1 /* 2 * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux. 3 * 4 * Based on skelton.c by Donald Becker. 5 * 6 * This driver is a replacement of older and less maintained version. 7 * This is a header of the older version: 8 * -----<snip>----- 9 * Copyright 2001 MontaVista Software Inc. 10 * Author: MontaVista Software, Inc. 11 * ahennessy@mvista.com 12 * Copyright (C) 2000-2001 Toshiba Corporation 13 * static const char *version = 14 * "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n"; 15 * -----<snip>----- 16 * 17 * This file is subject to the terms and conditions of the GNU General Public 18 * License. See the file "COPYING" in the main directory of this archive 19 * for more details. 20 * 21 * (C) Copyright TOSHIBA CORPORATION 2004-2005 22 * All Rights Reserved. 23 */ 24 25 #define DRV_VERSION "1.39" 26 static const char *version = "tc35815.c:v" DRV_VERSION "\n"; 27 #define MODNAME "tc35815" 28 29 #include <linux/module.h> 30 #include <linux/kernel.h> 31 #include <linux/types.h> 32 #include <linux/fcntl.h> 33 #include <linux/interrupt.h> 34 #include <linux/ioport.h> 35 #include <linux/in.h> 36 #include <linux/if_vlan.h> 37 #include <linux/slab.h> 38 #include <linux/string.h> 39 #include <linux/spinlock.h> 40 #include <linux/errno.h> 41 #include <linux/init.h> 42 #include <linux/netdevice.h> 43 #include <linux/etherdevice.h> 44 #include <linux/skbuff.h> 45 #include <linux/delay.h> 46 #include <linux/pci.h> 47 #include <linux/phy.h> 48 #include <linux/workqueue.h> 49 #include <linux/platform_device.h> 50 #include <linux/prefetch.h> 51 #include <asm/io.h> 52 #include <asm/byteorder.h> 53 54 enum tc35815_chiptype { 55 TC35815CF = 0, 56 TC35815_NWU, 57 TC35815_TX4939, 58 }; 59 60 /* indexed by tc35815_chiptype, above */ 61 static const struct { 62 const char *name; 63 } chip_info[] __devinitdata = { 64 { "TOSHIBA TC35815CF 10/100BaseTX" }, 65 { "TOSHIBA TC35815 with Wake on LAN" }, 66 { "TOSHIBA TC35815/TX4939" }, 67 }; 68 69 static DEFINE_PCI_DEVICE_TABLE(tc35815_pci_tbl) = { 70 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF }, 71 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU }, 72 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 }, 73 {0,} 74 }; 75 MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl); 76 77 /* see MODULE_PARM_DESC */ 78 static struct tc35815_options { 79 int speed; 80 int duplex; 81 } options; 82 83 /* 84 * Registers 85 */ 86 struct tc35815_regs { 87 __u32 DMA_Ctl; /* 0x00 */ 88 __u32 TxFrmPtr; 89 __u32 TxThrsh; 90 __u32 TxPollCtr; 91 __u32 BLFrmPtr; 92 __u32 RxFragSize; 93 __u32 Int_En; 94 __u32 FDA_Bas; 95 __u32 FDA_Lim; /* 0x20 */ 96 __u32 Int_Src; 97 __u32 unused0[2]; 98 __u32 PauseCnt; 99 __u32 RemPauCnt; 100 __u32 TxCtlFrmStat; 101 __u32 unused1; 102 __u32 MAC_Ctl; /* 0x40 */ 103 __u32 CAM_Ctl; 104 __u32 Tx_Ctl; 105 __u32 Tx_Stat; 106 __u32 Rx_Ctl; 107 __u32 Rx_Stat; 108 __u32 MD_Data; 109 __u32 MD_CA; 110 __u32 CAM_Adr; /* 0x60 */ 111 __u32 CAM_Data; 112 __u32 CAM_Ena; 113 __u32 PROM_Ctl; 114 __u32 PROM_Data; 115 __u32 Algn_Cnt; 116 __u32 CRC_Cnt; 117 __u32 Miss_Cnt; 118 }; 119 120 /* 121 * Bit assignments 122 */ 123 /* DMA_Ctl bit assign ------------------------------------------------------- */ 124 #define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */ 125 #define DMA_RxAlign_1 0x00400000 126 #define DMA_RxAlign_2 0x00800000 127 #define DMA_RxAlign_3 0x00c00000 128 #define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */ 129 #define DMA_IntMask 0x00040000 /* 1:Interrupt mask */ 130 #define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */ 131 #define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */ 132 #define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */ 133 #define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */ 134 #define DMA_TestMode 0x00002000 /* 1:Test Mode */ 135 #define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */ 136 #define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */ 137 138 /* RxFragSize bit assign ---------------------------------------------------- */ 139 #define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */ 140 #define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */ 141 142 /* MAC_Ctl bit assign ------------------------------------------------------- */ 143 #define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */ 144 #define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */ 145 #define MAC_MissRoll 0x00000400 /* 1:Missed Roll */ 146 #define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */ 147 #define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */ 148 #define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/ 149 #define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */ 150 #define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */ 151 #define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */ 152 #define MAC_Reset 0x00000004 /* 1:Software Reset */ 153 #define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */ 154 #define MAC_HaltReq 0x00000001 /* 1:Halt request */ 155 156 /* PROM_Ctl bit assign ------------------------------------------------------ */ 157 #define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */ 158 #define PROM_Read 0x00004000 /*10:Read operation */ 159 #define PROM_Write 0x00002000 /*01:Write operation */ 160 #define PROM_Erase 0x00006000 /*11:Erase operation */ 161 /*00:Enable or Disable Writting, */ 162 /* as specified in PROM_Addr. */ 163 #define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */ 164 /*00xxxx: disable */ 165 166 /* CAM_Ctl bit assign ------------------------------------------------------- */ 167 #define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */ 168 #define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/ 169 /* accept other */ 170 #define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */ 171 #define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */ 172 #define CAM_StationAcc 0x00000001 /* 1:unicast accept */ 173 174 /* CAM_Ena bit assign ------------------------------------------------------- */ 175 #define CAM_ENTRY_MAX 21 /* CAM Data entry max count */ 176 #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */ 177 #define CAM_Ena_Bit(index) (1 << (index)) 178 #define CAM_ENTRY_DESTINATION 0 179 #define CAM_ENTRY_SOURCE 1 180 #define CAM_ENTRY_MACCTL 20 181 182 /* Tx_Ctl bit assign -------------------------------------------------------- */ 183 #define Tx_En 0x00000001 /* 1:Transmit enable */ 184 #define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */ 185 #define Tx_NoPad 0x00000004 /* 1:Suppress Padding */ 186 #define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */ 187 #define Tx_FBack 0x00000010 /* 1:Fast Back-off */ 188 #define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */ 189 #define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */ 190 #define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */ 191 #define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */ 192 #define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */ 193 #define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */ 194 #define Tx_EnComp 0x00004000 /* 1:Enable Completion */ 195 196 /* Tx_Stat bit assign ------------------------------------------------------- */ 197 #define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */ 198 #define Tx_ExColl 0x00000010 /* Excessive Collision */ 199 #define Tx_TXDefer 0x00000020 /* Transmit Defered */ 200 #define Tx_Paused 0x00000040 /* Transmit Paused */ 201 #define Tx_IntTx 0x00000080 /* Interrupt on Tx */ 202 #define Tx_Under 0x00000100 /* Underrun */ 203 #define Tx_Defer 0x00000200 /* Deferral */ 204 #define Tx_NCarr 0x00000400 /* No Carrier */ 205 #define Tx_10Stat 0x00000800 /* 10Mbps Status */ 206 #define Tx_LateColl 0x00001000 /* Late Collision */ 207 #define Tx_TxPar 0x00002000 /* Tx Parity Error */ 208 #define Tx_Comp 0x00004000 /* Completion */ 209 #define Tx_Halted 0x00008000 /* Tx Halted */ 210 #define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */ 211 212 /* Rx_Ctl bit assign -------------------------------------------------------- */ 213 #define Rx_EnGood 0x00004000 /* 1:Enable Good */ 214 #define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */ 215 #define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */ 216 #define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */ 217 #define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */ 218 #define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */ 219 #define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */ 220 #define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */ 221 #define Rx_ShortEn 0x00000008 /* 1:Short Enable */ 222 #define Rx_LongEn 0x00000004 /* 1:Long Enable */ 223 #define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */ 224 #define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */ 225 226 /* Rx_Stat bit assign ------------------------------------------------------- */ 227 #define Rx_Halted 0x00008000 /* Rx Halted */ 228 #define Rx_Good 0x00004000 /* Rx Good */ 229 #define Rx_RxPar 0x00002000 /* Rx Parity Error */ 230 #define Rx_TypePkt 0x00001000 /* Rx Type Packet */ 231 #define Rx_LongErr 0x00000800 /* Rx Long Error */ 232 #define Rx_Over 0x00000400 /* Rx Overflow */ 233 #define Rx_CRCErr 0x00000200 /* Rx CRC Error */ 234 #define Rx_Align 0x00000100 /* Rx Alignment Error */ 235 #define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */ 236 #define Rx_IntRx 0x00000040 /* Rx Interrupt */ 237 #define Rx_CtlRecd 0x00000020 /* Rx Control Receive */ 238 #define Rx_InLenErr 0x00000010 /* Rx In Range Frame Length Error */ 239 240 #define Rx_Stat_Mask 0x0000FFF0 /* Rx All Status Mask */ 241 242 /* Int_En bit assign -------------------------------------------------------- */ 243 #define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */ 244 #define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Ctl Complete Enable */ 245 #define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */ 246 #define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */ 247 #define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */ 248 #define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */ 249 #define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */ 250 #define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */ 251 #define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */ 252 #define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */ 253 #define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */ 254 #define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */ 255 /* Exhausted Enable */ 256 257 /* Int_Src bit assign ------------------------------------------------------- */ 258 #define Int_NRabt 0x00004000 /* 1:Non Recoverable error */ 259 #define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */ 260 #define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */ 261 #define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */ 262 #define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */ 263 #define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */ 264 #define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */ 265 #define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */ 266 #define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */ 267 #define Int_SWInt 0x00000020 /* 1:Software request & Clear */ 268 #define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */ 269 #define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */ 270 #define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */ 271 #define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */ 272 #define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */ 273 274 /* MD_CA bit assign --------------------------------------------------------- */ 275 #define MD_CA_PreSup 0x00001000 /* 1:Preamble Suppress */ 276 #define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */ 277 #define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */ 278 279 280 /* 281 * Descriptors 282 */ 283 284 /* Frame descripter */ 285 struct FDesc { 286 volatile __u32 FDNext; 287 volatile __u32 FDSystem; 288 volatile __u32 FDStat; 289 volatile __u32 FDCtl; 290 }; 291 292 /* Buffer descripter */ 293 struct BDesc { 294 volatile __u32 BuffData; 295 volatile __u32 BDCtl; 296 }; 297 298 #define FD_ALIGN 16 299 300 /* Frame Descripter bit assign ---------------------------------------------- */ 301 #define FD_FDLength_MASK 0x0000FFFF /* Length MASK */ 302 #define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */ 303 #define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */ 304 #define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */ 305 #define FD_FrmOpt_IntTx 0x20000000 /* Tx only */ 306 #define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */ 307 #define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */ 308 #define FD_FrmOpt_Packing 0x04000000 /* Rx only */ 309 #define FD_CownsFD 0x80000000 /* FD Controller owner bit */ 310 #define FD_Next_EOL 0x00000001 /* FD EOL indicator */ 311 #define FD_BDCnt_SHIFT 16 312 313 /* Buffer Descripter bit assign --------------------------------------------- */ 314 #define BD_BuffLength_MASK 0x0000FFFF /* Receive Data Size */ 315 #define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */ 316 #define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */ 317 #define BD_CownsBD 0x80000000 /* BD Controller owner bit */ 318 #define BD_RxBDID_SHIFT 16 319 #define BD_RxBDSeqN_SHIFT 24 320 321 322 /* Some useful constants. */ 323 324 #define TX_CTL_CMD (Tx_EnTxPar | Tx_EnLateColl | \ 325 Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \ 326 Tx_En) /* maybe 0x7b01 */ 327 /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */ 328 #define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \ 329 | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */ 330 #define INT_EN_CMD (Int_NRAbtEn | \ 331 Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \ 332 Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \ 333 Int_STargAbtEn | \ 334 Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/ 335 #define DMA_CTL_CMD DMA_BURST_SIZE 336 #define HAVE_DMA_RXALIGN(lp) likely((lp)->chiptype != TC35815CF) 337 338 /* Tuning parameters */ 339 #define DMA_BURST_SIZE 32 340 #define TX_THRESHOLD 1024 341 /* used threshold with packet max byte for low pci transfer ability.*/ 342 #define TX_THRESHOLD_MAX 1536 343 /* setting threshold max value when overrun error occurred this count. */ 344 #define TX_THRESHOLD_KEEP_LIMIT 10 345 346 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */ 347 #define FD_PAGE_NUM 4 348 #define RX_BUF_NUM 128 /* < 256 */ 349 #define RX_FD_NUM 256 /* >= 32 */ 350 #define TX_FD_NUM 128 351 #if RX_CTL_CMD & Rx_LongEn 352 #define RX_BUF_SIZE PAGE_SIZE 353 #elif RX_CTL_CMD & Rx_StripCRC 354 #define RX_BUF_SIZE \ 355 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN) 356 #else 357 #define RX_BUF_SIZE \ 358 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN) 359 #endif 360 #define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */ 361 #define NAPI_WEIGHT 16 362 363 struct TxFD { 364 struct FDesc fd; 365 struct BDesc bd; 366 struct BDesc unused; 367 }; 368 369 struct RxFD { 370 struct FDesc fd; 371 struct BDesc bd[0]; /* variable length */ 372 }; 373 374 struct FrFD { 375 struct FDesc fd; 376 struct BDesc bd[RX_BUF_NUM]; 377 }; 378 379 380 #define tc_readl(addr) ioread32(addr) 381 #define tc_writel(d, addr) iowrite32(d, addr) 382 383 #define TC35815_TX_TIMEOUT msecs_to_jiffies(400) 384 385 /* Information that need to be kept for each controller. */ 386 struct tc35815_local { 387 struct pci_dev *pci_dev; 388 389 struct net_device *dev; 390 struct napi_struct napi; 391 392 /* statistics */ 393 struct { 394 int max_tx_qlen; 395 int tx_ints; 396 int rx_ints; 397 int tx_underrun; 398 } lstats; 399 400 /* Tx control lock. This protects the transmit buffer ring 401 * state along with the "tx full" state of the driver. This 402 * means all netif_queue flow control actions are protected 403 * by this lock as well. 404 */ 405 spinlock_t lock; 406 spinlock_t rx_lock; 407 408 struct mii_bus *mii_bus; 409 struct phy_device *phy_dev; 410 int duplex; 411 int speed; 412 int link; 413 struct work_struct restart_work; 414 415 /* 416 * Transmitting: Batch Mode. 417 * 1 BD in 1 TxFD. 418 * Receiving: Non-Packing Mode. 419 * 1 circular FD for Free Buffer List. 420 * RX_BUF_NUM BD in Free Buffer FD. 421 * One Free Buffer BD has ETH_FRAME_LEN data buffer. 422 */ 423 void *fd_buf; /* for TxFD, RxFD, FrFD */ 424 dma_addr_t fd_buf_dma; 425 struct TxFD *tfd_base; 426 unsigned int tfd_start; 427 unsigned int tfd_end; 428 struct RxFD *rfd_base; 429 struct RxFD *rfd_limit; 430 struct RxFD *rfd_cur; 431 struct FrFD *fbl_ptr; 432 unsigned int fbl_count; 433 struct { 434 struct sk_buff *skb; 435 dma_addr_t skb_dma; 436 } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM]; 437 u32 msg_enable; 438 enum tc35815_chiptype chiptype; 439 }; 440 441 static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt) 442 { 443 return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf); 444 } 445 #ifdef DEBUG 446 static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus) 447 { 448 return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma)); 449 } 450 #endif 451 static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev, 452 struct pci_dev *hwdev, 453 dma_addr_t *dma_handle) 454 { 455 struct sk_buff *skb; 456 skb = dev_alloc_skb(RX_BUF_SIZE); 457 if (!skb) 458 return NULL; 459 *dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE, 460 PCI_DMA_FROMDEVICE); 461 if (pci_dma_mapping_error(hwdev, *dma_handle)) { 462 dev_kfree_skb_any(skb); 463 return NULL; 464 } 465 skb_reserve(skb, 2); /* make IP header 4byte aligned */ 466 return skb; 467 } 468 469 static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle) 470 { 471 pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE, 472 PCI_DMA_FROMDEVICE); 473 dev_kfree_skb_any(skb); 474 } 475 476 /* Index to functions, as function prototypes. */ 477 478 static int tc35815_open(struct net_device *dev); 479 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev); 480 static irqreturn_t tc35815_interrupt(int irq, void *dev_id); 481 static int tc35815_rx(struct net_device *dev, int limit); 482 static int tc35815_poll(struct napi_struct *napi, int budget); 483 static void tc35815_txdone(struct net_device *dev); 484 static int tc35815_close(struct net_device *dev); 485 static struct net_device_stats *tc35815_get_stats(struct net_device *dev); 486 static void tc35815_set_multicast_list(struct net_device *dev); 487 static void tc35815_tx_timeout(struct net_device *dev); 488 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 489 #ifdef CONFIG_NET_POLL_CONTROLLER 490 static void tc35815_poll_controller(struct net_device *dev); 491 #endif 492 static const struct ethtool_ops tc35815_ethtool_ops; 493 494 /* Example routines you must write ;->. */ 495 static void tc35815_chip_reset(struct net_device *dev); 496 static void tc35815_chip_init(struct net_device *dev); 497 498 #ifdef DEBUG 499 static void panic_queues(struct net_device *dev); 500 #endif 501 502 static void tc35815_restart_work(struct work_struct *work); 503 504 static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 505 { 506 struct net_device *dev = bus->priv; 507 struct tc35815_regs __iomem *tr = 508 (struct tc35815_regs __iomem *)dev->base_addr; 509 unsigned long timeout = jiffies + HZ; 510 511 tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA); 512 udelay(12); /* it takes 32 x 400ns at least */ 513 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) { 514 if (time_after(jiffies, timeout)) 515 return -EIO; 516 cpu_relax(); 517 } 518 return tc_readl(&tr->MD_Data) & 0xffff; 519 } 520 521 static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val) 522 { 523 struct net_device *dev = bus->priv; 524 struct tc35815_regs __iomem *tr = 525 (struct tc35815_regs __iomem *)dev->base_addr; 526 unsigned long timeout = jiffies + HZ; 527 528 tc_writel(val, &tr->MD_Data); 529 tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f), 530 &tr->MD_CA); 531 udelay(12); /* it takes 32 x 400ns at least */ 532 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) { 533 if (time_after(jiffies, timeout)) 534 return -EIO; 535 cpu_relax(); 536 } 537 return 0; 538 } 539 540 static void tc_handle_link_change(struct net_device *dev) 541 { 542 struct tc35815_local *lp = netdev_priv(dev); 543 struct phy_device *phydev = lp->phy_dev; 544 unsigned long flags; 545 int status_change = 0; 546 547 spin_lock_irqsave(&lp->lock, flags); 548 if (phydev->link && 549 (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) { 550 struct tc35815_regs __iomem *tr = 551 (struct tc35815_regs __iomem *)dev->base_addr; 552 u32 reg; 553 554 reg = tc_readl(&tr->MAC_Ctl); 555 reg |= MAC_HaltReq; 556 tc_writel(reg, &tr->MAC_Ctl); 557 if (phydev->duplex == DUPLEX_FULL) 558 reg |= MAC_FullDup; 559 else 560 reg &= ~MAC_FullDup; 561 tc_writel(reg, &tr->MAC_Ctl); 562 reg &= ~MAC_HaltReq; 563 tc_writel(reg, &tr->MAC_Ctl); 564 565 /* 566 * TX4939 PCFG.SPEEDn bit will be changed on 567 * NETDEV_CHANGE event. 568 */ 569 /* 570 * WORKAROUND: enable LostCrS only if half duplex 571 * operation. 572 * (TX4939 does not have EnLCarr) 573 */ 574 if (phydev->duplex == DUPLEX_HALF && 575 lp->chiptype != TC35815_TX4939) 576 tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr, 577 &tr->Tx_Ctl); 578 579 lp->speed = phydev->speed; 580 lp->duplex = phydev->duplex; 581 status_change = 1; 582 } 583 584 if (phydev->link != lp->link) { 585 if (phydev->link) { 586 /* delayed promiscuous enabling */ 587 if (dev->flags & IFF_PROMISC) 588 tc35815_set_multicast_list(dev); 589 } else { 590 lp->speed = 0; 591 lp->duplex = -1; 592 } 593 lp->link = phydev->link; 594 595 status_change = 1; 596 } 597 spin_unlock_irqrestore(&lp->lock, flags); 598 599 if (status_change && netif_msg_link(lp)) { 600 phy_print_status(phydev); 601 pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n", 602 dev->name, 603 phy_read(phydev, MII_BMCR), 604 phy_read(phydev, MII_BMSR), 605 phy_read(phydev, MII_LPA)); 606 } 607 } 608 609 static int tc_mii_probe(struct net_device *dev) 610 { 611 struct tc35815_local *lp = netdev_priv(dev); 612 struct phy_device *phydev = NULL; 613 int phy_addr; 614 u32 dropmask; 615 616 /* find the first phy */ 617 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) { 618 if (lp->mii_bus->phy_map[phy_addr]) { 619 if (phydev) { 620 printk(KERN_ERR "%s: multiple PHYs found\n", 621 dev->name); 622 return -EINVAL; 623 } 624 phydev = lp->mii_bus->phy_map[phy_addr]; 625 break; 626 } 627 } 628 629 if (!phydev) { 630 printk(KERN_ERR "%s: no PHY found\n", dev->name); 631 return -ENODEV; 632 } 633 634 /* attach the mac to the phy */ 635 phydev = phy_connect(dev, dev_name(&phydev->dev), 636 &tc_handle_link_change, 0, 637 lp->chiptype == TC35815_TX4939 ? 638 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII); 639 if (IS_ERR(phydev)) { 640 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name); 641 return PTR_ERR(phydev); 642 } 643 printk(KERN_INFO "%s: attached PHY driver [%s] " 644 "(mii_bus:phy_addr=%s, id=%x)\n", 645 dev->name, phydev->drv->name, dev_name(&phydev->dev), 646 phydev->phy_id); 647 648 /* mask with MAC supported features */ 649 phydev->supported &= PHY_BASIC_FEATURES; 650 dropmask = 0; 651 if (options.speed == 10) 652 dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full; 653 else if (options.speed == 100) 654 dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full; 655 if (options.duplex == 1) 656 dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full; 657 else if (options.duplex == 2) 658 dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half; 659 phydev->supported &= ~dropmask; 660 phydev->advertising = phydev->supported; 661 662 lp->link = 0; 663 lp->speed = 0; 664 lp->duplex = -1; 665 lp->phy_dev = phydev; 666 667 return 0; 668 } 669 670 static int tc_mii_init(struct net_device *dev) 671 { 672 struct tc35815_local *lp = netdev_priv(dev); 673 int err; 674 int i; 675 676 lp->mii_bus = mdiobus_alloc(); 677 if (lp->mii_bus == NULL) { 678 err = -ENOMEM; 679 goto err_out; 680 } 681 682 lp->mii_bus->name = "tc35815_mii_bus"; 683 lp->mii_bus->read = tc_mdio_read; 684 lp->mii_bus->write = tc_mdio_write; 685 snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x", 686 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn); 687 lp->mii_bus->priv = dev; 688 lp->mii_bus->parent = &lp->pci_dev->dev; 689 lp->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL); 690 if (!lp->mii_bus->irq) { 691 err = -ENOMEM; 692 goto err_out_free_mii_bus; 693 } 694 695 for (i = 0; i < PHY_MAX_ADDR; i++) 696 lp->mii_bus->irq[i] = PHY_POLL; 697 698 err = mdiobus_register(lp->mii_bus); 699 if (err) 700 goto err_out_free_mdio_irq; 701 err = tc_mii_probe(dev); 702 if (err) 703 goto err_out_unregister_bus; 704 return 0; 705 706 err_out_unregister_bus: 707 mdiobus_unregister(lp->mii_bus); 708 err_out_free_mdio_irq: 709 kfree(lp->mii_bus->irq); 710 err_out_free_mii_bus: 711 mdiobus_free(lp->mii_bus); 712 err_out: 713 return err; 714 } 715 716 #ifdef CONFIG_CPU_TX49XX 717 /* 718 * Find a platform_device providing a MAC address. The platform code 719 * should provide a "tc35815-mac" device with a MAC address in its 720 * platform_data. 721 */ 722 static int __devinit tc35815_mac_match(struct device *dev, void *data) 723 { 724 struct platform_device *plat_dev = to_platform_device(dev); 725 struct pci_dev *pci_dev = data; 726 unsigned int id = pci_dev->irq; 727 return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id; 728 } 729 730 static int __devinit tc35815_read_plat_dev_addr(struct net_device *dev) 731 { 732 struct tc35815_local *lp = netdev_priv(dev); 733 struct device *pd = bus_find_device(&platform_bus_type, NULL, 734 lp->pci_dev, tc35815_mac_match); 735 if (pd) { 736 if (pd->platform_data) 737 memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN); 738 put_device(pd); 739 return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV; 740 } 741 return -ENODEV; 742 } 743 #else 744 static int __devinit tc35815_read_plat_dev_addr(struct net_device *dev) 745 { 746 return -ENODEV; 747 } 748 #endif 749 750 static int __devinit tc35815_init_dev_addr(struct net_device *dev) 751 { 752 struct tc35815_regs __iomem *tr = 753 (struct tc35815_regs __iomem *)dev->base_addr; 754 int i; 755 756 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy) 757 ; 758 for (i = 0; i < 6; i += 2) { 759 unsigned short data; 760 tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl); 761 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy) 762 ; 763 data = tc_readl(&tr->PROM_Data); 764 dev->dev_addr[i] = data & 0xff; 765 dev->dev_addr[i+1] = data >> 8; 766 } 767 if (!is_valid_ether_addr(dev->dev_addr)) 768 return tc35815_read_plat_dev_addr(dev); 769 return 0; 770 } 771 772 static const struct net_device_ops tc35815_netdev_ops = { 773 .ndo_open = tc35815_open, 774 .ndo_stop = tc35815_close, 775 .ndo_start_xmit = tc35815_send_packet, 776 .ndo_get_stats = tc35815_get_stats, 777 .ndo_set_rx_mode = tc35815_set_multicast_list, 778 .ndo_tx_timeout = tc35815_tx_timeout, 779 .ndo_do_ioctl = tc35815_ioctl, 780 .ndo_validate_addr = eth_validate_addr, 781 .ndo_change_mtu = eth_change_mtu, 782 .ndo_set_mac_address = eth_mac_addr, 783 #ifdef CONFIG_NET_POLL_CONTROLLER 784 .ndo_poll_controller = tc35815_poll_controller, 785 #endif 786 }; 787 788 static int __devinit tc35815_init_one(struct pci_dev *pdev, 789 const struct pci_device_id *ent) 790 { 791 void __iomem *ioaddr = NULL; 792 struct net_device *dev; 793 struct tc35815_local *lp; 794 int rc; 795 796 static int printed_version; 797 if (!printed_version++) { 798 printk(version); 799 dev_printk(KERN_DEBUG, &pdev->dev, 800 "speed:%d duplex:%d\n", 801 options.speed, options.duplex); 802 } 803 804 if (!pdev->irq) { 805 dev_warn(&pdev->dev, "no IRQ assigned.\n"); 806 return -ENODEV; 807 } 808 809 /* dev zeroed in alloc_etherdev */ 810 dev = alloc_etherdev(sizeof(*lp)); 811 if (dev == NULL) { 812 dev_err(&pdev->dev, "unable to alloc new ethernet\n"); 813 return -ENOMEM; 814 } 815 SET_NETDEV_DEV(dev, &pdev->dev); 816 lp = netdev_priv(dev); 817 lp->dev = dev; 818 819 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 820 rc = pcim_enable_device(pdev); 821 if (rc) 822 goto err_out; 823 rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME); 824 if (rc) 825 goto err_out; 826 pci_set_master(pdev); 827 ioaddr = pcim_iomap_table(pdev)[1]; 828 829 /* Initialize the device structure. */ 830 dev->netdev_ops = &tc35815_netdev_ops; 831 dev->ethtool_ops = &tc35815_ethtool_ops; 832 dev->watchdog_timeo = TC35815_TX_TIMEOUT; 833 netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT); 834 835 dev->irq = pdev->irq; 836 dev->base_addr = (unsigned long)ioaddr; 837 838 INIT_WORK(&lp->restart_work, tc35815_restart_work); 839 spin_lock_init(&lp->lock); 840 spin_lock_init(&lp->rx_lock); 841 lp->pci_dev = pdev; 842 lp->chiptype = ent->driver_data; 843 844 lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK; 845 pci_set_drvdata(pdev, dev); 846 847 /* Soft reset the chip. */ 848 tc35815_chip_reset(dev); 849 850 /* Retrieve the ethernet address. */ 851 if (tc35815_init_dev_addr(dev)) { 852 dev_warn(&pdev->dev, "not valid ether addr\n"); 853 random_ether_addr(dev->dev_addr); 854 } 855 856 rc = register_netdev(dev); 857 if (rc) 858 goto err_out; 859 860 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 861 printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n", 862 dev->name, 863 chip_info[ent->driver_data].name, 864 dev->base_addr, 865 dev->dev_addr, 866 dev->irq); 867 868 rc = tc_mii_init(dev); 869 if (rc) 870 goto err_out_unregister; 871 872 return 0; 873 874 err_out_unregister: 875 unregister_netdev(dev); 876 err_out: 877 free_netdev(dev); 878 return rc; 879 } 880 881 882 static void __devexit tc35815_remove_one(struct pci_dev *pdev) 883 { 884 struct net_device *dev = pci_get_drvdata(pdev); 885 struct tc35815_local *lp = netdev_priv(dev); 886 887 phy_disconnect(lp->phy_dev); 888 mdiobus_unregister(lp->mii_bus); 889 kfree(lp->mii_bus->irq); 890 mdiobus_free(lp->mii_bus); 891 unregister_netdev(dev); 892 free_netdev(dev); 893 pci_set_drvdata(pdev, NULL); 894 } 895 896 static int 897 tc35815_init_queues(struct net_device *dev) 898 { 899 struct tc35815_local *lp = netdev_priv(dev); 900 int i; 901 unsigned long fd_addr; 902 903 if (!lp->fd_buf) { 904 BUG_ON(sizeof(struct FDesc) + 905 sizeof(struct BDesc) * RX_BUF_NUM + 906 sizeof(struct FDesc) * RX_FD_NUM + 907 sizeof(struct TxFD) * TX_FD_NUM > 908 PAGE_SIZE * FD_PAGE_NUM); 909 910 lp->fd_buf = pci_alloc_consistent(lp->pci_dev, 911 PAGE_SIZE * FD_PAGE_NUM, 912 &lp->fd_buf_dma); 913 if (!lp->fd_buf) 914 return -ENOMEM; 915 for (i = 0; i < RX_BUF_NUM; i++) { 916 lp->rx_skbs[i].skb = 917 alloc_rxbuf_skb(dev, lp->pci_dev, 918 &lp->rx_skbs[i].skb_dma); 919 if (!lp->rx_skbs[i].skb) { 920 while (--i >= 0) { 921 free_rxbuf_skb(lp->pci_dev, 922 lp->rx_skbs[i].skb, 923 lp->rx_skbs[i].skb_dma); 924 lp->rx_skbs[i].skb = NULL; 925 } 926 pci_free_consistent(lp->pci_dev, 927 PAGE_SIZE * FD_PAGE_NUM, 928 lp->fd_buf, 929 lp->fd_buf_dma); 930 lp->fd_buf = NULL; 931 return -ENOMEM; 932 } 933 } 934 printk(KERN_DEBUG "%s: FD buf %p DataBuf", 935 dev->name, lp->fd_buf); 936 printk("\n"); 937 } else { 938 for (i = 0; i < FD_PAGE_NUM; i++) 939 clear_page((void *)((unsigned long)lp->fd_buf + 940 i * PAGE_SIZE)); 941 } 942 fd_addr = (unsigned long)lp->fd_buf; 943 944 /* Free Descriptors (for Receive) */ 945 lp->rfd_base = (struct RxFD *)fd_addr; 946 fd_addr += sizeof(struct RxFD) * RX_FD_NUM; 947 for (i = 0; i < RX_FD_NUM; i++) 948 lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD); 949 lp->rfd_cur = lp->rfd_base; 950 lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1); 951 952 /* Transmit Descriptors */ 953 lp->tfd_base = (struct TxFD *)fd_addr; 954 fd_addr += sizeof(struct TxFD) * TX_FD_NUM; 955 for (i = 0; i < TX_FD_NUM; i++) { 956 lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1])); 957 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); 958 lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0); 959 } 960 lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0])); 961 lp->tfd_start = 0; 962 lp->tfd_end = 0; 963 964 /* Buffer List (for Receive) */ 965 lp->fbl_ptr = (struct FrFD *)fd_addr; 966 lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr)); 967 lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD); 968 /* 969 * move all allocated skbs to head of rx_skbs[] array. 970 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in 971 * tc35815_rx() had failed. 972 */ 973 lp->fbl_count = 0; 974 for (i = 0; i < RX_BUF_NUM; i++) { 975 if (lp->rx_skbs[i].skb) { 976 if (i != lp->fbl_count) { 977 lp->rx_skbs[lp->fbl_count].skb = 978 lp->rx_skbs[i].skb; 979 lp->rx_skbs[lp->fbl_count].skb_dma = 980 lp->rx_skbs[i].skb_dma; 981 } 982 lp->fbl_count++; 983 } 984 } 985 for (i = 0; i < RX_BUF_NUM; i++) { 986 if (i >= lp->fbl_count) { 987 lp->fbl_ptr->bd[i].BuffData = 0; 988 lp->fbl_ptr->bd[i].BDCtl = 0; 989 continue; 990 } 991 lp->fbl_ptr->bd[i].BuffData = 992 cpu_to_le32(lp->rx_skbs[i].skb_dma); 993 /* BDID is index of FrFD.bd[] */ 994 lp->fbl_ptr->bd[i].BDCtl = 995 cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) | 996 RX_BUF_SIZE); 997 } 998 999 printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n", 1000 dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr); 1001 return 0; 1002 } 1003 1004 static void 1005 tc35815_clear_queues(struct net_device *dev) 1006 { 1007 struct tc35815_local *lp = netdev_priv(dev); 1008 int i; 1009 1010 for (i = 0; i < TX_FD_NUM; i++) { 1011 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem); 1012 struct sk_buff *skb = 1013 fdsystem != 0xffffffff ? 1014 lp->tx_skbs[fdsystem].skb : NULL; 1015 #ifdef DEBUG 1016 if (lp->tx_skbs[i].skb != skb) { 1017 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i); 1018 panic_queues(dev); 1019 } 1020 #else 1021 BUG_ON(lp->tx_skbs[i].skb != skb); 1022 #endif 1023 if (skb) { 1024 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE); 1025 lp->tx_skbs[i].skb = NULL; 1026 lp->tx_skbs[i].skb_dma = 0; 1027 dev_kfree_skb_any(skb); 1028 } 1029 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); 1030 } 1031 1032 tc35815_init_queues(dev); 1033 } 1034 1035 static void 1036 tc35815_free_queues(struct net_device *dev) 1037 { 1038 struct tc35815_local *lp = netdev_priv(dev); 1039 int i; 1040 1041 if (lp->tfd_base) { 1042 for (i = 0; i < TX_FD_NUM; i++) { 1043 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem); 1044 struct sk_buff *skb = 1045 fdsystem != 0xffffffff ? 1046 lp->tx_skbs[fdsystem].skb : NULL; 1047 #ifdef DEBUG 1048 if (lp->tx_skbs[i].skb != skb) { 1049 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i); 1050 panic_queues(dev); 1051 } 1052 #else 1053 BUG_ON(lp->tx_skbs[i].skb != skb); 1054 #endif 1055 if (skb) { 1056 dev_kfree_skb(skb); 1057 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE); 1058 lp->tx_skbs[i].skb = NULL; 1059 lp->tx_skbs[i].skb_dma = 0; 1060 } 1061 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); 1062 } 1063 } 1064 1065 lp->rfd_base = NULL; 1066 lp->rfd_limit = NULL; 1067 lp->rfd_cur = NULL; 1068 lp->fbl_ptr = NULL; 1069 1070 for (i = 0; i < RX_BUF_NUM; i++) { 1071 if (lp->rx_skbs[i].skb) { 1072 free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb, 1073 lp->rx_skbs[i].skb_dma); 1074 lp->rx_skbs[i].skb = NULL; 1075 } 1076 } 1077 if (lp->fd_buf) { 1078 pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM, 1079 lp->fd_buf, lp->fd_buf_dma); 1080 lp->fd_buf = NULL; 1081 } 1082 } 1083 1084 static void 1085 dump_txfd(struct TxFD *fd) 1086 { 1087 printk("TxFD(%p): %08x %08x %08x %08x\n", fd, 1088 le32_to_cpu(fd->fd.FDNext), 1089 le32_to_cpu(fd->fd.FDSystem), 1090 le32_to_cpu(fd->fd.FDStat), 1091 le32_to_cpu(fd->fd.FDCtl)); 1092 printk("BD: "); 1093 printk(" %08x %08x", 1094 le32_to_cpu(fd->bd.BuffData), 1095 le32_to_cpu(fd->bd.BDCtl)); 1096 printk("\n"); 1097 } 1098 1099 static int 1100 dump_rxfd(struct RxFD *fd) 1101 { 1102 int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT; 1103 if (bd_count > 8) 1104 bd_count = 8; 1105 printk("RxFD(%p): %08x %08x %08x %08x\n", fd, 1106 le32_to_cpu(fd->fd.FDNext), 1107 le32_to_cpu(fd->fd.FDSystem), 1108 le32_to_cpu(fd->fd.FDStat), 1109 le32_to_cpu(fd->fd.FDCtl)); 1110 if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD) 1111 return 0; 1112 printk("BD: "); 1113 for (i = 0; i < bd_count; i++) 1114 printk(" %08x %08x", 1115 le32_to_cpu(fd->bd[i].BuffData), 1116 le32_to_cpu(fd->bd[i].BDCtl)); 1117 printk("\n"); 1118 return bd_count; 1119 } 1120 1121 #ifdef DEBUG 1122 static void 1123 dump_frfd(struct FrFD *fd) 1124 { 1125 int i; 1126 printk("FrFD(%p): %08x %08x %08x %08x\n", fd, 1127 le32_to_cpu(fd->fd.FDNext), 1128 le32_to_cpu(fd->fd.FDSystem), 1129 le32_to_cpu(fd->fd.FDStat), 1130 le32_to_cpu(fd->fd.FDCtl)); 1131 printk("BD: "); 1132 for (i = 0; i < RX_BUF_NUM; i++) 1133 printk(" %08x %08x", 1134 le32_to_cpu(fd->bd[i].BuffData), 1135 le32_to_cpu(fd->bd[i].BDCtl)); 1136 printk("\n"); 1137 } 1138 1139 static void 1140 panic_queues(struct net_device *dev) 1141 { 1142 struct tc35815_local *lp = netdev_priv(dev); 1143 int i; 1144 1145 printk("TxFD base %p, start %u, end %u\n", 1146 lp->tfd_base, lp->tfd_start, lp->tfd_end); 1147 printk("RxFD base %p limit %p cur %p\n", 1148 lp->rfd_base, lp->rfd_limit, lp->rfd_cur); 1149 printk("FrFD %p\n", lp->fbl_ptr); 1150 for (i = 0; i < TX_FD_NUM; i++) 1151 dump_txfd(&lp->tfd_base[i]); 1152 for (i = 0; i < RX_FD_NUM; i++) { 1153 int bd_count = dump_rxfd(&lp->rfd_base[i]); 1154 i += (bd_count + 1) / 2; /* skip BDs */ 1155 } 1156 dump_frfd(lp->fbl_ptr); 1157 panic("%s: Illegal queue state.", dev->name); 1158 } 1159 #endif 1160 1161 static void print_eth(const u8 *add) 1162 { 1163 printk(KERN_DEBUG "print_eth(%p)\n", add); 1164 printk(KERN_DEBUG " %pM => %pM : %02x%02x\n", 1165 add + 6, add, add[12], add[13]); 1166 } 1167 1168 static int tc35815_tx_full(struct net_device *dev) 1169 { 1170 struct tc35815_local *lp = netdev_priv(dev); 1171 return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end; 1172 } 1173 1174 static void tc35815_restart(struct net_device *dev) 1175 { 1176 struct tc35815_local *lp = netdev_priv(dev); 1177 1178 if (lp->phy_dev) { 1179 int timeout; 1180 1181 phy_write(lp->phy_dev, MII_BMCR, BMCR_RESET); 1182 timeout = 100; 1183 while (--timeout) { 1184 if (!(phy_read(lp->phy_dev, MII_BMCR) & BMCR_RESET)) 1185 break; 1186 udelay(1); 1187 } 1188 if (!timeout) 1189 printk(KERN_ERR "%s: BMCR reset failed.\n", dev->name); 1190 } 1191 1192 spin_lock_bh(&lp->rx_lock); 1193 spin_lock_irq(&lp->lock); 1194 tc35815_chip_reset(dev); 1195 tc35815_clear_queues(dev); 1196 tc35815_chip_init(dev); 1197 /* Reconfigure CAM again since tc35815_chip_init() initialize it. */ 1198 tc35815_set_multicast_list(dev); 1199 spin_unlock_irq(&lp->lock); 1200 spin_unlock_bh(&lp->rx_lock); 1201 1202 netif_wake_queue(dev); 1203 } 1204 1205 static void tc35815_restart_work(struct work_struct *work) 1206 { 1207 struct tc35815_local *lp = 1208 container_of(work, struct tc35815_local, restart_work); 1209 struct net_device *dev = lp->dev; 1210 1211 tc35815_restart(dev); 1212 } 1213 1214 static void tc35815_schedule_restart(struct net_device *dev) 1215 { 1216 struct tc35815_local *lp = netdev_priv(dev); 1217 struct tc35815_regs __iomem *tr = 1218 (struct tc35815_regs __iomem *)dev->base_addr; 1219 unsigned long flags; 1220 1221 /* disable interrupts */ 1222 spin_lock_irqsave(&lp->lock, flags); 1223 tc_writel(0, &tr->Int_En); 1224 tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl); 1225 schedule_work(&lp->restart_work); 1226 spin_unlock_irqrestore(&lp->lock, flags); 1227 } 1228 1229 static void tc35815_tx_timeout(struct net_device *dev) 1230 { 1231 struct tc35815_regs __iomem *tr = 1232 (struct tc35815_regs __iomem *)dev->base_addr; 1233 1234 printk(KERN_WARNING "%s: transmit timed out, status %#x\n", 1235 dev->name, tc_readl(&tr->Tx_Stat)); 1236 1237 /* Try to restart the adaptor. */ 1238 tc35815_schedule_restart(dev); 1239 dev->stats.tx_errors++; 1240 } 1241 1242 /* 1243 * Open/initialize the controller. This is called (in the current kernel) 1244 * sometime after booting when the 'ifconfig' program is run. 1245 * 1246 * This routine should set everything up anew at each open, even 1247 * registers that "should" only need to be set once at boot, so that 1248 * there is non-reboot way to recover if something goes wrong. 1249 */ 1250 static int 1251 tc35815_open(struct net_device *dev) 1252 { 1253 struct tc35815_local *lp = netdev_priv(dev); 1254 1255 /* 1256 * This is used if the interrupt line can turned off (shared). 1257 * See 3c503.c for an example of selecting the IRQ at config-time. 1258 */ 1259 if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED, 1260 dev->name, dev)) 1261 return -EAGAIN; 1262 1263 tc35815_chip_reset(dev); 1264 1265 if (tc35815_init_queues(dev) != 0) { 1266 free_irq(dev->irq, dev); 1267 return -EAGAIN; 1268 } 1269 1270 napi_enable(&lp->napi); 1271 1272 /* Reset the hardware here. Don't forget to set the station address. */ 1273 spin_lock_irq(&lp->lock); 1274 tc35815_chip_init(dev); 1275 spin_unlock_irq(&lp->lock); 1276 1277 netif_carrier_off(dev); 1278 /* schedule a link state check */ 1279 phy_start(lp->phy_dev); 1280 1281 /* We are now ready to accept transmit requeusts from 1282 * the queueing layer of the networking. 1283 */ 1284 netif_start_queue(dev); 1285 1286 return 0; 1287 } 1288 1289 /* This will only be invoked if your driver is _not_ in XOFF state. 1290 * What this means is that you need not check it, and that this 1291 * invariant will hold if you make sure that the netif_*_queue() 1292 * calls are done at the proper times. 1293 */ 1294 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev) 1295 { 1296 struct tc35815_local *lp = netdev_priv(dev); 1297 struct TxFD *txfd; 1298 unsigned long flags; 1299 1300 /* If some error occurs while trying to transmit this 1301 * packet, you should return '1' from this function. 1302 * In such a case you _may not_ do anything to the 1303 * SKB, it is still owned by the network queueing 1304 * layer when an error is returned. This means you 1305 * may not modify any SKB fields, you may not free 1306 * the SKB, etc. 1307 */ 1308 1309 /* This is the most common case for modern hardware. 1310 * The spinlock protects this code from the TX complete 1311 * hardware interrupt handler. Queue flow control is 1312 * thus managed under this lock as well. 1313 */ 1314 spin_lock_irqsave(&lp->lock, flags); 1315 1316 /* failsafe... (handle txdone now if half of FDs are used) */ 1317 if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM > 1318 TX_FD_NUM / 2) 1319 tc35815_txdone(dev); 1320 1321 if (netif_msg_pktdata(lp)) 1322 print_eth(skb->data); 1323 #ifdef DEBUG 1324 if (lp->tx_skbs[lp->tfd_start].skb) { 1325 printk("%s: tx_skbs conflict.\n", dev->name); 1326 panic_queues(dev); 1327 } 1328 #else 1329 BUG_ON(lp->tx_skbs[lp->tfd_start].skb); 1330 #endif 1331 lp->tx_skbs[lp->tfd_start].skb = skb; 1332 lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE); 1333 1334 /*add to ring */ 1335 txfd = &lp->tfd_base[lp->tfd_start]; 1336 txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma); 1337 txfd->bd.BDCtl = cpu_to_le32(skb->len); 1338 txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start); 1339 txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT)); 1340 1341 if (lp->tfd_start == lp->tfd_end) { 1342 struct tc35815_regs __iomem *tr = 1343 (struct tc35815_regs __iomem *)dev->base_addr; 1344 /* Start DMA Transmitter. */ 1345 txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL); 1346 txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx); 1347 if (netif_msg_tx_queued(lp)) { 1348 printk("%s: starting TxFD.\n", dev->name); 1349 dump_txfd(txfd); 1350 } 1351 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr); 1352 } else { 1353 txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL); 1354 if (netif_msg_tx_queued(lp)) { 1355 printk("%s: queueing TxFD.\n", dev->name); 1356 dump_txfd(txfd); 1357 } 1358 } 1359 lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM; 1360 1361 /* If we just used up the very last entry in the 1362 * TX ring on this device, tell the queueing 1363 * layer to send no more. 1364 */ 1365 if (tc35815_tx_full(dev)) { 1366 if (netif_msg_tx_queued(lp)) 1367 printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name); 1368 netif_stop_queue(dev); 1369 } 1370 1371 /* When the TX completion hw interrupt arrives, this 1372 * is when the transmit statistics are updated. 1373 */ 1374 1375 spin_unlock_irqrestore(&lp->lock, flags); 1376 return NETDEV_TX_OK; 1377 } 1378 1379 #define FATAL_ERROR_INT \ 1380 (Int_IntPCI | Int_DmParErr | Int_IntNRAbt) 1381 static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status) 1382 { 1383 static int count; 1384 printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):", 1385 dev->name, status); 1386 if (status & Int_IntPCI) 1387 printk(" IntPCI"); 1388 if (status & Int_DmParErr) 1389 printk(" DmParErr"); 1390 if (status & Int_IntNRAbt) 1391 printk(" IntNRAbt"); 1392 printk("\n"); 1393 if (count++ > 100) 1394 panic("%s: Too many fatal errors.", dev->name); 1395 printk(KERN_WARNING "%s: Resetting ...\n", dev->name); 1396 /* Try to restart the adaptor. */ 1397 tc35815_schedule_restart(dev); 1398 } 1399 1400 static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit) 1401 { 1402 struct tc35815_local *lp = netdev_priv(dev); 1403 int ret = -1; 1404 1405 /* Fatal errors... */ 1406 if (status & FATAL_ERROR_INT) { 1407 tc35815_fatal_error_interrupt(dev, status); 1408 return 0; 1409 } 1410 /* recoverable errors */ 1411 if (status & Int_IntFDAEx) { 1412 if (netif_msg_rx_err(lp)) 1413 dev_warn(&dev->dev, 1414 "Free Descriptor Area Exhausted (%#x).\n", 1415 status); 1416 dev->stats.rx_dropped++; 1417 ret = 0; 1418 } 1419 if (status & Int_IntBLEx) { 1420 if (netif_msg_rx_err(lp)) 1421 dev_warn(&dev->dev, 1422 "Buffer List Exhausted (%#x).\n", 1423 status); 1424 dev->stats.rx_dropped++; 1425 ret = 0; 1426 } 1427 if (status & Int_IntExBD) { 1428 if (netif_msg_rx_err(lp)) 1429 dev_warn(&dev->dev, 1430 "Excessive Buffer Descriptiors (%#x).\n", 1431 status); 1432 dev->stats.rx_length_errors++; 1433 ret = 0; 1434 } 1435 1436 /* normal notification */ 1437 if (status & Int_IntMacRx) { 1438 /* Got a packet(s). */ 1439 ret = tc35815_rx(dev, limit); 1440 lp->lstats.rx_ints++; 1441 } 1442 if (status & Int_IntMacTx) { 1443 /* Transmit complete. */ 1444 lp->lstats.tx_ints++; 1445 spin_lock_irq(&lp->lock); 1446 tc35815_txdone(dev); 1447 spin_unlock_irq(&lp->lock); 1448 if (ret < 0) 1449 ret = 0; 1450 } 1451 return ret; 1452 } 1453 1454 /* 1455 * The typical workload of the driver: 1456 * Handle the network interface interrupts. 1457 */ 1458 static irqreturn_t tc35815_interrupt(int irq, void *dev_id) 1459 { 1460 struct net_device *dev = dev_id; 1461 struct tc35815_local *lp = netdev_priv(dev); 1462 struct tc35815_regs __iomem *tr = 1463 (struct tc35815_regs __iomem *)dev->base_addr; 1464 u32 dmactl = tc_readl(&tr->DMA_Ctl); 1465 1466 if (!(dmactl & DMA_IntMask)) { 1467 /* disable interrupts */ 1468 tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl); 1469 if (napi_schedule_prep(&lp->napi)) 1470 __napi_schedule(&lp->napi); 1471 else { 1472 printk(KERN_ERR "%s: interrupt taken in poll\n", 1473 dev->name); 1474 BUG(); 1475 } 1476 (void)tc_readl(&tr->Int_Src); /* flush */ 1477 return IRQ_HANDLED; 1478 } 1479 return IRQ_NONE; 1480 } 1481 1482 #ifdef CONFIG_NET_POLL_CONTROLLER 1483 static void tc35815_poll_controller(struct net_device *dev) 1484 { 1485 disable_irq(dev->irq); 1486 tc35815_interrupt(dev->irq, dev); 1487 enable_irq(dev->irq); 1488 } 1489 #endif 1490 1491 /* We have a good packet(s), get it/them out of the buffers. */ 1492 static int 1493 tc35815_rx(struct net_device *dev, int limit) 1494 { 1495 struct tc35815_local *lp = netdev_priv(dev); 1496 unsigned int fdctl; 1497 int i; 1498 int received = 0; 1499 1500 while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) { 1501 int status = le32_to_cpu(lp->rfd_cur->fd.FDStat); 1502 int pkt_len = fdctl & FD_FDLength_MASK; 1503 int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT; 1504 #ifdef DEBUG 1505 struct RxFD *next_rfd; 1506 #endif 1507 #if (RX_CTL_CMD & Rx_StripCRC) == 0 1508 pkt_len -= ETH_FCS_LEN; 1509 #endif 1510 1511 if (netif_msg_rx_status(lp)) 1512 dump_rxfd(lp->rfd_cur); 1513 if (status & Rx_Good) { 1514 struct sk_buff *skb; 1515 unsigned char *data; 1516 int cur_bd; 1517 1518 if (--limit < 0) 1519 break; 1520 BUG_ON(bd_count > 1); 1521 cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl) 1522 & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT; 1523 #ifdef DEBUG 1524 if (cur_bd >= RX_BUF_NUM) { 1525 printk("%s: invalid BDID.\n", dev->name); 1526 panic_queues(dev); 1527 } 1528 BUG_ON(lp->rx_skbs[cur_bd].skb_dma != 1529 (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3)); 1530 if (!lp->rx_skbs[cur_bd].skb) { 1531 printk("%s: NULL skb.\n", dev->name); 1532 panic_queues(dev); 1533 } 1534 #else 1535 BUG_ON(cur_bd >= RX_BUF_NUM); 1536 #endif 1537 skb = lp->rx_skbs[cur_bd].skb; 1538 prefetch(skb->data); 1539 lp->rx_skbs[cur_bd].skb = NULL; 1540 pci_unmap_single(lp->pci_dev, 1541 lp->rx_skbs[cur_bd].skb_dma, 1542 RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 1543 if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN) 1544 memmove(skb->data, skb->data - NET_IP_ALIGN, 1545 pkt_len); 1546 data = skb_put(skb, pkt_len); 1547 if (netif_msg_pktdata(lp)) 1548 print_eth(data); 1549 skb->protocol = eth_type_trans(skb, dev); 1550 netif_receive_skb(skb); 1551 received++; 1552 dev->stats.rx_packets++; 1553 dev->stats.rx_bytes += pkt_len; 1554 } else { 1555 dev->stats.rx_errors++; 1556 if (netif_msg_rx_err(lp)) 1557 dev_info(&dev->dev, "Rx error (status %x)\n", 1558 status & Rx_Stat_Mask); 1559 /* WORKAROUND: LongErr and CRCErr means Overflow. */ 1560 if ((status & Rx_LongErr) && (status & Rx_CRCErr)) { 1561 status &= ~(Rx_LongErr|Rx_CRCErr); 1562 status |= Rx_Over; 1563 } 1564 if (status & Rx_LongErr) 1565 dev->stats.rx_length_errors++; 1566 if (status & Rx_Over) 1567 dev->stats.rx_fifo_errors++; 1568 if (status & Rx_CRCErr) 1569 dev->stats.rx_crc_errors++; 1570 if (status & Rx_Align) 1571 dev->stats.rx_frame_errors++; 1572 } 1573 1574 if (bd_count > 0) { 1575 /* put Free Buffer back to controller */ 1576 int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl); 1577 unsigned char id = 1578 (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT; 1579 #ifdef DEBUG 1580 if (id >= RX_BUF_NUM) { 1581 printk("%s: invalid BDID.\n", dev->name); 1582 panic_queues(dev); 1583 } 1584 #else 1585 BUG_ON(id >= RX_BUF_NUM); 1586 #endif 1587 /* free old buffers */ 1588 lp->fbl_count--; 1589 while (lp->fbl_count < RX_BUF_NUM) 1590 { 1591 unsigned char curid = 1592 (id + 1 + lp->fbl_count) % RX_BUF_NUM; 1593 struct BDesc *bd = &lp->fbl_ptr->bd[curid]; 1594 #ifdef DEBUG 1595 bdctl = le32_to_cpu(bd->BDCtl); 1596 if (bdctl & BD_CownsBD) { 1597 printk("%s: Freeing invalid BD.\n", 1598 dev->name); 1599 panic_queues(dev); 1600 } 1601 #endif 1602 /* pass BD to controller */ 1603 if (!lp->rx_skbs[curid].skb) { 1604 lp->rx_skbs[curid].skb = 1605 alloc_rxbuf_skb(dev, 1606 lp->pci_dev, 1607 &lp->rx_skbs[curid].skb_dma); 1608 if (!lp->rx_skbs[curid].skb) 1609 break; /* try on next reception */ 1610 bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma); 1611 } 1612 /* Note: BDLength was modified by chip. */ 1613 bd->BDCtl = cpu_to_le32(BD_CownsBD | 1614 (curid << BD_RxBDID_SHIFT) | 1615 RX_BUF_SIZE); 1616 lp->fbl_count++; 1617 } 1618 } 1619 1620 /* put RxFD back to controller */ 1621 #ifdef DEBUG 1622 next_rfd = fd_bus_to_virt(lp, 1623 le32_to_cpu(lp->rfd_cur->fd.FDNext)); 1624 if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) { 1625 printk("%s: RxFD FDNext invalid.\n", dev->name); 1626 panic_queues(dev); 1627 } 1628 #endif 1629 for (i = 0; i < (bd_count + 1) / 2 + 1; i++) { 1630 /* pass FD to controller */ 1631 #ifdef DEBUG 1632 lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead); 1633 #else 1634 lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL); 1635 #endif 1636 lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD); 1637 lp->rfd_cur++; 1638 } 1639 if (lp->rfd_cur > lp->rfd_limit) 1640 lp->rfd_cur = lp->rfd_base; 1641 #ifdef DEBUG 1642 if (lp->rfd_cur != next_rfd) 1643 printk("rfd_cur = %p, next_rfd %p\n", 1644 lp->rfd_cur, next_rfd); 1645 #endif 1646 } 1647 1648 return received; 1649 } 1650 1651 static int tc35815_poll(struct napi_struct *napi, int budget) 1652 { 1653 struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi); 1654 struct net_device *dev = lp->dev; 1655 struct tc35815_regs __iomem *tr = 1656 (struct tc35815_regs __iomem *)dev->base_addr; 1657 int received = 0, handled; 1658 u32 status; 1659 1660 spin_lock(&lp->rx_lock); 1661 status = tc_readl(&tr->Int_Src); 1662 do { 1663 /* BLEx, FDAEx will be cleared later */ 1664 tc_writel(status & ~(Int_BLEx | Int_FDAEx), 1665 &tr->Int_Src); /* write to clear */ 1666 1667 handled = tc35815_do_interrupt(dev, status, budget - received); 1668 if (status & (Int_BLEx | Int_FDAEx)) 1669 tc_writel(status & (Int_BLEx | Int_FDAEx), 1670 &tr->Int_Src); 1671 if (handled >= 0) { 1672 received += handled; 1673 if (received >= budget) 1674 break; 1675 } 1676 status = tc_readl(&tr->Int_Src); 1677 } while (status); 1678 spin_unlock(&lp->rx_lock); 1679 1680 if (received < budget) { 1681 napi_complete(napi); 1682 /* enable interrupts */ 1683 tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl); 1684 } 1685 return received; 1686 } 1687 1688 #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr) 1689 1690 static void 1691 tc35815_check_tx_stat(struct net_device *dev, int status) 1692 { 1693 struct tc35815_local *lp = netdev_priv(dev); 1694 const char *msg = NULL; 1695 1696 /* count collisions */ 1697 if (status & Tx_ExColl) 1698 dev->stats.collisions += 16; 1699 if (status & Tx_TxColl_MASK) 1700 dev->stats.collisions += status & Tx_TxColl_MASK; 1701 1702 /* TX4939 does not have NCarr */ 1703 if (lp->chiptype == TC35815_TX4939) 1704 status &= ~Tx_NCarr; 1705 /* WORKAROUND: ignore LostCrS in full duplex operation */ 1706 if (!lp->link || lp->duplex == DUPLEX_FULL) 1707 status &= ~Tx_NCarr; 1708 1709 if (!(status & TX_STA_ERR)) { 1710 /* no error. */ 1711 dev->stats.tx_packets++; 1712 return; 1713 } 1714 1715 dev->stats.tx_errors++; 1716 if (status & Tx_ExColl) { 1717 dev->stats.tx_aborted_errors++; 1718 msg = "Excessive Collision."; 1719 } 1720 if (status & Tx_Under) { 1721 dev->stats.tx_fifo_errors++; 1722 msg = "Tx FIFO Underrun."; 1723 if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) { 1724 lp->lstats.tx_underrun++; 1725 if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) { 1726 struct tc35815_regs __iomem *tr = 1727 (struct tc35815_regs __iomem *)dev->base_addr; 1728 tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh); 1729 msg = "Tx FIFO Underrun.Change Tx threshold to max."; 1730 } 1731 } 1732 } 1733 if (status & Tx_Defer) { 1734 dev->stats.tx_fifo_errors++; 1735 msg = "Excessive Deferral."; 1736 } 1737 if (status & Tx_NCarr) { 1738 dev->stats.tx_carrier_errors++; 1739 msg = "Lost Carrier Sense."; 1740 } 1741 if (status & Tx_LateColl) { 1742 dev->stats.tx_aborted_errors++; 1743 msg = "Late Collision."; 1744 } 1745 if (status & Tx_TxPar) { 1746 dev->stats.tx_fifo_errors++; 1747 msg = "Transmit Parity Error."; 1748 } 1749 if (status & Tx_SQErr) { 1750 dev->stats.tx_heartbeat_errors++; 1751 msg = "Signal Quality Error."; 1752 } 1753 if (msg && netif_msg_tx_err(lp)) 1754 printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status); 1755 } 1756 1757 /* This handles TX complete events posted by the device 1758 * via interrupts. 1759 */ 1760 static void 1761 tc35815_txdone(struct net_device *dev) 1762 { 1763 struct tc35815_local *lp = netdev_priv(dev); 1764 struct TxFD *txfd; 1765 unsigned int fdctl; 1766 1767 txfd = &lp->tfd_base[lp->tfd_end]; 1768 while (lp->tfd_start != lp->tfd_end && 1769 !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) { 1770 int status = le32_to_cpu(txfd->fd.FDStat); 1771 struct sk_buff *skb; 1772 unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext); 1773 u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem); 1774 1775 if (netif_msg_tx_done(lp)) { 1776 printk("%s: complete TxFD.\n", dev->name); 1777 dump_txfd(txfd); 1778 } 1779 tc35815_check_tx_stat(dev, status); 1780 1781 skb = fdsystem != 0xffffffff ? 1782 lp->tx_skbs[fdsystem].skb : NULL; 1783 #ifdef DEBUG 1784 if (lp->tx_skbs[lp->tfd_end].skb != skb) { 1785 printk("%s: tx_skbs mismatch.\n", dev->name); 1786 panic_queues(dev); 1787 } 1788 #else 1789 BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb); 1790 #endif 1791 if (skb) { 1792 dev->stats.tx_bytes += skb->len; 1793 pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE); 1794 lp->tx_skbs[lp->tfd_end].skb = NULL; 1795 lp->tx_skbs[lp->tfd_end].skb_dma = 0; 1796 dev_kfree_skb_any(skb); 1797 } 1798 txfd->fd.FDSystem = cpu_to_le32(0xffffffff); 1799 1800 lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM; 1801 txfd = &lp->tfd_base[lp->tfd_end]; 1802 #ifdef DEBUG 1803 if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) { 1804 printk("%s: TxFD FDNext invalid.\n", dev->name); 1805 panic_queues(dev); 1806 } 1807 #endif 1808 if (fdnext & FD_Next_EOL) { 1809 /* DMA Transmitter has been stopping... */ 1810 if (lp->tfd_end != lp->tfd_start) { 1811 struct tc35815_regs __iomem *tr = 1812 (struct tc35815_regs __iomem *)dev->base_addr; 1813 int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM; 1814 struct TxFD *txhead = &lp->tfd_base[head]; 1815 int qlen = (lp->tfd_start + TX_FD_NUM 1816 - lp->tfd_end) % TX_FD_NUM; 1817 1818 #ifdef DEBUG 1819 if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) { 1820 printk("%s: TxFD FDCtl invalid.\n", dev->name); 1821 panic_queues(dev); 1822 } 1823 #endif 1824 /* log max queue length */ 1825 if (lp->lstats.max_tx_qlen < qlen) 1826 lp->lstats.max_tx_qlen = qlen; 1827 1828 1829 /* start DMA Transmitter again */ 1830 txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL); 1831 txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx); 1832 if (netif_msg_tx_queued(lp)) { 1833 printk("%s: start TxFD on queue.\n", 1834 dev->name); 1835 dump_txfd(txfd); 1836 } 1837 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr); 1838 } 1839 break; 1840 } 1841 } 1842 1843 /* If we had stopped the queue due to a "tx full" 1844 * condition, and space has now been made available, 1845 * wake up the queue. 1846 */ 1847 if (netif_queue_stopped(dev) && !tc35815_tx_full(dev)) 1848 netif_wake_queue(dev); 1849 } 1850 1851 /* The inverse routine to tc35815_open(). */ 1852 static int 1853 tc35815_close(struct net_device *dev) 1854 { 1855 struct tc35815_local *lp = netdev_priv(dev); 1856 1857 netif_stop_queue(dev); 1858 napi_disable(&lp->napi); 1859 if (lp->phy_dev) 1860 phy_stop(lp->phy_dev); 1861 cancel_work_sync(&lp->restart_work); 1862 1863 /* Flush the Tx and disable Rx here. */ 1864 tc35815_chip_reset(dev); 1865 free_irq(dev->irq, dev); 1866 1867 tc35815_free_queues(dev); 1868 1869 return 0; 1870 1871 } 1872 1873 /* 1874 * Get the current statistics. 1875 * This may be called with the card open or closed. 1876 */ 1877 static struct net_device_stats *tc35815_get_stats(struct net_device *dev) 1878 { 1879 struct tc35815_regs __iomem *tr = 1880 (struct tc35815_regs __iomem *)dev->base_addr; 1881 if (netif_running(dev)) 1882 /* Update the statistics from the device registers. */ 1883 dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt); 1884 1885 return &dev->stats; 1886 } 1887 1888 static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr) 1889 { 1890 struct tc35815_local *lp = netdev_priv(dev); 1891 struct tc35815_regs __iomem *tr = 1892 (struct tc35815_regs __iomem *)dev->base_addr; 1893 int cam_index = index * 6; 1894 u32 cam_data; 1895 u32 saved_addr; 1896 1897 saved_addr = tc_readl(&tr->CAM_Adr); 1898 1899 if (netif_msg_hw(lp)) 1900 printk(KERN_DEBUG "%s: CAM %d: %pM\n", 1901 dev->name, index, addr); 1902 if (index & 1) { 1903 /* read modify write */ 1904 tc_writel(cam_index - 2, &tr->CAM_Adr); 1905 cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000; 1906 cam_data |= addr[0] << 8 | addr[1]; 1907 tc_writel(cam_data, &tr->CAM_Data); 1908 /* write whole word */ 1909 tc_writel(cam_index + 2, &tr->CAM_Adr); 1910 cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5]; 1911 tc_writel(cam_data, &tr->CAM_Data); 1912 } else { 1913 /* write whole word */ 1914 tc_writel(cam_index, &tr->CAM_Adr); 1915 cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3]; 1916 tc_writel(cam_data, &tr->CAM_Data); 1917 /* read modify write */ 1918 tc_writel(cam_index + 4, &tr->CAM_Adr); 1919 cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff; 1920 cam_data |= addr[4] << 24 | (addr[5] << 16); 1921 tc_writel(cam_data, &tr->CAM_Data); 1922 } 1923 1924 tc_writel(saved_addr, &tr->CAM_Adr); 1925 } 1926 1927 1928 /* 1929 * Set or clear the multicast filter for this adaptor. 1930 * num_addrs == -1 Promiscuous mode, receive all packets 1931 * num_addrs == 0 Normal mode, clear multicast list 1932 * num_addrs > 0 Multicast mode, receive normal and MC packets, 1933 * and do best-effort filtering. 1934 */ 1935 static void 1936 tc35815_set_multicast_list(struct net_device *dev) 1937 { 1938 struct tc35815_regs __iomem *tr = 1939 (struct tc35815_regs __iomem *)dev->base_addr; 1940 1941 if (dev->flags & IFF_PROMISC) { 1942 /* With some (all?) 100MHalf HUB, controller will hang 1943 * if we enabled promiscuous mode before linkup... */ 1944 struct tc35815_local *lp = netdev_priv(dev); 1945 1946 if (!lp->link) 1947 return; 1948 /* Enable promiscuous mode */ 1949 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl); 1950 } else if ((dev->flags & IFF_ALLMULTI) || 1951 netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) { 1952 /* CAM 0, 1, 20 are reserved. */ 1953 /* Disable promiscuous mode, use normal mode. */ 1954 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl); 1955 } else if (!netdev_mc_empty(dev)) { 1956 struct netdev_hw_addr *ha; 1957 int i; 1958 int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE); 1959 1960 tc_writel(0, &tr->CAM_Ctl); 1961 /* Walk the address list, and load the filter */ 1962 i = 0; 1963 netdev_for_each_mc_addr(ha, dev) { 1964 /* entry 0,1 is reserved. */ 1965 tc35815_set_cam_entry(dev, i + 2, ha->addr); 1966 ena_bits |= CAM_Ena_Bit(i + 2); 1967 i++; 1968 } 1969 tc_writel(ena_bits, &tr->CAM_Ena); 1970 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); 1971 } else { 1972 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena); 1973 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); 1974 } 1975 } 1976 1977 static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1978 { 1979 struct tc35815_local *lp = netdev_priv(dev); 1980 strcpy(info->driver, MODNAME); 1981 strcpy(info->version, DRV_VERSION); 1982 strcpy(info->bus_info, pci_name(lp->pci_dev)); 1983 } 1984 1985 static int tc35815_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1986 { 1987 struct tc35815_local *lp = netdev_priv(dev); 1988 1989 if (!lp->phy_dev) 1990 return -ENODEV; 1991 return phy_ethtool_gset(lp->phy_dev, cmd); 1992 } 1993 1994 static int tc35815_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1995 { 1996 struct tc35815_local *lp = netdev_priv(dev); 1997 1998 if (!lp->phy_dev) 1999 return -ENODEV; 2000 return phy_ethtool_sset(lp->phy_dev, cmd); 2001 } 2002 2003 static u32 tc35815_get_msglevel(struct net_device *dev) 2004 { 2005 struct tc35815_local *lp = netdev_priv(dev); 2006 return lp->msg_enable; 2007 } 2008 2009 static void tc35815_set_msglevel(struct net_device *dev, u32 datum) 2010 { 2011 struct tc35815_local *lp = netdev_priv(dev); 2012 lp->msg_enable = datum; 2013 } 2014 2015 static int tc35815_get_sset_count(struct net_device *dev, int sset) 2016 { 2017 struct tc35815_local *lp = netdev_priv(dev); 2018 2019 switch (sset) { 2020 case ETH_SS_STATS: 2021 return sizeof(lp->lstats) / sizeof(int); 2022 default: 2023 return -EOPNOTSUPP; 2024 } 2025 } 2026 2027 static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) 2028 { 2029 struct tc35815_local *lp = netdev_priv(dev); 2030 data[0] = lp->lstats.max_tx_qlen; 2031 data[1] = lp->lstats.tx_ints; 2032 data[2] = lp->lstats.rx_ints; 2033 data[3] = lp->lstats.tx_underrun; 2034 } 2035 2036 static struct { 2037 const char str[ETH_GSTRING_LEN]; 2038 } ethtool_stats_keys[] = { 2039 { "max_tx_qlen" }, 2040 { "tx_ints" }, 2041 { "rx_ints" }, 2042 { "tx_underrun" }, 2043 }; 2044 2045 static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data) 2046 { 2047 memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys)); 2048 } 2049 2050 static const struct ethtool_ops tc35815_ethtool_ops = { 2051 .get_drvinfo = tc35815_get_drvinfo, 2052 .get_settings = tc35815_get_settings, 2053 .set_settings = tc35815_set_settings, 2054 .get_link = ethtool_op_get_link, 2055 .get_msglevel = tc35815_get_msglevel, 2056 .set_msglevel = tc35815_set_msglevel, 2057 .get_strings = tc35815_get_strings, 2058 .get_sset_count = tc35815_get_sset_count, 2059 .get_ethtool_stats = tc35815_get_ethtool_stats, 2060 }; 2061 2062 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2063 { 2064 struct tc35815_local *lp = netdev_priv(dev); 2065 2066 if (!netif_running(dev)) 2067 return -EINVAL; 2068 if (!lp->phy_dev) 2069 return -ENODEV; 2070 return phy_mii_ioctl(lp->phy_dev, rq, cmd); 2071 } 2072 2073 static void tc35815_chip_reset(struct net_device *dev) 2074 { 2075 struct tc35815_regs __iomem *tr = 2076 (struct tc35815_regs __iomem *)dev->base_addr; 2077 int i; 2078 /* reset the controller */ 2079 tc_writel(MAC_Reset, &tr->MAC_Ctl); 2080 udelay(4); /* 3200ns */ 2081 i = 0; 2082 while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) { 2083 if (i++ > 100) { 2084 printk(KERN_ERR "%s: MAC reset failed.\n", dev->name); 2085 break; 2086 } 2087 mdelay(1); 2088 } 2089 tc_writel(0, &tr->MAC_Ctl); 2090 2091 /* initialize registers to default value */ 2092 tc_writel(0, &tr->DMA_Ctl); 2093 tc_writel(0, &tr->TxThrsh); 2094 tc_writel(0, &tr->TxPollCtr); 2095 tc_writel(0, &tr->RxFragSize); 2096 tc_writel(0, &tr->Int_En); 2097 tc_writel(0, &tr->FDA_Bas); 2098 tc_writel(0, &tr->FDA_Lim); 2099 tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */ 2100 tc_writel(0, &tr->CAM_Ctl); 2101 tc_writel(0, &tr->Tx_Ctl); 2102 tc_writel(0, &tr->Rx_Ctl); 2103 tc_writel(0, &tr->CAM_Ena); 2104 (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */ 2105 2106 /* initialize internal SRAM */ 2107 tc_writel(DMA_TestMode, &tr->DMA_Ctl); 2108 for (i = 0; i < 0x1000; i += 4) { 2109 tc_writel(i, &tr->CAM_Adr); 2110 tc_writel(0, &tr->CAM_Data); 2111 } 2112 tc_writel(0, &tr->DMA_Ctl); 2113 } 2114 2115 static void tc35815_chip_init(struct net_device *dev) 2116 { 2117 struct tc35815_local *lp = netdev_priv(dev); 2118 struct tc35815_regs __iomem *tr = 2119 (struct tc35815_regs __iomem *)dev->base_addr; 2120 unsigned long txctl = TX_CTL_CMD; 2121 2122 /* load station address to CAM */ 2123 tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr); 2124 2125 /* Enable CAM (broadcast and unicast) */ 2126 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena); 2127 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); 2128 2129 /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */ 2130 if (HAVE_DMA_RXALIGN(lp)) 2131 tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl); 2132 else 2133 tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl); 2134 tc_writel(0, &tr->TxPollCtr); /* Batch mode */ 2135 tc_writel(TX_THRESHOLD, &tr->TxThrsh); 2136 tc_writel(INT_EN_CMD, &tr->Int_En); 2137 2138 /* set queues */ 2139 tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas); 2140 tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base, 2141 &tr->FDA_Lim); 2142 /* 2143 * Activation method: 2144 * First, enable the MAC Transmitter and the DMA Receive circuits. 2145 * Then enable the DMA Transmitter and the MAC Receive circuits. 2146 */ 2147 tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */ 2148 tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */ 2149 2150 /* start MAC transmitter */ 2151 /* TX4939 does not have EnLCarr */ 2152 if (lp->chiptype == TC35815_TX4939) 2153 txctl &= ~Tx_EnLCarr; 2154 /* WORKAROUND: ignore LostCrS in full duplex operation */ 2155 if (!lp->phy_dev || !lp->link || lp->duplex == DUPLEX_FULL) 2156 txctl &= ~Tx_EnLCarr; 2157 tc_writel(txctl, &tr->Tx_Ctl); 2158 } 2159 2160 #ifdef CONFIG_PM 2161 static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state) 2162 { 2163 struct net_device *dev = pci_get_drvdata(pdev); 2164 struct tc35815_local *lp = netdev_priv(dev); 2165 unsigned long flags; 2166 2167 pci_save_state(pdev); 2168 if (!netif_running(dev)) 2169 return 0; 2170 netif_device_detach(dev); 2171 if (lp->phy_dev) 2172 phy_stop(lp->phy_dev); 2173 spin_lock_irqsave(&lp->lock, flags); 2174 tc35815_chip_reset(dev); 2175 spin_unlock_irqrestore(&lp->lock, flags); 2176 pci_set_power_state(pdev, PCI_D3hot); 2177 return 0; 2178 } 2179 2180 static int tc35815_resume(struct pci_dev *pdev) 2181 { 2182 struct net_device *dev = pci_get_drvdata(pdev); 2183 struct tc35815_local *lp = netdev_priv(dev); 2184 2185 pci_restore_state(pdev); 2186 if (!netif_running(dev)) 2187 return 0; 2188 pci_set_power_state(pdev, PCI_D0); 2189 tc35815_restart(dev); 2190 netif_carrier_off(dev); 2191 if (lp->phy_dev) 2192 phy_start(lp->phy_dev); 2193 netif_device_attach(dev); 2194 return 0; 2195 } 2196 #endif /* CONFIG_PM */ 2197 2198 static struct pci_driver tc35815_pci_driver = { 2199 .name = MODNAME, 2200 .id_table = tc35815_pci_tbl, 2201 .probe = tc35815_init_one, 2202 .remove = __devexit_p(tc35815_remove_one), 2203 #ifdef CONFIG_PM 2204 .suspend = tc35815_suspend, 2205 .resume = tc35815_resume, 2206 #endif 2207 }; 2208 2209 module_param_named(speed, options.speed, int, 0); 2210 MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps"); 2211 module_param_named(duplex, options.duplex, int, 0); 2212 MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full"); 2213 2214 static int __init tc35815_init_module(void) 2215 { 2216 return pci_register_driver(&tc35815_pci_driver); 2217 } 2218 2219 static void __exit tc35815_cleanup_module(void) 2220 { 2221 pci_unregister_driver(&tc35815_pci_driver); 2222 } 2223 2224 module_init(tc35815_init_module); 2225 module_exit(tc35815_cleanup_module); 2226 2227 MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver"); 2228 MODULE_LICENSE("GPL"); 2229