1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /******************************************************************************* 3 4 Copyright(c) 2006 Tundra Semiconductor Corporation. 5 6 7 *******************************************************************************/ 8 9 /* This driver is based on the driver code originally developed 10 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by 11 * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation 12 * 13 * Currently changes from original version are: 14 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com) 15 * - modifications to handle two ports independently and support for 16 * additional PHY devices (alexandre.bounine@tundra.com) 17 * - Get hardware information from platform device. (tie-fei.zang@freescale.com) 18 * 19 */ 20 21 #include <linux/module.h> 22 #include <linux/types.h> 23 #include <linux/interrupt.h> 24 #include <linux/net.h> 25 #include <linux/netdevice.h> 26 #include <linux/etherdevice.h> 27 #include <linux/ethtool.h> 28 #include <linux/skbuff.h> 29 #include <linux/spinlock.h> 30 #include <linux/delay.h> 31 #include <linux/crc32.h> 32 #include <linux/mii.h> 33 #include <linux/device.h> 34 #include <linux/pci.h> 35 #include <linux/rtnetlink.h> 36 #include <linux/timer.h> 37 #include <linux/platform_device.h> 38 #include <linux/gfp.h> 39 40 #include <asm/io.h> 41 #include <asm/tsi108.h> 42 43 #include "tsi108_eth.h" 44 45 #define MII_READ_DELAY 10000 /* max link wait time in msec */ 46 47 #define TSI108_RXRING_LEN 256 48 49 /* NOTE: The driver currently does not support receiving packets 50 * larger than the buffer size, so don't decrease this (unless you 51 * want to add such support). 52 */ 53 #define TSI108_RXBUF_SIZE 1536 54 55 #define TSI108_TXRING_LEN 256 56 57 #define TSI108_TX_INT_FREQ 64 58 59 /* Check the phy status every half a second. */ 60 #define CHECK_PHY_INTERVAL (HZ/2) 61 62 struct tsi108_prv_data { 63 void __iomem *regs; /* Base of normal regs */ 64 void __iomem *phyregs; /* Base of register bank used for PHY access */ 65 66 struct net_device *dev; 67 struct napi_struct napi; 68 69 unsigned int phy; /* Index of PHY for this interface */ 70 unsigned int irq_num; 71 unsigned int id; 72 unsigned int phy_type; 73 74 struct timer_list timer;/* Timer that triggers the check phy function */ 75 unsigned int rxtail; /* Next entry in rxring to read */ 76 unsigned int rxhead; /* Next entry in rxring to give a new buffer */ 77 unsigned int rxfree; /* Number of free, allocated RX buffers */ 78 79 unsigned int rxpending; /* Non-zero if there are still descriptors 80 * to be processed from a previous descriptor 81 * interrupt condition that has been cleared */ 82 83 unsigned int txtail; /* Next TX descriptor to check status on */ 84 unsigned int txhead; /* Next TX descriptor to use */ 85 86 /* Number of free TX descriptors. This could be calculated from 87 * rxhead and rxtail if one descriptor were left unused to disambiguate 88 * full and empty conditions, but it's simpler to just keep track 89 * explicitly. */ 90 91 unsigned int txfree; 92 93 unsigned int phy_ok; /* The PHY is currently powered on. */ 94 95 /* PHY status (duplex is 1 for half, 2 for full, 96 * so that the default 0 indicates that neither has 97 * yet been configured). */ 98 99 unsigned int link_up; 100 unsigned int speed; 101 unsigned int duplex; 102 103 tx_desc *txring; 104 rx_desc *rxring; 105 struct sk_buff *txskbs[TSI108_TXRING_LEN]; 106 struct sk_buff *rxskbs[TSI108_RXRING_LEN]; 107 108 dma_addr_t txdma, rxdma; 109 110 /* txlock nests in misclock and phy_lock */ 111 112 spinlock_t txlock, misclock; 113 114 /* stats is used to hold the upper bits of each hardware counter, 115 * and tmpstats is used to hold the full values for returning 116 * to the caller of get_stats(). They must be separate in case 117 * an overflow interrupt occurs before the stats are consumed. 118 */ 119 120 struct net_device_stats stats; 121 struct net_device_stats tmpstats; 122 123 /* These stats are kept separate in hardware, thus require individual 124 * fields for handling carry. They are combined in get_stats. 125 */ 126 127 unsigned long rx_fcs; /* Add to rx_frame_errors */ 128 unsigned long rx_short_fcs; /* Add to rx_frame_errors */ 129 unsigned long rx_long_fcs; /* Add to rx_frame_errors */ 130 unsigned long rx_underruns; /* Add to rx_length_errors */ 131 unsigned long rx_overruns; /* Add to rx_length_errors */ 132 133 unsigned long tx_coll_abort; /* Add to tx_aborted_errors/collisions */ 134 unsigned long tx_pause_drop; /* Add to tx_aborted_errors */ 135 136 unsigned long mc_hash[16]; 137 u32 msg_enable; /* debug message level */ 138 struct mii_if_info mii_if; 139 unsigned int init_media; 140 141 struct platform_device *pdev; 142 }; 143 144 static void tsi108_timed_checker(struct timer_list *t); 145 146 #ifdef DEBUG 147 static void dump_eth_one(struct net_device *dev) 148 { 149 struct tsi108_prv_data *data = netdev_priv(dev); 150 151 printk("Dumping %s...\n", dev->name); 152 printk("intstat %x intmask %x phy_ok %d" 153 " link %d speed %d duplex %d\n", 154 TSI_READ(TSI108_EC_INTSTAT), 155 TSI_READ(TSI108_EC_INTMASK), data->phy_ok, 156 data->link_up, data->speed, data->duplex); 157 158 printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n", 159 data->txhead, data->txtail, data->txfree, 160 TSI_READ(TSI108_EC_TXSTAT), 161 TSI_READ(TSI108_EC_TXESTAT), 162 TSI_READ(TSI108_EC_TXERR)); 163 164 printk("RX: head %d, tail %d, free %d, stat %x," 165 " estat %x, err %x, pending %d\n\n", 166 data->rxhead, data->rxtail, data->rxfree, 167 TSI_READ(TSI108_EC_RXSTAT), 168 TSI_READ(TSI108_EC_RXESTAT), 169 TSI_READ(TSI108_EC_RXERR), data->rxpending); 170 } 171 #endif 172 173 /* Synchronization is needed between the thread and up/down events. 174 * Note that the PHY is accessed through the same registers for both 175 * interfaces, so this can't be made interface-specific. 176 */ 177 178 static DEFINE_SPINLOCK(phy_lock); 179 180 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg) 181 { 182 unsigned i; 183 184 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR, 185 (data->phy << TSI108_MAC_MII_ADDR_PHY) | 186 (reg << TSI108_MAC_MII_ADDR_REG)); 187 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0); 188 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ); 189 for (i = 0; i < 100; i++) { 190 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) & 191 (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY))) 192 break; 193 udelay(10); 194 } 195 196 if (i == 100) 197 return 0xffff; 198 else 199 return TSI_READ_PHY(TSI108_MAC_MII_DATAIN); 200 } 201 202 static void tsi108_write_mii(struct tsi108_prv_data *data, 203 int reg, u16 val) 204 { 205 unsigned i = 100; 206 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR, 207 (data->phy << TSI108_MAC_MII_ADDR_PHY) | 208 (reg << TSI108_MAC_MII_ADDR_REG)); 209 TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val); 210 while (i--) { 211 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) & 212 TSI108_MAC_MII_IND_BUSY)) 213 break; 214 udelay(10); 215 } 216 } 217 218 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg) 219 { 220 struct tsi108_prv_data *data = netdev_priv(dev); 221 return tsi108_read_mii(data, reg); 222 } 223 224 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val) 225 { 226 struct tsi108_prv_data *data = netdev_priv(dev); 227 tsi108_write_mii(data, reg, val); 228 } 229 230 static inline void tsi108_write_tbi(struct tsi108_prv_data *data, 231 int reg, u16 val) 232 { 233 unsigned i = 1000; 234 TSI_WRITE(TSI108_MAC_MII_ADDR, 235 (0x1e << TSI108_MAC_MII_ADDR_PHY) 236 | (reg << TSI108_MAC_MII_ADDR_REG)); 237 TSI_WRITE(TSI108_MAC_MII_DATAOUT, val); 238 while(i--) { 239 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY)) 240 return; 241 udelay(10); 242 } 243 printk(KERN_ERR "%s function time out\n", __func__); 244 } 245 246 static int mii_speed(struct mii_if_info *mii) 247 { 248 int advert, lpa, val, media; 249 int lpa2 = 0; 250 int speed; 251 252 if (!mii_link_ok(mii)) 253 return 0; 254 255 val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR); 256 if ((val & BMSR_ANEGCOMPLETE) == 0) 257 return 0; 258 259 advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE); 260 lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA); 261 media = mii_nway_result(advert & lpa); 262 263 if (mii->supports_gmii) 264 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000); 265 266 speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 : 267 (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10); 268 return speed; 269 } 270 271 static void tsi108_check_phy(struct net_device *dev) 272 { 273 struct tsi108_prv_data *data = netdev_priv(dev); 274 u32 mac_cfg2_reg, portctrl_reg; 275 u32 duplex; 276 u32 speed; 277 unsigned long flags; 278 279 spin_lock_irqsave(&phy_lock, flags); 280 281 if (!data->phy_ok) 282 goto out; 283 284 duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media); 285 data->init_media = 0; 286 287 if (netif_carrier_ok(dev)) { 288 289 speed = mii_speed(&data->mii_if); 290 291 if ((speed != data->speed) || duplex) { 292 293 mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2); 294 portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL); 295 296 mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK; 297 298 if (speed == 1000) { 299 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG; 300 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG; 301 } else { 302 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG; 303 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG; 304 } 305 306 data->speed = speed; 307 308 if (data->mii_if.full_duplex) { 309 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX; 310 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX; 311 data->duplex = 2; 312 } else { 313 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX; 314 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX; 315 data->duplex = 1; 316 } 317 318 TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg); 319 TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg); 320 } 321 322 if (data->link_up == 0) { 323 /* The manual says it can take 3-4 usecs for the speed change 324 * to take effect. 325 */ 326 udelay(5); 327 328 spin_lock(&data->txlock); 329 if (is_valid_ether_addr(dev->dev_addr) && data->txfree) 330 netif_wake_queue(dev); 331 332 data->link_up = 1; 333 spin_unlock(&data->txlock); 334 } 335 } else { 336 if (data->link_up == 1) { 337 netif_stop_queue(dev); 338 data->link_up = 0; 339 printk(KERN_NOTICE "%s : link is down\n", dev->name); 340 } 341 342 goto out; 343 } 344 345 346 out: 347 spin_unlock_irqrestore(&phy_lock, flags); 348 } 349 350 static inline void 351 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift, 352 unsigned long *upper) 353 { 354 if (carry & carry_bit) 355 *upper += carry_shift; 356 } 357 358 static void tsi108_stat_carry(struct net_device *dev) 359 { 360 struct tsi108_prv_data *data = netdev_priv(dev); 361 unsigned long flags; 362 u32 carry1, carry2; 363 364 spin_lock_irqsave(&data->misclock, flags); 365 366 carry1 = TSI_READ(TSI108_STAT_CARRY1); 367 carry2 = TSI_READ(TSI108_STAT_CARRY2); 368 369 TSI_WRITE(TSI108_STAT_CARRY1, carry1); 370 TSI_WRITE(TSI108_STAT_CARRY2, carry2); 371 372 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES, 373 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes); 374 375 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS, 376 TSI108_STAT_RXPKTS_CARRY, 377 &data->stats.rx_packets); 378 379 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS, 380 TSI108_STAT_RXFCS_CARRY, &data->rx_fcs); 381 382 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST, 383 TSI108_STAT_RXMCAST_CARRY, 384 &data->stats.multicast); 385 386 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN, 387 TSI108_STAT_RXALIGN_CARRY, 388 &data->stats.rx_frame_errors); 389 390 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH, 391 TSI108_STAT_RXLENGTH_CARRY, 392 &data->stats.rx_length_errors); 393 394 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT, 395 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns); 396 397 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO, 398 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns); 399 400 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG, 401 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs); 402 403 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER, 404 TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs); 405 406 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP, 407 TSI108_STAT_RXDROP_CARRY, 408 &data->stats.rx_missed_errors); 409 410 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES, 411 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes); 412 413 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS, 414 TSI108_STAT_TXPKTS_CARRY, 415 &data->stats.tx_packets); 416 417 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF, 418 TSI108_STAT_TXEXDEF_CARRY, 419 &data->stats.tx_aborted_errors); 420 421 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL, 422 TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort); 423 424 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL, 425 TSI108_STAT_TXTCOL_CARRY, 426 &data->stats.collisions); 427 428 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE, 429 TSI108_STAT_TXPAUSEDROP_CARRY, 430 &data->tx_pause_drop); 431 432 spin_unlock_irqrestore(&data->misclock, flags); 433 } 434 435 /* Read a stat counter atomically with respect to carries. 436 * data->misclock must be held. 437 */ 438 static inline unsigned long 439 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit, 440 int carry_shift, unsigned long *upper) 441 { 442 int carryreg; 443 unsigned long val; 444 445 if (reg < 0xb0) 446 carryreg = TSI108_STAT_CARRY1; 447 else 448 carryreg = TSI108_STAT_CARRY2; 449 450 again: 451 val = TSI_READ(reg) | *upper; 452 453 /* Check to see if it overflowed, but the interrupt hasn't 454 * been serviced yet. If so, handle the carry here, and 455 * try again. 456 */ 457 458 if (unlikely(TSI_READ(carryreg) & carry_bit)) { 459 *upper += carry_shift; 460 TSI_WRITE(carryreg, carry_bit); 461 goto again; 462 } 463 464 return val; 465 } 466 467 static struct net_device_stats *tsi108_get_stats(struct net_device *dev) 468 { 469 unsigned long excol; 470 471 struct tsi108_prv_data *data = netdev_priv(dev); 472 spin_lock_irq(&data->misclock); 473 474 data->tmpstats.rx_packets = 475 tsi108_read_stat(data, TSI108_STAT_RXPKTS, 476 TSI108_STAT_CARRY1_RXPKTS, 477 TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets); 478 479 data->tmpstats.tx_packets = 480 tsi108_read_stat(data, TSI108_STAT_TXPKTS, 481 TSI108_STAT_CARRY2_TXPKTS, 482 TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets); 483 484 data->tmpstats.rx_bytes = 485 tsi108_read_stat(data, TSI108_STAT_RXBYTES, 486 TSI108_STAT_CARRY1_RXBYTES, 487 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes); 488 489 data->tmpstats.tx_bytes = 490 tsi108_read_stat(data, TSI108_STAT_TXBYTES, 491 TSI108_STAT_CARRY2_TXBYTES, 492 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes); 493 494 data->tmpstats.multicast = 495 tsi108_read_stat(data, TSI108_STAT_RXMCAST, 496 TSI108_STAT_CARRY1_RXMCAST, 497 TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast); 498 499 excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL, 500 TSI108_STAT_CARRY2_TXEXCOL, 501 TSI108_STAT_TXEXCOL_CARRY, 502 &data->tx_coll_abort); 503 504 data->tmpstats.collisions = 505 tsi108_read_stat(data, TSI108_STAT_TXTCOL, 506 TSI108_STAT_CARRY2_TXTCOL, 507 TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions); 508 509 data->tmpstats.collisions += excol; 510 511 data->tmpstats.rx_length_errors = 512 tsi108_read_stat(data, TSI108_STAT_RXLENGTH, 513 TSI108_STAT_CARRY1_RXLENGTH, 514 TSI108_STAT_RXLENGTH_CARRY, 515 &data->stats.rx_length_errors); 516 517 data->tmpstats.rx_length_errors += 518 tsi108_read_stat(data, TSI108_STAT_RXRUNT, 519 TSI108_STAT_CARRY1_RXRUNT, 520 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns); 521 522 data->tmpstats.rx_length_errors += 523 tsi108_read_stat(data, TSI108_STAT_RXJUMBO, 524 TSI108_STAT_CARRY1_RXJUMBO, 525 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns); 526 527 data->tmpstats.rx_frame_errors = 528 tsi108_read_stat(data, TSI108_STAT_RXALIGN, 529 TSI108_STAT_CARRY1_RXALIGN, 530 TSI108_STAT_RXALIGN_CARRY, 531 &data->stats.rx_frame_errors); 532 533 data->tmpstats.rx_frame_errors += 534 tsi108_read_stat(data, TSI108_STAT_RXFCS, 535 TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY, 536 &data->rx_fcs); 537 538 data->tmpstats.rx_frame_errors += 539 tsi108_read_stat(data, TSI108_STAT_RXFRAG, 540 TSI108_STAT_CARRY1_RXFRAG, 541 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs); 542 543 data->tmpstats.rx_missed_errors = 544 tsi108_read_stat(data, TSI108_STAT_RXDROP, 545 TSI108_STAT_CARRY1_RXDROP, 546 TSI108_STAT_RXDROP_CARRY, 547 &data->stats.rx_missed_errors); 548 549 /* These three are maintained by software. */ 550 data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors; 551 data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors; 552 553 data->tmpstats.tx_aborted_errors = 554 tsi108_read_stat(data, TSI108_STAT_TXEXDEF, 555 TSI108_STAT_CARRY2_TXEXDEF, 556 TSI108_STAT_TXEXDEF_CARRY, 557 &data->stats.tx_aborted_errors); 558 559 data->tmpstats.tx_aborted_errors += 560 tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP, 561 TSI108_STAT_CARRY2_TXPAUSE, 562 TSI108_STAT_TXPAUSEDROP_CARRY, 563 &data->tx_pause_drop); 564 565 data->tmpstats.tx_aborted_errors += excol; 566 567 data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors; 568 data->tmpstats.rx_errors = data->tmpstats.rx_length_errors + 569 data->tmpstats.rx_crc_errors + 570 data->tmpstats.rx_frame_errors + 571 data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors; 572 573 spin_unlock_irq(&data->misclock); 574 return &data->tmpstats; 575 } 576 577 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev) 578 { 579 TSI_WRITE(TSI108_EC_RXQ_PTRHIGH, 580 TSI108_EC_RXQ_PTRHIGH_VALID); 581 582 TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO 583 | TSI108_EC_RXCTRL_QUEUE0); 584 } 585 586 static void tsi108_restart_tx(struct tsi108_prv_data * data) 587 { 588 TSI_WRITE(TSI108_EC_TXQ_PTRHIGH, 589 TSI108_EC_TXQ_PTRHIGH_VALID); 590 591 TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT | 592 TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0); 593 } 594 595 /* txlock must be held by caller, with IRQs disabled, and 596 * with permission to re-enable them when the lock is dropped. 597 */ 598 static void tsi108_complete_tx(struct net_device *dev) 599 { 600 struct tsi108_prv_data *data = netdev_priv(dev); 601 int tx; 602 struct sk_buff *skb; 603 int release = 0; 604 605 while (!data->txfree || data->txhead != data->txtail) { 606 tx = data->txtail; 607 608 if (data->txring[tx].misc & TSI108_TX_OWN) 609 break; 610 611 skb = data->txskbs[tx]; 612 613 if (!(data->txring[tx].misc & TSI108_TX_OK)) 614 printk("%s: bad tx packet, misc %x\n", 615 dev->name, data->txring[tx].misc); 616 617 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN; 618 data->txfree++; 619 620 if (data->txring[tx].misc & TSI108_TX_EOF) { 621 dev_kfree_skb_any(skb); 622 release++; 623 } 624 } 625 626 if (release) { 627 if (is_valid_ether_addr(dev->dev_addr) && data->link_up) 628 netif_wake_queue(dev); 629 } 630 } 631 632 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev) 633 { 634 struct tsi108_prv_data *data = netdev_priv(dev); 635 int frags = skb_shinfo(skb)->nr_frags + 1; 636 int i; 637 638 if (!data->phy_ok && net_ratelimit()) 639 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name); 640 641 if (!data->link_up) { 642 printk(KERN_ERR "%s: Transmit while link is down!\n", 643 dev->name); 644 netif_stop_queue(dev); 645 return NETDEV_TX_BUSY; 646 } 647 648 if (data->txfree < MAX_SKB_FRAGS + 1) { 649 netif_stop_queue(dev); 650 651 if (net_ratelimit()) 652 printk(KERN_ERR "%s: Transmit with full tx ring!\n", 653 dev->name); 654 return NETDEV_TX_BUSY; 655 } 656 657 if (data->txfree - frags < MAX_SKB_FRAGS + 1) { 658 netif_stop_queue(dev); 659 } 660 661 spin_lock_irq(&data->txlock); 662 663 for (i = 0; i < frags; i++) { 664 int misc = 0; 665 int tx = data->txhead; 666 667 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with 668 * the interrupt bit. TX descriptor-complete interrupts are 669 * enabled when the queue fills up, and masked when there is 670 * still free space. This way, when saturating the outbound 671 * link, the tx interrupts are kept to a reasonable level. 672 * When the queue is not full, reclamation of skbs still occurs 673 * as new packets are transmitted, or on a queue-empty 674 * interrupt. 675 */ 676 677 if ((tx % TSI108_TX_INT_FREQ == 0) && 678 ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ)) 679 misc = TSI108_TX_INT; 680 681 data->txskbs[tx] = skb; 682 683 if (i == 0) { 684 data->txring[tx].buf0 = dma_map_single(&data->pdev->dev, 685 skb->data, skb_headlen(skb), 686 DMA_TO_DEVICE); 687 data->txring[tx].len = skb_headlen(skb); 688 misc |= TSI108_TX_SOF; 689 } else { 690 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 691 692 data->txring[tx].buf0 = 693 skb_frag_dma_map(&data->pdev->dev, frag, 694 0, skb_frag_size(frag), 695 DMA_TO_DEVICE); 696 data->txring[tx].len = skb_frag_size(frag); 697 } 698 699 if (i == frags - 1) 700 misc |= TSI108_TX_EOF; 701 702 if (netif_msg_pktdata(data)) { 703 int i; 704 printk("%s: Tx Frame contents (%d)\n", dev->name, 705 skb->len); 706 for (i = 0; i < skb->len; i++) 707 printk(" %2.2x", skb->data[i]); 708 printk(".\n"); 709 } 710 data->txring[tx].misc = misc | TSI108_TX_OWN; 711 712 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN; 713 data->txfree--; 714 } 715 716 tsi108_complete_tx(dev); 717 718 /* This must be done after the check for completed tx descriptors, 719 * so that the tail pointer is correct. 720 */ 721 722 if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0)) 723 tsi108_restart_tx(data); 724 725 spin_unlock_irq(&data->txlock); 726 return NETDEV_TX_OK; 727 } 728 729 static int tsi108_complete_rx(struct net_device *dev, int budget) 730 { 731 struct tsi108_prv_data *data = netdev_priv(dev); 732 int done = 0; 733 734 while (data->rxfree && done != budget) { 735 int rx = data->rxtail; 736 struct sk_buff *skb; 737 738 if (data->rxring[rx].misc & TSI108_RX_OWN) 739 break; 740 741 skb = data->rxskbs[rx]; 742 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN; 743 data->rxfree--; 744 done++; 745 746 if (data->rxring[rx].misc & TSI108_RX_BAD) { 747 spin_lock_irq(&data->misclock); 748 749 if (data->rxring[rx].misc & TSI108_RX_CRC) 750 data->stats.rx_crc_errors++; 751 if (data->rxring[rx].misc & TSI108_RX_OVER) 752 data->stats.rx_fifo_errors++; 753 754 spin_unlock_irq(&data->misclock); 755 756 dev_kfree_skb_any(skb); 757 continue; 758 } 759 if (netif_msg_pktdata(data)) { 760 int i; 761 printk("%s: Rx Frame contents (%d)\n", 762 dev->name, data->rxring[rx].len); 763 for (i = 0; i < data->rxring[rx].len; i++) 764 printk(" %2.2x", skb->data[i]); 765 printk(".\n"); 766 } 767 768 skb_put(skb, data->rxring[rx].len); 769 skb->protocol = eth_type_trans(skb, dev); 770 netif_receive_skb(skb); 771 } 772 773 return done; 774 } 775 776 static int tsi108_refill_rx(struct net_device *dev, int budget) 777 { 778 struct tsi108_prv_data *data = netdev_priv(dev); 779 int done = 0; 780 781 while (data->rxfree != TSI108_RXRING_LEN && done != budget) { 782 int rx = data->rxhead; 783 struct sk_buff *skb; 784 785 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE); 786 data->rxskbs[rx] = skb; 787 if (!skb) 788 break; 789 790 data->rxring[rx].buf0 = dma_map_single(&data->pdev->dev, 791 skb->data, TSI108_RX_SKB_SIZE, 792 DMA_FROM_DEVICE); 793 794 /* Sometimes the hardware sets blen to zero after packet 795 * reception, even though the manual says that it's only ever 796 * modified by the driver. 797 */ 798 799 data->rxring[rx].blen = TSI108_RX_SKB_SIZE; 800 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT; 801 802 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN; 803 data->rxfree++; 804 done++; 805 } 806 807 if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) & 808 TSI108_EC_RXSTAT_QUEUE0)) 809 tsi108_restart_rx(data, dev); 810 811 return done; 812 } 813 814 static int tsi108_poll(struct napi_struct *napi, int budget) 815 { 816 struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi); 817 struct net_device *dev = data->dev; 818 u32 estat = TSI_READ(TSI108_EC_RXESTAT); 819 u32 intstat = TSI_READ(TSI108_EC_INTSTAT); 820 int num_received = 0, num_filled = 0; 821 822 intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH | 823 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT; 824 825 TSI_WRITE(TSI108_EC_RXESTAT, estat); 826 TSI_WRITE(TSI108_EC_INTSTAT, intstat); 827 828 if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT)) 829 num_received = tsi108_complete_rx(dev, budget); 830 831 /* This should normally fill no more slots than the number of 832 * packets received in tsi108_complete_rx(). The exception 833 * is when we previously ran out of memory for RX SKBs. In that 834 * case, it's helpful to obey the budget, not only so that the 835 * CPU isn't hogged, but so that memory (which may still be low) 836 * is not hogged by one device. 837 * 838 * A work unit is considered to be two SKBs to allow us to catch 839 * up when the ring has shrunk due to out-of-memory but we're 840 * still removing the full budget's worth of packets each time. 841 */ 842 843 if (data->rxfree < TSI108_RXRING_LEN) 844 num_filled = tsi108_refill_rx(dev, budget * 2); 845 846 if (intstat & TSI108_INT_RXERROR) { 847 u32 err = TSI_READ(TSI108_EC_RXERR); 848 TSI_WRITE(TSI108_EC_RXERR, err); 849 850 if (err) { 851 if (net_ratelimit()) 852 printk(KERN_DEBUG "%s: RX error %x\n", 853 dev->name, err); 854 855 if (!(TSI_READ(TSI108_EC_RXSTAT) & 856 TSI108_EC_RXSTAT_QUEUE0)) 857 tsi108_restart_rx(data, dev); 858 } 859 } 860 861 if (intstat & TSI108_INT_RXOVERRUN) { 862 spin_lock_irq(&data->misclock); 863 data->stats.rx_fifo_errors++; 864 spin_unlock_irq(&data->misclock); 865 } 866 867 if (num_received < budget) { 868 data->rxpending = 0; 869 napi_complete_done(napi, num_received); 870 871 TSI_WRITE(TSI108_EC_INTMASK, 872 TSI_READ(TSI108_EC_INTMASK) 873 & ~(TSI108_INT_RXQUEUE0 874 | TSI108_INT_RXTHRESH | 875 TSI108_INT_RXOVERRUN | 876 TSI108_INT_RXERROR | 877 TSI108_INT_RXWAIT)); 878 } else { 879 data->rxpending = 1; 880 } 881 882 return num_received; 883 } 884 885 static void tsi108_rx_int(struct net_device *dev) 886 { 887 struct tsi108_prv_data *data = netdev_priv(dev); 888 889 /* A race could cause dev to already be scheduled, so it's not an 890 * error if that happens (and interrupts shouldn't be re-masked, 891 * because that can cause harmful races, if poll has already 892 * unmasked them but not cleared LINK_STATE_SCHED). 893 * 894 * This can happen if this code races with tsi108_poll(), which masks 895 * the interrupts after tsi108_irq_one() read the mask, but before 896 * napi_schedule is called. It could also happen due to calls 897 * from tsi108_check_rxring(). 898 */ 899 900 if (napi_schedule_prep(&data->napi)) { 901 /* Mask, rather than ack, the receive interrupts. The ack 902 * will happen in tsi108_poll(). 903 */ 904 905 TSI_WRITE(TSI108_EC_INTMASK, 906 TSI_READ(TSI108_EC_INTMASK) | 907 TSI108_INT_RXQUEUE0 908 | TSI108_INT_RXTHRESH | 909 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | 910 TSI108_INT_RXWAIT); 911 __napi_schedule(&data->napi); 912 } else { 913 if (!netif_running(dev)) { 914 /* This can happen if an interrupt occurs while the 915 * interface is being brought down, as the START 916 * bit is cleared before the stop function is called. 917 * 918 * In this case, the interrupts must be masked, or 919 * they will continue indefinitely. 920 * 921 * There's a race here if the interface is brought down 922 * and then up in rapid succession, as the device could 923 * be made running after the above check and before 924 * the masking below. This will only happen if the IRQ 925 * thread has a lower priority than the task brining 926 * up the interface. Fixing this race would likely 927 * require changes in generic code. 928 */ 929 930 TSI_WRITE(TSI108_EC_INTMASK, 931 TSI_READ 932 (TSI108_EC_INTMASK) | 933 TSI108_INT_RXQUEUE0 | 934 TSI108_INT_RXTHRESH | 935 TSI108_INT_RXOVERRUN | 936 TSI108_INT_RXERROR | 937 TSI108_INT_RXWAIT); 938 } 939 } 940 } 941 942 /* If the RX ring has run out of memory, try periodically 943 * to allocate some more, as otherwise poll would never 944 * get called (apart from the initial end-of-queue condition). 945 * 946 * This is called once per second (by default) from the thread. 947 */ 948 949 static void tsi108_check_rxring(struct net_device *dev) 950 { 951 struct tsi108_prv_data *data = netdev_priv(dev); 952 953 /* A poll is scheduled, as opposed to caling tsi108_refill_rx 954 * directly, so as to keep the receive path single-threaded 955 * (and thus not needing a lock). 956 */ 957 958 if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4) 959 tsi108_rx_int(dev); 960 } 961 962 static void tsi108_tx_int(struct net_device *dev) 963 { 964 struct tsi108_prv_data *data = netdev_priv(dev); 965 u32 estat = TSI_READ(TSI108_EC_TXESTAT); 966 967 TSI_WRITE(TSI108_EC_TXESTAT, estat); 968 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 | 969 TSI108_INT_TXIDLE | TSI108_INT_TXERROR); 970 if (estat & TSI108_EC_TXESTAT_Q0_ERR) { 971 u32 err = TSI_READ(TSI108_EC_TXERR); 972 TSI_WRITE(TSI108_EC_TXERR, err); 973 974 if (err && net_ratelimit()) 975 printk(KERN_ERR "%s: TX error %x\n", dev->name, err); 976 } 977 978 if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) { 979 spin_lock(&data->txlock); 980 tsi108_complete_tx(dev); 981 spin_unlock(&data->txlock); 982 } 983 } 984 985 986 static irqreturn_t tsi108_irq(int irq, void *dev_id) 987 { 988 struct net_device *dev = dev_id; 989 struct tsi108_prv_data *data = netdev_priv(dev); 990 u32 stat = TSI_READ(TSI108_EC_INTSTAT); 991 992 if (!(stat & TSI108_INT_ANY)) 993 return IRQ_NONE; /* Not our interrupt */ 994 995 stat &= ~TSI_READ(TSI108_EC_INTMASK); 996 997 if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE | 998 TSI108_INT_TXERROR)) 999 tsi108_tx_int(dev); 1000 if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH | 1001 TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN | 1002 TSI108_INT_RXERROR)) 1003 tsi108_rx_int(dev); 1004 1005 if (stat & TSI108_INT_SFN) { 1006 if (net_ratelimit()) 1007 printk(KERN_DEBUG "%s: SFN error\n", dev->name); 1008 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN); 1009 } 1010 1011 if (stat & TSI108_INT_STATCARRY) { 1012 tsi108_stat_carry(dev); 1013 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY); 1014 } 1015 1016 return IRQ_HANDLED; 1017 } 1018 1019 static void tsi108_stop_ethernet(struct net_device *dev) 1020 { 1021 struct tsi108_prv_data *data = netdev_priv(dev); 1022 int i = 1000; 1023 /* Disable all TX and RX queues ... */ 1024 TSI_WRITE(TSI108_EC_TXCTRL, 0); 1025 TSI_WRITE(TSI108_EC_RXCTRL, 0); 1026 1027 /* ...and wait for them to become idle */ 1028 while(i--) { 1029 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE)) 1030 break; 1031 udelay(10); 1032 } 1033 i = 1000; 1034 while(i--){ 1035 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE)) 1036 return; 1037 udelay(10); 1038 } 1039 printk(KERN_ERR "%s function time out\n", __func__); 1040 } 1041 1042 static void tsi108_reset_ether(struct tsi108_prv_data * data) 1043 { 1044 TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST); 1045 udelay(100); 1046 TSI_WRITE(TSI108_MAC_CFG1, 0); 1047 1048 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST); 1049 udelay(100); 1050 TSI_WRITE(TSI108_EC_PORTCTRL, 1051 TSI_READ(TSI108_EC_PORTCTRL) & 1052 ~TSI108_EC_PORTCTRL_STATRST); 1053 1054 TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST); 1055 udelay(100); 1056 TSI_WRITE(TSI108_EC_TXCFG, 1057 TSI_READ(TSI108_EC_TXCFG) & 1058 ~TSI108_EC_TXCFG_RST); 1059 1060 TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST); 1061 udelay(100); 1062 TSI_WRITE(TSI108_EC_RXCFG, 1063 TSI_READ(TSI108_EC_RXCFG) & 1064 ~TSI108_EC_RXCFG_RST); 1065 1066 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG, 1067 TSI_READ(TSI108_MAC_MII_MGMT_CFG) | 1068 TSI108_MAC_MII_MGMT_RST); 1069 udelay(100); 1070 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG, 1071 (TSI_READ(TSI108_MAC_MII_MGMT_CFG) & 1072 ~(TSI108_MAC_MII_MGMT_RST | 1073 TSI108_MAC_MII_MGMT_CLK)) | 0x07); 1074 } 1075 1076 static int tsi108_get_mac(struct net_device *dev) 1077 { 1078 struct tsi108_prv_data *data = netdev_priv(dev); 1079 u32 word1 = TSI_READ(TSI108_MAC_ADDR1); 1080 u32 word2 = TSI_READ(TSI108_MAC_ADDR2); 1081 u8 addr[ETH_ALEN]; 1082 1083 /* Note that the octets are reversed from what the manual says, 1084 * producing an even weirder ordering... 1085 */ 1086 if (word2 == 0 && word1 == 0) { 1087 addr[0] = 0x00; 1088 addr[1] = 0x06; 1089 addr[2] = 0xd2; 1090 addr[3] = 0x00; 1091 addr[4] = 0x00; 1092 if (0x8 == data->phy) 1093 addr[5] = 0x01; 1094 else 1095 addr[5] = 0x02; 1096 eth_hw_addr_set(dev, addr); 1097 1098 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24); 1099 1100 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) | 1101 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24); 1102 1103 TSI_WRITE(TSI108_MAC_ADDR1, word1); 1104 TSI_WRITE(TSI108_MAC_ADDR2, word2); 1105 } else { 1106 addr[0] = (word2 >> 16) & 0xff; 1107 addr[1] = (word2 >> 24) & 0xff; 1108 addr[2] = (word1 >> 0) & 0xff; 1109 addr[3] = (word1 >> 8) & 0xff; 1110 addr[4] = (word1 >> 16) & 0xff; 1111 addr[5] = (word1 >> 24) & 0xff; 1112 eth_hw_addr_set(dev, addr); 1113 } 1114 1115 if (!is_valid_ether_addr(dev->dev_addr)) { 1116 printk(KERN_ERR 1117 "%s: Invalid MAC address. word1: %08x, word2: %08x\n", 1118 dev->name, word1, word2); 1119 return -EINVAL; 1120 } 1121 1122 return 0; 1123 } 1124 1125 static int tsi108_set_mac(struct net_device *dev, void *addr) 1126 { 1127 struct tsi108_prv_data *data = netdev_priv(dev); 1128 u32 word1, word2; 1129 1130 if (!is_valid_ether_addr(addr)) 1131 return -EADDRNOTAVAIL; 1132 1133 /* +2 is for the offset of the HW addr type */ 1134 eth_hw_addr_set(dev, ((unsigned char *)addr) + 2); 1135 1136 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24); 1137 1138 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) | 1139 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24); 1140 1141 spin_lock_irq(&data->misclock); 1142 TSI_WRITE(TSI108_MAC_ADDR1, word1); 1143 TSI_WRITE(TSI108_MAC_ADDR2, word2); 1144 spin_lock(&data->txlock); 1145 1146 if (data->txfree && data->link_up) 1147 netif_wake_queue(dev); 1148 1149 spin_unlock(&data->txlock); 1150 spin_unlock_irq(&data->misclock); 1151 return 0; 1152 } 1153 1154 /* Protected by dev->xmit_lock. */ 1155 static void tsi108_set_rx_mode(struct net_device *dev) 1156 { 1157 struct tsi108_prv_data *data = netdev_priv(dev); 1158 u32 rxcfg = TSI_READ(TSI108_EC_RXCFG); 1159 1160 if (dev->flags & IFF_PROMISC) { 1161 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH); 1162 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE; 1163 goto out; 1164 } 1165 1166 rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE); 1167 1168 if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) { 1169 int i; 1170 struct netdev_hw_addr *ha; 1171 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH; 1172 1173 memset(data->mc_hash, 0, sizeof(data->mc_hash)); 1174 1175 netdev_for_each_mc_addr(ha, dev) { 1176 u32 hash, crc; 1177 1178 crc = ether_crc(6, ha->addr); 1179 hash = crc >> 23; 1180 __set_bit(hash, &data->mc_hash[0]); 1181 } 1182 1183 TSI_WRITE(TSI108_EC_HASHADDR, 1184 TSI108_EC_HASHADDR_AUTOINC | 1185 TSI108_EC_HASHADDR_MCAST); 1186 1187 for (i = 0; i < 16; i++) { 1188 /* The manual says that the hardware may drop 1189 * back-to-back writes to the data register. 1190 */ 1191 udelay(1); 1192 TSI_WRITE(TSI108_EC_HASHDATA, 1193 data->mc_hash[i]); 1194 } 1195 } 1196 1197 out: 1198 TSI_WRITE(TSI108_EC_RXCFG, rxcfg); 1199 } 1200 1201 static void tsi108_init_phy(struct net_device *dev) 1202 { 1203 struct tsi108_prv_data *data = netdev_priv(dev); 1204 u32 i = 0; 1205 u16 phyval = 0; 1206 unsigned long flags; 1207 1208 spin_lock_irqsave(&phy_lock, flags); 1209 1210 tsi108_write_mii(data, MII_BMCR, BMCR_RESET); 1211 while (--i) { 1212 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET)) 1213 break; 1214 udelay(10); 1215 } 1216 if (i == 0) 1217 printk(KERN_ERR "%s function time out\n", __func__); 1218 1219 if (data->phy_type == TSI108_PHY_BCM54XX) { 1220 tsi108_write_mii(data, 0x09, 0x0300); 1221 tsi108_write_mii(data, 0x10, 0x1020); 1222 tsi108_write_mii(data, 0x1c, 0x8c00); 1223 } 1224 1225 tsi108_write_mii(data, 1226 MII_BMCR, 1227 BMCR_ANENABLE | BMCR_ANRESTART); 1228 while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART) 1229 cpu_relax(); 1230 1231 /* Set G/MII mode and receive clock select in TBI control #2. The 1232 * second port won't work if this isn't done, even though we don't 1233 * use TBI mode. 1234 */ 1235 1236 tsi108_write_tbi(data, 0x11, 0x30); 1237 1238 /* FIXME: It seems to take more than 2 back-to-back reads to the 1239 * PHY_STAT register before the link up status bit is set. 1240 */ 1241 1242 data->link_up = 0; 1243 1244 while (!((phyval = tsi108_read_mii(data, MII_BMSR)) & 1245 BMSR_LSTATUS)) { 1246 if (i++ > (MII_READ_DELAY / 10)) { 1247 break; 1248 } 1249 spin_unlock_irqrestore(&phy_lock, flags); 1250 msleep(10); 1251 spin_lock_irqsave(&phy_lock, flags); 1252 } 1253 1254 data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if); 1255 printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval); 1256 data->phy_ok = 1; 1257 data->init_media = 1; 1258 spin_unlock_irqrestore(&phy_lock, flags); 1259 } 1260 1261 static void tsi108_kill_phy(struct net_device *dev) 1262 { 1263 struct tsi108_prv_data *data = netdev_priv(dev); 1264 unsigned long flags; 1265 1266 spin_lock_irqsave(&phy_lock, flags); 1267 tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN); 1268 data->phy_ok = 0; 1269 spin_unlock_irqrestore(&phy_lock, flags); 1270 } 1271 1272 static int tsi108_open(struct net_device *dev) 1273 { 1274 int i; 1275 struct tsi108_prv_data *data = netdev_priv(dev); 1276 unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc); 1277 unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc); 1278 1279 i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev); 1280 if (i != 0) { 1281 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n", 1282 data->id, data->irq_num); 1283 return i; 1284 } else { 1285 dev->irq = data->irq_num; 1286 printk(KERN_NOTICE 1287 "tsi108_open : Port %d Assigned IRQ %d to %s\n", 1288 data->id, dev->irq, dev->name); 1289 } 1290 1291 data->rxring = dma_alloc_coherent(&data->pdev->dev, rxring_size, 1292 &data->rxdma, GFP_KERNEL); 1293 if (!data->rxring) { 1294 free_irq(data->irq_num, dev); 1295 return -ENOMEM; 1296 } 1297 1298 data->txring = dma_alloc_coherent(&data->pdev->dev, txring_size, 1299 &data->txdma, GFP_KERNEL); 1300 if (!data->txring) { 1301 free_irq(data->irq_num, dev); 1302 dma_free_coherent(&data->pdev->dev, rxring_size, data->rxring, 1303 data->rxdma); 1304 return -ENOMEM; 1305 } 1306 1307 for (i = 0; i < TSI108_RXRING_LEN; i++) { 1308 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc); 1309 data->rxring[i].blen = TSI108_RXBUF_SIZE; 1310 data->rxring[i].vlan = 0; 1311 } 1312 1313 data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma; 1314 1315 data->rxtail = 0; 1316 data->rxhead = 0; 1317 1318 for (i = 0; i < TSI108_RXRING_LEN; i++) { 1319 struct sk_buff *skb; 1320 1321 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE); 1322 if (!skb) { 1323 /* Bah. No memory for now, but maybe we'll get 1324 * some more later. 1325 * For now, we'll live with the smaller ring. 1326 */ 1327 printk(KERN_WARNING 1328 "%s: Could only allocate %d receive skb(s).\n", 1329 dev->name, i); 1330 data->rxhead = i; 1331 break; 1332 } 1333 1334 data->rxskbs[i] = skb; 1335 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data); 1336 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT; 1337 } 1338 1339 data->rxfree = i; 1340 TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma); 1341 1342 for (i = 0; i < TSI108_TXRING_LEN; i++) { 1343 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc); 1344 data->txring[i].misc = 0; 1345 } 1346 1347 data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma; 1348 data->txtail = 0; 1349 data->txhead = 0; 1350 data->txfree = TSI108_TXRING_LEN; 1351 TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma); 1352 tsi108_init_phy(dev); 1353 1354 napi_enable(&data->napi); 1355 1356 timer_setup(&data->timer, tsi108_timed_checker, 0); 1357 mod_timer(&data->timer, jiffies + 1); 1358 1359 tsi108_restart_rx(data, dev); 1360 1361 TSI_WRITE(TSI108_EC_INTSTAT, ~0); 1362 1363 TSI_WRITE(TSI108_EC_INTMASK, 1364 ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR | 1365 TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 | 1366 TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT | 1367 TSI108_INT_SFN | TSI108_INT_STATCARRY)); 1368 1369 TSI_WRITE(TSI108_MAC_CFG1, 1370 TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN); 1371 netif_start_queue(dev); 1372 return 0; 1373 } 1374 1375 static int tsi108_close(struct net_device *dev) 1376 { 1377 struct tsi108_prv_data *data = netdev_priv(dev); 1378 1379 netif_stop_queue(dev); 1380 napi_disable(&data->napi); 1381 1382 del_timer_sync(&data->timer); 1383 1384 tsi108_stop_ethernet(dev); 1385 tsi108_kill_phy(dev); 1386 TSI_WRITE(TSI108_EC_INTMASK, ~0); 1387 TSI_WRITE(TSI108_MAC_CFG1, 0); 1388 1389 /* Check for any pending TX packets, and drop them. */ 1390 1391 while (!data->txfree || data->txhead != data->txtail) { 1392 int tx = data->txtail; 1393 struct sk_buff *skb; 1394 skb = data->txskbs[tx]; 1395 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN; 1396 data->txfree++; 1397 dev_kfree_skb(skb); 1398 } 1399 1400 free_irq(data->irq_num, dev); 1401 1402 /* Discard the RX ring. */ 1403 1404 while (data->rxfree) { 1405 int rx = data->rxtail; 1406 struct sk_buff *skb; 1407 1408 skb = data->rxskbs[rx]; 1409 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN; 1410 data->rxfree--; 1411 dev_kfree_skb(skb); 1412 } 1413 1414 dma_free_coherent(&data->pdev->dev, 1415 TSI108_RXRING_LEN * sizeof(rx_desc), 1416 data->rxring, data->rxdma); 1417 dma_free_coherent(&data->pdev->dev, 1418 TSI108_TXRING_LEN * sizeof(tx_desc), 1419 data->txring, data->txdma); 1420 1421 return 0; 1422 } 1423 1424 static void tsi108_init_mac(struct net_device *dev) 1425 { 1426 struct tsi108_prv_data *data = netdev_priv(dev); 1427 1428 TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE | 1429 TSI108_MAC_CFG2_PADCRC); 1430 1431 TSI_WRITE(TSI108_EC_TXTHRESH, 1432 (192 << TSI108_EC_TXTHRESH_STARTFILL) | 1433 (192 << TSI108_EC_TXTHRESH_STOPFILL)); 1434 1435 TSI_WRITE(TSI108_STAT_CARRYMASK1, 1436 ~(TSI108_STAT_CARRY1_RXBYTES | 1437 TSI108_STAT_CARRY1_RXPKTS | 1438 TSI108_STAT_CARRY1_RXFCS | 1439 TSI108_STAT_CARRY1_RXMCAST | 1440 TSI108_STAT_CARRY1_RXALIGN | 1441 TSI108_STAT_CARRY1_RXLENGTH | 1442 TSI108_STAT_CARRY1_RXRUNT | 1443 TSI108_STAT_CARRY1_RXJUMBO | 1444 TSI108_STAT_CARRY1_RXFRAG | 1445 TSI108_STAT_CARRY1_RXJABBER | 1446 TSI108_STAT_CARRY1_RXDROP)); 1447 1448 TSI_WRITE(TSI108_STAT_CARRYMASK2, 1449 ~(TSI108_STAT_CARRY2_TXBYTES | 1450 TSI108_STAT_CARRY2_TXPKTS | 1451 TSI108_STAT_CARRY2_TXEXDEF | 1452 TSI108_STAT_CARRY2_TXEXCOL | 1453 TSI108_STAT_CARRY2_TXTCOL | 1454 TSI108_STAT_CARRY2_TXPAUSE)); 1455 1456 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN); 1457 TSI_WRITE(TSI108_MAC_CFG1, 0); 1458 1459 TSI_WRITE(TSI108_EC_RXCFG, 1460 TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE); 1461 1462 TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT | 1463 TSI108_EC_TXQ_CFG_EOQ_OWN_INT | 1464 TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT << 1465 TSI108_EC_TXQ_CFG_SFNPORT)); 1466 1467 TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT | 1468 TSI108_EC_RXQ_CFG_EOQ_OWN_INT | 1469 TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT << 1470 TSI108_EC_RXQ_CFG_SFNPORT)); 1471 1472 TSI_WRITE(TSI108_EC_TXQ_BUFCFG, 1473 TSI108_EC_TXQ_BUFCFG_BURST256 | 1474 TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT << 1475 TSI108_EC_TXQ_BUFCFG_SFNPORT)); 1476 1477 TSI_WRITE(TSI108_EC_RXQ_BUFCFG, 1478 TSI108_EC_RXQ_BUFCFG_BURST256 | 1479 TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT << 1480 TSI108_EC_RXQ_BUFCFG_SFNPORT)); 1481 1482 TSI_WRITE(TSI108_EC_INTMASK, ~0); 1483 } 1484 1485 static int tsi108_get_link_ksettings(struct net_device *dev, 1486 struct ethtool_link_ksettings *cmd) 1487 { 1488 struct tsi108_prv_data *data = netdev_priv(dev); 1489 unsigned long flags; 1490 1491 spin_lock_irqsave(&data->txlock, flags); 1492 mii_ethtool_get_link_ksettings(&data->mii_if, cmd); 1493 spin_unlock_irqrestore(&data->txlock, flags); 1494 1495 return 0; 1496 } 1497 1498 static int tsi108_set_link_ksettings(struct net_device *dev, 1499 const struct ethtool_link_ksettings *cmd) 1500 { 1501 struct tsi108_prv_data *data = netdev_priv(dev); 1502 unsigned long flags; 1503 int rc; 1504 1505 spin_lock_irqsave(&data->txlock, flags); 1506 rc = mii_ethtool_set_link_ksettings(&data->mii_if, cmd); 1507 spin_unlock_irqrestore(&data->txlock, flags); 1508 1509 return rc; 1510 } 1511 1512 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1513 { 1514 struct tsi108_prv_data *data = netdev_priv(dev); 1515 if (!netif_running(dev)) 1516 return -EINVAL; 1517 return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL); 1518 } 1519 1520 static const struct ethtool_ops tsi108_ethtool_ops = { 1521 .get_link = ethtool_op_get_link, 1522 .get_link_ksettings = tsi108_get_link_ksettings, 1523 .set_link_ksettings = tsi108_set_link_ksettings, 1524 }; 1525 1526 static const struct net_device_ops tsi108_netdev_ops = { 1527 .ndo_open = tsi108_open, 1528 .ndo_stop = tsi108_close, 1529 .ndo_start_xmit = tsi108_send_packet, 1530 .ndo_set_rx_mode = tsi108_set_rx_mode, 1531 .ndo_get_stats = tsi108_get_stats, 1532 .ndo_eth_ioctl = tsi108_do_ioctl, 1533 .ndo_set_mac_address = tsi108_set_mac, 1534 .ndo_validate_addr = eth_validate_addr, 1535 }; 1536 1537 static int 1538 tsi108_init_one(struct platform_device *pdev) 1539 { 1540 struct net_device *dev = NULL; 1541 struct tsi108_prv_data *data = NULL; 1542 hw_info *einfo; 1543 int err = 0; 1544 1545 einfo = dev_get_platdata(&pdev->dev); 1546 1547 if (NULL == einfo) { 1548 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n", 1549 pdev->id); 1550 return -ENODEV; 1551 } 1552 1553 /* Create an ethernet device instance */ 1554 1555 dev = alloc_etherdev(sizeof(struct tsi108_prv_data)); 1556 if (!dev) 1557 return -ENOMEM; 1558 1559 printk("tsi108_eth%d: probe...\n", pdev->id); 1560 data = netdev_priv(dev); 1561 data->dev = dev; 1562 data->pdev = pdev; 1563 1564 pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n", 1565 pdev->id, einfo->regs, einfo->phyregs, 1566 einfo->phy, einfo->irq_num); 1567 1568 data->regs = ioremap(einfo->regs, 0x400); 1569 if (NULL == data->regs) { 1570 err = -ENOMEM; 1571 goto regs_fail; 1572 } 1573 1574 data->phyregs = ioremap(einfo->phyregs, 0x400); 1575 if (NULL == data->phyregs) { 1576 err = -ENOMEM; 1577 goto phyregs_fail; 1578 } 1579 /* MII setup */ 1580 data->mii_if.dev = dev; 1581 data->mii_if.mdio_read = tsi108_mdio_read; 1582 data->mii_if.mdio_write = tsi108_mdio_write; 1583 data->mii_if.phy_id = einfo->phy; 1584 data->mii_if.phy_id_mask = 0x1f; 1585 data->mii_if.reg_num_mask = 0x1f; 1586 1587 data->phy = einfo->phy; 1588 data->phy_type = einfo->phy_type; 1589 data->irq_num = einfo->irq_num; 1590 data->id = pdev->id; 1591 netif_napi_add(dev, &data->napi, tsi108_poll); 1592 dev->netdev_ops = &tsi108_netdev_ops; 1593 dev->ethtool_ops = &tsi108_ethtool_ops; 1594 1595 /* Apparently, the Linux networking code won't use scatter-gather 1596 * if the hardware doesn't do checksums. However, it's faster 1597 * to checksum in place and use SG, as (among other reasons) 1598 * the cache won't be dirtied (which then has to be flushed 1599 * before DMA). The checksumming is done by the driver (via 1600 * a new function skb_csum_dev() in net/core/skbuff.c). 1601 */ 1602 1603 dev->features = NETIF_F_HIGHDMA; 1604 1605 spin_lock_init(&data->txlock); 1606 spin_lock_init(&data->misclock); 1607 1608 tsi108_reset_ether(data); 1609 tsi108_kill_phy(dev); 1610 1611 if ((err = tsi108_get_mac(dev)) != 0) { 1612 printk(KERN_ERR "%s: Invalid MAC address. Please correct.\n", 1613 dev->name); 1614 goto register_fail; 1615 } 1616 1617 tsi108_init_mac(dev); 1618 err = register_netdev(dev); 1619 if (err) { 1620 printk(KERN_ERR "%s: Cannot register net device, aborting.\n", 1621 dev->name); 1622 goto register_fail; 1623 } 1624 1625 platform_set_drvdata(pdev, dev); 1626 printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n", 1627 dev->name, dev->dev_addr); 1628 #ifdef DEBUG 1629 data->msg_enable = DEBUG; 1630 dump_eth_one(dev); 1631 #endif 1632 1633 return 0; 1634 1635 register_fail: 1636 iounmap(data->phyregs); 1637 1638 phyregs_fail: 1639 iounmap(data->regs); 1640 1641 regs_fail: 1642 free_netdev(dev); 1643 return err; 1644 } 1645 1646 /* There's no way to either get interrupts from the PHY when 1647 * something changes, or to have the Tsi108 automatically communicate 1648 * with the PHY to reconfigure itself. 1649 * 1650 * Thus, we have to do it using a timer. 1651 */ 1652 1653 static void tsi108_timed_checker(struct timer_list *t) 1654 { 1655 struct tsi108_prv_data *data = from_timer(data, t, timer); 1656 struct net_device *dev = data->dev; 1657 1658 tsi108_check_phy(dev); 1659 tsi108_check_rxring(dev); 1660 mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL); 1661 } 1662 1663 static void tsi108_ether_remove(struct platform_device *pdev) 1664 { 1665 struct net_device *dev = platform_get_drvdata(pdev); 1666 struct tsi108_prv_data *priv = netdev_priv(dev); 1667 1668 unregister_netdev(dev); 1669 tsi108_stop_ethernet(dev); 1670 iounmap(priv->regs); 1671 iounmap(priv->phyregs); 1672 free_netdev(dev); 1673 } 1674 1675 /* Structure for a device driver */ 1676 1677 static struct platform_driver tsi_eth_driver = { 1678 .probe = tsi108_init_one, 1679 .remove = tsi108_ether_remove, 1680 .driver = { 1681 .name = "tsi-ethernet", 1682 }, 1683 }; 1684 module_platform_driver(tsi_eth_driver); 1685 1686 MODULE_AUTHOR("Tundra Semiconductor Corporation"); 1687 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver"); 1688 MODULE_LICENSE("GPL"); 1689 MODULE_ALIAS("platform:tsi-ethernet"); 1690