptr->vCAMmask); 525 } 526 527 static int velocity_vlan_rx_add_vid(struct net_device *dev, 528 __be16 proto, u16 vid) 529 { 530 struct velocity_info *vptr = netdev_priv(dev); 531 532 spin_lock_irq(&vptr->lock); 533 set_bit(vid, vptr->active_vlans); 534 velocity_init_cam_filter(vptr); 535 spin_unlock_irq(&vptr->lock); 536 return 0; 537 } 538 539 static int velocity_vlan_rx_kill_vid(struct net_device *dev, 540 __be16 proto, u16 vid) 541 { 542 struct velocity_info *vptr = netdev_priv(dev); 543 544 spin_lock_irq(&vptr->lock); 545 clear_bit(vid, vptr->active_vlans); 546 velocity_init_cam_filter(vptr); 547 spin_unlock_irq(&vptr->lock); 548 return 0; 549 } 550 551 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr) 552 { 553 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0; 554 } 555 556 /** 557 * velocity_rx_reset - handle a receive reset 558 * @vptr: velocity we are resetting 559 * 560 * Reset the ownership and status for the receive ring side. 561 * Hand all the receive queue to the NIC. 562 */ 563 static void velocity_rx_reset(struct velocity_info *vptr) 564 { 565 566 struct mac_regs __iomem *regs = vptr->mac_regs; 567 int i; 568 569 velocity_init_rx_ring_indexes(vptr); 570 571 /* 572 * Init state, all RD entries belong to the NIC 573 */ 574 for (i = 0; i < vptr->options.numrx; ++i) 575 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC; 576 577 writew(vptr->options.numrx, ®s->RBRDU); 578 writel(vptr->rx.pool_dma, ®s->RDBaseLo); 579 writew(0, ®s->RDIdx); 580 writew(vptr->options.numrx - 1, ®s->RDCSize); 581 } 582 583 /** 584 * velocity_get_opt_media_mode - get media selection 585 * @vptr: velocity adapter 586 * 587 * Get the media mode stored in EEPROM or module options and load 588 * mii_status accordingly. The requested link state information 589 * is also returned. 590 */ 591 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr) 592 { 593 u32 status = 0; 594 595 switch (vptr->options.spd_dpx) { 596 case SPD_DPX_AUTO: 597 status = VELOCITY_AUTONEG_ENABLE; 598 break; 599 case SPD_DPX_100_FULL: 600 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL; 601 break; 602 case SPD_DPX_10_FULL: 603 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL; 604 break; 605 case SPD_DPX_100_HALF: 606 status = VELOCITY_SPEED_100; 607 break; 608 case SPD_DPX_10_HALF: 609 status = VELOCITY_SPEED_10; 610 break; 611 case SPD_DPX_1000_FULL: 612 status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL; 613 break; 614 } 615 vptr->mii_status = status; 616 return status; 617 } 618 619 /** 620 * safe_disable_mii_autopoll - autopoll off 621 * @regs: velocity registers 622 * 623 * Turn off the autopoll and wait for it to disable on the chip 624 */ 625 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs) 626 { 627 u16 ww; 628 629 /* turn off MAUTO */ 630 writeb(0, ®s->MIICR); 631 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { 632 udelay(1); 633 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR)) 634 break; 635 } 636 } 637 638 /** 639 * enable_mii_autopoll - turn on autopolling 640 * @regs: velocity registers 641 * 642 * Enable the MII link status autopoll feature on the Velocity 643 * hardware. Wait for it to enable. 644 */ 645 static void enable_mii_autopoll(struct mac_regs __iomem *regs) 646 { 647 int ii; 648 649 writeb(0, &(regs->MIICR)); 650 writeb(MIIADR_SWMPL, ®s->MIIADR); 651 652 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) { 653 udelay(1); 654 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR)) 655 break; 656 } 657 658 writeb(MIICR_MAUTO, ®s->MIICR); 659 660 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) { 661 udelay(1); 662 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR)) 663 break; 664 } 665 666 } 667 668 /** 669 * velocity_mii_read - read MII data 670 * @regs: velocity registers 671 * @index: MII register index 672 * @data: buffer for received data 673 * 674 * Perform a single read of an MII 16bit register. Returns zero 675 * on success or -ETIMEDOUT if the PHY did not respond. 676 */ 677 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data) 678 { 679 u16 ww; 680 681 /* 682 * Disable MIICR_MAUTO, so that mii addr can be set normally 683 */ 684 safe_disable_mii_autopoll(regs); 685 686 writeb(index, ®s->MIIADR); 687 688 BYTE_REG_BITS_ON(MIICR_RCMD, ®s->MIICR); 689 690 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { 691 if (!(readb(®s->MIICR) & MIICR_RCMD)) 692 break; 693 } 694 695 *data = readw(®s->MIIDATA); 696 697 enable_mii_autopoll(regs); 698 if (ww == W_MAX_TIMEOUT) 699 return -ETIMEDOUT; 700 return 0; 701 } 702 703 /** 704 * mii_check_media_mode - check media state 705 * @regs: velocity registers 706 * 707 * Check the current MII status and determine the link status 708 * accordingly 709 */ 710 static u32 mii_check_media_mode(struct mac_regs __iomem *regs) 711 { 712 u32 status = 0; 713 u16 ANAR; 714 715 if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs)) 716 status |= VELOCITY_LINK_FAIL; 717 718 if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs)) 719 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL; 720 else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs)) 721 status |= (VELOCITY_SPEED_1000); 722 else { 723 velocity_mii_read(regs, MII_ADVERTISE, &ANAR); 724 if (ANAR & ADVERTISE_100FULL) 725 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL); 726 else if (ANAR & ADVERTISE_100HALF) 727 status |= VELOCITY_SPEED_100; 728 else if (ANAR & ADVERTISE_10FULL) 729 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL); 730 else 731 status |= (VELOCITY_SPEED_10); 732 } 733 734 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) { 735 velocity_mii_read(regs, MII_ADVERTISE, &ANAR); 736 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) 737 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) { 738 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs)) 739 status |= VELOCITY_AUTONEG_ENABLE; 740 } 741 } 742 743 return status; 744 } 745 746 /** 747 * velocity_mii_write - write MII data 748 * @regs: velocity registers 749 * @index: MII register index 750 * @data: 16bit data for the MII register 751 * 752 * Perform a single write to an MII 16bit register. Returns zero 753 * on success or -ETIMEDOUT if the PHY did not respond. 754 */ 755 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data) 756 { 757 u16 ww; 758 759 /* 760 * Disable MIICR_MAUTO, so that mii addr can be set normally 761 */ 762 safe_disable_mii_autopoll(regs); 763 764 /* MII reg offset */ 765 writeb(mii_addr, ®s->MIIADR); 766 /* set MII data */ 767 writew(data, ®s->MIIDATA); 768 769 /* turn on MIICR_WCMD */ 770 BYTE_REG_BITS_ON(MIICR_WCMD, ®s->MIICR); 771 772 /* W_MAX_TIMEOUT is the timeout period */ 773 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { 774 udelay(5); 775 if (!(readb(®s->MIICR) & MIICR_WCMD)) 776 break; 777 } 778 enable_mii_autopoll(regs); 779 780 if (ww == W_MAX_TIMEOUT) 781 return -ETIMEDOUT; 782 return 0; 783 } 784 785 /** 786 * set_mii_flow_control - flow control setup 787 * @vptr: velocity interface 788 * 789 * Set up the flow control on this interface according to 790 * the supplied user/eeprom options. 791 */ 792 static void set_mii_flow_control(struct velocity_info *vptr) 793 { 794 /*Enable or Disable PAUSE in ANAR */ 795 switch (vptr->options.flow_cntl) { 796 case FLOW_CNTL_TX: 797 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 798 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 799 break; 800 801 case FLOW_CNTL_RX: 802 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 803 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 804 break; 805 806 case FLOW_CNTL_TX_RX: 807 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 808 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 809 break; 810 811 case FLOW_CNTL_DISABLE: 812 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 813 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 814 break; 815 default: 816 break; 817 } 818 } 819 820 /** 821 * mii_set_auto_on - autonegotiate on 822 * @vptr: velocity 823 * 824 * Enable autonegotation on this interface 825 */ 826 static void mii_set_auto_on(struct velocity_info *vptr) 827 { 828 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs)) 829 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs); 830 else 831 MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); 832 } 833 834 static u32 check_connection_type(struct mac_regs __iomem *regs) 835 { 836 u32 status = 0; 837 u8 PHYSR0; 838 u16 ANAR; 839 PHYSR0 = readb(®s->PHYSR0); 840 841 /* 842 if (!(PHYSR0 & PHYSR0_LINKGD)) 843 status|=VELOCITY_LINK_FAIL; 844 */ 845 846 if (PHYSR0 & PHYSR0_FDPX) 847 status |= VELOCITY_DUPLEX_FULL; 848 849 if (PHYSR0 & PHYSR0_SPDG) 850 status |= VELOCITY_SPEED_1000; 851 else if (PHYSR0 & PHYSR0_SPD10) 852 status |= VELOCITY_SPEED_10; 853 else 854 status |= VELOCITY_SPEED_100; 855 856 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) { 857 velocity_mii_read(regs, MII_ADVERTISE, &ANAR); 858 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) 859 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) { 860 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs)) 861 status |= VELOCITY_AUTONEG_ENABLE; 862 } 863 } 864 865 return status; 866 } 867 868 /** 869 * velocity_set_media_mode - set media mode 870 * @mii_status: old MII link state 871 * 872 * Check the media link state and configure the flow control 873 * PHY and also velocity hardware setup accordingly. In particular 874 * we need to set up CD polling and frame bursting. 875 */ 876 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status) 877 { 878 u32 curr_status; 879 struct mac_regs __iomem *regs = vptr->mac_regs; 880 881 vptr->mii_status = mii_check_media_mode(vptr->mac_regs); 882 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL); 883 884 /* Set mii link status */ 885 set_mii_flow_control(vptr); 886 887 /* 888 Check if new status is consistent with current status 889 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) || 890 (mii_status==curr_status)) { 891 vptr->mii_status=mii_check_media_mode(vptr->mac_regs); 892 vptr->mii_status=check_connection_type(vptr->mac_regs); 893 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n"); 894 return 0; 895 } 896 */ 897 898 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) 899 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs); 900 901 /* 902 * If connection type is AUTO 903 */ 904 if (mii_status & VELOCITY_AUTONEG_ENABLE) { 905 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n"); 906 /* clear force MAC mode bit */ 907 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, ®s->CHIPGCR); 908 /* set duplex mode of MAC according to duplex mode of MII */ 909 MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs); 910 MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs); 911 MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); 912 913 /* enable AUTO-NEGO mode */ 914 mii_set_auto_on(vptr); 915 } else { 916 u16 CTRL1000; 917 u16 ANAR; 918 u8 CHIPGCR; 919 920 /* 921 * 1. if it's 3119, disable frame bursting in halfduplex mode 922 * and enable it in fullduplex mode 923 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR 924 * 3. only enable CD heart beat counter in 10HD mode 925 */ 926 927 /* set force MAC mode bit */ 928 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, ®s->CHIPGCR); 929 930 CHIPGCR = readb(®s->CHIPGCR); 931 932 if (mii_status & VELOCITY_SPEED_1000) 933 CHIPGCR |= CHIPGCR_FCGMII; 934 else 935 CHIPGCR &= ~CHIPGCR_FCGMII; 936 937 if (mii_status & VELOCITY_DUPLEX_FULL) { 938 CHIPGCR |= CHIPGCR_FCFDX; 939 writeb(CHIPGCR, ®s->CHIPGCR); 940 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n"); 941 if (vptr->rev_id < REV_ID_VT3216_A0) 942 BYTE_REG_BITS_OFF(TCR_TB2BDIS, ®s->TCR); 943 } else { 944 CHIPGCR &= ~CHIPGCR_FCFDX; 945 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n"); 946 writeb(CHIPGCR, ®s->CHIPGCR); 947 if (vptr->rev_id < REV_ID_VT3216_A0) 948 BYTE_REG_BITS_ON(TCR_TB2BDIS, ®s->TCR); 949 } 950 951 velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000); 952 CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF); 953 if ((mii_status & VELOCITY_SPEED_1000) && 954 (mii_status & VELOCITY_DUPLEX_FULL)) { 955 CTRL1000 |= ADVERTISE_1000FULL; 956 } 957 velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000); 958 959 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10)) 960 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, ®s->TESTCFG); 961 else 962 BYTE_REG_BITS_ON(TESTCFG_HBDIS, ®s->TESTCFG); 963 964 /* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */ 965 velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR); 966 ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)); 967 if (mii_status & VELOCITY_SPEED_100) { 968 if (mii_status & VELOCITY_DUPLEX_FULL) 969 ANAR |= ADVERTISE_100FULL; 970 else 971 ANAR |= ADVERTISE_100HALF; 972 } else if (mii_status & VELOCITY_SPEED_10) { 973 if (mii_status & VELOCITY_DUPLEX_FULL) 974 ANAR |= ADVERTISE_10FULL; 975 else 976 ANAR |= ADVERTISE_10HALF; 977 } 978 velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR); 979 /* enable AUTO-NEGO mode */ 980 mii_set_auto_on(vptr); 981 /* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */ 982 } 983 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */ 984 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */ 985 return VELOCITY_LINK_CHANGE; 986 } 987 988 /** 989 * velocity_print_link_status - link status reporting 990 * @vptr: velocity to report on 991 * 992 * Turn the link status of the velocity card into a kernel log 993 * description of the new link state, detailing speed and duplex 994 * status 995 */ 996 static void velocity_print_link_status(struct velocity_info *vptr) 997 { 998 999 if (vptr->mii_status & VELOCITY_LINK_FAIL) { 1000 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->netdev->name); 1001 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) { 1002 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->netdev->name); 1003 1004 if (vptr->mii_status & VELOCITY_SPEED_1000) 1005 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps"); 1006 else if (vptr->mii_status & VELOCITY_SPEED_100) 1007 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps"); 1008 else 1009 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps"); 1010 1011 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1012 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n"); 1013 else 1014 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n"); 1015 } else { 1016 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->netdev->name); 1017 switch (vptr->options.spd_dpx) { 1018 case SPD_DPX_1000_FULL: 1019 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n"); 1020 break; 1021 case SPD_DPX_100_HALF: 1022 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n"); 1023 break; 1024 case SPD_DPX_100_FULL: 1025 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n"); 1026 break; 1027 case SPD_DPX_10_HALF: 1028 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n"); 1029 break; 1030 case SPD_DPX_10_FULL: 1031 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n"); 1032 break; 1033 default: 1034 break; 1035 } 1036 } 1037 } 1038 1039 /** 1040 * enable_flow_control_ability - flow control 1041 * @vptr: veloity to configure 1042 * 1043 * Set up flow control according to the flow control options 1044 * determined by the eeprom/configuration. 1045 */ 1046 static void enable_flow_control_ability(struct velocity_info *vptr) 1047 { 1048 1049 struct mac_regs __iomem *regs = vptr->mac_regs; 1050 1051 switch (vptr->options.flow_cntl) { 1052 1053 case FLOW_CNTL_DEFAULT: 1054 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, ®s->PHYSR0)) 1055 writel(CR0_FDXRFCEN, ®s->CR0Set); 1056 else 1057 writel(CR0_FDXRFCEN, ®s->CR0Clr); 1058 1059 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, ®s->PHYSR0)) 1060 writel(CR0_FDXTFCEN, ®s->CR0Set); 1061 else 1062 writel(CR0_FDXTFCEN, ®s->CR0Clr); 1063 break; 1064 1065 case FLOW_CNTL_TX: 1066 writel(CR0_FDXTFCEN, ®s->CR0Set); 1067 writel(CR0_FDXRFCEN, ®s->CR0Clr); 1068 break; 1069 1070 case FLOW_CNTL_RX: 1071 writel(CR0_FDXRFCEN, ®s->CR0Set); 1072 writel(CR0_FDXTFCEN, ®s->CR0Clr); 1073 break; 1074 1075 case FLOW_CNTL_TX_RX: 1076 writel(CR0_FDXTFCEN, ®s->CR0Set); 1077 writel(CR0_FDXRFCEN, ®s->CR0Set); 1078 break; 1079 1080 case FLOW_CNTL_DISABLE: 1081 writel(CR0_FDXRFCEN, ®s->CR0Clr); 1082 writel(CR0_FDXTFCEN, ®s->CR0Clr); 1083 break; 1084 1085 default: 1086 break; 1087 } 1088 1089 } 1090 1091 /** 1092 * velocity_soft_reset - soft reset 1093 * @vptr: velocity to reset 1094 * 1095 * Kick off a soft reset of the velocity adapter and then poll 1096 * until the reset sequence has completed before returning. 1097 */ 1098 static int velocity_soft_reset(struct velocity_info *vptr) 1099 { 1100 struct mac_regs __iomem *regs = vptr->mac_regs; 1101 int i = 0; 1102 1103 writel(CR0_SFRST, ®s->CR0Set); 1104 1105 for (i = 0; i < W_MAX_TIMEOUT; i++) { 1106 udelay(5); 1107 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, ®s->CR0Set)) 1108 break; 1109 } 1110 1111 if (i == W_MAX_TIMEOUT) { 1112 writel(CR0_FORSRST, ®s->CR0Set); 1113 /* FIXME: PCI POSTING */ 1114 /* delay 2ms */ 1115 mdelay(2); 1116 } 1117 return 0; 1118 } 1119 1120 /** 1121 * velocity_set_multi - filter list change callback 1122 * @dev: network device 1123 * 1124 * Called by the network layer when the filter lists need to change 1125 * for a velocity adapter. Reload the CAMs with the new address 1126 * filter ruleset. 1127 */ 1128 static void velocity_set_multi(struct net_device *dev) 1129 { 1130 struct velocity_info *vptr = netdev_priv(dev); 1131 struct mac_regs __iomem *regs = vptr->mac_regs; 1132 u8 rx_mode; 1133 int i; 1134 struct netdev_hw_addr *ha; 1135 1136 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1137 writel(0xffffffff, ®s->MARCAM[0]); 1138 writel(0xffffffff, ®s->MARCAM[4]); 1139 rx_mode = (RCR_AM | RCR_AB | RCR_PROM); 1140 } else if ((netdev_mc_count(dev) > vptr->multicast_limit) || 1141 (dev->flags & IFF_ALLMULTI)) { 1142 writel(0xffffffff, ®s->MARCAM[0]); 1143 writel(0xffffffff, ®s->MARCAM[4]); 1144 rx_mode = (RCR_AM | RCR_AB); 1145 } else { 1146 int offset = MCAM_SIZE - vptr->multicast_limit; 1147 mac_get_cam_mask(regs, vptr->mCAMmask); 1148 1149 i = 0; 1150 netdev_for_each_mc_addr(ha, dev) { 1151 mac_set_cam(regs, i + offset, ha->addr); 1152 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7); 1153 i++; 1154 } 1155 1156 mac_set_cam_mask(regs, vptr->mCAMmask); 1157 rx_mode = RCR_AM | RCR_AB | RCR_AP; 1158 } 1159 if (dev->mtu > 1500) 1160 rx_mode |= RCR_AL; 1161 1162 BYTE_REG_BITS_ON(rx_mode, ®s->RCR); 1163 1164 } 1165 1166 /* 1167 * MII access , media link mode setting functions 1168 */ 1169 1170 /** 1171 * mii_init - set up MII 1172 * @vptr: velocity adapter 1173 * @mii_status: links tatus 1174 * 1175 * Set up the PHY for the current link state. 1176 */ 1177 static void mii_init(struct velocity_info *vptr, u32 mii_status) 1178 { 1179 u16 BMCR; 1180 1181 switch (PHYID_GET_PHY_ID(vptr->phy_id)) { 1182 case PHYID_ICPLUS_IP101A: 1183 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), 1184 MII_ADVERTISE, vptr->mac_regs); 1185 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1186 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, 1187 vptr->mac_regs); 1188 else 1189 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, 1190 vptr->mac_regs); 1191 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs); 1192 break; 1193 case PHYID_CICADA_CS8201: 1194 /* 1195 * Reset to hardware default 1196 */ 1197 MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs); 1198 /* 1199 * Turn on ECHODIS bit in NWay-forced full mode and turn it 1200 * off it in NWay-forced half mode for NWay-forced v.s. 1201 * legacy-forced issue. 1202 */ 1203 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1204 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1205 else 1206 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1207 /* 1208 * Turn on Link/Activity LED enable bit for CIS8201 1209 */ 1210 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs); 1211 break; 1212 case PHYID_VT3216_32BIT: 1213 case PHYID_VT3216_64BIT: 1214 /* 1215 * Reset to hardware default 1216 */ 1217 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs); 1218 /* 1219 * Turn on ECHODIS bit in NWay-forced full mode and turn it 1220 * off it in NWay-forced half mode for NWay-forced v.s. 1221 * legacy-forced issue 1222 */ 1223 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1224 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1225 else 1226 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1227 break; 1228 1229 case PHYID_MARVELL_1000: 1230 case PHYID_MARVELL_1000S: 1231 /* 1232 * Assert CRS on Transmit 1233 */ 1234 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs); 1235 /* 1236 * Reset to hardware default 1237 */ 1238 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs); 1239 break; 1240 default: 1241 ; 1242 } 1243 velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR); 1244 if (BMCR & BMCR_ISOLATE) { 1245 BMCR &= ~BMCR_ISOLATE; 1246 velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR); 1247 } 1248 } 1249 1250 /** 1251 * setup_queue_timers - Setup interrupt timers 1252 * 1253 * Setup interrupt frequency during suppression (timeout if the frame 1254 * count isn't filled). 1255 */ 1256 static void setup_queue_timers(struct velocity_info *vptr) 1257 { 1258 /* Only for newer revisions */ 1259 if (vptr->rev_id >= REV_ID_VT3216_A0) { 1260 u8 txqueue_timer = 0; 1261 u8 rxqueue_timer = 0; 1262 1263 if (vptr->mii_status & (VELOCITY_SPEED_1000 | 1264 VELOCITY_SPEED_100)) { 1265 txqueue_timer = vptr->options.txqueue_timer; 1266 rxqueue_timer = vptr->options.rxqueue_timer; 1267 } 1268 1269 writeb(txqueue_timer, &vptr->mac_regs->TQETMR); 1270 writeb(rxqueue_timer, &vptr->mac_regs->RQETMR); 1271 } 1272 } 1273 1274 /** 1275 * setup_adaptive_interrupts - Setup interrupt suppression 1276 * 1277 * @vptr velocity adapter 1278 * 1279 * The velocity is able to suppress interrupt during high interrupt load. 1280 * This function turns on that feature. 1281 */ 1282 static void setup_adaptive_interrupts(struct velocity_info *vptr) 1283 { 1284 struct mac_regs __iomem *regs = vptr->mac_regs; 1285 u16 tx_intsup = vptr->options.tx_intsup; 1286 u16 rx_intsup = vptr->options.rx_intsup; 1287 1288 /* Setup default interrupt mask (will be changed below) */ 1289 vptr->int_mask = INT_MASK_DEF; 1290 1291 /* Set Tx Interrupt Suppression Threshold */ 1292 writeb(CAMCR_PS0, ®s->CAMCR); 1293 if (tx_intsup != 0) { 1294 vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I | 1295 ISR_PTX2I | ISR_PTX3I); 1296 writew(tx_intsup, ®s->ISRCTL); 1297 } else 1298 writew(ISRCTL_TSUPDIS, ®s->ISRCTL); 1299 1300 /* Set Rx Interrupt Suppression Threshold */ 1301 writeb(CAMCR_PS1, ®s->CAMCR); 1302 if (rx_intsup != 0) { 1303 vptr->int_mask &= ~ISR_PRXI; 1304 writew(rx_intsup, ®s->ISRCTL); 1305 } else 1306 writew(ISRCTL_RSUPDIS, ®s->ISRCTL); 1307 1308 /* Select page to interrupt hold timer */ 1309 writeb(0, ®s->CAMCR); 1310 } 1311 1312 /** 1313 * velocity_init_registers - initialise MAC registers 1314 * @vptr: velocity to init 1315 * @type: type of initialisation (hot or cold) 1316 * 1317 * Initialise the MAC on a reset or on first set up on the 1318 * hardware. 1319 */ 1320 static void velocity_init_registers(struct velocity_info *vptr, 1321 enum velocity_init_type type) 1322 { 1323 struct mac_regs __iomem *regs = vptr->mac_regs; 1324 struct net_device *netdev = vptr->netdev; 1325 int i, mii_status; 1326 1327 mac_wol_reset(regs); 1328 1329 switch (type) { 1330 case VELOCITY_INIT_RESET: 1331 case VELOCITY_INIT_WOL: 1332 1333 netif_stop_queue(netdev); 1334 1335 /* 1336 * Reset RX to prevent RX pointer not on the 4X location 1337 */ 1338 velocity_rx_reset(vptr); 1339 mac_rx_queue_run(regs); 1340 mac_rx_queue_wake(regs); 1341 1342 mii_status = velocity_get_opt_media_mode(vptr); 1343 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) { 1344 velocity_print_link_status(vptr); 1345 if (!(vptr->mii_status & VELOCITY_LINK_FAIL)) 1346 netif_wake_queue(netdev); 1347 } 1348 1349 enable_flow_control_ability(vptr); 1350 1351 mac_clear_isr(regs); 1352 writel(CR0_STOP, ®s->CR0Clr); 1353 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), 1354 ®s->CR0Set); 1355 1356 break; 1357 1358 case VELOCITY_INIT_COLD: 1359 default: 1360 /* 1361 * Do reset 1362 */ 1363 velocity_soft_reset(vptr); 1364 mdelay(5); 1365 1366 if (!vptr->no_eeprom) { 1367 mac_eeprom_reload(regs); 1368 for (i = 0; i < 6; i++) 1369 writeb(netdev->dev_addr[i], regs->PAR + i); 1370 } 1371 1372 /* 1373 * clear Pre_ACPI bit. 1374 */ 1375 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA)); 1376 mac_set_rx_thresh(regs, vptr->options.rx_thresh); 1377 mac_set_dma_length(regs, vptr->options.DMA_length); 1378 1379 writeb(WOLCFG_SAM | WOLCFG_SAB, ®s->WOLCFGSet); 1380 /* 1381 * Back off algorithm use original IEEE standard 1382 */ 1383 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), ®s->CFGB); 1384 1385 /* 1386 * Init CAM filter 1387 */ 1388 velocity_init_cam_filter(vptr); 1389 1390 /* 1391 * Set packet filter: Receive directed and broadcast address 1392 */ 1393 velocity_set_multi(netdev); 1394 1395 /* 1396 * Enable MII auto-polling 1397 */ 1398 enable_mii_autopoll(regs); 1399 1400 setup_adaptive_interrupts(vptr); 1401 1402 writel(vptr->rx.pool_dma, ®s->RDBaseLo); 1403 writew(vptr->options.numrx - 1, ®s->RDCSize); 1404 mac_rx_queue_run(regs); 1405 mac_rx_queue_wake(regs); 1406 1407 writew(vptr->options.numtx - 1, ®s->TDCSize); 1408 1409 for (i = 0; i < vptr->tx.numq; i++) { 1410 writel(vptr->tx.pool_dma[i], ®s->TDBaseLo[i]); 1411 mac_tx_queue_run(regs, i); 1412 } 1413 1414 init_flow_control_register(vptr); 1415 1416 writel(CR0_STOP, ®s->CR0Clr); 1417 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), ®s->CR0Set); 1418 1419 mii_status = velocity_get_opt_media_mode(vptr); 1420 netif_stop_queue(netdev); 1421 1422 mii_init(vptr, mii_status); 1423 1424 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) { 1425 velocity_print_link_status(vptr); 1426 if (!(vptr->mii_status & VELOCITY_LINK_FAIL)) 1427 netif_wake_queue(netdev); 1428 } 1429 1430 enable_flow_control_ability(vptr); 1431 mac_hw_mibs_init(regs); 1432 mac_write_int_mask(vptr->int_mask, regs); 1433 mac_clear_isr(regs); 1434 1435 } 1436 } 1437 1438 static void velocity_give_many_rx_descs(struct velocity_info *vptr) 1439 { 1440 struct mac_regs __iomem *regs = vptr->mac_regs; 1441 int avail, dirty, unusable; 1442 1443 /* 1444 * RD number must be equal to 4X per hardware spec 1445 * (programming guide rev 1.20, p.13) 1446 */ 1447 if (vptr->rx.filled < 4) 1448 return; 1449 1450 wmb(); 1451 1452 unusable = vptr->rx.filled & 0x0003; 1453 dirty = vptr->rx.dirty - unusable; 1454 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) { 1455 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1; 1456 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC; 1457 } 1458 1459 writew(vptr->rx.filled & 0xfffc, ®s->RBRDU); 1460 vptr->rx.filled = unusable; 1461 } 1462 1463 /** 1464 * velocity_init_dma_rings - set up DMA rings 1465 * @vptr: Velocity to set up 1466 * 1467 * Allocate PCI mapped DMA rings for the receive and transmit layer 1468 * to use. 1469 */ 1470 static int velocity_init_dma_rings(struct velocity_info *vptr) 1471 { 1472 struct velocity_opt *opt = &vptr->options; 1473 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc); 1474 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc); 1475 dma_addr_t pool_dma; 1476 void *pool; 1477 unsigned int i; 1478 1479 /* 1480 * Allocate all RD/TD rings a single pool. 1481 * 1482 * dma_alloc_coherent() fulfills the requirement for 64 bytes 1483 * alignment 1484 */ 1485 pool = dma_alloc_coherent(vptr->dev, tx_ring_size * vptr->tx.numq + 1486 rx_ring_size, &pool_dma, GFP_ATOMIC); 1487 if (!pool) { 1488 dev_err(vptr->dev, "%s : DMA memory allocation failed.\n", 1489 vptr->netdev->name); 1490 return -ENOMEM; 1491 } 1492 1493 vptr->rx.ring = pool; 1494 vptr->rx.pool_dma = pool_dma; 1495 1496 pool += rx_ring_size; 1497 pool_dma += rx_ring_size; 1498 1499 for (i = 0; i < vptr->tx.numq; i++) { 1500 vptr->tx.rings[i] = pool; 1501 vptr->tx.pool_dma[i] = pool_dma; 1502 pool += tx_ring_size; 1503 pool_dma += tx_ring_size; 1504 } 1505 1506 return 0; 1507 } 1508 1509 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu) 1510 { 1511 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32; 1512 } 1513 1514 /** 1515 * velocity_alloc_rx_buf - allocate aligned receive buffer 1516 * @vptr: velocity 1517 * @idx: ring index 1518 * 1519 * Allocate a new full sized buffer for the reception of a frame and 1520 * map it into PCI space for the hardware to use. The hardware 1521 * requires *64* byte alignment of the buffer which makes life 1522 * less fun than would be ideal. 1523 */ 1524 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx) 1525 { 1526 struct rx_desc *rd = &(vptr->rx.ring[idx]); 1527 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]); 1528 1529 rd_info->skb = netdev_alloc_skb(vptr->netdev, vptr->rx.buf_sz + 64); 1530 if (rd_info->skb == NULL) 1531 return -ENOMEM; 1532 1533 /* 1534 * Do the gymnastics to get the buffer head for data at 1535 * 64byte alignment. 1536 */ 1537 skb_reserve(rd_info->skb, 1538 64 - ((unsigned long) rd_info->skb->data & 63)); 1539 rd_info->skb_dma = dma_map_single(vptr->dev, rd_info->skb->data, 1540 vptr->rx.buf_sz, DMA_FROM_DEVICE); 1541 1542 /* 1543 * Fill in the descriptor to match 1544 */ 1545 1546 *((u32 *) & (rd->rdesc0)) = 0; 1547 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN; 1548 rd->pa_low = cpu_to_le32(rd_info->skb_dma); 1549 rd->pa_high = 0; 1550 return 0; 1551 } 1552 1553 1554 static int velocity_rx_refill(struct velocity_info *vptr) 1555 { 1556 int dirty = vptr->rx.dirty, done = 0; 1557 1558 do { 1559 struct rx_desc *rd = vptr->rx.ring + dirty; 1560 1561 /* Fine for an all zero Rx desc at init time as well */ 1562 if (rd->rdesc0.len & OWNED_BY_NIC) 1563 break; 1564 1565 if (!vptr->rx.info[dirty].skb) { 1566 if (velocity_alloc_rx_buf(vptr, dirty) < 0) 1567 break; 1568 } 1569 done++; 1570 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0; 1571 } while (dirty != vptr->rx.curr); 1572 1573 if (done) { 1574 vptr->rx.dirty = dirty; 1575 vptr->rx.filled += done; 1576 } 1577 1578 return done; 1579 } 1580 1581 /** 1582 * velocity_free_rd_ring - free receive ring 1583 * @vptr: velocity to clean up 1584 * 1585 * Free the receive buffers for each ring slot and any 1586 * attached socket buffers that need to go away. 1587 */ 1588 static void velocity_free_rd_ring(struct velocity_info *vptr) 1589 { 1590 int i; 1591 1592 if (vptr->rx.info == NULL) 1593 return; 1594 1595 for (i = 0; i < vptr->options.numrx; i++) { 1596 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]); 1597 struct rx_desc *rd = vptr->rx.ring + i; 1598 1599 memset(rd, 0, sizeof(*rd)); 1600 1601 if (!rd_info->skb) 1602 continue; 1603 dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz, 1604 DMA_FROM_DEVICE); 1605 rd_info->skb_dma = 0; 1606 1607 dev_kfree_skb(rd_info->skb); 1608 rd_info->skb = NULL; 1609 } 1610 1611 kfree(vptr->rx.info); 1612 vptr->rx.info = NULL; 1613 } 1614 1615 /** 1616 * velocity_init_rd_ring - set up receive ring 1617 * @vptr: velocity to configure 1618 * 1619 * Allocate and set up the receive buffers for each ring slot and 1620 * assign them to the network adapter. 1621 */ 1622 static int velocity_init_rd_ring(struct velocity_info *vptr) 1623 { 1624 int ret = -ENOMEM; 1625 1626 vptr->rx.info = kcalloc(vptr->options.numrx, 1627 sizeof(struct velocity_rd_info), GFP_KERNEL); 1628 if (!vptr->rx.info) 1629 goto out; 1630 1631 velocity_init_rx_ring_indexes(vptr); 1632 1633 if (velocity_rx_refill(vptr) != vptr->options.numrx) { 1634 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR 1635 "%s: failed to allocate RX buffer.\n", vptr->netdev->name); 1636 velocity_free_rd_ring(vptr); 1637 goto out; 1638 } 1639 1640 ret = 0; 1641 out: 1642 return ret; 1643 } 1644 1645 /** 1646 * velocity_init_td_ring - set up transmit ring 1647 * @vptr: velocity 1648 * 1649 * Set up the transmit ring and chain the ring pointers together. 1650 * Returns zero on success or a negative posix errno code for 1651 * failure. 1652 */ 1653 static int velocity_init_td_ring(struct velocity_info *vptr) 1654 { 1655 int j; 1656 1657 /* Init the TD ring entries */ 1658 for (j = 0; j < vptr->tx.numq; j++) { 1659 1660 vptr->tx.infos[j] = kcalloc(vptr->options.numtx, 1661 sizeof(struct velocity_td_info), 1662 GFP_KERNEL); 1663 if (!vptr->tx.infos[j]) { 1664 while (--j >= 0) 1665 kfree(vptr->tx.infos[j]); 1666 return -ENOMEM; 1667 } 1668 1669 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0; 1670 } 1671 return 0; 1672 } 1673 1674 /** 1675 * velocity_free_dma_rings - free PCI ring pointers 1676 * @vptr: Velocity to free from 1677 * 1678 * Clean up the PCI ring buffers allocated to this velocity. 1679 */ 1680 static void velocity_free_dma_rings(struct velocity_info *vptr) 1681 { 1682 const int size = vptr->options.numrx * sizeof(struct rx_desc) + 1683 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq; 1684 1685 dma_free_coherent(vptr->dev, size, vptr->rx.ring, vptr->rx.pool_dma); 1686 } 1687 1688 static int velocity_init_rings(struct velocity_info *vptr, int mtu) 1689 { 1690 int ret; 1691 1692 velocity_set_rxbufsize(vptr, mtu); 1693 1694 ret = velocity_init_dma_rings(vptr); 1695 if (ret < 0) 1696 goto out; 1697 1698 ret = velocity_init_rd_ring(vptr); 1699 if (ret < 0) 1700 goto err_free_dma_rings_0; 1701 1702 ret = velocity_init_td_ring(vptr); 1703 if (ret < 0) 1704 goto err_free_rd_ring_1; 1705 out: 1706 return ret; 1707 1708 err_free_rd_ring_1: 1709 velocity_free_rd_ring(vptr); 1710 err_free_dma_rings_0: 1711 velocity_free_dma_rings(vptr); 1712 goto out; 1713 } 1714 1715 /** 1716 * velocity_free_tx_buf - free transmit buffer 1717 * @vptr: velocity 1718 * @tdinfo: buffer 1719 * 1720 * Release an transmit buffer. If the buffer was preallocated then 1721 * recycle it, if not then unmap the buffer. 1722 */ 1723 static void velocity_free_tx_buf(struct velocity_info *vptr, 1724 struct velocity_td_info *tdinfo, struct tx_desc *td) 1725 { 1726 struct sk_buff *skb = tdinfo->skb; 1727 int i; 1728 1729 /* 1730 * Don't unmap the pre-allocated tx_bufs 1731 */ 1732 for (i = 0; i < tdinfo->nskb_dma; i++) { 1733 size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN); 1734 1735 /* For scatter-gather */ 1736 if (skb_shinfo(skb)->nr_frags > 0) 1737 pktlen = max_t(size_t, pktlen, 1738 td->td_buf[i].size & ~TD_QUEUE); 1739 1740 dma_unmap_single(vptr->dev, tdinfo->skb_dma[i], 1741 le16_to_cpu(pktlen), DMA_TO_DEVICE); 1742 } 1743 dev_kfree_skb_irq(skb); 1744 tdinfo->skb = NULL; 1745 } 1746 1747 /* 1748 * FIXME: could we merge this with velocity_free_tx_buf ? 1749 */ 1750 static void velocity_free_td_ring_entry(struct velocity_info *vptr, 1751 int q, int n) 1752 { 1753 struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]); 1754 int i; 1755 1756 if (td_info == NULL) 1757 return; 1758 1759 if (td_info->skb) { 1760 for (i = 0; i < td_info->nskb_dma; i++) { 1761 if (td_info->skb_dma[i]) { 1762 dma_unmap_single(vptr->dev, td_info->skb_dma[i], 1763 td_info->skb->len, DMA_TO_DEVICE); 1764 td_info->skb_dma[i] = 0; 1765 } 1766 } 1767 dev_kfree_skb(td_info->skb); 1768 td_info->skb = NULL; 1769 } 1770 } 1771 1772 /** 1773 * velocity_free_td_ring - free td ring 1774 * @vptr: velocity 1775 * 1776 * Free up the transmit ring for this particular velocity adapter. 1777 * We free the ring contents but not the ring itself. 1778 */ 1779 static void velocity_free_td_ring(struct velocity_info *vptr) 1780 { 1781 int i, j; 1782 1783 for (j = 0; j < vptr->tx.numq; j++) { 1784 if (vptr->tx.infos[j] == NULL) 1785 continue; 1786 for (i = 0; i < vptr->options.numtx; i++) 1787 velocity_free_td_ring_entry(vptr, j, i); 1788 1789 kfree(vptr->tx.infos[j]); 1790 vptr->tx.infos[j] = NULL; 1791 } 1792 } 1793 1794 static void velocity_free_rings(struct velocity_info *vptr) 1795 { 1796 velocity_free_td_ring(vptr); 1797 velocity_free_rd_ring(vptr); 1798 velocity_free_dma_rings(vptr); 1799 } 1800 1801 /** 1802 * velocity_error - handle error from controller 1803 * @vptr: velocity 1804 * @status: card status 1805 * 1806 * Process an error report from the hardware and attempt to recover 1807 * the card itself. At the moment we cannot recover from some 1808 * theoretically impossible errors but this could be fixed using 1809 * the pci_device_failed logic to bounce the hardware 1810 * 1811 */ 1812 static void velocity_error(struct velocity_info *vptr, int status) 1813 { 1814 1815 if (status & ISR_TXSTLI) { 1816 struct mac_regs __iomem *regs = vptr->mac_regs; 1817 1818 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(®s->TDIdx[0])); 1819 BYTE_REG_BITS_ON(TXESR_TDSTR, ®s->TXESR); 1820 writew(TRDCSR_RUN, ®s->TDCSRClr); 1821 netif_stop_queue(vptr->netdev); 1822 1823 /* FIXME: port over the pci_device_failed code and use it 1824 here */ 1825 } 1826 1827 if (status & ISR_SRCI) { 1828 struct mac_regs __iomem *regs = vptr->mac_regs; 1829 int linked; 1830 1831 if (vptr->options.spd_dpx == SPD_DPX_AUTO) { 1832 vptr->mii_status = check_connection_type(regs); 1833 1834 /* 1835 * If it is a 3119, disable frame bursting in 1836 * halfduplex mode and enable it in fullduplex 1837 * mode 1838 */ 1839 if (vptr->rev_id < REV_ID_VT3216_A0) { 1840 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1841 BYTE_REG_BITS_ON(TCR_TB2BDIS, ®s->TCR); 1842 else 1843 BYTE_REG_BITS_OFF(TCR_TB2BDIS, ®s->TCR); 1844 } 1845 /* 1846 * Only enable CD heart beat counter in 10HD mode 1847 */ 1848 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10)) 1849 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, ®s->TESTCFG); 1850 else 1851 BYTE_REG_BITS_ON(TESTCFG_HBDIS, ®s->TESTCFG); 1852 1853 setup_queue_timers(vptr); 1854 } 1855 /* 1856 * Get link status from PHYSR0 1857 */ 1858 linked = readb(®s->PHYSR0) & PHYSR0_LINKGD; 1859 1860 if (linked) { 1861 vptr->mii_status &= ~VELOCITY_LINK_FAIL; 1862 netif_carrier_on(vptr->netdev); 1863 } else { 1864 vptr->mii_status |= VELOCITY_LINK_FAIL; 1865 netif_carrier_off(vptr->netdev); 1866 } 1867 1868 velocity_print_link_status(vptr); 1869 enable_flow_control_ability(vptr); 1870 1871 /* 1872 * Re-enable auto-polling because SRCI will disable 1873 * auto-polling 1874 */ 1875 1876 enable_mii_autopoll(regs); 1877 1878 if (vptr->mii_status & VELOCITY_LINK_FAIL) 1879 netif_stop_queue(vptr->netdev); 1880 else 1881 netif_wake_queue(vptr->netdev); 1882 1883 } 1884 if (status & ISR_MIBFI) 1885 velocity_update_hw_mibs(vptr); 1886 if (status & ISR_LSTEI) 1887 mac_rx_queue_wake(vptr->mac_regs); 1888 } 1889 1890 /** 1891 * tx_srv - transmit interrupt service 1892 * @vptr; Velocity 1893 * 1894 * Scan the queues looking for transmitted packets that 1895 * we can complete and clean up. Update any statistics as 1896 * necessary/ 1897 */ 1898 static int velocity_tx_srv(struct velocity_info *vptr) 1899 { 1900 struct tx_desc *td; 1901 int qnum; 1902 int full = 0; 1903 int idx; 1904 int works = 0; 1905 struct velocity_td_info *tdinfo; 1906 struct net_device_stats *stats = &vptr->netdev->stats; 1907 1908 for (qnum = 0; qnum < vptr->tx.numq; qnum++) { 1909 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0; 1910 idx = (idx + 1) % vptr->options.numtx) { 1911 1912 /* 1913 * Get Tx Descriptor 1914 */ 1915 td = &(vptr->tx.rings[qnum][idx]); 1916 tdinfo = &(vptr->tx.infos[qnum][idx]); 1917 1918 if (td->tdesc0.len & OWNED_BY_NIC) 1919 break; 1920 1921 if ((works++ > 15)) 1922 break; 1923 1924 if (td->tdesc0.TSR & TSR0_TERR) { 1925 stats->tx_errors++; 1926 stats->tx_dropped++; 1927 if (td->tdesc0.TSR & TSR0_CDH) 1928 stats->tx_heartbeat_errors++; 1929 if (td->tdesc0.TSR & TSR0_CRS) 1930 stats->tx_carrier_errors++; 1931 if (td->tdesc0.TSR & TSR0_ABT) 1932 stats->tx_aborted_errors++; 1933 if (td->tdesc0.TSR & TSR0_OWC) 1934 stats->tx_window_errors++; 1935 } else { 1936 stats->tx_packets++; 1937 stats->tx_bytes += tdinfo->skb->len; 1938 } 1939 velocity_free_tx_buf(vptr, tdinfo, td); 1940 vptr->tx.used[qnum]--; 1941 } 1942 vptr->tx.tail[qnum] = idx; 1943 1944 if (AVAIL_TD(vptr, qnum) < 1) 1945 full = 1; 1946 } 1947 /* 1948 * Look to see if we should kick the transmit network 1949 * layer for more work. 1950 */ 1951 if (netif_queue_stopped(vptr->netdev) && (full == 0) && 1952 (!(vptr->mii_status & VELOCITY_LINK_FAIL))) { 1953 netif_wake_queue(vptr->netdev); 1954 } 1955 return works; 1956 } 1957 1958 /** 1959 * velocity_rx_csum - checksum process 1960 * @rd: receive packet descriptor 1961 * @skb: network layer packet buffer 1962 * 1963 * Process the status bits for the received packet and determine 1964 * if the checksum was computed and verified by the hardware 1965 */ 1966 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb) 1967 { 1968 skb_checksum_none_assert(skb); 1969 1970 if (rd->rdesc1.CSM & CSM_IPKT) { 1971 if (rd->rdesc1.CSM & CSM_IPOK) { 1972 if ((rd->rdesc1.CSM & CSM_TCPKT) || 1973 (rd->rdesc1.CSM & CSM_UDPKT)) { 1974 if (!(rd->rdesc1.CSM & CSM_TUPOK)) 1975 return; 1976 } 1977 skb->ip_summed = CHECKSUM_UNNECESSARY; 1978 } 1979 } 1980 } 1981 1982 /** 1983 * velocity_rx_copy - in place Rx copy for small packets 1984 * @rx_skb: network layer packet buffer candidate 1985 * @pkt_size: received data size 1986 * @rd: receive packet descriptor 1987 * @dev: network device 1988 * 1989 * Replace the current skb that is scheduled for Rx processing by a 1990 * shorter, immediately allocated skb, if the received packet is small 1991 * enough. This function returns a negative value if the received 1992 * packet is too big or if memory is exhausted. 1993 */ 1994 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size, 1995 struct velocity_info *vptr) 1996 { 1997 int ret = -1; 1998 if (pkt_size < rx_copybreak) { 1999 struct sk_buff *new_skb; 2000 2001 new_skb = netdev_alloc_skb_ip_align(vptr->netdev, pkt_size); 2002 if (new_skb) { 2003 new_skb->ip_summed = rx_skb[0]->ip_summed; 2004 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size); 2005 *rx_skb = new_skb; 2006 ret = 0; 2007 } 2008 2009 } 2010 return ret; 2011 } 2012 2013 /** 2014 * velocity_iph_realign - IP header alignment 2015 * @vptr: velocity we are handling 2016 * @skb: network layer packet buffer 2017 * @pkt_size: received data size 2018 * 2019 * Align IP header on a 2 bytes boundary. This behavior can be 2020 * configured by the user. 2021 */ 2022 static inline void velocity_iph_realign(struct velocity_info *vptr, 2023 struct sk_buff *skb, int pkt_size) 2024 { 2025 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) { 2026 memmove(skb->data + 2, skb->data, pkt_size); 2027 skb_reserve(skb, 2); 2028 } 2029 } 2030 2031 /** 2032 * velocity_receive_frame - received packet processor 2033 * @vptr: velocity we are handling 2034 * @idx: ring index 2035 * 2036 * A packet has arrived. We process the packet and if appropriate 2037 * pass the frame up the network stack 2038 */ 2039 static int velocity_receive_frame(struct velocity_info *vptr, int idx) 2040 { 2041 struct net_device_stats *stats = &vptr->netdev->stats; 2042 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]); 2043 struct rx_desc *rd = &(vptr->rx.ring[idx]); 2044 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff; 2045 struct sk_buff *skb; 2046 2047 if (unlikely(rd->rdesc0.RSR & (RSR_STP | RSR_EDP | RSR_RL))) { 2048 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) 2049 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame spans multiple RDs.\n", vptr->netdev->name); 2050 stats->rx_length_errors++; 2051 return -EINVAL; 2052 } 2053 2054 if (rd->rdesc0.RSR & RSR_MAR) 2055 stats->multicast++; 2056 2057 skb = rd_info->skb; 2058 2059 dma_sync_single_for_cpu(vptr->dev, rd_info->skb_dma, 2060 vptr->rx.buf_sz, DMA_FROM_DEVICE); 2061 2062 velocity_rx_csum(rd, skb); 2063 2064 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) { 2065 velocity_iph_realign(vptr, skb, pkt_len); 2066 rd_info->skb = NULL; 2067 dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz, 2068 DMA_FROM_DEVICE); 2069 } else { 2070 dma_sync_single_for_device(vptr->dev, rd_info->skb_dma, 2071 vptr->rx.buf_sz, DMA_FROM_DEVICE); 2072 } 2073 2074 skb_put(skb, pkt_len - 4); 2075 skb->protocol = eth_type_trans(skb, vptr->netdev); 2076 2077 if (rd->rdesc0.RSR & RSR_DETAG) { 2078 u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG)); 2079 2080 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 2081 } 2082 netif_receive_skb(skb); 2083 2084 stats->rx_bytes += pkt_len; 2085 stats->rx_packets++; 2086 2087 return 0; 2088 } 2089 2090 /** 2091 * velocity_rx_srv - service RX interrupt 2092 * @vptr: velocity 2093 * 2094 * Walk the receive ring of the velocity adapter and remove 2095 * any received packets from the receive queue. Hand the ring 2096 * slots back to the adapter for reuse. 2097 */ 2098 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left) 2099 { 2100 struct net_device_stats *stats = &vptr->netdev->stats; 2101 int rd_curr = vptr->rx.curr; 2102 int works = 0; 2103 2104 while (works < budget_left) { 2105 struct rx_desc *rd = vptr->rx.ring + rd_curr; 2106 2107 if (!vptr->rx.info[rd_curr].skb) 2108 break; 2109 2110 if (rd->rdesc0.len & OWNED_BY_NIC) 2111 break; 2112 2113 rmb(); 2114 2115 /* 2116 * Don't drop CE or RL error frame although RXOK is off 2117 */ 2118 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) { 2119 if (velocity_receive_frame(vptr, rd_curr) < 0) 2120 stats->rx_dropped++; 2121 } else { 2122 if (rd->rdesc0.RSR & RSR_CRC) 2123 stats->rx_crc_errors++; 2124 if (rd->rdesc0.RSR & RSR_FAE) 2125 stats->rx_frame_errors++; 2126 2127 stats->rx_dropped++; 2128 } 2129 2130 rd->size |= RX_INTEN; 2131 2132 rd_curr++; 2133 if (rd_curr >= vptr->options.numrx) 2134 rd_curr = 0; 2135 works++; 2136 } 2137 2138 vptr->rx.curr = rd_curr; 2139 2140 if ((works > 0) && (velocity_rx_refill(vptr) > 0)) 2141 velocity_give_many_rx_descs(vptr); 2142 2143 VAR_USED(stats); 2144 return works; 2145 } 2146 2147 static int velocity_poll(struct napi_struct *napi, int budget) 2148 { 2149 struct velocity_info *vptr = container_of(napi, 2150 struct velocity_info, napi); 2151 unsigned int rx_done; 2152 unsigned long flags; 2153 2154 /* 2155 * Do rx and tx twice for performance (taken from the VIA 2156 * out-of-tree driver). 2157 */ 2158 rx_done = velocity_rx_srv(vptr, budget); 2159 spin_lock_irqsave(&vptr->lock, flags); 2160 velocity_tx_srv(vptr); 2161 /* If budget not fully consumed, exit the polling mode */ 2162 if (rx_done < budget) { 2163 napi_complete_done(napi, rx_done); 2164 mac_enable_int(vptr->mac_regs); 2165 } 2166 spin_unlock_irqrestore(&vptr->lock, flags); 2167 2168 return rx_done; 2169 } 2170 2171 /** 2172 * velocity_intr - interrupt callback 2173 * @irq: interrupt number 2174 * @dev_instance: interrupting device 2175 * 2176 * Called whenever an interrupt is generated by the velocity 2177 * adapter IRQ line. We may not be the source of the interrupt 2178 * and need to identify initially if we are, and if not exit as 2179 * efficiently as possible. 2180 */ 2181 static irqreturn_t velocity_intr(int irq, void *dev_instance) 2182 { 2183 struct net_device *dev = dev_instance; 2184 struct velocity_info *vptr = netdev_priv(dev); 2185 u32 isr_status; 2186 2187 spin_lock(&vptr->lock); 2188 isr_status = mac_read_isr(vptr->mac_regs); 2189 2190 /* Not us ? */ 2191 if (isr_status == 0) { 2192 spin_unlock(&vptr->lock); 2193 return IRQ_NONE; 2194 } 2195 2196 /* Ack the interrupt */ 2197 mac_write_isr(vptr->mac_regs, isr_status); 2198 2199 if (likely(napi_schedule_prep(&vptr->napi))) { 2200 mac_disable_int(vptr->mac_regs); 2201 __napi_schedule(&vptr->napi); 2202 } 2203 2204 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI))) 2205 velocity_error(vptr, isr_status); 2206 2207 spin_unlock(&vptr->lock); 2208 2209 return IRQ_HANDLED; 2210 } 2211 2212 /** 2213 * velocity_open - interface activation callback 2214 * @dev: network layer device to open 2215 * 2216 * Called when the network layer brings the interface up. Returns 2217 * a negative posix error code on failure, or zero on success. 2218 * 2219 * All the ring allocation and set up is done on open for this 2220 * adapter to minimise memory usage when inactive 2221 */ 2222 static int velocity_open(struct net_device *dev) 2223 { 2224 struct velocity_info *vptr = netdev_priv(dev); 2225 int ret; 2226 2227 ret = velocity_init_rings(vptr, dev->mtu); 2228 if (ret < 0) 2229 goto out; 2230 2231 /* Ensure chip is running */ 2232 velocity_set_power_state(vptr, PCI_D0); 2233 2234 velocity_init_registers(vptr, VELOCITY_INIT_COLD); 2235 2236 ret = request_irq(dev->irq, velocity_intr, IRQF_SHARED, 2237 dev->name, dev); 2238 if (ret < 0) { 2239 /* Power down the chip */ 2240 velocity_set_power_state(vptr, PCI_D3hot); 2241 velocity_free_rings(vptr); 2242 goto out; 2243 } 2244 2245 velocity_give_many_rx_descs(vptr); 2246 2247 mac_enable_int(vptr->mac_regs); 2248 netif_start_queue(dev); 2249 napi_enable(&vptr->napi); 2250 vptr->flags |= VELOCITY_FLAGS_OPENED; 2251 out: 2252 return ret; 2253 } 2254 2255 /** 2256 * velocity_shutdown - shut down the chip 2257 * @vptr: velocity to deactivate 2258 * 2259 * Shuts down the internal operations of the velocity and 2260 * disables interrupts, autopolling, transmit and receive 2261 */ 2262 static void velocity_shutdown(struct velocity_info *vptr) 2263 { 2264 struct mac_regs __iomem *regs = vptr->mac_regs; 2265 mac_disable_int(regs); 2266 writel(CR0_STOP, ®s->CR0Set); 2267 writew(0xFFFF, ®s->TDCSRClr); 2268 writeb(0xFF, ®s->RDCSRClr); 2269 safe_disable_mii_autopoll(regs); 2270 mac_clear_isr(regs); 2271 } 2272 2273 /** 2274 * velocity_change_mtu - MTU change callback 2275 * @dev: network device 2276 * @new_mtu: desired MTU 2277 * 2278 * Handle requests from the networking layer for MTU change on 2279 * this interface. It gets called on a change by the network layer. 2280 * Return zero for success or negative posix error code. 2281 */ 2282 static int velocity_change_mtu(struct net_device *dev, int new_mtu) 2283 { 2284 struct velocity_info *vptr = netdev_priv(dev); 2285 int ret = 0; 2286 2287 if (!netif_running(dev)) { 2288 dev->mtu = new_mtu; 2289 goto out_0; 2290 } 2291 2292 if (dev->mtu != new_mtu) { 2293 struct velocity_info *tmp_vptr; 2294 unsigned long flags; 2295 struct rx_info rx; 2296 struct tx_info tx; 2297 2298 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL); 2299 if (!tmp_vptr) { 2300 ret = -ENOMEM; 2301 goto out_0; 2302 } 2303 2304 tmp_vptr->netdev = dev; 2305 tmp_vptr->pdev = vptr->pdev; 2306 tmp_vptr->dev = vptr->dev; 2307 tmp_vptr->options = vptr->options; 2308 tmp_vptr->tx.numq = vptr->tx.numq; 2309 2310 ret = velocity_init_rings(tmp_vptr, new_mtu); 2311 if (ret < 0) 2312 goto out_free_tmp_vptr_1; 2313 2314 napi_disable(&vptr->napi); 2315 2316 spin_lock_irqsave(&vptr->lock, flags); 2317 2318 netif_stop_queue(dev); 2319 velocity_shutdown(vptr); 2320 2321 rx = vptr->rx; 2322 tx = vptr->tx; 2323 2324 vptr->rx = tmp_vptr->rx; 2325 vptr->tx = tmp_vptr->tx; 2326 2327 tmp_vptr->rx = rx; 2328 tmp_vptr->tx = tx; 2329 2330 dev->mtu = new_mtu; 2331 2332 velocity_init_registers(vptr, VELOCITY_INIT_COLD); 2333 2334 velocity_give_many_rx_descs(vptr); 2335 2336 napi_enable(&vptr->napi); 2337 2338 mac_enable_int(vptr->mac_regs); 2339 netif_start_queue(dev); 2340 2341 spin_unlock_irqrestore(&vptr->lock, flags); 2342 2343 velocity_free_rings(tmp_vptr); 2344 2345 out_free_tmp_vptr_1: 2346 kfree(tmp_vptr); 2347 } 2348 out_0: 2349 return ret; 2350 } 2351 2352 #ifdef CONFIG_NET_POLL_CONTROLLER 2353 /** 2354 * velocity_poll_controller - Velocity Poll controller function 2355 * @dev: network device 2356 * 2357 * 2358 * Used by NETCONSOLE and other diagnostic tools to allow network I/P 2359 * with interrupts disabled. 2360 */ 2361 static void velocity_poll_controller(struct net_device *dev) 2362 { 2363 disable_irq(dev->irq); 2364 velocity_intr(dev->irq, dev); 2365 enable_irq(dev->irq); 2366 } 2367 #endif 2368 2369 /** 2370 * velocity_mii_ioctl - MII ioctl handler 2371 * @dev: network device 2372 * @ifr: the ifreq block for the ioctl 2373 * @cmd: the command 2374 * 2375 * Process MII requests made via ioctl from the network layer. These 2376 * are used by tools like kudzu to interrogate the link state of the 2377 * hardware 2378 */ 2379 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2380 { 2381 struct velocity_info *vptr = netdev_priv(dev); 2382 struct mac_regs __iomem *regs = vptr->mac_regs; 2383 unsigned long flags; 2384 struct mii_ioctl_data *miidata = if_mii(ifr); 2385 int err; 2386 2387 switch (cmd) { 2388 case SIOCGMIIPHY: 2389 miidata->phy_id = readb(®s->MIIADR) & 0x1f; 2390 break; 2391 case SIOCGMIIREG: 2392 if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0) 2393 return -ETIMEDOUT; 2394 break; 2395 case SIOCSMIIREG: 2396 spin_lock_irqsave(&vptr->lock, flags); 2397 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in); 2398 spin_unlock_irqrestore(&vptr->lock, flags); 2399 check_connection_type(vptr->mac_regs); 2400 if (err) 2401 return err; 2402 break; 2403 default: 2404 return -EOPNOTSUPP; 2405 } 2406 return 0; 2407 } 2408 2409 /** 2410 * velocity_ioctl - ioctl entry point 2411 * @dev: network device 2412 * @rq: interface request ioctl 2413 * @cmd: command code 2414 * 2415 * Called when the user issues an ioctl request to the network 2416 * device in question. The velocity interface supports MII. 2417 */ 2418 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2419 { 2420 struct velocity_info *vptr = netdev_priv(dev); 2421 int ret; 2422 2423 /* If we are asked for information and the device is power 2424 saving then we need to bring the device back up to talk to it */ 2425 2426 if (!netif_running(dev)) 2427 velocity_set_power_state(vptr, PCI_D0); 2428 2429 switch (cmd) { 2430 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 2431 case SIOCGMIIREG: /* Read MII PHY register. */ 2432 case SIOCSMIIREG: /* Write to MII PHY register. */ 2433 ret = velocity_mii_ioctl(dev, rq, cmd); 2434 break; 2435 2436 default: 2437 ret = -EOPNOTSUPP; 2438 } 2439 if (!netif_running(dev)) 2440 velocity_set_power_state(vptr, PCI_D3hot); 2441 2442 2443 return ret; 2444 } 2445 2446 /** 2447 * velocity_get_status - statistics callback 2448 * @dev: network device 2449 * 2450 * Callback from the network layer to allow driver statistics 2451 * to be resynchronized with hardware collected state. In the 2452 * case of the velocity we need to pull the MIB counters from 2453 * the hardware into the counters before letting the network 2454 * layer display them. 2455 */ 2456 static struct net_device_stats *velocity_get_stats(struct net_device *dev) 2457 { 2458 struct velocity_info *vptr = netdev_priv(dev); 2459 2460 /* If the hardware is down, don't touch MII */ 2461 if (!netif_running(dev)) 2462 return &dev->stats; 2463 2464 spin_lock_irq(&vptr->lock); 2465 velocity_update_hw_mibs(vptr); 2466 spin_unlock_irq(&vptr->lock); 2467 2468 dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts]; 2469 dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts]; 2470 dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors]; 2471 2472 // unsigned long rx_dropped; /* no space in linux buffers */ 2473 dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions]; 2474 /* detailed rx_errors: */ 2475 // unsigned long rx_length_errors; 2476 // unsigned long rx_over_errors; /* receiver ring buff overflow */ 2477 dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE]; 2478 // unsigned long rx_frame_errors; /* recv'd frame alignment error */ 2479 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */ 2480 // unsigned long rx_missed_errors; /* receiver missed packet */ 2481 2482 /* detailed tx_errors */ 2483 // unsigned long tx_fifo_errors; 2484 2485 return &dev->stats; 2486 } 2487 2488 /** 2489 * velocity_close - close adapter callback 2490 * @dev: network device 2491 * 2492 * Callback from the network layer when the velocity is being 2493 * deactivated by the network layer 2494 */ 2495 static int velocity_close(struct net_device *dev) 2496 { 2497 struct velocity_info *vptr = netdev_priv(dev); 2498 2499 napi_disable(&vptr->napi); 2500 netif_stop_queue(dev); 2501 velocity_shutdown(vptr); 2502 2503 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) 2504 velocity_get_ip(vptr); 2505 2506 free_irq(dev->irq, dev); 2507 2508 velocity_free_rings(vptr); 2509 2510 vptr->flags &= (~VELOCITY_FLAGS_OPENED); 2511 return 0; 2512 } 2513 2514 /** 2515 * velocity_xmit - transmit packet callback 2516 * @skb: buffer to transmit 2517 * @dev: network device 2518 * 2519 * Called by the networ layer to request a packet is queued to 2520 * the velocity. Returns zero on success. 2521 */ 2522 static netdev_tx_t velocity_xmit(struct sk_buff *skb, 2523 struct net_device *dev) 2524 { 2525 struct velocity_info *vptr = netdev_priv(dev); 2526 int qnum = 0; 2527 struct tx_desc *td_ptr; 2528 struct velocity_td_info *tdinfo; 2529 unsigned long flags; 2530 int pktlen; 2531 int index, prev; 2532 int i = 0; 2533 2534 if (skb_padto(skb, ETH_ZLEN)) 2535 goto out; 2536 2537 /* The hardware can handle at most 7 memory segments, so merge 2538 * the skb if there are more */ 2539 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) { 2540 dev_kfree_skb_any(skb); 2541 return NETDEV_TX_OK; 2542 } 2543 2544 pktlen = skb_shinfo(skb)->nr_frags == 0 ? 2545 max_t(unsigned int, skb->len, ETH_ZLEN) : 2546 skb_headlen(skb); 2547 2548 spin_lock_irqsave(&vptr->lock, flags); 2549 2550 index = vptr->tx.curr[qnum]; 2551 td_ptr = &(vptr->tx.rings[qnum][index]); 2552 tdinfo = &(vptr->tx.infos[qnum][index]); 2553 2554 td_ptr->tdesc1.TCR = TCR0_TIC; 2555 td_ptr->td_buf[0].size &= ~TD_QUEUE; 2556 2557 /* 2558 * Map the linear network buffer into PCI space and 2559 * add it to the transmit ring. 2560 */ 2561 tdinfo->skb = skb; 2562 tdinfo->skb_dma[0] = dma_map_single(vptr->dev, skb->data, pktlen, 2563 DMA_TO_DEVICE); 2564 td_ptr->tdesc0.len = cpu_to_le16(pktlen); 2565 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]); 2566 td_ptr->td_buf[0].pa_high = 0; 2567 td_ptr->td_buf[0].size = cpu_to_le16(pktlen); 2568 2569 /* Handle fragments */ 2570 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2571 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2572 2573 tdinfo->skb_dma[i + 1] = skb_frag_dma_map(vptr->dev, 2574 frag, 0, 2575 skb_frag_size(frag), 2576 DMA_TO_DEVICE); 2577 2578 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]); 2579 td_ptr->td_buf[i + 1].pa_high = 0; 2580 td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag)); 2581 } 2582 tdinfo->nskb_dma = i + 1; 2583 2584 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16; 2585 2586 if (skb_vlan_tag_present(skb)) { 2587 td_ptr->tdesc1.vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 2588 td_ptr->tdesc1.TCR |= TCR0_VETAG; 2589 } 2590 2591 /* 2592 * Handle hardware checksum 2593 */ 2594 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2595 const struct iphdr *ip = ip_hdr(skb); 2596 if (ip->protocol == IPPROTO_TCP) 2597 td_ptr->tdesc1.TCR |= TCR0_TCPCK; 2598 else if (ip->protocol == IPPROTO_UDP) 2599 td_ptr->tdesc1.TCR |= (TCR0_UDPCK); 2600 td_ptr->tdesc1.TCR |= TCR0_IPCK; 2601 } 2602 2603 prev = index - 1; 2604 if (prev < 0) 2605 prev = vptr->options.numtx - 1; 2606 td_ptr->tdesc0.len |= OWNED_BY_NIC; 2607 vptr->tx.used[qnum]++; 2608 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx; 2609 2610 if (AVAIL_TD(vptr, qnum) < 1) 2611 netif_stop_queue(dev); 2612 2613 td_ptr = &(vptr->tx.rings[qnum][prev]); 2614 td_ptr->td_buf[0].size |= TD_QUEUE; 2615 mac_tx_queue_wake(vptr->mac_regs, qnum); 2616 2617 spin_unlock_irqrestore(&vptr->lock, flags); 2618 out: 2619 return NETDEV_TX_OK; 2620 } 2621 2622 static const struct net_device_ops velocity_netdev_ops = { 2623 .ndo_open = velocity_open, 2624 .ndo_stop = velocity_close, 2625 .ndo_start_xmit = velocity_xmit, 2626 .ndo_get_stats = velocity_get_stats, 2627 .ndo_validate_addr = eth_validate_addr, 2628 .ndo_set_mac_address = eth_mac_addr, 2629 .ndo_set_rx_mode = velocity_set_multi, 2630 .ndo_change_mtu = velocity_change_mtu, 2631 .ndo_do_ioctl = velocity_ioctl, 2632 .ndo_vlan_rx_add_vid = velocity_vlan_rx_add_vid, 2633 .ndo_vlan_rx_kill_vid = velocity_vlan_rx_kill_vid, 2634 #ifdef CONFIG_NET_POLL_CONTROLLER 2635 .ndo_poll_controller = velocity_poll_controller, 2636 #endif 2637 }; 2638 2639 /** 2640 * velocity_init_info - init private data 2641 * @pdev: PCI device 2642 * @vptr: Velocity info 2643 * @info: Board type 2644 * 2645 * Set up the initial velocity_info struct for the device that has been 2646 * discovered. 2647 */ 2648 static void velocity_init_info(struct velocity_info *vptr, 2649 const struct velocity_info_tbl *info) 2650 { 2651 vptr->chip_id = info->chip_id; 2652 vptr->tx.numq = info->txqueue; 2653 vptr->multicast_limit = MCAM_SIZE; 2654 spin_lock_init(&vptr->lock); 2655 } 2656 2657 /** 2658 * velocity_get_pci_info - retrieve PCI info for device 2659 * @vptr: velocity device 2660 * @pdev: PCI device it matches 2661 * 2662 * Retrieve the PCI configuration space data that interests us from 2663 * the kernel PCI layer 2664 */ 2665 static int velocity_get_pci_info(struct velocity_info *vptr) 2666 { 2667 struct pci_dev *pdev = vptr->pdev; 2668 2669 pci_set_master(pdev); 2670 2671 vptr->ioaddr = pci_resource_start(pdev, 0); 2672 vptr->memaddr = pci_resource_start(pdev, 1); 2673 2674 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) { 2675 dev_err(&pdev->dev, 2676 "region #0 is not an I/O resource, aborting.\n"); 2677 return -EINVAL; 2678 } 2679 2680 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) { 2681 dev_err(&pdev->dev, 2682 "region #1 is an I/O resource, aborting.\n"); 2683 return -EINVAL; 2684 } 2685 2686 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) { 2687 dev_err(&pdev->dev, "region #1 is too small.\n"); 2688 return -EINVAL; 2689 } 2690 2691 return 0; 2692 } 2693 2694 /** 2695 * velocity_get_platform_info - retrieve platform info for device 2696 * @vptr: velocity device 2697 * @pdev: platform device it matches 2698 * 2699 * Retrieve the Platform configuration data that interests us 2700 */ 2701 static int velocity_get_platform_info(struct velocity_info *vptr) 2702 { 2703 struct resource res; 2704 int ret; 2705 2706 if (of_get_property(vptr->dev->of_node, "no-eeprom", NULL)) 2707 vptr->no_eeprom = 1; 2708 2709 ret = of_address_to_resource(vptr->dev->of_node, 0, &res); 2710 if (ret) { 2711 dev_err(vptr->dev, "unable to find memory address\n"); 2712 return ret; 2713 } 2714 2715 vptr->memaddr = res.start; 2716 2717 if (resource_size(&res) < VELOCITY_IO_SIZE) { 2718 dev_err(vptr->dev, "memory region is too small.\n"); 2719 return -EINVAL; 2720 } 2721 2722 return 0; 2723 } 2724 2725 /** 2726 * velocity_print_info - per driver data 2727 * @vptr: velocity 2728 * 2729 * Print per driver data as the kernel driver finds Velocity 2730 * hardware 2731 */ 2732 static void velocity_print_info(struct velocity_info *vptr) 2733 { 2734 struct net_device *dev = vptr->netdev; 2735 2736 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id)); 2737 printk(KERN_INFO "%s: Ethernet Address: %pM\n", 2738 dev->name, dev->dev_addr); 2739 } 2740 2741 static u32 velocity_get_link(struct net_device *dev) 2742 { 2743 struct velocity_info *vptr = netdev_priv(dev); 2744 struct mac_regs __iomem *regs = vptr->mac_regs; 2745 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, ®s->PHYSR0) ? 1 : 0; 2746 } 2747 2748 /** 2749 * velocity_probe - set up discovered velocity device 2750 * @pdev: PCI device 2751 * @ent: PCI device table entry that matched 2752 * @bustype: bus that device is connected to 2753 * 2754 * Configure a discovered adapter from scratch. Return a negative 2755 * errno error code on failure paths. 2756 */ 2757 static int velocity_probe(struct device *dev, int irq, 2758 const struct velocity_info_tbl *info, 2759 enum velocity_bus_type bustype) 2760 { 2761 static int first = 1; 2762 struct net_device *netdev; 2763 int i; 2764 const char *drv_string; 2765 struct velocity_info *vptr; 2766 struct mac_regs __iomem *regs; 2767 int ret = -ENOMEM; 2768 2769 /* FIXME: this driver, like almost all other ethernet drivers, 2770 * can support more than MAX_UNITS. 2771 */ 2772 if (velocity_nics >= MAX_UNITS) { 2773 dev_notice(dev, "already found %d NICs.\n", velocity_nics); 2774 return -ENODEV; 2775 } 2776 2777 netdev = alloc_etherdev(sizeof(struct velocity_info)); 2778 if (!netdev) 2779 goto out; 2780 2781 /* Chain it all together */ 2782 2783 SET_NETDEV_DEV(netdev, dev); 2784 vptr = netdev_priv(netdev); 2785 2786 if (first) { 2787 printk(KERN_INFO "%s Ver. %s\n", 2788 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION); 2789 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n"); 2790 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n"); 2791 first = 0; 2792 } 2793 2794 netdev->irq = irq; 2795 vptr->netdev = netdev; 2796 vptr->dev = dev; 2797 2798 velocity_init_info(vptr, info); 2799 2800 if (bustype == BUS_PCI) { 2801 vptr->pdev = to_pci_dev(dev); 2802 2803 ret = velocity_get_pci_info(vptr); 2804 if (ret < 0) 2805 goto err_free_dev; 2806 } else { 2807 vptr->pdev = NULL; 2808 ret = velocity_get_platform_info(vptr); 2809 if (ret < 0) 2810 goto err_free_dev; 2811 } 2812 2813 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE); 2814 if (regs == NULL) { 2815 ret = -EIO; 2816 goto err_free_dev; 2817 } 2818 2819 vptr->mac_regs = regs; 2820 vptr->rev_id = readb(®s->rev_id); 2821 2822 mac_wol_reset(regs); 2823 2824 for (i = 0; i < 6; i++) 2825 netdev->dev_addr[i] = readb(®s->PAR[i]); 2826 2827 2828 drv_string = dev_driver_string(dev); 2829 2830 velocity_get_options(&vptr->options, velocity_nics, drv_string); 2831 2832 /* 2833 * Mask out the options cannot be set to the chip 2834 */ 2835 2836 vptr->options.flags &= info->flags; 2837 2838 /* 2839 * Enable the chip specified capbilities 2840 */ 2841 2842 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL); 2843 2844 vptr->wol_opts = vptr->options.wol_opts; 2845 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 2846 2847 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs); 2848 2849 netdev->netdev_ops = &velocity_netdev_ops; 2850 netdev->ethtool_ops = &velocity_ethtool_ops; 2851 netif_napi_add(netdev, &vptr->napi, velocity_poll, 2852 VELOCITY_NAPI_WEIGHT); 2853 2854 netdev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 2855 NETIF_F_HW_VLAN_CTAG_TX; 2856 netdev->features |= NETIF_F_HW_VLAN_CTAG_TX | 2857 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX | 2858 NETIF_F_IP_CSUM; 2859 2860 /* MTU range: 64 - 9000 */ 2861 netdev->min_mtu = VELOCITY_MIN_MTU; 2862 netdev->max_mtu = VELOCITY_MAX_MTU; 2863 2864 ret = register_netdev(netdev); 2865 if (ret < 0) 2866 goto err_iounmap; 2867 2868 if (!velocity_get_link(netdev)) { 2869 netif_carrier_off(netdev); 2870 vptr->mii_status |= VELOCITY_LINK_FAIL; 2871 } 2872 2873 velocity_print_info(vptr); 2874 dev_set_drvdata(vptr->dev, netdev); 2875 2876 /* and leave the chip powered down */ 2877 2878 velocity_set_power_state(vptr, PCI_D3hot); 2879 velocity_nics++; 2880 out: 2881 return ret; 2882 2883 err_iounmap: 2884 netif_napi_del(&vptr->napi); 2885 iounmap(regs); 2886 err_free_dev: 2887 free_netdev(netdev); 2888 goto out; 2889 } 2890 2891 /** 2892 * velocity_remove - device unplug 2893 * @dev: device being removed 2894 * 2895 * Device unload callback. Called on an unplug or on module 2896 * unload for each active device that is present. Disconnects 2897 * the device from the network layer and frees all the resources 2898 */ 2899 static int velocity_remove(struct device *dev) 2900 { 2901 struct net_device *netdev = dev_get_drvdata(dev); 2902 struct velocity_info *vptr = netdev_priv(netdev); 2903 2904 unregister_netdev(netdev); 2905 netif_napi_del(&vptr->napi); 2906 iounmap(vptr->mac_regs); 2907 free_netdev(netdev); 2908 velocity_nics--; 2909 2910 return 0; 2911 } 2912 2913 static int velocity_pci_probe(struct pci_dev *pdev, 2914 const struct pci_device_id *ent) 2915 { 2916 const struct velocity_info_tbl *info = 2917 &chip_info_table[ent->driver_data]; 2918 int ret; 2919 2920 ret = pci_enable_device(pdev); 2921 if (ret < 0) 2922 return ret; 2923 2924 ret = pci_request_regions(pdev, VELOCITY_NAME); 2925 if (ret < 0) { 2926 dev_err(&pdev->dev, "No PCI resources.\n"); 2927 goto fail1; 2928 } 2929 2930 ret = velocity_probe(&pdev->dev, pdev->irq, info, BUS_PCI); 2931 if (ret == 0) 2932 return 0; 2933 2934 pci_release_regions(pdev); 2935 fail1: 2936 pci_disable_device(pdev); 2937 return ret; 2938 } 2939 2940 static void velocity_pci_remove(struct pci_dev *pdev) 2941 { 2942 velocity_remove(&pdev->dev); 2943 2944 pci_release_regions(pdev); 2945 pci_disable_device(pdev); 2946 } 2947 2948 static int velocity_platform_probe(struct platform_device *pdev) 2949 { 2950 const struct of_device_id *of_id; 2951 const struct velocity_info_tbl *info; 2952 int irq; 2953 2954 of_id = of_match_device(velocity_of_ids, &pdev->dev); 2955 if (!of_id) 2956 return -EINVAL; 2957 info = of_id->data; 2958 2959 irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 2960 if (!irq) 2961 return -EINVAL; 2962 2963 return velocity_probe(&pdev->dev, irq, info, BUS_PLATFORM); 2964 } 2965 2966 static int velocity_platform_remove(struct platform_device *pdev) 2967 { 2968 velocity_remove(&pdev->dev); 2969 2970 return 0; 2971 } 2972 2973 #ifdef CONFIG_PM_SLEEP 2974 /** 2975 * wol_calc_crc - WOL CRC 2976 * @pattern: data pattern 2977 * @mask_pattern: mask 2978 * 2979 * Compute the wake on lan crc hashes for the packet header 2980 * we are interested in. 2981 */ 2982 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern) 2983 { 2984 u16 crc = 0xFFFF; 2985 u8 mask; 2986 int i, j; 2987 2988 for (i = 0; i < size; i++) { 2989 mask = mask_pattern[i]; 2990 2991 /* Skip this loop if the mask equals to zero */ 2992 if (mask == 0x00) 2993 continue; 2994 2995 for (j = 0; j < 8; j++) { 2996 if ((mask & 0x01) == 0) { 2997 mask >>= 1; 2998 continue; 2999 } 3000 mask >>= 1; 3001 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1); 3002 } 3003 } 3004 /* Finally, invert the result once to get the correct data */ 3005 crc = ~crc; 3006 return bitrev32(crc) >> 16; 3007 } 3008 3009 /** 3010 * velocity_set_wol - set up for wake on lan 3011 * @vptr: velocity to set WOL status on 3012 * 3013 * Set a card up for wake on lan either by unicast or by 3014 * ARP packet. 3015 * 3016 * FIXME: check static buffer is safe here 3017 */ 3018 static int velocity_set_wol(struct velocity_info *vptr) 3019 { 3020 struct mac_regs __iomem *regs = vptr->mac_regs; 3021 enum speed_opt spd_dpx = vptr->options.spd_dpx; 3022 static u8 buf[256]; 3023 int i; 3024 3025 static u32 mask_pattern[2][4] = { 3026 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */ 3027 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */ 3028 }; 3029 3030 writew(0xFFFF, ®s->WOLCRClr); 3031 writeb(WOLCFG_SAB | WOLCFG_SAM, ®s->WOLCFGSet); 3032 writew(WOLCR_MAGIC_EN, ®s->WOLCRSet); 3033 3034 /* 3035 if (vptr->wol_opts & VELOCITY_WOL_PHY) 3036 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), ®s->WOLCRSet); 3037 */ 3038 3039 if (vptr->wol_opts & VELOCITY_WOL_UCAST) 3040 writew(WOLCR_UNICAST_EN, ®s->WOLCRSet); 3041 3042 if (vptr->wol_opts & VELOCITY_WOL_ARP) { 3043 struct arp_packet *arp = (struct arp_packet *) buf; 3044 u16 crc; 3045 memset(buf, 0, sizeof(struct arp_packet) + 7); 3046 3047 for (i = 0; i < 4; i++) 3048 writel(mask_pattern[0][i], ®s->ByteMask[0][i]); 3049 3050 arp->type = htons(ETH_P_ARP); 3051 arp->ar_op = htons(1); 3052 3053 memcpy(arp->ar_tip, vptr->ip_addr, 4); 3054 3055 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf, 3056 (u8 *) & mask_pattern[0][0]); 3057 3058 writew(crc, ®s->PatternCRC[0]); 3059 writew(WOLCR_ARP_EN, ®s->WOLCRSet); 3060 } 3061 3062 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, ®s->PWCFGSet); 3063 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, ®s->PWCFGSet); 3064 3065 writew(0x0FFF, ®s->WOLSRClr); 3066 3067 if (spd_dpx == SPD_DPX_1000_FULL) 3068 goto mac_done; 3069 3070 if (spd_dpx != SPD_DPX_AUTO) 3071 goto advertise_done; 3072 3073 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) { 3074 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) 3075 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs); 3076 3077 MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs); 3078 } 3079 3080 if (vptr->mii_status & VELOCITY_SPEED_1000) 3081 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs); 3082 3083 advertise_done: 3084 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, ®s->CHIPGCR); 3085 3086 { 3087 u8 GCR; 3088 GCR = readb(®s->CHIPGCR); 3089 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX; 3090 writeb(GCR, ®s->CHIPGCR); 3091 } 3092 3093 mac_done: 3094 BYTE_REG_BITS_OFF(ISR_PWEI, ®s->ISR); 3095 /* Turn on SWPTAG just before entering power mode */ 3096 BYTE_REG_BITS_ON(STICKHW_SWPTAG, ®s->STICKHW); 3097 /* Go to bed ..... */ 3098 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), ®s->STICKHW); 3099 3100 return 0; 3101 } 3102 3103 /** 3104 * velocity_save_context - save registers 3105 * @vptr: velocity 3106 * @context: buffer for stored context 3107 * 3108 * Retrieve the current configuration from the velocity hardware 3109 * and stash it in the context structure, for use by the context 3110 * restore functions. This allows us to save things we need across 3111 * power down states 3112 */ 3113 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context) 3114 { 3115 struct mac_regs __iomem *regs = vptr->mac_regs; 3116 u16 i; 3117 u8 __iomem *ptr = (u8 __iomem *)regs; 3118 3119 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4) 3120 *((u32 *) (context->mac_reg + i)) = readl(ptr + i); 3121 3122 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4) 3123 *((u32 *) (context->mac_reg + i)) = readl(ptr + i); 3124 3125 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) 3126 *((u32 *) (context->mac_reg + i)) = readl(ptr + i); 3127 3128 } 3129 3130 static int velocity_suspend(struct device *dev) 3131 { 3132 struct net_device *netdev = dev_get_drvdata(dev); 3133 struct velocity_info *vptr = netdev_priv(netdev); 3134 unsigned long flags; 3135 3136 if (!netif_running(vptr->netdev)) 3137 return 0; 3138 3139 netif_device_detach(vptr->netdev); 3140 3141 spin_lock_irqsave(&vptr->lock, flags); 3142 if (vptr->pdev) 3143 pci_save_state(vptr->pdev); 3144 3145 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) { 3146 velocity_get_ip(vptr); 3147 velocity_save_context(vptr, &vptr->context); 3148 velocity_shutdown(vptr); 3149 velocity_set_wol(vptr); 3150 if (vptr->pdev) 3151 pci_enable_wake(vptr->pdev, PCI_D3hot, 1); 3152 velocity_set_power_state(vptr, PCI_D3hot); 3153 } else { 3154 velocity_save_context(vptr, &vptr->context); 3155 velocity_shutdown(vptr); 3156 if (vptr->pdev) 3157 pci_disable_device(vptr->pdev); 3158 velocity_set_power_state(vptr, PCI_D3hot); 3159 } 3160 3161 spin_unlock_irqrestore(&vptr->lock, flags); 3162 return 0; 3163 } 3164 3165 /** 3166 * velocity_restore_context - restore registers 3167 * @vptr: velocity 3168 * @context: buffer for stored context 3169 * 3170 * Reload the register configuration from the velocity context 3171 * created by velocity_save_context. 3172 */ 3173 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context) 3174 { 3175 struct mac_regs __iomem *regs = vptr->mac_regs; 3176 int i; 3177 u8 __iomem *ptr = (u8 __iomem *)regs; 3178 3179 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4) 3180 writel(*((u32 *) (context->mac_reg + i)), ptr + i); 3181 3182 /* Just skip cr0 */ 3183 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) { 3184 /* Clear */ 3185 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4); 3186 /* Set */ 3187 writeb(*((u8 *) (context->mac_reg + i)), ptr + i); 3188 } 3189 3190 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4) 3191 writel(*((u32 *) (context->mac_reg + i)), ptr + i); 3192 3193 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) 3194 writel(*((u32 *) (context->mac_reg + i)), ptr + i); 3195 3196 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++) 3197 writeb(*((u8 *) (context->mac_reg + i)), ptr + i); 3198 } 3199 3200 static int velocity_resume(struct device *dev) 3201 { 3202 struct net_device *netdev = dev_get_drvdata(dev); 3203 struct velocity_info *vptr = netdev_priv(netdev); 3204 unsigned long flags; 3205 int i; 3206 3207 if (!netif_running(vptr->netdev)) 3208 return 0; 3209 3210 velocity_set_power_state(vptr, PCI_D0); 3211 3212 if (vptr->pdev) { 3213 pci_enable_wake(vptr->pdev, PCI_D0, 0); 3214 pci_restore_state(vptr->pdev); 3215 } 3216 3217 mac_wol_reset(vptr->mac_regs); 3218 3219 spin_lock_irqsave(&vptr->lock, flags); 3220 velocity_restore_context(vptr, &vptr->context); 3221 velocity_init_registers(vptr, VELOCITY_INIT_WOL); 3222 mac_disable_int(vptr->mac_regs); 3223 3224 velocity_tx_srv(vptr); 3225 3226 for (i = 0; i < vptr->tx.numq; i++) { 3227 if (vptr->tx.used[i]) 3228 mac_tx_queue_wake(vptr->mac_regs, i); 3229 } 3230 3231 mac_enable_int(vptr->mac_regs); 3232 spin_unlock_irqrestore(&vptr->lock, flags); 3233 netif_device_attach(vptr->netdev); 3234 3235 return 0; 3236 } 3237 #endif /* CONFIG_PM_SLEEP */ 3238 3239 static SIMPLE_DEV_PM_OPS(velocity_pm_ops, velocity_suspend, velocity_resume); 3240 3241 /* 3242 * Definition for our device driver. The PCI layer interface 3243 * uses this to handle all our card discover and plugging 3244 */ 3245 static struct pci_driver velocity_pci_driver = { 3246 .name = VELOCITY_NAME, 3247 .id_table = velocity_pci_id_table, 3248 .probe = velocity_pci_probe, 3249 .remove = velocity_pci_remove, 3250 .driver = { 3251 .pm = &velocity_pm_ops, 3252 }, 3253 }; 3254 3255 static struct platform_driver velocity_platform_driver = { 3256 .probe = velocity_platform_probe, 3257 .remove = velocity_platform_remove, 3258 .driver = { 3259 .name = "via-velocity", 3260 .of_match_table = velocity_of_ids, 3261 .pm = &velocity_pm_ops, 3262 }, 3263 }; 3264 3265 /** 3266 * velocity_ethtool_up - pre hook for ethtool 3267 * @dev: network device 3268 * 3269 * Called before an ethtool operation. We need to make sure the 3270 * chip is out of D3 state before we poke at it. 3271 */ 3272 static int velocity_ethtool_up(struct net_device *dev) 3273 { 3274 struct velocity_info *vptr = netdev_priv(dev); 3275 if (!netif_running(dev)) 3276 velocity_set_power_state(vptr, PCI_D0); 3277 return 0; 3278 } 3279 3280 /** 3281 * velocity_ethtool_down - post hook for ethtool 3282 * @dev: network device 3283 * 3284 * Called after an ethtool operation. Restore the chip back to D3 3285 * state if it isn't running. 3286 */ 3287 static void velocity_ethtool_down(struct net_device *dev) 3288 { 3289 struct velocity_info *vptr = netdev_priv(dev); 3290 if (!netif_running(dev)) 3291 velocity_set_power_state(vptr, PCI_D3hot); 3292 } 3293 3294 static int velocity_get_settings(struct net_device *dev, 3295 struct ethtool_cmd *cmd) 3296 { 3297 struct velocity_info *vptr = netdev_priv(dev); 3298 struct mac_regs __iomem *regs = vptr->mac_regs; 3299 u32 status; 3300 status = check_connection_type(vptr->mac_regs); 3301 3302 cmd->supported = SUPPORTED_TP | 3303 SUPPORTED_Autoneg | 3304 SUPPORTED_10baseT_Half | 3305 SUPPORTED_10baseT_Full | 3306 SUPPORTED_100baseT_Half | 3307 SUPPORTED_100baseT_Full | 3308 SUPPORTED_1000baseT_Half | 3309 SUPPORTED_1000baseT_Full; 3310 3311 cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg; 3312 if (vptr->options.spd_dpx == SPD_DPX_AUTO) { 3313 cmd->advertising |= 3314 ADVERTISED_10baseT_Half | 3315 ADVERTISED_10baseT_Full | 3316 ADVERTISED_100baseT_Half | 3317 ADVERTISED_100baseT_Full | 3318 ADVERTISED_1000baseT_Half | 3319 ADVERTISED_1000baseT_Full; 3320 } else { 3321 switch (vptr->options.spd_dpx) { 3322 case SPD_DPX_1000_FULL: 3323 cmd->advertising |= ADVERTISED_1000baseT_Full; 3324 break; 3325 case SPD_DPX_100_HALF: 3326 cmd->advertising |= ADVERTISED_100baseT_Half; 3327 break; 3328 case SPD_DPX_100_FULL: 3329 cmd->advertising |= ADVERTISED_100baseT_Full; 3330 break; 3331 case SPD_DPX_10_HALF: 3332 cmd->advertising |= ADVERTISED_10baseT_Half; 3333 break; 3334 case SPD_DPX_10_FULL: 3335 cmd->advertising |= ADVERTISED_10baseT_Full; 3336 break; 3337 default: 3338 break; 3339 } 3340 } 3341 3342 if (status & VELOCITY_SPEED_1000) 3343 ethtool_cmd_speed_set(cmd, SPEED_1000); 3344 else if (status & VELOCITY_SPEED_100) 3345 ethtool_cmd_speed_set(cmd, SPEED_100); 3346 else 3347 ethtool_cmd_speed_set(cmd, SPEED_10); 3348 3349 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 3350 cmd->port = PORT_TP; 3351 cmd->transceiver = XCVR_INTERNAL; 3352 cmd->phy_address = readb(®s->MIIADR) & 0x1F; 3353 3354 if (status & VELOCITY_DUPLEX_FULL) 3355 cmd->duplex = DUPLEX_FULL; 3356 else 3357 cmd->duplex = DUPLEX_HALF; 3358 3359 return 0; 3360 } 3361 3362 static int velocity_set_settings(struct net_device *dev, 3363 struct ethtool_cmd *cmd) 3364 { 3365 struct velocity_info *vptr = netdev_priv(dev); 3366 u32 speed = ethtool_cmd_speed(cmd); 3367 u32 curr_status; 3368 u32 new_status = 0; 3369 int ret = 0; 3370 3371 curr_status = check_connection_type(vptr->mac_regs); 3372 curr_status &= (~VELOCITY_LINK_FAIL); 3373 3374 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0); 3375 new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0); 3376 new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0); 3377 new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0); 3378 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0); 3379 3380 if ((new_status & VELOCITY_AUTONEG_ENABLE) && 3381 (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) { 3382 ret = -EINVAL; 3383 } else { 3384 enum speed_opt spd_dpx; 3385 3386 if (new_status & VELOCITY_AUTONEG_ENABLE) 3387 spd_dpx = SPD_DPX_AUTO; 3388 else if ((new_status & VELOCITY_SPEED_1000) && 3389 (new_status & VELOCITY_DUPLEX_FULL)) { 3390 spd_dpx = SPD_DPX_1000_FULL; 3391 } else if (new_status & VELOCITY_SPEED_100) 3392 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ? 3393 SPD_DPX_100_FULL : SPD_DPX_100_HALF; 3394 else if (new_status & VELOCITY_SPEED_10) 3395 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ? 3396 SPD_DPX_10_FULL : SPD_DPX_10_HALF; 3397 else 3398 return -EOPNOTSUPP; 3399 3400 vptr->options.spd_dpx = spd_dpx; 3401 3402 velocity_set_media_mode(vptr, new_status); 3403 } 3404 3405 return ret; 3406 } 3407 3408 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 3409 { 3410 struct velocity_info *vptr = netdev_priv(dev); 3411 3412 strlcpy(info->driver, VELOCITY_NAME, sizeof(info->driver)); 3413 strlcpy(info->version, VELOCITY_VERSION, sizeof(info->version)); 3414 if (vptr->pdev) 3415 strlcpy(info->bus_info, pci_name(vptr->pdev), 3416 sizeof(info->bus_info)); 3417 else 3418 strlcpy(info->bus_info, "platform", sizeof(info->bus_info)); 3419 } 3420 3421 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 3422 { 3423 struct velocity_info *vptr = netdev_priv(dev); 3424 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP; 3425 wol->wolopts |= WAKE_MAGIC; 3426 /* 3427 if (vptr->wol_opts & VELOCITY_WOL_PHY) 3428 wol.wolopts|=WAKE_PHY; 3429 */ 3430 if (vptr->wol_opts & VELOCITY_WOL_UCAST) 3431 wol->wolopts |= WAKE_UCAST; 3432 if (vptr->wol_opts & VELOCITY_WOL_ARP) 3433 wol->wolopts |= WAKE_ARP; 3434 memcpy(&wol->sopass, vptr->wol_passwd, 6); 3435 } 3436 3437 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 3438 { 3439 struct velocity_info *vptr = netdev_priv(dev); 3440 3441 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP))) 3442 return -EFAULT; 3443 vptr->wol_opts = VELOCITY_WOL_MAGIC; 3444 3445 /* 3446 if (wol.wolopts & WAKE_PHY) { 3447 vptr->wol_opts|=VELOCITY_WOL_PHY; 3448 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED; 3449 } 3450 */ 3451 3452 if (wol->wolopts & WAKE_MAGIC) { 3453 vptr->wol_opts |= VELOCITY_WOL_MAGIC; 3454 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 3455 } 3456 if (wol->wolopts & WAKE_UCAST) { 3457 vptr->wol_opts |= VELOCITY_WOL_UCAST; 3458 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 3459 } 3460 if (wol->wolopts & WAKE_ARP) { 3461 vptr->wol_opts |= VELOCITY_WOL_ARP; 3462 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 3463 } 3464 memcpy(vptr->wol_passwd, wol->sopass, 6); 3465 return 0; 3466 } 3467 3468 static u32 velocity_get_msglevel(struct net_device *dev) 3469 { 3470 return msglevel; 3471 } 3472 3473 static void velocity_set_msglevel(struct net_device *dev, u32 value) 3474 { 3475 msglevel = value; 3476 } 3477 3478 static int get_pending_timer_val(int val) 3479 { 3480 int mult_bits = val >> 6; 3481 int mult = 1; 3482 3483 switch (mult_bits) 3484 { 3485 case 1: 3486 mult = 4; break; 3487 case 2: 3488 mult = 16; break; 3489 case 3: 3490 mult = 64; break; 3491 case 0: 3492 default: 3493 break; 3494 } 3495 3496 return (val & 0x3f) * mult; 3497 } 3498 3499 static void set_pending_timer_val(int *val, u32 us) 3500 { 3501 u8 mult = 0; 3502 u8 shift = 0; 3503 3504 if (us >= 0x3f) { 3505 mult = 1; /* mult with 4 */ 3506 shift = 2; 3507 } 3508 if (us >= 0x3f * 4) { 3509 mult = 2; /* mult with 16 */ 3510 shift = 4; 3511 } 3512 if (us >= 0x3f * 16) { 3513 mult = 3; /* mult with 64 */ 3514 shift = 6; 3515 } 3516 3517 *val = (mult << 6) | ((us >> shift) & 0x3f); 3518 } 3519 3520 3521 static int velocity_get_coalesce(struct net_device *dev, 3522 struct ethtool_coalesce *ecmd) 3523 { 3524 struct velocity_info *vptr = netdev_priv(dev); 3525 3526 ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup; 3527 ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup; 3528 3529 ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer); 3530 ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer); 3531 3532 return 0; 3533 } 3534 3535 static int velocity_set_coalesce(struct net_device *dev, 3536 struct ethtool_coalesce *ecmd) 3537 { 3538 struct velocity_info *vptr = netdev_priv(dev); 3539 int max_us = 0x3f * 64; 3540 unsigned long flags; 3541 3542 /* 6 bits of */ 3543 if (ecmd->tx_coalesce_usecs > max_us) 3544 return -EINVAL; 3545 if (ecmd->rx_coalesce_usecs > max_us) 3546 return -EINVAL; 3547 3548 if (ecmd->tx_max_coalesced_frames > 0xff) 3549 return -EINVAL; 3550 if (ecmd->rx_max_coalesced_frames > 0xff) 3551 return -EINVAL; 3552 3553 vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames; 3554 vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames; 3555 3556 set_pending_timer_val(&vptr->options.rxqueue_timer, 3557 ecmd->rx_coalesce_usecs); 3558 set_pending_timer_val(&vptr->options.txqueue_timer, 3559 ecmd->tx_coalesce_usecs); 3560 3561 /* Setup the interrupt suppression and queue timers */ 3562 spin_lock_irqsave(&vptr->lock, flags); 3563 mac_disable_int(vptr->mac_regs); 3564 setup_adaptive_interrupts(vptr); 3565 setup_queue_timers(vptr); 3566 3567 mac_write_int_mask(vptr->int_mask, vptr->mac_regs); 3568 mac_clear_isr(vptr->mac_regs); 3569 mac_enable_int(vptr->mac_regs); 3570 spin_unlock_irqrestore(&vptr->lock, flags); 3571 3572 return 0; 3573 } 3574 3575 static const char velocity_gstrings[][ETH_GSTRING_LEN] = { 3576 "rx_all", 3577 "rx_ok", 3578 "tx_ok", 3579 "rx_error", 3580 "rx_runt_ok", 3581 "rx_runt_err", 3582 "rx_64", 3583 "tx_64", 3584 "rx_65_to_127", 3585 "tx_65_to_127", 3586 "rx_128_to_255", 3587 "tx_128_to_255", 3588 "rx_256_to_511", 3589 "tx_256_to_511", 3590 "rx_512_to_1023", 3591 "tx_512_to_1023", 3592 "rx_1024_to_1518", 3593 "tx_1024_to_1518", 3594 "tx_ether_collisions", 3595 "rx_crc_errors", 3596 "rx_jumbo", 3597 "tx_jumbo", 3598 "rx_mac_control_frames", 3599 "tx_mac_control_frames", 3600 "rx_frame_alignement_errors", 3601 "rx_long_ok", 3602 "rx_long_err", 3603 "tx_sqe_errors", 3604 "rx_no_buf", 3605 "rx_symbol_errors", 3606 "in_range_length_errors", 3607 "late_collisions" 3608 }; 3609 3610 static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data) 3611 { 3612 switch (sset) { 3613 case ETH_SS_STATS: 3614 memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings)); 3615 break; 3616 } 3617 } 3618 3619 static int velocity_get_sset_count(struct net_device *dev, int sset) 3620 { 3621 switch (sset) { 3622 case ETH_SS_STATS: 3623 return ARRAY_SIZE(velocity_gstrings); 3624 default: 3625 return -EOPNOTSUPP; 3626 } 3627 } 3628 3629 static void velocity_get_ethtool_stats(struct net_device *dev, 3630 struct ethtool_stats *stats, u64 *data) 3631 { 3632 if (netif_running(dev)) { 3633 struct velocity_info *vptr = netdev_priv(dev); 3634 u32 *p = vptr->mib_counter; 3635 int i; 3636 3637 spin_lock_irq(&vptr->lock); 3638 velocity_update_hw_mibs(vptr); 3639 spin_unlock_irq(&vptr->lock); 3640 3641 for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++) 3642 *data++ = *p++; 3643 } 3644 } 3645 3646 static const struct ethtool_ops velocity_ethtool_ops = { 3647 .get_settings = velocity_get_settings, 3648 .set_settings = velocity_set_settings, 3649 .get_drvinfo = velocity_get_drvinfo, 3650 .get_wol = velocity_ethtool_get_wol, 3651 .set_wol = velocity_ethtool_set_wol, 3652 .get_msglevel = velocity_get_msglevel, 3653 .set_msglevel = velocity_set_msglevel, 3654 .get_link = velocity_get_link, 3655 .get_strings = velocity_get_strings, 3656 .get_sset_count = velocity_get_sset_count, 3657 .get_ethtool_stats = velocity_get_ethtool_stats, 3658 .get_coalesce = velocity_get_coalesce, 3659 .set_coalesce = velocity_set_coalesce, 3660 .begin = velocity_ethtool_up, 3661 .complete = velocity_ethtool_down 3662 }; 3663 3664 #if defined(CONFIG_PM) && defined(CONFIG_INET) 3665 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr) 3666 { 3667 struct in_ifaddr *ifa = ptr; 3668 struct net_device *dev = ifa->ifa_dev->dev; 3669 3670 if (dev_net(dev) == &init_net && 3671 dev->netdev_ops == &velocity_netdev_ops) 3672 velocity_get_ip(netdev_priv(dev)); 3673 3674 return NOTIFY_DONE; 3675 } 3676 3677 static struct notifier_block velocity_inetaddr_notifier = { 3678 .notifier_call = velocity_netdev_event, 3679 }; 3680 3681 static void velocity_register_notifier(void) 3682 { 3683 register_inetaddr_notifier(&velocity_inetaddr_notifier); 3684 } 3685 3686 static void velocity_unregister_notifier(void) 3687 { 3688 unregister_inetaddr_notifier(&velocity_inetaddr_notifier); 3689 } 3690 3691 #else 3692 3693 #define velocity_register_notifier() do {} while (0) 3694 #define velocity_unregister_notifier() do {} while (0) 3695 3696 #endif /* defined(CONFIG_PM) && defined(CONFIG_INET) */ 3697 3698 /** 3699 * velocity_init_module - load time function 3700 * 3701 * Called when the velocity module is loaded. The PCI driver 3702 * is registered with the PCI layer, and in turn will call 3703 * the probe functions for each velocity adapter installed 3704 * in the system. 3705 */ 3706 static int __init velocity_init_module(void) 3707 { 3708 int ret_pci, ret_platform; 3709 3710 velocity_register_notifier(); 3711 3712 ret_pci = pci_register_driver(&velocity_pci_driver); 3713 ret_platform = platform_driver_register(&velocity_platform_driver); 3714 3715 /* if both_registers failed, remove the notifier */ 3716 if ((ret_pci < 0) && (ret_platform < 0)) { 3717 velocity_unregister_notifier(); 3718 return ret_pci; 3719 } 3720 3721 return 0; 3722 } 3723 3724 /** 3725 * velocity_cleanup - module unload 3726 * 3727 * When the velocity hardware is unloaded this function is called. 3728 * It will clean up the notifiers and the unregister the PCI 3729 * driver interface for this hardware. This in turn cleans up 3730 * all discovered interfaces before returning from the function 3731 */ 3732 static void __exit velocity_cleanup_module(void) 3733 { 3734 velocity_unregister_notifier(); 3735 3736 pci_unregister_driver(&velocity_pci_driver); 3737 platform_driver_unregister(&velocity_platform_driver); 3738 } 3739 3740 module_init(velocity_init_module); 3741 module_exit(velocity_cleanup_module); 3742