xref: /linux/drivers/net/ethernet/via/via-rhine.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 	Written 1998-2001 by Donald Becker.
4 
5 	Current Maintainer: Roger Luethi <rl@hellgate.ch>
6 
7 	This software may be used and distributed according to the terms of
8 	the GNU General Public License (GPL), incorporated herein by reference.
9 	Drivers based on or derived from this code fall under the GPL and must
10 	retain the authorship, copyright and license notice.  This file is not
11 	a complete program and may only be used when the entire operating
12 	system is licensed under the GPL.
13 
14 	This driver is designed for the VIA VT86C100A Rhine-I.
15 	It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 	and management NIC 6105M).
17 
18 	The author may be reached as becker@scyld.com, or C/O
19 	Scyld Computing Corporation
20 	410 Severn Ave., Suite 210
21 	Annapolis MD 21403
22 
23 
24 	This driver contains some changes from the original Donald Becker
25 	version. He may or may not be interested in bug reports on this
26 	code. You can find his versions at:
27 	http://www.scyld.com/network/via-rhine.html
28 	[link no longer provides useful info -jgarzik]
29 
30 */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #define DRV_NAME	"via-rhine"
35 #define DRV_VERSION	"1.5.0"
36 #define DRV_RELDATE	"2010-10-09"
37 
38 #include <linux/types.h>
39 
40 /* A few user-configurable values.
41    These may be modified when a driver module is loaded. */
42 static int debug = 0;
43 #define RHINE_MSG_DEFAULT \
44         (0x0000)
45 
46 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
47    Setting to > 1518 effectively disables this feature. */
48 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
49 	defined(CONFIG_SPARC) || defined(__ia64__) ||		   \
50 	defined(__sh__) || defined(__mips__)
51 static int rx_copybreak = 1518;
52 #else
53 static int rx_copybreak;
54 #endif
55 
56 /* Work-around for broken BIOSes: they are unable to get the chip back out of
57    power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
58 static bool avoid_D3;
59 
60 /*
61  * In case you are looking for 'options[]' or 'full_duplex[]', they
62  * are gone. Use ethtool(8) instead.
63  */
64 
65 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
66    The Rhine has a 64 element 8390-like hash table. */
67 static const int multicast_filter_limit = 32;
68 
69 
70 /* Operational parameters that are set at compile time. */
71 
72 /* Keep the ring sizes a power of two for compile efficiency.
73    The compiler will convert <unsigned>'%'<2^N> into a bit mask.
74    Making the Tx ring too large decreases the effectiveness of channel
75    bonding and packet priority.
76    There are no ill effects from too-large receive rings. */
77 #define TX_RING_SIZE	16
78 #define TX_QUEUE_LEN	10	/* Limit ring entries actually used. */
79 #define RX_RING_SIZE	64
80 
81 /* Operational parameters that usually are not changed. */
82 
83 /* Time in jiffies before concluding the transmitter is hung. */
84 #define TX_TIMEOUT	(2*HZ)
85 
86 #define PKT_BUF_SZ	1536	/* Size of each temporary Rx buffer.*/
87 
88 #include <linux/module.h>
89 #include <linux/moduleparam.h>
90 #include <linux/kernel.h>
91 #include <linux/string.h>
92 #include <linux/timer.h>
93 #include <linux/errno.h>
94 #include <linux/ioport.h>
95 #include <linux/interrupt.h>
96 #include <linux/pci.h>
97 #include <linux/dma-mapping.h>
98 #include <linux/netdevice.h>
99 #include <linux/etherdevice.h>
100 #include <linux/skbuff.h>
101 #include <linux/init.h>
102 #include <linux/delay.h>
103 #include <linux/mii.h>
104 #include <linux/ethtool.h>
105 #include <linux/crc32.h>
106 #include <linux/if_vlan.h>
107 #include <linux/bitops.h>
108 #include <linux/workqueue.h>
109 #include <asm/processor.h>	/* Processor type for cache alignment. */
110 #include <asm/io.h>
111 #include <asm/irq.h>
112 #include <asm/uaccess.h>
113 #include <linux/dmi.h>
114 
115 /* These identify the driver base version and may not be removed. */
116 static const char version[] __devinitconst =
117 	"v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker";
118 
119 /* This driver was written to use PCI memory space. Some early versions
120    of the Rhine may only work correctly with I/O space accesses. */
121 #ifdef CONFIG_VIA_RHINE_MMIO
122 #define USE_MMIO
123 #else
124 #endif
125 
126 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
127 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
128 MODULE_LICENSE("GPL");
129 
130 module_param(debug, int, 0);
131 module_param(rx_copybreak, int, 0);
132 module_param(avoid_D3, bool, 0);
133 MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
134 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
135 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
136 
137 #define MCAM_SIZE	32
138 #define VCAM_SIZE	32
139 
140 /*
141 		Theory of Operation
142 
143 I. Board Compatibility
144 
145 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
146 controller.
147 
148 II. Board-specific settings
149 
150 Boards with this chip are functional only in a bus-master PCI slot.
151 
152 Many operational settings are loaded from the EEPROM to the Config word at
153 offset 0x78. For most of these settings, this driver assumes that they are
154 correct.
155 If this driver is compiled to use PCI memory space operations the EEPROM
156 must be configured to enable memory ops.
157 
158 III. Driver operation
159 
160 IIIa. Ring buffers
161 
162 This driver uses two statically allocated fixed-size descriptor lists
163 formed into rings by a branch from the final descriptor to the beginning of
164 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
165 
166 IIIb/c. Transmit/Receive Structure
167 
168 This driver attempts to use a zero-copy receive and transmit scheme.
169 
170 Alas, all data buffers are required to start on a 32 bit boundary, so
171 the driver must often copy transmit packets into bounce buffers.
172 
173 The driver allocates full frame size skbuffs for the Rx ring buffers at
174 open() time and passes the skb->data field to the chip as receive data
175 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
176 a fresh skbuff is allocated and the frame is copied to the new skbuff.
177 When the incoming frame is larger, the skbuff is passed directly up the
178 protocol stack. Buffers consumed this way are replaced by newly allocated
179 skbuffs in the last phase of rhine_rx().
180 
181 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
182 using a full-sized skbuff for small frames vs. the copying costs of larger
183 frames. New boards are typically used in generously configured machines
184 and the underfilled buffers have negligible impact compared to the benefit of
185 a single allocation size, so the default value of zero results in never
186 copying packets. When copying is done, the cost is usually mitigated by using
187 a combined copy/checksum routine. Copying also preloads the cache, which is
188 most useful with small frames.
189 
190 Since the VIA chips are only able to transfer data to buffers on 32 bit
191 boundaries, the IP header at offset 14 in an ethernet frame isn't
192 longword aligned for further processing. Copying these unaligned buffers
193 has the beneficial effect of 16-byte aligning the IP header.
194 
195 IIId. Synchronization
196 
197 The driver runs as two independent, single-threaded flows of control. One
198 is the send-packet routine, which enforces single-threaded use by the
199 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
200 which is single threaded by the hardware and interrupt handling software.
201 
202 The send packet thread has partial control over the Tx ring. It locks the
203 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
204 the ring is not available it stops the transmit queue by
205 calling netif_stop_queue.
206 
207 The interrupt handler has exclusive control over the Rx ring and records stats
208 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
209 empty by incrementing the dirty_tx mark. If at least half of the entries in
210 the Rx ring are available the transmit queue is woken up if it was stopped.
211 
212 IV. Notes
213 
214 IVb. References
215 
216 Preliminary VT86C100A manual from http://www.via.com.tw/
217 http://www.scyld.com/expert/100mbps.html
218 http://www.scyld.com/expert/NWay.html
219 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
220 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
221 
222 
223 IVc. Errata
224 
225 The VT86C100A manual is not reliable information.
226 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
227 in significant performance degradation for bounce buffer copies on transmit
228 and unaligned IP headers on receive.
229 The chip does not pad to minimum transmit length.
230 
231 */
232 
233 
234 /* This table drives the PCI probe routines. It's mostly boilerplate in all
235    of the drivers, and will likely be provided by some future kernel.
236    Note the matching code -- the first table entry matchs all 56** cards but
237    second only the 1234 card.
238 */
239 
240 enum rhine_revs {
241 	VT86C100A	= 0x00,
242 	VTunknown0	= 0x20,
243 	VT6102		= 0x40,
244 	VT8231		= 0x50,	/* Integrated MAC */
245 	VT8233		= 0x60,	/* Integrated MAC */
246 	VT8235		= 0x74,	/* Integrated MAC */
247 	VT8237		= 0x78,	/* Integrated MAC */
248 	VTunknown1	= 0x7C,
249 	VT6105		= 0x80,
250 	VT6105_B0	= 0x83,
251 	VT6105L		= 0x8A,
252 	VT6107		= 0x8C,
253 	VTunknown2	= 0x8E,
254 	VT6105M		= 0x90,	/* Management adapter */
255 };
256 
257 enum rhine_quirks {
258 	rqWOL		= 0x0001,	/* Wake-On-LAN support */
259 	rqForceReset	= 0x0002,
260 	rq6patterns	= 0x0040,	/* 6 instead of 4 patterns for WOL */
261 	rqStatusWBRace	= 0x0080,	/* Tx Status Writeback Error possible */
262 	rqRhineI	= 0x0100,	/* See comment below */
263 };
264 /*
265  * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
266  * MMIO as well as for the collision counter and the Tx FIFO underflow
267  * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
268  */
269 
270 /* Beware of PCI posted writes */
271 #define IOSYNC	do { ioread8(ioaddr + StationAddr); } while (0)
272 
273 static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = {
274 	{ 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, },	/* VT86C100A */
275 	{ 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6102 */
276 	{ 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, },	/* 6105{,L,LOM} */
277 	{ 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6105M */
278 	{ }	/* terminate list */
279 };
280 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
281 
282 
283 /* Offsets to the device registers. */
284 enum register_offsets {
285 	StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
286 	ChipCmd1=0x09, TQWake=0x0A,
287 	IntrStatus=0x0C, IntrEnable=0x0E,
288 	MulticastFilter0=0x10, MulticastFilter1=0x14,
289 	RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
290 	MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
291 	MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
292 	ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
293 	RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
294 	StickyHW=0x83, IntrStatus2=0x84,
295 	CamMask=0x88, CamCon=0x92, CamAddr=0x93,
296 	WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
297 	WOLcrClr1=0xA6, WOLcgClr=0xA7,
298 	PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
299 };
300 
301 /* Bits in ConfigD */
302 enum backoff_bits {
303 	BackOptional=0x01, BackModify=0x02,
304 	BackCaptureEffect=0x04, BackRandom=0x08
305 };
306 
307 /* Bits in the TxConfig (TCR) register */
308 enum tcr_bits {
309 	TCR_PQEN=0x01,
310 	TCR_LB0=0x02,		/* loopback[0] */
311 	TCR_LB1=0x04,		/* loopback[1] */
312 	TCR_OFSET=0x08,
313 	TCR_RTGOPT=0x10,
314 	TCR_RTFT0=0x20,
315 	TCR_RTFT1=0x40,
316 	TCR_RTSF=0x80,
317 };
318 
319 /* Bits in the CamCon (CAMC) register */
320 enum camcon_bits {
321 	CAMC_CAMEN=0x01,
322 	CAMC_VCAMSL=0x02,
323 	CAMC_CAMWR=0x04,
324 	CAMC_CAMRD=0x08,
325 };
326 
327 /* Bits in the PCIBusConfig1 (BCR1) register */
328 enum bcr1_bits {
329 	BCR1_POT0=0x01,
330 	BCR1_POT1=0x02,
331 	BCR1_POT2=0x04,
332 	BCR1_CTFT0=0x08,
333 	BCR1_CTFT1=0x10,
334 	BCR1_CTSF=0x20,
335 	BCR1_TXQNOBK=0x40,	/* for VT6105 */
336 	BCR1_VIDFR=0x80,	/* for VT6105 */
337 	BCR1_MED0=0x40,		/* for VT6102 */
338 	BCR1_MED1=0x80,		/* for VT6102 */
339 };
340 
341 #ifdef USE_MMIO
342 /* Registers we check that mmio and reg are the same. */
343 static const int mmio_verify_registers[] = {
344 	RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
345 	0
346 };
347 #endif
348 
349 /* Bits in the interrupt status/mask registers. */
350 enum intr_status_bits {
351 	IntrRxDone	= 0x0001,
352 	IntrTxDone	= 0x0002,
353 	IntrRxErr	= 0x0004,
354 	IntrTxError	= 0x0008,
355 	IntrRxEmpty	= 0x0020,
356 	IntrPCIErr	= 0x0040,
357 	IntrStatsMax	= 0x0080,
358 	IntrRxEarly	= 0x0100,
359 	IntrTxUnderrun	= 0x0210,
360 	IntrRxOverflow	= 0x0400,
361 	IntrRxDropped	= 0x0800,
362 	IntrRxNoBuf	= 0x1000,
363 	IntrTxAborted	= 0x2000,
364 	IntrLinkChange	= 0x4000,
365 	IntrRxWakeUp	= 0x8000,
366 	IntrTxDescRace		= 0x080000,	/* mapped from IntrStatus2 */
367 	IntrNormalSummary	= IntrRxDone | IntrTxDone,
368 	IntrTxErrSummary	= IntrTxDescRace | IntrTxAborted | IntrTxError |
369 				  IntrTxUnderrun,
370 };
371 
372 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
373 enum wol_bits {
374 	WOLucast	= 0x10,
375 	WOLmagic	= 0x20,
376 	WOLbmcast	= 0x30,
377 	WOLlnkon	= 0x40,
378 	WOLlnkoff	= 0x80,
379 };
380 
381 /* The Rx and Tx buffer descriptors. */
382 struct rx_desc {
383 	__le32 rx_status;
384 	__le32 desc_length; /* Chain flag, Buffer/frame length */
385 	__le32 addr;
386 	__le32 next_desc;
387 };
388 struct tx_desc {
389 	__le32 tx_status;
390 	__le32 desc_length; /* Chain flag, Tx Config, Frame length */
391 	__le32 addr;
392 	__le32 next_desc;
393 };
394 
395 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
396 #define TXDESC		0x00e08000
397 
398 enum rx_status_bits {
399 	RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
400 };
401 
402 /* Bits in *_desc.*_status */
403 enum desc_status_bits {
404 	DescOwn=0x80000000
405 };
406 
407 /* Bits in *_desc.*_length */
408 enum desc_length_bits {
409 	DescTag=0x00010000
410 };
411 
412 /* Bits in ChipCmd. */
413 enum chip_cmd_bits {
414 	CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
415 	CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
416 	Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
417 	Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
418 };
419 
420 struct rhine_private {
421 	/* Bit mask for configured VLAN ids */
422 	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
423 
424 	/* Descriptor rings */
425 	struct rx_desc *rx_ring;
426 	struct tx_desc *tx_ring;
427 	dma_addr_t rx_ring_dma;
428 	dma_addr_t tx_ring_dma;
429 
430 	/* The addresses of receive-in-place skbuffs. */
431 	struct sk_buff *rx_skbuff[RX_RING_SIZE];
432 	dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
433 
434 	/* The saved address of a sent-in-place packet/buffer, for later free(). */
435 	struct sk_buff *tx_skbuff[TX_RING_SIZE];
436 	dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
437 
438 	/* Tx bounce buffers (Rhine-I only) */
439 	unsigned char *tx_buf[TX_RING_SIZE];
440 	unsigned char *tx_bufs;
441 	dma_addr_t tx_bufs_dma;
442 
443 	struct pci_dev *pdev;
444 	long pioaddr;
445 	struct net_device *dev;
446 	struct napi_struct napi;
447 	spinlock_t lock;
448 	struct mutex task_lock;
449 	bool task_enable;
450 	struct work_struct slow_event_task;
451 	struct work_struct reset_task;
452 
453 	u32 msg_enable;
454 
455 	/* Frequently used values: keep some adjacent for cache effect. */
456 	u32 quirks;
457 	struct rx_desc *rx_head_desc;
458 	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
459 	unsigned int cur_tx, dirty_tx;
460 	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
461 	u8 wolopts;
462 
463 	u8 tx_thresh, rx_thresh;
464 
465 	struct mii_if_info mii_if;
466 	void __iomem *base;
467 };
468 
469 #define BYTE_REG_BITS_ON(x, p)      do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
470 #define WORD_REG_BITS_ON(x, p)      do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
471 #define DWORD_REG_BITS_ON(x, p)     do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
472 
473 #define BYTE_REG_BITS_IS_ON(x, p)   (ioread8((p)) & (x))
474 #define WORD_REG_BITS_IS_ON(x, p)   (ioread16((p)) & (x))
475 #define DWORD_REG_BITS_IS_ON(x, p)  (ioread32((p)) & (x))
476 
477 #define BYTE_REG_BITS_OFF(x, p)     do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
478 #define WORD_REG_BITS_OFF(x, p)     do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
479 #define DWORD_REG_BITS_OFF(x, p)    do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
480 
481 #define BYTE_REG_BITS_SET(x, m, p)   do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
482 #define WORD_REG_BITS_SET(x, m, p)   do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
483 #define DWORD_REG_BITS_SET(x, m, p)  do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
484 
485 
486 static int  mdio_read(struct net_device *dev, int phy_id, int location);
487 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
488 static int  rhine_open(struct net_device *dev);
489 static void rhine_reset_task(struct work_struct *work);
490 static void rhine_slow_event_task(struct work_struct *work);
491 static void rhine_tx_timeout(struct net_device *dev);
492 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
493 				  struct net_device *dev);
494 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
495 static void rhine_tx(struct net_device *dev);
496 static int rhine_rx(struct net_device *dev, int limit);
497 static void rhine_set_rx_mode(struct net_device *dev);
498 static struct net_device_stats *rhine_get_stats(struct net_device *dev);
499 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
500 static const struct ethtool_ops netdev_ethtool_ops;
501 static int  rhine_close(struct net_device *dev);
502 static int rhine_vlan_rx_add_vid(struct net_device *dev, unsigned short vid);
503 static int rhine_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid);
504 static void rhine_restart_tx(struct net_device *dev);
505 
506 static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool high)
507 {
508 	void __iomem *ioaddr = rp->base;
509 	int i;
510 
511 	for (i = 0; i < 1024; i++) {
512 		if (high ^ !!(ioread8(ioaddr + reg) & mask))
513 			break;
514 		udelay(10);
515 	}
516 	if (i > 64) {
517 		netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
518 			  "count: %04d\n", high ? "high" : "low", reg, mask, i);
519 	}
520 }
521 
522 static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
523 {
524 	rhine_wait_bit(rp, reg, mask, true);
525 }
526 
527 static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
528 {
529 	rhine_wait_bit(rp, reg, mask, false);
530 }
531 
532 static u32 rhine_get_events(struct rhine_private *rp)
533 {
534 	void __iomem *ioaddr = rp->base;
535 	u32 intr_status;
536 
537 	intr_status = ioread16(ioaddr + IntrStatus);
538 	/* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
539 	if (rp->quirks & rqStatusWBRace)
540 		intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
541 	return intr_status;
542 }
543 
544 static void rhine_ack_events(struct rhine_private *rp, u32 mask)
545 {
546 	void __iomem *ioaddr = rp->base;
547 
548 	if (rp->quirks & rqStatusWBRace)
549 		iowrite8(mask >> 16, ioaddr + IntrStatus2);
550 	iowrite16(mask, ioaddr + IntrStatus);
551 	mmiowb();
552 }
553 
554 /*
555  * Get power related registers into sane state.
556  * Notify user about past WOL event.
557  */
558 static void rhine_power_init(struct net_device *dev)
559 {
560 	struct rhine_private *rp = netdev_priv(dev);
561 	void __iomem *ioaddr = rp->base;
562 	u16 wolstat;
563 
564 	if (rp->quirks & rqWOL) {
565 		/* Make sure chip is in power state D0 */
566 		iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
567 
568 		/* Disable "force PME-enable" */
569 		iowrite8(0x80, ioaddr + WOLcgClr);
570 
571 		/* Clear power-event config bits (WOL) */
572 		iowrite8(0xFF, ioaddr + WOLcrClr);
573 		/* More recent cards can manage two additional patterns */
574 		if (rp->quirks & rq6patterns)
575 			iowrite8(0x03, ioaddr + WOLcrClr1);
576 
577 		/* Save power-event status bits */
578 		wolstat = ioread8(ioaddr + PwrcsrSet);
579 		if (rp->quirks & rq6patterns)
580 			wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
581 
582 		/* Clear power-event status bits */
583 		iowrite8(0xFF, ioaddr + PwrcsrClr);
584 		if (rp->quirks & rq6patterns)
585 			iowrite8(0x03, ioaddr + PwrcsrClr1);
586 
587 		if (wolstat) {
588 			char *reason;
589 			switch (wolstat) {
590 			case WOLmagic:
591 				reason = "Magic packet";
592 				break;
593 			case WOLlnkon:
594 				reason = "Link went up";
595 				break;
596 			case WOLlnkoff:
597 				reason = "Link went down";
598 				break;
599 			case WOLucast:
600 				reason = "Unicast packet";
601 				break;
602 			case WOLbmcast:
603 				reason = "Multicast/broadcast packet";
604 				break;
605 			default:
606 				reason = "Unknown";
607 			}
608 			netdev_info(dev, "Woke system up. Reason: %s\n",
609 				    reason);
610 		}
611 	}
612 }
613 
614 static void rhine_chip_reset(struct net_device *dev)
615 {
616 	struct rhine_private *rp = netdev_priv(dev);
617 	void __iomem *ioaddr = rp->base;
618 	u8 cmd1;
619 
620 	iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
621 	IOSYNC;
622 
623 	if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
624 		netdev_info(dev, "Reset not complete yet. Trying harder.\n");
625 
626 		/* Force reset */
627 		if (rp->quirks & rqForceReset)
628 			iowrite8(0x40, ioaddr + MiscCmd);
629 
630 		/* Reset can take somewhat longer (rare) */
631 		rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
632 	}
633 
634 	cmd1 = ioread8(ioaddr + ChipCmd1);
635 	netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
636 		   "failed" : "succeeded");
637 }
638 
639 #ifdef USE_MMIO
640 static void enable_mmio(long pioaddr, u32 quirks)
641 {
642 	int n;
643 	if (quirks & rqRhineI) {
644 		/* More recent docs say that this bit is reserved ... */
645 		n = inb(pioaddr + ConfigA) | 0x20;
646 		outb(n, pioaddr + ConfigA);
647 	} else {
648 		n = inb(pioaddr + ConfigD) | 0x80;
649 		outb(n, pioaddr + ConfigD);
650 	}
651 }
652 #endif
653 
654 /*
655  * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
656  * (plus 0x6C for Rhine-I/II)
657  */
658 static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
659 {
660 	struct rhine_private *rp = netdev_priv(dev);
661 	void __iomem *ioaddr = rp->base;
662 	int i;
663 
664 	outb(0x20, pioaddr + MACRegEEcsr);
665 	for (i = 0; i < 1024; i++) {
666 		if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
667 			break;
668 	}
669 	if (i > 512)
670 		pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
671 
672 #ifdef USE_MMIO
673 	/*
674 	 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
675 	 * MMIO. If reloading EEPROM was done first this could be avoided, but
676 	 * it is not known if that still works with the "win98-reboot" problem.
677 	 */
678 	enable_mmio(pioaddr, rp->quirks);
679 #endif
680 
681 	/* Turn off EEPROM-controlled wake-up (magic packet) */
682 	if (rp->quirks & rqWOL)
683 		iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
684 
685 }
686 
687 #ifdef CONFIG_NET_POLL_CONTROLLER
688 static void rhine_poll(struct net_device *dev)
689 {
690 	disable_irq(dev->irq);
691 	rhine_interrupt(dev->irq, (void *)dev);
692 	enable_irq(dev->irq);
693 }
694 #endif
695 
696 static void rhine_kick_tx_threshold(struct rhine_private *rp)
697 {
698 	if (rp->tx_thresh < 0xe0) {
699 		void __iomem *ioaddr = rp->base;
700 
701 		rp->tx_thresh += 0x20;
702 		BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
703 	}
704 }
705 
706 static void rhine_tx_err(struct rhine_private *rp, u32 status)
707 {
708 	struct net_device *dev = rp->dev;
709 
710 	if (status & IntrTxAborted) {
711 		netif_info(rp, tx_err, dev,
712 			   "Abort %08x, frame dropped\n", status);
713 	}
714 
715 	if (status & IntrTxUnderrun) {
716 		rhine_kick_tx_threshold(rp);
717 		netif_info(rp, tx_err ,dev, "Transmitter underrun, "
718 			   "Tx threshold now %02x\n", rp->tx_thresh);
719 	}
720 
721 	if (status & IntrTxDescRace)
722 		netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
723 
724 	if ((status & IntrTxError) &&
725 	    (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
726 		rhine_kick_tx_threshold(rp);
727 		netif_info(rp, tx_err, dev, "Unspecified error. "
728 			   "Tx threshold now %02x\n", rp->tx_thresh);
729 	}
730 
731 	rhine_restart_tx(dev);
732 }
733 
734 static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
735 {
736 	void __iomem *ioaddr = rp->base;
737 	struct net_device_stats *stats = &rp->dev->stats;
738 
739 	stats->rx_crc_errors    += ioread16(ioaddr + RxCRCErrs);
740 	stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
741 
742 	/*
743 	 * Clears the "tally counters" for CRC errors and missed frames(?).
744 	 * It has been reported that some chips need a write of 0 to clear
745 	 * these, for others the counters are set to 1 when written to and
746 	 * instead cleared when read. So we clear them both ways ...
747 	 */
748 	iowrite32(0, ioaddr + RxMissed);
749 	ioread16(ioaddr + RxCRCErrs);
750 	ioread16(ioaddr + RxMissed);
751 }
752 
753 #define RHINE_EVENT_NAPI_RX	(IntrRxDone | \
754 				 IntrRxErr | \
755 				 IntrRxEmpty | \
756 				 IntrRxOverflow	| \
757 				 IntrRxDropped | \
758 				 IntrRxNoBuf | \
759 				 IntrRxWakeUp)
760 
761 #define RHINE_EVENT_NAPI_TX_ERR	(IntrTxError | \
762 				 IntrTxAborted | \
763 				 IntrTxUnderrun | \
764 				 IntrTxDescRace)
765 #define RHINE_EVENT_NAPI_TX	(IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
766 
767 #define RHINE_EVENT_NAPI	(RHINE_EVENT_NAPI_RX | \
768 				 RHINE_EVENT_NAPI_TX | \
769 				 IntrStatsMax)
770 #define RHINE_EVENT_SLOW	(IntrPCIErr | IntrLinkChange)
771 #define RHINE_EVENT		(RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
772 
773 static int rhine_napipoll(struct napi_struct *napi, int budget)
774 {
775 	struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
776 	struct net_device *dev = rp->dev;
777 	void __iomem *ioaddr = rp->base;
778 	u16 enable_mask = RHINE_EVENT & 0xffff;
779 	int work_done = 0;
780 	u32 status;
781 
782 	status = rhine_get_events(rp);
783 	rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
784 
785 	if (status & RHINE_EVENT_NAPI_RX)
786 		work_done += rhine_rx(dev, budget);
787 
788 	if (status & RHINE_EVENT_NAPI_TX) {
789 		if (status & RHINE_EVENT_NAPI_TX_ERR) {
790 			/* Avoid scavenging before Tx engine turned off */
791 			rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
792 			if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
793 				netif_warn(rp, tx_err, dev, "Tx still on\n");
794 		}
795 
796 		rhine_tx(dev);
797 
798 		if (status & RHINE_EVENT_NAPI_TX_ERR)
799 			rhine_tx_err(rp, status);
800 	}
801 
802 	if (status & IntrStatsMax) {
803 		spin_lock(&rp->lock);
804 		rhine_update_rx_crc_and_missed_errord(rp);
805 		spin_unlock(&rp->lock);
806 	}
807 
808 	if (status & RHINE_EVENT_SLOW) {
809 		enable_mask &= ~RHINE_EVENT_SLOW;
810 		schedule_work(&rp->slow_event_task);
811 	}
812 
813 	if (work_done < budget) {
814 		napi_complete(napi);
815 		iowrite16(enable_mask, ioaddr + IntrEnable);
816 		mmiowb();
817 	}
818 	return work_done;
819 }
820 
821 static void __devinit rhine_hw_init(struct net_device *dev, long pioaddr)
822 {
823 	struct rhine_private *rp = netdev_priv(dev);
824 
825 	/* Reset the chip to erase previous misconfiguration. */
826 	rhine_chip_reset(dev);
827 
828 	/* Rhine-I needs extra time to recuperate before EEPROM reload */
829 	if (rp->quirks & rqRhineI)
830 		msleep(5);
831 
832 	/* Reload EEPROM controlled bytes cleared by soft reset */
833 	rhine_reload_eeprom(pioaddr, dev);
834 }
835 
836 static const struct net_device_ops rhine_netdev_ops = {
837 	.ndo_open		 = rhine_open,
838 	.ndo_stop		 = rhine_close,
839 	.ndo_start_xmit		 = rhine_start_tx,
840 	.ndo_get_stats		 = rhine_get_stats,
841 	.ndo_set_rx_mode	 = rhine_set_rx_mode,
842 	.ndo_change_mtu		 = eth_change_mtu,
843 	.ndo_validate_addr	 = eth_validate_addr,
844 	.ndo_set_mac_address 	 = eth_mac_addr,
845 	.ndo_do_ioctl		 = netdev_ioctl,
846 	.ndo_tx_timeout 	 = rhine_tx_timeout,
847 	.ndo_vlan_rx_add_vid	 = rhine_vlan_rx_add_vid,
848 	.ndo_vlan_rx_kill_vid	 = rhine_vlan_rx_kill_vid,
849 #ifdef CONFIG_NET_POLL_CONTROLLER
850 	.ndo_poll_controller	 = rhine_poll,
851 #endif
852 };
853 
854 static int __devinit rhine_init_one(struct pci_dev *pdev,
855 				    const struct pci_device_id *ent)
856 {
857 	struct net_device *dev;
858 	struct rhine_private *rp;
859 	int i, rc;
860 	u32 quirks;
861 	long pioaddr;
862 	long memaddr;
863 	void __iomem *ioaddr;
864 	int io_size, phy_id;
865 	const char *name;
866 #ifdef USE_MMIO
867 	int bar = 1;
868 #else
869 	int bar = 0;
870 #endif
871 
872 /* when built into the kernel, we only print version if device is found */
873 #ifndef MODULE
874 	pr_info_once("%s\n", version);
875 #endif
876 
877 	io_size = 256;
878 	phy_id = 0;
879 	quirks = 0;
880 	name = "Rhine";
881 	if (pdev->revision < VTunknown0) {
882 		quirks = rqRhineI;
883 		io_size = 128;
884 	}
885 	else if (pdev->revision >= VT6102) {
886 		quirks = rqWOL | rqForceReset;
887 		if (pdev->revision < VT6105) {
888 			name = "Rhine II";
889 			quirks |= rqStatusWBRace;	/* Rhine-II exclusive */
890 		}
891 		else {
892 			phy_id = 1;	/* Integrated PHY, phy_id fixed to 1 */
893 			if (pdev->revision >= VT6105_B0)
894 				quirks |= rq6patterns;
895 			if (pdev->revision < VT6105M)
896 				name = "Rhine III";
897 			else
898 				name = "Rhine III (Management Adapter)";
899 		}
900 	}
901 
902 	rc = pci_enable_device(pdev);
903 	if (rc)
904 		goto err_out;
905 
906 	/* this should always be supported */
907 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
908 	if (rc) {
909 		dev_err(&pdev->dev,
910 			"32-bit PCI DMA addresses not supported by the card!?\n");
911 		goto err_out;
912 	}
913 
914 	/* sanity check */
915 	if ((pci_resource_len(pdev, 0) < io_size) ||
916 	    (pci_resource_len(pdev, 1) < io_size)) {
917 		rc = -EIO;
918 		dev_err(&pdev->dev, "Insufficient PCI resources, aborting\n");
919 		goto err_out;
920 	}
921 
922 	pioaddr = pci_resource_start(pdev, 0);
923 	memaddr = pci_resource_start(pdev, 1);
924 
925 	pci_set_master(pdev);
926 
927 	dev = alloc_etherdev(sizeof(struct rhine_private));
928 	if (!dev) {
929 		rc = -ENOMEM;
930 		dev_err(&pdev->dev, "alloc_etherdev failed\n");
931 		goto err_out;
932 	}
933 	SET_NETDEV_DEV(dev, &pdev->dev);
934 
935 	rp = netdev_priv(dev);
936 	rp->dev = dev;
937 	rp->quirks = quirks;
938 	rp->pioaddr = pioaddr;
939 	rp->pdev = pdev;
940 	rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
941 
942 	rc = pci_request_regions(pdev, DRV_NAME);
943 	if (rc)
944 		goto err_out_free_netdev;
945 
946 	ioaddr = pci_iomap(pdev, bar, io_size);
947 	if (!ioaddr) {
948 		rc = -EIO;
949 		dev_err(&pdev->dev,
950 			"ioremap failed for device %s, region 0x%X @ 0x%lX\n",
951 			pci_name(pdev), io_size, memaddr);
952 		goto err_out_free_res;
953 	}
954 
955 #ifdef USE_MMIO
956 	enable_mmio(pioaddr, quirks);
957 
958 	/* Check that selected MMIO registers match the PIO ones */
959 	i = 0;
960 	while (mmio_verify_registers[i]) {
961 		int reg = mmio_verify_registers[i++];
962 		unsigned char a = inb(pioaddr+reg);
963 		unsigned char b = readb(ioaddr+reg);
964 		if (a != b) {
965 			rc = -EIO;
966 			dev_err(&pdev->dev,
967 				"MMIO do not match PIO [%02x] (%02x != %02x)\n",
968 				reg, a, b);
969 			goto err_out_unmap;
970 		}
971 	}
972 #endif /* USE_MMIO */
973 
974 	dev->base_addr = (unsigned long)ioaddr;
975 	rp->base = ioaddr;
976 
977 	/* Get chip registers into a sane state */
978 	rhine_power_init(dev);
979 	rhine_hw_init(dev, pioaddr);
980 
981 	for (i = 0; i < 6; i++)
982 		dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
983 
984 	if (!is_valid_ether_addr(dev->dev_addr)) {
985 		/* Report it and use a random ethernet address instead */
986 		netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
987 		random_ether_addr(dev->dev_addr);
988 		netdev_info(dev, "Using random MAC address: %pM\n",
989 			    dev->dev_addr);
990 	}
991 	memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
992 
993 	/* For Rhine-I/II, phy_id is loaded from EEPROM */
994 	if (!phy_id)
995 		phy_id = ioread8(ioaddr + 0x6C);
996 
997 	dev->irq = pdev->irq;
998 
999 	spin_lock_init(&rp->lock);
1000 	mutex_init(&rp->task_lock);
1001 	INIT_WORK(&rp->reset_task, rhine_reset_task);
1002 	INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
1003 
1004 	rp->mii_if.dev = dev;
1005 	rp->mii_if.mdio_read = mdio_read;
1006 	rp->mii_if.mdio_write = mdio_write;
1007 	rp->mii_if.phy_id_mask = 0x1f;
1008 	rp->mii_if.reg_num_mask = 0x1f;
1009 
1010 	/* The chip-specific entries in the device structure. */
1011 	dev->netdev_ops = &rhine_netdev_ops;
1012 	dev->ethtool_ops = &netdev_ethtool_ops,
1013 	dev->watchdog_timeo = TX_TIMEOUT;
1014 
1015 	netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
1016 
1017 	if (rp->quirks & rqRhineI)
1018 		dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
1019 
1020 	if (pdev->revision >= VT6105M)
1021 		dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
1022 		NETIF_F_HW_VLAN_FILTER;
1023 
1024 	/* dev->name not defined before register_netdev()! */
1025 	rc = register_netdev(dev);
1026 	if (rc)
1027 		goto err_out_unmap;
1028 
1029 	netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n",
1030 		    name,
1031 #ifdef USE_MMIO
1032 		    memaddr,
1033 #else
1034 		    (long)ioaddr,
1035 #endif
1036 		    dev->dev_addr, pdev->irq);
1037 
1038 	pci_set_drvdata(pdev, dev);
1039 
1040 	{
1041 		u16 mii_cmd;
1042 		int mii_status = mdio_read(dev, phy_id, 1);
1043 		mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
1044 		mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
1045 		if (mii_status != 0xffff && mii_status != 0x0000) {
1046 			rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
1047 			netdev_info(dev,
1048 				    "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
1049 				    phy_id,
1050 				    mii_status, rp->mii_if.advertising,
1051 				    mdio_read(dev, phy_id, 5));
1052 
1053 			/* set IFF_RUNNING */
1054 			if (mii_status & BMSR_LSTATUS)
1055 				netif_carrier_on(dev);
1056 			else
1057 				netif_carrier_off(dev);
1058 
1059 		}
1060 	}
1061 	rp->mii_if.phy_id = phy_id;
1062 	if (avoid_D3)
1063 		netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
1064 
1065 	return 0;
1066 
1067 err_out_unmap:
1068 	pci_iounmap(pdev, ioaddr);
1069 err_out_free_res:
1070 	pci_release_regions(pdev);
1071 err_out_free_netdev:
1072 	free_netdev(dev);
1073 err_out:
1074 	return rc;
1075 }
1076 
1077 static int alloc_ring(struct net_device* dev)
1078 {
1079 	struct rhine_private *rp = netdev_priv(dev);
1080 	void *ring;
1081 	dma_addr_t ring_dma;
1082 
1083 	ring = pci_alloc_consistent(rp->pdev,
1084 				    RX_RING_SIZE * sizeof(struct rx_desc) +
1085 				    TX_RING_SIZE * sizeof(struct tx_desc),
1086 				    &ring_dma);
1087 	if (!ring) {
1088 		netdev_err(dev, "Could not allocate DMA memory\n");
1089 		return -ENOMEM;
1090 	}
1091 	if (rp->quirks & rqRhineI) {
1092 		rp->tx_bufs = pci_alloc_consistent(rp->pdev,
1093 						   PKT_BUF_SZ * TX_RING_SIZE,
1094 						   &rp->tx_bufs_dma);
1095 		if (rp->tx_bufs == NULL) {
1096 			pci_free_consistent(rp->pdev,
1097 				    RX_RING_SIZE * sizeof(struct rx_desc) +
1098 				    TX_RING_SIZE * sizeof(struct tx_desc),
1099 				    ring, ring_dma);
1100 			return -ENOMEM;
1101 		}
1102 	}
1103 
1104 	rp->rx_ring = ring;
1105 	rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
1106 	rp->rx_ring_dma = ring_dma;
1107 	rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
1108 
1109 	return 0;
1110 }
1111 
1112 static void free_ring(struct net_device* dev)
1113 {
1114 	struct rhine_private *rp = netdev_priv(dev);
1115 
1116 	pci_free_consistent(rp->pdev,
1117 			    RX_RING_SIZE * sizeof(struct rx_desc) +
1118 			    TX_RING_SIZE * sizeof(struct tx_desc),
1119 			    rp->rx_ring, rp->rx_ring_dma);
1120 	rp->tx_ring = NULL;
1121 
1122 	if (rp->tx_bufs)
1123 		pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
1124 				    rp->tx_bufs, rp->tx_bufs_dma);
1125 
1126 	rp->tx_bufs = NULL;
1127 
1128 }
1129 
1130 static void alloc_rbufs(struct net_device *dev)
1131 {
1132 	struct rhine_private *rp = netdev_priv(dev);
1133 	dma_addr_t next;
1134 	int i;
1135 
1136 	rp->dirty_rx = rp->cur_rx = 0;
1137 
1138 	rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1139 	rp->rx_head_desc = &rp->rx_ring[0];
1140 	next = rp->rx_ring_dma;
1141 
1142 	/* Init the ring entries */
1143 	for (i = 0; i < RX_RING_SIZE; i++) {
1144 		rp->rx_ring[i].rx_status = 0;
1145 		rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
1146 		next += sizeof(struct rx_desc);
1147 		rp->rx_ring[i].next_desc = cpu_to_le32(next);
1148 		rp->rx_skbuff[i] = NULL;
1149 	}
1150 	/* Mark the last entry as wrapping the ring. */
1151 	rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
1152 
1153 	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1154 	for (i = 0; i < RX_RING_SIZE; i++) {
1155 		struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1156 		rp->rx_skbuff[i] = skb;
1157 		if (skb == NULL)
1158 			break;
1159 		skb->dev = dev;                 /* Mark as being used by this device. */
1160 
1161 		rp->rx_skbuff_dma[i] =
1162 			pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
1163 				       PCI_DMA_FROMDEVICE);
1164 
1165 		rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
1166 		rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1167 	}
1168 	rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1169 }
1170 
1171 static void free_rbufs(struct net_device* dev)
1172 {
1173 	struct rhine_private *rp = netdev_priv(dev);
1174 	int i;
1175 
1176 	/* Free all the skbuffs in the Rx queue. */
1177 	for (i = 0; i < RX_RING_SIZE; i++) {
1178 		rp->rx_ring[i].rx_status = 0;
1179 		rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1180 		if (rp->rx_skbuff[i]) {
1181 			pci_unmap_single(rp->pdev,
1182 					 rp->rx_skbuff_dma[i],
1183 					 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1184 			dev_kfree_skb(rp->rx_skbuff[i]);
1185 		}
1186 		rp->rx_skbuff[i] = NULL;
1187 	}
1188 }
1189 
1190 static void alloc_tbufs(struct net_device* dev)
1191 {
1192 	struct rhine_private *rp = netdev_priv(dev);
1193 	dma_addr_t next;
1194 	int i;
1195 
1196 	rp->dirty_tx = rp->cur_tx = 0;
1197 	next = rp->tx_ring_dma;
1198 	for (i = 0; i < TX_RING_SIZE; i++) {
1199 		rp->tx_skbuff[i] = NULL;
1200 		rp->tx_ring[i].tx_status = 0;
1201 		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1202 		next += sizeof(struct tx_desc);
1203 		rp->tx_ring[i].next_desc = cpu_to_le32(next);
1204 		if (rp->quirks & rqRhineI)
1205 			rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1206 	}
1207 	rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1208 
1209 }
1210 
1211 static void free_tbufs(struct net_device* dev)
1212 {
1213 	struct rhine_private *rp = netdev_priv(dev);
1214 	int i;
1215 
1216 	for (i = 0; i < TX_RING_SIZE; i++) {
1217 		rp->tx_ring[i].tx_status = 0;
1218 		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1219 		rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1220 		if (rp->tx_skbuff[i]) {
1221 			if (rp->tx_skbuff_dma[i]) {
1222 				pci_unmap_single(rp->pdev,
1223 						 rp->tx_skbuff_dma[i],
1224 						 rp->tx_skbuff[i]->len,
1225 						 PCI_DMA_TODEVICE);
1226 			}
1227 			dev_kfree_skb(rp->tx_skbuff[i]);
1228 		}
1229 		rp->tx_skbuff[i] = NULL;
1230 		rp->tx_buf[i] = NULL;
1231 	}
1232 }
1233 
1234 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1235 {
1236 	struct rhine_private *rp = netdev_priv(dev);
1237 	void __iomem *ioaddr = rp->base;
1238 
1239 	mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
1240 
1241 	if (rp->mii_if.full_duplex)
1242 	    iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1243 		   ioaddr + ChipCmd1);
1244 	else
1245 	    iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1246 		   ioaddr + ChipCmd1);
1247 
1248 	netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1249 		   rp->mii_if.force_media, netif_carrier_ok(dev));
1250 }
1251 
1252 /* Called after status of force_media possibly changed */
1253 static void rhine_set_carrier(struct mii_if_info *mii)
1254 {
1255 	struct net_device *dev = mii->dev;
1256 	struct rhine_private *rp = netdev_priv(dev);
1257 
1258 	if (mii->force_media) {
1259 		/* autoneg is off: Link is always assumed to be up */
1260 		if (!netif_carrier_ok(dev))
1261 			netif_carrier_on(dev);
1262 	} else	/* Let MMI library update carrier status */
1263 		rhine_check_media(dev, 0);
1264 
1265 	netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1266 		   mii->force_media, netif_carrier_ok(dev));
1267 }
1268 
1269 /**
1270  * rhine_set_cam - set CAM multicast filters
1271  * @ioaddr: register block of this Rhine
1272  * @idx: multicast CAM index [0..MCAM_SIZE-1]
1273  * @addr: multicast address (6 bytes)
1274  *
1275  * Load addresses into multicast filters.
1276  */
1277 static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
1278 {
1279 	int i;
1280 
1281 	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1282 	wmb();
1283 
1284 	/* Paranoid -- idx out of range should never happen */
1285 	idx &= (MCAM_SIZE - 1);
1286 
1287 	iowrite8((u8) idx, ioaddr + CamAddr);
1288 
1289 	for (i = 0; i < 6; i++, addr++)
1290 		iowrite8(*addr, ioaddr + MulticastFilter0 + i);
1291 	udelay(10);
1292 	wmb();
1293 
1294 	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1295 	udelay(10);
1296 
1297 	iowrite8(0, ioaddr + CamCon);
1298 }
1299 
1300 /**
1301  * rhine_set_vlan_cam - set CAM VLAN filters
1302  * @ioaddr: register block of this Rhine
1303  * @idx: VLAN CAM index [0..VCAM_SIZE-1]
1304  * @addr: VLAN ID (2 bytes)
1305  *
1306  * Load addresses into VLAN filters.
1307  */
1308 static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
1309 {
1310 	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1311 	wmb();
1312 
1313 	/* Paranoid -- idx out of range should never happen */
1314 	idx &= (VCAM_SIZE - 1);
1315 
1316 	iowrite8((u8) idx, ioaddr + CamAddr);
1317 
1318 	iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
1319 	udelay(10);
1320 	wmb();
1321 
1322 	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1323 	udelay(10);
1324 
1325 	iowrite8(0, ioaddr + CamCon);
1326 }
1327 
1328 /**
1329  * rhine_set_cam_mask - set multicast CAM mask
1330  * @ioaddr: register block of this Rhine
1331  * @mask: multicast CAM mask
1332  *
1333  * Mask sets multicast filters active/inactive.
1334  */
1335 static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
1336 {
1337 	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1338 	wmb();
1339 
1340 	/* write mask */
1341 	iowrite32(mask, ioaddr + CamMask);
1342 
1343 	/* disable CAMEN */
1344 	iowrite8(0, ioaddr + CamCon);
1345 }
1346 
1347 /**
1348  * rhine_set_vlan_cam_mask - set VLAN CAM mask
1349  * @ioaddr: register block of this Rhine
1350  * @mask: VLAN CAM mask
1351  *
1352  * Mask sets VLAN filters active/inactive.
1353  */
1354 static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
1355 {
1356 	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1357 	wmb();
1358 
1359 	/* write mask */
1360 	iowrite32(mask, ioaddr + CamMask);
1361 
1362 	/* disable CAMEN */
1363 	iowrite8(0, ioaddr + CamCon);
1364 }
1365 
1366 /**
1367  * rhine_init_cam_filter - initialize CAM filters
1368  * @dev: network device
1369  *
1370  * Initialize (disable) hardware VLAN and multicast support on this
1371  * Rhine.
1372  */
1373 static void rhine_init_cam_filter(struct net_device *dev)
1374 {
1375 	struct rhine_private *rp = netdev_priv(dev);
1376 	void __iomem *ioaddr = rp->base;
1377 
1378 	/* Disable all CAMs */
1379 	rhine_set_vlan_cam_mask(ioaddr, 0);
1380 	rhine_set_cam_mask(ioaddr, 0);
1381 
1382 	/* disable hardware VLAN support */
1383 	BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
1384 	BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
1385 }
1386 
1387 /**
1388  * rhine_update_vcam - update VLAN CAM filters
1389  * @rp: rhine_private data of this Rhine
1390  *
1391  * Update VLAN CAM filters to match configuration change.
1392  */
1393 static void rhine_update_vcam(struct net_device *dev)
1394 {
1395 	struct rhine_private *rp = netdev_priv(dev);
1396 	void __iomem *ioaddr = rp->base;
1397 	u16 vid;
1398 	u32 vCAMmask = 0;	/* 32 vCAMs (6105M and better) */
1399 	unsigned int i = 0;
1400 
1401 	for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
1402 		rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
1403 		vCAMmask |= 1 << i;
1404 		if (++i >= VCAM_SIZE)
1405 			break;
1406 	}
1407 	rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
1408 }
1409 
1410 static int rhine_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
1411 {
1412 	struct rhine_private *rp = netdev_priv(dev);
1413 
1414 	spin_lock_bh(&rp->lock);
1415 	set_bit(vid, rp->active_vlans);
1416 	rhine_update_vcam(dev);
1417 	spin_unlock_bh(&rp->lock);
1418 	return 0;
1419 }
1420 
1421 static int rhine_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
1422 {
1423 	struct rhine_private *rp = netdev_priv(dev);
1424 
1425 	spin_lock_bh(&rp->lock);
1426 	clear_bit(vid, rp->active_vlans);
1427 	rhine_update_vcam(dev);
1428 	spin_unlock_bh(&rp->lock);
1429 	return 0;
1430 }
1431 
1432 static void init_registers(struct net_device *dev)
1433 {
1434 	struct rhine_private *rp = netdev_priv(dev);
1435 	void __iomem *ioaddr = rp->base;
1436 	int i;
1437 
1438 	for (i = 0; i < 6; i++)
1439 		iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1440 
1441 	/* Initialize other registers. */
1442 	iowrite16(0x0006, ioaddr + PCIBusConfig);	/* Tune configuration??? */
1443 	/* Configure initial FIFO thresholds. */
1444 	iowrite8(0x20, ioaddr + TxConfig);
1445 	rp->tx_thresh = 0x20;
1446 	rp->rx_thresh = 0x60;		/* Written in rhine_set_rx_mode(). */
1447 
1448 	iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1449 	iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1450 
1451 	rhine_set_rx_mode(dev);
1452 
1453 	if (rp->pdev->revision >= VT6105M)
1454 		rhine_init_cam_filter(dev);
1455 
1456 	napi_enable(&rp->napi);
1457 
1458 	iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
1459 
1460 	iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1461 	       ioaddr + ChipCmd);
1462 	rhine_check_media(dev, 1);
1463 }
1464 
1465 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1466 static void rhine_enable_linkmon(struct rhine_private *rp)
1467 {
1468 	void __iomem *ioaddr = rp->base;
1469 
1470 	iowrite8(0, ioaddr + MIICmd);
1471 	iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1472 	iowrite8(0x80, ioaddr + MIICmd);
1473 
1474 	rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1475 
1476 	iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1477 }
1478 
1479 /* Disable MII link status auto-polling (required for MDIO access) */
1480 static void rhine_disable_linkmon(struct rhine_private *rp)
1481 {
1482 	void __iomem *ioaddr = rp->base;
1483 
1484 	iowrite8(0, ioaddr + MIICmd);
1485 
1486 	if (rp->quirks & rqRhineI) {
1487 		iowrite8(0x01, ioaddr + MIIRegAddr);	// MII_BMSR
1488 
1489 		/* Can be called from ISR. Evil. */
1490 		mdelay(1);
1491 
1492 		/* 0x80 must be set immediately before turning it off */
1493 		iowrite8(0x80, ioaddr + MIICmd);
1494 
1495 		rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1496 
1497 		/* Heh. Now clear 0x80 again. */
1498 		iowrite8(0, ioaddr + MIICmd);
1499 	}
1500 	else
1501 		rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
1502 }
1503 
1504 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1505 
1506 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1507 {
1508 	struct rhine_private *rp = netdev_priv(dev);
1509 	void __iomem *ioaddr = rp->base;
1510 	int result;
1511 
1512 	rhine_disable_linkmon(rp);
1513 
1514 	/* rhine_disable_linkmon already cleared MIICmd */
1515 	iowrite8(phy_id, ioaddr + MIIPhyAddr);
1516 	iowrite8(regnum, ioaddr + MIIRegAddr);
1517 	iowrite8(0x40, ioaddr + MIICmd);		/* Trigger read */
1518 	rhine_wait_bit_low(rp, MIICmd, 0x40);
1519 	result = ioread16(ioaddr + MIIData);
1520 
1521 	rhine_enable_linkmon(rp);
1522 	return result;
1523 }
1524 
1525 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1526 {
1527 	struct rhine_private *rp = netdev_priv(dev);
1528 	void __iomem *ioaddr = rp->base;
1529 
1530 	rhine_disable_linkmon(rp);
1531 
1532 	/* rhine_disable_linkmon already cleared MIICmd */
1533 	iowrite8(phy_id, ioaddr + MIIPhyAddr);
1534 	iowrite8(regnum, ioaddr + MIIRegAddr);
1535 	iowrite16(value, ioaddr + MIIData);
1536 	iowrite8(0x20, ioaddr + MIICmd);		/* Trigger write */
1537 	rhine_wait_bit_low(rp, MIICmd, 0x20);
1538 
1539 	rhine_enable_linkmon(rp);
1540 }
1541 
1542 static void rhine_task_disable(struct rhine_private *rp)
1543 {
1544 	mutex_lock(&rp->task_lock);
1545 	rp->task_enable = false;
1546 	mutex_unlock(&rp->task_lock);
1547 
1548 	cancel_work_sync(&rp->slow_event_task);
1549 	cancel_work_sync(&rp->reset_task);
1550 }
1551 
1552 static void rhine_task_enable(struct rhine_private *rp)
1553 {
1554 	mutex_lock(&rp->task_lock);
1555 	rp->task_enable = true;
1556 	mutex_unlock(&rp->task_lock);
1557 }
1558 
1559 static int rhine_open(struct net_device *dev)
1560 {
1561 	struct rhine_private *rp = netdev_priv(dev);
1562 	void __iomem *ioaddr = rp->base;
1563 	int rc;
1564 
1565 	rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name,
1566 			dev);
1567 	if (rc)
1568 		return rc;
1569 
1570 	netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->pdev->irq);
1571 
1572 	rc = alloc_ring(dev);
1573 	if (rc) {
1574 		free_irq(rp->pdev->irq, dev);
1575 		return rc;
1576 	}
1577 	alloc_rbufs(dev);
1578 	alloc_tbufs(dev);
1579 	rhine_chip_reset(dev);
1580 	rhine_task_enable(rp);
1581 	init_registers(dev);
1582 
1583 	netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
1584 		  __func__, ioread16(ioaddr + ChipCmd),
1585 		  mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1586 
1587 	netif_start_queue(dev);
1588 
1589 	return 0;
1590 }
1591 
1592 static void rhine_reset_task(struct work_struct *work)
1593 {
1594 	struct rhine_private *rp = container_of(work, struct rhine_private,
1595 						reset_task);
1596 	struct net_device *dev = rp->dev;
1597 
1598 	mutex_lock(&rp->task_lock);
1599 
1600 	if (!rp->task_enable)
1601 		goto out_unlock;
1602 
1603 	napi_disable(&rp->napi);
1604 	spin_lock_bh(&rp->lock);
1605 
1606 	/* clear all descriptors */
1607 	free_tbufs(dev);
1608 	free_rbufs(dev);
1609 	alloc_tbufs(dev);
1610 	alloc_rbufs(dev);
1611 
1612 	/* Reinitialize the hardware. */
1613 	rhine_chip_reset(dev);
1614 	init_registers(dev);
1615 
1616 	spin_unlock_bh(&rp->lock);
1617 
1618 	dev->trans_start = jiffies; /* prevent tx timeout */
1619 	dev->stats.tx_errors++;
1620 	netif_wake_queue(dev);
1621 
1622 out_unlock:
1623 	mutex_unlock(&rp->task_lock);
1624 }
1625 
1626 static void rhine_tx_timeout(struct net_device *dev)
1627 {
1628 	struct rhine_private *rp = netdev_priv(dev);
1629 	void __iomem *ioaddr = rp->base;
1630 
1631 	netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
1632 		    ioread16(ioaddr + IntrStatus),
1633 		    mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1634 
1635 	schedule_work(&rp->reset_task);
1636 }
1637 
1638 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1639 				  struct net_device *dev)
1640 {
1641 	struct rhine_private *rp = netdev_priv(dev);
1642 	void __iomem *ioaddr = rp->base;
1643 	unsigned entry;
1644 
1645 	/* Caution: the write order is important here, set the field
1646 	   with the "ownership" bits last. */
1647 
1648 	/* Calculate the next Tx descriptor entry. */
1649 	entry = rp->cur_tx % TX_RING_SIZE;
1650 
1651 	if (skb_padto(skb, ETH_ZLEN))
1652 		return NETDEV_TX_OK;
1653 
1654 	rp->tx_skbuff[entry] = skb;
1655 
1656 	if ((rp->quirks & rqRhineI) &&
1657 	    (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1658 		/* Must use alignment buffer. */
1659 		if (skb->len > PKT_BUF_SZ) {
1660 			/* packet too long, drop it */
1661 			dev_kfree_skb(skb);
1662 			rp->tx_skbuff[entry] = NULL;
1663 			dev->stats.tx_dropped++;
1664 			return NETDEV_TX_OK;
1665 		}
1666 
1667 		/* Padding is not copied and so must be redone. */
1668 		skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1669 		if (skb->len < ETH_ZLEN)
1670 			memset(rp->tx_buf[entry] + skb->len, 0,
1671 			       ETH_ZLEN - skb->len);
1672 		rp->tx_skbuff_dma[entry] = 0;
1673 		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1674 						      (rp->tx_buf[entry] -
1675 						       rp->tx_bufs));
1676 	} else {
1677 		rp->tx_skbuff_dma[entry] =
1678 			pci_map_single(rp->pdev, skb->data, skb->len,
1679 				       PCI_DMA_TODEVICE);
1680 		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1681 	}
1682 
1683 	rp->tx_ring[entry].desc_length =
1684 		cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1685 
1686 	if (unlikely(vlan_tx_tag_present(skb))) {
1687 		rp->tx_ring[entry].tx_status = cpu_to_le32((vlan_tx_tag_get(skb)) << 16);
1688 		/* request tagging */
1689 		rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
1690 	}
1691 	else
1692 		rp->tx_ring[entry].tx_status = 0;
1693 
1694 	/* lock eth irq */
1695 	wmb();
1696 	rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
1697 	wmb();
1698 
1699 	rp->cur_tx++;
1700 
1701 	/* Non-x86 Todo: explicitly flush cache lines here. */
1702 
1703 	if (vlan_tx_tag_present(skb))
1704 		/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1705 		BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1706 
1707 	/* Wake the potentially-idle transmit channel */
1708 	iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1709 	       ioaddr + ChipCmd1);
1710 	IOSYNC;
1711 
1712 	if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1713 		netif_stop_queue(dev);
1714 
1715 	netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
1716 		  rp->cur_tx - 1, entry);
1717 
1718 	return NETDEV_TX_OK;
1719 }
1720 
1721 static void rhine_irq_disable(struct rhine_private *rp)
1722 {
1723 	iowrite16(0x0000, rp->base + IntrEnable);
1724 	mmiowb();
1725 }
1726 
1727 /* The interrupt handler does all of the Rx thread work and cleans up
1728    after the Tx thread. */
1729 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1730 {
1731 	struct net_device *dev = dev_instance;
1732 	struct rhine_private *rp = netdev_priv(dev);
1733 	u32 status;
1734 	int handled = 0;
1735 
1736 	status = rhine_get_events(rp);
1737 
1738 	netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
1739 
1740 	if (status & RHINE_EVENT) {
1741 		handled = 1;
1742 
1743 		rhine_irq_disable(rp);
1744 		napi_schedule(&rp->napi);
1745 	}
1746 
1747 	if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
1748 		netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
1749 			  status);
1750 	}
1751 
1752 	return IRQ_RETVAL(handled);
1753 }
1754 
1755 /* This routine is logically part of the interrupt handler, but isolated
1756    for clarity. */
1757 static void rhine_tx(struct net_device *dev)
1758 {
1759 	struct rhine_private *rp = netdev_priv(dev);
1760 	int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1761 
1762 	/* find and cleanup dirty tx descriptors */
1763 	while (rp->dirty_tx != rp->cur_tx) {
1764 		txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1765 		netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
1766 			  entry, txstatus);
1767 		if (txstatus & DescOwn)
1768 			break;
1769 		if (txstatus & 0x8000) {
1770 			netif_dbg(rp, tx_done, dev,
1771 				  "Transmit error, Tx status %08x\n", txstatus);
1772 			dev->stats.tx_errors++;
1773 			if (txstatus & 0x0400)
1774 				dev->stats.tx_carrier_errors++;
1775 			if (txstatus & 0x0200)
1776 				dev->stats.tx_window_errors++;
1777 			if (txstatus & 0x0100)
1778 				dev->stats.tx_aborted_errors++;
1779 			if (txstatus & 0x0080)
1780 				dev->stats.tx_heartbeat_errors++;
1781 			if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1782 			    (txstatus & 0x0800) || (txstatus & 0x1000)) {
1783 				dev->stats.tx_fifo_errors++;
1784 				rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1785 				break; /* Keep the skb - we try again */
1786 			}
1787 			/* Transmitter restarted in 'abnormal' handler. */
1788 		} else {
1789 			if (rp->quirks & rqRhineI)
1790 				dev->stats.collisions += (txstatus >> 3) & 0x0F;
1791 			else
1792 				dev->stats.collisions += txstatus & 0x0F;
1793 			netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
1794 				  (txstatus >> 3) & 0xF, txstatus & 0xF);
1795 			dev->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1796 			dev->stats.tx_packets++;
1797 		}
1798 		/* Free the original skb. */
1799 		if (rp->tx_skbuff_dma[entry]) {
1800 			pci_unmap_single(rp->pdev,
1801 					 rp->tx_skbuff_dma[entry],
1802 					 rp->tx_skbuff[entry]->len,
1803 					 PCI_DMA_TODEVICE);
1804 		}
1805 		dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1806 		rp->tx_skbuff[entry] = NULL;
1807 		entry = (++rp->dirty_tx) % TX_RING_SIZE;
1808 	}
1809 	if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1810 		netif_wake_queue(dev);
1811 }
1812 
1813 /**
1814  * rhine_get_vlan_tci - extract TCI from Rx data buffer
1815  * @skb: pointer to sk_buff
1816  * @data_size: used data area of the buffer including CRC
1817  *
1818  * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
1819  * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
1820  * aligned following the CRC.
1821  */
1822 static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
1823 {
1824 	u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
1825 	return be16_to_cpup((__be16 *)trailer);
1826 }
1827 
1828 /* Process up to limit frames from receive ring */
1829 static int rhine_rx(struct net_device *dev, int limit)
1830 {
1831 	struct rhine_private *rp = netdev_priv(dev);
1832 	int count;
1833 	int entry = rp->cur_rx % RX_RING_SIZE;
1834 
1835 	netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
1836 		  entry, le32_to_cpu(rp->rx_head_desc->rx_status));
1837 
1838 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1839 	for (count = 0; count < limit; ++count) {
1840 		struct rx_desc *desc = rp->rx_head_desc;
1841 		u32 desc_status = le32_to_cpu(desc->rx_status);
1842 		u32 desc_length = le32_to_cpu(desc->desc_length);
1843 		int data_size = desc_status >> 16;
1844 
1845 		if (desc_status & DescOwn)
1846 			break;
1847 
1848 		netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
1849 			  desc_status);
1850 
1851 		if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1852 			if ((desc_status & RxWholePkt) != RxWholePkt) {
1853 				netdev_warn(dev,
1854 	"Oversized Ethernet frame spanned multiple buffers, "
1855 	"entry %#x length %d status %08x!\n",
1856 					    entry, data_size,
1857 					    desc_status);
1858 				netdev_warn(dev,
1859 					    "Oversized Ethernet frame %p vs %p\n",
1860 					    rp->rx_head_desc,
1861 					    &rp->rx_ring[entry]);
1862 				dev->stats.rx_length_errors++;
1863 			} else if (desc_status & RxErr) {
1864 				/* There was a error. */
1865 				netif_dbg(rp, rx_err, dev,
1866 					  "%s() Rx error %08x\n", __func__,
1867 					  desc_status);
1868 				dev->stats.rx_errors++;
1869 				if (desc_status & 0x0030)
1870 					dev->stats.rx_length_errors++;
1871 				if (desc_status & 0x0048)
1872 					dev->stats.rx_fifo_errors++;
1873 				if (desc_status & 0x0004)
1874 					dev->stats.rx_frame_errors++;
1875 				if (desc_status & 0x0002) {
1876 					/* this can also be updated outside the interrupt handler */
1877 					spin_lock(&rp->lock);
1878 					dev->stats.rx_crc_errors++;
1879 					spin_unlock(&rp->lock);
1880 				}
1881 			}
1882 		} else {
1883 			struct sk_buff *skb = NULL;
1884 			/* Length should omit the CRC */
1885 			int pkt_len = data_size - 4;
1886 			u16 vlan_tci = 0;
1887 
1888 			/* Check if the packet is long enough to accept without
1889 			   copying to a minimally-sized skbuff. */
1890 			if (pkt_len < rx_copybreak)
1891 				skb = netdev_alloc_skb_ip_align(dev, pkt_len);
1892 			if (skb) {
1893 				pci_dma_sync_single_for_cpu(rp->pdev,
1894 							    rp->rx_skbuff_dma[entry],
1895 							    rp->rx_buf_sz,
1896 							    PCI_DMA_FROMDEVICE);
1897 
1898 				skb_copy_to_linear_data(skb,
1899 						 rp->rx_skbuff[entry]->data,
1900 						 pkt_len);
1901 				skb_put(skb, pkt_len);
1902 				pci_dma_sync_single_for_device(rp->pdev,
1903 							       rp->rx_skbuff_dma[entry],
1904 							       rp->rx_buf_sz,
1905 							       PCI_DMA_FROMDEVICE);
1906 			} else {
1907 				skb = rp->rx_skbuff[entry];
1908 				if (skb == NULL) {
1909 					netdev_err(dev, "Inconsistent Rx descriptor chain\n");
1910 					break;
1911 				}
1912 				rp->rx_skbuff[entry] = NULL;
1913 				skb_put(skb, pkt_len);
1914 				pci_unmap_single(rp->pdev,
1915 						 rp->rx_skbuff_dma[entry],
1916 						 rp->rx_buf_sz,
1917 						 PCI_DMA_FROMDEVICE);
1918 			}
1919 
1920 			if (unlikely(desc_length & DescTag))
1921 				vlan_tci = rhine_get_vlan_tci(skb, data_size);
1922 
1923 			skb->protocol = eth_type_trans(skb, dev);
1924 
1925 			if (unlikely(desc_length & DescTag))
1926 				__vlan_hwaccel_put_tag(skb, vlan_tci);
1927 			netif_receive_skb(skb);
1928 			dev->stats.rx_bytes += pkt_len;
1929 			dev->stats.rx_packets++;
1930 		}
1931 		entry = (++rp->cur_rx) % RX_RING_SIZE;
1932 		rp->rx_head_desc = &rp->rx_ring[entry];
1933 	}
1934 
1935 	/* Refill the Rx ring buffers. */
1936 	for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1937 		struct sk_buff *skb;
1938 		entry = rp->dirty_rx % RX_RING_SIZE;
1939 		if (rp->rx_skbuff[entry] == NULL) {
1940 			skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1941 			rp->rx_skbuff[entry] = skb;
1942 			if (skb == NULL)
1943 				break;	/* Better luck next round. */
1944 			skb->dev = dev;	/* Mark as being used by this device. */
1945 			rp->rx_skbuff_dma[entry] =
1946 				pci_map_single(rp->pdev, skb->data,
1947 					       rp->rx_buf_sz,
1948 					       PCI_DMA_FROMDEVICE);
1949 			rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1950 		}
1951 		rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1952 	}
1953 
1954 	return count;
1955 }
1956 
1957 static void rhine_restart_tx(struct net_device *dev) {
1958 	struct rhine_private *rp = netdev_priv(dev);
1959 	void __iomem *ioaddr = rp->base;
1960 	int entry = rp->dirty_tx % TX_RING_SIZE;
1961 	u32 intr_status;
1962 
1963 	/*
1964 	 * If new errors occurred, we need to sort them out before doing Tx.
1965 	 * In that case the ISR will be back here RSN anyway.
1966 	 */
1967 	intr_status = rhine_get_events(rp);
1968 
1969 	if ((intr_status & IntrTxErrSummary) == 0) {
1970 
1971 		/* We know better than the chip where it should continue. */
1972 		iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1973 		       ioaddr + TxRingPtr);
1974 
1975 		iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1976 		       ioaddr + ChipCmd);
1977 
1978 		if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
1979 			/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1980 			BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1981 
1982 		iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1983 		       ioaddr + ChipCmd1);
1984 		IOSYNC;
1985 	}
1986 	else {
1987 		/* This should never happen */
1988 		netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
1989 			   intr_status);
1990 	}
1991 
1992 }
1993 
1994 static void rhine_slow_event_task(struct work_struct *work)
1995 {
1996 	struct rhine_private *rp =
1997 		container_of(work, struct rhine_private, slow_event_task);
1998 	struct net_device *dev = rp->dev;
1999 	u32 intr_status;
2000 
2001 	mutex_lock(&rp->task_lock);
2002 
2003 	if (!rp->task_enable)
2004 		goto out_unlock;
2005 
2006 	intr_status = rhine_get_events(rp);
2007 	rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
2008 
2009 	if (intr_status & IntrLinkChange)
2010 		rhine_check_media(dev, 0);
2011 
2012 	if (intr_status & IntrPCIErr)
2013 		netif_warn(rp, hw, dev, "PCI error\n");
2014 
2015 	napi_disable(&rp->napi);
2016 	rhine_irq_disable(rp);
2017 	/* Slow and safe. Consider __napi_schedule as a replacement ? */
2018 	napi_enable(&rp->napi);
2019 	napi_schedule(&rp->napi);
2020 
2021 out_unlock:
2022 	mutex_unlock(&rp->task_lock);
2023 }
2024 
2025 static struct net_device_stats *rhine_get_stats(struct net_device *dev)
2026 {
2027 	struct rhine_private *rp = netdev_priv(dev);
2028 
2029 	spin_lock_bh(&rp->lock);
2030 	rhine_update_rx_crc_and_missed_errord(rp);
2031 	spin_unlock_bh(&rp->lock);
2032 
2033 	return &dev->stats;
2034 }
2035 
2036 static void rhine_set_rx_mode(struct net_device *dev)
2037 {
2038 	struct rhine_private *rp = netdev_priv(dev);
2039 	void __iomem *ioaddr = rp->base;
2040 	u32 mc_filter[2];	/* Multicast hash filter */
2041 	u8 rx_mode = 0x0C;	/* Note: 0x02=accept runt, 0x01=accept errs */
2042 	struct netdev_hw_addr *ha;
2043 
2044 	if (dev->flags & IFF_PROMISC) {		/* Set promiscuous. */
2045 		rx_mode = 0x1C;
2046 		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2047 		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2048 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2049 		   (dev->flags & IFF_ALLMULTI)) {
2050 		/* Too many to match, or accept all multicasts. */
2051 		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2052 		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2053 	} else if (rp->pdev->revision >= VT6105M) {
2054 		int i = 0;
2055 		u32 mCAMmask = 0;	/* 32 mCAMs (6105M and better) */
2056 		netdev_for_each_mc_addr(ha, dev) {
2057 			if (i == MCAM_SIZE)
2058 				break;
2059 			rhine_set_cam(ioaddr, i, ha->addr);
2060 			mCAMmask |= 1 << i;
2061 			i++;
2062 		}
2063 		rhine_set_cam_mask(ioaddr, mCAMmask);
2064 	} else {
2065 		memset(mc_filter, 0, sizeof(mc_filter));
2066 		netdev_for_each_mc_addr(ha, dev) {
2067 			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
2068 
2069 			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
2070 		}
2071 		iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
2072 		iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
2073 	}
2074 	/* enable/disable VLAN receive filtering */
2075 	if (rp->pdev->revision >= VT6105M) {
2076 		if (dev->flags & IFF_PROMISC)
2077 			BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2078 		else
2079 			BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2080 	}
2081 	BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
2082 }
2083 
2084 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2085 {
2086 	struct rhine_private *rp = netdev_priv(dev);
2087 
2088 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2089 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2090 	strlcpy(info->bus_info, pci_name(rp->pdev), sizeof(info->bus_info));
2091 }
2092 
2093 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2094 {
2095 	struct rhine_private *rp = netdev_priv(dev);
2096 	int rc;
2097 
2098 	mutex_lock(&rp->task_lock);
2099 	rc = mii_ethtool_gset(&rp->mii_if, cmd);
2100 	mutex_unlock(&rp->task_lock);
2101 
2102 	return rc;
2103 }
2104 
2105 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2106 {
2107 	struct rhine_private *rp = netdev_priv(dev);
2108 	int rc;
2109 
2110 	mutex_lock(&rp->task_lock);
2111 	rc = mii_ethtool_sset(&rp->mii_if, cmd);
2112 	rhine_set_carrier(&rp->mii_if);
2113 	mutex_unlock(&rp->task_lock);
2114 
2115 	return rc;
2116 }
2117 
2118 static int netdev_nway_reset(struct net_device *dev)
2119 {
2120 	struct rhine_private *rp = netdev_priv(dev);
2121 
2122 	return mii_nway_restart(&rp->mii_if);
2123 }
2124 
2125 static u32 netdev_get_link(struct net_device *dev)
2126 {
2127 	struct rhine_private *rp = netdev_priv(dev);
2128 
2129 	return mii_link_ok(&rp->mii_if);
2130 }
2131 
2132 static u32 netdev_get_msglevel(struct net_device *dev)
2133 {
2134 	struct rhine_private *rp = netdev_priv(dev);
2135 
2136 	return rp->msg_enable;
2137 }
2138 
2139 static void netdev_set_msglevel(struct net_device *dev, u32 value)
2140 {
2141 	struct rhine_private *rp = netdev_priv(dev);
2142 
2143 	rp->msg_enable = value;
2144 }
2145 
2146 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2147 {
2148 	struct rhine_private *rp = netdev_priv(dev);
2149 
2150 	if (!(rp->quirks & rqWOL))
2151 		return;
2152 
2153 	spin_lock_irq(&rp->lock);
2154 	wol->supported = WAKE_PHY | WAKE_MAGIC |
2155 			 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
2156 	wol->wolopts = rp->wolopts;
2157 	spin_unlock_irq(&rp->lock);
2158 }
2159 
2160 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2161 {
2162 	struct rhine_private *rp = netdev_priv(dev);
2163 	u32 support = WAKE_PHY | WAKE_MAGIC |
2164 		      WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
2165 
2166 	if (!(rp->quirks & rqWOL))
2167 		return -EINVAL;
2168 
2169 	if (wol->wolopts & ~support)
2170 		return -EINVAL;
2171 
2172 	spin_lock_irq(&rp->lock);
2173 	rp->wolopts = wol->wolopts;
2174 	spin_unlock_irq(&rp->lock);
2175 
2176 	return 0;
2177 }
2178 
2179 static const struct ethtool_ops netdev_ethtool_ops = {
2180 	.get_drvinfo		= netdev_get_drvinfo,
2181 	.get_settings		= netdev_get_settings,
2182 	.set_settings		= netdev_set_settings,
2183 	.nway_reset		= netdev_nway_reset,
2184 	.get_link		= netdev_get_link,
2185 	.get_msglevel		= netdev_get_msglevel,
2186 	.set_msglevel		= netdev_set_msglevel,
2187 	.get_wol		= rhine_get_wol,
2188 	.set_wol		= rhine_set_wol,
2189 };
2190 
2191 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2192 {
2193 	struct rhine_private *rp = netdev_priv(dev);
2194 	int rc;
2195 
2196 	if (!netif_running(dev))
2197 		return -EINVAL;
2198 
2199 	mutex_lock(&rp->task_lock);
2200 	rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
2201 	rhine_set_carrier(&rp->mii_if);
2202 	mutex_unlock(&rp->task_lock);
2203 
2204 	return rc;
2205 }
2206 
2207 static int rhine_close(struct net_device *dev)
2208 {
2209 	struct rhine_private *rp = netdev_priv(dev);
2210 	void __iomem *ioaddr = rp->base;
2211 
2212 	rhine_task_disable(rp);
2213 	napi_disable(&rp->napi);
2214 	netif_stop_queue(dev);
2215 
2216 	netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
2217 		  ioread16(ioaddr + ChipCmd));
2218 
2219 	/* Switch to loopback mode to avoid hardware races. */
2220 	iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
2221 
2222 	rhine_irq_disable(rp);
2223 
2224 	/* Stop the chip's Tx and Rx processes. */
2225 	iowrite16(CmdStop, ioaddr + ChipCmd);
2226 
2227 	free_irq(rp->pdev->irq, dev);
2228 	free_rbufs(dev);
2229 	free_tbufs(dev);
2230 	free_ring(dev);
2231 
2232 	return 0;
2233 }
2234 
2235 
2236 static void __devexit rhine_remove_one(struct pci_dev *pdev)
2237 {
2238 	struct net_device *dev = pci_get_drvdata(pdev);
2239 	struct rhine_private *rp = netdev_priv(dev);
2240 
2241 	unregister_netdev(dev);
2242 
2243 	pci_iounmap(pdev, rp->base);
2244 	pci_release_regions(pdev);
2245 
2246 	free_netdev(dev);
2247 	pci_disable_device(pdev);
2248 	pci_set_drvdata(pdev, NULL);
2249 }
2250 
2251 static void rhine_shutdown (struct pci_dev *pdev)
2252 {
2253 	struct net_device *dev = pci_get_drvdata(pdev);
2254 	struct rhine_private *rp = netdev_priv(dev);
2255 	void __iomem *ioaddr = rp->base;
2256 
2257 	if (!(rp->quirks & rqWOL))
2258 		return; /* Nothing to do for non-WOL adapters */
2259 
2260 	rhine_power_init(dev);
2261 
2262 	/* Make sure we use pattern 0, 1 and not 4, 5 */
2263 	if (rp->quirks & rq6patterns)
2264 		iowrite8(0x04, ioaddr + WOLcgClr);
2265 
2266 	spin_lock(&rp->lock);
2267 
2268 	if (rp->wolopts & WAKE_MAGIC) {
2269 		iowrite8(WOLmagic, ioaddr + WOLcrSet);
2270 		/*
2271 		 * Turn EEPROM-controlled wake-up back on -- some hardware may
2272 		 * not cooperate otherwise.
2273 		 */
2274 		iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
2275 	}
2276 
2277 	if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
2278 		iowrite8(WOLbmcast, ioaddr + WOLcgSet);
2279 
2280 	if (rp->wolopts & WAKE_PHY)
2281 		iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
2282 
2283 	if (rp->wolopts & WAKE_UCAST)
2284 		iowrite8(WOLucast, ioaddr + WOLcrSet);
2285 
2286 	if (rp->wolopts) {
2287 		/* Enable legacy WOL (for old motherboards) */
2288 		iowrite8(0x01, ioaddr + PwcfgSet);
2289 		iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
2290 	}
2291 
2292 	spin_unlock(&rp->lock);
2293 
2294 	if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
2295 		iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
2296 
2297 		pci_wake_from_d3(pdev, true);
2298 		pci_set_power_state(pdev, PCI_D3hot);
2299 	}
2300 }
2301 
2302 #ifdef CONFIG_PM_SLEEP
2303 static int rhine_suspend(struct device *device)
2304 {
2305 	struct pci_dev *pdev = to_pci_dev(device);
2306 	struct net_device *dev = pci_get_drvdata(pdev);
2307 	struct rhine_private *rp = netdev_priv(dev);
2308 
2309 	if (!netif_running(dev))
2310 		return 0;
2311 
2312 	rhine_task_disable(rp);
2313 	rhine_irq_disable(rp);
2314 	napi_disable(&rp->napi);
2315 
2316 	netif_device_detach(dev);
2317 
2318 	rhine_shutdown(pdev);
2319 
2320 	return 0;
2321 }
2322 
2323 static int rhine_resume(struct device *device)
2324 {
2325 	struct pci_dev *pdev = to_pci_dev(device);
2326 	struct net_device *dev = pci_get_drvdata(pdev);
2327 	struct rhine_private *rp = netdev_priv(dev);
2328 
2329 	if (!netif_running(dev))
2330 		return 0;
2331 
2332 #ifdef USE_MMIO
2333 	enable_mmio(rp->pioaddr, rp->quirks);
2334 #endif
2335 	rhine_power_init(dev);
2336 	free_tbufs(dev);
2337 	free_rbufs(dev);
2338 	alloc_tbufs(dev);
2339 	alloc_rbufs(dev);
2340 	rhine_task_enable(rp);
2341 	spin_lock_bh(&rp->lock);
2342 	init_registers(dev);
2343 	spin_unlock_bh(&rp->lock);
2344 
2345 	netif_device_attach(dev);
2346 
2347 	return 0;
2348 }
2349 
2350 static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
2351 #define RHINE_PM_OPS	(&rhine_pm_ops)
2352 
2353 #else
2354 
2355 #define RHINE_PM_OPS	NULL
2356 
2357 #endif /* !CONFIG_PM_SLEEP */
2358 
2359 static struct pci_driver rhine_driver = {
2360 	.name		= DRV_NAME,
2361 	.id_table	= rhine_pci_tbl,
2362 	.probe		= rhine_init_one,
2363 	.remove		= __devexit_p(rhine_remove_one),
2364 	.shutdown	= rhine_shutdown,
2365 	.driver.pm	= RHINE_PM_OPS,
2366 };
2367 
2368 static struct dmi_system_id __initdata rhine_dmi_table[] = {
2369 	{
2370 		.ident = "EPIA-M",
2371 		.matches = {
2372 			DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2373 			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2374 		},
2375 	},
2376 	{
2377 		.ident = "KV7",
2378 		.matches = {
2379 			DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2380 			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2381 		},
2382 	},
2383 	{ NULL }
2384 };
2385 
2386 static int __init rhine_init(void)
2387 {
2388 /* when a module, this is printed whether or not devices are found in probe */
2389 #ifdef MODULE
2390 	pr_info("%s\n", version);
2391 #endif
2392 	if (dmi_check_system(rhine_dmi_table)) {
2393 		/* these BIOSes fail at PXE boot if chip is in D3 */
2394 		avoid_D3 = true;
2395 		pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
2396 	}
2397 	else if (avoid_D3)
2398 		pr_info("avoid_D3 set\n");
2399 
2400 	return pci_register_driver(&rhine_driver);
2401 }
2402 
2403 
2404 static void __exit rhine_cleanup(void)
2405 {
2406 	pci_unregister_driver(&rhine_driver);
2407 }
2408 
2409 
2410 module_init(rhine_init);
2411 module_exit(rhine_cleanup);
2412