xref: /linux/drivers/net/ethernet/via/via-velocity.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * This code is derived from the VIA reference driver (copyright message
3  * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4  * addition to the Linux kernel.
5  *
6  * The code has been merged into one source file, cleaned up to follow
7  * Linux coding style,  ported to the Linux 2.6 kernel tree and cleaned
8  * for 64bit hardware platforms.
9  *
10  * TODO
11  *	rx_copybreak/alignment
12  *	More testing
13  *
14  * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
15  * Additional fixes and clean up: Francois Romieu
16  *
17  * This source has not been verified for use in safety critical systems.
18  *
19  * Please direct queries about the revamped driver to the linux-kernel
20  * list not VIA.
21  *
22  * Original code:
23  *
24  * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
25  * All rights reserved.
26  *
27  * This software may be redistributed and/or modified under
28  * the terms of the GNU General Public License as published by the Free
29  * Software Foundation; either version 2 of the License, or
30  * any later version.
31  *
32  * This program is distributed in the hope that it will be useful, but
33  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
34  * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
35  * for more details.
36  *
37  * Author: Chuang Liang-Shing, AJ Jiang
38  *
39  * Date: Jan 24, 2003
40  *
41  * MODULE_LICENSE("GPL");
42  *
43  */
44 
45 #include <linux/module.h>
46 #include <linux/types.h>
47 #include <linux/bitops.h>
48 #include <linux/init.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/mm.h>
51 #include <linux/errno.h>
52 #include <linux/ioport.h>
53 #include <linux/pci.h>
54 #include <linux/kernel.h>
55 #include <linux/netdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/skbuff.h>
58 #include <linux/delay.h>
59 #include <linux/timer.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/string.h>
63 #include <linux/wait.h>
64 #include <linux/io.h>
65 #include <linux/if.h>
66 #include <linux/uaccess.h>
67 #include <linux/proc_fs.h>
68 #include <linux/of_address.h>
69 #include <linux/of_device.h>
70 #include <linux/of_irq.h>
71 #include <linux/inetdevice.h>
72 #include <linux/platform_device.h>
73 #include <linux/reboot.h>
74 #include <linux/ethtool.h>
75 #include <linux/mii.h>
76 #include <linux/in.h>
77 #include <linux/if_arp.h>
78 #include <linux/if_vlan.h>
79 #include <linux/ip.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
82 #include <linux/crc-ccitt.h>
83 #include <linux/crc32.h>
84 
85 #include "via-velocity.h"
86 
87 enum velocity_bus_type {
88 	BUS_PCI,
89 	BUS_PLATFORM,
90 };
91 
92 static int velocity_nics;
93 static int msglevel = MSG_LEVEL_INFO;
94 
95 static void velocity_set_power_state(struct velocity_info *vptr, char state)
96 {
97 	void *addr = vptr->mac_regs;
98 
99 	if (vptr->pdev)
100 		pci_set_power_state(vptr->pdev, state);
101 	else
102 		writeb(state, addr + 0x154);
103 }
104 
105 /**
106  *	mac_get_cam_mask	-	Read a CAM mask
107  *	@regs: register block for this velocity
108  *	@mask: buffer to store mask
109  *
110  *	Fetch the mask bits of the selected CAM and store them into the
111  *	provided mask buffer.
112  */
113 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
114 {
115 	int i;
116 
117 	/* Select CAM mask */
118 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
119 
120 	writeb(0, &regs->CAMADDR);
121 
122 	/* read mask */
123 	for (i = 0; i < 8; i++)
124 		*mask++ = readb(&(regs->MARCAM[i]));
125 
126 	/* disable CAMEN */
127 	writeb(0, &regs->CAMADDR);
128 
129 	/* Select mar */
130 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
131 }
132 
133 /**
134  *	mac_set_cam_mask	-	Set a CAM mask
135  *	@regs: register block for this velocity
136  *	@mask: CAM mask to load
137  *
138  *	Store a new mask into a CAM
139  */
140 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
141 {
142 	int i;
143 	/* Select CAM mask */
144 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
145 
146 	writeb(CAMADDR_CAMEN, &regs->CAMADDR);
147 
148 	for (i = 0; i < 8; i++)
149 		writeb(*mask++, &(regs->MARCAM[i]));
150 
151 	/* disable CAMEN */
152 	writeb(0, &regs->CAMADDR);
153 
154 	/* Select mar */
155 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
156 }
157 
158 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
159 {
160 	int i;
161 	/* Select CAM mask */
162 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
163 
164 	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
165 
166 	for (i = 0; i < 8; i++)
167 		writeb(*mask++, &(regs->MARCAM[i]));
168 
169 	/* disable CAMEN */
170 	writeb(0, &regs->CAMADDR);
171 
172 	/* Select mar */
173 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
174 }
175 
176 /**
177  *	mac_set_cam	-	set CAM data
178  *	@regs: register block of this velocity
179  *	@idx: Cam index
180  *	@addr: 2 or 6 bytes of CAM data
181  *
182  *	Load an address or vlan tag into a CAM
183  */
184 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
185 {
186 	int i;
187 
188 	/* Select CAM mask */
189 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
190 
191 	idx &= (64 - 1);
192 
193 	writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
194 
195 	for (i = 0; i < 6; i++)
196 		writeb(*addr++, &(regs->MARCAM[i]));
197 
198 	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
199 
200 	udelay(10);
201 
202 	writeb(0, &regs->CAMADDR);
203 
204 	/* Select mar */
205 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
206 }
207 
208 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
209 			     const u8 *addr)
210 {
211 
212 	/* Select CAM mask */
213 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
214 
215 	idx &= (64 - 1);
216 
217 	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
218 	writew(*((u16 *) addr), &regs->MARCAM[0]);
219 
220 	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
221 
222 	udelay(10);
223 
224 	writeb(0, &regs->CAMADDR);
225 
226 	/* Select mar */
227 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
228 }
229 
230 
231 /**
232  *	mac_wol_reset	-	reset WOL after exiting low power
233  *	@regs: register block of this velocity
234  *
235  *	Called after we drop out of wake on lan mode in order to
236  *	reset the Wake on lan features. This function doesn't restore
237  *	the rest of the logic from the result of sleep/wakeup
238  */
239 static void mac_wol_reset(struct mac_regs __iomem *regs)
240 {
241 
242 	/* Turn off SWPTAG right after leaving power mode */
243 	BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
244 	/* clear sticky bits */
245 	BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
246 
247 	BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
248 	BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
249 	/* disable force PME-enable */
250 	writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
251 	/* disable power-event config bit */
252 	writew(0xFFFF, &regs->WOLCRClr);
253 	/* clear power status */
254 	writew(0xFFFF, &regs->WOLSRClr);
255 }
256 
257 static const struct ethtool_ops velocity_ethtool_ops;
258 
259 /*
260     Define module options
261 */
262 
263 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
264 MODULE_LICENSE("GPL");
265 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
266 
267 #define VELOCITY_PARAM(N, D) \
268 	static int N[MAX_UNITS] = OPTION_DEFAULT;\
269 	module_param_array(N, int, NULL, 0); \
270 	MODULE_PARM_DESC(N, D);
271 
272 #define RX_DESC_MIN     64
273 #define RX_DESC_MAX     255
274 #define RX_DESC_DEF     64
275 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
276 
277 #define TX_DESC_MIN     16
278 #define TX_DESC_MAX     256
279 #define TX_DESC_DEF     64
280 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
281 
282 #define RX_THRESH_MIN   0
283 #define RX_THRESH_MAX   3
284 #define RX_THRESH_DEF   0
285 /* rx_thresh[] is used for controlling the receive fifo threshold.
286    0: indicate the rxfifo threshold is 128 bytes.
287    1: indicate the rxfifo threshold is 512 bytes.
288    2: indicate the rxfifo threshold is 1024 bytes.
289    3: indicate the rxfifo threshold is store & forward.
290 */
291 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
292 
293 #define DMA_LENGTH_MIN  0
294 #define DMA_LENGTH_MAX  7
295 #define DMA_LENGTH_DEF  6
296 
297 /* DMA_length[] is used for controlling the DMA length
298    0: 8 DWORDs
299    1: 16 DWORDs
300    2: 32 DWORDs
301    3: 64 DWORDs
302    4: 128 DWORDs
303    5: 256 DWORDs
304    6: SF(flush till emply)
305    7: SF(flush till emply)
306 */
307 VELOCITY_PARAM(DMA_length, "DMA length");
308 
309 #define IP_ALIG_DEF     0
310 /* IP_byte_align[] is used for IP header DWORD byte aligned
311    0: indicate the IP header won't be DWORD byte aligned.(Default) .
312    1: indicate the IP header will be DWORD byte aligned.
313       In some environment, the IP header should be DWORD byte aligned,
314       or the packet will be droped when we receive it. (eg: IPVS)
315 */
316 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
317 
318 #define FLOW_CNTL_DEF   1
319 #define FLOW_CNTL_MIN   1
320 #define FLOW_CNTL_MAX   5
321 
322 /* flow_control[] is used for setting the flow control ability of NIC.
323    1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
324    2: enable TX flow control.
325    3: enable RX flow control.
326    4: enable RX/TX flow control.
327    5: disable
328 */
329 VELOCITY_PARAM(flow_control, "Enable flow control ability");
330 
331 #define MED_LNK_DEF 0
332 #define MED_LNK_MIN 0
333 #define MED_LNK_MAX 5
334 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
335    0: indicate autonegotiation for both speed and duplex mode
336    1: indicate 100Mbps half duplex mode
337    2: indicate 100Mbps full duplex mode
338    3: indicate 10Mbps half duplex mode
339    4: indicate 10Mbps full duplex mode
340    5: indicate 1000Mbps full duplex mode
341 
342    Note:
343    if EEPROM have been set to the force mode, this option is ignored
344    by driver.
345 */
346 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
347 
348 #define WOL_OPT_DEF     0
349 #define WOL_OPT_MIN     0
350 #define WOL_OPT_MAX     7
351 /* wol_opts[] is used for controlling wake on lan behavior.
352    0: Wake up if recevied a magic packet. (Default)
353    1: Wake up if link status is on/off.
354    2: Wake up if recevied an arp packet.
355    4: Wake up if recevied any unicast packet.
356    Those value can be sumed up to support more than one option.
357 */
358 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
359 
360 static int rx_copybreak = 200;
361 module_param(rx_copybreak, int, 0644);
362 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
363 
364 /*
365  *	Internal board variants. At the moment we have only one
366  */
367 static struct velocity_info_tbl chip_info_table[] = {
368 	{CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
369 	{ }
370 };
371 
372 /*
373  *	Describe the PCI device identifiers that we support in this
374  *	device driver. Used for hotplug autoloading.
375  */
376 
377 static const struct pci_device_id velocity_pci_id_table[] = {
378 	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
379 	{ }
380 };
381 
382 MODULE_DEVICE_TABLE(pci, velocity_pci_id_table);
383 
384 /**
385  *	Describe the OF device identifiers that we support in this
386  *	device driver. Used for devicetree nodes.
387  */
388 static const struct of_device_id velocity_of_ids[] = {
389 	{ .compatible = "via,velocity-vt6110", .data = &chip_info_table[0] },
390 	{ /* Sentinel */ },
391 };
392 MODULE_DEVICE_TABLE(of, velocity_of_ids);
393 
394 /**
395  *	get_chip_name	- 	identifier to name
396  *	@id: chip identifier
397  *
398  *	Given a chip identifier return a suitable description. Returns
399  *	a pointer a static string valid while the driver is loaded.
400  */
401 static const char *get_chip_name(enum chip_type chip_id)
402 {
403 	int i;
404 	for (i = 0; chip_info_table[i].name != NULL; i++)
405 		if (chip_info_table[i].chip_id == chip_id)
406 			break;
407 	return chip_info_table[i].name;
408 }
409 
410 /**
411  *	velocity_set_int_opt	-	parser for integer options
412  *	@opt: pointer to option value
413  *	@val: value the user requested (or -1 for default)
414  *	@min: lowest value allowed
415  *	@max: highest value allowed
416  *	@def: default value
417  *	@name: property name
418  *	@dev: device name
419  *
420  *	Set an integer property in the module options. This function does
421  *	all the verification and checking as well as reporting so that
422  *	we don't duplicate code for each option.
423  */
424 static void velocity_set_int_opt(int *opt, int val, int min, int max, int def,
425 				 char *name, const char *devname)
426 {
427 	if (val == -1)
428 		*opt = def;
429 	else if (val < min || val > max) {
430 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
431 					devname, name, min, max);
432 		*opt = def;
433 	} else {
434 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
435 					devname, name, val);
436 		*opt = val;
437 	}
438 }
439 
440 /**
441  *	velocity_set_bool_opt	-	parser for boolean options
442  *	@opt: pointer to option value
443  *	@val: value the user requested (or -1 for default)
444  *	@def: default value (yes/no)
445  *	@flag: numeric value to set for true.
446  *	@name: property name
447  *	@dev: device name
448  *
449  *	Set a boolean property in the module options. This function does
450  *	all the verification and checking as well as reporting so that
451  *	we don't duplicate code for each option.
452  */
453 static void velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag,
454 				  char *name, const char *devname)
455 {
456 	(*opt) &= (~flag);
457 	if (val == -1)
458 		*opt |= (def ? flag : 0);
459 	else if (val < 0 || val > 1) {
460 		printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
461 			devname, name);
462 		*opt |= (def ? flag : 0);
463 	} else {
464 		printk(KERN_INFO "%s: set parameter %s to %s\n",
465 			devname, name, val ? "TRUE" : "FALSE");
466 		*opt |= (val ? flag : 0);
467 	}
468 }
469 
470 /**
471  *	velocity_get_options	-	set options on device
472  *	@opts: option structure for the device
473  *	@index: index of option to use in module options array
474  *	@devname: device name
475  *
476  *	Turn the module and command options into a single structure
477  *	for the current device
478  */
479 static void velocity_get_options(struct velocity_opt *opts, int index,
480 				 const char *devname)
481 {
482 
483 	velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
484 	velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
485 	velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
486 	velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
487 
488 	velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
489 	velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
490 	velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
491 	velocity_set_int_opt(&opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
492 	opts->numrx = (opts->numrx & ~3);
493 }
494 
495 /**
496  *	velocity_init_cam_filter	-	initialise CAM
497  *	@vptr: velocity to program
498  *
499  *	Initialize the content addressable memory used for filters. Load
500  *	appropriately according to the presence of VLAN
501  */
502 static void velocity_init_cam_filter(struct velocity_info *vptr)
503 {
504 	struct mac_regs __iomem *regs = vptr->mac_regs;
505 	unsigned int vid, i = 0;
506 
507 	/* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
508 	WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
509 	WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
510 
511 	/* Disable all CAMs */
512 	memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
513 	memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
514 	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
515 	mac_set_cam_mask(regs, vptr->mCAMmask);
516 
517 	/* Enable VCAMs */
518 	for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) {
519 		mac_set_vlan_cam(regs, i, (u8 *) &vid);
520 		vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
521 		if (++i >= VCAM_SIZE)
522 			break;
523 	}
524 	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
525 }
526 
527 static int velocity_vlan_rx_add_vid(struct net_device *dev,
528 				    __be16 proto, u16 vid)
529 {
530 	struct velocity_info *vptr = netdev_priv(dev);
531 
532 	spin_lock_irq(&vptr->lock);
533 	set_bit(vid, vptr->active_vlans);
534 	velocity_init_cam_filter(vptr);
535 	spin_unlock_irq(&vptr->lock);
536 	return 0;
537 }
538 
539 static int velocity_vlan_rx_kill_vid(struct net_device *dev,
540 				     __be16 proto, u16 vid)
541 {
542 	struct velocity_info *vptr = netdev_priv(dev);
543 
544 	spin_lock_irq(&vptr->lock);
545 	clear_bit(vid, vptr->active_vlans);
546 	velocity_init_cam_filter(vptr);
547 	spin_unlock_irq(&vptr->lock);
548 	return 0;
549 }
550 
551 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
552 {
553 	vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
554 }
555 
556 /**
557  *	velocity_rx_reset	-	handle a receive reset
558  *	@vptr: velocity we are resetting
559  *
560  *	Reset the ownership and status for the receive ring side.
561  *	Hand all the receive queue to the NIC.
562  */
563 static void velocity_rx_reset(struct velocity_info *vptr)
564 {
565 
566 	struct mac_regs __iomem *regs = vptr->mac_regs;
567 	int i;
568 
569 	velocity_init_rx_ring_indexes(vptr);
570 
571 	/*
572 	 *	Init state, all RD entries belong to the NIC
573 	 */
574 	for (i = 0; i < vptr->options.numrx; ++i)
575 		vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
576 
577 	writew(vptr->options.numrx, &regs->RBRDU);
578 	writel(vptr->rx.pool_dma, &regs->RDBaseLo);
579 	writew(0, &regs->RDIdx);
580 	writew(vptr->options.numrx - 1, &regs->RDCSize);
581 }
582 
583 /**
584  *	velocity_get_opt_media_mode	-	get media selection
585  *	@vptr: velocity adapter
586  *
587  *	Get the media mode stored in EEPROM or module options and load
588  *	mii_status accordingly. The requested link state information
589  *	is also returned.
590  */
591 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
592 {
593 	u32 status = 0;
594 
595 	switch (vptr->options.spd_dpx) {
596 	case SPD_DPX_AUTO:
597 		status = VELOCITY_AUTONEG_ENABLE;
598 		break;
599 	case SPD_DPX_100_FULL:
600 		status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
601 		break;
602 	case SPD_DPX_10_FULL:
603 		status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
604 		break;
605 	case SPD_DPX_100_HALF:
606 		status = VELOCITY_SPEED_100;
607 		break;
608 	case SPD_DPX_10_HALF:
609 		status = VELOCITY_SPEED_10;
610 		break;
611 	case SPD_DPX_1000_FULL:
612 		status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
613 		break;
614 	}
615 	vptr->mii_status = status;
616 	return status;
617 }
618 
619 /**
620  *	safe_disable_mii_autopoll	-	autopoll off
621  *	@regs: velocity registers
622  *
623  *	Turn off the autopoll and wait for it to disable on the chip
624  */
625 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
626 {
627 	u16 ww;
628 
629 	/*  turn off MAUTO */
630 	writeb(0, &regs->MIICR);
631 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
632 		udelay(1);
633 		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
634 			break;
635 	}
636 }
637 
638 /**
639  *	enable_mii_autopoll	-	turn on autopolling
640  *	@regs: velocity registers
641  *
642  *	Enable the MII link status autopoll feature on the Velocity
643  *	hardware. Wait for it to enable.
644  */
645 static void enable_mii_autopoll(struct mac_regs __iomem *regs)
646 {
647 	int ii;
648 
649 	writeb(0, &(regs->MIICR));
650 	writeb(MIIADR_SWMPL, &regs->MIIADR);
651 
652 	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
653 		udelay(1);
654 		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
655 			break;
656 	}
657 
658 	writeb(MIICR_MAUTO, &regs->MIICR);
659 
660 	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
661 		udelay(1);
662 		if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
663 			break;
664 	}
665 
666 }
667 
668 /**
669  *	velocity_mii_read	-	read MII data
670  *	@regs: velocity registers
671  *	@index: MII register index
672  *	@data: buffer for received data
673  *
674  *	Perform a single read of an MII 16bit register. Returns zero
675  *	on success or -ETIMEDOUT if the PHY did not respond.
676  */
677 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
678 {
679 	u16 ww;
680 
681 	/*
682 	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
683 	 */
684 	safe_disable_mii_autopoll(regs);
685 
686 	writeb(index, &regs->MIIADR);
687 
688 	BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
689 
690 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
691 		if (!(readb(&regs->MIICR) & MIICR_RCMD))
692 			break;
693 	}
694 
695 	*data = readw(&regs->MIIDATA);
696 
697 	enable_mii_autopoll(regs);
698 	if (ww == W_MAX_TIMEOUT)
699 		return -ETIMEDOUT;
700 	return 0;
701 }
702 
703 /**
704  *	mii_check_media_mode	-	check media state
705  *	@regs: velocity registers
706  *
707  *	Check the current MII status and determine the link status
708  *	accordingly
709  */
710 static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
711 {
712 	u32 status = 0;
713 	u16 ANAR;
714 
715 	if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs))
716 		status |= VELOCITY_LINK_FAIL;
717 
718 	if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs))
719 		status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
720 	else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs))
721 		status |= (VELOCITY_SPEED_1000);
722 	else {
723 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
724 		if (ANAR & ADVERTISE_100FULL)
725 			status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
726 		else if (ANAR & ADVERTISE_100HALF)
727 			status |= VELOCITY_SPEED_100;
728 		else if (ANAR & ADVERTISE_10FULL)
729 			status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
730 		else
731 			status |= (VELOCITY_SPEED_10);
732 	}
733 
734 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
735 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
736 		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
737 		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
738 			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
739 				status |= VELOCITY_AUTONEG_ENABLE;
740 		}
741 	}
742 
743 	return status;
744 }
745 
746 /**
747  *	velocity_mii_write	-	write MII data
748  *	@regs: velocity registers
749  *	@index: MII register index
750  *	@data: 16bit data for the MII register
751  *
752  *	Perform a single write to an MII 16bit register. Returns zero
753  *	on success or -ETIMEDOUT if the PHY did not respond.
754  */
755 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
756 {
757 	u16 ww;
758 
759 	/*
760 	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
761 	 */
762 	safe_disable_mii_autopoll(regs);
763 
764 	/* MII reg offset */
765 	writeb(mii_addr, &regs->MIIADR);
766 	/* set MII data */
767 	writew(data, &regs->MIIDATA);
768 
769 	/* turn on MIICR_WCMD */
770 	BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
771 
772 	/* W_MAX_TIMEOUT is the timeout period */
773 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
774 		udelay(5);
775 		if (!(readb(&regs->MIICR) & MIICR_WCMD))
776 			break;
777 	}
778 	enable_mii_autopoll(regs);
779 
780 	if (ww == W_MAX_TIMEOUT)
781 		return -ETIMEDOUT;
782 	return 0;
783 }
784 
785 /**
786  *	set_mii_flow_control	-	flow control setup
787  *	@vptr: velocity interface
788  *
789  *	Set up the flow control on this interface according to
790  *	the supplied user/eeprom options.
791  */
792 static void set_mii_flow_control(struct velocity_info *vptr)
793 {
794 	/*Enable or Disable PAUSE in ANAR */
795 	switch (vptr->options.flow_cntl) {
796 	case FLOW_CNTL_TX:
797 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
798 		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
799 		break;
800 
801 	case FLOW_CNTL_RX:
802 		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
803 		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
804 		break;
805 
806 	case FLOW_CNTL_TX_RX:
807 		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
808 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
809 		break;
810 
811 	case FLOW_CNTL_DISABLE:
812 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
813 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
814 		break;
815 	default:
816 		break;
817 	}
818 }
819 
820 /**
821  *	mii_set_auto_on		-	autonegotiate on
822  *	@vptr: velocity
823  *
824  *	Enable autonegotation on this interface
825  */
826 static void mii_set_auto_on(struct velocity_info *vptr)
827 {
828 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs))
829 		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
830 	else
831 		MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs);
832 }
833 
834 static u32 check_connection_type(struct mac_regs __iomem *regs)
835 {
836 	u32 status = 0;
837 	u8 PHYSR0;
838 	u16 ANAR;
839 	PHYSR0 = readb(&regs->PHYSR0);
840 
841 	/*
842 	   if (!(PHYSR0 & PHYSR0_LINKGD))
843 	   status|=VELOCITY_LINK_FAIL;
844 	 */
845 
846 	if (PHYSR0 & PHYSR0_FDPX)
847 		status |= VELOCITY_DUPLEX_FULL;
848 
849 	if (PHYSR0 & PHYSR0_SPDG)
850 		status |= VELOCITY_SPEED_1000;
851 	else if (PHYSR0 & PHYSR0_SPD10)
852 		status |= VELOCITY_SPEED_10;
853 	else
854 		status |= VELOCITY_SPEED_100;
855 
856 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
857 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
858 		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
859 		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
860 			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
861 				status |= VELOCITY_AUTONEG_ENABLE;
862 		}
863 	}
864 
865 	return status;
866 }
867 
868 /**
869  *	velocity_set_media_mode		-	set media mode
870  *	@mii_status: old MII link state
871  *
872  *	Check the media link state and configure the flow control
873  *	PHY and also velocity hardware setup accordingly. In particular
874  *	we need to set up CD polling and frame bursting.
875  */
876 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
877 {
878 	u32 curr_status;
879 	struct mac_regs __iomem *regs = vptr->mac_regs;
880 
881 	vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
882 	curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
883 
884 	/* Set mii link status */
885 	set_mii_flow_control(vptr);
886 
887 	/*
888 	   Check if new status is consistent with current status
889 	   if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) ||
890 	       (mii_status==curr_status)) {
891 	   vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
892 	   vptr->mii_status=check_connection_type(vptr->mac_regs);
893 	   VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
894 	   return 0;
895 	   }
896 	 */
897 
898 	if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
899 		MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
900 
901 	/*
902 	 *	If connection type is AUTO
903 	 */
904 	if (mii_status & VELOCITY_AUTONEG_ENABLE) {
905 		VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
906 		/* clear force MAC mode bit */
907 		BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
908 		/* set duplex mode of MAC according to duplex mode of MII */
909 		MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs);
910 		MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
911 		MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs);
912 
913 		/* enable AUTO-NEGO mode */
914 		mii_set_auto_on(vptr);
915 	} else {
916 		u16 CTRL1000;
917 		u16 ANAR;
918 		u8 CHIPGCR;
919 
920 		/*
921 		 * 1. if it's 3119, disable frame bursting in halfduplex mode
922 		 *    and enable it in fullduplex mode
923 		 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
924 		 * 3. only enable CD heart beat counter in 10HD mode
925 		 */
926 
927 		/* set force MAC mode bit */
928 		BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
929 
930 		CHIPGCR = readb(&regs->CHIPGCR);
931 
932 		if (mii_status & VELOCITY_SPEED_1000)
933 			CHIPGCR |= CHIPGCR_FCGMII;
934 		else
935 			CHIPGCR &= ~CHIPGCR_FCGMII;
936 
937 		if (mii_status & VELOCITY_DUPLEX_FULL) {
938 			CHIPGCR |= CHIPGCR_FCFDX;
939 			writeb(CHIPGCR, &regs->CHIPGCR);
940 			VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
941 			if (vptr->rev_id < REV_ID_VT3216_A0)
942 				BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
943 		} else {
944 			CHIPGCR &= ~CHIPGCR_FCFDX;
945 			VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
946 			writeb(CHIPGCR, &regs->CHIPGCR);
947 			if (vptr->rev_id < REV_ID_VT3216_A0)
948 				BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
949 		}
950 
951 		velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000);
952 		CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
953 		if ((mii_status & VELOCITY_SPEED_1000) &&
954 		    (mii_status & VELOCITY_DUPLEX_FULL)) {
955 			CTRL1000 |= ADVERTISE_1000FULL;
956 		}
957 		velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000);
958 
959 		if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
960 			BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
961 		else
962 			BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
963 
964 		/* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */
965 		velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR);
966 		ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF));
967 		if (mii_status & VELOCITY_SPEED_100) {
968 			if (mii_status & VELOCITY_DUPLEX_FULL)
969 				ANAR |= ADVERTISE_100FULL;
970 			else
971 				ANAR |= ADVERTISE_100HALF;
972 		} else if (mii_status & VELOCITY_SPEED_10) {
973 			if (mii_status & VELOCITY_DUPLEX_FULL)
974 				ANAR |= ADVERTISE_10FULL;
975 			else
976 				ANAR |= ADVERTISE_10HALF;
977 		}
978 		velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR);
979 		/* enable AUTO-NEGO mode */
980 		mii_set_auto_on(vptr);
981 		/* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */
982 	}
983 	/* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
984 	/* vptr->mii_status=check_connection_type(vptr->mac_regs); */
985 	return VELOCITY_LINK_CHANGE;
986 }
987 
988 /**
989  *	velocity_print_link_status	-	link status reporting
990  *	@vptr: velocity to report on
991  *
992  *	Turn the link status of the velocity card into a kernel log
993  *	description of the new link state, detailing speed and duplex
994  *	status
995  */
996 static void velocity_print_link_status(struct velocity_info *vptr)
997 {
998 
999 	if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1000 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->netdev->name);
1001 	} else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1002 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->netdev->name);
1003 
1004 		if (vptr->mii_status & VELOCITY_SPEED_1000)
1005 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1006 		else if (vptr->mii_status & VELOCITY_SPEED_100)
1007 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1008 		else
1009 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1010 
1011 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1012 			VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1013 		else
1014 			VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1015 	} else {
1016 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->netdev->name);
1017 		switch (vptr->options.spd_dpx) {
1018 		case SPD_DPX_1000_FULL:
1019 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n");
1020 			break;
1021 		case SPD_DPX_100_HALF:
1022 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1023 			break;
1024 		case SPD_DPX_100_FULL:
1025 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1026 			break;
1027 		case SPD_DPX_10_HALF:
1028 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1029 			break;
1030 		case SPD_DPX_10_FULL:
1031 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1032 			break;
1033 		default:
1034 			break;
1035 		}
1036 	}
1037 }
1038 
1039 /**
1040  *	enable_flow_control_ability	-	flow control
1041  *	@vptr: veloity to configure
1042  *
1043  *	Set up flow control according to the flow control options
1044  *	determined by the eeprom/configuration.
1045  */
1046 static void enable_flow_control_ability(struct velocity_info *vptr)
1047 {
1048 
1049 	struct mac_regs __iomem *regs = vptr->mac_regs;
1050 
1051 	switch (vptr->options.flow_cntl) {
1052 
1053 	case FLOW_CNTL_DEFAULT:
1054 		if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1055 			writel(CR0_FDXRFCEN, &regs->CR0Set);
1056 		else
1057 			writel(CR0_FDXRFCEN, &regs->CR0Clr);
1058 
1059 		if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1060 			writel(CR0_FDXTFCEN, &regs->CR0Set);
1061 		else
1062 			writel(CR0_FDXTFCEN, &regs->CR0Clr);
1063 		break;
1064 
1065 	case FLOW_CNTL_TX:
1066 		writel(CR0_FDXTFCEN, &regs->CR0Set);
1067 		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1068 		break;
1069 
1070 	case FLOW_CNTL_RX:
1071 		writel(CR0_FDXRFCEN, &regs->CR0Set);
1072 		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1073 		break;
1074 
1075 	case FLOW_CNTL_TX_RX:
1076 		writel(CR0_FDXTFCEN, &regs->CR0Set);
1077 		writel(CR0_FDXRFCEN, &regs->CR0Set);
1078 		break;
1079 
1080 	case FLOW_CNTL_DISABLE:
1081 		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1082 		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1083 		break;
1084 
1085 	default:
1086 		break;
1087 	}
1088 
1089 }
1090 
1091 /**
1092  *	velocity_soft_reset	-	soft reset
1093  *	@vptr: velocity to reset
1094  *
1095  *	Kick off a soft reset of the velocity adapter and then poll
1096  *	until the reset sequence has completed before returning.
1097  */
1098 static int velocity_soft_reset(struct velocity_info *vptr)
1099 {
1100 	struct mac_regs __iomem *regs = vptr->mac_regs;
1101 	int i = 0;
1102 
1103 	writel(CR0_SFRST, &regs->CR0Set);
1104 
1105 	for (i = 0; i < W_MAX_TIMEOUT; i++) {
1106 		udelay(5);
1107 		if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1108 			break;
1109 	}
1110 
1111 	if (i == W_MAX_TIMEOUT) {
1112 		writel(CR0_FORSRST, &regs->CR0Set);
1113 		/* FIXME: PCI POSTING */
1114 		/* delay 2ms */
1115 		mdelay(2);
1116 	}
1117 	return 0;
1118 }
1119 
1120 /**
1121  *	velocity_set_multi	-	filter list change callback
1122  *	@dev: network device
1123  *
1124  *	Called by the network layer when the filter lists need to change
1125  *	for a velocity adapter. Reload the CAMs with the new address
1126  *	filter ruleset.
1127  */
1128 static void velocity_set_multi(struct net_device *dev)
1129 {
1130 	struct velocity_info *vptr = netdev_priv(dev);
1131 	struct mac_regs __iomem *regs = vptr->mac_regs;
1132 	u8 rx_mode;
1133 	int i;
1134 	struct netdev_hw_addr *ha;
1135 
1136 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1137 		writel(0xffffffff, &regs->MARCAM[0]);
1138 		writel(0xffffffff, &regs->MARCAM[4]);
1139 		rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1140 	} else if ((netdev_mc_count(dev) > vptr->multicast_limit) ||
1141 		   (dev->flags & IFF_ALLMULTI)) {
1142 		writel(0xffffffff, &regs->MARCAM[0]);
1143 		writel(0xffffffff, &regs->MARCAM[4]);
1144 		rx_mode = (RCR_AM | RCR_AB);
1145 	} else {
1146 		int offset = MCAM_SIZE - vptr->multicast_limit;
1147 		mac_get_cam_mask(regs, vptr->mCAMmask);
1148 
1149 		i = 0;
1150 		netdev_for_each_mc_addr(ha, dev) {
1151 			mac_set_cam(regs, i + offset, ha->addr);
1152 			vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1153 			i++;
1154 		}
1155 
1156 		mac_set_cam_mask(regs, vptr->mCAMmask);
1157 		rx_mode = RCR_AM | RCR_AB | RCR_AP;
1158 	}
1159 	if (dev->mtu > 1500)
1160 		rx_mode |= RCR_AL;
1161 
1162 	BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1163 
1164 }
1165 
1166 /*
1167  * MII access , media link mode setting functions
1168  */
1169 
1170 /**
1171  *	mii_init	-	set up MII
1172  *	@vptr: velocity adapter
1173  *	@mii_status:  links tatus
1174  *
1175  *	Set up the PHY for the current link state.
1176  */
1177 static void mii_init(struct velocity_info *vptr, u32 mii_status)
1178 {
1179 	u16 BMCR;
1180 
1181 	switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1182 	case PHYID_ICPLUS_IP101A:
1183 		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP),
1184 						MII_ADVERTISE, vptr->mac_regs);
1185 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1186 			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION,
1187 								vptr->mac_regs);
1188 		else
1189 			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION,
1190 								vptr->mac_regs);
1191 		MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1192 		break;
1193 	case PHYID_CICADA_CS8201:
1194 		/*
1195 		 *	Reset to hardware default
1196 		 */
1197 		MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1198 		/*
1199 		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1200 		 *	off it in NWay-forced half mode for NWay-forced v.s.
1201 		 *	legacy-forced issue.
1202 		 */
1203 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1204 			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1205 		else
1206 			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1207 		/*
1208 		 *	Turn on Link/Activity LED enable bit for CIS8201
1209 		 */
1210 		MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1211 		break;
1212 	case PHYID_VT3216_32BIT:
1213 	case PHYID_VT3216_64BIT:
1214 		/*
1215 		 *	Reset to hardware default
1216 		 */
1217 		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1218 		/*
1219 		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1220 		 *	off it in NWay-forced half mode for NWay-forced v.s.
1221 		 *	legacy-forced issue
1222 		 */
1223 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1224 			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1225 		else
1226 			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1227 		break;
1228 
1229 	case PHYID_MARVELL_1000:
1230 	case PHYID_MARVELL_1000S:
1231 		/*
1232 		 *	Assert CRS on Transmit
1233 		 */
1234 		MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1235 		/*
1236 		 *	Reset to hardware default
1237 		 */
1238 		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1239 		break;
1240 	default:
1241 		;
1242 	}
1243 	velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR);
1244 	if (BMCR & BMCR_ISOLATE) {
1245 		BMCR &= ~BMCR_ISOLATE;
1246 		velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR);
1247 	}
1248 }
1249 
1250 /**
1251  * setup_queue_timers	-	Setup interrupt timers
1252  *
1253  * Setup interrupt frequency during suppression (timeout if the frame
1254  * count isn't filled).
1255  */
1256 static void setup_queue_timers(struct velocity_info *vptr)
1257 {
1258 	/* Only for newer revisions */
1259 	if (vptr->rev_id >= REV_ID_VT3216_A0) {
1260 		u8 txqueue_timer = 0;
1261 		u8 rxqueue_timer = 0;
1262 
1263 		if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1264 				VELOCITY_SPEED_100)) {
1265 			txqueue_timer = vptr->options.txqueue_timer;
1266 			rxqueue_timer = vptr->options.rxqueue_timer;
1267 		}
1268 
1269 		writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1270 		writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1271 	}
1272 }
1273 
1274 /**
1275  * setup_adaptive_interrupts  -  Setup interrupt suppression
1276  *
1277  * @vptr velocity adapter
1278  *
1279  * The velocity is able to suppress interrupt during high interrupt load.
1280  * This function turns on that feature.
1281  */
1282 static void setup_adaptive_interrupts(struct velocity_info *vptr)
1283 {
1284 	struct mac_regs __iomem *regs = vptr->mac_regs;
1285 	u16 tx_intsup = vptr->options.tx_intsup;
1286 	u16 rx_intsup = vptr->options.rx_intsup;
1287 
1288 	/* Setup default interrupt mask (will be changed below) */
1289 	vptr->int_mask = INT_MASK_DEF;
1290 
1291 	/* Set Tx Interrupt Suppression Threshold */
1292 	writeb(CAMCR_PS0, &regs->CAMCR);
1293 	if (tx_intsup != 0) {
1294 		vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1295 				ISR_PTX2I | ISR_PTX3I);
1296 		writew(tx_intsup, &regs->ISRCTL);
1297 	} else
1298 		writew(ISRCTL_TSUPDIS, &regs->ISRCTL);
1299 
1300 	/* Set Rx Interrupt Suppression Threshold */
1301 	writeb(CAMCR_PS1, &regs->CAMCR);
1302 	if (rx_intsup != 0) {
1303 		vptr->int_mask &= ~ISR_PRXI;
1304 		writew(rx_intsup, &regs->ISRCTL);
1305 	} else
1306 		writew(ISRCTL_RSUPDIS, &regs->ISRCTL);
1307 
1308 	/* Select page to interrupt hold timer */
1309 	writeb(0, &regs->CAMCR);
1310 }
1311 
1312 /**
1313  *	velocity_init_registers	-	initialise MAC registers
1314  *	@vptr: velocity to init
1315  *	@type: type of initialisation (hot or cold)
1316  *
1317  *	Initialise the MAC on a reset or on first set up on the
1318  *	hardware.
1319  */
1320 static void velocity_init_registers(struct velocity_info *vptr,
1321 				    enum velocity_init_type type)
1322 {
1323 	struct mac_regs __iomem *regs = vptr->mac_regs;
1324 	struct net_device *netdev = vptr->netdev;
1325 	int i, mii_status;
1326 
1327 	mac_wol_reset(regs);
1328 
1329 	switch (type) {
1330 	case VELOCITY_INIT_RESET:
1331 	case VELOCITY_INIT_WOL:
1332 
1333 		netif_stop_queue(netdev);
1334 
1335 		/*
1336 		 *	Reset RX to prevent RX pointer not on the 4X location
1337 		 */
1338 		velocity_rx_reset(vptr);
1339 		mac_rx_queue_run(regs);
1340 		mac_rx_queue_wake(regs);
1341 
1342 		mii_status = velocity_get_opt_media_mode(vptr);
1343 		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1344 			velocity_print_link_status(vptr);
1345 			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1346 				netif_wake_queue(netdev);
1347 		}
1348 
1349 		enable_flow_control_ability(vptr);
1350 
1351 		mac_clear_isr(regs);
1352 		writel(CR0_STOP, &regs->CR0Clr);
1353 		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1354 							&regs->CR0Set);
1355 
1356 		break;
1357 
1358 	case VELOCITY_INIT_COLD:
1359 	default:
1360 		/*
1361 		 *	Do reset
1362 		 */
1363 		velocity_soft_reset(vptr);
1364 		mdelay(5);
1365 
1366 		if (!vptr->no_eeprom) {
1367 			mac_eeprom_reload(regs);
1368 			for (i = 0; i < 6; i++)
1369 				writeb(netdev->dev_addr[i], regs->PAR + i);
1370 		}
1371 
1372 		/*
1373 		 *	clear Pre_ACPI bit.
1374 		 */
1375 		BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1376 		mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1377 		mac_set_dma_length(regs, vptr->options.DMA_length);
1378 
1379 		writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1380 		/*
1381 		 *	Back off algorithm use original IEEE standard
1382 		 */
1383 		BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1384 
1385 		/*
1386 		 *	Init CAM filter
1387 		 */
1388 		velocity_init_cam_filter(vptr);
1389 
1390 		/*
1391 		 *	Set packet filter: Receive directed and broadcast address
1392 		 */
1393 		velocity_set_multi(netdev);
1394 
1395 		/*
1396 		 *	Enable MII auto-polling
1397 		 */
1398 		enable_mii_autopoll(regs);
1399 
1400 		setup_adaptive_interrupts(vptr);
1401 
1402 		writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1403 		writew(vptr->options.numrx - 1, &regs->RDCSize);
1404 		mac_rx_queue_run(regs);
1405 		mac_rx_queue_wake(regs);
1406 
1407 		writew(vptr->options.numtx - 1, &regs->TDCSize);
1408 
1409 		for (i = 0; i < vptr->tx.numq; i++) {
1410 			writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1411 			mac_tx_queue_run(regs, i);
1412 		}
1413 
1414 		init_flow_control_register(vptr);
1415 
1416 		writel(CR0_STOP, &regs->CR0Clr);
1417 		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1418 
1419 		mii_status = velocity_get_opt_media_mode(vptr);
1420 		netif_stop_queue(netdev);
1421 
1422 		mii_init(vptr, mii_status);
1423 
1424 		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1425 			velocity_print_link_status(vptr);
1426 			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1427 				netif_wake_queue(netdev);
1428 		}
1429 
1430 		enable_flow_control_ability(vptr);
1431 		mac_hw_mibs_init(regs);
1432 		mac_write_int_mask(vptr->int_mask, regs);
1433 		mac_clear_isr(regs);
1434 
1435 	}
1436 }
1437 
1438 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1439 {
1440 	struct mac_regs __iomem *regs = vptr->mac_regs;
1441 	int avail, dirty, unusable;
1442 
1443 	/*
1444 	 * RD number must be equal to 4X per hardware spec
1445 	 * (programming guide rev 1.20, p.13)
1446 	 */
1447 	if (vptr->rx.filled < 4)
1448 		return;
1449 
1450 	wmb();
1451 
1452 	unusable = vptr->rx.filled & 0x0003;
1453 	dirty = vptr->rx.dirty - unusable;
1454 	for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1455 		dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1456 		vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1457 	}
1458 
1459 	writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1460 	vptr->rx.filled = unusable;
1461 }
1462 
1463 /**
1464  *	velocity_init_dma_rings	-	set up DMA rings
1465  *	@vptr: Velocity to set up
1466  *
1467  *	Allocate PCI mapped DMA rings for the receive and transmit layer
1468  *	to use.
1469  */
1470 static int velocity_init_dma_rings(struct velocity_info *vptr)
1471 {
1472 	struct velocity_opt *opt = &vptr->options;
1473 	const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1474 	const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1475 	dma_addr_t pool_dma;
1476 	void *pool;
1477 	unsigned int i;
1478 
1479 	/*
1480 	 * Allocate all RD/TD rings a single pool.
1481 	 *
1482 	 * dma_alloc_coherent() fulfills the requirement for 64 bytes
1483 	 * alignment
1484 	 */
1485 	pool = dma_alloc_coherent(vptr->dev, tx_ring_size * vptr->tx.numq +
1486 				    rx_ring_size, &pool_dma, GFP_ATOMIC);
1487 	if (!pool) {
1488 		dev_err(vptr->dev, "%s : DMA memory allocation failed.\n",
1489 			vptr->netdev->name);
1490 		return -ENOMEM;
1491 	}
1492 
1493 	vptr->rx.ring = pool;
1494 	vptr->rx.pool_dma = pool_dma;
1495 
1496 	pool += rx_ring_size;
1497 	pool_dma += rx_ring_size;
1498 
1499 	for (i = 0; i < vptr->tx.numq; i++) {
1500 		vptr->tx.rings[i] = pool;
1501 		vptr->tx.pool_dma[i] = pool_dma;
1502 		pool += tx_ring_size;
1503 		pool_dma += tx_ring_size;
1504 	}
1505 
1506 	return 0;
1507 }
1508 
1509 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1510 {
1511 	vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1512 }
1513 
1514 /**
1515  *	velocity_alloc_rx_buf	-	allocate aligned receive buffer
1516  *	@vptr: velocity
1517  *	@idx: ring index
1518  *
1519  *	Allocate a new full sized buffer for the reception of a frame and
1520  *	map it into PCI space for the hardware to use. The hardware
1521  *	requires *64* byte alignment of the buffer which makes life
1522  *	less fun than would be ideal.
1523  */
1524 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1525 {
1526 	struct rx_desc *rd = &(vptr->rx.ring[idx]);
1527 	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1528 
1529 	rd_info->skb = netdev_alloc_skb(vptr->netdev, vptr->rx.buf_sz + 64);
1530 	if (rd_info->skb == NULL)
1531 		return -ENOMEM;
1532 
1533 	/*
1534 	 *	Do the gymnastics to get the buffer head for data at
1535 	 *	64byte alignment.
1536 	 */
1537 	skb_reserve(rd_info->skb,
1538 			64 - ((unsigned long) rd_info->skb->data & 63));
1539 	rd_info->skb_dma = dma_map_single(vptr->dev, rd_info->skb->data,
1540 					vptr->rx.buf_sz, DMA_FROM_DEVICE);
1541 
1542 	/*
1543 	 *	Fill in the descriptor to match
1544 	 */
1545 
1546 	*((u32 *) & (rd->rdesc0)) = 0;
1547 	rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1548 	rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1549 	rd->pa_high = 0;
1550 	return 0;
1551 }
1552 
1553 
1554 static int velocity_rx_refill(struct velocity_info *vptr)
1555 {
1556 	int dirty = vptr->rx.dirty, done = 0;
1557 
1558 	do {
1559 		struct rx_desc *rd = vptr->rx.ring + dirty;
1560 
1561 		/* Fine for an all zero Rx desc at init time as well */
1562 		if (rd->rdesc0.len & OWNED_BY_NIC)
1563 			break;
1564 
1565 		if (!vptr->rx.info[dirty].skb) {
1566 			if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1567 				break;
1568 		}
1569 		done++;
1570 		dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1571 	} while (dirty != vptr->rx.curr);
1572 
1573 	if (done) {
1574 		vptr->rx.dirty = dirty;
1575 		vptr->rx.filled += done;
1576 	}
1577 
1578 	return done;
1579 }
1580 
1581 /**
1582  *	velocity_free_rd_ring	-	free receive ring
1583  *	@vptr: velocity to clean up
1584  *
1585  *	Free the receive buffers for each ring slot and any
1586  *	attached socket buffers that need to go away.
1587  */
1588 static void velocity_free_rd_ring(struct velocity_info *vptr)
1589 {
1590 	int i;
1591 
1592 	if (vptr->rx.info == NULL)
1593 		return;
1594 
1595 	for (i = 0; i < vptr->options.numrx; i++) {
1596 		struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1597 		struct rx_desc *rd = vptr->rx.ring + i;
1598 
1599 		memset(rd, 0, sizeof(*rd));
1600 
1601 		if (!rd_info->skb)
1602 			continue;
1603 		dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz,
1604 				 DMA_FROM_DEVICE);
1605 		rd_info->skb_dma = 0;
1606 
1607 		dev_kfree_skb(rd_info->skb);
1608 		rd_info->skb = NULL;
1609 	}
1610 
1611 	kfree(vptr->rx.info);
1612 	vptr->rx.info = NULL;
1613 }
1614 
1615 /**
1616  *	velocity_init_rd_ring	-	set up receive ring
1617  *	@vptr: velocity to configure
1618  *
1619  *	Allocate and set up the receive buffers for each ring slot and
1620  *	assign them to the network adapter.
1621  */
1622 static int velocity_init_rd_ring(struct velocity_info *vptr)
1623 {
1624 	int ret = -ENOMEM;
1625 
1626 	vptr->rx.info = kcalloc(vptr->options.numrx,
1627 				sizeof(struct velocity_rd_info), GFP_KERNEL);
1628 	if (!vptr->rx.info)
1629 		goto out;
1630 
1631 	velocity_init_rx_ring_indexes(vptr);
1632 
1633 	if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1634 		VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1635 			"%s: failed to allocate RX buffer.\n", vptr->netdev->name);
1636 		velocity_free_rd_ring(vptr);
1637 		goto out;
1638 	}
1639 
1640 	ret = 0;
1641 out:
1642 	return ret;
1643 }
1644 
1645 /**
1646  *	velocity_init_td_ring	-	set up transmit ring
1647  *	@vptr:	velocity
1648  *
1649  *	Set up the transmit ring and chain the ring pointers together.
1650  *	Returns zero on success or a negative posix errno code for
1651  *	failure.
1652  */
1653 static int velocity_init_td_ring(struct velocity_info *vptr)
1654 {
1655 	int j;
1656 
1657 	/* Init the TD ring entries */
1658 	for (j = 0; j < vptr->tx.numq; j++) {
1659 
1660 		vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1661 					    sizeof(struct velocity_td_info),
1662 					    GFP_KERNEL);
1663 		if (!vptr->tx.infos[j])	{
1664 			while (--j >= 0)
1665 				kfree(vptr->tx.infos[j]);
1666 			return -ENOMEM;
1667 		}
1668 
1669 		vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1670 	}
1671 	return 0;
1672 }
1673 
1674 /**
1675  *	velocity_free_dma_rings	-	free PCI ring pointers
1676  *	@vptr: Velocity to free from
1677  *
1678  *	Clean up the PCI ring buffers allocated to this velocity.
1679  */
1680 static void velocity_free_dma_rings(struct velocity_info *vptr)
1681 {
1682 	const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1683 		vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1684 
1685 	dma_free_coherent(vptr->dev, size, vptr->rx.ring, vptr->rx.pool_dma);
1686 }
1687 
1688 static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1689 {
1690 	int ret;
1691 
1692 	velocity_set_rxbufsize(vptr, mtu);
1693 
1694 	ret = velocity_init_dma_rings(vptr);
1695 	if (ret < 0)
1696 		goto out;
1697 
1698 	ret = velocity_init_rd_ring(vptr);
1699 	if (ret < 0)
1700 		goto err_free_dma_rings_0;
1701 
1702 	ret = velocity_init_td_ring(vptr);
1703 	if (ret < 0)
1704 		goto err_free_rd_ring_1;
1705 out:
1706 	return ret;
1707 
1708 err_free_rd_ring_1:
1709 	velocity_free_rd_ring(vptr);
1710 err_free_dma_rings_0:
1711 	velocity_free_dma_rings(vptr);
1712 	goto out;
1713 }
1714 
1715 /**
1716  *	velocity_free_tx_buf	-	free transmit buffer
1717  *	@vptr: velocity
1718  *	@tdinfo: buffer
1719  *
1720  *	Release an transmit buffer. If the buffer was preallocated then
1721  *	recycle it, if not then unmap the buffer.
1722  */
1723 static void velocity_free_tx_buf(struct velocity_info *vptr,
1724 		struct velocity_td_info *tdinfo, struct tx_desc *td)
1725 {
1726 	struct sk_buff *skb = tdinfo->skb;
1727 
1728 	/*
1729 	 *	Don't unmap the pre-allocated tx_bufs
1730 	 */
1731 	if (tdinfo->skb_dma) {
1732 		int i;
1733 
1734 		for (i = 0; i < tdinfo->nskb_dma; i++) {
1735 			size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1736 
1737 			/* For scatter-gather */
1738 			if (skb_shinfo(skb)->nr_frags > 0)
1739 				pktlen = max_t(size_t, pktlen,
1740 						td->td_buf[i].size & ~TD_QUEUE);
1741 
1742 			dma_unmap_single(vptr->dev, tdinfo->skb_dma[i],
1743 					le16_to_cpu(pktlen), DMA_TO_DEVICE);
1744 		}
1745 	}
1746 	dev_kfree_skb_irq(skb);
1747 	tdinfo->skb = NULL;
1748 }
1749 
1750 /*
1751  *	FIXME: could we merge this with velocity_free_tx_buf ?
1752  */
1753 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1754 							 int q, int n)
1755 {
1756 	struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1757 	int i;
1758 
1759 	if (td_info == NULL)
1760 		return;
1761 
1762 	if (td_info->skb) {
1763 		for (i = 0; i < td_info->nskb_dma; i++) {
1764 			if (td_info->skb_dma[i]) {
1765 				dma_unmap_single(vptr->dev, td_info->skb_dma[i],
1766 					td_info->skb->len, DMA_TO_DEVICE);
1767 				td_info->skb_dma[i] = 0;
1768 			}
1769 		}
1770 		dev_kfree_skb(td_info->skb);
1771 		td_info->skb = NULL;
1772 	}
1773 }
1774 
1775 /**
1776  *	velocity_free_td_ring	-	free td ring
1777  *	@vptr: velocity
1778  *
1779  *	Free up the transmit ring for this particular velocity adapter.
1780  *	We free the ring contents but not the ring itself.
1781  */
1782 static void velocity_free_td_ring(struct velocity_info *vptr)
1783 {
1784 	int i, j;
1785 
1786 	for (j = 0; j < vptr->tx.numq; j++) {
1787 		if (vptr->tx.infos[j] == NULL)
1788 			continue;
1789 		for (i = 0; i < vptr->options.numtx; i++)
1790 			velocity_free_td_ring_entry(vptr, j, i);
1791 
1792 		kfree(vptr->tx.infos[j]);
1793 		vptr->tx.infos[j] = NULL;
1794 	}
1795 }
1796 
1797 static void velocity_free_rings(struct velocity_info *vptr)
1798 {
1799 	velocity_free_td_ring(vptr);
1800 	velocity_free_rd_ring(vptr);
1801 	velocity_free_dma_rings(vptr);
1802 }
1803 
1804 /**
1805  *	velocity_error	-	handle error from controller
1806  *	@vptr: velocity
1807  *	@status: card status
1808  *
1809  *	Process an error report from the hardware and attempt to recover
1810  *	the card itself. At the moment we cannot recover from some
1811  *	theoretically impossible errors but this could be fixed using
1812  *	the pci_device_failed logic to bounce the hardware
1813  *
1814  */
1815 static void velocity_error(struct velocity_info *vptr, int status)
1816 {
1817 
1818 	if (status & ISR_TXSTLI) {
1819 		struct mac_regs __iomem *regs = vptr->mac_regs;
1820 
1821 		printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1822 		BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1823 		writew(TRDCSR_RUN, &regs->TDCSRClr);
1824 		netif_stop_queue(vptr->netdev);
1825 
1826 		/* FIXME: port over the pci_device_failed code and use it
1827 		   here */
1828 	}
1829 
1830 	if (status & ISR_SRCI) {
1831 		struct mac_regs __iomem *regs = vptr->mac_regs;
1832 		int linked;
1833 
1834 		if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1835 			vptr->mii_status = check_connection_type(regs);
1836 
1837 			/*
1838 			 *	If it is a 3119, disable frame bursting in
1839 			 *	halfduplex mode and enable it in fullduplex
1840 			 *	 mode
1841 			 */
1842 			if (vptr->rev_id < REV_ID_VT3216_A0) {
1843 				if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1844 					BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1845 				else
1846 					BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1847 			}
1848 			/*
1849 			 *	Only enable CD heart beat counter in 10HD mode
1850 			 */
1851 			if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1852 				BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1853 			else
1854 				BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1855 
1856 			setup_queue_timers(vptr);
1857 		}
1858 		/*
1859 		 *	Get link status from PHYSR0
1860 		 */
1861 		linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1862 
1863 		if (linked) {
1864 			vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1865 			netif_carrier_on(vptr->netdev);
1866 		} else {
1867 			vptr->mii_status |= VELOCITY_LINK_FAIL;
1868 			netif_carrier_off(vptr->netdev);
1869 		}
1870 
1871 		velocity_print_link_status(vptr);
1872 		enable_flow_control_ability(vptr);
1873 
1874 		/*
1875 		 *	Re-enable auto-polling because SRCI will disable
1876 		 *	auto-polling
1877 		 */
1878 
1879 		enable_mii_autopoll(regs);
1880 
1881 		if (vptr->mii_status & VELOCITY_LINK_FAIL)
1882 			netif_stop_queue(vptr->netdev);
1883 		else
1884 			netif_wake_queue(vptr->netdev);
1885 
1886 	}
1887 	if (status & ISR_MIBFI)
1888 		velocity_update_hw_mibs(vptr);
1889 	if (status & ISR_LSTEI)
1890 		mac_rx_queue_wake(vptr->mac_regs);
1891 }
1892 
1893 /**
1894  *	tx_srv		-	transmit interrupt service
1895  *	@vptr; Velocity
1896  *
1897  *	Scan the queues looking for transmitted packets that
1898  *	we can complete and clean up. Update any statistics as
1899  *	necessary/
1900  */
1901 static int velocity_tx_srv(struct velocity_info *vptr)
1902 {
1903 	struct tx_desc *td;
1904 	int qnum;
1905 	int full = 0;
1906 	int idx;
1907 	int works = 0;
1908 	struct velocity_td_info *tdinfo;
1909 	struct net_device_stats *stats = &vptr->netdev->stats;
1910 
1911 	for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1912 		for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1913 			idx = (idx + 1) % vptr->options.numtx) {
1914 
1915 			/*
1916 			 *	Get Tx Descriptor
1917 			 */
1918 			td = &(vptr->tx.rings[qnum][idx]);
1919 			tdinfo = &(vptr->tx.infos[qnum][idx]);
1920 
1921 			if (td->tdesc0.len & OWNED_BY_NIC)
1922 				break;
1923 
1924 			if ((works++ > 15))
1925 				break;
1926 
1927 			if (td->tdesc0.TSR & TSR0_TERR) {
1928 				stats->tx_errors++;
1929 				stats->tx_dropped++;
1930 				if (td->tdesc0.TSR & TSR0_CDH)
1931 					stats->tx_heartbeat_errors++;
1932 				if (td->tdesc0.TSR & TSR0_CRS)
1933 					stats->tx_carrier_errors++;
1934 				if (td->tdesc0.TSR & TSR0_ABT)
1935 					stats->tx_aborted_errors++;
1936 				if (td->tdesc0.TSR & TSR0_OWC)
1937 					stats->tx_window_errors++;
1938 			} else {
1939 				stats->tx_packets++;
1940 				stats->tx_bytes += tdinfo->skb->len;
1941 			}
1942 			velocity_free_tx_buf(vptr, tdinfo, td);
1943 			vptr->tx.used[qnum]--;
1944 		}
1945 		vptr->tx.tail[qnum] = idx;
1946 
1947 		if (AVAIL_TD(vptr, qnum) < 1)
1948 			full = 1;
1949 	}
1950 	/*
1951 	 *	Look to see if we should kick the transmit network
1952 	 *	layer for more work.
1953 	 */
1954 	if (netif_queue_stopped(vptr->netdev) && (full == 0) &&
1955 	    (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1956 		netif_wake_queue(vptr->netdev);
1957 	}
1958 	return works;
1959 }
1960 
1961 /**
1962  *	velocity_rx_csum	-	checksum process
1963  *	@rd: receive packet descriptor
1964  *	@skb: network layer packet buffer
1965  *
1966  *	Process the status bits for the received packet and determine
1967  *	if the checksum was computed and verified by the hardware
1968  */
1969 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1970 {
1971 	skb_checksum_none_assert(skb);
1972 
1973 	if (rd->rdesc1.CSM & CSM_IPKT) {
1974 		if (rd->rdesc1.CSM & CSM_IPOK) {
1975 			if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1976 					(rd->rdesc1.CSM & CSM_UDPKT)) {
1977 				if (!(rd->rdesc1.CSM & CSM_TUPOK))
1978 					return;
1979 			}
1980 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1981 		}
1982 	}
1983 }
1984 
1985 /**
1986  *	velocity_rx_copy	-	in place Rx copy for small packets
1987  *	@rx_skb: network layer packet buffer candidate
1988  *	@pkt_size: received data size
1989  *	@rd: receive packet descriptor
1990  *	@dev: network device
1991  *
1992  *	Replace the current skb that is scheduled for Rx processing by a
1993  *	shorter, immediately allocated skb, if the received packet is small
1994  *	enough. This function returns a negative value if the received
1995  *	packet is too big or if memory is exhausted.
1996  */
1997 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1998 			    struct velocity_info *vptr)
1999 {
2000 	int ret = -1;
2001 	if (pkt_size < rx_copybreak) {
2002 		struct sk_buff *new_skb;
2003 
2004 		new_skb = netdev_alloc_skb_ip_align(vptr->netdev, pkt_size);
2005 		if (new_skb) {
2006 			new_skb->ip_summed = rx_skb[0]->ip_summed;
2007 			skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
2008 			*rx_skb = new_skb;
2009 			ret = 0;
2010 		}
2011 
2012 	}
2013 	return ret;
2014 }
2015 
2016 /**
2017  *	velocity_iph_realign	-	IP header alignment
2018  *	@vptr: velocity we are handling
2019  *	@skb: network layer packet buffer
2020  *	@pkt_size: received data size
2021  *
2022  *	Align IP header on a 2 bytes boundary. This behavior can be
2023  *	configured by the user.
2024  */
2025 static inline void velocity_iph_realign(struct velocity_info *vptr,
2026 					struct sk_buff *skb, int pkt_size)
2027 {
2028 	if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2029 		memmove(skb->data + 2, skb->data, pkt_size);
2030 		skb_reserve(skb, 2);
2031 	}
2032 }
2033 
2034 /**
2035  *	velocity_receive_frame	-	received packet processor
2036  *	@vptr: velocity we are handling
2037  *	@idx: ring index
2038  *
2039  *	A packet has arrived. We process the packet and if appropriate
2040  *	pass the frame up the network stack
2041  */
2042 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2043 {
2044 	struct net_device_stats *stats = &vptr->netdev->stats;
2045 	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2046 	struct rx_desc *rd = &(vptr->rx.ring[idx]);
2047 	int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2048 	struct sk_buff *skb;
2049 
2050 	if (unlikely(rd->rdesc0.RSR & (RSR_STP | RSR_EDP | RSR_RL))) {
2051 		if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP))
2052 			VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame spans multiple RDs.\n", vptr->netdev->name);
2053 		stats->rx_length_errors++;
2054 		return -EINVAL;
2055 	}
2056 
2057 	if (rd->rdesc0.RSR & RSR_MAR)
2058 		stats->multicast++;
2059 
2060 	skb = rd_info->skb;
2061 
2062 	dma_sync_single_for_cpu(vptr->dev, rd_info->skb_dma,
2063 				    vptr->rx.buf_sz, DMA_FROM_DEVICE);
2064 
2065 	velocity_rx_csum(rd, skb);
2066 
2067 	if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2068 		velocity_iph_realign(vptr, skb, pkt_len);
2069 		rd_info->skb = NULL;
2070 		dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz,
2071 				 DMA_FROM_DEVICE);
2072 	} else {
2073 		dma_sync_single_for_device(vptr->dev, rd_info->skb_dma,
2074 					   vptr->rx.buf_sz, DMA_FROM_DEVICE);
2075 	}
2076 
2077 	skb_put(skb, pkt_len - 4);
2078 	skb->protocol = eth_type_trans(skb, vptr->netdev);
2079 
2080 	if (rd->rdesc0.RSR & RSR_DETAG) {
2081 		u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG));
2082 
2083 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
2084 	}
2085 	netif_receive_skb(skb);
2086 
2087 	stats->rx_bytes += pkt_len;
2088 	stats->rx_packets++;
2089 
2090 	return 0;
2091 }
2092 
2093 /**
2094  *	velocity_rx_srv		-	service RX interrupt
2095  *	@vptr: velocity
2096  *
2097  *	Walk the receive ring of the velocity adapter and remove
2098  *	any received packets from the receive queue. Hand the ring
2099  *	slots back to the adapter for reuse.
2100  */
2101 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2102 {
2103 	struct net_device_stats *stats = &vptr->netdev->stats;
2104 	int rd_curr = vptr->rx.curr;
2105 	int works = 0;
2106 
2107 	while (works < budget_left) {
2108 		struct rx_desc *rd = vptr->rx.ring + rd_curr;
2109 
2110 		if (!vptr->rx.info[rd_curr].skb)
2111 			break;
2112 
2113 		if (rd->rdesc0.len & OWNED_BY_NIC)
2114 			break;
2115 
2116 		rmb();
2117 
2118 		/*
2119 		 *	Don't drop CE or RL error frame although RXOK is off
2120 		 */
2121 		if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2122 			if (velocity_receive_frame(vptr, rd_curr) < 0)
2123 				stats->rx_dropped++;
2124 		} else {
2125 			if (rd->rdesc0.RSR & RSR_CRC)
2126 				stats->rx_crc_errors++;
2127 			if (rd->rdesc0.RSR & RSR_FAE)
2128 				stats->rx_frame_errors++;
2129 
2130 			stats->rx_dropped++;
2131 		}
2132 
2133 		rd->size |= RX_INTEN;
2134 
2135 		rd_curr++;
2136 		if (rd_curr >= vptr->options.numrx)
2137 			rd_curr = 0;
2138 		works++;
2139 	}
2140 
2141 	vptr->rx.curr = rd_curr;
2142 
2143 	if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2144 		velocity_give_many_rx_descs(vptr);
2145 
2146 	VAR_USED(stats);
2147 	return works;
2148 }
2149 
2150 static int velocity_poll(struct napi_struct *napi, int budget)
2151 {
2152 	struct velocity_info *vptr = container_of(napi,
2153 			struct velocity_info, napi);
2154 	unsigned int rx_done;
2155 	unsigned long flags;
2156 
2157 	/*
2158 	 * Do rx and tx twice for performance (taken from the VIA
2159 	 * out-of-tree driver).
2160 	 */
2161 	rx_done = velocity_rx_srv(vptr, budget);
2162 	spin_lock_irqsave(&vptr->lock, flags);
2163 	velocity_tx_srv(vptr);
2164 	/* If budget not fully consumed, exit the polling mode */
2165 	if (rx_done < budget) {
2166 		napi_complete(napi);
2167 		mac_enable_int(vptr->mac_regs);
2168 	}
2169 	spin_unlock_irqrestore(&vptr->lock, flags);
2170 
2171 	return rx_done;
2172 }
2173 
2174 /**
2175  *	velocity_intr		-	interrupt callback
2176  *	@irq: interrupt number
2177  *	@dev_instance: interrupting device
2178  *
2179  *	Called whenever an interrupt is generated by the velocity
2180  *	adapter IRQ line. We may not be the source of the interrupt
2181  *	and need to identify initially if we are, and if not exit as
2182  *	efficiently as possible.
2183  */
2184 static irqreturn_t velocity_intr(int irq, void *dev_instance)
2185 {
2186 	struct net_device *dev = dev_instance;
2187 	struct velocity_info *vptr = netdev_priv(dev);
2188 	u32 isr_status;
2189 
2190 	spin_lock(&vptr->lock);
2191 	isr_status = mac_read_isr(vptr->mac_regs);
2192 
2193 	/* Not us ? */
2194 	if (isr_status == 0) {
2195 		spin_unlock(&vptr->lock);
2196 		return IRQ_NONE;
2197 	}
2198 
2199 	/* Ack the interrupt */
2200 	mac_write_isr(vptr->mac_regs, isr_status);
2201 
2202 	if (likely(napi_schedule_prep(&vptr->napi))) {
2203 		mac_disable_int(vptr->mac_regs);
2204 		__napi_schedule(&vptr->napi);
2205 	}
2206 
2207 	if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2208 		velocity_error(vptr, isr_status);
2209 
2210 	spin_unlock(&vptr->lock);
2211 
2212 	return IRQ_HANDLED;
2213 }
2214 
2215 /**
2216  *	velocity_open		-	interface activation callback
2217  *	@dev: network layer device to open
2218  *
2219  *	Called when the network layer brings the interface up. Returns
2220  *	a negative posix error code on failure, or zero on success.
2221  *
2222  *	All the ring allocation and set up is done on open for this
2223  *	adapter to minimise memory usage when inactive
2224  */
2225 static int velocity_open(struct net_device *dev)
2226 {
2227 	struct velocity_info *vptr = netdev_priv(dev);
2228 	int ret;
2229 
2230 	ret = velocity_init_rings(vptr, dev->mtu);
2231 	if (ret < 0)
2232 		goto out;
2233 
2234 	/* Ensure chip is running */
2235 	velocity_set_power_state(vptr, PCI_D0);
2236 
2237 	velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2238 
2239 	ret = request_irq(dev->irq, velocity_intr, IRQF_SHARED,
2240 			  dev->name, dev);
2241 	if (ret < 0) {
2242 		/* Power down the chip */
2243 		velocity_set_power_state(vptr, PCI_D3hot);
2244 		velocity_free_rings(vptr);
2245 		goto out;
2246 	}
2247 
2248 	velocity_give_many_rx_descs(vptr);
2249 
2250 	mac_enable_int(vptr->mac_regs);
2251 	netif_start_queue(dev);
2252 	napi_enable(&vptr->napi);
2253 	vptr->flags |= VELOCITY_FLAGS_OPENED;
2254 out:
2255 	return ret;
2256 }
2257 
2258 /**
2259  *	velocity_shutdown	-	shut down the chip
2260  *	@vptr: velocity to deactivate
2261  *
2262  *	Shuts down the internal operations of the velocity and
2263  *	disables interrupts, autopolling, transmit and receive
2264  */
2265 static void velocity_shutdown(struct velocity_info *vptr)
2266 {
2267 	struct mac_regs __iomem *regs = vptr->mac_regs;
2268 	mac_disable_int(regs);
2269 	writel(CR0_STOP, &regs->CR0Set);
2270 	writew(0xFFFF, &regs->TDCSRClr);
2271 	writeb(0xFF, &regs->RDCSRClr);
2272 	safe_disable_mii_autopoll(regs);
2273 	mac_clear_isr(regs);
2274 }
2275 
2276 /**
2277  *	velocity_change_mtu	-	MTU change callback
2278  *	@dev: network device
2279  *	@new_mtu: desired MTU
2280  *
2281  *	Handle requests from the networking layer for MTU change on
2282  *	this interface. It gets called on a change by the network layer.
2283  *	Return zero for success or negative posix error code.
2284  */
2285 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2286 {
2287 	struct velocity_info *vptr = netdev_priv(dev);
2288 	int ret = 0;
2289 
2290 	if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
2291 		VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
2292 				vptr->netdev->name);
2293 		ret = -EINVAL;
2294 		goto out_0;
2295 	}
2296 
2297 	if (!netif_running(dev)) {
2298 		dev->mtu = new_mtu;
2299 		goto out_0;
2300 	}
2301 
2302 	if (dev->mtu != new_mtu) {
2303 		struct velocity_info *tmp_vptr;
2304 		unsigned long flags;
2305 		struct rx_info rx;
2306 		struct tx_info tx;
2307 
2308 		tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2309 		if (!tmp_vptr) {
2310 			ret = -ENOMEM;
2311 			goto out_0;
2312 		}
2313 
2314 		tmp_vptr->netdev = dev;
2315 		tmp_vptr->pdev = vptr->pdev;
2316 		tmp_vptr->dev = vptr->dev;
2317 		tmp_vptr->options = vptr->options;
2318 		tmp_vptr->tx.numq = vptr->tx.numq;
2319 
2320 		ret = velocity_init_rings(tmp_vptr, new_mtu);
2321 		if (ret < 0)
2322 			goto out_free_tmp_vptr_1;
2323 
2324 		napi_disable(&vptr->napi);
2325 
2326 		spin_lock_irqsave(&vptr->lock, flags);
2327 
2328 		netif_stop_queue(dev);
2329 		velocity_shutdown(vptr);
2330 
2331 		rx = vptr->rx;
2332 		tx = vptr->tx;
2333 
2334 		vptr->rx = tmp_vptr->rx;
2335 		vptr->tx = tmp_vptr->tx;
2336 
2337 		tmp_vptr->rx = rx;
2338 		tmp_vptr->tx = tx;
2339 
2340 		dev->mtu = new_mtu;
2341 
2342 		velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2343 
2344 		velocity_give_many_rx_descs(vptr);
2345 
2346 		napi_enable(&vptr->napi);
2347 
2348 		mac_enable_int(vptr->mac_regs);
2349 		netif_start_queue(dev);
2350 
2351 		spin_unlock_irqrestore(&vptr->lock, flags);
2352 
2353 		velocity_free_rings(tmp_vptr);
2354 
2355 out_free_tmp_vptr_1:
2356 		kfree(tmp_vptr);
2357 	}
2358 out_0:
2359 	return ret;
2360 }
2361 
2362 #ifdef CONFIG_NET_POLL_CONTROLLER
2363 /**
2364  *  velocity_poll_controller		-	Velocity Poll controller function
2365  *  @dev: network device
2366  *
2367  *
2368  *  Used by NETCONSOLE and other diagnostic tools to allow network I/P
2369  *  with interrupts disabled.
2370  */
2371 static void velocity_poll_controller(struct net_device *dev)
2372 {
2373 	disable_irq(dev->irq);
2374 	velocity_intr(dev->irq, dev);
2375 	enable_irq(dev->irq);
2376 }
2377 #endif
2378 
2379 /**
2380  *	velocity_mii_ioctl		-	MII ioctl handler
2381  *	@dev: network device
2382  *	@ifr: the ifreq block for the ioctl
2383  *	@cmd: the command
2384  *
2385  *	Process MII requests made via ioctl from the network layer. These
2386  *	are used by tools like kudzu to interrogate the link state of the
2387  *	hardware
2388  */
2389 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2390 {
2391 	struct velocity_info *vptr = netdev_priv(dev);
2392 	struct mac_regs __iomem *regs = vptr->mac_regs;
2393 	unsigned long flags;
2394 	struct mii_ioctl_data *miidata = if_mii(ifr);
2395 	int err;
2396 
2397 	switch (cmd) {
2398 	case SIOCGMIIPHY:
2399 		miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2400 		break;
2401 	case SIOCGMIIREG:
2402 		if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2403 			return -ETIMEDOUT;
2404 		break;
2405 	case SIOCSMIIREG:
2406 		spin_lock_irqsave(&vptr->lock, flags);
2407 		err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2408 		spin_unlock_irqrestore(&vptr->lock, flags);
2409 		check_connection_type(vptr->mac_regs);
2410 		if (err)
2411 			return err;
2412 		break;
2413 	default:
2414 		return -EOPNOTSUPP;
2415 	}
2416 	return 0;
2417 }
2418 
2419 /**
2420  *	velocity_ioctl		-	ioctl entry point
2421  *	@dev: network device
2422  *	@rq: interface request ioctl
2423  *	@cmd: command code
2424  *
2425  *	Called when the user issues an ioctl request to the network
2426  *	device in question. The velocity interface supports MII.
2427  */
2428 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2429 {
2430 	struct velocity_info *vptr = netdev_priv(dev);
2431 	int ret;
2432 
2433 	/* If we are asked for information and the device is power
2434 	   saving then we need to bring the device back up to talk to it */
2435 
2436 	if (!netif_running(dev))
2437 		velocity_set_power_state(vptr, PCI_D0);
2438 
2439 	switch (cmd) {
2440 	case SIOCGMIIPHY:	/* Get address of MII PHY in use. */
2441 	case SIOCGMIIREG:	/* Read MII PHY register. */
2442 	case SIOCSMIIREG:	/* Write to MII PHY register. */
2443 		ret = velocity_mii_ioctl(dev, rq, cmd);
2444 		break;
2445 
2446 	default:
2447 		ret = -EOPNOTSUPP;
2448 	}
2449 	if (!netif_running(dev))
2450 		velocity_set_power_state(vptr, PCI_D3hot);
2451 
2452 
2453 	return ret;
2454 }
2455 
2456 /**
2457  *	velocity_get_status	-	statistics callback
2458  *	@dev: network device
2459  *
2460  *	Callback from the network layer to allow driver statistics
2461  *	to be resynchronized with hardware collected state. In the
2462  *	case of the velocity we need to pull the MIB counters from
2463  *	the hardware into the counters before letting the network
2464  *	layer display them.
2465  */
2466 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2467 {
2468 	struct velocity_info *vptr = netdev_priv(dev);
2469 
2470 	/* If the hardware is down, don't touch MII */
2471 	if (!netif_running(dev))
2472 		return &dev->stats;
2473 
2474 	spin_lock_irq(&vptr->lock);
2475 	velocity_update_hw_mibs(vptr);
2476 	spin_unlock_irq(&vptr->lock);
2477 
2478 	dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2479 	dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2480 	dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2481 
2482 //  unsigned long   rx_dropped;     /* no space in linux buffers    */
2483 	dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2484 	/* detailed rx_errors: */
2485 //  unsigned long   rx_length_errors;
2486 //  unsigned long   rx_over_errors;     /* receiver ring buff overflow  */
2487 	dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2488 //  unsigned long   rx_frame_errors;    /* recv'd frame alignment error */
2489 //  unsigned long   rx_fifo_errors;     /* recv'r fifo overrun      */
2490 //  unsigned long   rx_missed_errors;   /* receiver missed packet   */
2491 
2492 	/* detailed tx_errors */
2493 //  unsigned long   tx_fifo_errors;
2494 
2495 	return &dev->stats;
2496 }
2497 
2498 /**
2499  *	velocity_close		-	close adapter callback
2500  *	@dev: network device
2501  *
2502  *	Callback from the network layer when the velocity is being
2503  *	deactivated by the network layer
2504  */
2505 static int velocity_close(struct net_device *dev)
2506 {
2507 	struct velocity_info *vptr = netdev_priv(dev);
2508 
2509 	napi_disable(&vptr->napi);
2510 	netif_stop_queue(dev);
2511 	velocity_shutdown(vptr);
2512 
2513 	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2514 		velocity_get_ip(vptr);
2515 
2516 	free_irq(dev->irq, dev);
2517 
2518 	velocity_free_rings(vptr);
2519 
2520 	vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2521 	return 0;
2522 }
2523 
2524 /**
2525  *	velocity_xmit		-	transmit packet callback
2526  *	@skb: buffer to transmit
2527  *	@dev: network device
2528  *
2529  *	Called by the networ layer to request a packet is queued to
2530  *	the velocity. Returns zero on success.
2531  */
2532 static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2533 				 struct net_device *dev)
2534 {
2535 	struct velocity_info *vptr = netdev_priv(dev);
2536 	int qnum = 0;
2537 	struct tx_desc *td_ptr;
2538 	struct velocity_td_info *tdinfo;
2539 	unsigned long flags;
2540 	int pktlen;
2541 	int index, prev;
2542 	int i = 0;
2543 
2544 	if (skb_padto(skb, ETH_ZLEN))
2545 		goto out;
2546 
2547 	/* The hardware can handle at most 7 memory segments, so merge
2548 	 * the skb if there are more */
2549 	if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2550 		dev_kfree_skb_any(skb);
2551 		return NETDEV_TX_OK;
2552 	}
2553 
2554 	pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2555 			max_t(unsigned int, skb->len, ETH_ZLEN) :
2556 				skb_headlen(skb);
2557 
2558 	spin_lock_irqsave(&vptr->lock, flags);
2559 
2560 	index = vptr->tx.curr[qnum];
2561 	td_ptr = &(vptr->tx.rings[qnum][index]);
2562 	tdinfo = &(vptr->tx.infos[qnum][index]);
2563 
2564 	td_ptr->tdesc1.TCR = TCR0_TIC;
2565 	td_ptr->td_buf[0].size &= ~TD_QUEUE;
2566 
2567 	/*
2568 	 *	Map the linear network buffer into PCI space and
2569 	 *	add it to the transmit ring.
2570 	 */
2571 	tdinfo->skb = skb;
2572 	tdinfo->skb_dma[0] = dma_map_single(vptr->dev, skb->data, pktlen,
2573 								DMA_TO_DEVICE);
2574 	td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2575 	td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2576 	td_ptr->td_buf[0].pa_high = 0;
2577 	td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2578 
2579 	/* Handle fragments */
2580 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2581 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2582 
2583 		tdinfo->skb_dma[i + 1] = skb_frag_dma_map(vptr->dev,
2584 							  frag, 0,
2585 							  skb_frag_size(frag),
2586 							  DMA_TO_DEVICE);
2587 
2588 		td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2589 		td_ptr->td_buf[i + 1].pa_high = 0;
2590 		td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag));
2591 	}
2592 	tdinfo->nskb_dma = i + 1;
2593 
2594 	td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2595 
2596 	if (skb_vlan_tag_present(skb)) {
2597 		td_ptr->tdesc1.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
2598 		td_ptr->tdesc1.TCR |= TCR0_VETAG;
2599 	}
2600 
2601 	/*
2602 	 *	Handle hardware checksum
2603 	 */
2604 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2605 		const struct iphdr *ip = ip_hdr(skb);
2606 		if (ip->protocol == IPPROTO_TCP)
2607 			td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2608 		else if (ip->protocol == IPPROTO_UDP)
2609 			td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2610 		td_ptr->tdesc1.TCR |= TCR0_IPCK;
2611 	}
2612 
2613 	prev = index - 1;
2614 	if (prev < 0)
2615 		prev = vptr->options.numtx - 1;
2616 	td_ptr->tdesc0.len |= OWNED_BY_NIC;
2617 	vptr->tx.used[qnum]++;
2618 	vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2619 
2620 	if (AVAIL_TD(vptr, qnum) < 1)
2621 		netif_stop_queue(dev);
2622 
2623 	td_ptr = &(vptr->tx.rings[qnum][prev]);
2624 	td_ptr->td_buf[0].size |= TD_QUEUE;
2625 	mac_tx_queue_wake(vptr->mac_regs, qnum);
2626 
2627 	spin_unlock_irqrestore(&vptr->lock, flags);
2628 out:
2629 	return NETDEV_TX_OK;
2630 }
2631 
2632 static const struct net_device_ops velocity_netdev_ops = {
2633 	.ndo_open		= velocity_open,
2634 	.ndo_stop		= velocity_close,
2635 	.ndo_start_xmit		= velocity_xmit,
2636 	.ndo_get_stats		= velocity_get_stats,
2637 	.ndo_validate_addr	= eth_validate_addr,
2638 	.ndo_set_mac_address	= eth_mac_addr,
2639 	.ndo_set_rx_mode	= velocity_set_multi,
2640 	.ndo_change_mtu		= velocity_change_mtu,
2641 	.ndo_do_ioctl		= velocity_ioctl,
2642 	.ndo_vlan_rx_add_vid	= velocity_vlan_rx_add_vid,
2643 	.ndo_vlan_rx_kill_vid	= velocity_vlan_rx_kill_vid,
2644 #ifdef CONFIG_NET_POLL_CONTROLLER
2645 	.ndo_poll_controller = velocity_poll_controller,
2646 #endif
2647 };
2648 
2649 /**
2650  *	velocity_init_info	-	init private data
2651  *	@pdev: PCI device
2652  *	@vptr: Velocity info
2653  *	@info: Board type
2654  *
2655  *	Set up the initial velocity_info struct for the device that has been
2656  *	discovered.
2657  */
2658 static void velocity_init_info(struct velocity_info *vptr,
2659 				const struct velocity_info_tbl *info)
2660 {
2661 	vptr->chip_id = info->chip_id;
2662 	vptr->tx.numq = info->txqueue;
2663 	vptr->multicast_limit = MCAM_SIZE;
2664 	spin_lock_init(&vptr->lock);
2665 }
2666 
2667 /**
2668  *	velocity_get_pci_info	-	retrieve PCI info for device
2669  *	@vptr: velocity device
2670  *	@pdev: PCI device it matches
2671  *
2672  *	Retrieve the PCI configuration space data that interests us from
2673  *	the kernel PCI layer
2674  */
2675 static int velocity_get_pci_info(struct velocity_info *vptr)
2676 {
2677 	struct pci_dev *pdev = vptr->pdev;
2678 
2679 	pci_set_master(pdev);
2680 
2681 	vptr->ioaddr = pci_resource_start(pdev, 0);
2682 	vptr->memaddr = pci_resource_start(pdev, 1);
2683 
2684 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2685 		dev_err(&pdev->dev,
2686 			   "region #0 is not an I/O resource, aborting.\n");
2687 		return -EINVAL;
2688 	}
2689 
2690 	if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2691 		dev_err(&pdev->dev,
2692 			   "region #1 is an I/O resource, aborting.\n");
2693 		return -EINVAL;
2694 	}
2695 
2696 	if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2697 		dev_err(&pdev->dev, "region #1 is too small.\n");
2698 		return -EINVAL;
2699 	}
2700 
2701 	return 0;
2702 }
2703 
2704 /**
2705  *	velocity_get_platform_info - retrieve platform info for device
2706  *	@vptr: velocity device
2707  *	@pdev: platform device it matches
2708  *
2709  *	Retrieve the Platform configuration data that interests us
2710  */
2711 static int velocity_get_platform_info(struct velocity_info *vptr)
2712 {
2713 	struct resource res;
2714 	int ret;
2715 
2716 	if (of_get_property(vptr->dev->of_node, "no-eeprom", NULL))
2717 		vptr->no_eeprom = 1;
2718 
2719 	ret = of_address_to_resource(vptr->dev->of_node, 0, &res);
2720 	if (ret) {
2721 		dev_err(vptr->dev, "unable to find memory address\n");
2722 		return ret;
2723 	}
2724 
2725 	vptr->memaddr = res.start;
2726 
2727 	if (resource_size(&res) < VELOCITY_IO_SIZE) {
2728 		dev_err(vptr->dev, "memory region is too small.\n");
2729 		return -EINVAL;
2730 	}
2731 
2732 	return 0;
2733 }
2734 
2735 /**
2736  *	velocity_print_info	-	per driver data
2737  *	@vptr: velocity
2738  *
2739  *	Print per driver data as the kernel driver finds Velocity
2740  *	hardware
2741  */
2742 static void velocity_print_info(struct velocity_info *vptr)
2743 {
2744 	struct net_device *dev = vptr->netdev;
2745 
2746 	printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
2747 	printk(KERN_INFO "%s: Ethernet Address: %pM\n",
2748 		dev->name, dev->dev_addr);
2749 }
2750 
2751 static u32 velocity_get_link(struct net_device *dev)
2752 {
2753 	struct velocity_info *vptr = netdev_priv(dev);
2754 	struct mac_regs __iomem *regs = vptr->mac_regs;
2755 	return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2756 }
2757 
2758 /**
2759  *	velocity_probe - set up discovered velocity device
2760  *	@pdev: PCI device
2761  *	@ent: PCI device table entry that matched
2762  *	@bustype: bus that device is connected to
2763  *
2764  *	Configure a discovered adapter from scratch. Return a negative
2765  *	errno error code on failure paths.
2766  */
2767 static int velocity_probe(struct device *dev, int irq,
2768 			   const struct velocity_info_tbl *info,
2769 			   enum velocity_bus_type bustype)
2770 {
2771 	static int first = 1;
2772 	struct net_device *netdev;
2773 	int i;
2774 	const char *drv_string;
2775 	struct velocity_info *vptr;
2776 	struct mac_regs __iomem *regs;
2777 	int ret = -ENOMEM;
2778 
2779 	/* FIXME: this driver, like almost all other ethernet drivers,
2780 	 * can support more than MAX_UNITS.
2781 	 */
2782 	if (velocity_nics >= MAX_UNITS) {
2783 		dev_notice(dev, "already found %d NICs.\n", velocity_nics);
2784 		return -ENODEV;
2785 	}
2786 
2787 	netdev = alloc_etherdev(sizeof(struct velocity_info));
2788 	if (!netdev)
2789 		goto out;
2790 
2791 	/* Chain it all together */
2792 
2793 	SET_NETDEV_DEV(netdev, dev);
2794 	vptr = netdev_priv(netdev);
2795 
2796 	if (first) {
2797 		printk(KERN_INFO "%s Ver. %s\n",
2798 			VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2799 		printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2800 		printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
2801 		first = 0;
2802 	}
2803 
2804 	netdev->irq = irq;
2805 	vptr->netdev = netdev;
2806 	vptr->dev = dev;
2807 
2808 	velocity_init_info(vptr, info);
2809 
2810 	if (bustype == BUS_PCI) {
2811 		vptr->pdev = to_pci_dev(dev);
2812 
2813 		ret = velocity_get_pci_info(vptr);
2814 		if (ret < 0)
2815 			goto err_free_dev;
2816 	} else {
2817 		vptr->pdev = NULL;
2818 		ret = velocity_get_platform_info(vptr);
2819 		if (ret < 0)
2820 			goto err_free_dev;
2821 	}
2822 
2823 	regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2824 	if (regs == NULL) {
2825 		ret = -EIO;
2826 		goto err_free_dev;
2827 	}
2828 
2829 	vptr->mac_regs = regs;
2830 	vptr->rev_id = readb(&regs->rev_id);
2831 
2832 	mac_wol_reset(regs);
2833 
2834 	for (i = 0; i < 6; i++)
2835 		netdev->dev_addr[i] = readb(&regs->PAR[i]);
2836 
2837 
2838 	drv_string = dev_driver_string(dev);
2839 
2840 	velocity_get_options(&vptr->options, velocity_nics, drv_string);
2841 
2842 	/*
2843 	 *	Mask out the options cannot be set to the chip
2844 	 */
2845 
2846 	vptr->options.flags &= info->flags;
2847 
2848 	/*
2849 	 *	Enable the chip specified capbilities
2850 	 */
2851 
2852 	vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2853 
2854 	vptr->wol_opts = vptr->options.wol_opts;
2855 	vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2856 
2857 	vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2858 
2859 	netdev->netdev_ops = &velocity_netdev_ops;
2860 	netdev->ethtool_ops = &velocity_ethtool_ops;
2861 	netif_napi_add(netdev, &vptr->napi, velocity_poll,
2862 							VELOCITY_NAPI_WEIGHT);
2863 
2864 	netdev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2865 			   NETIF_F_HW_VLAN_CTAG_TX;
2866 	netdev->features |= NETIF_F_HW_VLAN_CTAG_TX |
2867 			NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX |
2868 			NETIF_F_IP_CSUM;
2869 
2870 	ret = register_netdev(netdev);
2871 	if (ret < 0)
2872 		goto err_iounmap;
2873 
2874 	if (!velocity_get_link(netdev)) {
2875 		netif_carrier_off(netdev);
2876 		vptr->mii_status |= VELOCITY_LINK_FAIL;
2877 	}
2878 
2879 	velocity_print_info(vptr);
2880 	dev_set_drvdata(vptr->dev, netdev);
2881 
2882 	/* and leave the chip powered down */
2883 
2884 	velocity_set_power_state(vptr, PCI_D3hot);
2885 	velocity_nics++;
2886 out:
2887 	return ret;
2888 
2889 err_iounmap:
2890 	netif_napi_del(&vptr->napi);
2891 	iounmap(regs);
2892 err_free_dev:
2893 	free_netdev(netdev);
2894 	goto out;
2895 }
2896 
2897 /**
2898  *	velocity_remove	- device unplug
2899  *	@dev: device being removed
2900  *
2901  *	Device unload callback. Called on an unplug or on module
2902  *	unload for each active device that is present. Disconnects
2903  *	the device from the network layer and frees all the resources
2904  */
2905 static int velocity_remove(struct device *dev)
2906 {
2907 	struct net_device *netdev = dev_get_drvdata(dev);
2908 	struct velocity_info *vptr = netdev_priv(netdev);
2909 
2910 	unregister_netdev(netdev);
2911 	netif_napi_del(&vptr->napi);
2912 	iounmap(vptr->mac_regs);
2913 	free_netdev(netdev);
2914 	velocity_nics--;
2915 
2916 	return 0;
2917 }
2918 
2919 static int velocity_pci_probe(struct pci_dev *pdev,
2920 			       const struct pci_device_id *ent)
2921 {
2922 	const struct velocity_info_tbl *info =
2923 					&chip_info_table[ent->driver_data];
2924 	int ret;
2925 
2926 	ret = pci_enable_device(pdev);
2927 	if (ret < 0)
2928 		return ret;
2929 
2930 	ret = pci_request_regions(pdev, VELOCITY_NAME);
2931 	if (ret < 0) {
2932 		dev_err(&pdev->dev, "No PCI resources.\n");
2933 		goto fail1;
2934 	}
2935 
2936 	ret = velocity_probe(&pdev->dev, pdev->irq, info, BUS_PCI);
2937 	if (ret == 0)
2938 		return 0;
2939 
2940 	pci_release_regions(pdev);
2941 fail1:
2942 	pci_disable_device(pdev);
2943 	return ret;
2944 }
2945 
2946 static void velocity_pci_remove(struct pci_dev *pdev)
2947 {
2948 	velocity_remove(&pdev->dev);
2949 
2950 	pci_release_regions(pdev);
2951 	pci_disable_device(pdev);
2952 }
2953 
2954 static int velocity_platform_probe(struct platform_device *pdev)
2955 {
2956 	const struct of_device_id *of_id;
2957 	const struct velocity_info_tbl *info;
2958 	int irq;
2959 
2960 	of_id = of_match_device(velocity_of_ids, &pdev->dev);
2961 	if (!of_id)
2962 		return -EINVAL;
2963 	info = of_id->data;
2964 
2965 	irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
2966 	if (!irq)
2967 		return -EINVAL;
2968 
2969 	return velocity_probe(&pdev->dev, irq, info, BUS_PLATFORM);
2970 }
2971 
2972 static int velocity_platform_remove(struct platform_device *pdev)
2973 {
2974 	velocity_remove(&pdev->dev);
2975 
2976 	return 0;
2977 }
2978 
2979 #ifdef CONFIG_PM_SLEEP
2980 /**
2981  *	wol_calc_crc		-	WOL CRC
2982  *	@pattern: data pattern
2983  *	@mask_pattern: mask
2984  *
2985  *	Compute the wake on lan crc hashes for the packet header
2986  *	we are interested in.
2987  */
2988 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2989 {
2990 	u16 crc = 0xFFFF;
2991 	u8 mask;
2992 	int i, j;
2993 
2994 	for (i = 0; i < size; i++) {
2995 		mask = mask_pattern[i];
2996 
2997 		/* Skip this loop if the mask equals to zero */
2998 		if (mask == 0x00)
2999 			continue;
3000 
3001 		for (j = 0; j < 8; j++) {
3002 			if ((mask & 0x01) == 0) {
3003 				mask >>= 1;
3004 				continue;
3005 			}
3006 			mask >>= 1;
3007 			crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
3008 		}
3009 	}
3010 	/*	Finally, invert the result once to get the correct data */
3011 	crc = ~crc;
3012 	return bitrev32(crc) >> 16;
3013 }
3014 
3015 /**
3016  *	velocity_set_wol	-	set up for wake on lan
3017  *	@vptr: velocity to set WOL status on
3018  *
3019  *	Set a card up for wake on lan either by unicast or by
3020  *	ARP packet.
3021  *
3022  *	FIXME: check static buffer is safe here
3023  */
3024 static int velocity_set_wol(struct velocity_info *vptr)
3025 {
3026 	struct mac_regs __iomem *regs = vptr->mac_regs;
3027 	enum speed_opt spd_dpx = vptr->options.spd_dpx;
3028 	static u8 buf[256];
3029 	int i;
3030 
3031 	static u32 mask_pattern[2][4] = {
3032 		{0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3033 		{0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff}	 /* Magic Packet */
3034 	};
3035 
3036 	writew(0xFFFF, &regs->WOLCRClr);
3037 	writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3038 	writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3039 
3040 	/*
3041 	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
3042 	   writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3043 	 */
3044 
3045 	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3046 		writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3047 
3048 	if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3049 		struct arp_packet *arp = (struct arp_packet *) buf;
3050 		u16 crc;
3051 		memset(buf, 0, sizeof(struct arp_packet) + 7);
3052 
3053 		for (i = 0; i < 4; i++)
3054 			writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3055 
3056 		arp->type = htons(ETH_P_ARP);
3057 		arp->ar_op = htons(1);
3058 
3059 		memcpy(arp->ar_tip, vptr->ip_addr, 4);
3060 
3061 		crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3062 				(u8 *) & mask_pattern[0][0]);
3063 
3064 		writew(crc, &regs->PatternCRC[0]);
3065 		writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3066 	}
3067 
3068 	BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3069 	BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3070 
3071 	writew(0x0FFF, &regs->WOLSRClr);
3072 
3073 	if (spd_dpx == SPD_DPX_1000_FULL)
3074 		goto mac_done;
3075 
3076 	if (spd_dpx != SPD_DPX_AUTO)
3077 		goto advertise_done;
3078 
3079 	if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3080 		if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3081 			MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
3082 
3083 		MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
3084 	}
3085 
3086 	if (vptr->mii_status & VELOCITY_SPEED_1000)
3087 		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
3088 
3089 advertise_done:
3090 	BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3091 
3092 	{
3093 		u8 GCR;
3094 		GCR = readb(&regs->CHIPGCR);
3095 		GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3096 		writeb(GCR, &regs->CHIPGCR);
3097 	}
3098 
3099 mac_done:
3100 	BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3101 	/* Turn on SWPTAG just before entering power mode */
3102 	BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3103 	/* Go to bed ..... */
3104 	BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3105 
3106 	return 0;
3107 }
3108 
3109 /**
3110  *	velocity_save_context	-	save registers
3111  *	@vptr: velocity
3112  *	@context: buffer for stored context
3113  *
3114  *	Retrieve the current configuration from the velocity hardware
3115  *	and stash it in the context structure, for use by the context
3116  *	restore functions. This allows us to save things we need across
3117  *	power down states
3118  */
3119 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
3120 {
3121 	struct mac_regs __iomem *regs = vptr->mac_regs;
3122 	u16 i;
3123 	u8 __iomem *ptr = (u8 __iomem *)regs;
3124 
3125 	for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3126 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3127 
3128 	for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3129 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3130 
3131 	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3132 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3133 
3134 }
3135 
3136 static int velocity_suspend(struct device *dev)
3137 {
3138 	struct net_device *netdev = dev_get_drvdata(dev);
3139 	struct velocity_info *vptr = netdev_priv(netdev);
3140 	unsigned long flags;
3141 
3142 	if (!netif_running(vptr->netdev))
3143 		return 0;
3144 
3145 	netif_device_detach(vptr->netdev);
3146 
3147 	spin_lock_irqsave(&vptr->lock, flags);
3148 	if (vptr->pdev)
3149 		pci_save_state(vptr->pdev);
3150 
3151 	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3152 		velocity_get_ip(vptr);
3153 		velocity_save_context(vptr, &vptr->context);
3154 		velocity_shutdown(vptr);
3155 		velocity_set_wol(vptr);
3156 		if (vptr->pdev)
3157 			pci_enable_wake(vptr->pdev, PCI_D3hot, 1);
3158 		velocity_set_power_state(vptr, PCI_D3hot);
3159 	} else {
3160 		velocity_save_context(vptr, &vptr->context);
3161 		velocity_shutdown(vptr);
3162 		if (vptr->pdev)
3163 			pci_disable_device(vptr->pdev);
3164 		velocity_set_power_state(vptr, PCI_D3hot);
3165 	}
3166 
3167 	spin_unlock_irqrestore(&vptr->lock, flags);
3168 	return 0;
3169 }
3170 
3171 /**
3172  *	velocity_restore_context	-	restore registers
3173  *	@vptr: velocity
3174  *	@context: buffer for stored context
3175  *
3176  *	Reload the register configuration from the velocity context
3177  *	created by velocity_save_context.
3178  */
3179 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3180 {
3181 	struct mac_regs __iomem *regs = vptr->mac_regs;
3182 	int i;
3183 	u8 __iomem *ptr = (u8 __iomem *)regs;
3184 
3185 	for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3186 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3187 
3188 	/* Just skip cr0 */
3189 	for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3190 		/* Clear */
3191 		writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3192 		/* Set */
3193 		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3194 	}
3195 
3196 	for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3197 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3198 
3199 	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3200 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3201 
3202 	for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3203 		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3204 }
3205 
3206 static int velocity_resume(struct device *dev)
3207 {
3208 	struct net_device *netdev = dev_get_drvdata(dev);
3209 	struct velocity_info *vptr = netdev_priv(netdev);
3210 	unsigned long flags;
3211 	int i;
3212 
3213 	if (!netif_running(vptr->netdev))
3214 		return 0;
3215 
3216 	velocity_set_power_state(vptr, PCI_D0);
3217 
3218 	if (vptr->pdev) {
3219 		pci_enable_wake(vptr->pdev, PCI_D0, 0);
3220 		pci_restore_state(vptr->pdev);
3221 	}
3222 
3223 	mac_wol_reset(vptr->mac_regs);
3224 
3225 	spin_lock_irqsave(&vptr->lock, flags);
3226 	velocity_restore_context(vptr, &vptr->context);
3227 	velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3228 	mac_disable_int(vptr->mac_regs);
3229 
3230 	velocity_tx_srv(vptr);
3231 
3232 	for (i = 0; i < vptr->tx.numq; i++) {
3233 		if (vptr->tx.used[i])
3234 			mac_tx_queue_wake(vptr->mac_regs, i);
3235 	}
3236 
3237 	mac_enable_int(vptr->mac_regs);
3238 	spin_unlock_irqrestore(&vptr->lock, flags);
3239 	netif_device_attach(vptr->netdev);
3240 
3241 	return 0;
3242 }
3243 #endif	/* CONFIG_PM_SLEEP */
3244 
3245 static SIMPLE_DEV_PM_OPS(velocity_pm_ops, velocity_suspend, velocity_resume);
3246 
3247 /*
3248  *	Definition for our device driver. The PCI layer interface
3249  *	uses this to handle all our card discover and plugging
3250  */
3251 static struct pci_driver velocity_pci_driver = {
3252 	.name		= VELOCITY_NAME,
3253 	.id_table	= velocity_pci_id_table,
3254 	.probe		= velocity_pci_probe,
3255 	.remove		= velocity_pci_remove,
3256 	.driver = {
3257 		.pm = &velocity_pm_ops,
3258 	},
3259 };
3260 
3261 static struct platform_driver velocity_platform_driver = {
3262 	.probe		= velocity_platform_probe,
3263 	.remove		= velocity_platform_remove,
3264 	.driver = {
3265 		.name = "via-velocity",
3266 		.of_match_table = velocity_of_ids,
3267 		.pm = &velocity_pm_ops,
3268 	},
3269 };
3270 
3271 /**
3272  *	velocity_ethtool_up	-	pre hook for ethtool
3273  *	@dev: network device
3274  *
3275  *	Called before an ethtool operation. We need to make sure the
3276  *	chip is out of D3 state before we poke at it.
3277  */
3278 static int velocity_ethtool_up(struct net_device *dev)
3279 {
3280 	struct velocity_info *vptr = netdev_priv(dev);
3281 	if (!netif_running(dev))
3282 		velocity_set_power_state(vptr, PCI_D0);
3283 	return 0;
3284 }
3285 
3286 /**
3287  *	velocity_ethtool_down	-	post hook for ethtool
3288  *	@dev: network device
3289  *
3290  *	Called after an ethtool operation. Restore the chip back to D3
3291  *	state if it isn't running.
3292  */
3293 static void velocity_ethtool_down(struct net_device *dev)
3294 {
3295 	struct velocity_info *vptr = netdev_priv(dev);
3296 	if (!netif_running(dev))
3297 		velocity_set_power_state(vptr, PCI_D3hot);
3298 }
3299 
3300 static int velocity_get_settings(struct net_device *dev,
3301 				 struct ethtool_cmd *cmd)
3302 {
3303 	struct velocity_info *vptr = netdev_priv(dev);
3304 	struct mac_regs __iomem *regs = vptr->mac_regs;
3305 	u32 status;
3306 	status = check_connection_type(vptr->mac_regs);
3307 
3308 	cmd->supported = SUPPORTED_TP |
3309 			SUPPORTED_Autoneg |
3310 			SUPPORTED_10baseT_Half |
3311 			SUPPORTED_10baseT_Full |
3312 			SUPPORTED_100baseT_Half |
3313 			SUPPORTED_100baseT_Full |
3314 			SUPPORTED_1000baseT_Half |
3315 			SUPPORTED_1000baseT_Full;
3316 
3317 	cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
3318 	if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
3319 		cmd->advertising |=
3320 			ADVERTISED_10baseT_Half |
3321 			ADVERTISED_10baseT_Full |
3322 			ADVERTISED_100baseT_Half |
3323 			ADVERTISED_100baseT_Full |
3324 			ADVERTISED_1000baseT_Half |
3325 			ADVERTISED_1000baseT_Full;
3326 	} else {
3327 		switch (vptr->options.spd_dpx) {
3328 		case SPD_DPX_1000_FULL:
3329 			cmd->advertising |= ADVERTISED_1000baseT_Full;
3330 			break;
3331 		case SPD_DPX_100_HALF:
3332 			cmd->advertising |= ADVERTISED_100baseT_Half;
3333 			break;
3334 		case SPD_DPX_100_FULL:
3335 			cmd->advertising |= ADVERTISED_100baseT_Full;
3336 			break;
3337 		case SPD_DPX_10_HALF:
3338 			cmd->advertising |= ADVERTISED_10baseT_Half;
3339 			break;
3340 		case SPD_DPX_10_FULL:
3341 			cmd->advertising |= ADVERTISED_10baseT_Full;
3342 			break;
3343 		default:
3344 			break;
3345 		}
3346 	}
3347 
3348 	if (status & VELOCITY_SPEED_1000)
3349 		ethtool_cmd_speed_set(cmd, SPEED_1000);
3350 	else if (status & VELOCITY_SPEED_100)
3351 		ethtool_cmd_speed_set(cmd, SPEED_100);
3352 	else
3353 		ethtool_cmd_speed_set(cmd, SPEED_10);
3354 
3355 	cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3356 	cmd->port = PORT_TP;
3357 	cmd->transceiver = XCVR_INTERNAL;
3358 	cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3359 
3360 	if (status & VELOCITY_DUPLEX_FULL)
3361 		cmd->duplex = DUPLEX_FULL;
3362 	else
3363 		cmd->duplex = DUPLEX_HALF;
3364 
3365 	return 0;
3366 }
3367 
3368 static int velocity_set_settings(struct net_device *dev,
3369 				 struct ethtool_cmd *cmd)
3370 {
3371 	struct velocity_info *vptr = netdev_priv(dev);
3372 	u32 speed = ethtool_cmd_speed(cmd);
3373 	u32 curr_status;
3374 	u32 new_status = 0;
3375 	int ret = 0;
3376 
3377 	curr_status = check_connection_type(vptr->mac_regs);
3378 	curr_status &= (~VELOCITY_LINK_FAIL);
3379 
3380 	new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3381 	new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0);
3382 	new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3383 	new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3384 	new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3385 
3386 	if ((new_status & VELOCITY_AUTONEG_ENABLE) &&
3387 	    (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) {
3388 		ret = -EINVAL;
3389 	} else {
3390 		enum speed_opt spd_dpx;
3391 
3392 		if (new_status & VELOCITY_AUTONEG_ENABLE)
3393 			spd_dpx = SPD_DPX_AUTO;
3394 		else if ((new_status & VELOCITY_SPEED_1000) &&
3395 			 (new_status & VELOCITY_DUPLEX_FULL)) {
3396 			spd_dpx = SPD_DPX_1000_FULL;
3397 		} else if (new_status & VELOCITY_SPEED_100)
3398 			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3399 				SPD_DPX_100_FULL : SPD_DPX_100_HALF;
3400 		else if (new_status & VELOCITY_SPEED_10)
3401 			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3402 				SPD_DPX_10_FULL : SPD_DPX_10_HALF;
3403 		else
3404 			return -EOPNOTSUPP;
3405 
3406 		vptr->options.spd_dpx = spd_dpx;
3407 
3408 		velocity_set_media_mode(vptr, new_status);
3409 	}
3410 
3411 	return ret;
3412 }
3413 
3414 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3415 {
3416 	struct velocity_info *vptr = netdev_priv(dev);
3417 
3418 	strlcpy(info->driver, VELOCITY_NAME, sizeof(info->driver));
3419 	strlcpy(info->version, VELOCITY_VERSION, sizeof(info->version));
3420 	if (vptr->pdev)
3421 		strlcpy(info->bus_info, pci_name(vptr->pdev),
3422 						sizeof(info->bus_info));
3423 	else
3424 		strlcpy(info->bus_info, "platform", sizeof(info->bus_info));
3425 }
3426 
3427 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3428 {
3429 	struct velocity_info *vptr = netdev_priv(dev);
3430 	wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3431 	wol->wolopts |= WAKE_MAGIC;
3432 	/*
3433 	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
3434 		   wol.wolopts|=WAKE_PHY;
3435 			 */
3436 	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3437 		wol->wolopts |= WAKE_UCAST;
3438 	if (vptr->wol_opts & VELOCITY_WOL_ARP)
3439 		wol->wolopts |= WAKE_ARP;
3440 	memcpy(&wol->sopass, vptr->wol_passwd, 6);
3441 }
3442 
3443 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3444 {
3445 	struct velocity_info *vptr = netdev_priv(dev);
3446 
3447 	if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3448 		return -EFAULT;
3449 	vptr->wol_opts = VELOCITY_WOL_MAGIC;
3450 
3451 	/*
3452 	   if (wol.wolopts & WAKE_PHY) {
3453 	   vptr->wol_opts|=VELOCITY_WOL_PHY;
3454 	   vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3455 	   }
3456 	 */
3457 
3458 	if (wol->wolopts & WAKE_MAGIC) {
3459 		vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3460 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3461 	}
3462 	if (wol->wolopts & WAKE_UCAST) {
3463 		vptr->wol_opts |= VELOCITY_WOL_UCAST;
3464 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3465 	}
3466 	if (wol->wolopts & WAKE_ARP) {
3467 		vptr->wol_opts |= VELOCITY_WOL_ARP;
3468 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3469 	}
3470 	memcpy(vptr->wol_passwd, wol->sopass, 6);
3471 	return 0;
3472 }
3473 
3474 static u32 velocity_get_msglevel(struct net_device *dev)
3475 {
3476 	return msglevel;
3477 }
3478 
3479 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3480 {
3481 	 msglevel = value;
3482 }
3483 
3484 static int get_pending_timer_val(int val)
3485 {
3486 	int mult_bits = val >> 6;
3487 	int mult = 1;
3488 
3489 	switch (mult_bits)
3490 	{
3491 	case 1:
3492 		mult = 4; break;
3493 	case 2:
3494 		mult = 16; break;
3495 	case 3:
3496 		mult = 64; break;
3497 	case 0:
3498 	default:
3499 		break;
3500 	}
3501 
3502 	return (val & 0x3f) * mult;
3503 }
3504 
3505 static void set_pending_timer_val(int *val, u32 us)
3506 {
3507 	u8 mult = 0;
3508 	u8 shift = 0;
3509 
3510 	if (us >= 0x3f) {
3511 		mult = 1; /* mult with 4 */
3512 		shift = 2;
3513 	}
3514 	if (us >= 0x3f * 4) {
3515 		mult = 2; /* mult with 16 */
3516 		shift = 4;
3517 	}
3518 	if (us >= 0x3f * 16) {
3519 		mult = 3; /* mult with 64 */
3520 		shift = 6;
3521 	}
3522 
3523 	*val = (mult << 6) | ((us >> shift) & 0x3f);
3524 }
3525 
3526 
3527 static int velocity_get_coalesce(struct net_device *dev,
3528 		struct ethtool_coalesce *ecmd)
3529 {
3530 	struct velocity_info *vptr = netdev_priv(dev);
3531 
3532 	ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3533 	ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3534 
3535 	ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3536 	ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3537 
3538 	return 0;
3539 }
3540 
3541 static int velocity_set_coalesce(struct net_device *dev,
3542 		struct ethtool_coalesce *ecmd)
3543 {
3544 	struct velocity_info *vptr = netdev_priv(dev);
3545 	int max_us = 0x3f * 64;
3546 	unsigned long flags;
3547 
3548 	/* 6 bits of  */
3549 	if (ecmd->tx_coalesce_usecs > max_us)
3550 		return -EINVAL;
3551 	if (ecmd->rx_coalesce_usecs > max_us)
3552 		return -EINVAL;
3553 
3554 	if (ecmd->tx_max_coalesced_frames > 0xff)
3555 		return -EINVAL;
3556 	if (ecmd->rx_max_coalesced_frames > 0xff)
3557 		return -EINVAL;
3558 
3559 	vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3560 	vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3561 
3562 	set_pending_timer_val(&vptr->options.rxqueue_timer,
3563 			ecmd->rx_coalesce_usecs);
3564 	set_pending_timer_val(&vptr->options.txqueue_timer,
3565 			ecmd->tx_coalesce_usecs);
3566 
3567 	/* Setup the interrupt suppression and queue timers */
3568 	spin_lock_irqsave(&vptr->lock, flags);
3569 	mac_disable_int(vptr->mac_regs);
3570 	setup_adaptive_interrupts(vptr);
3571 	setup_queue_timers(vptr);
3572 
3573 	mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3574 	mac_clear_isr(vptr->mac_regs);
3575 	mac_enable_int(vptr->mac_regs);
3576 	spin_unlock_irqrestore(&vptr->lock, flags);
3577 
3578 	return 0;
3579 }
3580 
3581 static const char velocity_gstrings[][ETH_GSTRING_LEN] = {
3582 	"rx_all",
3583 	"rx_ok",
3584 	"tx_ok",
3585 	"rx_error",
3586 	"rx_runt_ok",
3587 	"rx_runt_err",
3588 	"rx_64",
3589 	"tx_64",
3590 	"rx_65_to_127",
3591 	"tx_65_to_127",
3592 	"rx_128_to_255",
3593 	"tx_128_to_255",
3594 	"rx_256_to_511",
3595 	"tx_256_to_511",
3596 	"rx_512_to_1023",
3597 	"tx_512_to_1023",
3598 	"rx_1024_to_1518",
3599 	"tx_1024_to_1518",
3600 	"tx_ether_collisions",
3601 	"rx_crc_errors",
3602 	"rx_jumbo",
3603 	"tx_jumbo",
3604 	"rx_mac_control_frames",
3605 	"tx_mac_control_frames",
3606 	"rx_frame_alignement_errors",
3607 	"rx_long_ok",
3608 	"rx_long_err",
3609 	"tx_sqe_errors",
3610 	"rx_no_buf",
3611 	"rx_symbol_errors",
3612 	"in_range_length_errors",
3613 	"late_collisions"
3614 };
3615 
3616 static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data)
3617 {
3618 	switch (sset) {
3619 	case ETH_SS_STATS:
3620 		memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings));
3621 		break;
3622 	}
3623 }
3624 
3625 static int velocity_get_sset_count(struct net_device *dev, int sset)
3626 {
3627 	switch (sset) {
3628 	case ETH_SS_STATS:
3629 		return ARRAY_SIZE(velocity_gstrings);
3630 	default:
3631 		return -EOPNOTSUPP;
3632 	}
3633 }
3634 
3635 static void velocity_get_ethtool_stats(struct net_device *dev,
3636 				       struct ethtool_stats *stats, u64 *data)
3637 {
3638 	if (netif_running(dev)) {
3639 		struct velocity_info *vptr = netdev_priv(dev);
3640 		u32 *p = vptr->mib_counter;
3641 		int i;
3642 
3643 		spin_lock_irq(&vptr->lock);
3644 		velocity_update_hw_mibs(vptr);
3645 		spin_unlock_irq(&vptr->lock);
3646 
3647 		for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++)
3648 			*data++ = *p++;
3649 	}
3650 }
3651 
3652 static const struct ethtool_ops velocity_ethtool_ops = {
3653 	.get_settings		= velocity_get_settings,
3654 	.set_settings		= velocity_set_settings,
3655 	.get_drvinfo		= velocity_get_drvinfo,
3656 	.get_wol		= velocity_ethtool_get_wol,
3657 	.set_wol		= velocity_ethtool_set_wol,
3658 	.get_msglevel		= velocity_get_msglevel,
3659 	.set_msglevel		= velocity_set_msglevel,
3660 	.get_link		= velocity_get_link,
3661 	.get_strings		= velocity_get_strings,
3662 	.get_sset_count		= velocity_get_sset_count,
3663 	.get_ethtool_stats	= velocity_get_ethtool_stats,
3664 	.get_coalesce		= velocity_get_coalesce,
3665 	.set_coalesce		= velocity_set_coalesce,
3666 	.begin			= velocity_ethtool_up,
3667 	.complete		= velocity_ethtool_down
3668 };
3669 
3670 #if defined(CONFIG_PM) && defined(CONFIG_INET)
3671 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3672 {
3673 	struct in_ifaddr *ifa = ptr;
3674 	struct net_device *dev = ifa->ifa_dev->dev;
3675 
3676 	if (dev_net(dev) == &init_net &&
3677 	    dev->netdev_ops == &velocity_netdev_ops)
3678 		velocity_get_ip(netdev_priv(dev));
3679 
3680 	return NOTIFY_DONE;
3681 }
3682 
3683 static struct notifier_block velocity_inetaddr_notifier = {
3684 	.notifier_call	= velocity_netdev_event,
3685 };
3686 
3687 static void velocity_register_notifier(void)
3688 {
3689 	register_inetaddr_notifier(&velocity_inetaddr_notifier);
3690 }
3691 
3692 static void velocity_unregister_notifier(void)
3693 {
3694 	unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3695 }
3696 
3697 #else
3698 
3699 #define velocity_register_notifier()	do {} while (0)
3700 #define velocity_unregister_notifier()	do {} while (0)
3701 
3702 #endif	/* defined(CONFIG_PM) && defined(CONFIG_INET) */
3703 
3704 /**
3705  *	velocity_init_module	-	load time function
3706  *
3707  *	Called when the velocity module is loaded. The PCI driver
3708  *	is registered with the PCI layer, and in turn will call
3709  *	the probe functions for each velocity adapter installed
3710  *	in the system.
3711  */
3712 static int __init velocity_init_module(void)
3713 {
3714 	int ret_pci, ret_platform;
3715 
3716 	velocity_register_notifier();
3717 
3718 	ret_pci = pci_register_driver(&velocity_pci_driver);
3719 	ret_platform = platform_driver_register(&velocity_platform_driver);
3720 
3721 	/* if both_registers failed, remove the notifier */
3722 	if ((ret_pci < 0) && (ret_platform < 0)) {
3723 		velocity_unregister_notifier();
3724 		return ret_pci;
3725 	}
3726 
3727 	return 0;
3728 }
3729 
3730 /**
3731  *	velocity_cleanup	-	module unload
3732  *
3733  *	When the velocity hardware is unloaded this function is called.
3734  *	It will clean up the notifiers and the unregister the PCI
3735  *	driver interface for this hardware. This in turn cleans up
3736  *	all discovered interfaces before returning from the function
3737  */
3738 static void __exit velocity_cleanup_module(void)
3739 {
3740 	velocity_unregister_notifier();
3741 
3742 	pci_unregister_driver(&velocity_pci_driver);
3743 	platform_driver_unregister(&velocity_platform_driver);
3744 }
3745 
3746 module_init(velocity_init_module);
3747 module_exit(velocity_cleanup_module);
3748