xref: /linux/drivers/net/ethernet/tundra/tsi108_eth.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*******************************************************************************
2 
3   Copyright(c) 2006 Tundra Semiconductor Corporation.
4 
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of the GNU General Public License as published by the Free
7   Software Foundation; either version 2 of the License, or (at your option)
8   any later version.
9 
10   This program is distributed in the hope that it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc., 59
17   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18 
19 *******************************************************************************/
20 
21 /* This driver is based on the driver code originally developed
22  * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23  * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
24  *
25  * Currently changes from original version are:
26  * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27  * - modifications to handle two ports independently and support for
28  *   additional PHY devices (alexandre.bounine@tundra.com)
29  * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
30  *
31  */
32 
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/interrupt.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/ethtool.h>
40 #include <linux/skbuff.h>
41 #include <linux/spinlock.h>
42 #include <linux/delay.h>
43 #include <linux/crc32.h>
44 #include <linux/mii.h>
45 #include <linux/device.h>
46 #include <linux/pci.h>
47 #include <linux/rtnetlink.h>
48 #include <linux/timer.h>
49 #include <linux/platform_device.h>
50 #include <linux/gfp.h>
51 
52 #include <asm/io.h>
53 #include <asm/tsi108.h>
54 
55 #include "tsi108_eth.h"
56 
57 #define MII_READ_DELAY 10000	/* max link wait time in msec */
58 
59 #define TSI108_RXRING_LEN     256
60 
61 /* NOTE: The driver currently does not support receiving packets
62  * larger than the buffer size, so don't decrease this (unless you
63  * want to add such support).
64  */
65 #define TSI108_RXBUF_SIZE     1536
66 
67 #define TSI108_TXRING_LEN     256
68 
69 #define TSI108_TX_INT_FREQ    64
70 
71 /* Check the phy status every half a second. */
72 #define CHECK_PHY_INTERVAL (HZ/2)
73 
74 static int tsi108_init_one(struct platform_device *pdev);
75 static int tsi108_ether_remove(struct platform_device *pdev);
76 
77 struct tsi108_prv_data {
78 	void  __iomem *regs;	/* Base of normal regs */
79 	void  __iomem *phyregs;	/* Base of register bank used for PHY access */
80 
81 	struct net_device *dev;
82 	struct napi_struct napi;
83 
84 	unsigned int phy;		/* Index of PHY for this interface */
85 	unsigned int irq_num;
86 	unsigned int id;
87 	unsigned int phy_type;
88 
89 	struct timer_list timer;/* Timer that triggers the check phy function */
90 	unsigned int rxtail;	/* Next entry in rxring to read */
91 	unsigned int rxhead;	/* Next entry in rxring to give a new buffer */
92 	unsigned int rxfree;	/* Number of free, allocated RX buffers */
93 
94 	unsigned int rxpending;	/* Non-zero if there are still descriptors
95 				 * to be processed from a previous descriptor
96 				 * interrupt condition that has been cleared */
97 
98 	unsigned int txtail;	/* Next TX descriptor to check status on */
99 	unsigned int txhead;	/* Next TX descriptor to use */
100 
101 	/* Number of free TX descriptors.  This could be calculated from
102 	 * rxhead and rxtail if one descriptor were left unused to disambiguate
103 	 * full and empty conditions, but it's simpler to just keep track
104 	 * explicitly. */
105 
106 	unsigned int txfree;
107 
108 	unsigned int phy_ok;		/* The PHY is currently powered on. */
109 
110 	/* PHY status (duplex is 1 for half, 2 for full,
111 	 * so that the default 0 indicates that neither has
112 	 * yet been configured). */
113 
114 	unsigned int link_up;
115 	unsigned int speed;
116 	unsigned int duplex;
117 
118 	tx_desc *txring;
119 	rx_desc *rxring;
120 	struct sk_buff *txskbs[TSI108_TXRING_LEN];
121 	struct sk_buff *rxskbs[TSI108_RXRING_LEN];
122 
123 	dma_addr_t txdma, rxdma;
124 
125 	/* txlock nests in misclock and phy_lock */
126 
127 	spinlock_t txlock, misclock;
128 
129 	/* stats is used to hold the upper bits of each hardware counter,
130 	 * and tmpstats is used to hold the full values for returning
131 	 * to the caller of get_stats().  They must be separate in case
132 	 * an overflow interrupt occurs before the stats are consumed.
133 	 */
134 
135 	struct net_device_stats stats;
136 	struct net_device_stats tmpstats;
137 
138 	/* These stats are kept separate in hardware, thus require individual
139 	 * fields for handling carry.  They are combined in get_stats.
140 	 */
141 
142 	unsigned long rx_fcs;	/* Add to rx_frame_errors */
143 	unsigned long rx_short_fcs;	/* Add to rx_frame_errors */
144 	unsigned long rx_long_fcs;	/* Add to rx_frame_errors */
145 	unsigned long rx_underruns;	/* Add to rx_length_errors */
146 	unsigned long rx_overruns;	/* Add to rx_length_errors */
147 
148 	unsigned long tx_coll_abort;	/* Add to tx_aborted_errors/collisions */
149 	unsigned long tx_pause_drop;	/* Add to tx_aborted_errors */
150 
151 	unsigned long mc_hash[16];
152 	u32 msg_enable;			/* debug message level */
153 	struct mii_if_info mii_if;
154 	unsigned int init_media;
155 };
156 
157 /* Structure for a device driver */
158 
159 static struct platform_driver tsi_eth_driver = {
160 	.probe = tsi108_init_one,
161 	.remove = tsi108_ether_remove,
162 	.driver	= {
163 		.name = "tsi-ethernet",
164 	},
165 };
166 
167 static void tsi108_timed_checker(unsigned long dev_ptr);
168 
169 static void dump_eth_one(struct net_device *dev)
170 {
171 	struct tsi108_prv_data *data = netdev_priv(dev);
172 
173 	printk("Dumping %s...\n", dev->name);
174 	printk("intstat %x intmask %x phy_ok %d"
175 	       " link %d speed %d duplex %d\n",
176 	       TSI_READ(TSI108_EC_INTSTAT),
177 	       TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
178 	       data->link_up, data->speed, data->duplex);
179 
180 	printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
181 	       data->txhead, data->txtail, data->txfree,
182 	       TSI_READ(TSI108_EC_TXSTAT),
183 	       TSI_READ(TSI108_EC_TXESTAT),
184 	       TSI_READ(TSI108_EC_TXERR));
185 
186 	printk("RX: head %d, tail %d, free %d, stat %x,"
187 	       " estat %x, err %x, pending %d\n\n",
188 	       data->rxhead, data->rxtail, data->rxfree,
189 	       TSI_READ(TSI108_EC_RXSTAT),
190 	       TSI_READ(TSI108_EC_RXESTAT),
191 	       TSI_READ(TSI108_EC_RXERR), data->rxpending);
192 }
193 
194 /* Synchronization is needed between the thread and up/down events.
195  * Note that the PHY is accessed through the same registers for both
196  * interfaces, so this can't be made interface-specific.
197  */
198 
199 static DEFINE_SPINLOCK(phy_lock);
200 
201 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
202 {
203 	unsigned i;
204 
205 	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
206 				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
207 				(reg << TSI108_MAC_MII_ADDR_REG));
208 	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
209 	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
210 	for (i = 0; i < 100; i++) {
211 		if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
212 		      (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
213 			break;
214 		udelay(10);
215 	}
216 
217 	if (i == 100)
218 		return 0xffff;
219 	else
220 		return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
221 }
222 
223 static void tsi108_write_mii(struct tsi108_prv_data *data,
224 				int reg, u16 val)
225 {
226 	unsigned i = 100;
227 	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
228 				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
229 				(reg << TSI108_MAC_MII_ADDR_REG));
230 	TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
231 	while (i--) {
232 		if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
233 			TSI108_MAC_MII_IND_BUSY))
234 			break;
235 		udelay(10);
236 	}
237 }
238 
239 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
240 {
241 	struct tsi108_prv_data *data = netdev_priv(dev);
242 	return tsi108_read_mii(data, reg);
243 }
244 
245 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
246 {
247 	struct tsi108_prv_data *data = netdev_priv(dev);
248 	tsi108_write_mii(data, reg, val);
249 }
250 
251 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
252 					int reg, u16 val)
253 {
254 	unsigned i = 1000;
255 	TSI_WRITE(TSI108_MAC_MII_ADDR,
256 			     (0x1e << TSI108_MAC_MII_ADDR_PHY)
257 			     | (reg << TSI108_MAC_MII_ADDR_REG));
258 	TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
259 	while(i--) {
260 		if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
261 			return;
262 		udelay(10);
263 	}
264 	printk(KERN_ERR "%s function time out\n", __func__);
265 }
266 
267 static int mii_speed(struct mii_if_info *mii)
268 {
269 	int advert, lpa, val, media;
270 	int lpa2 = 0;
271 	int speed;
272 
273 	if (!mii_link_ok(mii))
274 		return 0;
275 
276 	val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
277 	if ((val & BMSR_ANEGCOMPLETE) == 0)
278 		return 0;
279 
280 	advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
281 	lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
282 	media = mii_nway_result(advert & lpa);
283 
284 	if (mii->supports_gmii)
285 		lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
286 
287 	speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
288 			(media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
289 	return speed;
290 }
291 
292 static void tsi108_check_phy(struct net_device *dev)
293 {
294 	struct tsi108_prv_data *data = netdev_priv(dev);
295 	u32 mac_cfg2_reg, portctrl_reg;
296 	u32 duplex;
297 	u32 speed;
298 	unsigned long flags;
299 
300 	spin_lock_irqsave(&phy_lock, flags);
301 
302 	if (!data->phy_ok)
303 		goto out;
304 
305 	duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
306 	data->init_media = 0;
307 
308 	if (netif_carrier_ok(dev)) {
309 
310 		speed = mii_speed(&data->mii_if);
311 
312 		if ((speed != data->speed) || duplex) {
313 
314 			mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
315 			portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
316 
317 			mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
318 
319 			if (speed == 1000) {
320 				mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
321 				portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
322 			} else {
323 				mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
324 				portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
325 			}
326 
327 			data->speed = speed;
328 
329 			if (data->mii_if.full_duplex) {
330 				mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
331 				portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
332 				data->duplex = 2;
333 			} else {
334 				mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
335 				portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
336 				data->duplex = 1;
337 			}
338 
339 			TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
340 			TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
341 		}
342 
343 		if (data->link_up == 0) {
344 			/* The manual says it can take 3-4 usecs for the speed change
345 			 * to take effect.
346 			 */
347 			udelay(5);
348 
349 			spin_lock(&data->txlock);
350 			if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
351 				netif_wake_queue(dev);
352 
353 			data->link_up = 1;
354 			spin_unlock(&data->txlock);
355 		}
356 	} else {
357 		if (data->link_up == 1) {
358 			netif_stop_queue(dev);
359 			data->link_up = 0;
360 			printk(KERN_NOTICE "%s : link is down\n", dev->name);
361 		}
362 
363 		goto out;
364 	}
365 
366 
367 out:
368 	spin_unlock_irqrestore(&phy_lock, flags);
369 }
370 
371 static inline void
372 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
373 		      unsigned long *upper)
374 {
375 	if (carry & carry_bit)
376 		*upper += carry_shift;
377 }
378 
379 static void tsi108_stat_carry(struct net_device *dev)
380 {
381 	struct tsi108_prv_data *data = netdev_priv(dev);
382 	u32 carry1, carry2;
383 
384 	spin_lock_irq(&data->misclock);
385 
386 	carry1 = TSI_READ(TSI108_STAT_CARRY1);
387 	carry2 = TSI_READ(TSI108_STAT_CARRY2);
388 
389 	TSI_WRITE(TSI108_STAT_CARRY1, carry1);
390 	TSI_WRITE(TSI108_STAT_CARRY2, carry2);
391 
392 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
393 			      TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
394 
395 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
396 			      TSI108_STAT_RXPKTS_CARRY,
397 			      &data->stats.rx_packets);
398 
399 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
400 			      TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
401 
402 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
403 			      TSI108_STAT_RXMCAST_CARRY,
404 			      &data->stats.multicast);
405 
406 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
407 			      TSI108_STAT_RXALIGN_CARRY,
408 			      &data->stats.rx_frame_errors);
409 
410 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
411 			      TSI108_STAT_RXLENGTH_CARRY,
412 			      &data->stats.rx_length_errors);
413 
414 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
415 			      TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
416 
417 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
418 			      TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
419 
420 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
421 			      TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
422 
423 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
424 			      TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
425 
426 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
427 			      TSI108_STAT_RXDROP_CARRY,
428 			      &data->stats.rx_missed_errors);
429 
430 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
431 			      TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
432 
433 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
434 			      TSI108_STAT_TXPKTS_CARRY,
435 			      &data->stats.tx_packets);
436 
437 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
438 			      TSI108_STAT_TXEXDEF_CARRY,
439 			      &data->stats.tx_aborted_errors);
440 
441 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
442 			      TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
443 
444 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
445 			      TSI108_STAT_TXTCOL_CARRY,
446 			      &data->stats.collisions);
447 
448 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
449 			      TSI108_STAT_TXPAUSEDROP_CARRY,
450 			      &data->tx_pause_drop);
451 
452 	spin_unlock_irq(&data->misclock);
453 }
454 
455 /* Read a stat counter atomically with respect to carries.
456  * data->misclock must be held.
457  */
458 static inline unsigned long
459 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
460 		 int carry_shift, unsigned long *upper)
461 {
462 	int carryreg;
463 	unsigned long val;
464 
465 	if (reg < 0xb0)
466 		carryreg = TSI108_STAT_CARRY1;
467 	else
468 		carryreg = TSI108_STAT_CARRY2;
469 
470       again:
471 	val = TSI_READ(reg) | *upper;
472 
473 	/* Check to see if it overflowed, but the interrupt hasn't
474 	 * been serviced yet.  If so, handle the carry here, and
475 	 * try again.
476 	 */
477 
478 	if (unlikely(TSI_READ(carryreg) & carry_bit)) {
479 		*upper += carry_shift;
480 		TSI_WRITE(carryreg, carry_bit);
481 		goto again;
482 	}
483 
484 	return val;
485 }
486 
487 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
488 {
489 	unsigned long excol;
490 
491 	struct tsi108_prv_data *data = netdev_priv(dev);
492 	spin_lock_irq(&data->misclock);
493 
494 	data->tmpstats.rx_packets =
495 	    tsi108_read_stat(data, TSI108_STAT_RXPKTS,
496 			     TSI108_STAT_CARRY1_RXPKTS,
497 			     TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
498 
499 	data->tmpstats.tx_packets =
500 	    tsi108_read_stat(data, TSI108_STAT_TXPKTS,
501 			     TSI108_STAT_CARRY2_TXPKTS,
502 			     TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
503 
504 	data->tmpstats.rx_bytes =
505 	    tsi108_read_stat(data, TSI108_STAT_RXBYTES,
506 			     TSI108_STAT_CARRY1_RXBYTES,
507 			     TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
508 
509 	data->tmpstats.tx_bytes =
510 	    tsi108_read_stat(data, TSI108_STAT_TXBYTES,
511 			     TSI108_STAT_CARRY2_TXBYTES,
512 			     TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
513 
514 	data->tmpstats.multicast =
515 	    tsi108_read_stat(data, TSI108_STAT_RXMCAST,
516 			     TSI108_STAT_CARRY1_RXMCAST,
517 			     TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
518 
519 	excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
520 				 TSI108_STAT_CARRY2_TXEXCOL,
521 				 TSI108_STAT_TXEXCOL_CARRY,
522 				 &data->tx_coll_abort);
523 
524 	data->tmpstats.collisions =
525 	    tsi108_read_stat(data, TSI108_STAT_TXTCOL,
526 			     TSI108_STAT_CARRY2_TXTCOL,
527 			     TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
528 
529 	data->tmpstats.collisions += excol;
530 
531 	data->tmpstats.rx_length_errors =
532 	    tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
533 			     TSI108_STAT_CARRY1_RXLENGTH,
534 			     TSI108_STAT_RXLENGTH_CARRY,
535 			     &data->stats.rx_length_errors);
536 
537 	data->tmpstats.rx_length_errors +=
538 	    tsi108_read_stat(data, TSI108_STAT_RXRUNT,
539 			     TSI108_STAT_CARRY1_RXRUNT,
540 			     TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
541 
542 	data->tmpstats.rx_length_errors +=
543 	    tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
544 			     TSI108_STAT_CARRY1_RXJUMBO,
545 			     TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
546 
547 	data->tmpstats.rx_frame_errors =
548 	    tsi108_read_stat(data, TSI108_STAT_RXALIGN,
549 			     TSI108_STAT_CARRY1_RXALIGN,
550 			     TSI108_STAT_RXALIGN_CARRY,
551 			     &data->stats.rx_frame_errors);
552 
553 	data->tmpstats.rx_frame_errors +=
554 	    tsi108_read_stat(data, TSI108_STAT_RXFCS,
555 			     TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
556 			     &data->rx_fcs);
557 
558 	data->tmpstats.rx_frame_errors +=
559 	    tsi108_read_stat(data, TSI108_STAT_RXFRAG,
560 			     TSI108_STAT_CARRY1_RXFRAG,
561 			     TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
562 
563 	data->tmpstats.rx_missed_errors =
564 	    tsi108_read_stat(data, TSI108_STAT_RXDROP,
565 			     TSI108_STAT_CARRY1_RXDROP,
566 			     TSI108_STAT_RXDROP_CARRY,
567 			     &data->stats.rx_missed_errors);
568 
569 	/* These three are maintained by software. */
570 	data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
571 	data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
572 
573 	data->tmpstats.tx_aborted_errors =
574 	    tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
575 			     TSI108_STAT_CARRY2_TXEXDEF,
576 			     TSI108_STAT_TXEXDEF_CARRY,
577 			     &data->stats.tx_aborted_errors);
578 
579 	data->tmpstats.tx_aborted_errors +=
580 	    tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
581 			     TSI108_STAT_CARRY2_TXPAUSE,
582 			     TSI108_STAT_TXPAUSEDROP_CARRY,
583 			     &data->tx_pause_drop);
584 
585 	data->tmpstats.tx_aborted_errors += excol;
586 
587 	data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
588 	data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
589 	    data->tmpstats.rx_crc_errors +
590 	    data->tmpstats.rx_frame_errors +
591 	    data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
592 
593 	spin_unlock_irq(&data->misclock);
594 	return &data->tmpstats;
595 }
596 
597 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
598 {
599 	TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
600 			     TSI108_EC_RXQ_PTRHIGH_VALID);
601 
602 	TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
603 			     | TSI108_EC_RXCTRL_QUEUE0);
604 }
605 
606 static void tsi108_restart_tx(struct tsi108_prv_data * data)
607 {
608 	TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
609 			     TSI108_EC_TXQ_PTRHIGH_VALID);
610 
611 	TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
612 			     TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
613 }
614 
615 /* txlock must be held by caller, with IRQs disabled, and
616  * with permission to re-enable them when the lock is dropped.
617  */
618 static void tsi108_complete_tx(struct net_device *dev)
619 {
620 	struct tsi108_prv_data *data = netdev_priv(dev);
621 	int tx;
622 	struct sk_buff *skb;
623 	int release = 0;
624 
625 	while (!data->txfree || data->txhead != data->txtail) {
626 		tx = data->txtail;
627 
628 		if (data->txring[tx].misc & TSI108_TX_OWN)
629 			break;
630 
631 		skb = data->txskbs[tx];
632 
633 		if (!(data->txring[tx].misc & TSI108_TX_OK))
634 			printk("%s: bad tx packet, misc %x\n",
635 			       dev->name, data->txring[tx].misc);
636 
637 		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
638 		data->txfree++;
639 
640 		if (data->txring[tx].misc & TSI108_TX_EOF) {
641 			dev_kfree_skb_any(skb);
642 			release++;
643 		}
644 	}
645 
646 	if (release) {
647 		if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
648 			netif_wake_queue(dev);
649 	}
650 }
651 
652 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
653 {
654 	struct tsi108_prv_data *data = netdev_priv(dev);
655 	int frags = skb_shinfo(skb)->nr_frags + 1;
656 	int i;
657 
658 	if (!data->phy_ok && net_ratelimit())
659 		printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
660 
661 	if (!data->link_up) {
662 		printk(KERN_ERR "%s: Transmit while link is down!\n",
663 		       dev->name);
664 		netif_stop_queue(dev);
665 		return NETDEV_TX_BUSY;
666 	}
667 
668 	if (data->txfree < MAX_SKB_FRAGS + 1) {
669 		netif_stop_queue(dev);
670 
671 		if (net_ratelimit())
672 			printk(KERN_ERR "%s: Transmit with full tx ring!\n",
673 			       dev->name);
674 		return NETDEV_TX_BUSY;
675 	}
676 
677 	if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
678 		netif_stop_queue(dev);
679 	}
680 
681 	spin_lock_irq(&data->txlock);
682 
683 	for (i = 0; i < frags; i++) {
684 		int misc = 0;
685 		int tx = data->txhead;
686 
687 		/* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
688 		 * the interrupt bit.  TX descriptor-complete interrupts are
689 		 * enabled when the queue fills up, and masked when there is
690 		 * still free space.  This way, when saturating the outbound
691 		 * link, the tx interrupts are kept to a reasonable level.
692 		 * When the queue is not full, reclamation of skbs still occurs
693 		 * as new packets are transmitted, or on a queue-empty
694 		 * interrupt.
695 		 */
696 
697 		if ((tx % TSI108_TX_INT_FREQ == 0) &&
698 		    ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
699 			misc = TSI108_TX_INT;
700 
701 		data->txskbs[tx] = skb;
702 
703 		if (i == 0) {
704 			data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
705 					skb_headlen(skb), DMA_TO_DEVICE);
706 			data->txring[tx].len = skb_headlen(skb);
707 			misc |= TSI108_TX_SOF;
708 		} else {
709 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
710 
711 			data->txring[tx].buf0 = skb_frag_dma_map(NULL, frag,
712 								 0,
713 								 skb_frag_size(frag),
714 								 DMA_TO_DEVICE);
715 			data->txring[tx].len = skb_frag_size(frag);
716 		}
717 
718 		if (i == frags - 1)
719 			misc |= TSI108_TX_EOF;
720 
721 		if (netif_msg_pktdata(data)) {
722 			int i;
723 			printk("%s: Tx Frame contents (%d)\n", dev->name,
724 			       skb->len);
725 			for (i = 0; i < skb->len; i++)
726 				printk(" %2.2x", skb->data[i]);
727 			printk(".\n");
728 		}
729 		data->txring[tx].misc = misc | TSI108_TX_OWN;
730 
731 		data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
732 		data->txfree--;
733 	}
734 
735 	tsi108_complete_tx(dev);
736 
737 	/* This must be done after the check for completed tx descriptors,
738 	 * so that the tail pointer is correct.
739 	 */
740 
741 	if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
742 		tsi108_restart_tx(data);
743 
744 	spin_unlock_irq(&data->txlock);
745 	return NETDEV_TX_OK;
746 }
747 
748 static int tsi108_complete_rx(struct net_device *dev, int budget)
749 {
750 	struct tsi108_prv_data *data = netdev_priv(dev);
751 	int done = 0;
752 
753 	while (data->rxfree && done != budget) {
754 		int rx = data->rxtail;
755 		struct sk_buff *skb;
756 
757 		if (data->rxring[rx].misc & TSI108_RX_OWN)
758 			break;
759 
760 		skb = data->rxskbs[rx];
761 		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
762 		data->rxfree--;
763 		done++;
764 
765 		if (data->rxring[rx].misc & TSI108_RX_BAD) {
766 			spin_lock_irq(&data->misclock);
767 
768 			if (data->rxring[rx].misc & TSI108_RX_CRC)
769 				data->stats.rx_crc_errors++;
770 			if (data->rxring[rx].misc & TSI108_RX_OVER)
771 				data->stats.rx_fifo_errors++;
772 
773 			spin_unlock_irq(&data->misclock);
774 
775 			dev_kfree_skb_any(skb);
776 			continue;
777 		}
778 		if (netif_msg_pktdata(data)) {
779 			int i;
780 			printk("%s: Rx Frame contents (%d)\n",
781 			       dev->name, data->rxring[rx].len);
782 			for (i = 0; i < data->rxring[rx].len; i++)
783 				printk(" %2.2x", skb->data[i]);
784 			printk(".\n");
785 		}
786 
787 		skb_put(skb, data->rxring[rx].len);
788 		skb->protocol = eth_type_trans(skb, dev);
789 		netif_receive_skb(skb);
790 	}
791 
792 	return done;
793 }
794 
795 static int tsi108_refill_rx(struct net_device *dev, int budget)
796 {
797 	struct tsi108_prv_data *data = netdev_priv(dev);
798 	int done = 0;
799 
800 	while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
801 		int rx = data->rxhead;
802 		struct sk_buff *skb;
803 
804 		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
805 		data->rxskbs[rx] = skb;
806 		if (!skb)
807 			break;
808 
809 		data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
810 							TSI108_RX_SKB_SIZE,
811 							DMA_FROM_DEVICE);
812 
813 		/* Sometimes the hardware sets blen to zero after packet
814 		 * reception, even though the manual says that it's only ever
815 		 * modified by the driver.
816 		 */
817 
818 		data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
819 		data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
820 
821 		data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
822 		data->rxfree++;
823 		done++;
824 	}
825 
826 	if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
827 			   TSI108_EC_RXSTAT_QUEUE0))
828 		tsi108_restart_rx(data, dev);
829 
830 	return done;
831 }
832 
833 static int tsi108_poll(struct napi_struct *napi, int budget)
834 {
835 	struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
836 	struct net_device *dev = data->dev;
837 	u32 estat = TSI_READ(TSI108_EC_RXESTAT);
838 	u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
839 	int num_received = 0, num_filled = 0;
840 
841 	intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
842 	    TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
843 
844 	TSI_WRITE(TSI108_EC_RXESTAT, estat);
845 	TSI_WRITE(TSI108_EC_INTSTAT, intstat);
846 
847 	if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
848 		num_received = tsi108_complete_rx(dev, budget);
849 
850 	/* This should normally fill no more slots than the number of
851 	 * packets received in tsi108_complete_rx().  The exception
852 	 * is when we previously ran out of memory for RX SKBs.  In that
853 	 * case, it's helpful to obey the budget, not only so that the
854 	 * CPU isn't hogged, but so that memory (which may still be low)
855 	 * is not hogged by one device.
856 	 *
857 	 * A work unit is considered to be two SKBs to allow us to catch
858 	 * up when the ring has shrunk due to out-of-memory but we're
859 	 * still removing the full budget's worth of packets each time.
860 	 */
861 
862 	if (data->rxfree < TSI108_RXRING_LEN)
863 		num_filled = tsi108_refill_rx(dev, budget * 2);
864 
865 	if (intstat & TSI108_INT_RXERROR) {
866 		u32 err = TSI_READ(TSI108_EC_RXERR);
867 		TSI_WRITE(TSI108_EC_RXERR, err);
868 
869 		if (err) {
870 			if (net_ratelimit())
871 				printk(KERN_DEBUG "%s: RX error %x\n",
872 				       dev->name, err);
873 
874 			if (!(TSI_READ(TSI108_EC_RXSTAT) &
875 			      TSI108_EC_RXSTAT_QUEUE0))
876 				tsi108_restart_rx(data, dev);
877 		}
878 	}
879 
880 	if (intstat & TSI108_INT_RXOVERRUN) {
881 		spin_lock_irq(&data->misclock);
882 		data->stats.rx_fifo_errors++;
883 		spin_unlock_irq(&data->misclock);
884 	}
885 
886 	if (num_received < budget) {
887 		data->rxpending = 0;
888 		napi_complete(napi);
889 
890 		TSI_WRITE(TSI108_EC_INTMASK,
891 				     TSI_READ(TSI108_EC_INTMASK)
892 				     & ~(TSI108_INT_RXQUEUE0
893 					 | TSI108_INT_RXTHRESH |
894 					 TSI108_INT_RXOVERRUN |
895 					 TSI108_INT_RXERROR |
896 					 TSI108_INT_RXWAIT));
897 	} else {
898 		data->rxpending = 1;
899 	}
900 
901 	return num_received;
902 }
903 
904 static void tsi108_rx_int(struct net_device *dev)
905 {
906 	struct tsi108_prv_data *data = netdev_priv(dev);
907 
908 	/* A race could cause dev to already be scheduled, so it's not an
909 	 * error if that happens (and interrupts shouldn't be re-masked,
910 	 * because that can cause harmful races, if poll has already
911 	 * unmasked them but not cleared LINK_STATE_SCHED).
912 	 *
913 	 * This can happen if this code races with tsi108_poll(), which masks
914 	 * the interrupts after tsi108_irq_one() read the mask, but before
915 	 * napi_schedule is called.  It could also happen due to calls
916 	 * from tsi108_check_rxring().
917 	 */
918 
919 	if (napi_schedule_prep(&data->napi)) {
920 		/* Mask, rather than ack, the receive interrupts.  The ack
921 		 * will happen in tsi108_poll().
922 		 */
923 
924 		TSI_WRITE(TSI108_EC_INTMASK,
925 				     TSI_READ(TSI108_EC_INTMASK) |
926 				     TSI108_INT_RXQUEUE0
927 				     | TSI108_INT_RXTHRESH |
928 				     TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
929 				     TSI108_INT_RXWAIT);
930 		__napi_schedule(&data->napi);
931 	} else {
932 		if (!netif_running(dev)) {
933 			/* This can happen if an interrupt occurs while the
934 			 * interface is being brought down, as the START
935 			 * bit is cleared before the stop function is called.
936 			 *
937 			 * In this case, the interrupts must be masked, or
938 			 * they will continue indefinitely.
939 			 *
940 			 * There's a race here if the interface is brought down
941 			 * and then up in rapid succession, as the device could
942 			 * be made running after the above check and before
943 			 * the masking below.  This will only happen if the IRQ
944 			 * thread has a lower priority than the task brining
945 			 * up the interface.  Fixing this race would likely
946 			 * require changes in generic code.
947 			 */
948 
949 			TSI_WRITE(TSI108_EC_INTMASK,
950 					     TSI_READ
951 					     (TSI108_EC_INTMASK) |
952 					     TSI108_INT_RXQUEUE0 |
953 					     TSI108_INT_RXTHRESH |
954 					     TSI108_INT_RXOVERRUN |
955 					     TSI108_INT_RXERROR |
956 					     TSI108_INT_RXWAIT);
957 		}
958 	}
959 }
960 
961 /* If the RX ring has run out of memory, try periodically
962  * to allocate some more, as otherwise poll would never
963  * get called (apart from the initial end-of-queue condition).
964  *
965  * This is called once per second (by default) from the thread.
966  */
967 
968 static void tsi108_check_rxring(struct net_device *dev)
969 {
970 	struct tsi108_prv_data *data = netdev_priv(dev);
971 
972 	/* A poll is scheduled, as opposed to caling tsi108_refill_rx
973 	 * directly, so as to keep the receive path single-threaded
974 	 * (and thus not needing a lock).
975 	 */
976 
977 	if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
978 		tsi108_rx_int(dev);
979 }
980 
981 static void tsi108_tx_int(struct net_device *dev)
982 {
983 	struct tsi108_prv_data *data = netdev_priv(dev);
984 	u32 estat = TSI_READ(TSI108_EC_TXESTAT);
985 
986 	TSI_WRITE(TSI108_EC_TXESTAT, estat);
987 	TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
988 			     TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
989 	if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
990 		u32 err = TSI_READ(TSI108_EC_TXERR);
991 		TSI_WRITE(TSI108_EC_TXERR, err);
992 
993 		if (err && net_ratelimit())
994 			printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
995 	}
996 
997 	if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
998 		spin_lock(&data->txlock);
999 		tsi108_complete_tx(dev);
1000 		spin_unlock(&data->txlock);
1001 	}
1002 }
1003 
1004 
1005 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1006 {
1007 	struct net_device *dev = dev_id;
1008 	struct tsi108_prv_data *data = netdev_priv(dev);
1009 	u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1010 
1011 	if (!(stat & TSI108_INT_ANY))
1012 		return IRQ_NONE;	/* Not our interrupt */
1013 
1014 	stat &= ~TSI_READ(TSI108_EC_INTMASK);
1015 
1016 	if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1017 		    TSI108_INT_TXERROR))
1018 		tsi108_tx_int(dev);
1019 	if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1020 		    TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1021 		    TSI108_INT_RXERROR))
1022 		tsi108_rx_int(dev);
1023 
1024 	if (stat & TSI108_INT_SFN) {
1025 		if (net_ratelimit())
1026 			printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1027 		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1028 	}
1029 
1030 	if (stat & TSI108_INT_STATCARRY) {
1031 		tsi108_stat_carry(dev);
1032 		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1033 	}
1034 
1035 	return IRQ_HANDLED;
1036 }
1037 
1038 static void tsi108_stop_ethernet(struct net_device *dev)
1039 {
1040 	struct tsi108_prv_data *data = netdev_priv(dev);
1041 	int i = 1000;
1042 	/* Disable all TX and RX queues ... */
1043 	TSI_WRITE(TSI108_EC_TXCTRL, 0);
1044 	TSI_WRITE(TSI108_EC_RXCTRL, 0);
1045 
1046 	/* ...and wait for them to become idle */
1047 	while(i--) {
1048 		if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1049 			break;
1050 		udelay(10);
1051 	}
1052 	i = 1000;
1053 	while(i--){
1054 		if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1055 			return;
1056 		udelay(10);
1057 	}
1058 	printk(KERN_ERR "%s function time out\n", __func__);
1059 }
1060 
1061 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1062 {
1063 	TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1064 	udelay(100);
1065 	TSI_WRITE(TSI108_MAC_CFG1, 0);
1066 
1067 	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1068 	udelay(100);
1069 	TSI_WRITE(TSI108_EC_PORTCTRL,
1070 			     TSI_READ(TSI108_EC_PORTCTRL) &
1071 			     ~TSI108_EC_PORTCTRL_STATRST);
1072 
1073 	TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1074 	udelay(100);
1075 	TSI_WRITE(TSI108_EC_TXCFG,
1076 			     TSI_READ(TSI108_EC_TXCFG) &
1077 			     ~TSI108_EC_TXCFG_RST);
1078 
1079 	TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1080 	udelay(100);
1081 	TSI_WRITE(TSI108_EC_RXCFG,
1082 			     TSI_READ(TSI108_EC_RXCFG) &
1083 			     ~TSI108_EC_RXCFG_RST);
1084 
1085 	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1086 			     TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1087 			     TSI108_MAC_MII_MGMT_RST);
1088 	udelay(100);
1089 	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1090 			     (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1091 			     ~(TSI108_MAC_MII_MGMT_RST |
1092 			       TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1093 }
1094 
1095 static int tsi108_get_mac(struct net_device *dev)
1096 {
1097 	struct tsi108_prv_data *data = netdev_priv(dev);
1098 	u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1099 	u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1100 
1101 	/* Note that the octets are reversed from what the manual says,
1102 	 * producing an even weirder ordering...
1103 	 */
1104 	if (word2 == 0 && word1 == 0) {
1105 		dev->dev_addr[0] = 0x00;
1106 		dev->dev_addr[1] = 0x06;
1107 		dev->dev_addr[2] = 0xd2;
1108 		dev->dev_addr[3] = 0x00;
1109 		dev->dev_addr[4] = 0x00;
1110 		if (0x8 == data->phy)
1111 			dev->dev_addr[5] = 0x01;
1112 		else
1113 			dev->dev_addr[5] = 0x02;
1114 
1115 		word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1116 
1117 		word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1118 		    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1119 
1120 		TSI_WRITE(TSI108_MAC_ADDR1, word1);
1121 		TSI_WRITE(TSI108_MAC_ADDR2, word2);
1122 	} else {
1123 		dev->dev_addr[0] = (word2 >> 16) & 0xff;
1124 		dev->dev_addr[1] = (word2 >> 24) & 0xff;
1125 		dev->dev_addr[2] = (word1 >> 0) & 0xff;
1126 		dev->dev_addr[3] = (word1 >> 8) & 0xff;
1127 		dev->dev_addr[4] = (word1 >> 16) & 0xff;
1128 		dev->dev_addr[5] = (word1 >> 24) & 0xff;
1129 	}
1130 
1131 	if (!is_valid_ether_addr(dev->dev_addr)) {
1132 		printk(KERN_ERR
1133 		       "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1134 		       dev->name, word1, word2);
1135 		return -EINVAL;
1136 	}
1137 
1138 	return 0;
1139 }
1140 
1141 static int tsi108_set_mac(struct net_device *dev, void *addr)
1142 {
1143 	struct tsi108_prv_data *data = netdev_priv(dev);
1144 	u32 word1, word2;
1145 	int i;
1146 
1147 	if (!is_valid_ether_addr(addr))
1148 		return -EADDRNOTAVAIL;
1149 
1150 	for (i = 0; i < 6; i++)
1151 		/* +2 is for the offset of the HW addr type */
1152 		dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1153 
1154 	word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1155 
1156 	word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1157 	    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1158 
1159 	spin_lock_irq(&data->misclock);
1160 	TSI_WRITE(TSI108_MAC_ADDR1, word1);
1161 	TSI_WRITE(TSI108_MAC_ADDR2, word2);
1162 	spin_lock(&data->txlock);
1163 
1164 	if (data->txfree && data->link_up)
1165 		netif_wake_queue(dev);
1166 
1167 	spin_unlock(&data->txlock);
1168 	spin_unlock_irq(&data->misclock);
1169 	return 0;
1170 }
1171 
1172 /* Protected by dev->xmit_lock. */
1173 static void tsi108_set_rx_mode(struct net_device *dev)
1174 {
1175 	struct tsi108_prv_data *data = netdev_priv(dev);
1176 	u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1177 
1178 	if (dev->flags & IFF_PROMISC) {
1179 		rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1180 		rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1181 		goto out;
1182 	}
1183 
1184 	rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1185 
1186 	if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1187 		int i;
1188 		struct netdev_hw_addr *ha;
1189 		rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1190 
1191 		memset(data->mc_hash, 0, sizeof(data->mc_hash));
1192 
1193 		netdev_for_each_mc_addr(ha, dev) {
1194 			u32 hash, crc;
1195 
1196 			crc = ether_crc(6, ha->addr);
1197 			hash = crc >> 23;
1198 			__set_bit(hash, &data->mc_hash[0]);
1199 		}
1200 
1201 		TSI_WRITE(TSI108_EC_HASHADDR,
1202 				     TSI108_EC_HASHADDR_AUTOINC |
1203 				     TSI108_EC_HASHADDR_MCAST);
1204 
1205 		for (i = 0; i < 16; i++) {
1206 			/* The manual says that the hardware may drop
1207 			 * back-to-back writes to the data register.
1208 			 */
1209 			udelay(1);
1210 			TSI_WRITE(TSI108_EC_HASHDATA,
1211 					     data->mc_hash[i]);
1212 		}
1213 	}
1214 
1215       out:
1216 	TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1217 }
1218 
1219 static void tsi108_init_phy(struct net_device *dev)
1220 {
1221 	struct tsi108_prv_data *data = netdev_priv(dev);
1222 	u32 i = 0;
1223 	u16 phyval = 0;
1224 	unsigned long flags;
1225 
1226 	spin_lock_irqsave(&phy_lock, flags);
1227 
1228 	tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1229 	while (--i) {
1230 		if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1231 			break;
1232 		udelay(10);
1233 	}
1234 	if (i == 0)
1235 		printk(KERN_ERR "%s function time out\n", __func__);
1236 
1237 	if (data->phy_type == TSI108_PHY_BCM54XX) {
1238 		tsi108_write_mii(data, 0x09, 0x0300);
1239 		tsi108_write_mii(data, 0x10, 0x1020);
1240 		tsi108_write_mii(data, 0x1c, 0x8c00);
1241 	}
1242 
1243 	tsi108_write_mii(data,
1244 			 MII_BMCR,
1245 			 BMCR_ANENABLE | BMCR_ANRESTART);
1246 	while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1247 		cpu_relax();
1248 
1249 	/* Set G/MII mode and receive clock select in TBI control #2.  The
1250 	 * second port won't work if this isn't done, even though we don't
1251 	 * use TBI mode.
1252 	 */
1253 
1254 	tsi108_write_tbi(data, 0x11, 0x30);
1255 
1256 	/* FIXME: It seems to take more than 2 back-to-back reads to the
1257 	 * PHY_STAT register before the link up status bit is set.
1258 	 */
1259 
1260 	data->link_up = 0;
1261 
1262 	while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1263 		 BMSR_LSTATUS)) {
1264 		if (i++ > (MII_READ_DELAY / 10)) {
1265 			break;
1266 		}
1267 		spin_unlock_irqrestore(&phy_lock, flags);
1268 		msleep(10);
1269 		spin_lock_irqsave(&phy_lock, flags);
1270 	}
1271 
1272 	data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1273 	printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1274 	data->phy_ok = 1;
1275 	data->init_media = 1;
1276 	spin_unlock_irqrestore(&phy_lock, flags);
1277 }
1278 
1279 static void tsi108_kill_phy(struct net_device *dev)
1280 {
1281 	struct tsi108_prv_data *data = netdev_priv(dev);
1282 	unsigned long flags;
1283 
1284 	spin_lock_irqsave(&phy_lock, flags);
1285 	tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1286 	data->phy_ok = 0;
1287 	spin_unlock_irqrestore(&phy_lock, flags);
1288 }
1289 
1290 static int tsi108_open(struct net_device *dev)
1291 {
1292 	int i;
1293 	struct tsi108_prv_data *data = netdev_priv(dev);
1294 	unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1295 	unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1296 
1297 	i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1298 	if (i != 0) {
1299 		printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1300 		       data->id, data->irq_num);
1301 		return i;
1302 	} else {
1303 		dev->irq = data->irq_num;
1304 		printk(KERN_NOTICE
1305 		       "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1306 		       data->id, dev->irq, dev->name);
1307 	}
1308 
1309 	data->rxring = dma_zalloc_coherent(NULL, rxring_size, &data->rxdma,
1310 					   GFP_KERNEL);
1311 	if (!data->rxring)
1312 		return -ENOMEM;
1313 
1314 	data->txring = dma_zalloc_coherent(NULL, txring_size, &data->txdma,
1315 					   GFP_KERNEL);
1316 	if (!data->txring) {
1317 		pci_free_consistent(NULL, rxring_size, data->rxring,
1318 				    data->rxdma);
1319 		return -ENOMEM;
1320 	}
1321 
1322 	for (i = 0; i < TSI108_RXRING_LEN; i++) {
1323 		data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1324 		data->rxring[i].blen = TSI108_RXBUF_SIZE;
1325 		data->rxring[i].vlan = 0;
1326 	}
1327 
1328 	data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1329 
1330 	data->rxtail = 0;
1331 	data->rxhead = 0;
1332 
1333 	for (i = 0; i < TSI108_RXRING_LEN; i++) {
1334 		struct sk_buff *skb;
1335 
1336 		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1337 		if (!skb) {
1338 			/* Bah.  No memory for now, but maybe we'll get
1339 			 * some more later.
1340 			 * For now, we'll live with the smaller ring.
1341 			 */
1342 			printk(KERN_WARNING
1343 			       "%s: Could only allocate %d receive skb(s).\n",
1344 			       dev->name, i);
1345 			data->rxhead = i;
1346 			break;
1347 		}
1348 
1349 		data->rxskbs[i] = skb;
1350 		data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1351 		data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1352 	}
1353 
1354 	data->rxfree = i;
1355 	TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1356 
1357 	for (i = 0; i < TSI108_TXRING_LEN; i++) {
1358 		data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1359 		data->txring[i].misc = 0;
1360 	}
1361 
1362 	data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1363 	data->txtail = 0;
1364 	data->txhead = 0;
1365 	data->txfree = TSI108_TXRING_LEN;
1366 	TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1367 	tsi108_init_phy(dev);
1368 
1369 	napi_enable(&data->napi);
1370 
1371 	setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1372 	mod_timer(&data->timer, jiffies + 1);
1373 
1374 	tsi108_restart_rx(data, dev);
1375 
1376 	TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1377 
1378 	TSI_WRITE(TSI108_EC_INTMASK,
1379 			     ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1380 			       TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1381 			       TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1382 			       TSI108_INT_SFN | TSI108_INT_STATCARRY));
1383 
1384 	TSI_WRITE(TSI108_MAC_CFG1,
1385 			     TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1386 	netif_start_queue(dev);
1387 	return 0;
1388 }
1389 
1390 static int tsi108_close(struct net_device *dev)
1391 {
1392 	struct tsi108_prv_data *data = netdev_priv(dev);
1393 
1394 	netif_stop_queue(dev);
1395 	napi_disable(&data->napi);
1396 
1397 	del_timer_sync(&data->timer);
1398 
1399 	tsi108_stop_ethernet(dev);
1400 	tsi108_kill_phy(dev);
1401 	TSI_WRITE(TSI108_EC_INTMASK, ~0);
1402 	TSI_WRITE(TSI108_MAC_CFG1, 0);
1403 
1404 	/* Check for any pending TX packets, and drop them. */
1405 
1406 	while (!data->txfree || data->txhead != data->txtail) {
1407 		int tx = data->txtail;
1408 		struct sk_buff *skb;
1409 		skb = data->txskbs[tx];
1410 		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1411 		data->txfree++;
1412 		dev_kfree_skb(skb);
1413 	}
1414 
1415 	free_irq(data->irq_num, dev);
1416 
1417 	/* Discard the RX ring. */
1418 
1419 	while (data->rxfree) {
1420 		int rx = data->rxtail;
1421 		struct sk_buff *skb;
1422 
1423 		skb = data->rxskbs[rx];
1424 		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1425 		data->rxfree--;
1426 		dev_kfree_skb(skb);
1427 	}
1428 
1429 	dma_free_coherent(0,
1430 			    TSI108_RXRING_LEN * sizeof(rx_desc),
1431 			    data->rxring, data->rxdma);
1432 	dma_free_coherent(0,
1433 			    TSI108_TXRING_LEN * sizeof(tx_desc),
1434 			    data->txring, data->txdma);
1435 
1436 	return 0;
1437 }
1438 
1439 static void tsi108_init_mac(struct net_device *dev)
1440 {
1441 	struct tsi108_prv_data *data = netdev_priv(dev);
1442 
1443 	TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1444 			     TSI108_MAC_CFG2_PADCRC);
1445 
1446 	TSI_WRITE(TSI108_EC_TXTHRESH,
1447 			     (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1448 			     (192 << TSI108_EC_TXTHRESH_STOPFILL));
1449 
1450 	TSI_WRITE(TSI108_STAT_CARRYMASK1,
1451 			     ~(TSI108_STAT_CARRY1_RXBYTES |
1452 			       TSI108_STAT_CARRY1_RXPKTS |
1453 			       TSI108_STAT_CARRY1_RXFCS |
1454 			       TSI108_STAT_CARRY1_RXMCAST |
1455 			       TSI108_STAT_CARRY1_RXALIGN |
1456 			       TSI108_STAT_CARRY1_RXLENGTH |
1457 			       TSI108_STAT_CARRY1_RXRUNT |
1458 			       TSI108_STAT_CARRY1_RXJUMBO |
1459 			       TSI108_STAT_CARRY1_RXFRAG |
1460 			       TSI108_STAT_CARRY1_RXJABBER |
1461 			       TSI108_STAT_CARRY1_RXDROP));
1462 
1463 	TSI_WRITE(TSI108_STAT_CARRYMASK2,
1464 			     ~(TSI108_STAT_CARRY2_TXBYTES |
1465 			       TSI108_STAT_CARRY2_TXPKTS |
1466 			       TSI108_STAT_CARRY2_TXEXDEF |
1467 			       TSI108_STAT_CARRY2_TXEXCOL |
1468 			       TSI108_STAT_CARRY2_TXTCOL |
1469 			       TSI108_STAT_CARRY2_TXPAUSE));
1470 
1471 	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1472 	TSI_WRITE(TSI108_MAC_CFG1, 0);
1473 
1474 	TSI_WRITE(TSI108_EC_RXCFG,
1475 			     TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1476 
1477 	TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1478 			     TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1479 			     TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1480 						TSI108_EC_TXQ_CFG_SFNPORT));
1481 
1482 	TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1483 			     TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1484 			     TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1485 						TSI108_EC_RXQ_CFG_SFNPORT));
1486 
1487 	TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1488 			     TSI108_EC_TXQ_BUFCFG_BURST256 |
1489 			     TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1490 						TSI108_EC_TXQ_BUFCFG_SFNPORT));
1491 
1492 	TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1493 			     TSI108_EC_RXQ_BUFCFG_BURST256 |
1494 			     TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1495 						TSI108_EC_RXQ_BUFCFG_SFNPORT));
1496 
1497 	TSI_WRITE(TSI108_EC_INTMASK, ~0);
1498 }
1499 
1500 static int tsi108_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1501 {
1502 	struct tsi108_prv_data *data = netdev_priv(dev);
1503 	unsigned long flags;
1504 	int rc;
1505 
1506 	spin_lock_irqsave(&data->txlock, flags);
1507 	rc = mii_ethtool_gset(&data->mii_if, cmd);
1508 	spin_unlock_irqrestore(&data->txlock, flags);
1509 
1510 	return rc;
1511 }
1512 
1513 static int tsi108_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1514 {
1515 	struct tsi108_prv_data *data = netdev_priv(dev);
1516 	unsigned long flags;
1517 	int rc;
1518 
1519 	spin_lock_irqsave(&data->txlock, flags);
1520 	rc = mii_ethtool_sset(&data->mii_if, cmd);
1521 	spin_unlock_irqrestore(&data->txlock, flags);
1522 
1523 	return rc;
1524 }
1525 
1526 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1527 {
1528 	struct tsi108_prv_data *data = netdev_priv(dev);
1529 	if (!netif_running(dev))
1530 		return -EINVAL;
1531 	return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1532 }
1533 
1534 static const struct ethtool_ops tsi108_ethtool_ops = {
1535 	.get_link 	= ethtool_op_get_link,
1536 	.get_settings	= tsi108_get_settings,
1537 	.set_settings	= tsi108_set_settings,
1538 };
1539 
1540 static const struct net_device_ops tsi108_netdev_ops = {
1541 	.ndo_open		= tsi108_open,
1542 	.ndo_stop		= tsi108_close,
1543 	.ndo_start_xmit		= tsi108_send_packet,
1544 	.ndo_set_rx_mode	= tsi108_set_rx_mode,
1545 	.ndo_get_stats		= tsi108_get_stats,
1546 	.ndo_do_ioctl		= tsi108_do_ioctl,
1547 	.ndo_set_mac_address	= tsi108_set_mac,
1548 	.ndo_validate_addr	= eth_validate_addr,
1549 	.ndo_change_mtu		= eth_change_mtu,
1550 };
1551 
1552 static int
1553 tsi108_init_one(struct platform_device *pdev)
1554 {
1555 	struct net_device *dev = NULL;
1556 	struct tsi108_prv_data *data = NULL;
1557 	hw_info *einfo;
1558 	int err = 0;
1559 
1560 	einfo = dev_get_platdata(&pdev->dev);
1561 
1562 	if (NULL == einfo) {
1563 		printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1564 		       pdev->id);
1565 		return -ENODEV;
1566 	}
1567 
1568 	/* Create an ethernet device instance */
1569 
1570 	dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1571 	if (!dev)
1572 		return -ENOMEM;
1573 
1574 	printk("tsi108_eth%d: probe...\n", pdev->id);
1575 	data = netdev_priv(dev);
1576 	data->dev = dev;
1577 
1578 	pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1579 			pdev->id, einfo->regs, einfo->phyregs,
1580 			einfo->phy, einfo->irq_num);
1581 
1582 	data->regs = ioremap(einfo->regs, 0x400);
1583 	if (NULL == data->regs) {
1584 		err = -ENOMEM;
1585 		goto regs_fail;
1586 	}
1587 
1588 	data->phyregs = ioremap(einfo->phyregs, 0x400);
1589 	if (NULL == data->phyregs) {
1590 		err = -ENOMEM;
1591 		goto phyregs_fail;
1592 	}
1593 /* MII setup */
1594 	data->mii_if.dev = dev;
1595 	data->mii_if.mdio_read = tsi108_mdio_read;
1596 	data->mii_if.mdio_write = tsi108_mdio_write;
1597 	data->mii_if.phy_id = einfo->phy;
1598 	data->mii_if.phy_id_mask = 0x1f;
1599 	data->mii_if.reg_num_mask = 0x1f;
1600 
1601 	data->phy = einfo->phy;
1602 	data->phy_type = einfo->phy_type;
1603 	data->irq_num = einfo->irq_num;
1604 	data->id = pdev->id;
1605 	netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1606 	dev->netdev_ops = &tsi108_netdev_ops;
1607 	dev->ethtool_ops = &tsi108_ethtool_ops;
1608 
1609 	/* Apparently, the Linux networking code won't use scatter-gather
1610 	 * if the hardware doesn't do checksums.  However, it's faster
1611 	 * to checksum in place and use SG, as (among other reasons)
1612 	 * the cache won't be dirtied (which then has to be flushed
1613 	 * before DMA).  The checksumming is done by the driver (via
1614 	 * a new function skb_csum_dev() in net/core/skbuff.c).
1615 	 */
1616 
1617 	dev->features = NETIF_F_HIGHDMA;
1618 
1619 	spin_lock_init(&data->txlock);
1620 	spin_lock_init(&data->misclock);
1621 
1622 	tsi108_reset_ether(data);
1623 	tsi108_kill_phy(dev);
1624 
1625 	if ((err = tsi108_get_mac(dev)) != 0) {
1626 		printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1627 		       dev->name);
1628 		goto register_fail;
1629 	}
1630 
1631 	tsi108_init_mac(dev);
1632 	err = register_netdev(dev);
1633 	if (err) {
1634 		printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1635 				dev->name);
1636 		goto register_fail;
1637 	}
1638 
1639 	platform_set_drvdata(pdev, dev);
1640 	printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1641 	       dev->name, dev->dev_addr);
1642 #ifdef DEBUG
1643 	data->msg_enable = DEBUG;
1644 	dump_eth_one(dev);
1645 #endif
1646 
1647 	return 0;
1648 
1649 register_fail:
1650 	iounmap(data->phyregs);
1651 
1652 phyregs_fail:
1653 	iounmap(data->regs);
1654 
1655 regs_fail:
1656 	free_netdev(dev);
1657 	return err;
1658 }
1659 
1660 /* There's no way to either get interrupts from the PHY when
1661  * something changes, or to have the Tsi108 automatically communicate
1662  * with the PHY to reconfigure itself.
1663  *
1664  * Thus, we have to do it using a timer.
1665  */
1666 
1667 static void tsi108_timed_checker(unsigned long dev_ptr)
1668 {
1669 	struct net_device *dev = (struct net_device *)dev_ptr;
1670 	struct tsi108_prv_data *data = netdev_priv(dev);
1671 
1672 	tsi108_check_phy(dev);
1673 	tsi108_check_rxring(dev);
1674 	mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1675 }
1676 
1677 static int tsi108_ether_remove(struct platform_device *pdev)
1678 {
1679 	struct net_device *dev = platform_get_drvdata(pdev);
1680 	struct tsi108_prv_data *priv = netdev_priv(dev);
1681 
1682 	unregister_netdev(dev);
1683 	tsi108_stop_ethernet(dev);
1684 	iounmap(priv->regs);
1685 	iounmap(priv->phyregs);
1686 	free_netdev(dev);
1687 
1688 	return 0;
1689 }
1690 module_platform_driver(tsi_eth_driver);
1691 
1692 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1693 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1694 MODULE_LICENSE("GPL");
1695 MODULE_ALIAS("platform:tsi-ethernet");
1696