1 /* 2 * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux. 3 * 4 * Based on skelton.c by Donald Becker. 5 * 6 * This driver is a replacement of older and less maintained version. 7 * This is a header of the older version: 8 * -----<snip>----- 9 * Copyright 2001 MontaVista Software Inc. 10 * Author: MontaVista Software, Inc. 11 * ahennessy@mvista.com 12 * Copyright (C) 2000-2001 Toshiba Corporation 13 * static const char *version = 14 * "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n"; 15 * -----<snip>----- 16 * 17 * This file is subject to the terms and conditions of the GNU General Public 18 * License. See the file "COPYING" in the main directory of this archive 19 * for more details. 20 * 21 * (C) Copyright TOSHIBA CORPORATION 2004-2005 22 * All Rights Reserved. 23 */ 24 25 #define DRV_VERSION "1.39" 26 static const char version[] = "tc35815.c:v" DRV_VERSION "\n"; 27 #define MODNAME "tc35815" 28 29 #include <linux/module.h> 30 #include <linux/kernel.h> 31 #include <linux/types.h> 32 #include <linux/fcntl.h> 33 #include <linux/interrupt.h> 34 #include <linux/ioport.h> 35 #include <linux/in.h> 36 #include <linux/if_vlan.h> 37 #include <linux/slab.h> 38 #include <linux/string.h> 39 #include <linux/spinlock.h> 40 #include <linux/errno.h> 41 #include <linux/netdevice.h> 42 #include <linux/etherdevice.h> 43 #include <linux/skbuff.h> 44 #include <linux/delay.h> 45 #include <linux/pci.h> 46 #include <linux/phy.h> 47 #include <linux/workqueue.h> 48 #include <linux/platform_device.h> 49 #include <linux/prefetch.h> 50 #include <asm/io.h> 51 #include <asm/byteorder.h> 52 53 enum tc35815_chiptype { 54 TC35815CF = 0, 55 TC35815_NWU, 56 TC35815_TX4939, 57 }; 58 59 /* indexed by tc35815_chiptype, above */ 60 static const struct { 61 const char *name; 62 } chip_info[] = { 63 { "TOSHIBA TC35815CF 10/100BaseTX" }, 64 { "TOSHIBA TC35815 with Wake on LAN" }, 65 { "TOSHIBA TC35815/TX4939" }, 66 }; 67 68 static const struct pci_device_id tc35815_pci_tbl[] = { 69 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF }, 70 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU }, 71 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 }, 72 {0,} 73 }; 74 MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl); 75 76 /* see MODULE_PARM_DESC */ 77 static struct tc35815_options { 78 int speed; 79 int duplex; 80 } options; 81 82 /* 83 * Registers 84 */ 85 struct tc35815_regs { 86 __u32 DMA_Ctl; /* 0x00 */ 87 __u32 TxFrmPtr; 88 __u32 TxThrsh; 89 __u32 TxPollCtr; 90 __u32 BLFrmPtr; 91 __u32 RxFragSize; 92 __u32 Int_En; 93 __u32 FDA_Bas; 94 __u32 FDA_Lim; /* 0x20 */ 95 __u32 Int_Src; 96 __u32 unused0[2]; 97 __u32 PauseCnt; 98 __u32 RemPauCnt; 99 __u32 TxCtlFrmStat; 100 __u32 unused1; 101 __u32 MAC_Ctl; /* 0x40 */ 102 __u32 CAM_Ctl; 103 __u32 Tx_Ctl; 104 __u32 Tx_Stat; 105 __u32 Rx_Ctl; 106 __u32 Rx_Stat; 107 __u32 MD_Data; 108 __u32 MD_CA; 109 __u32 CAM_Adr; /* 0x60 */ 110 __u32 CAM_Data; 111 __u32 CAM_Ena; 112 __u32 PROM_Ctl; 113 __u32 PROM_Data; 114 __u32 Algn_Cnt; 115 __u32 CRC_Cnt; 116 __u32 Miss_Cnt; 117 }; 118 119 /* 120 * Bit assignments 121 */ 122 /* DMA_Ctl bit assign ------------------------------------------------------- */ 123 #define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */ 124 #define DMA_RxAlign_1 0x00400000 125 #define DMA_RxAlign_2 0x00800000 126 #define DMA_RxAlign_3 0x00c00000 127 #define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */ 128 #define DMA_IntMask 0x00040000 /* 1:Interrupt mask */ 129 #define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */ 130 #define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */ 131 #define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */ 132 #define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */ 133 #define DMA_TestMode 0x00002000 /* 1:Test Mode */ 134 #define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */ 135 #define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */ 136 137 /* RxFragSize bit assign ---------------------------------------------------- */ 138 #define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */ 139 #define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */ 140 141 /* MAC_Ctl bit assign ------------------------------------------------------- */ 142 #define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */ 143 #define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */ 144 #define MAC_MissRoll 0x00000400 /* 1:Missed Roll */ 145 #define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */ 146 #define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */ 147 #define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/ 148 #define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */ 149 #define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */ 150 #define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */ 151 #define MAC_Reset 0x00000004 /* 1:Software Reset */ 152 #define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */ 153 #define MAC_HaltReq 0x00000001 /* 1:Halt request */ 154 155 /* PROM_Ctl bit assign ------------------------------------------------------ */ 156 #define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */ 157 #define PROM_Read 0x00004000 /*10:Read operation */ 158 #define PROM_Write 0x00002000 /*01:Write operation */ 159 #define PROM_Erase 0x00006000 /*11:Erase operation */ 160 /*00:Enable or Disable Writting, */ 161 /* as specified in PROM_Addr. */ 162 #define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */ 163 /*00xxxx: disable */ 164 165 /* CAM_Ctl bit assign ------------------------------------------------------- */ 166 #define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */ 167 #define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/ 168 /* accept other */ 169 #define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */ 170 #define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */ 171 #define CAM_StationAcc 0x00000001 /* 1:unicast accept */ 172 173 /* CAM_Ena bit assign ------------------------------------------------------- */ 174 #define CAM_ENTRY_MAX 21 /* CAM Data entry max count */ 175 #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */ 176 #define CAM_Ena_Bit(index) (1 << (index)) 177 #define CAM_ENTRY_DESTINATION 0 178 #define CAM_ENTRY_SOURCE 1 179 #define CAM_ENTRY_MACCTL 20 180 181 /* Tx_Ctl bit assign -------------------------------------------------------- */ 182 #define Tx_En 0x00000001 /* 1:Transmit enable */ 183 #define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */ 184 #define Tx_NoPad 0x00000004 /* 1:Suppress Padding */ 185 #define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */ 186 #define Tx_FBack 0x00000010 /* 1:Fast Back-off */ 187 #define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */ 188 #define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */ 189 #define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */ 190 #define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */ 191 #define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */ 192 #define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */ 193 #define Tx_EnComp 0x00004000 /* 1:Enable Completion */ 194 195 /* Tx_Stat bit assign ------------------------------------------------------- */ 196 #define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */ 197 #define Tx_ExColl 0x00000010 /* Excessive Collision */ 198 #define Tx_TXDefer 0x00000020 /* Transmit Defered */ 199 #define Tx_Paused 0x00000040 /* Transmit Paused */ 200 #define Tx_IntTx 0x00000080 /* Interrupt on Tx */ 201 #define Tx_Under 0x00000100 /* Underrun */ 202 #define Tx_Defer 0x00000200 /* Deferral */ 203 #define Tx_NCarr 0x00000400 /* No Carrier */ 204 #define Tx_10Stat 0x00000800 /* 10Mbps Status */ 205 #define Tx_LateColl 0x00001000 /* Late Collision */ 206 #define Tx_TxPar 0x00002000 /* Tx Parity Error */ 207 #define Tx_Comp 0x00004000 /* Completion */ 208 #define Tx_Halted 0x00008000 /* Tx Halted */ 209 #define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */ 210 211 /* Rx_Ctl bit assign -------------------------------------------------------- */ 212 #define Rx_EnGood 0x00004000 /* 1:Enable Good */ 213 #define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */ 214 #define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */ 215 #define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */ 216 #define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */ 217 #define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */ 218 #define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */ 219 #define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */ 220 #define Rx_ShortEn 0x00000008 /* 1:Short Enable */ 221 #define Rx_LongEn 0x00000004 /* 1:Long Enable */ 222 #define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */ 223 #define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */ 224 225 /* Rx_Stat bit assign ------------------------------------------------------- */ 226 #define Rx_Halted 0x00008000 /* Rx Halted */ 227 #define Rx_Good 0x00004000 /* Rx Good */ 228 #define Rx_RxPar 0x00002000 /* Rx Parity Error */ 229 #define Rx_TypePkt 0x00001000 /* Rx Type Packet */ 230 #define Rx_LongErr 0x00000800 /* Rx Long Error */ 231 #define Rx_Over 0x00000400 /* Rx Overflow */ 232 #define Rx_CRCErr 0x00000200 /* Rx CRC Error */ 233 #define Rx_Align 0x00000100 /* Rx Alignment Error */ 234 #define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */ 235 #define Rx_IntRx 0x00000040 /* Rx Interrupt */ 236 #define Rx_CtlRecd 0x00000020 /* Rx Control Receive */ 237 #define Rx_InLenErr 0x00000010 /* Rx In Range Frame Length Error */ 238 239 #define Rx_Stat_Mask 0x0000FFF0 /* Rx All Status Mask */ 240 241 /* Int_En bit assign -------------------------------------------------------- */ 242 #define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */ 243 #define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Ctl Complete Enable */ 244 #define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */ 245 #define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */ 246 #define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */ 247 #define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */ 248 #define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */ 249 #define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */ 250 #define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */ 251 #define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */ 252 #define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */ 253 #define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */ 254 /* Exhausted Enable */ 255 256 /* Int_Src bit assign ------------------------------------------------------- */ 257 #define Int_NRabt 0x00004000 /* 1:Non Recoverable error */ 258 #define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */ 259 #define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */ 260 #define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */ 261 #define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */ 262 #define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */ 263 #define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */ 264 #define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */ 265 #define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */ 266 #define Int_SWInt 0x00000020 /* 1:Software request & Clear */ 267 #define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */ 268 #define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */ 269 #define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */ 270 #define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */ 271 #define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */ 272 273 /* MD_CA bit assign --------------------------------------------------------- */ 274 #define MD_CA_PreSup 0x00001000 /* 1:Preamble Suppress */ 275 #define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */ 276 #define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */ 277 278 279 /* 280 * Descriptors 281 */ 282 283 /* Frame descriptor */ 284 struct FDesc { 285 volatile __u32 FDNext; 286 volatile __u32 FDSystem; 287 volatile __u32 FDStat; 288 volatile __u32 FDCtl; 289 }; 290 291 /* Buffer descriptor */ 292 struct BDesc { 293 volatile __u32 BuffData; 294 volatile __u32 BDCtl; 295 }; 296 297 #define FD_ALIGN 16 298 299 /* Frame Descriptor bit assign ---------------------------------------------- */ 300 #define FD_FDLength_MASK 0x0000FFFF /* Length MASK */ 301 #define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */ 302 #define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */ 303 #define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */ 304 #define FD_FrmOpt_IntTx 0x20000000 /* Tx only */ 305 #define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */ 306 #define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */ 307 #define FD_FrmOpt_Packing 0x04000000 /* Rx only */ 308 #define FD_CownsFD 0x80000000 /* FD Controller owner bit */ 309 #define FD_Next_EOL 0x00000001 /* FD EOL indicator */ 310 #define FD_BDCnt_SHIFT 16 311 312 /* Buffer Descriptor bit assign --------------------------------------------- */ 313 #define BD_BuffLength_MASK 0x0000FFFF /* Receive Data Size */ 314 #define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */ 315 #define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */ 316 #define BD_CownsBD 0x80000000 /* BD Controller owner bit */ 317 #define BD_RxBDID_SHIFT 16 318 #define BD_RxBDSeqN_SHIFT 24 319 320 321 /* Some useful constants. */ 322 323 #define TX_CTL_CMD (Tx_EnTxPar | Tx_EnLateColl | \ 324 Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \ 325 Tx_En) /* maybe 0x7b01 */ 326 /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */ 327 #define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \ 328 | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */ 329 #define INT_EN_CMD (Int_NRAbtEn | \ 330 Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \ 331 Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \ 332 Int_STargAbtEn | \ 333 Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/ 334 #define DMA_CTL_CMD DMA_BURST_SIZE 335 #define HAVE_DMA_RXALIGN(lp) likely((lp)->chiptype != TC35815CF) 336 337 /* Tuning parameters */ 338 #define DMA_BURST_SIZE 32 339 #define TX_THRESHOLD 1024 340 /* used threshold with packet max byte for low pci transfer ability.*/ 341 #define TX_THRESHOLD_MAX 1536 342 /* setting threshold max value when overrun error occurred this count. */ 343 #define TX_THRESHOLD_KEEP_LIMIT 10 344 345 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */ 346 #define FD_PAGE_NUM 4 347 #define RX_BUF_NUM 128 /* < 256 */ 348 #define RX_FD_NUM 256 /* >= 32 */ 349 #define TX_FD_NUM 128 350 #if RX_CTL_CMD & Rx_LongEn 351 #define RX_BUF_SIZE PAGE_SIZE 352 #elif RX_CTL_CMD & Rx_StripCRC 353 #define RX_BUF_SIZE \ 354 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN) 355 #else 356 #define RX_BUF_SIZE \ 357 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN) 358 #endif 359 #define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */ 360 #define NAPI_WEIGHT 16 361 362 struct TxFD { 363 struct FDesc fd; 364 struct BDesc bd; 365 struct BDesc unused; 366 }; 367 368 struct RxFD { 369 struct FDesc fd; 370 struct BDesc bd[0]; /* variable length */ 371 }; 372 373 struct FrFD { 374 struct FDesc fd; 375 struct BDesc bd[RX_BUF_NUM]; 376 }; 377 378 379 #define tc_readl(addr) ioread32(addr) 380 #define tc_writel(d, addr) iowrite32(d, addr) 381 382 #define TC35815_TX_TIMEOUT msecs_to_jiffies(400) 383 384 /* Information that need to be kept for each controller. */ 385 struct tc35815_local { 386 struct pci_dev *pci_dev; 387 388 struct net_device *dev; 389 struct napi_struct napi; 390 391 /* statistics */ 392 struct { 393 int max_tx_qlen; 394 int tx_ints; 395 int rx_ints; 396 int tx_underrun; 397 } lstats; 398 399 /* Tx control lock. This protects the transmit buffer ring 400 * state along with the "tx full" state of the driver. This 401 * means all netif_queue flow control actions are protected 402 * by this lock as well. 403 */ 404 spinlock_t lock; 405 spinlock_t rx_lock; 406 407 struct mii_bus *mii_bus; 408 int duplex; 409 int speed; 410 int link; 411 struct work_struct restart_work; 412 413 /* 414 * Transmitting: Batch Mode. 415 * 1 BD in 1 TxFD. 416 * Receiving: Non-Packing Mode. 417 * 1 circular FD for Free Buffer List. 418 * RX_BUF_NUM BD in Free Buffer FD. 419 * One Free Buffer BD has ETH_FRAME_LEN data buffer. 420 */ 421 void *fd_buf; /* for TxFD, RxFD, FrFD */ 422 dma_addr_t fd_buf_dma; 423 struct TxFD *tfd_base; 424 unsigned int tfd_start; 425 unsigned int tfd_end; 426 struct RxFD *rfd_base; 427 struct RxFD *rfd_limit; 428 struct RxFD *rfd_cur; 429 struct FrFD *fbl_ptr; 430 unsigned int fbl_count; 431 struct { 432 struct sk_buff *skb; 433 dma_addr_t skb_dma; 434 } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM]; 435 u32 msg_enable; 436 enum tc35815_chiptype chiptype; 437 }; 438 439 static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt) 440 { 441 return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf); 442 } 443 #ifdef DEBUG 444 static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus) 445 { 446 return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma)); 447 } 448 #endif 449 static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev, 450 struct pci_dev *hwdev, 451 dma_addr_t *dma_handle) 452 { 453 struct sk_buff *skb; 454 skb = netdev_alloc_skb(dev, RX_BUF_SIZE); 455 if (!skb) 456 return NULL; 457 *dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE, 458 PCI_DMA_FROMDEVICE); 459 if (pci_dma_mapping_error(hwdev, *dma_handle)) { 460 dev_kfree_skb_any(skb); 461 return NULL; 462 } 463 skb_reserve(skb, 2); /* make IP header 4byte aligned */ 464 return skb; 465 } 466 467 static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle) 468 { 469 pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE, 470 PCI_DMA_FROMDEVICE); 471 dev_kfree_skb_any(skb); 472 } 473 474 /* Index to functions, as function prototypes. */ 475 476 static int tc35815_open(struct net_device *dev); 477 static netdev_tx_t tc35815_send_packet(struct sk_buff *skb, 478 struct net_device *dev); 479 static irqreturn_t tc35815_interrupt(int irq, void *dev_id); 480 static int tc35815_rx(struct net_device *dev, int limit); 481 static int tc35815_poll(struct napi_struct *napi, int budget); 482 static void tc35815_txdone(struct net_device *dev); 483 static int tc35815_close(struct net_device *dev); 484 static struct net_device_stats *tc35815_get_stats(struct net_device *dev); 485 static void tc35815_set_multicast_list(struct net_device *dev); 486 static void tc35815_tx_timeout(struct net_device *dev); 487 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 488 #ifdef CONFIG_NET_POLL_CONTROLLER 489 static void tc35815_poll_controller(struct net_device *dev); 490 #endif 491 static const struct ethtool_ops tc35815_ethtool_ops; 492 493 /* Example routines you must write ;->. */ 494 static void tc35815_chip_reset(struct net_device *dev); 495 static void tc35815_chip_init(struct net_device *dev); 496 497 #ifdef DEBUG 498 static void panic_queues(struct net_device *dev); 499 #endif 500 501 static void tc35815_restart_work(struct work_struct *work); 502 503 static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 504 { 505 struct net_device *dev = bus->priv; 506 struct tc35815_regs __iomem *tr = 507 (struct tc35815_regs __iomem *)dev->base_addr; 508 unsigned long timeout = jiffies + HZ; 509 510 tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA); 511 udelay(12); /* it takes 32 x 400ns at least */ 512 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) { 513 if (time_after(jiffies, timeout)) 514 return -EIO; 515 cpu_relax(); 516 } 517 return tc_readl(&tr->MD_Data) & 0xffff; 518 } 519 520 static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val) 521 { 522 struct net_device *dev = bus->priv; 523 struct tc35815_regs __iomem *tr = 524 (struct tc35815_regs __iomem *)dev->base_addr; 525 unsigned long timeout = jiffies + HZ; 526 527 tc_writel(val, &tr->MD_Data); 528 tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f), 529 &tr->MD_CA); 530 udelay(12); /* it takes 32 x 400ns at least */ 531 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) { 532 if (time_after(jiffies, timeout)) 533 return -EIO; 534 cpu_relax(); 535 } 536 return 0; 537 } 538 539 static void tc_handle_link_change(struct net_device *dev) 540 { 541 struct tc35815_local *lp = netdev_priv(dev); 542 struct phy_device *phydev = dev->phydev; 543 unsigned long flags; 544 int status_change = 0; 545 546 spin_lock_irqsave(&lp->lock, flags); 547 if (phydev->link && 548 (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) { 549 struct tc35815_regs __iomem *tr = 550 (struct tc35815_regs __iomem *)dev->base_addr; 551 u32 reg; 552 553 reg = tc_readl(&tr->MAC_Ctl); 554 reg |= MAC_HaltReq; 555 tc_writel(reg, &tr->MAC_Ctl); 556 if (phydev->duplex == DUPLEX_FULL) 557 reg |= MAC_FullDup; 558 else 559 reg &= ~MAC_FullDup; 560 tc_writel(reg, &tr->MAC_Ctl); 561 reg &= ~MAC_HaltReq; 562 tc_writel(reg, &tr->MAC_Ctl); 563 564 /* 565 * TX4939 PCFG.SPEEDn bit will be changed on 566 * NETDEV_CHANGE event. 567 */ 568 /* 569 * WORKAROUND: enable LostCrS only if half duplex 570 * operation. 571 * (TX4939 does not have EnLCarr) 572 */ 573 if (phydev->duplex == DUPLEX_HALF && 574 lp->chiptype != TC35815_TX4939) 575 tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr, 576 &tr->Tx_Ctl); 577 578 lp->speed = phydev->speed; 579 lp->duplex = phydev->duplex; 580 status_change = 1; 581 } 582 583 if (phydev->link != lp->link) { 584 if (phydev->link) { 585 /* delayed promiscuous enabling */ 586 if (dev->flags & IFF_PROMISC) 587 tc35815_set_multicast_list(dev); 588 } else { 589 lp->speed = 0; 590 lp->duplex = -1; 591 } 592 lp->link = phydev->link; 593 594 status_change = 1; 595 } 596 spin_unlock_irqrestore(&lp->lock, flags); 597 598 if (status_change && netif_msg_link(lp)) { 599 phy_print_status(phydev); 600 pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n", 601 dev->name, 602 phy_read(phydev, MII_BMCR), 603 phy_read(phydev, MII_BMSR), 604 phy_read(phydev, MII_LPA)); 605 } 606 } 607 608 static int tc_mii_probe(struct net_device *dev) 609 { 610 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 611 struct tc35815_local *lp = netdev_priv(dev); 612 struct phy_device *phydev; 613 614 phydev = phy_find_first(lp->mii_bus); 615 if (!phydev) { 616 printk(KERN_ERR "%s: no PHY found\n", dev->name); 617 return -ENODEV; 618 } 619 620 /* attach the mac to the phy */ 621 phydev = phy_connect(dev, phydev_name(phydev), 622 &tc_handle_link_change, 623 lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII); 624 if (IS_ERR(phydev)) { 625 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name); 626 return PTR_ERR(phydev); 627 } 628 629 phy_attached_info(phydev); 630 631 /* mask with MAC supported features */ 632 phy_set_max_speed(phydev, SPEED_100); 633 if (options.speed == 10) { 634 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 635 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 636 } else if (options.speed == 100) { 637 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask); 638 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask); 639 } 640 if (options.duplex == 1) { 641 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask); 642 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 643 } else if (options.duplex == 2) { 644 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask); 645 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 646 } 647 linkmode_and(phydev->supported, phydev->supported, mask); 648 linkmode_copy(phydev->advertising, phydev->supported); 649 650 lp->link = 0; 651 lp->speed = 0; 652 lp->duplex = -1; 653 654 return 0; 655 } 656 657 static int tc_mii_init(struct net_device *dev) 658 { 659 struct tc35815_local *lp = netdev_priv(dev); 660 int err; 661 662 lp->mii_bus = mdiobus_alloc(); 663 if (lp->mii_bus == NULL) { 664 err = -ENOMEM; 665 goto err_out; 666 } 667 668 lp->mii_bus->name = "tc35815_mii_bus"; 669 lp->mii_bus->read = tc_mdio_read; 670 lp->mii_bus->write = tc_mdio_write; 671 snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x", 672 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn); 673 lp->mii_bus->priv = dev; 674 lp->mii_bus->parent = &lp->pci_dev->dev; 675 err = mdiobus_register(lp->mii_bus); 676 if (err) 677 goto err_out_free_mii_bus; 678 err = tc_mii_probe(dev); 679 if (err) 680 goto err_out_unregister_bus; 681 return 0; 682 683 err_out_unregister_bus: 684 mdiobus_unregister(lp->mii_bus); 685 err_out_free_mii_bus: 686 mdiobus_free(lp->mii_bus); 687 err_out: 688 return err; 689 } 690 691 #ifdef CONFIG_CPU_TX49XX 692 /* 693 * Find a platform_device providing a MAC address. The platform code 694 * should provide a "tc35815-mac" device with a MAC address in its 695 * platform_data. 696 */ 697 static int tc35815_mac_match(struct device *dev, const void *data) 698 { 699 struct platform_device *plat_dev = to_platform_device(dev); 700 const struct pci_dev *pci_dev = data; 701 unsigned int id = pci_dev->irq; 702 return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id; 703 } 704 705 static int tc35815_read_plat_dev_addr(struct net_device *dev) 706 { 707 struct tc35815_local *lp = netdev_priv(dev); 708 struct device *pd = bus_find_device(&platform_bus_type, NULL, 709 lp->pci_dev, tc35815_mac_match); 710 if (pd) { 711 if (pd->platform_data) 712 memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN); 713 put_device(pd); 714 return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV; 715 } 716 return -ENODEV; 717 } 718 #else 719 static int tc35815_read_plat_dev_addr(struct net_device *dev) 720 { 721 return -ENODEV; 722 } 723 #endif 724 725 static int tc35815_init_dev_addr(struct net_device *dev) 726 { 727 struct tc35815_regs __iomem *tr = 728 (struct tc35815_regs __iomem *)dev->base_addr; 729 int i; 730 731 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy) 732 ; 733 for (i = 0; i < 6; i += 2) { 734 unsigned short data; 735 tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl); 736 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy) 737 ; 738 data = tc_readl(&tr->PROM_Data); 739 dev->dev_addr[i] = data & 0xff; 740 dev->dev_addr[i+1] = data >> 8; 741 } 742 if (!is_valid_ether_addr(dev->dev_addr)) 743 return tc35815_read_plat_dev_addr(dev); 744 return 0; 745 } 746 747 static const struct net_device_ops tc35815_netdev_ops = { 748 .ndo_open = tc35815_open, 749 .ndo_stop = tc35815_close, 750 .ndo_start_xmit = tc35815_send_packet, 751 .ndo_get_stats = tc35815_get_stats, 752 .ndo_set_rx_mode = tc35815_set_multicast_list, 753 .ndo_tx_timeout = tc35815_tx_timeout, 754 .ndo_do_ioctl = tc35815_ioctl, 755 .ndo_validate_addr = eth_validate_addr, 756 .ndo_set_mac_address = eth_mac_addr, 757 #ifdef CONFIG_NET_POLL_CONTROLLER 758 .ndo_poll_controller = tc35815_poll_controller, 759 #endif 760 }; 761 762 static int tc35815_init_one(struct pci_dev *pdev, 763 const struct pci_device_id *ent) 764 { 765 void __iomem *ioaddr = NULL; 766 struct net_device *dev; 767 struct tc35815_local *lp; 768 int rc; 769 770 static int printed_version; 771 if (!printed_version++) { 772 printk(version); 773 dev_printk(KERN_DEBUG, &pdev->dev, 774 "speed:%d duplex:%d\n", 775 options.speed, options.duplex); 776 } 777 778 if (!pdev->irq) { 779 dev_warn(&pdev->dev, "no IRQ assigned.\n"); 780 return -ENODEV; 781 } 782 783 /* dev zeroed in alloc_etherdev */ 784 dev = alloc_etherdev(sizeof(*lp)); 785 if (dev == NULL) 786 return -ENOMEM; 787 788 SET_NETDEV_DEV(dev, &pdev->dev); 789 lp = netdev_priv(dev); 790 lp->dev = dev; 791 792 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 793 rc = pcim_enable_device(pdev); 794 if (rc) 795 goto err_out; 796 rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME); 797 if (rc) 798 goto err_out; 799 pci_set_master(pdev); 800 ioaddr = pcim_iomap_table(pdev)[1]; 801 802 /* Initialize the device structure. */ 803 dev->netdev_ops = &tc35815_netdev_ops; 804 dev->ethtool_ops = &tc35815_ethtool_ops; 805 dev->watchdog_timeo = TC35815_TX_TIMEOUT; 806 netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT); 807 808 dev->irq = pdev->irq; 809 dev->base_addr = (unsigned long)ioaddr; 810 811 INIT_WORK(&lp->restart_work, tc35815_restart_work); 812 spin_lock_init(&lp->lock); 813 spin_lock_init(&lp->rx_lock); 814 lp->pci_dev = pdev; 815 lp->chiptype = ent->driver_data; 816 817 lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK; 818 pci_set_drvdata(pdev, dev); 819 820 /* Soft reset the chip. */ 821 tc35815_chip_reset(dev); 822 823 /* Retrieve the ethernet address. */ 824 if (tc35815_init_dev_addr(dev)) { 825 dev_warn(&pdev->dev, "not valid ether addr\n"); 826 eth_hw_addr_random(dev); 827 } 828 829 rc = register_netdev(dev); 830 if (rc) 831 goto err_out; 832 833 printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n", 834 dev->name, 835 chip_info[ent->driver_data].name, 836 dev->base_addr, 837 dev->dev_addr, 838 dev->irq); 839 840 rc = tc_mii_init(dev); 841 if (rc) 842 goto err_out_unregister; 843 844 return 0; 845 846 err_out_unregister: 847 unregister_netdev(dev); 848 err_out: 849 free_netdev(dev); 850 return rc; 851 } 852 853 854 static void tc35815_remove_one(struct pci_dev *pdev) 855 { 856 struct net_device *dev = pci_get_drvdata(pdev); 857 struct tc35815_local *lp = netdev_priv(dev); 858 859 phy_disconnect(dev->phydev); 860 mdiobus_unregister(lp->mii_bus); 861 mdiobus_free(lp->mii_bus); 862 unregister_netdev(dev); 863 free_netdev(dev); 864 } 865 866 static int 867 tc35815_init_queues(struct net_device *dev) 868 { 869 struct tc35815_local *lp = netdev_priv(dev); 870 int i; 871 unsigned long fd_addr; 872 873 if (!lp->fd_buf) { 874 BUG_ON(sizeof(struct FDesc) + 875 sizeof(struct BDesc) * RX_BUF_NUM + 876 sizeof(struct FDesc) * RX_FD_NUM + 877 sizeof(struct TxFD) * TX_FD_NUM > 878 PAGE_SIZE * FD_PAGE_NUM); 879 880 lp->fd_buf = pci_alloc_consistent(lp->pci_dev, 881 PAGE_SIZE * FD_PAGE_NUM, 882 &lp->fd_buf_dma); 883 if (!lp->fd_buf) 884 return -ENOMEM; 885 for (i = 0; i < RX_BUF_NUM; i++) { 886 lp->rx_skbs[i].skb = 887 alloc_rxbuf_skb(dev, lp->pci_dev, 888 &lp->rx_skbs[i].skb_dma); 889 if (!lp->rx_skbs[i].skb) { 890 while (--i >= 0) { 891 free_rxbuf_skb(lp->pci_dev, 892 lp->rx_skbs[i].skb, 893 lp->rx_skbs[i].skb_dma); 894 lp->rx_skbs[i].skb = NULL; 895 } 896 pci_free_consistent(lp->pci_dev, 897 PAGE_SIZE * FD_PAGE_NUM, 898 lp->fd_buf, 899 lp->fd_buf_dma); 900 lp->fd_buf = NULL; 901 return -ENOMEM; 902 } 903 } 904 printk(KERN_DEBUG "%s: FD buf %p DataBuf", 905 dev->name, lp->fd_buf); 906 printk("\n"); 907 } else { 908 for (i = 0; i < FD_PAGE_NUM; i++) 909 clear_page((void *)((unsigned long)lp->fd_buf + 910 i * PAGE_SIZE)); 911 } 912 fd_addr = (unsigned long)lp->fd_buf; 913 914 /* Free Descriptors (for Receive) */ 915 lp->rfd_base = (struct RxFD *)fd_addr; 916 fd_addr += sizeof(struct RxFD) * RX_FD_NUM; 917 for (i = 0; i < RX_FD_NUM; i++) 918 lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD); 919 lp->rfd_cur = lp->rfd_base; 920 lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1); 921 922 /* Transmit Descriptors */ 923 lp->tfd_base = (struct TxFD *)fd_addr; 924 fd_addr += sizeof(struct TxFD) * TX_FD_NUM; 925 for (i = 0; i < TX_FD_NUM; i++) { 926 lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1])); 927 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); 928 lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0); 929 } 930 lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0])); 931 lp->tfd_start = 0; 932 lp->tfd_end = 0; 933 934 /* Buffer List (for Receive) */ 935 lp->fbl_ptr = (struct FrFD *)fd_addr; 936 lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr)); 937 lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD); 938 /* 939 * move all allocated skbs to head of rx_skbs[] array. 940 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in 941 * tc35815_rx() had failed. 942 */ 943 lp->fbl_count = 0; 944 for (i = 0; i < RX_BUF_NUM; i++) { 945 if (lp->rx_skbs[i].skb) { 946 if (i != lp->fbl_count) { 947 lp->rx_skbs[lp->fbl_count].skb = 948 lp->rx_skbs[i].skb; 949 lp->rx_skbs[lp->fbl_count].skb_dma = 950 lp->rx_skbs[i].skb_dma; 951 } 952 lp->fbl_count++; 953 } 954 } 955 for (i = 0; i < RX_BUF_NUM; i++) { 956 if (i >= lp->fbl_count) { 957 lp->fbl_ptr->bd[i].BuffData = 0; 958 lp->fbl_ptr->bd[i].BDCtl = 0; 959 continue; 960 } 961 lp->fbl_ptr->bd[i].BuffData = 962 cpu_to_le32(lp->rx_skbs[i].skb_dma); 963 /* BDID is index of FrFD.bd[] */ 964 lp->fbl_ptr->bd[i].BDCtl = 965 cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) | 966 RX_BUF_SIZE); 967 } 968 969 printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n", 970 dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr); 971 return 0; 972 } 973 974 static void 975 tc35815_clear_queues(struct net_device *dev) 976 { 977 struct tc35815_local *lp = netdev_priv(dev); 978 int i; 979 980 for (i = 0; i < TX_FD_NUM; i++) { 981 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem); 982 struct sk_buff *skb = 983 fdsystem != 0xffffffff ? 984 lp->tx_skbs[fdsystem].skb : NULL; 985 #ifdef DEBUG 986 if (lp->tx_skbs[i].skb != skb) { 987 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i); 988 panic_queues(dev); 989 } 990 #else 991 BUG_ON(lp->tx_skbs[i].skb != skb); 992 #endif 993 if (skb) { 994 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE); 995 lp->tx_skbs[i].skb = NULL; 996 lp->tx_skbs[i].skb_dma = 0; 997 dev_kfree_skb_any(skb); 998 } 999 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); 1000 } 1001 1002 tc35815_init_queues(dev); 1003 } 1004 1005 static void 1006 tc35815_free_queues(struct net_device *dev) 1007 { 1008 struct tc35815_local *lp = netdev_priv(dev); 1009 int i; 1010 1011 if (lp->tfd_base) { 1012 for (i = 0; i < TX_FD_NUM; i++) { 1013 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem); 1014 struct sk_buff *skb = 1015 fdsystem != 0xffffffff ? 1016 lp->tx_skbs[fdsystem].skb : NULL; 1017 #ifdef DEBUG 1018 if (lp->tx_skbs[i].skb != skb) { 1019 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i); 1020 panic_queues(dev); 1021 } 1022 #else 1023 BUG_ON(lp->tx_skbs[i].skb != skb); 1024 #endif 1025 if (skb) { 1026 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE); 1027 dev_kfree_skb(skb); 1028 lp->tx_skbs[i].skb = NULL; 1029 lp->tx_skbs[i].skb_dma = 0; 1030 } 1031 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); 1032 } 1033 } 1034 1035 lp->rfd_base = NULL; 1036 lp->rfd_limit = NULL; 1037 lp->rfd_cur = NULL; 1038 lp->fbl_ptr = NULL; 1039 1040 for (i = 0; i < RX_BUF_NUM; i++) { 1041 if (lp->rx_skbs[i].skb) { 1042 free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb, 1043 lp->rx_skbs[i].skb_dma); 1044 lp->rx_skbs[i].skb = NULL; 1045 } 1046 } 1047 if (lp->fd_buf) { 1048 pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM, 1049 lp->fd_buf, lp->fd_buf_dma); 1050 lp->fd_buf = NULL; 1051 } 1052 } 1053 1054 static void 1055 dump_txfd(struct TxFD *fd) 1056 { 1057 printk("TxFD(%p): %08x %08x %08x %08x\n", fd, 1058 le32_to_cpu(fd->fd.FDNext), 1059 le32_to_cpu(fd->fd.FDSystem), 1060 le32_to_cpu(fd->fd.FDStat), 1061 le32_to_cpu(fd->fd.FDCtl)); 1062 printk("BD: "); 1063 printk(" %08x %08x", 1064 le32_to_cpu(fd->bd.BuffData), 1065 le32_to_cpu(fd->bd.BDCtl)); 1066 printk("\n"); 1067 } 1068 1069 static int 1070 dump_rxfd(struct RxFD *fd) 1071 { 1072 int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT; 1073 if (bd_count > 8) 1074 bd_count = 8; 1075 printk("RxFD(%p): %08x %08x %08x %08x\n", fd, 1076 le32_to_cpu(fd->fd.FDNext), 1077 le32_to_cpu(fd->fd.FDSystem), 1078 le32_to_cpu(fd->fd.FDStat), 1079 le32_to_cpu(fd->fd.FDCtl)); 1080 if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD) 1081 return 0; 1082 printk("BD: "); 1083 for (i = 0; i < bd_count; i++) 1084 printk(" %08x %08x", 1085 le32_to_cpu(fd->bd[i].BuffData), 1086 le32_to_cpu(fd->bd[i].BDCtl)); 1087 printk("\n"); 1088 return bd_count; 1089 } 1090 1091 #ifdef DEBUG 1092 static void 1093 dump_frfd(struct FrFD *fd) 1094 { 1095 int i; 1096 printk("FrFD(%p): %08x %08x %08x %08x\n", fd, 1097 le32_to_cpu(fd->fd.FDNext), 1098 le32_to_cpu(fd->fd.FDSystem), 1099 le32_to_cpu(fd->fd.FDStat), 1100 le32_to_cpu(fd->fd.FDCtl)); 1101 printk("BD: "); 1102 for (i = 0; i < RX_BUF_NUM; i++) 1103 printk(" %08x %08x", 1104 le32_to_cpu(fd->bd[i].BuffData), 1105 le32_to_cpu(fd->bd[i].BDCtl)); 1106 printk("\n"); 1107 } 1108 1109 static void 1110 panic_queues(struct net_device *dev) 1111 { 1112 struct tc35815_local *lp = netdev_priv(dev); 1113 int i; 1114 1115 printk("TxFD base %p, start %u, end %u\n", 1116 lp->tfd_base, lp->tfd_start, lp->tfd_end); 1117 printk("RxFD base %p limit %p cur %p\n", 1118 lp->rfd_base, lp->rfd_limit, lp->rfd_cur); 1119 printk("FrFD %p\n", lp->fbl_ptr); 1120 for (i = 0; i < TX_FD_NUM; i++) 1121 dump_txfd(&lp->tfd_base[i]); 1122 for (i = 0; i < RX_FD_NUM; i++) { 1123 int bd_count = dump_rxfd(&lp->rfd_base[i]); 1124 i += (bd_count + 1) / 2; /* skip BDs */ 1125 } 1126 dump_frfd(lp->fbl_ptr); 1127 panic("%s: Illegal queue state.", dev->name); 1128 } 1129 #endif 1130 1131 static void print_eth(const u8 *add) 1132 { 1133 printk(KERN_DEBUG "print_eth(%p)\n", add); 1134 printk(KERN_DEBUG " %pM => %pM : %02x%02x\n", 1135 add + 6, add, add[12], add[13]); 1136 } 1137 1138 static int tc35815_tx_full(struct net_device *dev) 1139 { 1140 struct tc35815_local *lp = netdev_priv(dev); 1141 return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end; 1142 } 1143 1144 static void tc35815_restart(struct net_device *dev) 1145 { 1146 struct tc35815_local *lp = netdev_priv(dev); 1147 int ret; 1148 1149 if (dev->phydev) { 1150 ret = phy_init_hw(dev->phydev); 1151 if (ret) 1152 printk(KERN_ERR "%s: PHY init failed.\n", dev->name); 1153 } 1154 1155 spin_lock_bh(&lp->rx_lock); 1156 spin_lock_irq(&lp->lock); 1157 tc35815_chip_reset(dev); 1158 tc35815_clear_queues(dev); 1159 tc35815_chip_init(dev); 1160 /* Reconfigure CAM again since tc35815_chip_init() initialize it. */ 1161 tc35815_set_multicast_list(dev); 1162 spin_unlock_irq(&lp->lock); 1163 spin_unlock_bh(&lp->rx_lock); 1164 1165 netif_wake_queue(dev); 1166 } 1167 1168 static void tc35815_restart_work(struct work_struct *work) 1169 { 1170 struct tc35815_local *lp = 1171 container_of(work, struct tc35815_local, restart_work); 1172 struct net_device *dev = lp->dev; 1173 1174 tc35815_restart(dev); 1175 } 1176 1177 static void tc35815_schedule_restart(struct net_device *dev) 1178 { 1179 struct tc35815_local *lp = netdev_priv(dev); 1180 struct tc35815_regs __iomem *tr = 1181 (struct tc35815_regs __iomem *)dev->base_addr; 1182 unsigned long flags; 1183 1184 /* disable interrupts */ 1185 spin_lock_irqsave(&lp->lock, flags); 1186 tc_writel(0, &tr->Int_En); 1187 tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl); 1188 schedule_work(&lp->restart_work); 1189 spin_unlock_irqrestore(&lp->lock, flags); 1190 } 1191 1192 static void tc35815_tx_timeout(struct net_device *dev) 1193 { 1194 struct tc35815_regs __iomem *tr = 1195 (struct tc35815_regs __iomem *)dev->base_addr; 1196 1197 printk(KERN_WARNING "%s: transmit timed out, status %#x\n", 1198 dev->name, tc_readl(&tr->Tx_Stat)); 1199 1200 /* Try to restart the adaptor. */ 1201 tc35815_schedule_restart(dev); 1202 dev->stats.tx_errors++; 1203 } 1204 1205 /* 1206 * Open/initialize the controller. This is called (in the current kernel) 1207 * sometime after booting when the 'ifconfig' program is run. 1208 * 1209 * This routine should set everything up anew at each open, even 1210 * registers that "should" only need to be set once at boot, so that 1211 * there is non-reboot way to recover if something goes wrong. 1212 */ 1213 static int 1214 tc35815_open(struct net_device *dev) 1215 { 1216 struct tc35815_local *lp = netdev_priv(dev); 1217 1218 /* 1219 * This is used if the interrupt line can turned off (shared). 1220 * See 3c503.c for an example of selecting the IRQ at config-time. 1221 */ 1222 if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED, 1223 dev->name, dev)) 1224 return -EAGAIN; 1225 1226 tc35815_chip_reset(dev); 1227 1228 if (tc35815_init_queues(dev) != 0) { 1229 free_irq(dev->irq, dev); 1230 return -EAGAIN; 1231 } 1232 1233 napi_enable(&lp->napi); 1234 1235 /* Reset the hardware here. Don't forget to set the station address. */ 1236 spin_lock_irq(&lp->lock); 1237 tc35815_chip_init(dev); 1238 spin_unlock_irq(&lp->lock); 1239 1240 netif_carrier_off(dev); 1241 /* schedule a link state check */ 1242 phy_start(dev->phydev); 1243 1244 /* We are now ready to accept transmit requeusts from 1245 * the queueing layer of the networking. 1246 */ 1247 netif_start_queue(dev); 1248 1249 return 0; 1250 } 1251 1252 /* This will only be invoked if your driver is _not_ in XOFF state. 1253 * What this means is that you need not check it, and that this 1254 * invariant will hold if you make sure that the netif_*_queue() 1255 * calls are done at the proper times. 1256 */ 1257 static netdev_tx_t 1258 tc35815_send_packet(struct sk_buff *skb, struct net_device *dev) 1259 { 1260 struct tc35815_local *lp = netdev_priv(dev); 1261 struct TxFD *txfd; 1262 unsigned long flags; 1263 1264 /* If some error occurs while trying to transmit this 1265 * packet, you should return '1' from this function. 1266 * In such a case you _may not_ do anything to the 1267 * SKB, it is still owned by the network queueing 1268 * layer when an error is returned. This means you 1269 * may not modify any SKB fields, you may not free 1270 * the SKB, etc. 1271 */ 1272 1273 /* This is the most common case for modern hardware. 1274 * The spinlock protects this code from the TX complete 1275 * hardware interrupt handler. Queue flow control is 1276 * thus managed under this lock as well. 1277 */ 1278 spin_lock_irqsave(&lp->lock, flags); 1279 1280 /* failsafe... (handle txdone now if half of FDs are used) */ 1281 if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM > 1282 TX_FD_NUM / 2) 1283 tc35815_txdone(dev); 1284 1285 if (netif_msg_pktdata(lp)) 1286 print_eth(skb->data); 1287 #ifdef DEBUG 1288 if (lp->tx_skbs[lp->tfd_start].skb) { 1289 printk("%s: tx_skbs conflict.\n", dev->name); 1290 panic_queues(dev); 1291 } 1292 #else 1293 BUG_ON(lp->tx_skbs[lp->tfd_start].skb); 1294 #endif 1295 lp->tx_skbs[lp->tfd_start].skb = skb; 1296 lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE); 1297 1298 /*add to ring */ 1299 txfd = &lp->tfd_base[lp->tfd_start]; 1300 txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma); 1301 txfd->bd.BDCtl = cpu_to_le32(skb->len); 1302 txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start); 1303 txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT)); 1304 1305 if (lp->tfd_start == lp->tfd_end) { 1306 struct tc35815_regs __iomem *tr = 1307 (struct tc35815_regs __iomem *)dev->base_addr; 1308 /* Start DMA Transmitter. */ 1309 txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL); 1310 txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx); 1311 if (netif_msg_tx_queued(lp)) { 1312 printk("%s: starting TxFD.\n", dev->name); 1313 dump_txfd(txfd); 1314 } 1315 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr); 1316 } else { 1317 txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL); 1318 if (netif_msg_tx_queued(lp)) { 1319 printk("%s: queueing TxFD.\n", dev->name); 1320 dump_txfd(txfd); 1321 } 1322 } 1323 lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM; 1324 1325 /* If we just used up the very last entry in the 1326 * TX ring on this device, tell the queueing 1327 * layer to send no more. 1328 */ 1329 if (tc35815_tx_full(dev)) { 1330 if (netif_msg_tx_queued(lp)) 1331 printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name); 1332 netif_stop_queue(dev); 1333 } 1334 1335 /* When the TX completion hw interrupt arrives, this 1336 * is when the transmit statistics are updated. 1337 */ 1338 1339 spin_unlock_irqrestore(&lp->lock, flags); 1340 return NETDEV_TX_OK; 1341 } 1342 1343 #define FATAL_ERROR_INT \ 1344 (Int_IntPCI | Int_DmParErr | Int_IntNRAbt) 1345 static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status) 1346 { 1347 static int count; 1348 printk(KERN_WARNING "%s: Fatal Error Interrupt (%#x):", 1349 dev->name, status); 1350 if (status & Int_IntPCI) 1351 printk(" IntPCI"); 1352 if (status & Int_DmParErr) 1353 printk(" DmParErr"); 1354 if (status & Int_IntNRAbt) 1355 printk(" IntNRAbt"); 1356 printk("\n"); 1357 if (count++ > 100) 1358 panic("%s: Too many fatal errors.", dev->name); 1359 printk(KERN_WARNING "%s: Resetting ...\n", dev->name); 1360 /* Try to restart the adaptor. */ 1361 tc35815_schedule_restart(dev); 1362 } 1363 1364 static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit) 1365 { 1366 struct tc35815_local *lp = netdev_priv(dev); 1367 int ret = -1; 1368 1369 /* Fatal errors... */ 1370 if (status & FATAL_ERROR_INT) { 1371 tc35815_fatal_error_interrupt(dev, status); 1372 return 0; 1373 } 1374 /* recoverable errors */ 1375 if (status & Int_IntFDAEx) { 1376 if (netif_msg_rx_err(lp)) 1377 dev_warn(&dev->dev, 1378 "Free Descriptor Area Exhausted (%#x).\n", 1379 status); 1380 dev->stats.rx_dropped++; 1381 ret = 0; 1382 } 1383 if (status & Int_IntBLEx) { 1384 if (netif_msg_rx_err(lp)) 1385 dev_warn(&dev->dev, 1386 "Buffer List Exhausted (%#x).\n", 1387 status); 1388 dev->stats.rx_dropped++; 1389 ret = 0; 1390 } 1391 if (status & Int_IntExBD) { 1392 if (netif_msg_rx_err(lp)) 1393 dev_warn(&dev->dev, 1394 "Excessive Buffer Descriptors (%#x).\n", 1395 status); 1396 dev->stats.rx_length_errors++; 1397 ret = 0; 1398 } 1399 1400 /* normal notification */ 1401 if (status & Int_IntMacRx) { 1402 /* Got a packet(s). */ 1403 ret = tc35815_rx(dev, limit); 1404 lp->lstats.rx_ints++; 1405 } 1406 if (status & Int_IntMacTx) { 1407 /* Transmit complete. */ 1408 lp->lstats.tx_ints++; 1409 spin_lock_irq(&lp->lock); 1410 tc35815_txdone(dev); 1411 spin_unlock_irq(&lp->lock); 1412 if (ret < 0) 1413 ret = 0; 1414 } 1415 return ret; 1416 } 1417 1418 /* 1419 * The typical workload of the driver: 1420 * Handle the network interface interrupts. 1421 */ 1422 static irqreturn_t tc35815_interrupt(int irq, void *dev_id) 1423 { 1424 struct net_device *dev = dev_id; 1425 struct tc35815_local *lp = netdev_priv(dev); 1426 struct tc35815_regs __iomem *tr = 1427 (struct tc35815_regs __iomem *)dev->base_addr; 1428 u32 dmactl = tc_readl(&tr->DMA_Ctl); 1429 1430 if (!(dmactl & DMA_IntMask)) { 1431 /* disable interrupts */ 1432 tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl); 1433 if (napi_schedule_prep(&lp->napi)) 1434 __napi_schedule(&lp->napi); 1435 else { 1436 printk(KERN_ERR "%s: interrupt taken in poll\n", 1437 dev->name); 1438 BUG(); 1439 } 1440 (void)tc_readl(&tr->Int_Src); /* flush */ 1441 return IRQ_HANDLED; 1442 } 1443 return IRQ_NONE; 1444 } 1445 1446 #ifdef CONFIG_NET_POLL_CONTROLLER 1447 static void tc35815_poll_controller(struct net_device *dev) 1448 { 1449 disable_irq(dev->irq); 1450 tc35815_interrupt(dev->irq, dev); 1451 enable_irq(dev->irq); 1452 } 1453 #endif 1454 1455 /* We have a good packet(s), get it/them out of the buffers. */ 1456 static int 1457 tc35815_rx(struct net_device *dev, int limit) 1458 { 1459 struct tc35815_local *lp = netdev_priv(dev); 1460 unsigned int fdctl; 1461 int i; 1462 int received = 0; 1463 1464 while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) { 1465 int status = le32_to_cpu(lp->rfd_cur->fd.FDStat); 1466 int pkt_len = fdctl & FD_FDLength_MASK; 1467 int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT; 1468 #ifdef DEBUG 1469 struct RxFD *next_rfd; 1470 #endif 1471 #if (RX_CTL_CMD & Rx_StripCRC) == 0 1472 pkt_len -= ETH_FCS_LEN; 1473 #endif 1474 1475 if (netif_msg_rx_status(lp)) 1476 dump_rxfd(lp->rfd_cur); 1477 if (status & Rx_Good) { 1478 struct sk_buff *skb; 1479 unsigned char *data; 1480 int cur_bd; 1481 1482 if (--limit < 0) 1483 break; 1484 BUG_ON(bd_count > 1); 1485 cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl) 1486 & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT; 1487 #ifdef DEBUG 1488 if (cur_bd >= RX_BUF_NUM) { 1489 printk("%s: invalid BDID.\n", dev->name); 1490 panic_queues(dev); 1491 } 1492 BUG_ON(lp->rx_skbs[cur_bd].skb_dma != 1493 (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3)); 1494 if (!lp->rx_skbs[cur_bd].skb) { 1495 printk("%s: NULL skb.\n", dev->name); 1496 panic_queues(dev); 1497 } 1498 #else 1499 BUG_ON(cur_bd >= RX_BUF_NUM); 1500 #endif 1501 skb = lp->rx_skbs[cur_bd].skb; 1502 prefetch(skb->data); 1503 lp->rx_skbs[cur_bd].skb = NULL; 1504 pci_unmap_single(lp->pci_dev, 1505 lp->rx_skbs[cur_bd].skb_dma, 1506 RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 1507 if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN) 1508 memmove(skb->data, skb->data - NET_IP_ALIGN, 1509 pkt_len); 1510 data = skb_put(skb, pkt_len); 1511 if (netif_msg_pktdata(lp)) 1512 print_eth(data); 1513 skb->protocol = eth_type_trans(skb, dev); 1514 netif_receive_skb(skb); 1515 received++; 1516 dev->stats.rx_packets++; 1517 dev->stats.rx_bytes += pkt_len; 1518 } else { 1519 dev->stats.rx_errors++; 1520 if (netif_msg_rx_err(lp)) 1521 dev_info(&dev->dev, "Rx error (status %x)\n", 1522 status & Rx_Stat_Mask); 1523 /* WORKAROUND: LongErr and CRCErr means Overflow. */ 1524 if ((status & Rx_LongErr) && (status & Rx_CRCErr)) { 1525 status &= ~(Rx_LongErr|Rx_CRCErr); 1526 status |= Rx_Over; 1527 } 1528 if (status & Rx_LongErr) 1529 dev->stats.rx_length_errors++; 1530 if (status & Rx_Over) 1531 dev->stats.rx_fifo_errors++; 1532 if (status & Rx_CRCErr) 1533 dev->stats.rx_crc_errors++; 1534 if (status & Rx_Align) 1535 dev->stats.rx_frame_errors++; 1536 } 1537 1538 if (bd_count > 0) { 1539 /* put Free Buffer back to controller */ 1540 int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl); 1541 unsigned char id = 1542 (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT; 1543 #ifdef DEBUG 1544 if (id >= RX_BUF_NUM) { 1545 printk("%s: invalid BDID.\n", dev->name); 1546 panic_queues(dev); 1547 } 1548 #else 1549 BUG_ON(id >= RX_BUF_NUM); 1550 #endif 1551 /* free old buffers */ 1552 lp->fbl_count--; 1553 while (lp->fbl_count < RX_BUF_NUM) 1554 { 1555 unsigned char curid = 1556 (id + 1 + lp->fbl_count) % RX_BUF_NUM; 1557 struct BDesc *bd = &lp->fbl_ptr->bd[curid]; 1558 #ifdef DEBUG 1559 bdctl = le32_to_cpu(bd->BDCtl); 1560 if (bdctl & BD_CownsBD) { 1561 printk("%s: Freeing invalid BD.\n", 1562 dev->name); 1563 panic_queues(dev); 1564 } 1565 #endif 1566 /* pass BD to controller */ 1567 if (!lp->rx_skbs[curid].skb) { 1568 lp->rx_skbs[curid].skb = 1569 alloc_rxbuf_skb(dev, 1570 lp->pci_dev, 1571 &lp->rx_skbs[curid].skb_dma); 1572 if (!lp->rx_skbs[curid].skb) 1573 break; /* try on next reception */ 1574 bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma); 1575 } 1576 /* Note: BDLength was modified by chip. */ 1577 bd->BDCtl = cpu_to_le32(BD_CownsBD | 1578 (curid << BD_RxBDID_SHIFT) | 1579 RX_BUF_SIZE); 1580 lp->fbl_count++; 1581 } 1582 } 1583 1584 /* put RxFD back to controller */ 1585 #ifdef DEBUG 1586 next_rfd = fd_bus_to_virt(lp, 1587 le32_to_cpu(lp->rfd_cur->fd.FDNext)); 1588 if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) { 1589 printk("%s: RxFD FDNext invalid.\n", dev->name); 1590 panic_queues(dev); 1591 } 1592 #endif 1593 for (i = 0; i < (bd_count + 1) / 2 + 1; i++) { 1594 /* pass FD to controller */ 1595 #ifdef DEBUG 1596 lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead); 1597 #else 1598 lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL); 1599 #endif 1600 lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD); 1601 lp->rfd_cur++; 1602 } 1603 if (lp->rfd_cur > lp->rfd_limit) 1604 lp->rfd_cur = lp->rfd_base; 1605 #ifdef DEBUG 1606 if (lp->rfd_cur != next_rfd) 1607 printk("rfd_cur = %p, next_rfd %p\n", 1608 lp->rfd_cur, next_rfd); 1609 #endif 1610 } 1611 1612 return received; 1613 } 1614 1615 static int tc35815_poll(struct napi_struct *napi, int budget) 1616 { 1617 struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi); 1618 struct net_device *dev = lp->dev; 1619 struct tc35815_regs __iomem *tr = 1620 (struct tc35815_regs __iomem *)dev->base_addr; 1621 int received = 0, handled; 1622 u32 status; 1623 1624 if (budget <= 0) 1625 return received; 1626 1627 spin_lock(&lp->rx_lock); 1628 status = tc_readl(&tr->Int_Src); 1629 do { 1630 /* BLEx, FDAEx will be cleared later */ 1631 tc_writel(status & ~(Int_BLEx | Int_FDAEx), 1632 &tr->Int_Src); /* write to clear */ 1633 1634 handled = tc35815_do_interrupt(dev, status, budget - received); 1635 if (status & (Int_BLEx | Int_FDAEx)) 1636 tc_writel(status & (Int_BLEx | Int_FDAEx), 1637 &tr->Int_Src); 1638 if (handled >= 0) { 1639 received += handled; 1640 if (received >= budget) 1641 break; 1642 } 1643 status = tc_readl(&tr->Int_Src); 1644 } while (status); 1645 spin_unlock(&lp->rx_lock); 1646 1647 if (received < budget) { 1648 napi_complete_done(napi, received); 1649 /* enable interrupts */ 1650 tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl); 1651 } 1652 return received; 1653 } 1654 1655 #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr) 1656 1657 static void 1658 tc35815_check_tx_stat(struct net_device *dev, int status) 1659 { 1660 struct tc35815_local *lp = netdev_priv(dev); 1661 const char *msg = NULL; 1662 1663 /* count collisions */ 1664 if (status & Tx_ExColl) 1665 dev->stats.collisions += 16; 1666 if (status & Tx_TxColl_MASK) 1667 dev->stats.collisions += status & Tx_TxColl_MASK; 1668 1669 /* TX4939 does not have NCarr */ 1670 if (lp->chiptype == TC35815_TX4939) 1671 status &= ~Tx_NCarr; 1672 /* WORKAROUND: ignore LostCrS in full duplex operation */ 1673 if (!lp->link || lp->duplex == DUPLEX_FULL) 1674 status &= ~Tx_NCarr; 1675 1676 if (!(status & TX_STA_ERR)) { 1677 /* no error. */ 1678 dev->stats.tx_packets++; 1679 return; 1680 } 1681 1682 dev->stats.tx_errors++; 1683 if (status & Tx_ExColl) { 1684 dev->stats.tx_aborted_errors++; 1685 msg = "Excessive Collision."; 1686 } 1687 if (status & Tx_Under) { 1688 dev->stats.tx_fifo_errors++; 1689 msg = "Tx FIFO Underrun."; 1690 if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) { 1691 lp->lstats.tx_underrun++; 1692 if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) { 1693 struct tc35815_regs __iomem *tr = 1694 (struct tc35815_regs __iomem *)dev->base_addr; 1695 tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh); 1696 msg = "Tx FIFO Underrun.Change Tx threshold to max."; 1697 } 1698 } 1699 } 1700 if (status & Tx_Defer) { 1701 dev->stats.tx_fifo_errors++; 1702 msg = "Excessive Deferral."; 1703 } 1704 if (status & Tx_NCarr) { 1705 dev->stats.tx_carrier_errors++; 1706 msg = "Lost Carrier Sense."; 1707 } 1708 if (status & Tx_LateColl) { 1709 dev->stats.tx_aborted_errors++; 1710 msg = "Late Collision."; 1711 } 1712 if (status & Tx_TxPar) { 1713 dev->stats.tx_fifo_errors++; 1714 msg = "Transmit Parity Error."; 1715 } 1716 if (status & Tx_SQErr) { 1717 dev->stats.tx_heartbeat_errors++; 1718 msg = "Signal Quality Error."; 1719 } 1720 if (msg && netif_msg_tx_err(lp)) 1721 printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status); 1722 } 1723 1724 /* This handles TX complete events posted by the device 1725 * via interrupts. 1726 */ 1727 static void 1728 tc35815_txdone(struct net_device *dev) 1729 { 1730 struct tc35815_local *lp = netdev_priv(dev); 1731 struct TxFD *txfd; 1732 unsigned int fdctl; 1733 1734 txfd = &lp->tfd_base[lp->tfd_end]; 1735 while (lp->tfd_start != lp->tfd_end && 1736 !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) { 1737 int status = le32_to_cpu(txfd->fd.FDStat); 1738 struct sk_buff *skb; 1739 unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext); 1740 u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem); 1741 1742 if (netif_msg_tx_done(lp)) { 1743 printk("%s: complete TxFD.\n", dev->name); 1744 dump_txfd(txfd); 1745 } 1746 tc35815_check_tx_stat(dev, status); 1747 1748 skb = fdsystem != 0xffffffff ? 1749 lp->tx_skbs[fdsystem].skb : NULL; 1750 #ifdef DEBUG 1751 if (lp->tx_skbs[lp->tfd_end].skb != skb) { 1752 printk("%s: tx_skbs mismatch.\n", dev->name); 1753 panic_queues(dev); 1754 } 1755 #else 1756 BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb); 1757 #endif 1758 if (skb) { 1759 dev->stats.tx_bytes += skb->len; 1760 pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE); 1761 lp->tx_skbs[lp->tfd_end].skb = NULL; 1762 lp->tx_skbs[lp->tfd_end].skb_dma = 0; 1763 dev_kfree_skb_any(skb); 1764 } 1765 txfd->fd.FDSystem = cpu_to_le32(0xffffffff); 1766 1767 lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM; 1768 txfd = &lp->tfd_base[lp->tfd_end]; 1769 #ifdef DEBUG 1770 if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) { 1771 printk("%s: TxFD FDNext invalid.\n", dev->name); 1772 panic_queues(dev); 1773 } 1774 #endif 1775 if (fdnext & FD_Next_EOL) { 1776 /* DMA Transmitter has been stopping... */ 1777 if (lp->tfd_end != lp->tfd_start) { 1778 struct tc35815_regs __iomem *tr = 1779 (struct tc35815_regs __iomem *)dev->base_addr; 1780 int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM; 1781 struct TxFD *txhead = &lp->tfd_base[head]; 1782 int qlen = (lp->tfd_start + TX_FD_NUM 1783 - lp->tfd_end) % TX_FD_NUM; 1784 1785 #ifdef DEBUG 1786 if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) { 1787 printk("%s: TxFD FDCtl invalid.\n", dev->name); 1788 panic_queues(dev); 1789 } 1790 #endif 1791 /* log max queue length */ 1792 if (lp->lstats.max_tx_qlen < qlen) 1793 lp->lstats.max_tx_qlen = qlen; 1794 1795 1796 /* start DMA Transmitter again */ 1797 txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL); 1798 txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx); 1799 if (netif_msg_tx_queued(lp)) { 1800 printk("%s: start TxFD on queue.\n", 1801 dev->name); 1802 dump_txfd(txfd); 1803 } 1804 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr); 1805 } 1806 break; 1807 } 1808 } 1809 1810 /* If we had stopped the queue due to a "tx full" 1811 * condition, and space has now been made available, 1812 * wake up the queue. 1813 */ 1814 if (netif_queue_stopped(dev) && !tc35815_tx_full(dev)) 1815 netif_wake_queue(dev); 1816 } 1817 1818 /* The inverse routine to tc35815_open(). */ 1819 static int 1820 tc35815_close(struct net_device *dev) 1821 { 1822 struct tc35815_local *lp = netdev_priv(dev); 1823 1824 netif_stop_queue(dev); 1825 napi_disable(&lp->napi); 1826 if (dev->phydev) 1827 phy_stop(dev->phydev); 1828 cancel_work_sync(&lp->restart_work); 1829 1830 /* Flush the Tx and disable Rx here. */ 1831 tc35815_chip_reset(dev); 1832 free_irq(dev->irq, dev); 1833 1834 tc35815_free_queues(dev); 1835 1836 return 0; 1837 1838 } 1839 1840 /* 1841 * Get the current statistics. 1842 * This may be called with the card open or closed. 1843 */ 1844 static struct net_device_stats *tc35815_get_stats(struct net_device *dev) 1845 { 1846 struct tc35815_regs __iomem *tr = 1847 (struct tc35815_regs __iomem *)dev->base_addr; 1848 if (netif_running(dev)) 1849 /* Update the statistics from the device registers. */ 1850 dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt); 1851 1852 return &dev->stats; 1853 } 1854 1855 static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr) 1856 { 1857 struct tc35815_local *lp = netdev_priv(dev); 1858 struct tc35815_regs __iomem *tr = 1859 (struct tc35815_regs __iomem *)dev->base_addr; 1860 int cam_index = index * 6; 1861 u32 cam_data; 1862 u32 saved_addr; 1863 1864 saved_addr = tc_readl(&tr->CAM_Adr); 1865 1866 if (netif_msg_hw(lp)) 1867 printk(KERN_DEBUG "%s: CAM %d: %pM\n", 1868 dev->name, index, addr); 1869 if (index & 1) { 1870 /* read modify write */ 1871 tc_writel(cam_index - 2, &tr->CAM_Adr); 1872 cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000; 1873 cam_data |= addr[0] << 8 | addr[1]; 1874 tc_writel(cam_data, &tr->CAM_Data); 1875 /* write whole word */ 1876 tc_writel(cam_index + 2, &tr->CAM_Adr); 1877 cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5]; 1878 tc_writel(cam_data, &tr->CAM_Data); 1879 } else { 1880 /* write whole word */ 1881 tc_writel(cam_index, &tr->CAM_Adr); 1882 cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3]; 1883 tc_writel(cam_data, &tr->CAM_Data); 1884 /* read modify write */ 1885 tc_writel(cam_index + 4, &tr->CAM_Adr); 1886 cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff; 1887 cam_data |= addr[4] << 24 | (addr[5] << 16); 1888 tc_writel(cam_data, &tr->CAM_Data); 1889 } 1890 1891 tc_writel(saved_addr, &tr->CAM_Adr); 1892 } 1893 1894 1895 /* 1896 * Set or clear the multicast filter for this adaptor. 1897 * num_addrs == -1 Promiscuous mode, receive all packets 1898 * num_addrs == 0 Normal mode, clear multicast list 1899 * num_addrs > 0 Multicast mode, receive normal and MC packets, 1900 * and do best-effort filtering. 1901 */ 1902 static void 1903 tc35815_set_multicast_list(struct net_device *dev) 1904 { 1905 struct tc35815_regs __iomem *tr = 1906 (struct tc35815_regs __iomem *)dev->base_addr; 1907 1908 if (dev->flags & IFF_PROMISC) { 1909 /* With some (all?) 100MHalf HUB, controller will hang 1910 * if we enabled promiscuous mode before linkup... */ 1911 struct tc35815_local *lp = netdev_priv(dev); 1912 1913 if (!lp->link) 1914 return; 1915 /* Enable promiscuous mode */ 1916 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl); 1917 } else if ((dev->flags & IFF_ALLMULTI) || 1918 netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) { 1919 /* CAM 0, 1, 20 are reserved. */ 1920 /* Disable promiscuous mode, use normal mode. */ 1921 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl); 1922 } else if (!netdev_mc_empty(dev)) { 1923 struct netdev_hw_addr *ha; 1924 int i; 1925 int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE); 1926 1927 tc_writel(0, &tr->CAM_Ctl); 1928 /* Walk the address list, and load the filter */ 1929 i = 0; 1930 netdev_for_each_mc_addr(ha, dev) { 1931 /* entry 0,1 is reserved. */ 1932 tc35815_set_cam_entry(dev, i + 2, ha->addr); 1933 ena_bits |= CAM_Ena_Bit(i + 2); 1934 i++; 1935 } 1936 tc_writel(ena_bits, &tr->CAM_Ena); 1937 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); 1938 } else { 1939 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena); 1940 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); 1941 } 1942 } 1943 1944 static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1945 { 1946 struct tc35815_local *lp = netdev_priv(dev); 1947 1948 strlcpy(info->driver, MODNAME, sizeof(info->driver)); 1949 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1950 strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info)); 1951 } 1952 1953 static u32 tc35815_get_msglevel(struct net_device *dev) 1954 { 1955 struct tc35815_local *lp = netdev_priv(dev); 1956 return lp->msg_enable; 1957 } 1958 1959 static void tc35815_set_msglevel(struct net_device *dev, u32 datum) 1960 { 1961 struct tc35815_local *lp = netdev_priv(dev); 1962 lp->msg_enable = datum; 1963 } 1964 1965 static int tc35815_get_sset_count(struct net_device *dev, int sset) 1966 { 1967 struct tc35815_local *lp = netdev_priv(dev); 1968 1969 switch (sset) { 1970 case ETH_SS_STATS: 1971 return sizeof(lp->lstats) / sizeof(int); 1972 default: 1973 return -EOPNOTSUPP; 1974 } 1975 } 1976 1977 static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) 1978 { 1979 struct tc35815_local *lp = netdev_priv(dev); 1980 data[0] = lp->lstats.max_tx_qlen; 1981 data[1] = lp->lstats.tx_ints; 1982 data[2] = lp->lstats.rx_ints; 1983 data[3] = lp->lstats.tx_underrun; 1984 } 1985 1986 static struct { 1987 const char str[ETH_GSTRING_LEN]; 1988 } ethtool_stats_keys[] = { 1989 { "max_tx_qlen" }, 1990 { "tx_ints" }, 1991 { "rx_ints" }, 1992 { "tx_underrun" }, 1993 }; 1994 1995 static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1996 { 1997 memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys)); 1998 } 1999 2000 static const struct ethtool_ops tc35815_ethtool_ops = { 2001 .get_drvinfo = tc35815_get_drvinfo, 2002 .get_link = ethtool_op_get_link, 2003 .get_msglevel = tc35815_get_msglevel, 2004 .set_msglevel = tc35815_set_msglevel, 2005 .get_strings = tc35815_get_strings, 2006 .get_sset_count = tc35815_get_sset_count, 2007 .get_ethtool_stats = tc35815_get_ethtool_stats, 2008 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2009 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2010 }; 2011 2012 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2013 { 2014 if (!netif_running(dev)) 2015 return -EINVAL; 2016 if (!dev->phydev) 2017 return -ENODEV; 2018 return phy_mii_ioctl(dev->phydev, rq, cmd); 2019 } 2020 2021 static void tc35815_chip_reset(struct net_device *dev) 2022 { 2023 struct tc35815_regs __iomem *tr = 2024 (struct tc35815_regs __iomem *)dev->base_addr; 2025 int i; 2026 /* reset the controller */ 2027 tc_writel(MAC_Reset, &tr->MAC_Ctl); 2028 udelay(4); /* 3200ns */ 2029 i = 0; 2030 while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) { 2031 if (i++ > 100) { 2032 printk(KERN_ERR "%s: MAC reset failed.\n", dev->name); 2033 break; 2034 } 2035 mdelay(1); 2036 } 2037 tc_writel(0, &tr->MAC_Ctl); 2038 2039 /* initialize registers to default value */ 2040 tc_writel(0, &tr->DMA_Ctl); 2041 tc_writel(0, &tr->TxThrsh); 2042 tc_writel(0, &tr->TxPollCtr); 2043 tc_writel(0, &tr->RxFragSize); 2044 tc_writel(0, &tr->Int_En); 2045 tc_writel(0, &tr->FDA_Bas); 2046 tc_writel(0, &tr->FDA_Lim); 2047 tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */ 2048 tc_writel(0, &tr->CAM_Ctl); 2049 tc_writel(0, &tr->Tx_Ctl); 2050 tc_writel(0, &tr->Rx_Ctl); 2051 tc_writel(0, &tr->CAM_Ena); 2052 (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */ 2053 2054 /* initialize internal SRAM */ 2055 tc_writel(DMA_TestMode, &tr->DMA_Ctl); 2056 for (i = 0; i < 0x1000; i += 4) { 2057 tc_writel(i, &tr->CAM_Adr); 2058 tc_writel(0, &tr->CAM_Data); 2059 } 2060 tc_writel(0, &tr->DMA_Ctl); 2061 } 2062 2063 static void tc35815_chip_init(struct net_device *dev) 2064 { 2065 struct tc35815_local *lp = netdev_priv(dev); 2066 struct tc35815_regs __iomem *tr = 2067 (struct tc35815_regs __iomem *)dev->base_addr; 2068 unsigned long txctl = TX_CTL_CMD; 2069 2070 /* load station address to CAM */ 2071 tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr); 2072 2073 /* Enable CAM (broadcast and unicast) */ 2074 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena); 2075 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); 2076 2077 /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */ 2078 if (HAVE_DMA_RXALIGN(lp)) 2079 tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl); 2080 else 2081 tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl); 2082 tc_writel(0, &tr->TxPollCtr); /* Batch mode */ 2083 tc_writel(TX_THRESHOLD, &tr->TxThrsh); 2084 tc_writel(INT_EN_CMD, &tr->Int_En); 2085 2086 /* set queues */ 2087 tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas); 2088 tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base, 2089 &tr->FDA_Lim); 2090 /* 2091 * Activation method: 2092 * First, enable the MAC Transmitter and the DMA Receive circuits. 2093 * Then enable the DMA Transmitter and the MAC Receive circuits. 2094 */ 2095 tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */ 2096 tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */ 2097 2098 /* start MAC transmitter */ 2099 /* TX4939 does not have EnLCarr */ 2100 if (lp->chiptype == TC35815_TX4939) 2101 txctl &= ~Tx_EnLCarr; 2102 /* WORKAROUND: ignore LostCrS in full duplex operation */ 2103 if (!dev->phydev || !lp->link || lp->duplex == DUPLEX_FULL) 2104 txctl &= ~Tx_EnLCarr; 2105 tc_writel(txctl, &tr->Tx_Ctl); 2106 } 2107 2108 #ifdef CONFIG_PM 2109 static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state) 2110 { 2111 struct net_device *dev = pci_get_drvdata(pdev); 2112 struct tc35815_local *lp = netdev_priv(dev); 2113 unsigned long flags; 2114 2115 pci_save_state(pdev); 2116 if (!netif_running(dev)) 2117 return 0; 2118 netif_device_detach(dev); 2119 if (dev->phydev) 2120 phy_stop(dev->phydev); 2121 spin_lock_irqsave(&lp->lock, flags); 2122 tc35815_chip_reset(dev); 2123 spin_unlock_irqrestore(&lp->lock, flags); 2124 pci_set_power_state(pdev, PCI_D3hot); 2125 return 0; 2126 } 2127 2128 static int tc35815_resume(struct pci_dev *pdev) 2129 { 2130 struct net_device *dev = pci_get_drvdata(pdev); 2131 2132 pci_restore_state(pdev); 2133 if (!netif_running(dev)) 2134 return 0; 2135 pci_set_power_state(pdev, PCI_D0); 2136 tc35815_restart(dev); 2137 netif_carrier_off(dev); 2138 if (dev->phydev) 2139 phy_start(dev->phydev); 2140 netif_device_attach(dev); 2141 return 0; 2142 } 2143 #endif /* CONFIG_PM */ 2144 2145 static struct pci_driver tc35815_pci_driver = { 2146 .name = MODNAME, 2147 .id_table = tc35815_pci_tbl, 2148 .probe = tc35815_init_one, 2149 .remove = tc35815_remove_one, 2150 #ifdef CONFIG_PM 2151 .suspend = tc35815_suspend, 2152 .resume = tc35815_resume, 2153 #endif 2154 }; 2155 2156 module_param_named(speed, options.speed, int, 0); 2157 MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps"); 2158 module_param_named(duplex, options.duplex, int, 0); 2159 MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full"); 2160 2161 module_pci_driver(tc35815_pci_driver); 2162 MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver"); 2163 MODULE_LICENSE("GPL"); 2164