1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */ 2 /* 3 Written 1998-2001 by Donald Becker. 4 5 Current Maintainer: Roger Luethi <rl@hellgate.ch> 6 7 This software may be used and distributed according to the terms of 8 the GNU General Public License (GPL), incorporated herein by reference. 9 Drivers based on or derived from this code fall under the GPL and must 10 retain the authorship, copyright and license notice. This file is not 11 a complete program and may only be used when the entire operating 12 system is licensed under the GPL. 13 14 This driver is designed for the VIA VT86C100A Rhine-I. 15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM 16 and management NIC 6105M). 17 18 The author may be reached as becker@scyld.com, or C/O 19 Scyld Computing Corporation 20 410 Severn Ave., Suite 210 21 Annapolis MD 21403 22 23 24 This driver contains some changes from the original Donald Becker 25 version. He may or may not be interested in bug reports on this 26 code. You can find his versions at: 27 http://www.scyld.com/network/via-rhine.html 28 [link no longer provides useful info -jgarzik] 29 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #define DRV_NAME "via-rhine" 35 #define DRV_VERSION "1.5.0" 36 #define DRV_RELDATE "2010-10-09" 37 38 39 /* A few user-configurable values. 40 These may be modified when a driver module is loaded. */ 41 42 #define DEBUG 43 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */ 44 static int max_interrupt_work = 20; 45 46 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 47 Setting to > 1518 effectively disables this feature. */ 48 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \ 49 defined(CONFIG_SPARC) || defined(__ia64__) || \ 50 defined(__sh__) || defined(__mips__) 51 static int rx_copybreak = 1518; 52 #else 53 static int rx_copybreak; 54 #endif 55 56 /* Work-around for broken BIOSes: they are unable to get the chip back out of 57 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */ 58 static int avoid_D3; 59 60 /* 61 * In case you are looking for 'options[]' or 'full_duplex[]', they 62 * are gone. Use ethtool(8) instead. 63 */ 64 65 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). 66 The Rhine has a 64 element 8390-like hash table. */ 67 static const int multicast_filter_limit = 32; 68 69 70 /* Operational parameters that are set at compile time. */ 71 72 /* Keep the ring sizes a power of two for compile efficiency. 73 The compiler will convert <unsigned>'%'<2^N> into a bit mask. 74 Making the Tx ring too large decreases the effectiveness of channel 75 bonding and packet priority. 76 There are no ill effects from too-large receive rings. */ 77 #define TX_RING_SIZE 16 78 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */ 79 #define RX_RING_SIZE 64 80 81 /* Operational parameters that usually are not changed. */ 82 83 /* Time in jiffies before concluding the transmitter is hung. */ 84 #define TX_TIMEOUT (2*HZ) 85 86 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 87 88 #include <linux/module.h> 89 #include <linux/moduleparam.h> 90 #include <linux/kernel.h> 91 #include <linux/string.h> 92 #include <linux/timer.h> 93 #include <linux/errno.h> 94 #include <linux/ioport.h> 95 #include <linux/interrupt.h> 96 #include <linux/pci.h> 97 #include <linux/dma-mapping.h> 98 #include <linux/netdevice.h> 99 #include <linux/etherdevice.h> 100 #include <linux/skbuff.h> 101 #include <linux/init.h> 102 #include <linux/delay.h> 103 #include <linux/mii.h> 104 #include <linux/ethtool.h> 105 #include <linux/crc32.h> 106 #include <linux/if_vlan.h> 107 #include <linux/bitops.h> 108 #include <linux/workqueue.h> 109 #include <asm/processor.h> /* Processor type for cache alignment. */ 110 #include <asm/io.h> 111 #include <asm/irq.h> 112 #include <asm/uaccess.h> 113 #include <linux/dmi.h> 114 115 /* These identify the driver base version and may not be removed. */ 116 static const char version[] __devinitconst = 117 "v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker"; 118 119 /* This driver was written to use PCI memory space. Some early versions 120 of the Rhine may only work correctly with I/O space accesses. */ 121 #ifdef CONFIG_VIA_RHINE_MMIO 122 #define USE_MMIO 123 #else 124 #endif 125 126 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 127 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver"); 128 MODULE_LICENSE("GPL"); 129 130 module_param(max_interrupt_work, int, 0); 131 module_param(debug, int, 0); 132 module_param(rx_copybreak, int, 0); 133 module_param(avoid_D3, bool, 0); 134 MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt"); 135 MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)"); 136 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames"); 137 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)"); 138 139 #define MCAM_SIZE 32 140 #define VCAM_SIZE 32 141 142 /* 143 Theory of Operation 144 145 I. Board Compatibility 146 147 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet 148 controller. 149 150 II. Board-specific settings 151 152 Boards with this chip are functional only in a bus-master PCI slot. 153 154 Many operational settings are loaded from the EEPROM to the Config word at 155 offset 0x78. For most of these settings, this driver assumes that they are 156 correct. 157 If this driver is compiled to use PCI memory space operations the EEPROM 158 must be configured to enable memory ops. 159 160 III. Driver operation 161 162 IIIa. Ring buffers 163 164 This driver uses two statically allocated fixed-size descriptor lists 165 formed into rings by a branch from the final descriptor to the beginning of 166 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. 167 168 IIIb/c. Transmit/Receive Structure 169 170 This driver attempts to use a zero-copy receive and transmit scheme. 171 172 Alas, all data buffers are required to start on a 32 bit boundary, so 173 the driver must often copy transmit packets into bounce buffers. 174 175 The driver allocates full frame size skbuffs for the Rx ring buffers at 176 open() time and passes the skb->data field to the chip as receive data 177 buffers. When an incoming frame is less than RX_COPYBREAK bytes long, 178 a fresh skbuff is allocated and the frame is copied to the new skbuff. 179 When the incoming frame is larger, the skbuff is passed directly up the 180 protocol stack. Buffers consumed this way are replaced by newly allocated 181 skbuffs in the last phase of rhine_rx(). 182 183 The RX_COPYBREAK value is chosen to trade-off the memory wasted by 184 using a full-sized skbuff for small frames vs. the copying costs of larger 185 frames. New boards are typically used in generously configured machines 186 and the underfilled buffers have negligible impact compared to the benefit of 187 a single allocation size, so the default value of zero results in never 188 copying packets. When copying is done, the cost is usually mitigated by using 189 a combined copy/checksum routine. Copying also preloads the cache, which is 190 most useful with small frames. 191 192 Since the VIA chips are only able to transfer data to buffers on 32 bit 193 boundaries, the IP header at offset 14 in an ethernet frame isn't 194 longword aligned for further processing. Copying these unaligned buffers 195 has the beneficial effect of 16-byte aligning the IP header. 196 197 IIId. Synchronization 198 199 The driver runs as two independent, single-threaded flows of control. One 200 is the send-packet routine, which enforces single-threaded use by the 201 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler, 202 which is single threaded by the hardware and interrupt handling software. 203 204 The send packet thread has partial control over the Tx ring. It locks the 205 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in 206 the ring is not available it stops the transmit queue by 207 calling netif_stop_queue. 208 209 The interrupt handler has exclusive control over the Rx ring and records stats 210 from the Tx ring. After reaping the stats, it marks the Tx queue entry as 211 empty by incrementing the dirty_tx mark. If at least half of the entries in 212 the Rx ring are available the transmit queue is woken up if it was stopped. 213 214 IV. Notes 215 216 IVb. References 217 218 Preliminary VT86C100A manual from http://www.via.com.tw/ 219 http://www.scyld.com/expert/100mbps.html 220 http://www.scyld.com/expert/NWay.html 221 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf 222 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF 223 224 225 IVc. Errata 226 227 The VT86C100A manual is not reliable information. 228 The 3043 chip does not handle unaligned transmit or receive buffers, resulting 229 in significant performance degradation for bounce buffer copies on transmit 230 and unaligned IP headers on receive. 231 The chip does not pad to minimum transmit length. 232 233 */ 234 235 236 /* This table drives the PCI probe routines. It's mostly boilerplate in all 237 of the drivers, and will likely be provided by some future kernel. 238 Note the matching code -- the first table entry matchs all 56** cards but 239 second only the 1234 card. 240 */ 241 242 enum rhine_revs { 243 VT86C100A = 0x00, 244 VTunknown0 = 0x20, 245 VT6102 = 0x40, 246 VT8231 = 0x50, /* Integrated MAC */ 247 VT8233 = 0x60, /* Integrated MAC */ 248 VT8235 = 0x74, /* Integrated MAC */ 249 VT8237 = 0x78, /* Integrated MAC */ 250 VTunknown1 = 0x7C, 251 VT6105 = 0x80, 252 VT6105_B0 = 0x83, 253 VT6105L = 0x8A, 254 VT6107 = 0x8C, 255 VTunknown2 = 0x8E, 256 VT6105M = 0x90, /* Management adapter */ 257 }; 258 259 enum rhine_quirks { 260 rqWOL = 0x0001, /* Wake-On-LAN support */ 261 rqForceReset = 0x0002, 262 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */ 263 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */ 264 rqRhineI = 0x0100, /* See comment below */ 265 }; 266 /* 267 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable 268 * MMIO as well as for the collision counter and the Tx FIFO underflow 269 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned. 270 */ 271 272 /* Beware of PCI posted writes */ 273 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0) 274 275 static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = { 276 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */ 277 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */ 278 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */ 279 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */ 280 { } /* terminate list */ 281 }; 282 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl); 283 284 285 /* Offsets to the device registers. */ 286 enum register_offsets { 287 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08, 288 ChipCmd1=0x09, TQWake=0x0A, 289 IntrStatus=0x0C, IntrEnable=0x0E, 290 MulticastFilter0=0x10, MulticastFilter1=0x14, 291 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54, 292 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F, 293 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74, 294 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B, 295 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81, 296 StickyHW=0x83, IntrStatus2=0x84, 297 CamMask=0x88, CamCon=0x92, CamAddr=0x93, 298 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4, 299 WOLcrClr1=0xA6, WOLcgClr=0xA7, 300 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD, 301 }; 302 303 /* Bits in ConfigD */ 304 enum backoff_bits { 305 BackOptional=0x01, BackModify=0x02, 306 BackCaptureEffect=0x04, BackRandom=0x08 307 }; 308 309 /* Bits in the TxConfig (TCR) register */ 310 enum tcr_bits { 311 TCR_PQEN=0x01, 312 TCR_LB0=0x02, /* loopback[0] */ 313 TCR_LB1=0x04, /* loopback[1] */ 314 TCR_OFSET=0x08, 315 TCR_RTGOPT=0x10, 316 TCR_RTFT0=0x20, 317 TCR_RTFT1=0x40, 318 TCR_RTSF=0x80, 319 }; 320 321 /* Bits in the CamCon (CAMC) register */ 322 enum camcon_bits { 323 CAMC_CAMEN=0x01, 324 CAMC_VCAMSL=0x02, 325 CAMC_CAMWR=0x04, 326 CAMC_CAMRD=0x08, 327 }; 328 329 /* Bits in the PCIBusConfig1 (BCR1) register */ 330 enum bcr1_bits { 331 BCR1_POT0=0x01, 332 BCR1_POT1=0x02, 333 BCR1_POT2=0x04, 334 BCR1_CTFT0=0x08, 335 BCR1_CTFT1=0x10, 336 BCR1_CTSF=0x20, 337 BCR1_TXQNOBK=0x40, /* for VT6105 */ 338 BCR1_VIDFR=0x80, /* for VT6105 */ 339 BCR1_MED0=0x40, /* for VT6102 */ 340 BCR1_MED1=0x80, /* for VT6102 */ 341 }; 342 343 #ifdef USE_MMIO 344 /* Registers we check that mmio and reg are the same. */ 345 static const int mmio_verify_registers[] = { 346 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD, 347 0 348 }; 349 #endif 350 351 /* Bits in the interrupt status/mask registers. */ 352 enum intr_status_bits { 353 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020, 354 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210, 355 IntrPCIErr=0x0040, 356 IntrStatsMax=0x0080, IntrRxEarly=0x0100, 357 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000, 358 IntrTxAborted=0x2000, IntrLinkChange=0x4000, 359 IntrRxWakeUp=0x8000, 360 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260, 361 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */ 362 IntrTxErrSummary=0x082218, 363 }; 364 365 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */ 366 enum wol_bits { 367 WOLucast = 0x10, 368 WOLmagic = 0x20, 369 WOLbmcast = 0x30, 370 WOLlnkon = 0x40, 371 WOLlnkoff = 0x80, 372 }; 373 374 /* The Rx and Tx buffer descriptors. */ 375 struct rx_desc { 376 __le32 rx_status; 377 __le32 desc_length; /* Chain flag, Buffer/frame length */ 378 __le32 addr; 379 __le32 next_desc; 380 }; 381 struct tx_desc { 382 __le32 tx_status; 383 __le32 desc_length; /* Chain flag, Tx Config, Frame length */ 384 __le32 addr; 385 __le32 next_desc; 386 }; 387 388 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */ 389 #define TXDESC 0x00e08000 390 391 enum rx_status_bits { 392 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F 393 }; 394 395 /* Bits in *_desc.*_status */ 396 enum desc_status_bits { 397 DescOwn=0x80000000 398 }; 399 400 /* Bits in *_desc.*_length */ 401 enum desc_length_bits { 402 DescTag=0x00010000 403 }; 404 405 /* Bits in ChipCmd. */ 406 enum chip_cmd_bits { 407 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08, 408 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40, 409 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04, 410 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80, 411 }; 412 413 struct rhine_private { 414 /* Bit mask for configured VLAN ids */ 415 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; 416 417 /* Descriptor rings */ 418 struct rx_desc *rx_ring; 419 struct tx_desc *tx_ring; 420 dma_addr_t rx_ring_dma; 421 dma_addr_t tx_ring_dma; 422 423 /* The addresses of receive-in-place skbuffs. */ 424 struct sk_buff *rx_skbuff[RX_RING_SIZE]; 425 dma_addr_t rx_skbuff_dma[RX_RING_SIZE]; 426 427 /* The saved address of a sent-in-place packet/buffer, for later free(). */ 428 struct sk_buff *tx_skbuff[TX_RING_SIZE]; 429 dma_addr_t tx_skbuff_dma[TX_RING_SIZE]; 430 431 /* Tx bounce buffers (Rhine-I only) */ 432 unsigned char *tx_buf[TX_RING_SIZE]; 433 unsigned char *tx_bufs; 434 dma_addr_t tx_bufs_dma; 435 436 struct pci_dev *pdev; 437 long pioaddr; 438 struct net_device *dev; 439 struct napi_struct napi; 440 spinlock_t lock; 441 struct work_struct reset_task; 442 443 /* Frequently used values: keep some adjacent for cache effect. */ 444 u32 quirks; 445 struct rx_desc *rx_head_desc; 446 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ 447 unsigned int cur_tx, dirty_tx; 448 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 449 u8 wolopts; 450 451 u8 tx_thresh, rx_thresh; 452 453 struct mii_if_info mii_if; 454 void __iomem *base; 455 }; 456 457 #define BYTE_REG_BITS_ON(x, p) do { iowrite8((ioread8((p))|(x)), (p)); } while (0) 458 #define WORD_REG_BITS_ON(x, p) do { iowrite16((ioread16((p))|(x)), (p)); } while (0) 459 #define DWORD_REG_BITS_ON(x, p) do { iowrite32((ioread32((p))|(x)), (p)); } while (0) 460 461 #define BYTE_REG_BITS_IS_ON(x, p) (ioread8((p)) & (x)) 462 #define WORD_REG_BITS_IS_ON(x, p) (ioread16((p)) & (x)) 463 #define DWORD_REG_BITS_IS_ON(x, p) (ioread32((p)) & (x)) 464 465 #define BYTE_REG_BITS_OFF(x, p) do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0) 466 #define WORD_REG_BITS_OFF(x, p) do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0) 467 #define DWORD_REG_BITS_OFF(x, p) do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0) 468 469 #define BYTE_REG_BITS_SET(x, m, p) do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0) 470 #define WORD_REG_BITS_SET(x, m, p) do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0) 471 #define DWORD_REG_BITS_SET(x, m, p) do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0) 472 473 474 static int mdio_read(struct net_device *dev, int phy_id, int location); 475 static void mdio_write(struct net_device *dev, int phy_id, int location, int value); 476 static int rhine_open(struct net_device *dev); 477 static void rhine_reset_task(struct work_struct *work); 478 static void rhine_tx_timeout(struct net_device *dev); 479 static netdev_tx_t rhine_start_tx(struct sk_buff *skb, 480 struct net_device *dev); 481 static irqreturn_t rhine_interrupt(int irq, void *dev_instance); 482 static void rhine_tx(struct net_device *dev); 483 static int rhine_rx(struct net_device *dev, int limit); 484 static void rhine_error(struct net_device *dev, int intr_status); 485 static void rhine_set_rx_mode(struct net_device *dev); 486 static struct net_device_stats *rhine_get_stats(struct net_device *dev); 487 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 488 static const struct ethtool_ops netdev_ethtool_ops; 489 static int rhine_close(struct net_device *dev); 490 static void rhine_shutdown (struct pci_dev *pdev); 491 static void rhine_vlan_rx_add_vid(struct net_device *dev, unsigned short vid); 492 static void rhine_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid); 493 static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr); 494 static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr); 495 static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask); 496 static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask); 497 static void rhine_init_cam_filter(struct net_device *dev); 498 static void rhine_update_vcam(struct net_device *dev); 499 500 #define RHINE_WAIT_FOR(condition) \ 501 do { \ 502 int i = 1024; \ 503 while (!(condition) && --i) \ 504 ; \ 505 if (debug > 1 && i < 512) \ 506 pr_info("%4d cycles used @ %s:%d\n", \ 507 1024 - i, __func__, __LINE__); \ 508 } while (0) 509 510 static inline u32 get_intr_status(struct net_device *dev) 511 { 512 struct rhine_private *rp = netdev_priv(dev); 513 void __iomem *ioaddr = rp->base; 514 u32 intr_status; 515 516 intr_status = ioread16(ioaddr + IntrStatus); 517 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */ 518 if (rp->quirks & rqStatusWBRace) 519 intr_status |= ioread8(ioaddr + IntrStatus2) << 16; 520 return intr_status; 521 } 522 523 /* 524 * Get power related registers into sane state. 525 * Notify user about past WOL event. 526 */ 527 static void rhine_power_init(struct net_device *dev) 528 { 529 struct rhine_private *rp = netdev_priv(dev); 530 void __iomem *ioaddr = rp->base; 531 u16 wolstat; 532 533 if (rp->quirks & rqWOL) { 534 /* Make sure chip is in power state D0 */ 535 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW); 536 537 /* Disable "force PME-enable" */ 538 iowrite8(0x80, ioaddr + WOLcgClr); 539 540 /* Clear power-event config bits (WOL) */ 541 iowrite8(0xFF, ioaddr + WOLcrClr); 542 /* More recent cards can manage two additional patterns */ 543 if (rp->quirks & rq6patterns) 544 iowrite8(0x03, ioaddr + WOLcrClr1); 545 546 /* Save power-event status bits */ 547 wolstat = ioread8(ioaddr + PwrcsrSet); 548 if (rp->quirks & rq6patterns) 549 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8; 550 551 /* Clear power-event status bits */ 552 iowrite8(0xFF, ioaddr + PwrcsrClr); 553 if (rp->quirks & rq6patterns) 554 iowrite8(0x03, ioaddr + PwrcsrClr1); 555 556 if (wolstat) { 557 char *reason; 558 switch (wolstat) { 559 case WOLmagic: 560 reason = "Magic packet"; 561 break; 562 case WOLlnkon: 563 reason = "Link went up"; 564 break; 565 case WOLlnkoff: 566 reason = "Link went down"; 567 break; 568 case WOLucast: 569 reason = "Unicast packet"; 570 break; 571 case WOLbmcast: 572 reason = "Multicast/broadcast packet"; 573 break; 574 default: 575 reason = "Unknown"; 576 } 577 netdev_info(dev, "Woke system up. Reason: %s\n", 578 reason); 579 } 580 } 581 } 582 583 static void rhine_chip_reset(struct net_device *dev) 584 { 585 struct rhine_private *rp = netdev_priv(dev); 586 void __iomem *ioaddr = rp->base; 587 588 iowrite8(Cmd1Reset, ioaddr + ChipCmd1); 589 IOSYNC; 590 591 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) { 592 netdev_info(dev, "Reset not complete yet. Trying harder.\n"); 593 594 /* Force reset */ 595 if (rp->quirks & rqForceReset) 596 iowrite8(0x40, ioaddr + MiscCmd); 597 598 /* Reset can take somewhat longer (rare) */ 599 RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset)); 600 } 601 602 if (debug > 1) 603 netdev_info(dev, "Reset %s\n", 604 (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ? 605 "failed" : "succeeded"); 606 } 607 608 #ifdef USE_MMIO 609 static void enable_mmio(long pioaddr, u32 quirks) 610 { 611 int n; 612 if (quirks & rqRhineI) { 613 /* More recent docs say that this bit is reserved ... */ 614 n = inb(pioaddr + ConfigA) | 0x20; 615 outb(n, pioaddr + ConfigA); 616 } else { 617 n = inb(pioaddr + ConfigD) | 0x80; 618 outb(n, pioaddr + ConfigD); 619 } 620 } 621 #endif 622 623 /* 624 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM 625 * (plus 0x6C for Rhine-I/II) 626 */ 627 static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev) 628 { 629 struct rhine_private *rp = netdev_priv(dev); 630 void __iomem *ioaddr = rp->base; 631 632 outb(0x20, pioaddr + MACRegEEcsr); 633 RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20)); 634 635 #ifdef USE_MMIO 636 /* 637 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable 638 * MMIO. If reloading EEPROM was done first this could be avoided, but 639 * it is not known if that still works with the "win98-reboot" problem. 640 */ 641 enable_mmio(pioaddr, rp->quirks); 642 #endif 643 644 /* Turn off EEPROM-controlled wake-up (magic packet) */ 645 if (rp->quirks & rqWOL) 646 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA); 647 648 } 649 650 #ifdef CONFIG_NET_POLL_CONTROLLER 651 static void rhine_poll(struct net_device *dev) 652 { 653 disable_irq(dev->irq); 654 rhine_interrupt(dev->irq, (void *)dev); 655 enable_irq(dev->irq); 656 } 657 #endif 658 659 static int rhine_napipoll(struct napi_struct *napi, int budget) 660 { 661 struct rhine_private *rp = container_of(napi, struct rhine_private, napi); 662 struct net_device *dev = rp->dev; 663 void __iomem *ioaddr = rp->base; 664 int work_done; 665 666 work_done = rhine_rx(dev, budget); 667 668 if (work_done < budget) { 669 napi_complete(napi); 670 671 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow | 672 IntrRxDropped | IntrRxNoBuf | IntrTxAborted | 673 IntrTxDone | IntrTxError | IntrTxUnderrun | 674 IntrPCIErr | IntrStatsMax | IntrLinkChange, 675 ioaddr + IntrEnable); 676 } 677 return work_done; 678 } 679 680 static void __devinit rhine_hw_init(struct net_device *dev, long pioaddr) 681 { 682 struct rhine_private *rp = netdev_priv(dev); 683 684 /* Reset the chip to erase previous misconfiguration. */ 685 rhine_chip_reset(dev); 686 687 /* Rhine-I needs extra time to recuperate before EEPROM reload */ 688 if (rp->quirks & rqRhineI) 689 msleep(5); 690 691 /* Reload EEPROM controlled bytes cleared by soft reset */ 692 rhine_reload_eeprom(pioaddr, dev); 693 } 694 695 static const struct net_device_ops rhine_netdev_ops = { 696 .ndo_open = rhine_open, 697 .ndo_stop = rhine_close, 698 .ndo_start_xmit = rhine_start_tx, 699 .ndo_get_stats = rhine_get_stats, 700 .ndo_set_rx_mode = rhine_set_rx_mode, 701 .ndo_change_mtu = eth_change_mtu, 702 .ndo_validate_addr = eth_validate_addr, 703 .ndo_set_mac_address = eth_mac_addr, 704 .ndo_do_ioctl = netdev_ioctl, 705 .ndo_tx_timeout = rhine_tx_timeout, 706 .ndo_vlan_rx_add_vid = rhine_vlan_rx_add_vid, 707 .ndo_vlan_rx_kill_vid = rhine_vlan_rx_kill_vid, 708 #ifdef CONFIG_NET_POLL_CONTROLLER 709 .ndo_poll_controller = rhine_poll, 710 #endif 711 }; 712 713 static int __devinit rhine_init_one(struct pci_dev *pdev, 714 const struct pci_device_id *ent) 715 { 716 struct net_device *dev; 717 struct rhine_private *rp; 718 int i, rc; 719 u32 quirks; 720 long pioaddr; 721 long memaddr; 722 void __iomem *ioaddr; 723 int io_size, phy_id; 724 const char *name; 725 #ifdef USE_MMIO 726 int bar = 1; 727 #else 728 int bar = 0; 729 #endif 730 731 /* when built into the kernel, we only print version if device is found */ 732 #ifndef MODULE 733 pr_info_once("%s\n", version); 734 #endif 735 736 io_size = 256; 737 phy_id = 0; 738 quirks = 0; 739 name = "Rhine"; 740 if (pdev->revision < VTunknown0) { 741 quirks = rqRhineI; 742 io_size = 128; 743 } 744 else if (pdev->revision >= VT6102) { 745 quirks = rqWOL | rqForceReset; 746 if (pdev->revision < VT6105) { 747 name = "Rhine II"; 748 quirks |= rqStatusWBRace; /* Rhine-II exclusive */ 749 } 750 else { 751 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */ 752 if (pdev->revision >= VT6105_B0) 753 quirks |= rq6patterns; 754 if (pdev->revision < VT6105M) 755 name = "Rhine III"; 756 else 757 name = "Rhine III (Management Adapter)"; 758 } 759 } 760 761 rc = pci_enable_device(pdev); 762 if (rc) 763 goto err_out; 764 765 /* this should always be supported */ 766 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 767 if (rc) { 768 dev_err(&pdev->dev, 769 "32-bit PCI DMA addresses not supported by the card!?\n"); 770 goto err_out; 771 } 772 773 /* sanity check */ 774 if ((pci_resource_len(pdev, 0) < io_size) || 775 (pci_resource_len(pdev, 1) < io_size)) { 776 rc = -EIO; 777 dev_err(&pdev->dev, "Insufficient PCI resources, aborting\n"); 778 goto err_out; 779 } 780 781 pioaddr = pci_resource_start(pdev, 0); 782 memaddr = pci_resource_start(pdev, 1); 783 784 pci_set_master(pdev); 785 786 dev = alloc_etherdev(sizeof(struct rhine_private)); 787 if (!dev) { 788 rc = -ENOMEM; 789 dev_err(&pdev->dev, "alloc_etherdev failed\n"); 790 goto err_out; 791 } 792 SET_NETDEV_DEV(dev, &pdev->dev); 793 794 rp = netdev_priv(dev); 795 rp->dev = dev; 796 rp->quirks = quirks; 797 rp->pioaddr = pioaddr; 798 rp->pdev = pdev; 799 800 rc = pci_request_regions(pdev, DRV_NAME); 801 if (rc) 802 goto err_out_free_netdev; 803 804 ioaddr = pci_iomap(pdev, bar, io_size); 805 if (!ioaddr) { 806 rc = -EIO; 807 dev_err(&pdev->dev, 808 "ioremap failed for device %s, region 0x%X @ 0x%lX\n", 809 pci_name(pdev), io_size, memaddr); 810 goto err_out_free_res; 811 } 812 813 #ifdef USE_MMIO 814 enable_mmio(pioaddr, quirks); 815 816 /* Check that selected MMIO registers match the PIO ones */ 817 i = 0; 818 while (mmio_verify_registers[i]) { 819 int reg = mmio_verify_registers[i++]; 820 unsigned char a = inb(pioaddr+reg); 821 unsigned char b = readb(ioaddr+reg); 822 if (a != b) { 823 rc = -EIO; 824 dev_err(&pdev->dev, 825 "MMIO do not match PIO [%02x] (%02x != %02x)\n", 826 reg, a, b); 827 goto err_out_unmap; 828 } 829 } 830 #endif /* USE_MMIO */ 831 832 dev->base_addr = (unsigned long)ioaddr; 833 rp->base = ioaddr; 834 835 /* Get chip registers into a sane state */ 836 rhine_power_init(dev); 837 rhine_hw_init(dev, pioaddr); 838 839 for (i = 0; i < 6; i++) 840 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i); 841 842 if (!is_valid_ether_addr(dev->dev_addr)) { 843 /* Report it and use a random ethernet address instead */ 844 netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr); 845 random_ether_addr(dev->dev_addr); 846 netdev_info(dev, "Using random MAC address: %pM\n", 847 dev->dev_addr); 848 } 849 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 850 851 /* For Rhine-I/II, phy_id is loaded from EEPROM */ 852 if (!phy_id) 853 phy_id = ioread8(ioaddr + 0x6C); 854 855 dev->irq = pdev->irq; 856 857 spin_lock_init(&rp->lock); 858 INIT_WORK(&rp->reset_task, rhine_reset_task); 859 860 rp->mii_if.dev = dev; 861 rp->mii_if.mdio_read = mdio_read; 862 rp->mii_if.mdio_write = mdio_write; 863 rp->mii_if.phy_id_mask = 0x1f; 864 rp->mii_if.reg_num_mask = 0x1f; 865 866 /* The chip-specific entries in the device structure. */ 867 dev->netdev_ops = &rhine_netdev_ops; 868 dev->ethtool_ops = &netdev_ethtool_ops, 869 dev->watchdog_timeo = TX_TIMEOUT; 870 871 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64); 872 873 if (rp->quirks & rqRhineI) 874 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM; 875 876 if (pdev->revision >= VT6105M) 877 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX | 878 NETIF_F_HW_VLAN_FILTER; 879 880 /* dev->name not defined before register_netdev()! */ 881 rc = register_netdev(dev); 882 if (rc) 883 goto err_out_unmap; 884 885 netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n", 886 name, 887 #ifdef USE_MMIO 888 memaddr, 889 #else 890 (long)ioaddr, 891 #endif 892 dev->dev_addr, pdev->irq); 893 894 pci_set_drvdata(pdev, dev); 895 896 { 897 u16 mii_cmd; 898 int mii_status = mdio_read(dev, phy_id, 1); 899 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE; 900 mdio_write(dev, phy_id, MII_BMCR, mii_cmd); 901 if (mii_status != 0xffff && mii_status != 0x0000) { 902 rp->mii_if.advertising = mdio_read(dev, phy_id, 4); 903 netdev_info(dev, 904 "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n", 905 phy_id, 906 mii_status, rp->mii_if.advertising, 907 mdio_read(dev, phy_id, 5)); 908 909 /* set IFF_RUNNING */ 910 if (mii_status & BMSR_LSTATUS) 911 netif_carrier_on(dev); 912 else 913 netif_carrier_off(dev); 914 915 } 916 } 917 rp->mii_if.phy_id = phy_id; 918 if (debug > 1 && avoid_D3) 919 netdev_info(dev, "No D3 power state at shutdown\n"); 920 921 return 0; 922 923 err_out_unmap: 924 pci_iounmap(pdev, ioaddr); 925 err_out_free_res: 926 pci_release_regions(pdev); 927 err_out_free_netdev: 928 free_netdev(dev); 929 err_out: 930 return rc; 931 } 932 933 static int alloc_ring(struct net_device* dev) 934 { 935 struct rhine_private *rp = netdev_priv(dev); 936 void *ring; 937 dma_addr_t ring_dma; 938 939 ring = pci_alloc_consistent(rp->pdev, 940 RX_RING_SIZE * sizeof(struct rx_desc) + 941 TX_RING_SIZE * sizeof(struct tx_desc), 942 &ring_dma); 943 if (!ring) { 944 netdev_err(dev, "Could not allocate DMA memory\n"); 945 return -ENOMEM; 946 } 947 if (rp->quirks & rqRhineI) { 948 rp->tx_bufs = pci_alloc_consistent(rp->pdev, 949 PKT_BUF_SZ * TX_RING_SIZE, 950 &rp->tx_bufs_dma); 951 if (rp->tx_bufs == NULL) { 952 pci_free_consistent(rp->pdev, 953 RX_RING_SIZE * sizeof(struct rx_desc) + 954 TX_RING_SIZE * sizeof(struct tx_desc), 955 ring, ring_dma); 956 return -ENOMEM; 957 } 958 } 959 960 rp->rx_ring = ring; 961 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc); 962 rp->rx_ring_dma = ring_dma; 963 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc); 964 965 return 0; 966 } 967 968 static void free_ring(struct net_device* dev) 969 { 970 struct rhine_private *rp = netdev_priv(dev); 971 972 pci_free_consistent(rp->pdev, 973 RX_RING_SIZE * sizeof(struct rx_desc) + 974 TX_RING_SIZE * sizeof(struct tx_desc), 975 rp->rx_ring, rp->rx_ring_dma); 976 rp->tx_ring = NULL; 977 978 if (rp->tx_bufs) 979 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE, 980 rp->tx_bufs, rp->tx_bufs_dma); 981 982 rp->tx_bufs = NULL; 983 984 } 985 986 static void alloc_rbufs(struct net_device *dev) 987 { 988 struct rhine_private *rp = netdev_priv(dev); 989 dma_addr_t next; 990 int i; 991 992 rp->dirty_rx = rp->cur_rx = 0; 993 994 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); 995 rp->rx_head_desc = &rp->rx_ring[0]; 996 next = rp->rx_ring_dma; 997 998 /* Init the ring entries */ 999 for (i = 0; i < RX_RING_SIZE; i++) { 1000 rp->rx_ring[i].rx_status = 0; 1001 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz); 1002 next += sizeof(struct rx_desc); 1003 rp->rx_ring[i].next_desc = cpu_to_le32(next); 1004 rp->rx_skbuff[i] = NULL; 1005 } 1006 /* Mark the last entry as wrapping the ring. */ 1007 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma); 1008 1009 /* Fill in the Rx buffers. Handle allocation failure gracefully. */ 1010 for (i = 0; i < RX_RING_SIZE; i++) { 1011 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz); 1012 rp->rx_skbuff[i] = skb; 1013 if (skb == NULL) 1014 break; 1015 skb->dev = dev; /* Mark as being used by this device. */ 1016 1017 rp->rx_skbuff_dma[i] = 1018 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz, 1019 PCI_DMA_FROMDEVICE); 1020 1021 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]); 1022 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn); 1023 } 1024 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE); 1025 } 1026 1027 static void free_rbufs(struct net_device* dev) 1028 { 1029 struct rhine_private *rp = netdev_priv(dev); 1030 int i; 1031 1032 /* Free all the skbuffs in the Rx queue. */ 1033 for (i = 0; i < RX_RING_SIZE; i++) { 1034 rp->rx_ring[i].rx_status = 0; 1035 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */ 1036 if (rp->rx_skbuff[i]) { 1037 pci_unmap_single(rp->pdev, 1038 rp->rx_skbuff_dma[i], 1039 rp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1040 dev_kfree_skb(rp->rx_skbuff[i]); 1041 } 1042 rp->rx_skbuff[i] = NULL; 1043 } 1044 } 1045 1046 static void alloc_tbufs(struct net_device* dev) 1047 { 1048 struct rhine_private *rp = netdev_priv(dev); 1049 dma_addr_t next; 1050 int i; 1051 1052 rp->dirty_tx = rp->cur_tx = 0; 1053 next = rp->tx_ring_dma; 1054 for (i = 0; i < TX_RING_SIZE; i++) { 1055 rp->tx_skbuff[i] = NULL; 1056 rp->tx_ring[i].tx_status = 0; 1057 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC); 1058 next += sizeof(struct tx_desc); 1059 rp->tx_ring[i].next_desc = cpu_to_le32(next); 1060 if (rp->quirks & rqRhineI) 1061 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ]; 1062 } 1063 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma); 1064 1065 } 1066 1067 static void free_tbufs(struct net_device* dev) 1068 { 1069 struct rhine_private *rp = netdev_priv(dev); 1070 int i; 1071 1072 for (i = 0; i < TX_RING_SIZE; i++) { 1073 rp->tx_ring[i].tx_status = 0; 1074 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC); 1075 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */ 1076 if (rp->tx_skbuff[i]) { 1077 if (rp->tx_skbuff_dma[i]) { 1078 pci_unmap_single(rp->pdev, 1079 rp->tx_skbuff_dma[i], 1080 rp->tx_skbuff[i]->len, 1081 PCI_DMA_TODEVICE); 1082 } 1083 dev_kfree_skb(rp->tx_skbuff[i]); 1084 } 1085 rp->tx_skbuff[i] = NULL; 1086 rp->tx_buf[i] = NULL; 1087 } 1088 } 1089 1090 static void rhine_check_media(struct net_device *dev, unsigned int init_media) 1091 { 1092 struct rhine_private *rp = netdev_priv(dev); 1093 void __iomem *ioaddr = rp->base; 1094 1095 mii_check_media(&rp->mii_if, debug, init_media); 1096 1097 if (rp->mii_if.full_duplex) 1098 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex, 1099 ioaddr + ChipCmd1); 1100 else 1101 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex, 1102 ioaddr + ChipCmd1); 1103 if (debug > 1) 1104 netdev_info(dev, "force_media %d, carrier %d\n", 1105 rp->mii_if.force_media, netif_carrier_ok(dev)); 1106 } 1107 1108 /* Called after status of force_media possibly changed */ 1109 static void rhine_set_carrier(struct mii_if_info *mii) 1110 { 1111 if (mii->force_media) { 1112 /* autoneg is off: Link is always assumed to be up */ 1113 if (!netif_carrier_ok(mii->dev)) 1114 netif_carrier_on(mii->dev); 1115 } 1116 else /* Let MMI library update carrier status */ 1117 rhine_check_media(mii->dev, 0); 1118 if (debug > 1) 1119 netdev_info(mii->dev, "force_media %d, carrier %d\n", 1120 mii->force_media, netif_carrier_ok(mii->dev)); 1121 } 1122 1123 /** 1124 * rhine_set_cam - set CAM multicast filters 1125 * @ioaddr: register block of this Rhine 1126 * @idx: multicast CAM index [0..MCAM_SIZE-1] 1127 * @addr: multicast address (6 bytes) 1128 * 1129 * Load addresses into multicast filters. 1130 */ 1131 static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr) 1132 { 1133 int i; 1134 1135 iowrite8(CAMC_CAMEN, ioaddr + CamCon); 1136 wmb(); 1137 1138 /* Paranoid -- idx out of range should never happen */ 1139 idx &= (MCAM_SIZE - 1); 1140 1141 iowrite8((u8) idx, ioaddr + CamAddr); 1142 1143 for (i = 0; i < 6; i++, addr++) 1144 iowrite8(*addr, ioaddr + MulticastFilter0 + i); 1145 udelay(10); 1146 wmb(); 1147 1148 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon); 1149 udelay(10); 1150 1151 iowrite8(0, ioaddr + CamCon); 1152 } 1153 1154 /** 1155 * rhine_set_vlan_cam - set CAM VLAN filters 1156 * @ioaddr: register block of this Rhine 1157 * @idx: VLAN CAM index [0..VCAM_SIZE-1] 1158 * @addr: VLAN ID (2 bytes) 1159 * 1160 * Load addresses into VLAN filters. 1161 */ 1162 static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr) 1163 { 1164 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon); 1165 wmb(); 1166 1167 /* Paranoid -- idx out of range should never happen */ 1168 idx &= (VCAM_SIZE - 1); 1169 1170 iowrite8((u8) idx, ioaddr + CamAddr); 1171 1172 iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6); 1173 udelay(10); 1174 wmb(); 1175 1176 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon); 1177 udelay(10); 1178 1179 iowrite8(0, ioaddr + CamCon); 1180 } 1181 1182 /** 1183 * rhine_set_cam_mask - set multicast CAM mask 1184 * @ioaddr: register block of this Rhine 1185 * @mask: multicast CAM mask 1186 * 1187 * Mask sets multicast filters active/inactive. 1188 */ 1189 static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask) 1190 { 1191 iowrite8(CAMC_CAMEN, ioaddr + CamCon); 1192 wmb(); 1193 1194 /* write mask */ 1195 iowrite32(mask, ioaddr + CamMask); 1196 1197 /* disable CAMEN */ 1198 iowrite8(0, ioaddr + CamCon); 1199 } 1200 1201 /** 1202 * rhine_set_vlan_cam_mask - set VLAN CAM mask 1203 * @ioaddr: register block of this Rhine 1204 * @mask: VLAN CAM mask 1205 * 1206 * Mask sets VLAN filters active/inactive. 1207 */ 1208 static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask) 1209 { 1210 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon); 1211 wmb(); 1212 1213 /* write mask */ 1214 iowrite32(mask, ioaddr + CamMask); 1215 1216 /* disable CAMEN */ 1217 iowrite8(0, ioaddr + CamCon); 1218 } 1219 1220 /** 1221 * rhine_init_cam_filter - initialize CAM filters 1222 * @dev: network device 1223 * 1224 * Initialize (disable) hardware VLAN and multicast support on this 1225 * Rhine. 1226 */ 1227 static void rhine_init_cam_filter(struct net_device *dev) 1228 { 1229 struct rhine_private *rp = netdev_priv(dev); 1230 void __iomem *ioaddr = rp->base; 1231 1232 /* Disable all CAMs */ 1233 rhine_set_vlan_cam_mask(ioaddr, 0); 1234 rhine_set_cam_mask(ioaddr, 0); 1235 1236 /* disable hardware VLAN support */ 1237 BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig); 1238 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1); 1239 } 1240 1241 /** 1242 * rhine_update_vcam - update VLAN CAM filters 1243 * @rp: rhine_private data of this Rhine 1244 * 1245 * Update VLAN CAM filters to match configuration change. 1246 */ 1247 static void rhine_update_vcam(struct net_device *dev) 1248 { 1249 struct rhine_private *rp = netdev_priv(dev); 1250 void __iomem *ioaddr = rp->base; 1251 u16 vid; 1252 u32 vCAMmask = 0; /* 32 vCAMs (6105M and better) */ 1253 unsigned int i = 0; 1254 1255 for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) { 1256 rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid); 1257 vCAMmask |= 1 << i; 1258 if (++i >= VCAM_SIZE) 1259 break; 1260 } 1261 rhine_set_vlan_cam_mask(ioaddr, vCAMmask); 1262 } 1263 1264 static void rhine_vlan_rx_add_vid(struct net_device *dev, unsigned short vid) 1265 { 1266 struct rhine_private *rp = netdev_priv(dev); 1267 1268 spin_lock_irq(&rp->lock); 1269 set_bit(vid, rp->active_vlans); 1270 rhine_update_vcam(dev); 1271 spin_unlock_irq(&rp->lock); 1272 } 1273 1274 static void rhine_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid) 1275 { 1276 struct rhine_private *rp = netdev_priv(dev); 1277 1278 spin_lock_irq(&rp->lock); 1279 clear_bit(vid, rp->active_vlans); 1280 rhine_update_vcam(dev); 1281 spin_unlock_irq(&rp->lock); 1282 } 1283 1284 static void init_registers(struct net_device *dev) 1285 { 1286 struct rhine_private *rp = netdev_priv(dev); 1287 void __iomem *ioaddr = rp->base; 1288 int i; 1289 1290 for (i = 0; i < 6; i++) 1291 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i); 1292 1293 /* Initialize other registers. */ 1294 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */ 1295 /* Configure initial FIFO thresholds. */ 1296 iowrite8(0x20, ioaddr + TxConfig); 1297 rp->tx_thresh = 0x20; 1298 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */ 1299 1300 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr); 1301 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr); 1302 1303 rhine_set_rx_mode(dev); 1304 1305 if (rp->pdev->revision >= VT6105M) 1306 rhine_init_cam_filter(dev); 1307 1308 napi_enable(&rp->napi); 1309 1310 /* Enable interrupts by setting the interrupt mask. */ 1311 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow | 1312 IntrRxDropped | IntrRxNoBuf | IntrTxAborted | 1313 IntrTxDone | IntrTxError | IntrTxUnderrun | 1314 IntrPCIErr | IntrStatsMax | IntrLinkChange, 1315 ioaddr + IntrEnable); 1316 1317 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8), 1318 ioaddr + ChipCmd); 1319 rhine_check_media(dev, 1); 1320 } 1321 1322 /* Enable MII link status auto-polling (required for IntrLinkChange) */ 1323 static void rhine_enable_linkmon(void __iomem *ioaddr) 1324 { 1325 iowrite8(0, ioaddr + MIICmd); 1326 iowrite8(MII_BMSR, ioaddr + MIIRegAddr); 1327 iowrite8(0x80, ioaddr + MIICmd); 1328 1329 RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20)); 1330 1331 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr); 1332 } 1333 1334 /* Disable MII link status auto-polling (required for MDIO access) */ 1335 static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks) 1336 { 1337 iowrite8(0, ioaddr + MIICmd); 1338 1339 if (quirks & rqRhineI) { 1340 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR 1341 1342 /* Can be called from ISR. Evil. */ 1343 mdelay(1); 1344 1345 /* 0x80 must be set immediately before turning it off */ 1346 iowrite8(0x80, ioaddr + MIICmd); 1347 1348 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20); 1349 1350 /* Heh. Now clear 0x80 again. */ 1351 iowrite8(0, ioaddr + MIICmd); 1352 } 1353 else 1354 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80); 1355 } 1356 1357 /* Read and write over the MII Management Data I/O (MDIO) interface. */ 1358 1359 static int mdio_read(struct net_device *dev, int phy_id, int regnum) 1360 { 1361 struct rhine_private *rp = netdev_priv(dev); 1362 void __iomem *ioaddr = rp->base; 1363 int result; 1364 1365 rhine_disable_linkmon(ioaddr, rp->quirks); 1366 1367 /* rhine_disable_linkmon already cleared MIICmd */ 1368 iowrite8(phy_id, ioaddr + MIIPhyAddr); 1369 iowrite8(regnum, ioaddr + MIIRegAddr); 1370 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */ 1371 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40)); 1372 result = ioread16(ioaddr + MIIData); 1373 1374 rhine_enable_linkmon(ioaddr); 1375 return result; 1376 } 1377 1378 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value) 1379 { 1380 struct rhine_private *rp = netdev_priv(dev); 1381 void __iomem *ioaddr = rp->base; 1382 1383 rhine_disable_linkmon(ioaddr, rp->quirks); 1384 1385 /* rhine_disable_linkmon already cleared MIICmd */ 1386 iowrite8(phy_id, ioaddr + MIIPhyAddr); 1387 iowrite8(regnum, ioaddr + MIIRegAddr); 1388 iowrite16(value, ioaddr + MIIData); 1389 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */ 1390 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20)); 1391 1392 rhine_enable_linkmon(ioaddr); 1393 } 1394 1395 static int rhine_open(struct net_device *dev) 1396 { 1397 struct rhine_private *rp = netdev_priv(dev); 1398 void __iomem *ioaddr = rp->base; 1399 int rc; 1400 1401 rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name, 1402 dev); 1403 if (rc) 1404 return rc; 1405 1406 if (debug > 1) 1407 netdev_dbg(dev, "%s() irq %d\n", __func__, rp->pdev->irq); 1408 1409 rc = alloc_ring(dev); 1410 if (rc) { 1411 free_irq(rp->pdev->irq, dev); 1412 return rc; 1413 } 1414 alloc_rbufs(dev); 1415 alloc_tbufs(dev); 1416 rhine_chip_reset(dev); 1417 init_registers(dev); 1418 if (debug > 2) 1419 netdev_dbg(dev, "%s() Done - status %04x MII status: %04x\n", 1420 __func__, ioread16(ioaddr + ChipCmd), 1421 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR)); 1422 1423 netif_start_queue(dev); 1424 1425 return 0; 1426 } 1427 1428 static void rhine_reset_task(struct work_struct *work) 1429 { 1430 struct rhine_private *rp = container_of(work, struct rhine_private, 1431 reset_task); 1432 struct net_device *dev = rp->dev; 1433 1434 /* protect against concurrent rx interrupts */ 1435 disable_irq(rp->pdev->irq); 1436 1437 napi_disable(&rp->napi); 1438 1439 spin_lock_bh(&rp->lock); 1440 1441 /* clear all descriptors */ 1442 free_tbufs(dev); 1443 free_rbufs(dev); 1444 alloc_tbufs(dev); 1445 alloc_rbufs(dev); 1446 1447 /* Reinitialize the hardware. */ 1448 rhine_chip_reset(dev); 1449 init_registers(dev); 1450 1451 spin_unlock_bh(&rp->lock); 1452 enable_irq(rp->pdev->irq); 1453 1454 dev->trans_start = jiffies; /* prevent tx timeout */ 1455 dev->stats.tx_errors++; 1456 netif_wake_queue(dev); 1457 } 1458 1459 static void rhine_tx_timeout(struct net_device *dev) 1460 { 1461 struct rhine_private *rp = netdev_priv(dev); 1462 void __iomem *ioaddr = rp->base; 1463 1464 netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n", 1465 ioread16(ioaddr + IntrStatus), 1466 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR)); 1467 1468 schedule_work(&rp->reset_task); 1469 } 1470 1471 static netdev_tx_t rhine_start_tx(struct sk_buff *skb, 1472 struct net_device *dev) 1473 { 1474 struct rhine_private *rp = netdev_priv(dev); 1475 void __iomem *ioaddr = rp->base; 1476 unsigned entry; 1477 unsigned long flags; 1478 1479 /* Caution: the write order is important here, set the field 1480 with the "ownership" bits last. */ 1481 1482 /* Calculate the next Tx descriptor entry. */ 1483 entry = rp->cur_tx % TX_RING_SIZE; 1484 1485 if (skb_padto(skb, ETH_ZLEN)) 1486 return NETDEV_TX_OK; 1487 1488 rp->tx_skbuff[entry] = skb; 1489 1490 if ((rp->quirks & rqRhineI) && 1491 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) { 1492 /* Must use alignment buffer. */ 1493 if (skb->len > PKT_BUF_SZ) { 1494 /* packet too long, drop it */ 1495 dev_kfree_skb(skb); 1496 rp->tx_skbuff[entry] = NULL; 1497 dev->stats.tx_dropped++; 1498 return NETDEV_TX_OK; 1499 } 1500 1501 /* Padding is not copied and so must be redone. */ 1502 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]); 1503 if (skb->len < ETH_ZLEN) 1504 memset(rp->tx_buf[entry] + skb->len, 0, 1505 ETH_ZLEN - skb->len); 1506 rp->tx_skbuff_dma[entry] = 0; 1507 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma + 1508 (rp->tx_buf[entry] - 1509 rp->tx_bufs)); 1510 } else { 1511 rp->tx_skbuff_dma[entry] = 1512 pci_map_single(rp->pdev, skb->data, skb->len, 1513 PCI_DMA_TODEVICE); 1514 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]); 1515 } 1516 1517 rp->tx_ring[entry].desc_length = 1518 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN)); 1519 1520 if (unlikely(vlan_tx_tag_present(skb))) { 1521 rp->tx_ring[entry].tx_status = cpu_to_le32((vlan_tx_tag_get(skb)) << 16); 1522 /* request tagging */ 1523 rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000); 1524 } 1525 else 1526 rp->tx_ring[entry].tx_status = 0; 1527 1528 /* lock eth irq */ 1529 spin_lock_irqsave(&rp->lock, flags); 1530 wmb(); 1531 rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn); 1532 wmb(); 1533 1534 rp->cur_tx++; 1535 1536 /* Non-x86 Todo: explicitly flush cache lines here. */ 1537 1538 if (vlan_tx_tag_present(skb)) 1539 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */ 1540 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake); 1541 1542 /* Wake the potentially-idle transmit channel */ 1543 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand, 1544 ioaddr + ChipCmd1); 1545 IOSYNC; 1546 1547 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN) 1548 netif_stop_queue(dev); 1549 1550 spin_unlock_irqrestore(&rp->lock, flags); 1551 1552 if (debug > 4) { 1553 netdev_dbg(dev, "Transmit frame #%d queued in slot %d\n", 1554 rp->cur_tx-1, entry); 1555 } 1556 return NETDEV_TX_OK; 1557 } 1558 1559 /* The interrupt handler does all of the Rx thread work and cleans up 1560 after the Tx thread. */ 1561 static irqreturn_t rhine_interrupt(int irq, void *dev_instance) 1562 { 1563 struct net_device *dev = dev_instance; 1564 struct rhine_private *rp = netdev_priv(dev); 1565 void __iomem *ioaddr = rp->base; 1566 u32 intr_status; 1567 int boguscnt = max_interrupt_work; 1568 int handled = 0; 1569 1570 while ((intr_status = get_intr_status(dev))) { 1571 handled = 1; 1572 1573 /* Acknowledge all of the current interrupt sources ASAP. */ 1574 if (intr_status & IntrTxDescRace) 1575 iowrite8(0x08, ioaddr + IntrStatus2); 1576 iowrite16(intr_status & 0xffff, ioaddr + IntrStatus); 1577 IOSYNC; 1578 1579 if (debug > 4) 1580 netdev_dbg(dev, "Interrupt, status %08x\n", 1581 intr_status); 1582 1583 if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped | 1584 IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf)) { 1585 iowrite16(IntrTxAborted | 1586 IntrTxDone | IntrTxError | IntrTxUnderrun | 1587 IntrPCIErr | IntrStatsMax | IntrLinkChange, 1588 ioaddr + IntrEnable); 1589 1590 napi_schedule(&rp->napi); 1591 } 1592 1593 if (intr_status & (IntrTxErrSummary | IntrTxDone)) { 1594 if (intr_status & IntrTxErrSummary) { 1595 /* Avoid scavenging before Tx engine turned off */ 1596 RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn)); 1597 if (debug > 2 && 1598 ioread8(ioaddr+ChipCmd) & CmdTxOn) 1599 netdev_warn(dev, 1600 "%s: Tx engine still on\n", 1601 __func__); 1602 } 1603 rhine_tx(dev); 1604 } 1605 1606 /* Abnormal error summary/uncommon events handlers. */ 1607 if (intr_status & (IntrPCIErr | IntrLinkChange | 1608 IntrStatsMax | IntrTxError | IntrTxAborted | 1609 IntrTxUnderrun | IntrTxDescRace)) 1610 rhine_error(dev, intr_status); 1611 1612 if (--boguscnt < 0) { 1613 netdev_warn(dev, "Too much work at interrupt, status=%#08x\n", 1614 intr_status); 1615 break; 1616 } 1617 } 1618 1619 if (debug > 3) 1620 netdev_dbg(dev, "exiting interrupt, status=%08x\n", 1621 ioread16(ioaddr + IntrStatus)); 1622 return IRQ_RETVAL(handled); 1623 } 1624 1625 /* This routine is logically part of the interrupt handler, but isolated 1626 for clarity. */ 1627 static void rhine_tx(struct net_device *dev) 1628 { 1629 struct rhine_private *rp = netdev_priv(dev); 1630 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE; 1631 1632 spin_lock(&rp->lock); 1633 1634 /* find and cleanup dirty tx descriptors */ 1635 while (rp->dirty_tx != rp->cur_tx) { 1636 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status); 1637 if (debug > 6) 1638 netdev_dbg(dev, "Tx scavenge %d status %08x\n", 1639 entry, txstatus); 1640 if (txstatus & DescOwn) 1641 break; 1642 if (txstatus & 0x8000) { 1643 if (debug > 1) 1644 netdev_dbg(dev, "Transmit error, Tx status %08x\n", 1645 txstatus); 1646 dev->stats.tx_errors++; 1647 if (txstatus & 0x0400) 1648 dev->stats.tx_carrier_errors++; 1649 if (txstatus & 0x0200) 1650 dev->stats.tx_window_errors++; 1651 if (txstatus & 0x0100) 1652 dev->stats.tx_aborted_errors++; 1653 if (txstatus & 0x0080) 1654 dev->stats.tx_heartbeat_errors++; 1655 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) || 1656 (txstatus & 0x0800) || (txstatus & 0x1000)) { 1657 dev->stats.tx_fifo_errors++; 1658 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn); 1659 break; /* Keep the skb - we try again */ 1660 } 1661 /* Transmitter restarted in 'abnormal' handler. */ 1662 } else { 1663 if (rp->quirks & rqRhineI) 1664 dev->stats.collisions += (txstatus >> 3) & 0x0F; 1665 else 1666 dev->stats.collisions += txstatus & 0x0F; 1667 if (debug > 6) 1668 netdev_dbg(dev, "collisions: %1.1x:%1.1x\n", 1669 (txstatus >> 3) & 0xF, 1670 txstatus & 0xF); 1671 dev->stats.tx_bytes += rp->tx_skbuff[entry]->len; 1672 dev->stats.tx_packets++; 1673 } 1674 /* Free the original skb. */ 1675 if (rp->tx_skbuff_dma[entry]) { 1676 pci_unmap_single(rp->pdev, 1677 rp->tx_skbuff_dma[entry], 1678 rp->tx_skbuff[entry]->len, 1679 PCI_DMA_TODEVICE); 1680 } 1681 dev_kfree_skb_irq(rp->tx_skbuff[entry]); 1682 rp->tx_skbuff[entry] = NULL; 1683 entry = (++rp->dirty_tx) % TX_RING_SIZE; 1684 } 1685 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4) 1686 netif_wake_queue(dev); 1687 1688 spin_unlock(&rp->lock); 1689 } 1690 1691 /** 1692 * rhine_get_vlan_tci - extract TCI from Rx data buffer 1693 * @skb: pointer to sk_buff 1694 * @data_size: used data area of the buffer including CRC 1695 * 1696 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q 1697 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte 1698 * aligned following the CRC. 1699 */ 1700 static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size) 1701 { 1702 u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2; 1703 return be16_to_cpup((__be16 *)trailer); 1704 } 1705 1706 /* Process up to limit frames from receive ring */ 1707 static int rhine_rx(struct net_device *dev, int limit) 1708 { 1709 struct rhine_private *rp = netdev_priv(dev); 1710 int count; 1711 int entry = rp->cur_rx % RX_RING_SIZE; 1712 1713 if (debug > 4) { 1714 netdev_dbg(dev, "%s(), entry %d status %08x\n", 1715 __func__, entry, 1716 le32_to_cpu(rp->rx_head_desc->rx_status)); 1717 } 1718 1719 /* If EOP is set on the next entry, it's a new packet. Send it up. */ 1720 for (count = 0; count < limit; ++count) { 1721 struct rx_desc *desc = rp->rx_head_desc; 1722 u32 desc_status = le32_to_cpu(desc->rx_status); 1723 u32 desc_length = le32_to_cpu(desc->desc_length); 1724 int data_size = desc_status >> 16; 1725 1726 if (desc_status & DescOwn) 1727 break; 1728 1729 if (debug > 4) 1730 netdev_dbg(dev, "%s() status is %08x\n", 1731 __func__, desc_status); 1732 1733 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) { 1734 if ((desc_status & RxWholePkt) != RxWholePkt) { 1735 netdev_warn(dev, 1736 "Oversized Ethernet frame spanned multiple buffers, " 1737 "entry %#x length %d status %08x!\n", 1738 entry, data_size, 1739 desc_status); 1740 netdev_warn(dev, 1741 "Oversized Ethernet frame %p vs %p\n", 1742 rp->rx_head_desc, 1743 &rp->rx_ring[entry]); 1744 dev->stats.rx_length_errors++; 1745 } else if (desc_status & RxErr) { 1746 /* There was a error. */ 1747 if (debug > 2) 1748 netdev_dbg(dev, "%s() Rx error was %08x\n", 1749 __func__, desc_status); 1750 dev->stats.rx_errors++; 1751 if (desc_status & 0x0030) 1752 dev->stats.rx_length_errors++; 1753 if (desc_status & 0x0048) 1754 dev->stats.rx_fifo_errors++; 1755 if (desc_status & 0x0004) 1756 dev->stats.rx_frame_errors++; 1757 if (desc_status & 0x0002) { 1758 /* this can also be updated outside the interrupt handler */ 1759 spin_lock(&rp->lock); 1760 dev->stats.rx_crc_errors++; 1761 spin_unlock(&rp->lock); 1762 } 1763 } 1764 } else { 1765 struct sk_buff *skb = NULL; 1766 /* Length should omit the CRC */ 1767 int pkt_len = data_size - 4; 1768 u16 vlan_tci = 0; 1769 1770 /* Check if the packet is long enough to accept without 1771 copying to a minimally-sized skbuff. */ 1772 if (pkt_len < rx_copybreak) 1773 skb = netdev_alloc_skb_ip_align(dev, pkt_len); 1774 if (skb) { 1775 pci_dma_sync_single_for_cpu(rp->pdev, 1776 rp->rx_skbuff_dma[entry], 1777 rp->rx_buf_sz, 1778 PCI_DMA_FROMDEVICE); 1779 1780 skb_copy_to_linear_data(skb, 1781 rp->rx_skbuff[entry]->data, 1782 pkt_len); 1783 skb_put(skb, pkt_len); 1784 pci_dma_sync_single_for_device(rp->pdev, 1785 rp->rx_skbuff_dma[entry], 1786 rp->rx_buf_sz, 1787 PCI_DMA_FROMDEVICE); 1788 } else { 1789 skb = rp->rx_skbuff[entry]; 1790 if (skb == NULL) { 1791 netdev_err(dev, "Inconsistent Rx descriptor chain\n"); 1792 break; 1793 } 1794 rp->rx_skbuff[entry] = NULL; 1795 skb_put(skb, pkt_len); 1796 pci_unmap_single(rp->pdev, 1797 rp->rx_skbuff_dma[entry], 1798 rp->rx_buf_sz, 1799 PCI_DMA_FROMDEVICE); 1800 } 1801 1802 if (unlikely(desc_length & DescTag)) 1803 vlan_tci = rhine_get_vlan_tci(skb, data_size); 1804 1805 skb->protocol = eth_type_trans(skb, dev); 1806 1807 if (unlikely(desc_length & DescTag)) 1808 __vlan_hwaccel_put_tag(skb, vlan_tci); 1809 netif_receive_skb(skb); 1810 dev->stats.rx_bytes += pkt_len; 1811 dev->stats.rx_packets++; 1812 } 1813 entry = (++rp->cur_rx) % RX_RING_SIZE; 1814 rp->rx_head_desc = &rp->rx_ring[entry]; 1815 } 1816 1817 /* Refill the Rx ring buffers. */ 1818 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) { 1819 struct sk_buff *skb; 1820 entry = rp->dirty_rx % RX_RING_SIZE; 1821 if (rp->rx_skbuff[entry] == NULL) { 1822 skb = netdev_alloc_skb(dev, rp->rx_buf_sz); 1823 rp->rx_skbuff[entry] = skb; 1824 if (skb == NULL) 1825 break; /* Better luck next round. */ 1826 skb->dev = dev; /* Mark as being used by this device. */ 1827 rp->rx_skbuff_dma[entry] = 1828 pci_map_single(rp->pdev, skb->data, 1829 rp->rx_buf_sz, 1830 PCI_DMA_FROMDEVICE); 1831 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]); 1832 } 1833 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn); 1834 } 1835 1836 return count; 1837 } 1838 1839 /* 1840 * Clears the "tally counters" for CRC errors and missed frames(?). 1841 * It has been reported that some chips need a write of 0 to clear 1842 * these, for others the counters are set to 1 when written to and 1843 * instead cleared when read. So we clear them both ways ... 1844 */ 1845 static inline void clear_tally_counters(void __iomem *ioaddr) 1846 { 1847 iowrite32(0, ioaddr + RxMissed); 1848 ioread16(ioaddr + RxCRCErrs); 1849 ioread16(ioaddr + RxMissed); 1850 } 1851 1852 static void rhine_restart_tx(struct net_device *dev) { 1853 struct rhine_private *rp = netdev_priv(dev); 1854 void __iomem *ioaddr = rp->base; 1855 int entry = rp->dirty_tx % TX_RING_SIZE; 1856 u32 intr_status; 1857 1858 /* 1859 * If new errors occurred, we need to sort them out before doing Tx. 1860 * In that case the ISR will be back here RSN anyway. 1861 */ 1862 intr_status = get_intr_status(dev); 1863 1864 if ((intr_status & IntrTxErrSummary) == 0) { 1865 1866 /* We know better than the chip where it should continue. */ 1867 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc), 1868 ioaddr + TxRingPtr); 1869 1870 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn, 1871 ioaddr + ChipCmd); 1872 1873 if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000)) 1874 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */ 1875 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake); 1876 1877 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand, 1878 ioaddr + ChipCmd1); 1879 IOSYNC; 1880 } 1881 else { 1882 /* This should never happen */ 1883 if (debug > 1) 1884 netdev_warn(dev, "%s() Another error occurred %08x\n", 1885 __func__, intr_status); 1886 } 1887 1888 } 1889 1890 static void rhine_error(struct net_device *dev, int intr_status) 1891 { 1892 struct rhine_private *rp = netdev_priv(dev); 1893 void __iomem *ioaddr = rp->base; 1894 1895 spin_lock(&rp->lock); 1896 1897 if (intr_status & IntrLinkChange) 1898 rhine_check_media(dev, 0); 1899 if (intr_status & IntrStatsMax) { 1900 dev->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs); 1901 dev->stats.rx_missed_errors += ioread16(ioaddr + RxMissed); 1902 clear_tally_counters(ioaddr); 1903 } 1904 if (intr_status & IntrTxAborted) { 1905 if (debug > 1) 1906 netdev_info(dev, "Abort %08x, frame dropped\n", 1907 intr_status); 1908 } 1909 if (intr_status & IntrTxUnderrun) { 1910 if (rp->tx_thresh < 0xE0) 1911 BYTE_REG_BITS_SET((rp->tx_thresh += 0x20), 0x80, ioaddr + TxConfig); 1912 if (debug > 1) 1913 netdev_info(dev, "Transmitter underrun, Tx threshold now %02x\n", 1914 rp->tx_thresh); 1915 } 1916 if (intr_status & IntrTxDescRace) { 1917 if (debug > 2) 1918 netdev_info(dev, "Tx descriptor write-back race\n"); 1919 } 1920 if ((intr_status & IntrTxError) && 1921 (intr_status & (IntrTxAborted | 1922 IntrTxUnderrun | IntrTxDescRace)) == 0) { 1923 if (rp->tx_thresh < 0xE0) { 1924 BYTE_REG_BITS_SET((rp->tx_thresh += 0x20), 0x80, ioaddr + TxConfig); 1925 } 1926 if (debug > 1) 1927 netdev_info(dev, "Unspecified error. Tx threshold now %02x\n", 1928 rp->tx_thresh); 1929 } 1930 if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace | 1931 IntrTxError)) 1932 rhine_restart_tx(dev); 1933 1934 if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun | 1935 IntrTxError | IntrTxAborted | IntrNormalSummary | 1936 IntrTxDescRace)) { 1937 if (debug > 1) 1938 netdev_err(dev, "Something Wicked happened! %08x\n", 1939 intr_status); 1940 } 1941 1942 spin_unlock(&rp->lock); 1943 } 1944 1945 static struct net_device_stats *rhine_get_stats(struct net_device *dev) 1946 { 1947 struct rhine_private *rp = netdev_priv(dev); 1948 void __iomem *ioaddr = rp->base; 1949 unsigned long flags; 1950 1951 spin_lock_irqsave(&rp->lock, flags); 1952 dev->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs); 1953 dev->stats.rx_missed_errors += ioread16(ioaddr + RxMissed); 1954 clear_tally_counters(ioaddr); 1955 spin_unlock_irqrestore(&rp->lock, flags); 1956 1957 return &dev->stats; 1958 } 1959 1960 static void rhine_set_rx_mode(struct net_device *dev) 1961 { 1962 struct rhine_private *rp = netdev_priv(dev); 1963 void __iomem *ioaddr = rp->base; 1964 u32 mc_filter[2]; /* Multicast hash filter */ 1965 u8 rx_mode = 0x0C; /* Note: 0x02=accept runt, 0x01=accept errs */ 1966 struct netdev_hw_addr *ha; 1967 1968 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1969 rx_mode = 0x1C; 1970 iowrite32(0xffffffff, ioaddr + MulticastFilter0); 1971 iowrite32(0xffffffff, ioaddr + MulticastFilter1); 1972 } else if ((netdev_mc_count(dev) > multicast_filter_limit) || 1973 (dev->flags & IFF_ALLMULTI)) { 1974 /* Too many to match, or accept all multicasts. */ 1975 iowrite32(0xffffffff, ioaddr + MulticastFilter0); 1976 iowrite32(0xffffffff, ioaddr + MulticastFilter1); 1977 } else if (rp->pdev->revision >= VT6105M) { 1978 int i = 0; 1979 u32 mCAMmask = 0; /* 32 mCAMs (6105M and better) */ 1980 netdev_for_each_mc_addr(ha, dev) { 1981 if (i == MCAM_SIZE) 1982 break; 1983 rhine_set_cam(ioaddr, i, ha->addr); 1984 mCAMmask |= 1 << i; 1985 i++; 1986 } 1987 rhine_set_cam_mask(ioaddr, mCAMmask); 1988 } else { 1989 memset(mc_filter, 0, sizeof(mc_filter)); 1990 netdev_for_each_mc_addr(ha, dev) { 1991 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26; 1992 1993 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); 1994 } 1995 iowrite32(mc_filter[0], ioaddr + MulticastFilter0); 1996 iowrite32(mc_filter[1], ioaddr + MulticastFilter1); 1997 } 1998 /* enable/disable VLAN receive filtering */ 1999 if (rp->pdev->revision >= VT6105M) { 2000 if (dev->flags & IFF_PROMISC) 2001 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1); 2002 else 2003 BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1); 2004 } 2005 BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig); 2006 } 2007 2008 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2009 { 2010 struct rhine_private *rp = netdev_priv(dev); 2011 2012 strcpy(info->driver, DRV_NAME); 2013 strcpy(info->version, DRV_VERSION); 2014 strcpy(info->bus_info, pci_name(rp->pdev)); 2015 } 2016 2017 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2018 { 2019 struct rhine_private *rp = netdev_priv(dev); 2020 int rc; 2021 2022 spin_lock_irq(&rp->lock); 2023 rc = mii_ethtool_gset(&rp->mii_if, cmd); 2024 spin_unlock_irq(&rp->lock); 2025 2026 return rc; 2027 } 2028 2029 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2030 { 2031 struct rhine_private *rp = netdev_priv(dev); 2032 int rc; 2033 2034 spin_lock_irq(&rp->lock); 2035 rc = mii_ethtool_sset(&rp->mii_if, cmd); 2036 spin_unlock_irq(&rp->lock); 2037 rhine_set_carrier(&rp->mii_if); 2038 2039 return rc; 2040 } 2041 2042 static int netdev_nway_reset(struct net_device *dev) 2043 { 2044 struct rhine_private *rp = netdev_priv(dev); 2045 2046 return mii_nway_restart(&rp->mii_if); 2047 } 2048 2049 static u32 netdev_get_link(struct net_device *dev) 2050 { 2051 struct rhine_private *rp = netdev_priv(dev); 2052 2053 return mii_link_ok(&rp->mii_if); 2054 } 2055 2056 static u32 netdev_get_msglevel(struct net_device *dev) 2057 { 2058 return debug; 2059 } 2060 2061 static void netdev_set_msglevel(struct net_device *dev, u32 value) 2062 { 2063 debug = value; 2064 } 2065 2066 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2067 { 2068 struct rhine_private *rp = netdev_priv(dev); 2069 2070 if (!(rp->quirks & rqWOL)) 2071 return; 2072 2073 spin_lock_irq(&rp->lock); 2074 wol->supported = WAKE_PHY | WAKE_MAGIC | 2075 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */ 2076 wol->wolopts = rp->wolopts; 2077 spin_unlock_irq(&rp->lock); 2078 } 2079 2080 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2081 { 2082 struct rhine_private *rp = netdev_priv(dev); 2083 u32 support = WAKE_PHY | WAKE_MAGIC | 2084 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */ 2085 2086 if (!(rp->quirks & rqWOL)) 2087 return -EINVAL; 2088 2089 if (wol->wolopts & ~support) 2090 return -EINVAL; 2091 2092 spin_lock_irq(&rp->lock); 2093 rp->wolopts = wol->wolopts; 2094 spin_unlock_irq(&rp->lock); 2095 2096 return 0; 2097 } 2098 2099 static const struct ethtool_ops netdev_ethtool_ops = { 2100 .get_drvinfo = netdev_get_drvinfo, 2101 .get_settings = netdev_get_settings, 2102 .set_settings = netdev_set_settings, 2103 .nway_reset = netdev_nway_reset, 2104 .get_link = netdev_get_link, 2105 .get_msglevel = netdev_get_msglevel, 2106 .set_msglevel = netdev_set_msglevel, 2107 .get_wol = rhine_get_wol, 2108 .set_wol = rhine_set_wol, 2109 }; 2110 2111 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2112 { 2113 struct rhine_private *rp = netdev_priv(dev); 2114 int rc; 2115 2116 if (!netif_running(dev)) 2117 return -EINVAL; 2118 2119 spin_lock_irq(&rp->lock); 2120 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL); 2121 spin_unlock_irq(&rp->lock); 2122 rhine_set_carrier(&rp->mii_if); 2123 2124 return rc; 2125 } 2126 2127 static int rhine_close(struct net_device *dev) 2128 { 2129 struct rhine_private *rp = netdev_priv(dev); 2130 void __iomem *ioaddr = rp->base; 2131 2132 napi_disable(&rp->napi); 2133 cancel_work_sync(&rp->reset_task); 2134 netif_stop_queue(dev); 2135 2136 spin_lock_irq(&rp->lock); 2137 2138 if (debug > 1) 2139 netdev_dbg(dev, "Shutting down ethercard, status was %04x\n", 2140 ioread16(ioaddr + ChipCmd)); 2141 2142 /* Switch to loopback mode to avoid hardware races. */ 2143 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig); 2144 2145 /* Disable interrupts by clearing the interrupt mask. */ 2146 iowrite16(0x0000, ioaddr + IntrEnable); 2147 2148 /* Stop the chip's Tx and Rx processes. */ 2149 iowrite16(CmdStop, ioaddr + ChipCmd); 2150 2151 spin_unlock_irq(&rp->lock); 2152 2153 free_irq(rp->pdev->irq, dev); 2154 free_rbufs(dev); 2155 free_tbufs(dev); 2156 free_ring(dev); 2157 2158 return 0; 2159 } 2160 2161 2162 static void __devexit rhine_remove_one(struct pci_dev *pdev) 2163 { 2164 struct net_device *dev = pci_get_drvdata(pdev); 2165 struct rhine_private *rp = netdev_priv(dev); 2166 2167 unregister_netdev(dev); 2168 2169 pci_iounmap(pdev, rp->base); 2170 pci_release_regions(pdev); 2171 2172 free_netdev(dev); 2173 pci_disable_device(pdev); 2174 pci_set_drvdata(pdev, NULL); 2175 } 2176 2177 static void rhine_shutdown (struct pci_dev *pdev) 2178 { 2179 struct net_device *dev = pci_get_drvdata(pdev); 2180 struct rhine_private *rp = netdev_priv(dev); 2181 void __iomem *ioaddr = rp->base; 2182 2183 if (!(rp->quirks & rqWOL)) 2184 return; /* Nothing to do for non-WOL adapters */ 2185 2186 rhine_power_init(dev); 2187 2188 /* Make sure we use pattern 0, 1 and not 4, 5 */ 2189 if (rp->quirks & rq6patterns) 2190 iowrite8(0x04, ioaddr + WOLcgClr); 2191 2192 if (rp->wolopts & WAKE_MAGIC) { 2193 iowrite8(WOLmagic, ioaddr + WOLcrSet); 2194 /* 2195 * Turn EEPROM-controlled wake-up back on -- some hardware may 2196 * not cooperate otherwise. 2197 */ 2198 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA); 2199 } 2200 2201 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST)) 2202 iowrite8(WOLbmcast, ioaddr + WOLcgSet); 2203 2204 if (rp->wolopts & WAKE_PHY) 2205 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet); 2206 2207 if (rp->wolopts & WAKE_UCAST) 2208 iowrite8(WOLucast, ioaddr + WOLcrSet); 2209 2210 if (rp->wolopts) { 2211 /* Enable legacy WOL (for old motherboards) */ 2212 iowrite8(0x01, ioaddr + PwcfgSet); 2213 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW); 2214 } 2215 2216 /* Hit power state D3 (sleep) */ 2217 if (!avoid_D3) 2218 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW); 2219 2220 /* TODO: Check use of pci_enable_wake() */ 2221 2222 } 2223 2224 #ifdef CONFIG_PM 2225 static int rhine_suspend(struct pci_dev *pdev, pm_message_t state) 2226 { 2227 struct net_device *dev = pci_get_drvdata(pdev); 2228 struct rhine_private *rp = netdev_priv(dev); 2229 unsigned long flags; 2230 2231 if (!netif_running(dev)) 2232 return 0; 2233 2234 napi_disable(&rp->napi); 2235 2236 netif_device_detach(dev); 2237 pci_save_state(pdev); 2238 2239 spin_lock_irqsave(&rp->lock, flags); 2240 rhine_shutdown(pdev); 2241 spin_unlock_irqrestore(&rp->lock, flags); 2242 2243 free_irq(dev->irq, dev); 2244 return 0; 2245 } 2246 2247 static int rhine_resume(struct pci_dev *pdev) 2248 { 2249 struct net_device *dev = pci_get_drvdata(pdev); 2250 struct rhine_private *rp = netdev_priv(dev); 2251 unsigned long flags; 2252 int ret; 2253 2254 if (!netif_running(dev)) 2255 return 0; 2256 2257 if (request_irq(dev->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev)) 2258 netdev_err(dev, "request_irq failed\n"); 2259 2260 ret = pci_set_power_state(pdev, PCI_D0); 2261 if (debug > 1) 2262 netdev_info(dev, "Entering power state D0 %s (%d)\n", 2263 ret ? "failed" : "succeeded", ret); 2264 2265 pci_restore_state(pdev); 2266 2267 spin_lock_irqsave(&rp->lock, flags); 2268 #ifdef USE_MMIO 2269 enable_mmio(rp->pioaddr, rp->quirks); 2270 #endif 2271 rhine_power_init(dev); 2272 free_tbufs(dev); 2273 free_rbufs(dev); 2274 alloc_tbufs(dev); 2275 alloc_rbufs(dev); 2276 init_registers(dev); 2277 spin_unlock_irqrestore(&rp->lock, flags); 2278 2279 netif_device_attach(dev); 2280 2281 return 0; 2282 } 2283 #endif /* CONFIG_PM */ 2284 2285 static struct pci_driver rhine_driver = { 2286 .name = DRV_NAME, 2287 .id_table = rhine_pci_tbl, 2288 .probe = rhine_init_one, 2289 .remove = __devexit_p(rhine_remove_one), 2290 #ifdef CONFIG_PM 2291 .suspend = rhine_suspend, 2292 .resume = rhine_resume, 2293 #endif /* CONFIG_PM */ 2294 .shutdown = rhine_shutdown, 2295 }; 2296 2297 static struct dmi_system_id __initdata rhine_dmi_table[] = { 2298 { 2299 .ident = "EPIA-M", 2300 .matches = { 2301 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."), 2302 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"), 2303 }, 2304 }, 2305 { 2306 .ident = "KV7", 2307 .matches = { 2308 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"), 2309 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"), 2310 }, 2311 }, 2312 { NULL } 2313 }; 2314 2315 static int __init rhine_init(void) 2316 { 2317 /* when a module, this is printed whether or not devices are found in probe */ 2318 #ifdef MODULE 2319 pr_info("%s\n", version); 2320 #endif 2321 if (dmi_check_system(rhine_dmi_table)) { 2322 /* these BIOSes fail at PXE boot if chip is in D3 */ 2323 avoid_D3 = 1; 2324 pr_warn("Broken BIOS detected, avoid_D3 enabled\n"); 2325 } 2326 else if (avoid_D3) 2327 pr_info("avoid_D3 set\n"); 2328 2329 return pci_register_driver(&rhine_driver); 2330 } 2331 2332 2333 static void __exit rhine_cleanup(void) 2334 { 2335 pci_unregister_driver(&rhine_driver); 2336 } 2337 2338 2339 module_init(rhine_init); 2340 module_exit(rhine_cleanup); 2341