xref: /linux/drivers/net/ethernet/tundra/tsi108_eth.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3 
4   Copyright(c) 2006 Tundra Semiconductor Corporation.
5 
6 
7 *******************************************************************************/
8 
9 /* This driver is based on the driver code originally developed
10  * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
11  * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
12  *
13  * Currently changes from original version are:
14  * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
15  * - modifications to handle two ports independently and support for
16  *   additional PHY devices (alexandre.bounine@tundra.com)
17  * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
18  *
19  */
20 
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/interrupt.h>
24 #include <linux/net.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/ethtool.h>
28 #include <linux/skbuff.h>
29 #include <linux/spinlock.h>
30 #include <linux/delay.h>
31 #include <linux/crc32.h>
32 #include <linux/mii.h>
33 #include <linux/device.h>
34 #include <linux/pci.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/timer.h>
37 #include <linux/platform_device.h>
38 #include <linux/gfp.h>
39 
40 #include <asm/io.h>
41 #include <asm/tsi108.h>
42 
43 #include "tsi108_eth.h"
44 
45 #define MII_READ_DELAY 10000	/* max link wait time in msec */
46 
47 #define TSI108_RXRING_LEN     256
48 
49 /* NOTE: The driver currently does not support receiving packets
50  * larger than the buffer size, so don't decrease this (unless you
51  * want to add such support).
52  */
53 #define TSI108_RXBUF_SIZE     1536
54 
55 #define TSI108_TXRING_LEN     256
56 
57 #define TSI108_TX_INT_FREQ    64
58 
59 /* Check the phy status every half a second. */
60 #define CHECK_PHY_INTERVAL (HZ/2)
61 
62 static int tsi108_init_one(struct platform_device *pdev);
63 static int tsi108_ether_remove(struct platform_device *pdev);
64 
65 struct tsi108_prv_data {
66 	void  __iomem *regs;	/* Base of normal regs */
67 	void  __iomem *phyregs;	/* Base of register bank used for PHY access */
68 
69 	struct net_device *dev;
70 	struct napi_struct napi;
71 
72 	unsigned int phy;		/* Index of PHY for this interface */
73 	unsigned int irq_num;
74 	unsigned int id;
75 	unsigned int phy_type;
76 
77 	struct timer_list timer;/* Timer that triggers the check phy function */
78 	unsigned int rxtail;	/* Next entry in rxring to read */
79 	unsigned int rxhead;	/* Next entry in rxring to give a new buffer */
80 	unsigned int rxfree;	/* Number of free, allocated RX buffers */
81 
82 	unsigned int rxpending;	/* Non-zero if there are still descriptors
83 				 * to be processed from a previous descriptor
84 				 * interrupt condition that has been cleared */
85 
86 	unsigned int txtail;	/* Next TX descriptor to check status on */
87 	unsigned int txhead;	/* Next TX descriptor to use */
88 
89 	/* Number of free TX descriptors.  This could be calculated from
90 	 * rxhead and rxtail if one descriptor were left unused to disambiguate
91 	 * full and empty conditions, but it's simpler to just keep track
92 	 * explicitly. */
93 
94 	unsigned int txfree;
95 
96 	unsigned int phy_ok;		/* The PHY is currently powered on. */
97 
98 	/* PHY status (duplex is 1 for half, 2 for full,
99 	 * so that the default 0 indicates that neither has
100 	 * yet been configured). */
101 
102 	unsigned int link_up;
103 	unsigned int speed;
104 	unsigned int duplex;
105 
106 	tx_desc *txring;
107 	rx_desc *rxring;
108 	struct sk_buff *txskbs[TSI108_TXRING_LEN];
109 	struct sk_buff *rxskbs[TSI108_RXRING_LEN];
110 
111 	dma_addr_t txdma, rxdma;
112 
113 	/* txlock nests in misclock and phy_lock */
114 
115 	spinlock_t txlock, misclock;
116 
117 	/* stats is used to hold the upper bits of each hardware counter,
118 	 * and tmpstats is used to hold the full values for returning
119 	 * to the caller of get_stats().  They must be separate in case
120 	 * an overflow interrupt occurs before the stats are consumed.
121 	 */
122 
123 	struct net_device_stats stats;
124 	struct net_device_stats tmpstats;
125 
126 	/* These stats are kept separate in hardware, thus require individual
127 	 * fields for handling carry.  They are combined in get_stats.
128 	 */
129 
130 	unsigned long rx_fcs;	/* Add to rx_frame_errors */
131 	unsigned long rx_short_fcs;	/* Add to rx_frame_errors */
132 	unsigned long rx_long_fcs;	/* Add to rx_frame_errors */
133 	unsigned long rx_underruns;	/* Add to rx_length_errors */
134 	unsigned long rx_overruns;	/* Add to rx_length_errors */
135 
136 	unsigned long tx_coll_abort;	/* Add to tx_aborted_errors/collisions */
137 	unsigned long tx_pause_drop;	/* Add to tx_aborted_errors */
138 
139 	unsigned long mc_hash[16];
140 	u32 msg_enable;			/* debug message level */
141 	struct mii_if_info mii_if;
142 	unsigned int init_media;
143 
144 	struct platform_device *pdev;
145 };
146 
147 /* Structure for a device driver */
148 
149 static struct platform_driver tsi_eth_driver = {
150 	.probe = tsi108_init_one,
151 	.remove = tsi108_ether_remove,
152 	.driver	= {
153 		.name = "tsi-ethernet",
154 	},
155 };
156 
157 static void tsi108_timed_checker(struct timer_list *t);
158 
159 #ifdef DEBUG
160 static void dump_eth_one(struct net_device *dev)
161 {
162 	struct tsi108_prv_data *data = netdev_priv(dev);
163 
164 	printk("Dumping %s...\n", dev->name);
165 	printk("intstat %x intmask %x phy_ok %d"
166 	       " link %d speed %d duplex %d\n",
167 	       TSI_READ(TSI108_EC_INTSTAT),
168 	       TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
169 	       data->link_up, data->speed, data->duplex);
170 
171 	printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
172 	       data->txhead, data->txtail, data->txfree,
173 	       TSI_READ(TSI108_EC_TXSTAT),
174 	       TSI_READ(TSI108_EC_TXESTAT),
175 	       TSI_READ(TSI108_EC_TXERR));
176 
177 	printk("RX: head %d, tail %d, free %d, stat %x,"
178 	       " estat %x, err %x, pending %d\n\n",
179 	       data->rxhead, data->rxtail, data->rxfree,
180 	       TSI_READ(TSI108_EC_RXSTAT),
181 	       TSI_READ(TSI108_EC_RXESTAT),
182 	       TSI_READ(TSI108_EC_RXERR), data->rxpending);
183 }
184 #endif
185 
186 /* Synchronization is needed between the thread and up/down events.
187  * Note that the PHY is accessed through the same registers for both
188  * interfaces, so this can't be made interface-specific.
189  */
190 
191 static DEFINE_SPINLOCK(phy_lock);
192 
193 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
194 {
195 	unsigned i;
196 
197 	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
198 				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
199 				(reg << TSI108_MAC_MII_ADDR_REG));
200 	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
201 	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
202 	for (i = 0; i < 100; i++) {
203 		if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
204 		      (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
205 			break;
206 		udelay(10);
207 	}
208 
209 	if (i == 100)
210 		return 0xffff;
211 	else
212 		return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
213 }
214 
215 static void tsi108_write_mii(struct tsi108_prv_data *data,
216 				int reg, u16 val)
217 {
218 	unsigned i = 100;
219 	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
220 				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
221 				(reg << TSI108_MAC_MII_ADDR_REG));
222 	TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
223 	while (i--) {
224 		if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
225 			TSI108_MAC_MII_IND_BUSY))
226 			break;
227 		udelay(10);
228 	}
229 }
230 
231 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
232 {
233 	struct tsi108_prv_data *data = netdev_priv(dev);
234 	return tsi108_read_mii(data, reg);
235 }
236 
237 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
238 {
239 	struct tsi108_prv_data *data = netdev_priv(dev);
240 	tsi108_write_mii(data, reg, val);
241 }
242 
243 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
244 					int reg, u16 val)
245 {
246 	unsigned i = 1000;
247 	TSI_WRITE(TSI108_MAC_MII_ADDR,
248 			     (0x1e << TSI108_MAC_MII_ADDR_PHY)
249 			     | (reg << TSI108_MAC_MII_ADDR_REG));
250 	TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
251 	while(i--) {
252 		if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
253 			return;
254 		udelay(10);
255 	}
256 	printk(KERN_ERR "%s function time out\n", __func__);
257 }
258 
259 static int mii_speed(struct mii_if_info *mii)
260 {
261 	int advert, lpa, val, media;
262 	int lpa2 = 0;
263 	int speed;
264 
265 	if (!mii_link_ok(mii))
266 		return 0;
267 
268 	val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
269 	if ((val & BMSR_ANEGCOMPLETE) == 0)
270 		return 0;
271 
272 	advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
273 	lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
274 	media = mii_nway_result(advert & lpa);
275 
276 	if (mii->supports_gmii)
277 		lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
278 
279 	speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
280 			(media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
281 	return speed;
282 }
283 
284 static void tsi108_check_phy(struct net_device *dev)
285 {
286 	struct tsi108_prv_data *data = netdev_priv(dev);
287 	u32 mac_cfg2_reg, portctrl_reg;
288 	u32 duplex;
289 	u32 speed;
290 	unsigned long flags;
291 
292 	spin_lock_irqsave(&phy_lock, flags);
293 
294 	if (!data->phy_ok)
295 		goto out;
296 
297 	duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
298 	data->init_media = 0;
299 
300 	if (netif_carrier_ok(dev)) {
301 
302 		speed = mii_speed(&data->mii_if);
303 
304 		if ((speed != data->speed) || duplex) {
305 
306 			mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
307 			portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
308 
309 			mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
310 
311 			if (speed == 1000) {
312 				mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
313 				portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
314 			} else {
315 				mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
316 				portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
317 			}
318 
319 			data->speed = speed;
320 
321 			if (data->mii_if.full_duplex) {
322 				mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
323 				portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
324 				data->duplex = 2;
325 			} else {
326 				mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
327 				portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
328 				data->duplex = 1;
329 			}
330 
331 			TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
332 			TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
333 		}
334 
335 		if (data->link_up == 0) {
336 			/* The manual says it can take 3-4 usecs for the speed change
337 			 * to take effect.
338 			 */
339 			udelay(5);
340 
341 			spin_lock(&data->txlock);
342 			if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
343 				netif_wake_queue(dev);
344 
345 			data->link_up = 1;
346 			spin_unlock(&data->txlock);
347 		}
348 	} else {
349 		if (data->link_up == 1) {
350 			netif_stop_queue(dev);
351 			data->link_up = 0;
352 			printk(KERN_NOTICE "%s : link is down\n", dev->name);
353 		}
354 
355 		goto out;
356 	}
357 
358 
359 out:
360 	spin_unlock_irqrestore(&phy_lock, flags);
361 }
362 
363 static inline void
364 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
365 		      unsigned long *upper)
366 {
367 	if (carry & carry_bit)
368 		*upper += carry_shift;
369 }
370 
371 static void tsi108_stat_carry(struct net_device *dev)
372 {
373 	struct tsi108_prv_data *data = netdev_priv(dev);
374 	unsigned long flags;
375 	u32 carry1, carry2;
376 
377 	spin_lock_irqsave(&data->misclock, flags);
378 
379 	carry1 = TSI_READ(TSI108_STAT_CARRY1);
380 	carry2 = TSI_READ(TSI108_STAT_CARRY2);
381 
382 	TSI_WRITE(TSI108_STAT_CARRY1, carry1);
383 	TSI_WRITE(TSI108_STAT_CARRY2, carry2);
384 
385 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
386 			      TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
387 
388 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
389 			      TSI108_STAT_RXPKTS_CARRY,
390 			      &data->stats.rx_packets);
391 
392 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
393 			      TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
394 
395 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
396 			      TSI108_STAT_RXMCAST_CARRY,
397 			      &data->stats.multicast);
398 
399 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
400 			      TSI108_STAT_RXALIGN_CARRY,
401 			      &data->stats.rx_frame_errors);
402 
403 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
404 			      TSI108_STAT_RXLENGTH_CARRY,
405 			      &data->stats.rx_length_errors);
406 
407 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
408 			      TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
409 
410 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
411 			      TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
412 
413 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
414 			      TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
415 
416 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
417 			      TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
418 
419 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
420 			      TSI108_STAT_RXDROP_CARRY,
421 			      &data->stats.rx_missed_errors);
422 
423 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
424 			      TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
425 
426 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
427 			      TSI108_STAT_TXPKTS_CARRY,
428 			      &data->stats.tx_packets);
429 
430 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
431 			      TSI108_STAT_TXEXDEF_CARRY,
432 			      &data->stats.tx_aborted_errors);
433 
434 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
435 			      TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
436 
437 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
438 			      TSI108_STAT_TXTCOL_CARRY,
439 			      &data->stats.collisions);
440 
441 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
442 			      TSI108_STAT_TXPAUSEDROP_CARRY,
443 			      &data->tx_pause_drop);
444 
445 	spin_unlock_irqrestore(&data->misclock, flags);
446 }
447 
448 /* Read a stat counter atomically with respect to carries.
449  * data->misclock must be held.
450  */
451 static inline unsigned long
452 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
453 		 int carry_shift, unsigned long *upper)
454 {
455 	int carryreg;
456 	unsigned long val;
457 
458 	if (reg < 0xb0)
459 		carryreg = TSI108_STAT_CARRY1;
460 	else
461 		carryreg = TSI108_STAT_CARRY2;
462 
463       again:
464 	val = TSI_READ(reg) | *upper;
465 
466 	/* Check to see if it overflowed, but the interrupt hasn't
467 	 * been serviced yet.  If so, handle the carry here, and
468 	 * try again.
469 	 */
470 
471 	if (unlikely(TSI_READ(carryreg) & carry_bit)) {
472 		*upper += carry_shift;
473 		TSI_WRITE(carryreg, carry_bit);
474 		goto again;
475 	}
476 
477 	return val;
478 }
479 
480 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
481 {
482 	unsigned long excol;
483 
484 	struct tsi108_prv_data *data = netdev_priv(dev);
485 	spin_lock_irq(&data->misclock);
486 
487 	data->tmpstats.rx_packets =
488 	    tsi108_read_stat(data, TSI108_STAT_RXPKTS,
489 			     TSI108_STAT_CARRY1_RXPKTS,
490 			     TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
491 
492 	data->tmpstats.tx_packets =
493 	    tsi108_read_stat(data, TSI108_STAT_TXPKTS,
494 			     TSI108_STAT_CARRY2_TXPKTS,
495 			     TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
496 
497 	data->tmpstats.rx_bytes =
498 	    tsi108_read_stat(data, TSI108_STAT_RXBYTES,
499 			     TSI108_STAT_CARRY1_RXBYTES,
500 			     TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
501 
502 	data->tmpstats.tx_bytes =
503 	    tsi108_read_stat(data, TSI108_STAT_TXBYTES,
504 			     TSI108_STAT_CARRY2_TXBYTES,
505 			     TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
506 
507 	data->tmpstats.multicast =
508 	    tsi108_read_stat(data, TSI108_STAT_RXMCAST,
509 			     TSI108_STAT_CARRY1_RXMCAST,
510 			     TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
511 
512 	excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
513 				 TSI108_STAT_CARRY2_TXEXCOL,
514 				 TSI108_STAT_TXEXCOL_CARRY,
515 				 &data->tx_coll_abort);
516 
517 	data->tmpstats.collisions =
518 	    tsi108_read_stat(data, TSI108_STAT_TXTCOL,
519 			     TSI108_STAT_CARRY2_TXTCOL,
520 			     TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
521 
522 	data->tmpstats.collisions += excol;
523 
524 	data->tmpstats.rx_length_errors =
525 	    tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
526 			     TSI108_STAT_CARRY1_RXLENGTH,
527 			     TSI108_STAT_RXLENGTH_CARRY,
528 			     &data->stats.rx_length_errors);
529 
530 	data->tmpstats.rx_length_errors +=
531 	    tsi108_read_stat(data, TSI108_STAT_RXRUNT,
532 			     TSI108_STAT_CARRY1_RXRUNT,
533 			     TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
534 
535 	data->tmpstats.rx_length_errors +=
536 	    tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
537 			     TSI108_STAT_CARRY1_RXJUMBO,
538 			     TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
539 
540 	data->tmpstats.rx_frame_errors =
541 	    tsi108_read_stat(data, TSI108_STAT_RXALIGN,
542 			     TSI108_STAT_CARRY1_RXALIGN,
543 			     TSI108_STAT_RXALIGN_CARRY,
544 			     &data->stats.rx_frame_errors);
545 
546 	data->tmpstats.rx_frame_errors +=
547 	    tsi108_read_stat(data, TSI108_STAT_RXFCS,
548 			     TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
549 			     &data->rx_fcs);
550 
551 	data->tmpstats.rx_frame_errors +=
552 	    tsi108_read_stat(data, TSI108_STAT_RXFRAG,
553 			     TSI108_STAT_CARRY1_RXFRAG,
554 			     TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
555 
556 	data->tmpstats.rx_missed_errors =
557 	    tsi108_read_stat(data, TSI108_STAT_RXDROP,
558 			     TSI108_STAT_CARRY1_RXDROP,
559 			     TSI108_STAT_RXDROP_CARRY,
560 			     &data->stats.rx_missed_errors);
561 
562 	/* These three are maintained by software. */
563 	data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
564 	data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
565 
566 	data->tmpstats.tx_aborted_errors =
567 	    tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
568 			     TSI108_STAT_CARRY2_TXEXDEF,
569 			     TSI108_STAT_TXEXDEF_CARRY,
570 			     &data->stats.tx_aborted_errors);
571 
572 	data->tmpstats.tx_aborted_errors +=
573 	    tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
574 			     TSI108_STAT_CARRY2_TXPAUSE,
575 			     TSI108_STAT_TXPAUSEDROP_CARRY,
576 			     &data->tx_pause_drop);
577 
578 	data->tmpstats.tx_aborted_errors += excol;
579 
580 	data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
581 	data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
582 	    data->tmpstats.rx_crc_errors +
583 	    data->tmpstats.rx_frame_errors +
584 	    data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
585 
586 	spin_unlock_irq(&data->misclock);
587 	return &data->tmpstats;
588 }
589 
590 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
591 {
592 	TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
593 			     TSI108_EC_RXQ_PTRHIGH_VALID);
594 
595 	TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
596 			     | TSI108_EC_RXCTRL_QUEUE0);
597 }
598 
599 static void tsi108_restart_tx(struct tsi108_prv_data * data)
600 {
601 	TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
602 			     TSI108_EC_TXQ_PTRHIGH_VALID);
603 
604 	TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
605 			     TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
606 }
607 
608 /* txlock must be held by caller, with IRQs disabled, and
609  * with permission to re-enable them when the lock is dropped.
610  */
611 static void tsi108_complete_tx(struct net_device *dev)
612 {
613 	struct tsi108_prv_data *data = netdev_priv(dev);
614 	int tx;
615 	struct sk_buff *skb;
616 	int release = 0;
617 
618 	while (!data->txfree || data->txhead != data->txtail) {
619 		tx = data->txtail;
620 
621 		if (data->txring[tx].misc & TSI108_TX_OWN)
622 			break;
623 
624 		skb = data->txskbs[tx];
625 
626 		if (!(data->txring[tx].misc & TSI108_TX_OK))
627 			printk("%s: bad tx packet, misc %x\n",
628 			       dev->name, data->txring[tx].misc);
629 
630 		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
631 		data->txfree++;
632 
633 		if (data->txring[tx].misc & TSI108_TX_EOF) {
634 			dev_kfree_skb_any(skb);
635 			release++;
636 		}
637 	}
638 
639 	if (release) {
640 		if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
641 			netif_wake_queue(dev);
642 	}
643 }
644 
645 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
646 {
647 	struct tsi108_prv_data *data = netdev_priv(dev);
648 	int frags = skb_shinfo(skb)->nr_frags + 1;
649 	int i;
650 
651 	if (!data->phy_ok && net_ratelimit())
652 		printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
653 
654 	if (!data->link_up) {
655 		printk(KERN_ERR "%s: Transmit while link is down!\n",
656 		       dev->name);
657 		netif_stop_queue(dev);
658 		return NETDEV_TX_BUSY;
659 	}
660 
661 	if (data->txfree < MAX_SKB_FRAGS + 1) {
662 		netif_stop_queue(dev);
663 
664 		if (net_ratelimit())
665 			printk(KERN_ERR "%s: Transmit with full tx ring!\n",
666 			       dev->name);
667 		return NETDEV_TX_BUSY;
668 	}
669 
670 	if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
671 		netif_stop_queue(dev);
672 	}
673 
674 	spin_lock_irq(&data->txlock);
675 
676 	for (i = 0; i < frags; i++) {
677 		int misc = 0;
678 		int tx = data->txhead;
679 
680 		/* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
681 		 * the interrupt bit.  TX descriptor-complete interrupts are
682 		 * enabled when the queue fills up, and masked when there is
683 		 * still free space.  This way, when saturating the outbound
684 		 * link, the tx interrupts are kept to a reasonable level.
685 		 * When the queue is not full, reclamation of skbs still occurs
686 		 * as new packets are transmitted, or on a queue-empty
687 		 * interrupt.
688 		 */
689 
690 		if ((tx % TSI108_TX_INT_FREQ == 0) &&
691 		    ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
692 			misc = TSI108_TX_INT;
693 
694 		data->txskbs[tx] = skb;
695 
696 		if (i == 0) {
697 			data->txring[tx].buf0 = dma_map_single(&data->pdev->dev,
698 					skb->data, skb_headlen(skb),
699 					DMA_TO_DEVICE);
700 			data->txring[tx].len = skb_headlen(skb);
701 			misc |= TSI108_TX_SOF;
702 		} else {
703 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
704 
705 			data->txring[tx].buf0 =
706 				skb_frag_dma_map(&data->pdev->dev, frag,
707 						0, skb_frag_size(frag),
708 						DMA_TO_DEVICE);
709 			data->txring[tx].len = skb_frag_size(frag);
710 		}
711 
712 		if (i == frags - 1)
713 			misc |= TSI108_TX_EOF;
714 
715 		if (netif_msg_pktdata(data)) {
716 			int i;
717 			printk("%s: Tx Frame contents (%d)\n", dev->name,
718 			       skb->len);
719 			for (i = 0; i < skb->len; i++)
720 				printk(" %2.2x", skb->data[i]);
721 			printk(".\n");
722 		}
723 		data->txring[tx].misc = misc | TSI108_TX_OWN;
724 
725 		data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
726 		data->txfree--;
727 	}
728 
729 	tsi108_complete_tx(dev);
730 
731 	/* This must be done after the check for completed tx descriptors,
732 	 * so that the tail pointer is correct.
733 	 */
734 
735 	if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
736 		tsi108_restart_tx(data);
737 
738 	spin_unlock_irq(&data->txlock);
739 	return NETDEV_TX_OK;
740 }
741 
742 static int tsi108_complete_rx(struct net_device *dev, int budget)
743 {
744 	struct tsi108_prv_data *data = netdev_priv(dev);
745 	int done = 0;
746 
747 	while (data->rxfree && done != budget) {
748 		int rx = data->rxtail;
749 		struct sk_buff *skb;
750 
751 		if (data->rxring[rx].misc & TSI108_RX_OWN)
752 			break;
753 
754 		skb = data->rxskbs[rx];
755 		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
756 		data->rxfree--;
757 		done++;
758 
759 		if (data->rxring[rx].misc & TSI108_RX_BAD) {
760 			spin_lock_irq(&data->misclock);
761 
762 			if (data->rxring[rx].misc & TSI108_RX_CRC)
763 				data->stats.rx_crc_errors++;
764 			if (data->rxring[rx].misc & TSI108_RX_OVER)
765 				data->stats.rx_fifo_errors++;
766 
767 			spin_unlock_irq(&data->misclock);
768 
769 			dev_kfree_skb_any(skb);
770 			continue;
771 		}
772 		if (netif_msg_pktdata(data)) {
773 			int i;
774 			printk("%s: Rx Frame contents (%d)\n",
775 			       dev->name, data->rxring[rx].len);
776 			for (i = 0; i < data->rxring[rx].len; i++)
777 				printk(" %2.2x", skb->data[i]);
778 			printk(".\n");
779 		}
780 
781 		skb_put(skb, data->rxring[rx].len);
782 		skb->protocol = eth_type_trans(skb, dev);
783 		netif_receive_skb(skb);
784 	}
785 
786 	return done;
787 }
788 
789 static int tsi108_refill_rx(struct net_device *dev, int budget)
790 {
791 	struct tsi108_prv_data *data = netdev_priv(dev);
792 	int done = 0;
793 
794 	while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
795 		int rx = data->rxhead;
796 		struct sk_buff *skb;
797 
798 		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
799 		data->rxskbs[rx] = skb;
800 		if (!skb)
801 			break;
802 
803 		data->rxring[rx].buf0 = dma_map_single(&data->pdev->dev,
804 				skb->data, TSI108_RX_SKB_SIZE,
805 				DMA_FROM_DEVICE);
806 
807 		/* Sometimes the hardware sets blen to zero after packet
808 		 * reception, even though the manual says that it's only ever
809 		 * modified by the driver.
810 		 */
811 
812 		data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
813 		data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
814 
815 		data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
816 		data->rxfree++;
817 		done++;
818 	}
819 
820 	if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
821 			   TSI108_EC_RXSTAT_QUEUE0))
822 		tsi108_restart_rx(data, dev);
823 
824 	return done;
825 }
826 
827 static int tsi108_poll(struct napi_struct *napi, int budget)
828 {
829 	struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
830 	struct net_device *dev = data->dev;
831 	u32 estat = TSI_READ(TSI108_EC_RXESTAT);
832 	u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
833 	int num_received = 0, num_filled = 0;
834 
835 	intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
836 	    TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
837 
838 	TSI_WRITE(TSI108_EC_RXESTAT, estat);
839 	TSI_WRITE(TSI108_EC_INTSTAT, intstat);
840 
841 	if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
842 		num_received = tsi108_complete_rx(dev, budget);
843 
844 	/* This should normally fill no more slots than the number of
845 	 * packets received in tsi108_complete_rx().  The exception
846 	 * is when we previously ran out of memory for RX SKBs.  In that
847 	 * case, it's helpful to obey the budget, not only so that the
848 	 * CPU isn't hogged, but so that memory (which may still be low)
849 	 * is not hogged by one device.
850 	 *
851 	 * A work unit is considered to be two SKBs to allow us to catch
852 	 * up when the ring has shrunk due to out-of-memory but we're
853 	 * still removing the full budget's worth of packets each time.
854 	 */
855 
856 	if (data->rxfree < TSI108_RXRING_LEN)
857 		num_filled = tsi108_refill_rx(dev, budget * 2);
858 
859 	if (intstat & TSI108_INT_RXERROR) {
860 		u32 err = TSI_READ(TSI108_EC_RXERR);
861 		TSI_WRITE(TSI108_EC_RXERR, err);
862 
863 		if (err) {
864 			if (net_ratelimit())
865 				printk(KERN_DEBUG "%s: RX error %x\n",
866 				       dev->name, err);
867 
868 			if (!(TSI_READ(TSI108_EC_RXSTAT) &
869 			      TSI108_EC_RXSTAT_QUEUE0))
870 				tsi108_restart_rx(data, dev);
871 		}
872 	}
873 
874 	if (intstat & TSI108_INT_RXOVERRUN) {
875 		spin_lock_irq(&data->misclock);
876 		data->stats.rx_fifo_errors++;
877 		spin_unlock_irq(&data->misclock);
878 	}
879 
880 	if (num_received < budget) {
881 		data->rxpending = 0;
882 		napi_complete_done(napi, num_received);
883 
884 		TSI_WRITE(TSI108_EC_INTMASK,
885 				     TSI_READ(TSI108_EC_INTMASK)
886 				     & ~(TSI108_INT_RXQUEUE0
887 					 | TSI108_INT_RXTHRESH |
888 					 TSI108_INT_RXOVERRUN |
889 					 TSI108_INT_RXERROR |
890 					 TSI108_INT_RXWAIT));
891 	} else {
892 		data->rxpending = 1;
893 	}
894 
895 	return num_received;
896 }
897 
898 static void tsi108_rx_int(struct net_device *dev)
899 {
900 	struct tsi108_prv_data *data = netdev_priv(dev);
901 
902 	/* A race could cause dev to already be scheduled, so it's not an
903 	 * error if that happens (and interrupts shouldn't be re-masked,
904 	 * because that can cause harmful races, if poll has already
905 	 * unmasked them but not cleared LINK_STATE_SCHED).
906 	 *
907 	 * This can happen if this code races with tsi108_poll(), which masks
908 	 * the interrupts after tsi108_irq_one() read the mask, but before
909 	 * napi_schedule is called.  It could also happen due to calls
910 	 * from tsi108_check_rxring().
911 	 */
912 
913 	if (napi_schedule_prep(&data->napi)) {
914 		/* Mask, rather than ack, the receive interrupts.  The ack
915 		 * will happen in tsi108_poll().
916 		 */
917 
918 		TSI_WRITE(TSI108_EC_INTMASK,
919 				     TSI_READ(TSI108_EC_INTMASK) |
920 				     TSI108_INT_RXQUEUE0
921 				     | TSI108_INT_RXTHRESH |
922 				     TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
923 				     TSI108_INT_RXWAIT);
924 		__napi_schedule(&data->napi);
925 	} else {
926 		if (!netif_running(dev)) {
927 			/* This can happen if an interrupt occurs while the
928 			 * interface is being brought down, as the START
929 			 * bit is cleared before the stop function is called.
930 			 *
931 			 * In this case, the interrupts must be masked, or
932 			 * they will continue indefinitely.
933 			 *
934 			 * There's a race here if the interface is brought down
935 			 * and then up in rapid succession, as the device could
936 			 * be made running after the above check and before
937 			 * the masking below.  This will only happen if the IRQ
938 			 * thread has a lower priority than the task brining
939 			 * up the interface.  Fixing this race would likely
940 			 * require changes in generic code.
941 			 */
942 
943 			TSI_WRITE(TSI108_EC_INTMASK,
944 					     TSI_READ
945 					     (TSI108_EC_INTMASK) |
946 					     TSI108_INT_RXQUEUE0 |
947 					     TSI108_INT_RXTHRESH |
948 					     TSI108_INT_RXOVERRUN |
949 					     TSI108_INT_RXERROR |
950 					     TSI108_INT_RXWAIT);
951 		}
952 	}
953 }
954 
955 /* If the RX ring has run out of memory, try periodically
956  * to allocate some more, as otherwise poll would never
957  * get called (apart from the initial end-of-queue condition).
958  *
959  * This is called once per second (by default) from the thread.
960  */
961 
962 static void tsi108_check_rxring(struct net_device *dev)
963 {
964 	struct tsi108_prv_data *data = netdev_priv(dev);
965 
966 	/* A poll is scheduled, as opposed to caling tsi108_refill_rx
967 	 * directly, so as to keep the receive path single-threaded
968 	 * (and thus not needing a lock).
969 	 */
970 
971 	if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
972 		tsi108_rx_int(dev);
973 }
974 
975 static void tsi108_tx_int(struct net_device *dev)
976 {
977 	struct tsi108_prv_data *data = netdev_priv(dev);
978 	u32 estat = TSI_READ(TSI108_EC_TXESTAT);
979 
980 	TSI_WRITE(TSI108_EC_TXESTAT, estat);
981 	TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
982 			     TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
983 	if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
984 		u32 err = TSI_READ(TSI108_EC_TXERR);
985 		TSI_WRITE(TSI108_EC_TXERR, err);
986 
987 		if (err && net_ratelimit())
988 			printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
989 	}
990 
991 	if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
992 		spin_lock(&data->txlock);
993 		tsi108_complete_tx(dev);
994 		spin_unlock(&data->txlock);
995 	}
996 }
997 
998 
999 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1000 {
1001 	struct net_device *dev = dev_id;
1002 	struct tsi108_prv_data *data = netdev_priv(dev);
1003 	u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1004 
1005 	if (!(stat & TSI108_INT_ANY))
1006 		return IRQ_NONE;	/* Not our interrupt */
1007 
1008 	stat &= ~TSI_READ(TSI108_EC_INTMASK);
1009 
1010 	if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1011 		    TSI108_INT_TXERROR))
1012 		tsi108_tx_int(dev);
1013 	if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1014 		    TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1015 		    TSI108_INT_RXERROR))
1016 		tsi108_rx_int(dev);
1017 
1018 	if (stat & TSI108_INT_SFN) {
1019 		if (net_ratelimit())
1020 			printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1021 		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1022 	}
1023 
1024 	if (stat & TSI108_INT_STATCARRY) {
1025 		tsi108_stat_carry(dev);
1026 		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1027 	}
1028 
1029 	return IRQ_HANDLED;
1030 }
1031 
1032 static void tsi108_stop_ethernet(struct net_device *dev)
1033 {
1034 	struct tsi108_prv_data *data = netdev_priv(dev);
1035 	int i = 1000;
1036 	/* Disable all TX and RX queues ... */
1037 	TSI_WRITE(TSI108_EC_TXCTRL, 0);
1038 	TSI_WRITE(TSI108_EC_RXCTRL, 0);
1039 
1040 	/* ...and wait for them to become idle */
1041 	while(i--) {
1042 		if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1043 			break;
1044 		udelay(10);
1045 	}
1046 	i = 1000;
1047 	while(i--){
1048 		if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1049 			return;
1050 		udelay(10);
1051 	}
1052 	printk(KERN_ERR "%s function time out\n", __func__);
1053 }
1054 
1055 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1056 {
1057 	TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1058 	udelay(100);
1059 	TSI_WRITE(TSI108_MAC_CFG1, 0);
1060 
1061 	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1062 	udelay(100);
1063 	TSI_WRITE(TSI108_EC_PORTCTRL,
1064 			     TSI_READ(TSI108_EC_PORTCTRL) &
1065 			     ~TSI108_EC_PORTCTRL_STATRST);
1066 
1067 	TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1068 	udelay(100);
1069 	TSI_WRITE(TSI108_EC_TXCFG,
1070 			     TSI_READ(TSI108_EC_TXCFG) &
1071 			     ~TSI108_EC_TXCFG_RST);
1072 
1073 	TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1074 	udelay(100);
1075 	TSI_WRITE(TSI108_EC_RXCFG,
1076 			     TSI_READ(TSI108_EC_RXCFG) &
1077 			     ~TSI108_EC_RXCFG_RST);
1078 
1079 	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1080 			     TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1081 			     TSI108_MAC_MII_MGMT_RST);
1082 	udelay(100);
1083 	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1084 			     (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1085 			     ~(TSI108_MAC_MII_MGMT_RST |
1086 			       TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1087 }
1088 
1089 static int tsi108_get_mac(struct net_device *dev)
1090 {
1091 	struct tsi108_prv_data *data = netdev_priv(dev);
1092 	u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1093 	u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1094 	u8 addr[ETH_ALEN];
1095 
1096 	/* Note that the octets are reversed from what the manual says,
1097 	 * producing an even weirder ordering...
1098 	 */
1099 	if (word2 == 0 && word1 == 0) {
1100 		addr[0] = 0x00;
1101 		addr[1] = 0x06;
1102 		addr[2] = 0xd2;
1103 		addr[3] = 0x00;
1104 		addr[4] = 0x00;
1105 		if (0x8 == data->phy)
1106 			addr[5] = 0x01;
1107 		else
1108 			addr[5] = 0x02;
1109 		eth_hw_addr_set(dev, addr);
1110 
1111 		word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1112 
1113 		word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1114 		    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1115 
1116 		TSI_WRITE(TSI108_MAC_ADDR1, word1);
1117 		TSI_WRITE(TSI108_MAC_ADDR2, word2);
1118 	} else {
1119 		addr[0] = (word2 >> 16) & 0xff;
1120 		addr[1] = (word2 >> 24) & 0xff;
1121 		addr[2] = (word1 >> 0) & 0xff;
1122 		addr[3] = (word1 >> 8) & 0xff;
1123 		addr[4] = (word1 >> 16) & 0xff;
1124 		addr[5] = (word1 >> 24) & 0xff;
1125 		eth_hw_addr_set(dev, addr);
1126 	}
1127 
1128 	if (!is_valid_ether_addr(dev->dev_addr)) {
1129 		printk(KERN_ERR
1130 		       "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1131 		       dev->name, word1, word2);
1132 		return -EINVAL;
1133 	}
1134 
1135 	return 0;
1136 }
1137 
1138 static int tsi108_set_mac(struct net_device *dev, void *addr)
1139 {
1140 	struct tsi108_prv_data *data = netdev_priv(dev);
1141 	u32 word1, word2;
1142 
1143 	if (!is_valid_ether_addr(addr))
1144 		return -EADDRNOTAVAIL;
1145 
1146 	/* +2 is for the offset of the HW addr type */
1147 	eth_hw_addr_set(dev, ((unsigned char *)addr) + 2);
1148 
1149 	word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1150 
1151 	word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1152 	    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1153 
1154 	spin_lock_irq(&data->misclock);
1155 	TSI_WRITE(TSI108_MAC_ADDR1, word1);
1156 	TSI_WRITE(TSI108_MAC_ADDR2, word2);
1157 	spin_lock(&data->txlock);
1158 
1159 	if (data->txfree && data->link_up)
1160 		netif_wake_queue(dev);
1161 
1162 	spin_unlock(&data->txlock);
1163 	spin_unlock_irq(&data->misclock);
1164 	return 0;
1165 }
1166 
1167 /* Protected by dev->xmit_lock. */
1168 static void tsi108_set_rx_mode(struct net_device *dev)
1169 {
1170 	struct tsi108_prv_data *data = netdev_priv(dev);
1171 	u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1172 
1173 	if (dev->flags & IFF_PROMISC) {
1174 		rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1175 		rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1176 		goto out;
1177 	}
1178 
1179 	rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1180 
1181 	if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1182 		int i;
1183 		struct netdev_hw_addr *ha;
1184 		rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1185 
1186 		memset(data->mc_hash, 0, sizeof(data->mc_hash));
1187 
1188 		netdev_for_each_mc_addr(ha, dev) {
1189 			u32 hash, crc;
1190 
1191 			crc = ether_crc(6, ha->addr);
1192 			hash = crc >> 23;
1193 			__set_bit(hash, &data->mc_hash[0]);
1194 		}
1195 
1196 		TSI_WRITE(TSI108_EC_HASHADDR,
1197 				     TSI108_EC_HASHADDR_AUTOINC |
1198 				     TSI108_EC_HASHADDR_MCAST);
1199 
1200 		for (i = 0; i < 16; i++) {
1201 			/* The manual says that the hardware may drop
1202 			 * back-to-back writes to the data register.
1203 			 */
1204 			udelay(1);
1205 			TSI_WRITE(TSI108_EC_HASHDATA,
1206 					     data->mc_hash[i]);
1207 		}
1208 	}
1209 
1210       out:
1211 	TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1212 }
1213 
1214 static void tsi108_init_phy(struct net_device *dev)
1215 {
1216 	struct tsi108_prv_data *data = netdev_priv(dev);
1217 	u32 i = 0;
1218 	u16 phyval = 0;
1219 	unsigned long flags;
1220 
1221 	spin_lock_irqsave(&phy_lock, flags);
1222 
1223 	tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1224 	while (--i) {
1225 		if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1226 			break;
1227 		udelay(10);
1228 	}
1229 	if (i == 0)
1230 		printk(KERN_ERR "%s function time out\n", __func__);
1231 
1232 	if (data->phy_type == TSI108_PHY_BCM54XX) {
1233 		tsi108_write_mii(data, 0x09, 0x0300);
1234 		tsi108_write_mii(data, 0x10, 0x1020);
1235 		tsi108_write_mii(data, 0x1c, 0x8c00);
1236 	}
1237 
1238 	tsi108_write_mii(data,
1239 			 MII_BMCR,
1240 			 BMCR_ANENABLE | BMCR_ANRESTART);
1241 	while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1242 		cpu_relax();
1243 
1244 	/* Set G/MII mode and receive clock select in TBI control #2.  The
1245 	 * second port won't work if this isn't done, even though we don't
1246 	 * use TBI mode.
1247 	 */
1248 
1249 	tsi108_write_tbi(data, 0x11, 0x30);
1250 
1251 	/* FIXME: It seems to take more than 2 back-to-back reads to the
1252 	 * PHY_STAT register before the link up status bit is set.
1253 	 */
1254 
1255 	data->link_up = 0;
1256 
1257 	while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1258 		 BMSR_LSTATUS)) {
1259 		if (i++ > (MII_READ_DELAY / 10)) {
1260 			break;
1261 		}
1262 		spin_unlock_irqrestore(&phy_lock, flags);
1263 		msleep(10);
1264 		spin_lock_irqsave(&phy_lock, flags);
1265 	}
1266 
1267 	data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1268 	printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1269 	data->phy_ok = 1;
1270 	data->init_media = 1;
1271 	spin_unlock_irqrestore(&phy_lock, flags);
1272 }
1273 
1274 static void tsi108_kill_phy(struct net_device *dev)
1275 {
1276 	struct tsi108_prv_data *data = netdev_priv(dev);
1277 	unsigned long flags;
1278 
1279 	spin_lock_irqsave(&phy_lock, flags);
1280 	tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1281 	data->phy_ok = 0;
1282 	spin_unlock_irqrestore(&phy_lock, flags);
1283 }
1284 
1285 static int tsi108_open(struct net_device *dev)
1286 {
1287 	int i;
1288 	struct tsi108_prv_data *data = netdev_priv(dev);
1289 	unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1290 	unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1291 
1292 	i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1293 	if (i != 0) {
1294 		printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1295 		       data->id, data->irq_num);
1296 		return i;
1297 	} else {
1298 		dev->irq = data->irq_num;
1299 		printk(KERN_NOTICE
1300 		       "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1301 		       data->id, dev->irq, dev->name);
1302 	}
1303 
1304 	data->rxring = dma_alloc_coherent(&data->pdev->dev, rxring_size,
1305 					  &data->rxdma, GFP_KERNEL);
1306 	if (!data->rxring)
1307 		return -ENOMEM;
1308 
1309 	data->txring = dma_alloc_coherent(&data->pdev->dev, txring_size,
1310 					  &data->txdma, GFP_KERNEL);
1311 	if (!data->txring) {
1312 		dma_free_coherent(&data->pdev->dev, rxring_size, data->rxring,
1313 				    data->rxdma);
1314 		return -ENOMEM;
1315 	}
1316 
1317 	for (i = 0; i < TSI108_RXRING_LEN; i++) {
1318 		data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1319 		data->rxring[i].blen = TSI108_RXBUF_SIZE;
1320 		data->rxring[i].vlan = 0;
1321 	}
1322 
1323 	data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1324 
1325 	data->rxtail = 0;
1326 	data->rxhead = 0;
1327 
1328 	for (i = 0; i < TSI108_RXRING_LEN; i++) {
1329 		struct sk_buff *skb;
1330 
1331 		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1332 		if (!skb) {
1333 			/* Bah.  No memory for now, but maybe we'll get
1334 			 * some more later.
1335 			 * For now, we'll live with the smaller ring.
1336 			 */
1337 			printk(KERN_WARNING
1338 			       "%s: Could only allocate %d receive skb(s).\n",
1339 			       dev->name, i);
1340 			data->rxhead = i;
1341 			break;
1342 		}
1343 
1344 		data->rxskbs[i] = skb;
1345 		data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1346 		data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1347 	}
1348 
1349 	data->rxfree = i;
1350 	TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1351 
1352 	for (i = 0; i < TSI108_TXRING_LEN; i++) {
1353 		data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1354 		data->txring[i].misc = 0;
1355 	}
1356 
1357 	data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1358 	data->txtail = 0;
1359 	data->txhead = 0;
1360 	data->txfree = TSI108_TXRING_LEN;
1361 	TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1362 	tsi108_init_phy(dev);
1363 
1364 	napi_enable(&data->napi);
1365 
1366 	timer_setup(&data->timer, tsi108_timed_checker, 0);
1367 	mod_timer(&data->timer, jiffies + 1);
1368 
1369 	tsi108_restart_rx(data, dev);
1370 
1371 	TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1372 
1373 	TSI_WRITE(TSI108_EC_INTMASK,
1374 			     ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1375 			       TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1376 			       TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1377 			       TSI108_INT_SFN | TSI108_INT_STATCARRY));
1378 
1379 	TSI_WRITE(TSI108_MAC_CFG1,
1380 			     TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1381 	netif_start_queue(dev);
1382 	return 0;
1383 }
1384 
1385 static int tsi108_close(struct net_device *dev)
1386 {
1387 	struct tsi108_prv_data *data = netdev_priv(dev);
1388 
1389 	netif_stop_queue(dev);
1390 	napi_disable(&data->napi);
1391 
1392 	del_timer_sync(&data->timer);
1393 
1394 	tsi108_stop_ethernet(dev);
1395 	tsi108_kill_phy(dev);
1396 	TSI_WRITE(TSI108_EC_INTMASK, ~0);
1397 	TSI_WRITE(TSI108_MAC_CFG1, 0);
1398 
1399 	/* Check for any pending TX packets, and drop them. */
1400 
1401 	while (!data->txfree || data->txhead != data->txtail) {
1402 		int tx = data->txtail;
1403 		struct sk_buff *skb;
1404 		skb = data->txskbs[tx];
1405 		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1406 		data->txfree++;
1407 		dev_kfree_skb(skb);
1408 	}
1409 
1410 	free_irq(data->irq_num, dev);
1411 
1412 	/* Discard the RX ring. */
1413 
1414 	while (data->rxfree) {
1415 		int rx = data->rxtail;
1416 		struct sk_buff *skb;
1417 
1418 		skb = data->rxskbs[rx];
1419 		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1420 		data->rxfree--;
1421 		dev_kfree_skb(skb);
1422 	}
1423 
1424 	dma_free_coherent(&data->pdev->dev,
1425 			    TSI108_RXRING_LEN * sizeof(rx_desc),
1426 			    data->rxring, data->rxdma);
1427 	dma_free_coherent(&data->pdev->dev,
1428 			    TSI108_TXRING_LEN * sizeof(tx_desc),
1429 			    data->txring, data->txdma);
1430 
1431 	return 0;
1432 }
1433 
1434 static void tsi108_init_mac(struct net_device *dev)
1435 {
1436 	struct tsi108_prv_data *data = netdev_priv(dev);
1437 
1438 	TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1439 			     TSI108_MAC_CFG2_PADCRC);
1440 
1441 	TSI_WRITE(TSI108_EC_TXTHRESH,
1442 			     (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1443 			     (192 << TSI108_EC_TXTHRESH_STOPFILL));
1444 
1445 	TSI_WRITE(TSI108_STAT_CARRYMASK1,
1446 			     ~(TSI108_STAT_CARRY1_RXBYTES |
1447 			       TSI108_STAT_CARRY1_RXPKTS |
1448 			       TSI108_STAT_CARRY1_RXFCS |
1449 			       TSI108_STAT_CARRY1_RXMCAST |
1450 			       TSI108_STAT_CARRY1_RXALIGN |
1451 			       TSI108_STAT_CARRY1_RXLENGTH |
1452 			       TSI108_STAT_CARRY1_RXRUNT |
1453 			       TSI108_STAT_CARRY1_RXJUMBO |
1454 			       TSI108_STAT_CARRY1_RXFRAG |
1455 			       TSI108_STAT_CARRY1_RXJABBER |
1456 			       TSI108_STAT_CARRY1_RXDROP));
1457 
1458 	TSI_WRITE(TSI108_STAT_CARRYMASK2,
1459 			     ~(TSI108_STAT_CARRY2_TXBYTES |
1460 			       TSI108_STAT_CARRY2_TXPKTS |
1461 			       TSI108_STAT_CARRY2_TXEXDEF |
1462 			       TSI108_STAT_CARRY2_TXEXCOL |
1463 			       TSI108_STAT_CARRY2_TXTCOL |
1464 			       TSI108_STAT_CARRY2_TXPAUSE));
1465 
1466 	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1467 	TSI_WRITE(TSI108_MAC_CFG1, 0);
1468 
1469 	TSI_WRITE(TSI108_EC_RXCFG,
1470 			     TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1471 
1472 	TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1473 			     TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1474 			     TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1475 						TSI108_EC_TXQ_CFG_SFNPORT));
1476 
1477 	TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1478 			     TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1479 			     TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1480 						TSI108_EC_RXQ_CFG_SFNPORT));
1481 
1482 	TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1483 			     TSI108_EC_TXQ_BUFCFG_BURST256 |
1484 			     TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1485 						TSI108_EC_TXQ_BUFCFG_SFNPORT));
1486 
1487 	TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1488 			     TSI108_EC_RXQ_BUFCFG_BURST256 |
1489 			     TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1490 						TSI108_EC_RXQ_BUFCFG_SFNPORT));
1491 
1492 	TSI_WRITE(TSI108_EC_INTMASK, ~0);
1493 }
1494 
1495 static int tsi108_get_link_ksettings(struct net_device *dev,
1496 				     struct ethtool_link_ksettings *cmd)
1497 {
1498 	struct tsi108_prv_data *data = netdev_priv(dev);
1499 	unsigned long flags;
1500 
1501 	spin_lock_irqsave(&data->txlock, flags);
1502 	mii_ethtool_get_link_ksettings(&data->mii_if, cmd);
1503 	spin_unlock_irqrestore(&data->txlock, flags);
1504 
1505 	return 0;
1506 }
1507 
1508 static int tsi108_set_link_ksettings(struct net_device *dev,
1509 				     const struct ethtool_link_ksettings *cmd)
1510 {
1511 	struct tsi108_prv_data *data = netdev_priv(dev);
1512 	unsigned long flags;
1513 	int rc;
1514 
1515 	spin_lock_irqsave(&data->txlock, flags);
1516 	rc = mii_ethtool_set_link_ksettings(&data->mii_if, cmd);
1517 	spin_unlock_irqrestore(&data->txlock, flags);
1518 
1519 	return rc;
1520 }
1521 
1522 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1523 {
1524 	struct tsi108_prv_data *data = netdev_priv(dev);
1525 	if (!netif_running(dev))
1526 		return -EINVAL;
1527 	return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1528 }
1529 
1530 static const struct ethtool_ops tsi108_ethtool_ops = {
1531 	.get_link 	= ethtool_op_get_link,
1532 	.get_link_ksettings	= tsi108_get_link_ksettings,
1533 	.set_link_ksettings	= tsi108_set_link_ksettings,
1534 };
1535 
1536 static const struct net_device_ops tsi108_netdev_ops = {
1537 	.ndo_open		= tsi108_open,
1538 	.ndo_stop		= tsi108_close,
1539 	.ndo_start_xmit		= tsi108_send_packet,
1540 	.ndo_set_rx_mode	= tsi108_set_rx_mode,
1541 	.ndo_get_stats		= tsi108_get_stats,
1542 	.ndo_eth_ioctl		= tsi108_do_ioctl,
1543 	.ndo_set_mac_address	= tsi108_set_mac,
1544 	.ndo_validate_addr	= eth_validate_addr,
1545 };
1546 
1547 static int
1548 tsi108_init_one(struct platform_device *pdev)
1549 {
1550 	struct net_device *dev = NULL;
1551 	struct tsi108_prv_data *data = NULL;
1552 	hw_info *einfo;
1553 	int err = 0;
1554 
1555 	einfo = dev_get_platdata(&pdev->dev);
1556 
1557 	if (NULL == einfo) {
1558 		printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1559 		       pdev->id);
1560 		return -ENODEV;
1561 	}
1562 
1563 	/* Create an ethernet device instance */
1564 
1565 	dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1566 	if (!dev)
1567 		return -ENOMEM;
1568 
1569 	printk("tsi108_eth%d: probe...\n", pdev->id);
1570 	data = netdev_priv(dev);
1571 	data->dev = dev;
1572 	data->pdev = pdev;
1573 
1574 	pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1575 			pdev->id, einfo->regs, einfo->phyregs,
1576 			einfo->phy, einfo->irq_num);
1577 
1578 	data->regs = ioremap(einfo->regs, 0x400);
1579 	if (NULL == data->regs) {
1580 		err = -ENOMEM;
1581 		goto regs_fail;
1582 	}
1583 
1584 	data->phyregs = ioremap(einfo->phyregs, 0x400);
1585 	if (NULL == data->phyregs) {
1586 		err = -ENOMEM;
1587 		goto phyregs_fail;
1588 	}
1589 /* MII setup */
1590 	data->mii_if.dev = dev;
1591 	data->mii_if.mdio_read = tsi108_mdio_read;
1592 	data->mii_if.mdio_write = tsi108_mdio_write;
1593 	data->mii_if.phy_id = einfo->phy;
1594 	data->mii_if.phy_id_mask = 0x1f;
1595 	data->mii_if.reg_num_mask = 0x1f;
1596 
1597 	data->phy = einfo->phy;
1598 	data->phy_type = einfo->phy_type;
1599 	data->irq_num = einfo->irq_num;
1600 	data->id = pdev->id;
1601 	netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1602 	dev->netdev_ops = &tsi108_netdev_ops;
1603 	dev->ethtool_ops = &tsi108_ethtool_ops;
1604 
1605 	/* Apparently, the Linux networking code won't use scatter-gather
1606 	 * if the hardware doesn't do checksums.  However, it's faster
1607 	 * to checksum in place and use SG, as (among other reasons)
1608 	 * the cache won't be dirtied (which then has to be flushed
1609 	 * before DMA).  The checksumming is done by the driver (via
1610 	 * a new function skb_csum_dev() in net/core/skbuff.c).
1611 	 */
1612 
1613 	dev->features = NETIF_F_HIGHDMA;
1614 
1615 	spin_lock_init(&data->txlock);
1616 	spin_lock_init(&data->misclock);
1617 
1618 	tsi108_reset_ether(data);
1619 	tsi108_kill_phy(dev);
1620 
1621 	if ((err = tsi108_get_mac(dev)) != 0) {
1622 		printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1623 		       dev->name);
1624 		goto register_fail;
1625 	}
1626 
1627 	tsi108_init_mac(dev);
1628 	err = register_netdev(dev);
1629 	if (err) {
1630 		printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1631 				dev->name);
1632 		goto register_fail;
1633 	}
1634 
1635 	platform_set_drvdata(pdev, dev);
1636 	printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1637 	       dev->name, dev->dev_addr);
1638 #ifdef DEBUG
1639 	data->msg_enable = DEBUG;
1640 	dump_eth_one(dev);
1641 #endif
1642 
1643 	return 0;
1644 
1645 register_fail:
1646 	iounmap(data->phyregs);
1647 
1648 phyregs_fail:
1649 	iounmap(data->regs);
1650 
1651 regs_fail:
1652 	free_netdev(dev);
1653 	return err;
1654 }
1655 
1656 /* There's no way to either get interrupts from the PHY when
1657  * something changes, or to have the Tsi108 automatically communicate
1658  * with the PHY to reconfigure itself.
1659  *
1660  * Thus, we have to do it using a timer.
1661  */
1662 
1663 static void tsi108_timed_checker(struct timer_list *t)
1664 {
1665 	struct tsi108_prv_data *data = from_timer(data, t, timer);
1666 	struct net_device *dev = data->dev;
1667 
1668 	tsi108_check_phy(dev);
1669 	tsi108_check_rxring(dev);
1670 	mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1671 }
1672 
1673 static int tsi108_ether_remove(struct platform_device *pdev)
1674 {
1675 	struct net_device *dev = platform_get_drvdata(pdev);
1676 	struct tsi108_prv_data *priv = netdev_priv(dev);
1677 
1678 	unregister_netdev(dev);
1679 	tsi108_stop_ethernet(dev);
1680 	iounmap(priv->regs);
1681 	iounmap(priv->phyregs);
1682 	free_netdev(dev);
1683 
1684 	return 0;
1685 }
1686 module_platform_driver(tsi_eth_driver);
1687 
1688 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1689 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1690 MODULE_LICENSE("GPL");
1691 MODULE_ALIAS("platform:tsi-ethernet");
1692