xref: /linux/drivers/net/ethernet/toshiba/tc35815.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
3  *
4  * Based on skelton.c by Donald Becker.
5  *
6  * This driver is a replacement of older and less maintained version.
7  * This is a header of the older version:
8  *	-----<snip>-----
9  *	Copyright 2001 MontaVista Software Inc.
10  *	Author: MontaVista Software, Inc.
11  *		ahennessy@mvista.com
12  *	Copyright (C) 2000-2001 Toshiba Corporation
13  *	static const char *version =
14  *		"tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
15  *	-----<snip>-----
16  *
17  * This file is subject to the terms and conditions of the GNU General Public
18  * License.  See the file "COPYING" in the main directory of this archive
19  * for more details.
20  *
21  * (C) Copyright TOSHIBA CORPORATION 2004-2005
22  * All Rights Reserved.
23  */
24 
25 #define DRV_VERSION	"1.39"
26 static const char *version = "tc35815.c:v" DRV_VERSION "\n";
27 #define MODNAME			"tc35815"
28 
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/fcntl.h>
33 #include <linux/interrupt.h>
34 #include <linux/ioport.h>
35 #include <linux/in.h>
36 #include <linux/if_vlan.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include <linux/spinlock.h>
40 #include <linux/errno.h>
41 #include <linux/netdevice.h>
42 #include <linux/etherdevice.h>
43 #include <linux/skbuff.h>
44 #include <linux/delay.h>
45 #include <linux/pci.h>
46 #include <linux/phy.h>
47 #include <linux/workqueue.h>
48 #include <linux/platform_device.h>
49 #include <linux/prefetch.h>
50 #include <asm/io.h>
51 #include <asm/byteorder.h>
52 
53 enum tc35815_chiptype {
54 	TC35815CF = 0,
55 	TC35815_NWU,
56 	TC35815_TX4939,
57 };
58 
59 /* indexed by tc35815_chiptype, above */
60 static const struct {
61 	const char *name;
62 } chip_info[] = {
63 	{ "TOSHIBA TC35815CF 10/100BaseTX" },
64 	{ "TOSHIBA TC35815 with Wake on LAN" },
65 	{ "TOSHIBA TC35815/TX4939" },
66 };
67 
68 static const struct pci_device_id tc35815_pci_tbl[] = {
69 	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
70 	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
71 	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
72 	{0,}
73 };
74 MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
75 
76 /* see MODULE_PARM_DESC */
77 static struct tc35815_options {
78 	int speed;
79 	int duplex;
80 } options;
81 
82 /*
83  * Registers
84  */
85 struct tc35815_regs {
86 	__u32 DMA_Ctl;		/* 0x00 */
87 	__u32 TxFrmPtr;
88 	__u32 TxThrsh;
89 	__u32 TxPollCtr;
90 	__u32 BLFrmPtr;
91 	__u32 RxFragSize;
92 	__u32 Int_En;
93 	__u32 FDA_Bas;
94 	__u32 FDA_Lim;		/* 0x20 */
95 	__u32 Int_Src;
96 	__u32 unused0[2];
97 	__u32 PauseCnt;
98 	__u32 RemPauCnt;
99 	__u32 TxCtlFrmStat;
100 	__u32 unused1;
101 	__u32 MAC_Ctl;		/* 0x40 */
102 	__u32 CAM_Ctl;
103 	__u32 Tx_Ctl;
104 	__u32 Tx_Stat;
105 	__u32 Rx_Ctl;
106 	__u32 Rx_Stat;
107 	__u32 MD_Data;
108 	__u32 MD_CA;
109 	__u32 CAM_Adr;		/* 0x60 */
110 	__u32 CAM_Data;
111 	__u32 CAM_Ena;
112 	__u32 PROM_Ctl;
113 	__u32 PROM_Data;
114 	__u32 Algn_Cnt;
115 	__u32 CRC_Cnt;
116 	__u32 Miss_Cnt;
117 };
118 
119 /*
120  * Bit assignments
121  */
122 /* DMA_Ctl bit assign ------------------------------------------------------- */
123 #define DMA_RxAlign	       0x00c00000 /* 1:Reception Alignment	     */
124 #define DMA_RxAlign_1	       0x00400000
125 #define DMA_RxAlign_2	       0x00800000
126 #define DMA_RxAlign_3	       0x00c00000
127 #define DMA_M66EnStat	       0x00080000 /* 1:66MHz Enable State	     */
128 #define DMA_IntMask	       0x00040000 /* 1:Interrupt mask		     */
129 #define DMA_SWIntReq	       0x00020000 /* 1:Software Interrupt request    */
130 #define DMA_TxWakeUp	       0x00010000 /* 1:Transmit Wake Up		     */
131 #define DMA_RxBigE	       0x00008000 /* 1:Receive Big Endian	     */
132 #define DMA_TxBigE	       0x00004000 /* 1:Transmit Big Endian	     */
133 #define DMA_TestMode	       0x00002000 /* 1:Test Mode		     */
134 #define DMA_PowrMgmnt	       0x00001000 /* 1:Power Management		     */
135 #define DMA_DmBurst_Mask       0x000001fc /* DMA Burst size		     */
136 
137 /* RxFragSize bit assign ---------------------------------------------------- */
138 #define RxFrag_EnPack	       0x00008000 /* 1:Enable Packing		     */
139 #define RxFrag_MinFragMask     0x00000ffc /* Minimum Fragment		     */
140 
141 /* MAC_Ctl bit assign ------------------------------------------------------- */
142 #define MAC_Link10	       0x00008000 /* 1:Link Status 10Mbits	     */
143 #define MAC_EnMissRoll	       0x00002000 /* 1:Enable Missed Roll	     */
144 #define MAC_MissRoll	       0x00000400 /* 1:Missed Roll		     */
145 #define MAC_Loop10	       0x00000080 /* 1:Loop 10 Mbps		     */
146 #define MAC_Conn_Auto	       0x00000000 /*00:Connection mode (Automatic)   */
147 #define MAC_Conn_10M	       0x00000020 /*01:		       (10Mbps endec)*/
148 #define MAC_Conn_Mll	       0x00000040 /*10:		       (Mll clock)   */
149 #define MAC_MacLoop	       0x00000010 /* 1:MAC Loopback		     */
150 #define MAC_FullDup	       0x00000008 /* 1:Full Duplex 0:Half Duplex     */
151 #define MAC_Reset	       0x00000004 /* 1:Software Reset		     */
152 #define MAC_HaltImm	       0x00000002 /* 1:Halt Immediate		     */
153 #define MAC_HaltReq	       0x00000001 /* 1:Halt request		     */
154 
155 /* PROM_Ctl bit assign ------------------------------------------------------ */
156 #define PROM_Busy	       0x00008000 /* 1:Busy (Start Operation)	     */
157 #define PROM_Read	       0x00004000 /*10:Read operation		     */
158 #define PROM_Write	       0x00002000 /*01:Write operation		     */
159 #define PROM_Erase	       0x00006000 /*11:Erase operation		     */
160 					  /*00:Enable or Disable Writting,   */
161 					  /*	  as specified in PROM_Addr. */
162 #define PROM_Addr_Ena	       0x00000030 /*11xxxx:PROM Write enable	     */
163 					  /*00xxxx:	      disable	     */
164 
165 /* CAM_Ctl bit assign ------------------------------------------------------- */
166 #define CAM_CompEn	       0x00000010 /* 1:CAM Compare Enable	     */
167 #define CAM_NegCAM	       0x00000008 /* 1:Reject packets CAM recognizes,*/
168 					  /*			accept other */
169 #define CAM_BroadAcc	       0x00000004 /* 1:Broadcast assept		     */
170 #define CAM_GroupAcc	       0x00000002 /* 1:Multicast assept		     */
171 #define CAM_StationAcc	       0x00000001 /* 1:unicast accept		     */
172 
173 /* CAM_Ena bit assign ------------------------------------------------------- */
174 #define CAM_ENTRY_MAX		       21   /* CAM Data entry max count	     */
175 #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits)  */
176 #define CAM_Ena_Bit(index)	(1 << (index))
177 #define CAM_ENTRY_DESTINATION	0
178 #define CAM_ENTRY_SOURCE	1
179 #define CAM_ENTRY_MACCTL	20
180 
181 /* Tx_Ctl bit assign -------------------------------------------------------- */
182 #define Tx_En		       0x00000001 /* 1:Transmit enable		     */
183 #define Tx_TxHalt	       0x00000002 /* 1:Transmit Halt Request	     */
184 #define Tx_NoPad	       0x00000004 /* 1:Suppress Padding		     */
185 #define Tx_NoCRC	       0x00000008 /* 1:Suppress Padding		     */
186 #define Tx_FBack	       0x00000010 /* 1:Fast Back-off		     */
187 #define Tx_EnUnder	       0x00000100 /* 1:Enable Underrun		     */
188 #define Tx_EnExDefer	       0x00000200 /* 1:Enable Excessive Deferral     */
189 #define Tx_EnLCarr	       0x00000400 /* 1:Enable Lost Carrier	     */
190 #define Tx_EnExColl	       0x00000800 /* 1:Enable Excessive Collision    */
191 #define Tx_EnLateColl	       0x00001000 /* 1:Enable Late Collision	     */
192 #define Tx_EnTxPar	       0x00002000 /* 1:Enable Transmit Parity	     */
193 #define Tx_EnComp	       0x00004000 /* 1:Enable Completion	     */
194 
195 /* Tx_Stat bit assign ------------------------------------------------------- */
196 #define Tx_TxColl_MASK	       0x0000000F /* Tx Collision Count		     */
197 #define Tx_ExColl	       0x00000010 /* Excessive Collision	     */
198 #define Tx_TXDefer	       0x00000020 /* Transmit Defered		     */
199 #define Tx_Paused	       0x00000040 /* Transmit Paused		     */
200 #define Tx_IntTx	       0x00000080 /* Interrupt on Tx		     */
201 #define Tx_Under	       0x00000100 /* Underrun			     */
202 #define Tx_Defer	       0x00000200 /* Deferral			     */
203 #define Tx_NCarr	       0x00000400 /* No Carrier			     */
204 #define Tx_10Stat	       0x00000800 /* 10Mbps Status		     */
205 #define Tx_LateColl	       0x00001000 /* Late Collision		     */
206 #define Tx_TxPar	       0x00002000 /* Tx Parity Error		     */
207 #define Tx_Comp		       0x00004000 /* Completion			     */
208 #define Tx_Halted	       0x00008000 /* Tx Halted			     */
209 #define Tx_SQErr	       0x00010000 /* Signal Quality Error(SQE)	     */
210 
211 /* Rx_Ctl bit assign -------------------------------------------------------- */
212 #define Rx_EnGood	       0x00004000 /* 1:Enable Good		     */
213 #define Rx_EnRxPar	       0x00002000 /* 1:Enable Receive Parity	     */
214 #define Rx_EnLongErr	       0x00000800 /* 1:Enable Long Error	     */
215 #define Rx_EnOver	       0x00000400 /* 1:Enable OverFlow		     */
216 #define Rx_EnCRCErr	       0x00000200 /* 1:Enable CRC Error		     */
217 #define Rx_EnAlign	       0x00000100 /* 1:Enable Alignment		     */
218 #define Rx_IgnoreCRC	       0x00000040 /* 1:Ignore CRC Value		     */
219 #define Rx_StripCRC	       0x00000010 /* 1:Strip CRC Value		     */
220 #define Rx_ShortEn	       0x00000008 /* 1:Short Enable		     */
221 #define Rx_LongEn	       0x00000004 /* 1:Long Enable		     */
222 #define Rx_RxHalt	       0x00000002 /* 1:Receive Halt Request	     */
223 #define Rx_RxEn		       0x00000001 /* 1:Receive Intrrupt Enable	     */
224 
225 /* Rx_Stat bit assign ------------------------------------------------------- */
226 #define Rx_Halted	       0x00008000 /* Rx Halted			     */
227 #define Rx_Good		       0x00004000 /* Rx Good			     */
228 #define Rx_RxPar	       0x00002000 /* Rx Parity Error		     */
229 #define Rx_TypePkt	       0x00001000 /* Rx Type Packet		     */
230 #define Rx_LongErr	       0x00000800 /* Rx Long Error		     */
231 #define Rx_Over		       0x00000400 /* Rx Overflow		     */
232 #define Rx_CRCErr	       0x00000200 /* Rx CRC Error		     */
233 #define Rx_Align	       0x00000100 /* Rx Alignment Error		     */
234 #define Rx_10Stat	       0x00000080 /* Rx 10Mbps Status		     */
235 #define Rx_IntRx	       0x00000040 /* Rx Interrupt		     */
236 #define Rx_CtlRecd	       0x00000020 /* Rx Control Receive		     */
237 #define Rx_InLenErr	       0x00000010 /* Rx In Range Frame Length Error  */
238 
239 #define Rx_Stat_Mask	       0x0000FFF0 /* Rx All Status Mask		     */
240 
241 /* Int_En bit assign -------------------------------------------------------- */
242 #define Int_NRAbtEn	       0x00000800 /* 1:Non-recoverable Abort Enable  */
243 #define Int_TxCtlCmpEn	       0x00000400 /* 1:Transmit Ctl Complete Enable  */
244 #define Int_DmParErrEn	       0x00000200 /* 1:DMA Parity Error Enable	     */
245 #define Int_DParDEn	       0x00000100 /* 1:Data Parity Error Enable	     */
246 #define Int_EarNotEn	       0x00000080 /* 1:Early Notify Enable	     */
247 #define Int_DParErrEn	       0x00000040 /* 1:Detected Parity Error Enable  */
248 #define Int_SSysErrEn	       0x00000020 /* 1:Signalled System Error Enable */
249 #define Int_RMasAbtEn	       0x00000010 /* 1:Received Master Abort Enable  */
250 #define Int_RTargAbtEn	       0x00000008 /* 1:Received Target Abort Enable  */
251 #define Int_STargAbtEn	       0x00000004 /* 1:Signalled Target Abort Enable */
252 #define Int_BLExEn	       0x00000002 /* 1:Buffer List Exhausted Enable  */
253 #define Int_FDAExEn	       0x00000001 /* 1:Free Descriptor Area	     */
254 					  /*		   Exhausted Enable  */
255 
256 /* Int_Src bit assign ------------------------------------------------------- */
257 #define Int_NRabt	       0x00004000 /* 1:Non Recoverable error	     */
258 #define Int_DmParErrStat       0x00002000 /* 1:DMA Parity Error & Clear	     */
259 #define Int_BLEx	       0x00001000 /* 1:Buffer List Empty & Clear     */
260 #define Int_FDAEx	       0x00000800 /* 1:FDA Empty & Clear	     */
261 #define Int_IntNRAbt	       0x00000400 /* 1:Non Recoverable Abort	     */
262 #define Int_IntCmp	       0x00000200 /* 1:MAC control packet complete   */
263 #define Int_IntExBD	       0x00000100 /* 1:Interrupt Extra BD & Clear    */
264 #define Int_DmParErr	       0x00000080 /* 1:DMA Parity Error & Clear	     */
265 #define Int_IntEarNot	       0x00000040 /* 1:Receive Data write & Clear    */
266 #define Int_SWInt	       0x00000020 /* 1:Software request & Clear	     */
267 #define Int_IntBLEx	       0x00000010 /* 1:Buffer List Empty & Clear     */
268 #define Int_IntFDAEx	       0x00000008 /* 1:FDA Empty & Clear	     */
269 #define Int_IntPCI	       0x00000004 /* 1:PCI controller & Clear	     */
270 #define Int_IntMacRx	       0x00000002 /* 1:Rx controller & Clear	     */
271 #define Int_IntMacTx	       0x00000001 /* 1:Tx controller & Clear	     */
272 
273 /* MD_CA bit assign --------------------------------------------------------- */
274 #define MD_CA_PreSup	       0x00001000 /* 1:Preamble Suppress		     */
275 #define MD_CA_Busy	       0x00000800 /* 1:Busy (Start Operation)	     */
276 #define MD_CA_Wr	       0x00000400 /* 1:Write 0:Read		     */
277 
278 
279 /*
280  * Descriptors
281  */
282 
283 /* Frame descripter */
284 struct FDesc {
285 	volatile __u32 FDNext;
286 	volatile __u32 FDSystem;
287 	volatile __u32 FDStat;
288 	volatile __u32 FDCtl;
289 };
290 
291 /* Buffer descripter */
292 struct BDesc {
293 	volatile __u32 BuffData;
294 	volatile __u32 BDCtl;
295 };
296 
297 #define FD_ALIGN	16
298 
299 /* Frame Descripter bit assign ---------------------------------------------- */
300 #define FD_FDLength_MASK       0x0000FFFF /* Length MASK		     */
301 #define FD_BDCnt_MASK	       0x001F0000 /* BD count MASK in FD	     */
302 #define FD_FrmOpt_MASK	       0x7C000000 /* Frame option MASK		     */
303 #define FD_FrmOpt_BigEndian    0x40000000 /* Tx/Rx */
304 #define FD_FrmOpt_IntTx	       0x20000000 /* Tx only */
305 #define FD_FrmOpt_NoCRC	       0x10000000 /* Tx only */
306 #define FD_FrmOpt_NoPadding    0x08000000 /* Tx only */
307 #define FD_FrmOpt_Packing      0x04000000 /* Rx only */
308 #define FD_CownsFD	       0x80000000 /* FD Controller owner bit	     */
309 #define FD_Next_EOL	       0x00000001 /* FD EOL indicator		     */
310 #define FD_BDCnt_SHIFT	       16
311 
312 /* Buffer Descripter bit assign --------------------------------------------- */
313 #define BD_BuffLength_MASK     0x0000FFFF /* Receive Data Size		     */
314 #define BD_RxBDID_MASK	       0x00FF0000 /* BD ID Number MASK		     */
315 #define BD_RxBDSeqN_MASK       0x7F000000 /* Rx BD Sequence Number	     */
316 #define BD_CownsBD	       0x80000000 /* BD Controller owner bit	     */
317 #define BD_RxBDID_SHIFT	       16
318 #define BD_RxBDSeqN_SHIFT      24
319 
320 
321 /* Some useful constants. */
322 
323 #define TX_CTL_CMD	(Tx_EnTxPar | Tx_EnLateColl | \
324 	Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
325 	Tx_En)	/* maybe  0x7b01 */
326 /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
327 #define RX_CTL_CMD	(Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
328 	| Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
329 #define INT_EN_CMD  (Int_NRAbtEn | \
330 	Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
331 	Int_SSysErrEn  | Int_RMasAbtEn | Int_RTargAbtEn | \
332 	Int_STargAbtEn | \
333 	Int_BLExEn  | Int_FDAExEn) /* maybe 0xb7f*/
334 #define DMA_CTL_CMD	DMA_BURST_SIZE
335 #define HAVE_DMA_RXALIGN(lp)	likely((lp)->chiptype != TC35815CF)
336 
337 /* Tuning parameters */
338 #define DMA_BURST_SIZE	32
339 #define TX_THRESHOLD	1024
340 /* used threshold with packet max byte for low pci transfer ability.*/
341 #define TX_THRESHOLD_MAX 1536
342 /* setting threshold max value when overrun error occurred this count. */
343 #define TX_THRESHOLD_KEEP_LIMIT 10
344 
345 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
346 #define FD_PAGE_NUM 4
347 #define RX_BUF_NUM	128	/* < 256 */
348 #define RX_FD_NUM	256	/* >= 32 */
349 #define TX_FD_NUM	128
350 #if RX_CTL_CMD & Rx_LongEn
351 #define RX_BUF_SIZE	PAGE_SIZE
352 #elif RX_CTL_CMD & Rx_StripCRC
353 #define RX_BUF_SIZE	\
354 	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
355 #else
356 #define RX_BUF_SIZE	\
357 	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
358 #endif
359 #define RX_FD_RESERVE	(2 / 2)	/* max 2 BD per RxFD */
360 #define NAPI_WEIGHT	16
361 
362 struct TxFD {
363 	struct FDesc fd;
364 	struct BDesc bd;
365 	struct BDesc unused;
366 };
367 
368 struct RxFD {
369 	struct FDesc fd;
370 	struct BDesc bd[0];	/* variable length */
371 };
372 
373 struct FrFD {
374 	struct FDesc fd;
375 	struct BDesc bd[RX_BUF_NUM];
376 };
377 
378 
379 #define tc_readl(addr)	ioread32(addr)
380 #define tc_writel(d, addr)	iowrite32(d, addr)
381 
382 #define TC35815_TX_TIMEOUT  msecs_to_jiffies(400)
383 
384 /* Information that need to be kept for each controller. */
385 struct tc35815_local {
386 	struct pci_dev *pci_dev;
387 
388 	struct net_device *dev;
389 	struct napi_struct napi;
390 
391 	/* statistics */
392 	struct {
393 		int max_tx_qlen;
394 		int tx_ints;
395 		int rx_ints;
396 		int tx_underrun;
397 	} lstats;
398 
399 	/* Tx control lock.  This protects the transmit buffer ring
400 	 * state along with the "tx full" state of the driver.  This
401 	 * means all netif_queue flow control actions are protected
402 	 * by this lock as well.
403 	 */
404 	spinlock_t lock;
405 	spinlock_t rx_lock;
406 
407 	struct mii_bus *mii_bus;
408 	struct phy_device *phy_dev;
409 	int duplex;
410 	int speed;
411 	int link;
412 	struct work_struct restart_work;
413 
414 	/*
415 	 * Transmitting: Batch Mode.
416 	 *	1 BD in 1 TxFD.
417 	 * Receiving: Non-Packing Mode.
418 	 *	1 circular FD for Free Buffer List.
419 	 *	RX_BUF_NUM BD in Free Buffer FD.
420 	 *	One Free Buffer BD has ETH_FRAME_LEN data buffer.
421 	 */
422 	void *fd_buf;	/* for TxFD, RxFD, FrFD */
423 	dma_addr_t fd_buf_dma;
424 	struct TxFD *tfd_base;
425 	unsigned int tfd_start;
426 	unsigned int tfd_end;
427 	struct RxFD *rfd_base;
428 	struct RxFD *rfd_limit;
429 	struct RxFD *rfd_cur;
430 	struct FrFD *fbl_ptr;
431 	unsigned int fbl_count;
432 	struct {
433 		struct sk_buff *skb;
434 		dma_addr_t skb_dma;
435 	} tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
436 	u32 msg_enable;
437 	enum tc35815_chiptype chiptype;
438 };
439 
440 static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
441 {
442 	return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
443 }
444 #ifdef DEBUG
445 static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
446 {
447 	return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
448 }
449 #endif
450 static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
451 				       struct pci_dev *hwdev,
452 				       dma_addr_t *dma_handle)
453 {
454 	struct sk_buff *skb;
455 	skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
456 	if (!skb)
457 		return NULL;
458 	*dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
459 				     PCI_DMA_FROMDEVICE);
460 	if (pci_dma_mapping_error(hwdev, *dma_handle)) {
461 		dev_kfree_skb_any(skb);
462 		return NULL;
463 	}
464 	skb_reserve(skb, 2);	/* make IP header 4byte aligned */
465 	return skb;
466 }
467 
468 static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
469 {
470 	pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
471 			 PCI_DMA_FROMDEVICE);
472 	dev_kfree_skb_any(skb);
473 }
474 
475 /* Index to functions, as function prototypes. */
476 
477 static int	tc35815_open(struct net_device *dev);
478 static int	tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
479 static irqreturn_t	tc35815_interrupt(int irq, void *dev_id);
480 static int	tc35815_rx(struct net_device *dev, int limit);
481 static int	tc35815_poll(struct napi_struct *napi, int budget);
482 static void	tc35815_txdone(struct net_device *dev);
483 static int	tc35815_close(struct net_device *dev);
484 static struct	net_device_stats *tc35815_get_stats(struct net_device *dev);
485 static void	tc35815_set_multicast_list(struct net_device *dev);
486 static void	tc35815_tx_timeout(struct net_device *dev);
487 static int	tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
488 #ifdef CONFIG_NET_POLL_CONTROLLER
489 static void	tc35815_poll_controller(struct net_device *dev);
490 #endif
491 static const struct ethtool_ops tc35815_ethtool_ops;
492 
493 /* Example routines you must write ;->. */
494 static void	tc35815_chip_reset(struct net_device *dev);
495 static void	tc35815_chip_init(struct net_device *dev);
496 
497 #ifdef DEBUG
498 static void	panic_queues(struct net_device *dev);
499 #endif
500 
501 static void tc35815_restart_work(struct work_struct *work);
502 
503 static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
504 {
505 	struct net_device *dev = bus->priv;
506 	struct tc35815_regs __iomem *tr =
507 		(struct tc35815_regs __iomem *)dev->base_addr;
508 	unsigned long timeout = jiffies + HZ;
509 
510 	tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
511 	udelay(12); /* it takes 32 x 400ns at least */
512 	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
513 		if (time_after(jiffies, timeout))
514 			return -EIO;
515 		cpu_relax();
516 	}
517 	return tc_readl(&tr->MD_Data) & 0xffff;
518 }
519 
520 static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
521 {
522 	struct net_device *dev = bus->priv;
523 	struct tc35815_regs __iomem *tr =
524 		(struct tc35815_regs __iomem *)dev->base_addr;
525 	unsigned long timeout = jiffies + HZ;
526 
527 	tc_writel(val, &tr->MD_Data);
528 	tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
529 		  &tr->MD_CA);
530 	udelay(12); /* it takes 32 x 400ns at least */
531 	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
532 		if (time_after(jiffies, timeout))
533 			return -EIO;
534 		cpu_relax();
535 	}
536 	return 0;
537 }
538 
539 static void tc_handle_link_change(struct net_device *dev)
540 {
541 	struct tc35815_local *lp = netdev_priv(dev);
542 	struct phy_device *phydev = lp->phy_dev;
543 	unsigned long flags;
544 	int status_change = 0;
545 
546 	spin_lock_irqsave(&lp->lock, flags);
547 	if (phydev->link &&
548 	    (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
549 		struct tc35815_regs __iomem *tr =
550 			(struct tc35815_regs __iomem *)dev->base_addr;
551 		u32 reg;
552 
553 		reg = tc_readl(&tr->MAC_Ctl);
554 		reg |= MAC_HaltReq;
555 		tc_writel(reg, &tr->MAC_Ctl);
556 		if (phydev->duplex == DUPLEX_FULL)
557 			reg |= MAC_FullDup;
558 		else
559 			reg &= ~MAC_FullDup;
560 		tc_writel(reg, &tr->MAC_Ctl);
561 		reg &= ~MAC_HaltReq;
562 		tc_writel(reg, &tr->MAC_Ctl);
563 
564 		/*
565 		 * TX4939 PCFG.SPEEDn bit will be changed on
566 		 * NETDEV_CHANGE event.
567 		 */
568 		/*
569 		 * WORKAROUND: enable LostCrS only if half duplex
570 		 * operation.
571 		 * (TX4939 does not have EnLCarr)
572 		 */
573 		if (phydev->duplex == DUPLEX_HALF &&
574 		    lp->chiptype != TC35815_TX4939)
575 			tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
576 				  &tr->Tx_Ctl);
577 
578 		lp->speed = phydev->speed;
579 		lp->duplex = phydev->duplex;
580 		status_change = 1;
581 	}
582 
583 	if (phydev->link != lp->link) {
584 		if (phydev->link) {
585 			/* delayed promiscuous enabling */
586 			if (dev->flags & IFF_PROMISC)
587 				tc35815_set_multicast_list(dev);
588 		} else {
589 			lp->speed = 0;
590 			lp->duplex = -1;
591 		}
592 		lp->link = phydev->link;
593 
594 		status_change = 1;
595 	}
596 	spin_unlock_irqrestore(&lp->lock, flags);
597 
598 	if (status_change && netif_msg_link(lp)) {
599 		phy_print_status(phydev);
600 		pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
601 			 dev->name,
602 			 phy_read(phydev, MII_BMCR),
603 			 phy_read(phydev, MII_BMSR),
604 			 phy_read(phydev, MII_LPA));
605 	}
606 }
607 
608 static int tc_mii_probe(struct net_device *dev)
609 {
610 	struct tc35815_local *lp = netdev_priv(dev);
611 	struct phy_device *phydev = NULL;
612 	int phy_addr;
613 	u32 dropmask;
614 
615 	/* find the first phy */
616 	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
617 		if (lp->mii_bus->phy_map[phy_addr]) {
618 			if (phydev) {
619 				printk(KERN_ERR "%s: multiple PHYs found\n",
620 				       dev->name);
621 				return -EINVAL;
622 			}
623 			phydev = lp->mii_bus->phy_map[phy_addr];
624 			break;
625 		}
626 	}
627 
628 	if (!phydev) {
629 		printk(KERN_ERR "%s: no PHY found\n", dev->name);
630 		return -ENODEV;
631 	}
632 
633 	/* attach the mac to the phy */
634 	phydev = phy_connect(dev, dev_name(&phydev->dev),
635 			     &tc_handle_link_change,
636 			     lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
637 	if (IS_ERR(phydev)) {
638 		printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
639 		return PTR_ERR(phydev);
640 	}
641 	printk(KERN_INFO "%s: attached PHY driver [%s] "
642 		"(mii_bus:phy_addr=%s, id=%x)\n",
643 		dev->name, phydev->drv->name, dev_name(&phydev->dev),
644 		phydev->phy_id);
645 
646 	/* mask with MAC supported features */
647 	phydev->supported &= PHY_BASIC_FEATURES;
648 	dropmask = 0;
649 	if (options.speed == 10)
650 		dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full;
651 	else if (options.speed == 100)
652 		dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full;
653 	if (options.duplex == 1)
654 		dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full;
655 	else if (options.duplex == 2)
656 		dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half;
657 	phydev->supported &= ~dropmask;
658 	phydev->advertising = phydev->supported;
659 
660 	lp->link = 0;
661 	lp->speed = 0;
662 	lp->duplex = -1;
663 	lp->phy_dev = phydev;
664 
665 	return 0;
666 }
667 
668 static int tc_mii_init(struct net_device *dev)
669 {
670 	struct tc35815_local *lp = netdev_priv(dev);
671 	int err;
672 	int i;
673 
674 	lp->mii_bus = mdiobus_alloc();
675 	if (lp->mii_bus == NULL) {
676 		err = -ENOMEM;
677 		goto err_out;
678 	}
679 
680 	lp->mii_bus->name = "tc35815_mii_bus";
681 	lp->mii_bus->read = tc_mdio_read;
682 	lp->mii_bus->write = tc_mdio_write;
683 	snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
684 		 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
685 	lp->mii_bus->priv = dev;
686 	lp->mii_bus->parent = &lp->pci_dev->dev;
687 	lp->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
688 	if (!lp->mii_bus->irq) {
689 		err = -ENOMEM;
690 		goto err_out_free_mii_bus;
691 	}
692 
693 	for (i = 0; i < PHY_MAX_ADDR; i++)
694 		lp->mii_bus->irq[i] = PHY_POLL;
695 
696 	err = mdiobus_register(lp->mii_bus);
697 	if (err)
698 		goto err_out_free_mdio_irq;
699 	err = tc_mii_probe(dev);
700 	if (err)
701 		goto err_out_unregister_bus;
702 	return 0;
703 
704 err_out_unregister_bus:
705 	mdiobus_unregister(lp->mii_bus);
706 err_out_free_mdio_irq:
707 	kfree(lp->mii_bus->irq);
708 err_out_free_mii_bus:
709 	mdiobus_free(lp->mii_bus);
710 err_out:
711 	return err;
712 }
713 
714 #ifdef CONFIG_CPU_TX49XX
715 /*
716  * Find a platform_device providing a MAC address.  The platform code
717  * should provide a "tc35815-mac" device with a MAC address in its
718  * platform_data.
719  */
720 static int tc35815_mac_match(struct device *dev, void *data)
721 {
722 	struct platform_device *plat_dev = to_platform_device(dev);
723 	struct pci_dev *pci_dev = data;
724 	unsigned int id = pci_dev->irq;
725 	return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
726 }
727 
728 static int tc35815_read_plat_dev_addr(struct net_device *dev)
729 {
730 	struct tc35815_local *lp = netdev_priv(dev);
731 	struct device *pd = bus_find_device(&platform_bus_type, NULL,
732 					    lp->pci_dev, tc35815_mac_match);
733 	if (pd) {
734 		if (pd->platform_data)
735 			memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
736 		put_device(pd);
737 		return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
738 	}
739 	return -ENODEV;
740 }
741 #else
742 static int tc35815_read_plat_dev_addr(struct net_device *dev)
743 {
744 	return -ENODEV;
745 }
746 #endif
747 
748 static int tc35815_init_dev_addr(struct net_device *dev)
749 {
750 	struct tc35815_regs __iomem *tr =
751 		(struct tc35815_regs __iomem *)dev->base_addr;
752 	int i;
753 
754 	while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
755 		;
756 	for (i = 0; i < 6; i += 2) {
757 		unsigned short data;
758 		tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
759 		while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
760 			;
761 		data = tc_readl(&tr->PROM_Data);
762 		dev->dev_addr[i] = data & 0xff;
763 		dev->dev_addr[i+1] = data >> 8;
764 	}
765 	if (!is_valid_ether_addr(dev->dev_addr))
766 		return tc35815_read_plat_dev_addr(dev);
767 	return 0;
768 }
769 
770 static const struct net_device_ops tc35815_netdev_ops = {
771 	.ndo_open		= tc35815_open,
772 	.ndo_stop		= tc35815_close,
773 	.ndo_start_xmit		= tc35815_send_packet,
774 	.ndo_get_stats		= tc35815_get_stats,
775 	.ndo_set_rx_mode	= tc35815_set_multicast_list,
776 	.ndo_tx_timeout		= tc35815_tx_timeout,
777 	.ndo_do_ioctl		= tc35815_ioctl,
778 	.ndo_validate_addr	= eth_validate_addr,
779 	.ndo_change_mtu		= eth_change_mtu,
780 	.ndo_set_mac_address	= eth_mac_addr,
781 #ifdef CONFIG_NET_POLL_CONTROLLER
782 	.ndo_poll_controller	= tc35815_poll_controller,
783 #endif
784 };
785 
786 static int tc35815_init_one(struct pci_dev *pdev,
787 			    const struct pci_device_id *ent)
788 {
789 	void __iomem *ioaddr = NULL;
790 	struct net_device *dev;
791 	struct tc35815_local *lp;
792 	int rc;
793 
794 	static int printed_version;
795 	if (!printed_version++) {
796 		printk(version);
797 		dev_printk(KERN_DEBUG, &pdev->dev,
798 			   "speed:%d duplex:%d\n",
799 			   options.speed, options.duplex);
800 	}
801 
802 	if (!pdev->irq) {
803 		dev_warn(&pdev->dev, "no IRQ assigned.\n");
804 		return -ENODEV;
805 	}
806 
807 	/* dev zeroed in alloc_etherdev */
808 	dev = alloc_etherdev(sizeof(*lp));
809 	if (dev == NULL)
810 		return -ENOMEM;
811 
812 	SET_NETDEV_DEV(dev, &pdev->dev);
813 	lp = netdev_priv(dev);
814 	lp->dev = dev;
815 
816 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
817 	rc = pcim_enable_device(pdev);
818 	if (rc)
819 		goto err_out;
820 	rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
821 	if (rc)
822 		goto err_out;
823 	pci_set_master(pdev);
824 	ioaddr = pcim_iomap_table(pdev)[1];
825 
826 	/* Initialize the device structure. */
827 	dev->netdev_ops = &tc35815_netdev_ops;
828 	dev->ethtool_ops = &tc35815_ethtool_ops;
829 	dev->watchdog_timeo = TC35815_TX_TIMEOUT;
830 	netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
831 
832 	dev->irq = pdev->irq;
833 	dev->base_addr = (unsigned long)ioaddr;
834 
835 	INIT_WORK(&lp->restart_work, tc35815_restart_work);
836 	spin_lock_init(&lp->lock);
837 	spin_lock_init(&lp->rx_lock);
838 	lp->pci_dev = pdev;
839 	lp->chiptype = ent->driver_data;
840 
841 	lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
842 	pci_set_drvdata(pdev, dev);
843 
844 	/* Soft reset the chip. */
845 	tc35815_chip_reset(dev);
846 
847 	/* Retrieve the ethernet address. */
848 	if (tc35815_init_dev_addr(dev)) {
849 		dev_warn(&pdev->dev, "not valid ether addr\n");
850 		eth_hw_addr_random(dev);
851 	}
852 
853 	rc = register_netdev(dev);
854 	if (rc)
855 		goto err_out;
856 
857 	printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
858 		dev->name,
859 		chip_info[ent->driver_data].name,
860 		dev->base_addr,
861 		dev->dev_addr,
862 		dev->irq);
863 
864 	rc = tc_mii_init(dev);
865 	if (rc)
866 		goto err_out_unregister;
867 
868 	return 0;
869 
870 err_out_unregister:
871 	unregister_netdev(dev);
872 err_out:
873 	free_netdev(dev);
874 	return rc;
875 }
876 
877 
878 static void tc35815_remove_one(struct pci_dev *pdev)
879 {
880 	struct net_device *dev = pci_get_drvdata(pdev);
881 	struct tc35815_local *lp = netdev_priv(dev);
882 
883 	phy_disconnect(lp->phy_dev);
884 	mdiobus_unregister(lp->mii_bus);
885 	kfree(lp->mii_bus->irq);
886 	mdiobus_free(lp->mii_bus);
887 	unregister_netdev(dev);
888 	free_netdev(dev);
889 }
890 
891 static int
892 tc35815_init_queues(struct net_device *dev)
893 {
894 	struct tc35815_local *lp = netdev_priv(dev);
895 	int i;
896 	unsigned long fd_addr;
897 
898 	if (!lp->fd_buf) {
899 		BUG_ON(sizeof(struct FDesc) +
900 		       sizeof(struct BDesc) * RX_BUF_NUM +
901 		       sizeof(struct FDesc) * RX_FD_NUM +
902 		       sizeof(struct TxFD) * TX_FD_NUM >
903 		       PAGE_SIZE * FD_PAGE_NUM);
904 
905 		lp->fd_buf = pci_alloc_consistent(lp->pci_dev,
906 						  PAGE_SIZE * FD_PAGE_NUM,
907 						  &lp->fd_buf_dma);
908 		if (!lp->fd_buf)
909 			return -ENOMEM;
910 		for (i = 0; i < RX_BUF_NUM; i++) {
911 			lp->rx_skbs[i].skb =
912 				alloc_rxbuf_skb(dev, lp->pci_dev,
913 						&lp->rx_skbs[i].skb_dma);
914 			if (!lp->rx_skbs[i].skb) {
915 				while (--i >= 0) {
916 					free_rxbuf_skb(lp->pci_dev,
917 						       lp->rx_skbs[i].skb,
918 						       lp->rx_skbs[i].skb_dma);
919 					lp->rx_skbs[i].skb = NULL;
920 				}
921 				pci_free_consistent(lp->pci_dev,
922 						    PAGE_SIZE * FD_PAGE_NUM,
923 						    lp->fd_buf,
924 						    lp->fd_buf_dma);
925 				lp->fd_buf = NULL;
926 				return -ENOMEM;
927 			}
928 		}
929 		printk(KERN_DEBUG "%s: FD buf %p DataBuf",
930 		       dev->name, lp->fd_buf);
931 		printk("\n");
932 	} else {
933 		for (i = 0; i < FD_PAGE_NUM; i++)
934 			clear_page((void *)((unsigned long)lp->fd_buf +
935 					    i * PAGE_SIZE));
936 	}
937 	fd_addr = (unsigned long)lp->fd_buf;
938 
939 	/* Free Descriptors (for Receive) */
940 	lp->rfd_base = (struct RxFD *)fd_addr;
941 	fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
942 	for (i = 0; i < RX_FD_NUM; i++)
943 		lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
944 	lp->rfd_cur = lp->rfd_base;
945 	lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
946 
947 	/* Transmit Descriptors */
948 	lp->tfd_base = (struct TxFD *)fd_addr;
949 	fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
950 	for (i = 0; i < TX_FD_NUM; i++) {
951 		lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
952 		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
953 		lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
954 	}
955 	lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
956 	lp->tfd_start = 0;
957 	lp->tfd_end = 0;
958 
959 	/* Buffer List (for Receive) */
960 	lp->fbl_ptr = (struct FrFD *)fd_addr;
961 	lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
962 	lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
963 	/*
964 	 * move all allocated skbs to head of rx_skbs[] array.
965 	 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
966 	 * tc35815_rx() had failed.
967 	 */
968 	lp->fbl_count = 0;
969 	for (i = 0; i < RX_BUF_NUM; i++) {
970 		if (lp->rx_skbs[i].skb) {
971 			if (i != lp->fbl_count) {
972 				lp->rx_skbs[lp->fbl_count].skb =
973 					lp->rx_skbs[i].skb;
974 				lp->rx_skbs[lp->fbl_count].skb_dma =
975 					lp->rx_skbs[i].skb_dma;
976 			}
977 			lp->fbl_count++;
978 		}
979 	}
980 	for (i = 0; i < RX_BUF_NUM; i++) {
981 		if (i >= lp->fbl_count) {
982 			lp->fbl_ptr->bd[i].BuffData = 0;
983 			lp->fbl_ptr->bd[i].BDCtl = 0;
984 			continue;
985 		}
986 		lp->fbl_ptr->bd[i].BuffData =
987 			cpu_to_le32(lp->rx_skbs[i].skb_dma);
988 		/* BDID is index of FrFD.bd[] */
989 		lp->fbl_ptr->bd[i].BDCtl =
990 			cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
991 				    RX_BUF_SIZE);
992 	}
993 
994 	printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
995 	       dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
996 	return 0;
997 }
998 
999 static void
1000 tc35815_clear_queues(struct net_device *dev)
1001 {
1002 	struct tc35815_local *lp = netdev_priv(dev);
1003 	int i;
1004 
1005 	for (i = 0; i < TX_FD_NUM; i++) {
1006 		u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1007 		struct sk_buff *skb =
1008 			fdsystem != 0xffffffff ?
1009 			lp->tx_skbs[fdsystem].skb : NULL;
1010 #ifdef DEBUG
1011 		if (lp->tx_skbs[i].skb != skb) {
1012 			printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1013 			panic_queues(dev);
1014 		}
1015 #else
1016 		BUG_ON(lp->tx_skbs[i].skb != skb);
1017 #endif
1018 		if (skb) {
1019 			pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1020 			lp->tx_skbs[i].skb = NULL;
1021 			lp->tx_skbs[i].skb_dma = 0;
1022 			dev_kfree_skb_any(skb);
1023 		}
1024 		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1025 	}
1026 
1027 	tc35815_init_queues(dev);
1028 }
1029 
1030 static void
1031 tc35815_free_queues(struct net_device *dev)
1032 {
1033 	struct tc35815_local *lp = netdev_priv(dev);
1034 	int i;
1035 
1036 	if (lp->tfd_base) {
1037 		for (i = 0; i < TX_FD_NUM; i++) {
1038 			u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1039 			struct sk_buff *skb =
1040 				fdsystem != 0xffffffff ?
1041 				lp->tx_skbs[fdsystem].skb : NULL;
1042 #ifdef DEBUG
1043 			if (lp->tx_skbs[i].skb != skb) {
1044 				printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1045 				panic_queues(dev);
1046 			}
1047 #else
1048 			BUG_ON(lp->tx_skbs[i].skb != skb);
1049 #endif
1050 			if (skb) {
1051 				dev_kfree_skb(skb);
1052 				pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1053 				lp->tx_skbs[i].skb = NULL;
1054 				lp->tx_skbs[i].skb_dma = 0;
1055 			}
1056 			lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1057 		}
1058 	}
1059 
1060 	lp->rfd_base = NULL;
1061 	lp->rfd_limit = NULL;
1062 	lp->rfd_cur = NULL;
1063 	lp->fbl_ptr = NULL;
1064 
1065 	for (i = 0; i < RX_BUF_NUM; i++) {
1066 		if (lp->rx_skbs[i].skb) {
1067 			free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1068 				       lp->rx_skbs[i].skb_dma);
1069 			lp->rx_skbs[i].skb = NULL;
1070 		}
1071 	}
1072 	if (lp->fd_buf) {
1073 		pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
1074 				    lp->fd_buf, lp->fd_buf_dma);
1075 		lp->fd_buf = NULL;
1076 	}
1077 }
1078 
1079 static void
1080 dump_txfd(struct TxFD *fd)
1081 {
1082 	printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1083 	       le32_to_cpu(fd->fd.FDNext),
1084 	       le32_to_cpu(fd->fd.FDSystem),
1085 	       le32_to_cpu(fd->fd.FDStat),
1086 	       le32_to_cpu(fd->fd.FDCtl));
1087 	printk("BD: ");
1088 	printk(" %08x %08x",
1089 	       le32_to_cpu(fd->bd.BuffData),
1090 	       le32_to_cpu(fd->bd.BDCtl));
1091 	printk("\n");
1092 }
1093 
1094 static int
1095 dump_rxfd(struct RxFD *fd)
1096 {
1097 	int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1098 	if (bd_count > 8)
1099 		bd_count = 8;
1100 	printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1101 	       le32_to_cpu(fd->fd.FDNext),
1102 	       le32_to_cpu(fd->fd.FDSystem),
1103 	       le32_to_cpu(fd->fd.FDStat),
1104 	       le32_to_cpu(fd->fd.FDCtl));
1105 	if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1106 		return 0;
1107 	printk("BD: ");
1108 	for (i = 0; i < bd_count; i++)
1109 		printk(" %08x %08x",
1110 		       le32_to_cpu(fd->bd[i].BuffData),
1111 		       le32_to_cpu(fd->bd[i].BDCtl));
1112 	printk("\n");
1113 	return bd_count;
1114 }
1115 
1116 #ifdef DEBUG
1117 static void
1118 dump_frfd(struct FrFD *fd)
1119 {
1120 	int i;
1121 	printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1122 	       le32_to_cpu(fd->fd.FDNext),
1123 	       le32_to_cpu(fd->fd.FDSystem),
1124 	       le32_to_cpu(fd->fd.FDStat),
1125 	       le32_to_cpu(fd->fd.FDCtl));
1126 	printk("BD: ");
1127 	for (i = 0; i < RX_BUF_NUM; i++)
1128 		printk(" %08x %08x",
1129 		       le32_to_cpu(fd->bd[i].BuffData),
1130 		       le32_to_cpu(fd->bd[i].BDCtl));
1131 	printk("\n");
1132 }
1133 
1134 static void
1135 panic_queues(struct net_device *dev)
1136 {
1137 	struct tc35815_local *lp = netdev_priv(dev);
1138 	int i;
1139 
1140 	printk("TxFD base %p, start %u, end %u\n",
1141 	       lp->tfd_base, lp->tfd_start, lp->tfd_end);
1142 	printk("RxFD base %p limit %p cur %p\n",
1143 	       lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1144 	printk("FrFD %p\n", lp->fbl_ptr);
1145 	for (i = 0; i < TX_FD_NUM; i++)
1146 		dump_txfd(&lp->tfd_base[i]);
1147 	for (i = 0; i < RX_FD_NUM; i++) {
1148 		int bd_count = dump_rxfd(&lp->rfd_base[i]);
1149 		i += (bd_count + 1) / 2;	/* skip BDs */
1150 	}
1151 	dump_frfd(lp->fbl_ptr);
1152 	panic("%s: Illegal queue state.", dev->name);
1153 }
1154 #endif
1155 
1156 static void print_eth(const u8 *add)
1157 {
1158 	printk(KERN_DEBUG "print_eth(%p)\n", add);
1159 	printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1160 		add + 6, add, add[12], add[13]);
1161 }
1162 
1163 static int tc35815_tx_full(struct net_device *dev)
1164 {
1165 	struct tc35815_local *lp = netdev_priv(dev);
1166 	return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
1167 }
1168 
1169 static void tc35815_restart(struct net_device *dev)
1170 {
1171 	struct tc35815_local *lp = netdev_priv(dev);
1172 	int ret;
1173 
1174 	if (lp->phy_dev) {
1175 		ret = phy_init_hw(lp->phy_dev);
1176 		if (ret)
1177 			printk(KERN_ERR "%s: PHY init failed.\n", dev->name);
1178 	}
1179 
1180 	spin_lock_bh(&lp->rx_lock);
1181 	spin_lock_irq(&lp->lock);
1182 	tc35815_chip_reset(dev);
1183 	tc35815_clear_queues(dev);
1184 	tc35815_chip_init(dev);
1185 	/* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1186 	tc35815_set_multicast_list(dev);
1187 	spin_unlock_irq(&lp->lock);
1188 	spin_unlock_bh(&lp->rx_lock);
1189 
1190 	netif_wake_queue(dev);
1191 }
1192 
1193 static void tc35815_restart_work(struct work_struct *work)
1194 {
1195 	struct tc35815_local *lp =
1196 		container_of(work, struct tc35815_local, restart_work);
1197 	struct net_device *dev = lp->dev;
1198 
1199 	tc35815_restart(dev);
1200 }
1201 
1202 static void tc35815_schedule_restart(struct net_device *dev)
1203 {
1204 	struct tc35815_local *lp = netdev_priv(dev);
1205 	struct tc35815_regs __iomem *tr =
1206 		(struct tc35815_regs __iomem *)dev->base_addr;
1207 	unsigned long flags;
1208 
1209 	/* disable interrupts */
1210 	spin_lock_irqsave(&lp->lock, flags);
1211 	tc_writel(0, &tr->Int_En);
1212 	tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1213 	schedule_work(&lp->restart_work);
1214 	spin_unlock_irqrestore(&lp->lock, flags);
1215 }
1216 
1217 static void tc35815_tx_timeout(struct net_device *dev)
1218 {
1219 	struct tc35815_regs __iomem *tr =
1220 		(struct tc35815_regs __iomem *)dev->base_addr;
1221 
1222 	printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1223 	       dev->name, tc_readl(&tr->Tx_Stat));
1224 
1225 	/* Try to restart the adaptor. */
1226 	tc35815_schedule_restart(dev);
1227 	dev->stats.tx_errors++;
1228 }
1229 
1230 /*
1231  * Open/initialize the controller. This is called (in the current kernel)
1232  * sometime after booting when the 'ifconfig' program is run.
1233  *
1234  * This routine should set everything up anew at each open, even
1235  * registers that "should" only need to be set once at boot, so that
1236  * there is non-reboot way to recover if something goes wrong.
1237  */
1238 static int
1239 tc35815_open(struct net_device *dev)
1240 {
1241 	struct tc35815_local *lp = netdev_priv(dev);
1242 
1243 	/*
1244 	 * This is used if the interrupt line can turned off (shared).
1245 	 * See 3c503.c for an example of selecting the IRQ at config-time.
1246 	 */
1247 	if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1248 			dev->name, dev))
1249 		return -EAGAIN;
1250 
1251 	tc35815_chip_reset(dev);
1252 
1253 	if (tc35815_init_queues(dev) != 0) {
1254 		free_irq(dev->irq, dev);
1255 		return -EAGAIN;
1256 	}
1257 
1258 	napi_enable(&lp->napi);
1259 
1260 	/* Reset the hardware here. Don't forget to set the station address. */
1261 	spin_lock_irq(&lp->lock);
1262 	tc35815_chip_init(dev);
1263 	spin_unlock_irq(&lp->lock);
1264 
1265 	netif_carrier_off(dev);
1266 	/* schedule a link state check */
1267 	phy_start(lp->phy_dev);
1268 
1269 	/* We are now ready to accept transmit requeusts from
1270 	 * the queueing layer of the networking.
1271 	 */
1272 	netif_start_queue(dev);
1273 
1274 	return 0;
1275 }
1276 
1277 /* This will only be invoked if your driver is _not_ in XOFF state.
1278  * What this means is that you need not check it, and that this
1279  * invariant will hold if you make sure that the netif_*_queue()
1280  * calls are done at the proper times.
1281  */
1282 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1283 {
1284 	struct tc35815_local *lp = netdev_priv(dev);
1285 	struct TxFD *txfd;
1286 	unsigned long flags;
1287 
1288 	/* If some error occurs while trying to transmit this
1289 	 * packet, you should return '1' from this function.
1290 	 * In such a case you _may not_ do anything to the
1291 	 * SKB, it is still owned by the network queueing
1292 	 * layer when an error is returned.  This means you
1293 	 * may not modify any SKB fields, you may not free
1294 	 * the SKB, etc.
1295 	 */
1296 
1297 	/* This is the most common case for modern hardware.
1298 	 * The spinlock protects this code from the TX complete
1299 	 * hardware interrupt handler.  Queue flow control is
1300 	 * thus managed under this lock as well.
1301 	 */
1302 	spin_lock_irqsave(&lp->lock, flags);
1303 
1304 	/* failsafe... (handle txdone now if half of FDs are used) */
1305 	if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1306 	    TX_FD_NUM / 2)
1307 		tc35815_txdone(dev);
1308 
1309 	if (netif_msg_pktdata(lp))
1310 		print_eth(skb->data);
1311 #ifdef DEBUG
1312 	if (lp->tx_skbs[lp->tfd_start].skb) {
1313 		printk("%s: tx_skbs conflict.\n", dev->name);
1314 		panic_queues(dev);
1315 	}
1316 #else
1317 	BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1318 #endif
1319 	lp->tx_skbs[lp->tfd_start].skb = skb;
1320 	lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
1321 
1322 	/*add to ring */
1323 	txfd = &lp->tfd_base[lp->tfd_start];
1324 	txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1325 	txfd->bd.BDCtl = cpu_to_le32(skb->len);
1326 	txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1327 	txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1328 
1329 	if (lp->tfd_start == lp->tfd_end) {
1330 		struct tc35815_regs __iomem *tr =
1331 			(struct tc35815_regs __iomem *)dev->base_addr;
1332 		/* Start DMA Transmitter. */
1333 		txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1334 		txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1335 		if (netif_msg_tx_queued(lp)) {
1336 			printk("%s: starting TxFD.\n", dev->name);
1337 			dump_txfd(txfd);
1338 		}
1339 		tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1340 	} else {
1341 		txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1342 		if (netif_msg_tx_queued(lp)) {
1343 			printk("%s: queueing TxFD.\n", dev->name);
1344 			dump_txfd(txfd);
1345 		}
1346 	}
1347 	lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1348 
1349 	/* If we just used up the very last entry in the
1350 	 * TX ring on this device, tell the queueing
1351 	 * layer to send no more.
1352 	 */
1353 	if (tc35815_tx_full(dev)) {
1354 		if (netif_msg_tx_queued(lp))
1355 			printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1356 		netif_stop_queue(dev);
1357 	}
1358 
1359 	/* When the TX completion hw interrupt arrives, this
1360 	 * is when the transmit statistics are updated.
1361 	 */
1362 
1363 	spin_unlock_irqrestore(&lp->lock, flags);
1364 	return NETDEV_TX_OK;
1365 }
1366 
1367 #define FATAL_ERROR_INT \
1368 	(Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1369 static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1370 {
1371 	static int count;
1372 	printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
1373 	       dev->name, status);
1374 	if (status & Int_IntPCI)
1375 		printk(" IntPCI");
1376 	if (status & Int_DmParErr)
1377 		printk(" DmParErr");
1378 	if (status & Int_IntNRAbt)
1379 		printk(" IntNRAbt");
1380 	printk("\n");
1381 	if (count++ > 100)
1382 		panic("%s: Too many fatal errors.", dev->name);
1383 	printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1384 	/* Try to restart the adaptor. */
1385 	tc35815_schedule_restart(dev);
1386 }
1387 
1388 static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1389 {
1390 	struct tc35815_local *lp = netdev_priv(dev);
1391 	int ret = -1;
1392 
1393 	/* Fatal errors... */
1394 	if (status & FATAL_ERROR_INT) {
1395 		tc35815_fatal_error_interrupt(dev, status);
1396 		return 0;
1397 	}
1398 	/* recoverable errors */
1399 	if (status & Int_IntFDAEx) {
1400 		if (netif_msg_rx_err(lp))
1401 			dev_warn(&dev->dev,
1402 				 "Free Descriptor Area Exhausted (%#x).\n",
1403 				 status);
1404 		dev->stats.rx_dropped++;
1405 		ret = 0;
1406 	}
1407 	if (status & Int_IntBLEx) {
1408 		if (netif_msg_rx_err(lp))
1409 			dev_warn(&dev->dev,
1410 				 "Buffer List Exhausted (%#x).\n",
1411 				 status);
1412 		dev->stats.rx_dropped++;
1413 		ret = 0;
1414 	}
1415 	if (status & Int_IntExBD) {
1416 		if (netif_msg_rx_err(lp))
1417 			dev_warn(&dev->dev,
1418 				 "Excessive Buffer Descriptiors (%#x).\n",
1419 				 status);
1420 		dev->stats.rx_length_errors++;
1421 		ret = 0;
1422 	}
1423 
1424 	/* normal notification */
1425 	if (status & Int_IntMacRx) {
1426 		/* Got a packet(s). */
1427 		ret = tc35815_rx(dev, limit);
1428 		lp->lstats.rx_ints++;
1429 	}
1430 	if (status & Int_IntMacTx) {
1431 		/* Transmit complete. */
1432 		lp->lstats.tx_ints++;
1433 		spin_lock_irq(&lp->lock);
1434 		tc35815_txdone(dev);
1435 		spin_unlock_irq(&lp->lock);
1436 		if (ret < 0)
1437 			ret = 0;
1438 	}
1439 	return ret;
1440 }
1441 
1442 /*
1443  * The typical workload of the driver:
1444  * Handle the network interface interrupts.
1445  */
1446 static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1447 {
1448 	struct net_device *dev = dev_id;
1449 	struct tc35815_local *lp = netdev_priv(dev);
1450 	struct tc35815_regs __iomem *tr =
1451 		(struct tc35815_regs __iomem *)dev->base_addr;
1452 	u32 dmactl = tc_readl(&tr->DMA_Ctl);
1453 
1454 	if (!(dmactl & DMA_IntMask)) {
1455 		/* disable interrupts */
1456 		tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1457 		if (napi_schedule_prep(&lp->napi))
1458 			__napi_schedule(&lp->napi);
1459 		else {
1460 			printk(KERN_ERR "%s: interrupt taken in poll\n",
1461 			       dev->name);
1462 			BUG();
1463 		}
1464 		(void)tc_readl(&tr->Int_Src);	/* flush */
1465 		return IRQ_HANDLED;
1466 	}
1467 	return IRQ_NONE;
1468 }
1469 
1470 #ifdef CONFIG_NET_POLL_CONTROLLER
1471 static void tc35815_poll_controller(struct net_device *dev)
1472 {
1473 	disable_irq(dev->irq);
1474 	tc35815_interrupt(dev->irq, dev);
1475 	enable_irq(dev->irq);
1476 }
1477 #endif
1478 
1479 /* We have a good packet(s), get it/them out of the buffers. */
1480 static int
1481 tc35815_rx(struct net_device *dev, int limit)
1482 {
1483 	struct tc35815_local *lp = netdev_priv(dev);
1484 	unsigned int fdctl;
1485 	int i;
1486 	int received = 0;
1487 
1488 	while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1489 		int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1490 		int pkt_len = fdctl & FD_FDLength_MASK;
1491 		int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1492 #ifdef DEBUG
1493 		struct RxFD *next_rfd;
1494 #endif
1495 #if (RX_CTL_CMD & Rx_StripCRC) == 0
1496 		pkt_len -= ETH_FCS_LEN;
1497 #endif
1498 
1499 		if (netif_msg_rx_status(lp))
1500 			dump_rxfd(lp->rfd_cur);
1501 		if (status & Rx_Good) {
1502 			struct sk_buff *skb;
1503 			unsigned char *data;
1504 			int cur_bd;
1505 
1506 			if (--limit < 0)
1507 				break;
1508 			BUG_ON(bd_count > 1);
1509 			cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1510 				  & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1511 #ifdef DEBUG
1512 			if (cur_bd >= RX_BUF_NUM) {
1513 				printk("%s: invalid BDID.\n", dev->name);
1514 				panic_queues(dev);
1515 			}
1516 			BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1517 			       (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1518 			if (!lp->rx_skbs[cur_bd].skb) {
1519 				printk("%s: NULL skb.\n", dev->name);
1520 				panic_queues(dev);
1521 			}
1522 #else
1523 			BUG_ON(cur_bd >= RX_BUF_NUM);
1524 #endif
1525 			skb = lp->rx_skbs[cur_bd].skb;
1526 			prefetch(skb->data);
1527 			lp->rx_skbs[cur_bd].skb = NULL;
1528 			pci_unmap_single(lp->pci_dev,
1529 					 lp->rx_skbs[cur_bd].skb_dma,
1530 					 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1531 			if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN)
1532 				memmove(skb->data, skb->data - NET_IP_ALIGN,
1533 					pkt_len);
1534 			data = skb_put(skb, pkt_len);
1535 			if (netif_msg_pktdata(lp))
1536 				print_eth(data);
1537 			skb->protocol = eth_type_trans(skb, dev);
1538 			netif_receive_skb(skb);
1539 			received++;
1540 			dev->stats.rx_packets++;
1541 			dev->stats.rx_bytes += pkt_len;
1542 		} else {
1543 			dev->stats.rx_errors++;
1544 			if (netif_msg_rx_err(lp))
1545 				dev_info(&dev->dev, "Rx error (status %x)\n",
1546 					 status & Rx_Stat_Mask);
1547 			/* WORKAROUND: LongErr and CRCErr means Overflow. */
1548 			if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1549 				status &= ~(Rx_LongErr|Rx_CRCErr);
1550 				status |= Rx_Over;
1551 			}
1552 			if (status & Rx_LongErr)
1553 				dev->stats.rx_length_errors++;
1554 			if (status & Rx_Over)
1555 				dev->stats.rx_fifo_errors++;
1556 			if (status & Rx_CRCErr)
1557 				dev->stats.rx_crc_errors++;
1558 			if (status & Rx_Align)
1559 				dev->stats.rx_frame_errors++;
1560 		}
1561 
1562 		if (bd_count > 0) {
1563 			/* put Free Buffer back to controller */
1564 			int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1565 			unsigned char id =
1566 				(bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1567 #ifdef DEBUG
1568 			if (id >= RX_BUF_NUM) {
1569 				printk("%s: invalid BDID.\n", dev->name);
1570 				panic_queues(dev);
1571 			}
1572 #else
1573 			BUG_ON(id >= RX_BUF_NUM);
1574 #endif
1575 			/* free old buffers */
1576 			lp->fbl_count--;
1577 			while (lp->fbl_count < RX_BUF_NUM)
1578 			{
1579 				unsigned char curid =
1580 					(id + 1 + lp->fbl_count) % RX_BUF_NUM;
1581 				struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1582 #ifdef DEBUG
1583 				bdctl = le32_to_cpu(bd->BDCtl);
1584 				if (bdctl & BD_CownsBD) {
1585 					printk("%s: Freeing invalid BD.\n",
1586 					       dev->name);
1587 					panic_queues(dev);
1588 				}
1589 #endif
1590 				/* pass BD to controller */
1591 				if (!lp->rx_skbs[curid].skb) {
1592 					lp->rx_skbs[curid].skb =
1593 						alloc_rxbuf_skb(dev,
1594 								lp->pci_dev,
1595 								&lp->rx_skbs[curid].skb_dma);
1596 					if (!lp->rx_skbs[curid].skb)
1597 						break; /* try on next reception */
1598 					bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1599 				}
1600 				/* Note: BDLength was modified by chip. */
1601 				bd->BDCtl = cpu_to_le32(BD_CownsBD |
1602 							(curid << BD_RxBDID_SHIFT) |
1603 							RX_BUF_SIZE);
1604 				lp->fbl_count++;
1605 			}
1606 		}
1607 
1608 		/* put RxFD back to controller */
1609 #ifdef DEBUG
1610 		next_rfd = fd_bus_to_virt(lp,
1611 					  le32_to_cpu(lp->rfd_cur->fd.FDNext));
1612 		if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1613 			printk("%s: RxFD FDNext invalid.\n", dev->name);
1614 			panic_queues(dev);
1615 		}
1616 #endif
1617 		for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1618 			/* pass FD to controller */
1619 #ifdef DEBUG
1620 			lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1621 #else
1622 			lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1623 #endif
1624 			lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1625 			lp->rfd_cur++;
1626 		}
1627 		if (lp->rfd_cur > lp->rfd_limit)
1628 			lp->rfd_cur = lp->rfd_base;
1629 #ifdef DEBUG
1630 		if (lp->rfd_cur != next_rfd)
1631 			printk("rfd_cur = %p, next_rfd %p\n",
1632 			       lp->rfd_cur, next_rfd);
1633 #endif
1634 	}
1635 
1636 	return received;
1637 }
1638 
1639 static int tc35815_poll(struct napi_struct *napi, int budget)
1640 {
1641 	struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1642 	struct net_device *dev = lp->dev;
1643 	struct tc35815_regs __iomem *tr =
1644 		(struct tc35815_regs __iomem *)dev->base_addr;
1645 	int received = 0, handled;
1646 	u32 status;
1647 
1648 	if (budget <= 0)
1649 		return received;
1650 
1651 	spin_lock(&lp->rx_lock);
1652 	status = tc_readl(&tr->Int_Src);
1653 	do {
1654 		/* BLEx, FDAEx will be cleared later */
1655 		tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1656 			  &tr->Int_Src);	/* write to clear */
1657 
1658 		handled = tc35815_do_interrupt(dev, status, budget - received);
1659 		if (status & (Int_BLEx | Int_FDAEx))
1660 			tc_writel(status & (Int_BLEx | Int_FDAEx),
1661 				  &tr->Int_Src);
1662 		if (handled >= 0) {
1663 			received += handled;
1664 			if (received >= budget)
1665 				break;
1666 		}
1667 		status = tc_readl(&tr->Int_Src);
1668 	} while (status);
1669 	spin_unlock(&lp->rx_lock);
1670 
1671 	if (received < budget) {
1672 		napi_complete(napi);
1673 		/* enable interrupts */
1674 		tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1675 	}
1676 	return received;
1677 }
1678 
1679 #define TX_STA_ERR	(Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1680 
1681 static void
1682 tc35815_check_tx_stat(struct net_device *dev, int status)
1683 {
1684 	struct tc35815_local *lp = netdev_priv(dev);
1685 	const char *msg = NULL;
1686 
1687 	/* count collisions */
1688 	if (status & Tx_ExColl)
1689 		dev->stats.collisions += 16;
1690 	if (status & Tx_TxColl_MASK)
1691 		dev->stats.collisions += status & Tx_TxColl_MASK;
1692 
1693 	/* TX4939 does not have NCarr */
1694 	if (lp->chiptype == TC35815_TX4939)
1695 		status &= ~Tx_NCarr;
1696 	/* WORKAROUND: ignore LostCrS in full duplex operation */
1697 	if (!lp->link || lp->duplex == DUPLEX_FULL)
1698 		status &= ~Tx_NCarr;
1699 
1700 	if (!(status & TX_STA_ERR)) {
1701 		/* no error. */
1702 		dev->stats.tx_packets++;
1703 		return;
1704 	}
1705 
1706 	dev->stats.tx_errors++;
1707 	if (status & Tx_ExColl) {
1708 		dev->stats.tx_aborted_errors++;
1709 		msg = "Excessive Collision.";
1710 	}
1711 	if (status & Tx_Under) {
1712 		dev->stats.tx_fifo_errors++;
1713 		msg = "Tx FIFO Underrun.";
1714 		if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1715 			lp->lstats.tx_underrun++;
1716 			if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1717 				struct tc35815_regs __iomem *tr =
1718 					(struct tc35815_regs __iomem *)dev->base_addr;
1719 				tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1720 				msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1721 			}
1722 		}
1723 	}
1724 	if (status & Tx_Defer) {
1725 		dev->stats.tx_fifo_errors++;
1726 		msg = "Excessive Deferral.";
1727 	}
1728 	if (status & Tx_NCarr) {
1729 		dev->stats.tx_carrier_errors++;
1730 		msg = "Lost Carrier Sense.";
1731 	}
1732 	if (status & Tx_LateColl) {
1733 		dev->stats.tx_aborted_errors++;
1734 		msg = "Late Collision.";
1735 	}
1736 	if (status & Tx_TxPar) {
1737 		dev->stats.tx_fifo_errors++;
1738 		msg = "Transmit Parity Error.";
1739 	}
1740 	if (status & Tx_SQErr) {
1741 		dev->stats.tx_heartbeat_errors++;
1742 		msg = "Signal Quality Error.";
1743 	}
1744 	if (msg && netif_msg_tx_err(lp))
1745 		printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1746 }
1747 
1748 /* This handles TX complete events posted by the device
1749  * via interrupts.
1750  */
1751 static void
1752 tc35815_txdone(struct net_device *dev)
1753 {
1754 	struct tc35815_local *lp = netdev_priv(dev);
1755 	struct TxFD *txfd;
1756 	unsigned int fdctl;
1757 
1758 	txfd = &lp->tfd_base[lp->tfd_end];
1759 	while (lp->tfd_start != lp->tfd_end &&
1760 	       !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1761 		int status = le32_to_cpu(txfd->fd.FDStat);
1762 		struct sk_buff *skb;
1763 		unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1764 		u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1765 
1766 		if (netif_msg_tx_done(lp)) {
1767 			printk("%s: complete TxFD.\n", dev->name);
1768 			dump_txfd(txfd);
1769 		}
1770 		tc35815_check_tx_stat(dev, status);
1771 
1772 		skb = fdsystem != 0xffffffff ?
1773 			lp->tx_skbs[fdsystem].skb : NULL;
1774 #ifdef DEBUG
1775 		if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1776 			printk("%s: tx_skbs mismatch.\n", dev->name);
1777 			panic_queues(dev);
1778 		}
1779 #else
1780 		BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1781 #endif
1782 		if (skb) {
1783 			dev->stats.tx_bytes += skb->len;
1784 			pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
1785 			lp->tx_skbs[lp->tfd_end].skb = NULL;
1786 			lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1787 			dev_kfree_skb_any(skb);
1788 		}
1789 		txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1790 
1791 		lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1792 		txfd = &lp->tfd_base[lp->tfd_end];
1793 #ifdef DEBUG
1794 		if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1795 			printk("%s: TxFD FDNext invalid.\n", dev->name);
1796 			panic_queues(dev);
1797 		}
1798 #endif
1799 		if (fdnext & FD_Next_EOL) {
1800 			/* DMA Transmitter has been stopping... */
1801 			if (lp->tfd_end != lp->tfd_start) {
1802 				struct tc35815_regs __iomem *tr =
1803 					(struct tc35815_regs __iomem *)dev->base_addr;
1804 				int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1805 				struct TxFD *txhead = &lp->tfd_base[head];
1806 				int qlen = (lp->tfd_start + TX_FD_NUM
1807 					    - lp->tfd_end) % TX_FD_NUM;
1808 
1809 #ifdef DEBUG
1810 				if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1811 					printk("%s: TxFD FDCtl invalid.\n", dev->name);
1812 					panic_queues(dev);
1813 				}
1814 #endif
1815 				/* log max queue length */
1816 				if (lp->lstats.max_tx_qlen < qlen)
1817 					lp->lstats.max_tx_qlen = qlen;
1818 
1819 
1820 				/* start DMA Transmitter again */
1821 				txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1822 				txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1823 				if (netif_msg_tx_queued(lp)) {
1824 					printk("%s: start TxFD on queue.\n",
1825 					       dev->name);
1826 					dump_txfd(txfd);
1827 				}
1828 				tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1829 			}
1830 			break;
1831 		}
1832 	}
1833 
1834 	/* If we had stopped the queue due to a "tx full"
1835 	 * condition, and space has now been made available,
1836 	 * wake up the queue.
1837 	 */
1838 	if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1839 		netif_wake_queue(dev);
1840 }
1841 
1842 /* The inverse routine to tc35815_open(). */
1843 static int
1844 tc35815_close(struct net_device *dev)
1845 {
1846 	struct tc35815_local *lp = netdev_priv(dev);
1847 
1848 	netif_stop_queue(dev);
1849 	napi_disable(&lp->napi);
1850 	if (lp->phy_dev)
1851 		phy_stop(lp->phy_dev);
1852 	cancel_work_sync(&lp->restart_work);
1853 
1854 	/* Flush the Tx and disable Rx here. */
1855 	tc35815_chip_reset(dev);
1856 	free_irq(dev->irq, dev);
1857 
1858 	tc35815_free_queues(dev);
1859 
1860 	return 0;
1861 
1862 }
1863 
1864 /*
1865  * Get the current statistics.
1866  * This may be called with the card open or closed.
1867  */
1868 static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1869 {
1870 	struct tc35815_regs __iomem *tr =
1871 		(struct tc35815_regs __iomem *)dev->base_addr;
1872 	if (netif_running(dev))
1873 		/* Update the statistics from the device registers. */
1874 		dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1875 
1876 	return &dev->stats;
1877 }
1878 
1879 static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
1880 {
1881 	struct tc35815_local *lp = netdev_priv(dev);
1882 	struct tc35815_regs __iomem *tr =
1883 		(struct tc35815_regs __iomem *)dev->base_addr;
1884 	int cam_index = index * 6;
1885 	u32 cam_data;
1886 	u32 saved_addr;
1887 
1888 	saved_addr = tc_readl(&tr->CAM_Adr);
1889 
1890 	if (netif_msg_hw(lp))
1891 		printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1892 			dev->name, index, addr);
1893 	if (index & 1) {
1894 		/* read modify write */
1895 		tc_writel(cam_index - 2, &tr->CAM_Adr);
1896 		cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1897 		cam_data |= addr[0] << 8 | addr[1];
1898 		tc_writel(cam_data, &tr->CAM_Data);
1899 		/* write whole word */
1900 		tc_writel(cam_index + 2, &tr->CAM_Adr);
1901 		cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1902 		tc_writel(cam_data, &tr->CAM_Data);
1903 	} else {
1904 		/* write whole word */
1905 		tc_writel(cam_index, &tr->CAM_Adr);
1906 		cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1907 		tc_writel(cam_data, &tr->CAM_Data);
1908 		/* read modify write */
1909 		tc_writel(cam_index + 4, &tr->CAM_Adr);
1910 		cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1911 		cam_data |= addr[4] << 24 | (addr[5] << 16);
1912 		tc_writel(cam_data, &tr->CAM_Data);
1913 	}
1914 
1915 	tc_writel(saved_addr, &tr->CAM_Adr);
1916 }
1917 
1918 
1919 /*
1920  * Set or clear the multicast filter for this adaptor.
1921  * num_addrs == -1	Promiscuous mode, receive all packets
1922  * num_addrs == 0	Normal mode, clear multicast list
1923  * num_addrs > 0	Multicast mode, receive normal and MC packets,
1924  *			and do best-effort filtering.
1925  */
1926 static void
1927 tc35815_set_multicast_list(struct net_device *dev)
1928 {
1929 	struct tc35815_regs __iomem *tr =
1930 		(struct tc35815_regs __iomem *)dev->base_addr;
1931 
1932 	if (dev->flags & IFF_PROMISC) {
1933 		/* With some (all?) 100MHalf HUB, controller will hang
1934 		 * if we enabled promiscuous mode before linkup... */
1935 		struct tc35815_local *lp = netdev_priv(dev);
1936 
1937 		if (!lp->link)
1938 			return;
1939 		/* Enable promiscuous mode */
1940 		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1941 	} else if ((dev->flags & IFF_ALLMULTI) ||
1942 		  netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1943 		/* CAM 0, 1, 20 are reserved. */
1944 		/* Disable promiscuous mode, use normal mode. */
1945 		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1946 	} else if (!netdev_mc_empty(dev)) {
1947 		struct netdev_hw_addr *ha;
1948 		int i;
1949 		int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1950 
1951 		tc_writel(0, &tr->CAM_Ctl);
1952 		/* Walk the address list, and load the filter */
1953 		i = 0;
1954 		netdev_for_each_mc_addr(ha, dev) {
1955 			/* entry 0,1 is reserved. */
1956 			tc35815_set_cam_entry(dev, i + 2, ha->addr);
1957 			ena_bits |= CAM_Ena_Bit(i + 2);
1958 			i++;
1959 		}
1960 		tc_writel(ena_bits, &tr->CAM_Ena);
1961 		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1962 	} else {
1963 		tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1964 		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1965 	}
1966 }
1967 
1968 static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1969 {
1970 	struct tc35815_local *lp = netdev_priv(dev);
1971 
1972 	strlcpy(info->driver, MODNAME, sizeof(info->driver));
1973 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1974 	strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
1975 }
1976 
1977 static int tc35815_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1978 {
1979 	struct tc35815_local *lp = netdev_priv(dev);
1980 
1981 	if (!lp->phy_dev)
1982 		return -ENODEV;
1983 	return phy_ethtool_gset(lp->phy_dev, cmd);
1984 }
1985 
1986 static int tc35815_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1987 {
1988 	struct tc35815_local *lp = netdev_priv(dev);
1989 
1990 	if (!lp->phy_dev)
1991 		return -ENODEV;
1992 	return phy_ethtool_sset(lp->phy_dev, cmd);
1993 }
1994 
1995 static u32 tc35815_get_msglevel(struct net_device *dev)
1996 {
1997 	struct tc35815_local *lp = netdev_priv(dev);
1998 	return lp->msg_enable;
1999 }
2000 
2001 static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
2002 {
2003 	struct tc35815_local *lp = netdev_priv(dev);
2004 	lp->msg_enable = datum;
2005 }
2006 
2007 static int tc35815_get_sset_count(struct net_device *dev, int sset)
2008 {
2009 	struct tc35815_local *lp = netdev_priv(dev);
2010 
2011 	switch (sset) {
2012 	case ETH_SS_STATS:
2013 		return sizeof(lp->lstats) / sizeof(int);
2014 	default:
2015 		return -EOPNOTSUPP;
2016 	}
2017 }
2018 
2019 static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
2020 {
2021 	struct tc35815_local *lp = netdev_priv(dev);
2022 	data[0] = lp->lstats.max_tx_qlen;
2023 	data[1] = lp->lstats.tx_ints;
2024 	data[2] = lp->lstats.rx_ints;
2025 	data[3] = lp->lstats.tx_underrun;
2026 }
2027 
2028 static struct {
2029 	const char str[ETH_GSTRING_LEN];
2030 } ethtool_stats_keys[] = {
2031 	{ "max_tx_qlen" },
2032 	{ "tx_ints" },
2033 	{ "rx_ints" },
2034 	{ "tx_underrun" },
2035 };
2036 
2037 static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2038 {
2039 	memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
2040 }
2041 
2042 static const struct ethtool_ops tc35815_ethtool_ops = {
2043 	.get_drvinfo		= tc35815_get_drvinfo,
2044 	.get_settings		= tc35815_get_settings,
2045 	.set_settings		= tc35815_set_settings,
2046 	.get_link		= ethtool_op_get_link,
2047 	.get_msglevel		= tc35815_get_msglevel,
2048 	.set_msglevel		= tc35815_set_msglevel,
2049 	.get_strings		= tc35815_get_strings,
2050 	.get_sset_count		= tc35815_get_sset_count,
2051 	.get_ethtool_stats	= tc35815_get_ethtool_stats,
2052 };
2053 
2054 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2055 {
2056 	struct tc35815_local *lp = netdev_priv(dev);
2057 
2058 	if (!netif_running(dev))
2059 		return -EINVAL;
2060 	if (!lp->phy_dev)
2061 		return -ENODEV;
2062 	return phy_mii_ioctl(lp->phy_dev, rq, cmd);
2063 }
2064 
2065 static void tc35815_chip_reset(struct net_device *dev)
2066 {
2067 	struct tc35815_regs __iomem *tr =
2068 		(struct tc35815_regs __iomem *)dev->base_addr;
2069 	int i;
2070 	/* reset the controller */
2071 	tc_writel(MAC_Reset, &tr->MAC_Ctl);
2072 	udelay(4); /* 3200ns */
2073 	i = 0;
2074 	while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2075 		if (i++ > 100) {
2076 			printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2077 			break;
2078 		}
2079 		mdelay(1);
2080 	}
2081 	tc_writel(0, &tr->MAC_Ctl);
2082 
2083 	/* initialize registers to default value */
2084 	tc_writel(0, &tr->DMA_Ctl);
2085 	tc_writel(0, &tr->TxThrsh);
2086 	tc_writel(0, &tr->TxPollCtr);
2087 	tc_writel(0, &tr->RxFragSize);
2088 	tc_writel(0, &tr->Int_En);
2089 	tc_writel(0, &tr->FDA_Bas);
2090 	tc_writel(0, &tr->FDA_Lim);
2091 	tc_writel(0xffffffff, &tr->Int_Src);	/* Write 1 to clear */
2092 	tc_writel(0, &tr->CAM_Ctl);
2093 	tc_writel(0, &tr->Tx_Ctl);
2094 	tc_writel(0, &tr->Rx_Ctl);
2095 	tc_writel(0, &tr->CAM_Ena);
2096 	(void)tc_readl(&tr->Miss_Cnt);	/* Read to clear */
2097 
2098 	/* initialize internal SRAM */
2099 	tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2100 	for (i = 0; i < 0x1000; i += 4) {
2101 		tc_writel(i, &tr->CAM_Adr);
2102 		tc_writel(0, &tr->CAM_Data);
2103 	}
2104 	tc_writel(0, &tr->DMA_Ctl);
2105 }
2106 
2107 static void tc35815_chip_init(struct net_device *dev)
2108 {
2109 	struct tc35815_local *lp = netdev_priv(dev);
2110 	struct tc35815_regs __iomem *tr =
2111 		(struct tc35815_regs __iomem *)dev->base_addr;
2112 	unsigned long txctl = TX_CTL_CMD;
2113 
2114 	/* load station address to CAM */
2115 	tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2116 
2117 	/* Enable CAM (broadcast and unicast) */
2118 	tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2119 	tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2120 
2121 	/* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2122 	if (HAVE_DMA_RXALIGN(lp))
2123 		tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2124 	else
2125 		tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2126 	tc_writel(0, &tr->TxPollCtr);	/* Batch mode */
2127 	tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2128 	tc_writel(INT_EN_CMD, &tr->Int_En);
2129 
2130 	/* set queues */
2131 	tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2132 	tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2133 		  &tr->FDA_Lim);
2134 	/*
2135 	 * Activation method:
2136 	 * First, enable the MAC Transmitter and the DMA Receive circuits.
2137 	 * Then enable the DMA Transmitter and the MAC Receive circuits.
2138 	 */
2139 	tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr);	/* start DMA receiver */
2140 	tc_writel(RX_CTL_CMD, &tr->Rx_Ctl);	/* start MAC receiver */
2141 
2142 	/* start MAC transmitter */
2143 	/* TX4939 does not have EnLCarr */
2144 	if (lp->chiptype == TC35815_TX4939)
2145 		txctl &= ~Tx_EnLCarr;
2146 	/* WORKAROUND: ignore LostCrS in full duplex operation */
2147 	if (!lp->phy_dev || !lp->link || lp->duplex == DUPLEX_FULL)
2148 		txctl &= ~Tx_EnLCarr;
2149 	tc_writel(txctl, &tr->Tx_Ctl);
2150 }
2151 
2152 #ifdef CONFIG_PM
2153 static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2154 {
2155 	struct net_device *dev = pci_get_drvdata(pdev);
2156 	struct tc35815_local *lp = netdev_priv(dev);
2157 	unsigned long flags;
2158 
2159 	pci_save_state(pdev);
2160 	if (!netif_running(dev))
2161 		return 0;
2162 	netif_device_detach(dev);
2163 	if (lp->phy_dev)
2164 		phy_stop(lp->phy_dev);
2165 	spin_lock_irqsave(&lp->lock, flags);
2166 	tc35815_chip_reset(dev);
2167 	spin_unlock_irqrestore(&lp->lock, flags);
2168 	pci_set_power_state(pdev, PCI_D3hot);
2169 	return 0;
2170 }
2171 
2172 static int tc35815_resume(struct pci_dev *pdev)
2173 {
2174 	struct net_device *dev = pci_get_drvdata(pdev);
2175 	struct tc35815_local *lp = netdev_priv(dev);
2176 
2177 	pci_restore_state(pdev);
2178 	if (!netif_running(dev))
2179 		return 0;
2180 	pci_set_power_state(pdev, PCI_D0);
2181 	tc35815_restart(dev);
2182 	netif_carrier_off(dev);
2183 	if (lp->phy_dev)
2184 		phy_start(lp->phy_dev);
2185 	netif_device_attach(dev);
2186 	return 0;
2187 }
2188 #endif /* CONFIG_PM */
2189 
2190 static struct pci_driver tc35815_pci_driver = {
2191 	.name		= MODNAME,
2192 	.id_table	= tc35815_pci_tbl,
2193 	.probe		= tc35815_init_one,
2194 	.remove		= tc35815_remove_one,
2195 #ifdef CONFIG_PM
2196 	.suspend	= tc35815_suspend,
2197 	.resume		= tc35815_resume,
2198 #endif
2199 };
2200 
2201 module_param_named(speed, options.speed, int, 0);
2202 MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2203 module_param_named(duplex, options.duplex, int, 0);
2204 MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2205 
2206 module_pci_driver(tc35815_pci_driver);
2207 MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2208 MODULE_LICENSE("GPL");
2209