1 /* 2 * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux. 3 * 4 * Based on skelton.c by Donald Becker. 5 * 6 * This driver is a replacement of older and less maintained version. 7 * This is a header of the older version: 8 * -----<snip>----- 9 * Copyright 2001 MontaVista Software Inc. 10 * Author: MontaVista Software, Inc. 11 * ahennessy@mvista.com 12 * Copyright (C) 2000-2001 Toshiba Corporation 13 * static const char *version = 14 * "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n"; 15 * -----<snip>----- 16 * 17 * This file is subject to the terms and conditions of the GNU General Public 18 * License. See the file "COPYING" in the main directory of this archive 19 * for more details. 20 * 21 * (C) Copyright TOSHIBA CORPORATION 2004-2005 22 * All Rights Reserved. 23 */ 24 25 #define DRV_VERSION "1.39" 26 static const char version[] = "tc35815.c:v" DRV_VERSION "\n"; 27 #define MODNAME "tc35815" 28 29 #include <linux/module.h> 30 #include <linux/kernel.h> 31 #include <linux/types.h> 32 #include <linux/fcntl.h> 33 #include <linux/interrupt.h> 34 #include <linux/ioport.h> 35 #include <linux/in.h> 36 #include <linux/if_vlan.h> 37 #include <linux/slab.h> 38 #include <linux/string.h> 39 #include <linux/spinlock.h> 40 #include <linux/errno.h> 41 #include <linux/netdevice.h> 42 #include <linux/etherdevice.h> 43 #include <linux/skbuff.h> 44 #include <linux/delay.h> 45 #include <linux/pci.h> 46 #include <linux/phy.h> 47 #include <linux/workqueue.h> 48 #include <linux/platform_device.h> 49 #include <linux/prefetch.h> 50 #include <asm/io.h> 51 #include <asm/byteorder.h> 52 53 enum tc35815_chiptype { 54 TC35815CF = 0, 55 TC35815_NWU, 56 TC35815_TX4939, 57 }; 58 59 /* indexed by tc35815_chiptype, above */ 60 static const struct { 61 const char *name; 62 } chip_info[] = { 63 { "TOSHIBA TC35815CF 10/100BaseTX" }, 64 { "TOSHIBA TC35815 with Wake on LAN" }, 65 { "TOSHIBA TC35815/TX4939" }, 66 }; 67 68 static const struct pci_device_id tc35815_pci_tbl[] = { 69 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF }, 70 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU }, 71 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 }, 72 {0,} 73 }; 74 MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl); 75 76 /* see MODULE_PARM_DESC */ 77 static struct tc35815_options { 78 int speed; 79 int duplex; 80 } options; 81 82 /* 83 * Registers 84 */ 85 struct tc35815_regs { 86 __u32 DMA_Ctl; /* 0x00 */ 87 __u32 TxFrmPtr; 88 __u32 TxThrsh; 89 __u32 TxPollCtr; 90 __u32 BLFrmPtr; 91 __u32 RxFragSize; 92 __u32 Int_En; 93 __u32 FDA_Bas; 94 __u32 FDA_Lim; /* 0x20 */ 95 __u32 Int_Src; 96 __u32 unused0[2]; 97 __u32 PauseCnt; 98 __u32 RemPauCnt; 99 __u32 TxCtlFrmStat; 100 __u32 unused1; 101 __u32 MAC_Ctl; /* 0x40 */ 102 __u32 CAM_Ctl; 103 __u32 Tx_Ctl; 104 __u32 Tx_Stat; 105 __u32 Rx_Ctl; 106 __u32 Rx_Stat; 107 __u32 MD_Data; 108 __u32 MD_CA; 109 __u32 CAM_Adr; /* 0x60 */ 110 __u32 CAM_Data; 111 __u32 CAM_Ena; 112 __u32 PROM_Ctl; 113 __u32 PROM_Data; 114 __u32 Algn_Cnt; 115 __u32 CRC_Cnt; 116 __u32 Miss_Cnt; 117 }; 118 119 /* 120 * Bit assignments 121 */ 122 /* DMA_Ctl bit assign ------------------------------------------------------- */ 123 #define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */ 124 #define DMA_RxAlign_1 0x00400000 125 #define DMA_RxAlign_2 0x00800000 126 #define DMA_RxAlign_3 0x00c00000 127 #define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */ 128 #define DMA_IntMask 0x00040000 /* 1:Interrupt mask */ 129 #define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */ 130 #define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */ 131 #define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */ 132 #define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */ 133 #define DMA_TestMode 0x00002000 /* 1:Test Mode */ 134 #define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */ 135 #define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */ 136 137 /* RxFragSize bit assign ---------------------------------------------------- */ 138 #define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */ 139 #define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */ 140 141 /* MAC_Ctl bit assign ------------------------------------------------------- */ 142 #define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */ 143 #define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */ 144 #define MAC_MissRoll 0x00000400 /* 1:Missed Roll */ 145 #define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */ 146 #define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */ 147 #define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/ 148 #define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */ 149 #define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */ 150 #define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */ 151 #define MAC_Reset 0x00000004 /* 1:Software Reset */ 152 #define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */ 153 #define MAC_HaltReq 0x00000001 /* 1:Halt request */ 154 155 /* PROM_Ctl bit assign ------------------------------------------------------ */ 156 #define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */ 157 #define PROM_Read 0x00004000 /*10:Read operation */ 158 #define PROM_Write 0x00002000 /*01:Write operation */ 159 #define PROM_Erase 0x00006000 /*11:Erase operation */ 160 /*00:Enable or Disable Writting, */ 161 /* as specified in PROM_Addr. */ 162 #define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */ 163 /*00xxxx: disable */ 164 165 /* CAM_Ctl bit assign ------------------------------------------------------- */ 166 #define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */ 167 #define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/ 168 /* accept other */ 169 #define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */ 170 #define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */ 171 #define CAM_StationAcc 0x00000001 /* 1:unicast accept */ 172 173 /* CAM_Ena bit assign ------------------------------------------------------- */ 174 #define CAM_ENTRY_MAX 21 /* CAM Data entry max count */ 175 #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */ 176 #define CAM_Ena_Bit(index) (1 << (index)) 177 #define CAM_ENTRY_DESTINATION 0 178 #define CAM_ENTRY_SOURCE 1 179 #define CAM_ENTRY_MACCTL 20 180 181 /* Tx_Ctl bit assign -------------------------------------------------------- */ 182 #define Tx_En 0x00000001 /* 1:Transmit enable */ 183 #define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */ 184 #define Tx_NoPad 0x00000004 /* 1:Suppress Padding */ 185 #define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */ 186 #define Tx_FBack 0x00000010 /* 1:Fast Back-off */ 187 #define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */ 188 #define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */ 189 #define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */ 190 #define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */ 191 #define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */ 192 #define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */ 193 #define Tx_EnComp 0x00004000 /* 1:Enable Completion */ 194 195 /* Tx_Stat bit assign ------------------------------------------------------- */ 196 #define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */ 197 #define Tx_ExColl 0x00000010 /* Excessive Collision */ 198 #define Tx_TXDefer 0x00000020 /* Transmit Defered */ 199 #define Tx_Paused 0x00000040 /* Transmit Paused */ 200 #define Tx_IntTx 0x00000080 /* Interrupt on Tx */ 201 #define Tx_Under 0x00000100 /* Underrun */ 202 #define Tx_Defer 0x00000200 /* Deferral */ 203 #define Tx_NCarr 0x00000400 /* No Carrier */ 204 #define Tx_10Stat 0x00000800 /* 10Mbps Status */ 205 #define Tx_LateColl 0x00001000 /* Late Collision */ 206 #define Tx_TxPar 0x00002000 /* Tx Parity Error */ 207 #define Tx_Comp 0x00004000 /* Completion */ 208 #define Tx_Halted 0x00008000 /* Tx Halted */ 209 #define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */ 210 211 /* Rx_Ctl bit assign -------------------------------------------------------- */ 212 #define Rx_EnGood 0x00004000 /* 1:Enable Good */ 213 #define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */ 214 #define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */ 215 #define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */ 216 #define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */ 217 #define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */ 218 #define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */ 219 #define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */ 220 #define Rx_ShortEn 0x00000008 /* 1:Short Enable */ 221 #define Rx_LongEn 0x00000004 /* 1:Long Enable */ 222 #define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */ 223 #define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */ 224 225 /* Rx_Stat bit assign ------------------------------------------------------- */ 226 #define Rx_Halted 0x00008000 /* Rx Halted */ 227 #define Rx_Good 0x00004000 /* Rx Good */ 228 #define Rx_RxPar 0x00002000 /* Rx Parity Error */ 229 #define Rx_TypePkt 0x00001000 /* Rx Type Packet */ 230 #define Rx_LongErr 0x00000800 /* Rx Long Error */ 231 #define Rx_Over 0x00000400 /* Rx Overflow */ 232 #define Rx_CRCErr 0x00000200 /* Rx CRC Error */ 233 #define Rx_Align 0x00000100 /* Rx Alignment Error */ 234 #define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */ 235 #define Rx_IntRx 0x00000040 /* Rx Interrupt */ 236 #define Rx_CtlRecd 0x00000020 /* Rx Control Receive */ 237 #define Rx_InLenErr 0x00000010 /* Rx In Range Frame Length Error */ 238 239 #define Rx_Stat_Mask 0x0000FFF0 /* Rx All Status Mask */ 240 241 /* Int_En bit assign -------------------------------------------------------- */ 242 #define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */ 243 #define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Ctl Complete Enable */ 244 #define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */ 245 #define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */ 246 #define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */ 247 #define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */ 248 #define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */ 249 #define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */ 250 #define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */ 251 #define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */ 252 #define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */ 253 #define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */ 254 /* Exhausted Enable */ 255 256 /* Int_Src bit assign ------------------------------------------------------- */ 257 #define Int_NRabt 0x00004000 /* 1:Non Recoverable error */ 258 #define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */ 259 #define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */ 260 #define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */ 261 #define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */ 262 #define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */ 263 #define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */ 264 #define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */ 265 #define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */ 266 #define Int_SWInt 0x00000020 /* 1:Software request & Clear */ 267 #define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */ 268 #define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */ 269 #define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */ 270 #define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */ 271 #define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */ 272 273 /* MD_CA bit assign --------------------------------------------------------- */ 274 #define MD_CA_PreSup 0x00001000 /* 1:Preamble Suppress */ 275 #define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */ 276 #define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */ 277 278 279 /* 280 * Descriptors 281 */ 282 283 /* Frame descriptor */ 284 struct FDesc { 285 volatile __u32 FDNext; 286 volatile __u32 FDSystem; 287 volatile __u32 FDStat; 288 volatile __u32 FDCtl; 289 }; 290 291 /* Buffer descriptor */ 292 struct BDesc { 293 volatile __u32 BuffData; 294 volatile __u32 BDCtl; 295 }; 296 297 #define FD_ALIGN 16 298 299 /* Frame Descriptor bit assign ---------------------------------------------- */ 300 #define FD_FDLength_MASK 0x0000FFFF /* Length MASK */ 301 #define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */ 302 #define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */ 303 #define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */ 304 #define FD_FrmOpt_IntTx 0x20000000 /* Tx only */ 305 #define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */ 306 #define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */ 307 #define FD_FrmOpt_Packing 0x04000000 /* Rx only */ 308 #define FD_CownsFD 0x80000000 /* FD Controller owner bit */ 309 #define FD_Next_EOL 0x00000001 /* FD EOL indicator */ 310 #define FD_BDCnt_SHIFT 16 311 312 /* Buffer Descriptor bit assign --------------------------------------------- */ 313 #define BD_BuffLength_MASK 0x0000FFFF /* Receive Data Size */ 314 #define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */ 315 #define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */ 316 #define BD_CownsBD 0x80000000 /* BD Controller owner bit */ 317 #define BD_RxBDID_SHIFT 16 318 #define BD_RxBDSeqN_SHIFT 24 319 320 321 /* Some useful constants. */ 322 323 #define TX_CTL_CMD (Tx_EnTxPar | Tx_EnLateColl | \ 324 Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \ 325 Tx_En) /* maybe 0x7b01 */ 326 /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */ 327 #define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \ 328 | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */ 329 #define INT_EN_CMD (Int_NRAbtEn | \ 330 Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \ 331 Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \ 332 Int_STargAbtEn | \ 333 Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/ 334 #define DMA_CTL_CMD DMA_BURST_SIZE 335 #define HAVE_DMA_RXALIGN(lp) likely((lp)->chiptype != TC35815CF) 336 337 /* Tuning parameters */ 338 #define DMA_BURST_SIZE 32 339 #define TX_THRESHOLD 1024 340 /* used threshold with packet max byte for low pci transfer ability.*/ 341 #define TX_THRESHOLD_MAX 1536 342 /* setting threshold max value when overrun error occurred this count. */ 343 #define TX_THRESHOLD_KEEP_LIMIT 10 344 345 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */ 346 #define FD_PAGE_NUM 4 347 #define RX_BUF_NUM 128 /* < 256 */ 348 #define RX_FD_NUM 256 /* >= 32 */ 349 #define TX_FD_NUM 128 350 #if RX_CTL_CMD & Rx_LongEn 351 #define RX_BUF_SIZE PAGE_SIZE 352 #elif RX_CTL_CMD & Rx_StripCRC 353 #define RX_BUF_SIZE \ 354 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN) 355 #else 356 #define RX_BUF_SIZE \ 357 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN) 358 #endif 359 #define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */ 360 #define NAPI_WEIGHT 16 361 362 struct TxFD { 363 struct FDesc fd; 364 struct BDesc bd; 365 struct BDesc unused; 366 }; 367 368 struct RxFD { 369 struct FDesc fd; 370 struct BDesc bd[]; /* variable length */ 371 }; 372 373 struct FrFD { 374 struct FDesc fd; 375 struct BDesc bd[RX_BUF_NUM]; 376 }; 377 378 379 #define tc_readl(addr) ioread32(addr) 380 #define tc_writel(d, addr) iowrite32(d, addr) 381 382 #define TC35815_TX_TIMEOUT msecs_to_jiffies(400) 383 384 /* Information that need to be kept for each controller. */ 385 struct tc35815_local { 386 struct pci_dev *pci_dev; 387 388 struct net_device *dev; 389 struct napi_struct napi; 390 391 /* statistics */ 392 struct { 393 int max_tx_qlen; 394 int tx_ints; 395 int rx_ints; 396 int tx_underrun; 397 } lstats; 398 399 /* Tx control lock. This protects the transmit buffer ring 400 * state along with the "tx full" state of the driver. This 401 * means all netif_queue flow control actions are protected 402 * by this lock as well. 403 */ 404 spinlock_t lock; 405 spinlock_t rx_lock; 406 407 struct mii_bus *mii_bus; 408 int duplex; 409 int speed; 410 int link; 411 struct work_struct restart_work; 412 413 /* 414 * Transmitting: Batch Mode. 415 * 1 BD in 1 TxFD. 416 * Receiving: Non-Packing Mode. 417 * 1 circular FD for Free Buffer List. 418 * RX_BUF_NUM BD in Free Buffer FD. 419 * One Free Buffer BD has ETH_FRAME_LEN data buffer. 420 */ 421 void *fd_buf; /* for TxFD, RxFD, FrFD */ 422 dma_addr_t fd_buf_dma; 423 struct TxFD *tfd_base; 424 unsigned int tfd_start; 425 unsigned int tfd_end; 426 struct RxFD *rfd_base; 427 struct RxFD *rfd_limit; 428 struct RxFD *rfd_cur; 429 struct FrFD *fbl_ptr; 430 unsigned int fbl_count; 431 struct { 432 struct sk_buff *skb; 433 dma_addr_t skb_dma; 434 } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM]; 435 u32 msg_enable; 436 enum tc35815_chiptype chiptype; 437 }; 438 439 static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt) 440 { 441 return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf); 442 } 443 #ifdef DEBUG 444 static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus) 445 { 446 return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma)); 447 } 448 #endif 449 static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev, 450 struct pci_dev *hwdev, 451 dma_addr_t *dma_handle) 452 { 453 struct sk_buff *skb; 454 skb = netdev_alloc_skb(dev, RX_BUF_SIZE); 455 if (!skb) 456 return NULL; 457 *dma_handle = dma_map_single(&hwdev->dev, skb->data, RX_BUF_SIZE, 458 DMA_FROM_DEVICE); 459 if (dma_mapping_error(&hwdev->dev, *dma_handle)) { 460 dev_kfree_skb_any(skb); 461 return NULL; 462 } 463 skb_reserve(skb, 2); /* make IP header 4byte aligned */ 464 return skb; 465 } 466 467 static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle) 468 { 469 dma_unmap_single(&hwdev->dev, dma_handle, RX_BUF_SIZE, 470 DMA_FROM_DEVICE); 471 dev_kfree_skb_any(skb); 472 } 473 474 /* Index to functions, as function prototypes. */ 475 476 static int tc35815_open(struct net_device *dev); 477 static netdev_tx_t tc35815_send_packet(struct sk_buff *skb, 478 struct net_device *dev); 479 static irqreturn_t tc35815_interrupt(int irq, void *dev_id); 480 static int tc35815_rx(struct net_device *dev, int limit); 481 static int tc35815_poll(struct napi_struct *napi, int budget); 482 static void tc35815_txdone(struct net_device *dev); 483 static int tc35815_close(struct net_device *dev); 484 static struct net_device_stats *tc35815_get_stats(struct net_device *dev); 485 static void tc35815_set_multicast_list(struct net_device *dev); 486 static void tc35815_tx_timeout(struct net_device *dev, unsigned int txqueue); 487 #ifdef CONFIG_NET_POLL_CONTROLLER 488 static void tc35815_poll_controller(struct net_device *dev); 489 #endif 490 static const struct ethtool_ops tc35815_ethtool_ops; 491 492 /* Example routines you must write ;->. */ 493 static void tc35815_chip_reset(struct net_device *dev); 494 static void tc35815_chip_init(struct net_device *dev); 495 496 #ifdef DEBUG 497 static void panic_queues(struct net_device *dev); 498 #endif 499 500 static void tc35815_restart_work(struct work_struct *work); 501 502 static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 503 { 504 struct net_device *dev = bus->priv; 505 struct tc35815_regs __iomem *tr = 506 (struct tc35815_regs __iomem *)dev->base_addr; 507 unsigned long timeout = jiffies + HZ; 508 509 tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA); 510 udelay(12); /* it takes 32 x 400ns at least */ 511 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) { 512 if (time_after(jiffies, timeout)) 513 return -EIO; 514 cpu_relax(); 515 } 516 return tc_readl(&tr->MD_Data) & 0xffff; 517 } 518 519 static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val) 520 { 521 struct net_device *dev = bus->priv; 522 struct tc35815_regs __iomem *tr = 523 (struct tc35815_regs __iomem *)dev->base_addr; 524 unsigned long timeout = jiffies + HZ; 525 526 tc_writel(val, &tr->MD_Data); 527 tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f), 528 &tr->MD_CA); 529 udelay(12); /* it takes 32 x 400ns at least */ 530 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) { 531 if (time_after(jiffies, timeout)) 532 return -EIO; 533 cpu_relax(); 534 } 535 return 0; 536 } 537 538 static void tc_handle_link_change(struct net_device *dev) 539 { 540 struct tc35815_local *lp = netdev_priv(dev); 541 struct phy_device *phydev = dev->phydev; 542 unsigned long flags; 543 int status_change = 0; 544 545 spin_lock_irqsave(&lp->lock, flags); 546 if (phydev->link && 547 (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) { 548 struct tc35815_regs __iomem *tr = 549 (struct tc35815_regs __iomem *)dev->base_addr; 550 u32 reg; 551 552 reg = tc_readl(&tr->MAC_Ctl); 553 reg |= MAC_HaltReq; 554 tc_writel(reg, &tr->MAC_Ctl); 555 if (phydev->duplex == DUPLEX_FULL) 556 reg |= MAC_FullDup; 557 else 558 reg &= ~MAC_FullDup; 559 tc_writel(reg, &tr->MAC_Ctl); 560 reg &= ~MAC_HaltReq; 561 tc_writel(reg, &tr->MAC_Ctl); 562 563 /* 564 * TX4939 PCFG.SPEEDn bit will be changed on 565 * NETDEV_CHANGE event. 566 */ 567 /* 568 * WORKAROUND: enable LostCrS only if half duplex 569 * operation. 570 * (TX4939 does not have EnLCarr) 571 */ 572 if (phydev->duplex == DUPLEX_HALF && 573 lp->chiptype != TC35815_TX4939) 574 tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr, 575 &tr->Tx_Ctl); 576 577 lp->speed = phydev->speed; 578 lp->duplex = phydev->duplex; 579 status_change = 1; 580 } 581 582 if (phydev->link != lp->link) { 583 if (phydev->link) { 584 /* delayed promiscuous enabling */ 585 if (dev->flags & IFF_PROMISC) 586 tc35815_set_multicast_list(dev); 587 } else { 588 lp->speed = 0; 589 lp->duplex = -1; 590 } 591 lp->link = phydev->link; 592 593 status_change = 1; 594 } 595 spin_unlock_irqrestore(&lp->lock, flags); 596 597 if (status_change && netif_msg_link(lp)) { 598 phy_print_status(phydev); 599 pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n", 600 dev->name, 601 phy_read(phydev, MII_BMCR), 602 phy_read(phydev, MII_BMSR), 603 phy_read(phydev, MII_LPA)); 604 } 605 } 606 607 static int tc_mii_probe(struct net_device *dev) 608 { 609 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 610 struct tc35815_local *lp = netdev_priv(dev); 611 struct phy_device *phydev; 612 613 phydev = phy_find_first(lp->mii_bus); 614 if (!phydev) { 615 printk(KERN_ERR "%s: no PHY found\n", dev->name); 616 return -ENODEV; 617 } 618 619 /* attach the mac to the phy */ 620 phydev = phy_connect(dev, phydev_name(phydev), 621 &tc_handle_link_change, 622 lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII); 623 if (IS_ERR(phydev)) { 624 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name); 625 return PTR_ERR(phydev); 626 } 627 628 phy_attached_info(phydev); 629 630 /* mask with MAC supported features */ 631 phy_set_max_speed(phydev, SPEED_100); 632 if (options.speed == 10) { 633 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 634 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 635 } else if (options.speed == 100) { 636 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask); 637 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask); 638 } 639 if (options.duplex == 1) { 640 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask); 641 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 642 } else if (options.duplex == 2) { 643 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask); 644 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 645 } 646 linkmode_andnot(phydev->supported, phydev->supported, mask); 647 linkmode_copy(phydev->advertising, phydev->supported); 648 649 lp->link = 0; 650 lp->speed = 0; 651 lp->duplex = -1; 652 653 return 0; 654 } 655 656 static int tc_mii_init(struct net_device *dev) 657 { 658 struct tc35815_local *lp = netdev_priv(dev); 659 int err; 660 661 lp->mii_bus = mdiobus_alloc(); 662 if (lp->mii_bus == NULL) { 663 err = -ENOMEM; 664 goto err_out; 665 } 666 667 lp->mii_bus->name = "tc35815_mii_bus"; 668 lp->mii_bus->read = tc_mdio_read; 669 lp->mii_bus->write = tc_mdio_write; 670 snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x", pci_dev_id(lp->pci_dev)); 671 lp->mii_bus->priv = dev; 672 lp->mii_bus->parent = &lp->pci_dev->dev; 673 err = mdiobus_register(lp->mii_bus); 674 if (err) 675 goto err_out_free_mii_bus; 676 err = tc_mii_probe(dev); 677 if (err) 678 goto err_out_unregister_bus; 679 return 0; 680 681 err_out_unregister_bus: 682 mdiobus_unregister(lp->mii_bus); 683 err_out_free_mii_bus: 684 mdiobus_free(lp->mii_bus); 685 err_out: 686 return err; 687 } 688 689 #ifdef CONFIG_CPU_TX49XX 690 /* 691 * Find a platform_device providing a MAC address. The platform code 692 * should provide a "tc35815-mac" device with a MAC address in its 693 * platform_data. 694 */ 695 static int tc35815_mac_match(struct device *dev, const void *data) 696 { 697 struct platform_device *plat_dev = to_platform_device(dev); 698 const struct pci_dev *pci_dev = data; 699 unsigned int id = pci_dev->irq; 700 return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id; 701 } 702 703 static int tc35815_read_plat_dev_addr(struct net_device *dev) 704 { 705 struct tc35815_local *lp = netdev_priv(dev); 706 struct device *pd = bus_find_device(&platform_bus_type, NULL, 707 lp->pci_dev, tc35815_mac_match); 708 if (pd) { 709 if (pd->platform_data) 710 eth_hw_addr_set(dev, pd->platform_data); 711 put_device(pd); 712 return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV; 713 } 714 return -ENODEV; 715 } 716 #else 717 static int tc35815_read_plat_dev_addr(struct net_device *dev) 718 { 719 return -ENODEV; 720 } 721 #endif 722 723 static int tc35815_init_dev_addr(struct net_device *dev) 724 { 725 struct tc35815_regs __iomem *tr = 726 (struct tc35815_regs __iomem *)dev->base_addr; 727 u8 addr[ETH_ALEN]; 728 int i; 729 730 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy) 731 ; 732 for (i = 0; i < 6; i += 2) { 733 unsigned short data; 734 tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl); 735 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy) 736 ; 737 data = tc_readl(&tr->PROM_Data); 738 addr[i] = data & 0xff; 739 addr[i+1] = data >> 8; 740 } 741 eth_hw_addr_set(dev, addr); 742 if (!is_valid_ether_addr(dev->dev_addr)) 743 return tc35815_read_plat_dev_addr(dev); 744 return 0; 745 } 746 747 static const struct net_device_ops tc35815_netdev_ops = { 748 .ndo_open = tc35815_open, 749 .ndo_stop = tc35815_close, 750 .ndo_start_xmit = tc35815_send_packet, 751 .ndo_get_stats = tc35815_get_stats, 752 .ndo_set_rx_mode = tc35815_set_multicast_list, 753 .ndo_tx_timeout = tc35815_tx_timeout, 754 .ndo_eth_ioctl = phy_do_ioctl_running, 755 .ndo_validate_addr = eth_validate_addr, 756 .ndo_set_mac_address = eth_mac_addr, 757 #ifdef CONFIG_NET_POLL_CONTROLLER 758 .ndo_poll_controller = tc35815_poll_controller, 759 #endif 760 }; 761 762 static int tc35815_init_one(struct pci_dev *pdev, 763 const struct pci_device_id *ent) 764 { 765 void __iomem *ioaddr = NULL; 766 struct net_device *dev; 767 struct tc35815_local *lp; 768 int rc; 769 770 static int printed_version; 771 if (!printed_version++) { 772 printk(version); 773 dev_printk(KERN_DEBUG, &pdev->dev, 774 "speed:%d duplex:%d\n", 775 options.speed, options.duplex); 776 } 777 778 if (!pdev->irq) { 779 dev_warn(&pdev->dev, "no IRQ assigned.\n"); 780 return -ENODEV; 781 } 782 783 /* dev zeroed in alloc_etherdev */ 784 dev = alloc_etherdev(sizeof(*lp)); 785 if (dev == NULL) 786 return -ENOMEM; 787 788 SET_NETDEV_DEV(dev, &pdev->dev); 789 lp = netdev_priv(dev); 790 lp->dev = dev; 791 792 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 793 rc = pcim_enable_device(pdev); 794 if (rc) 795 goto err_out; 796 rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME); 797 if (rc) 798 goto err_out; 799 pci_set_master(pdev); 800 ioaddr = pcim_iomap_table(pdev)[1]; 801 802 /* Initialize the device structure. */ 803 dev->netdev_ops = &tc35815_netdev_ops; 804 dev->ethtool_ops = &tc35815_ethtool_ops; 805 dev->watchdog_timeo = TC35815_TX_TIMEOUT; 806 netif_napi_add_weight(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT); 807 808 dev->irq = pdev->irq; 809 dev->base_addr = (unsigned long)ioaddr; 810 811 INIT_WORK(&lp->restart_work, tc35815_restart_work); 812 spin_lock_init(&lp->lock); 813 spin_lock_init(&lp->rx_lock); 814 lp->pci_dev = pdev; 815 lp->chiptype = ent->driver_data; 816 817 lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK; 818 pci_set_drvdata(pdev, dev); 819 820 /* Soft reset the chip. */ 821 tc35815_chip_reset(dev); 822 823 /* Retrieve the ethernet address. */ 824 if (tc35815_init_dev_addr(dev)) { 825 dev_warn(&pdev->dev, "not valid ether addr\n"); 826 eth_hw_addr_random(dev); 827 } 828 829 rc = register_netdev(dev); 830 if (rc) 831 goto err_out; 832 833 printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n", 834 dev->name, 835 chip_info[ent->driver_data].name, 836 dev->base_addr, 837 dev->dev_addr, 838 dev->irq); 839 840 rc = tc_mii_init(dev); 841 if (rc) 842 goto err_out_unregister; 843 844 return 0; 845 846 err_out_unregister: 847 unregister_netdev(dev); 848 err_out: 849 free_netdev(dev); 850 return rc; 851 } 852 853 854 static void tc35815_remove_one(struct pci_dev *pdev) 855 { 856 struct net_device *dev = pci_get_drvdata(pdev); 857 struct tc35815_local *lp = netdev_priv(dev); 858 859 phy_disconnect(dev->phydev); 860 mdiobus_unregister(lp->mii_bus); 861 mdiobus_free(lp->mii_bus); 862 unregister_netdev(dev); 863 free_netdev(dev); 864 } 865 866 static int 867 tc35815_init_queues(struct net_device *dev) 868 { 869 struct tc35815_local *lp = netdev_priv(dev); 870 int i; 871 unsigned long fd_addr; 872 873 if (!lp->fd_buf) { 874 BUG_ON(sizeof(struct FDesc) + 875 sizeof(struct BDesc) * RX_BUF_NUM + 876 sizeof(struct FDesc) * RX_FD_NUM + 877 sizeof(struct TxFD) * TX_FD_NUM > 878 PAGE_SIZE * FD_PAGE_NUM); 879 880 lp->fd_buf = dma_alloc_coherent(&lp->pci_dev->dev, 881 PAGE_SIZE * FD_PAGE_NUM, 882 &lp->fd_buf_dma, GFP_ATOMIC); 883 if (!lp->fd_buf) 884 return -ENOMEM; 885 for (i = 0; i < RX_BUF_NUM; i++) { 886 lp->rx_skbs[i].skb = 887 alloc_rxbuf_skb(dev, lp->pci_dev, 888 &lp->rx_skbs[i].skb_dma); 889 if (!lp->rx_skbs[i].skb) { 890 while (--i >= 0) { 891 free_rxbuf_skb(lp->pci_dev, 892 lp->rx_skbs[i].skb, 893 lp->rx_skbs[i].skb_dma); 894 lp->rx_skbs[i].skb = NULL; 895 } 896 dma_free_coherent(&lp->pci_dev->dev, 897 PAGE_SIZE * FD_PAGE_NUM, 898 lp->fd_buf, lp->fd_buf_dma); 899 lp->fd_buf = NULL; 900 return -ENOMEM; 901 } 902 } 903 printk(KERN_DEBUG "%s: FD buf %p DataBuf", 904 dev->name, lp->fd_buf); 905 printk("\n"); 906 } else { 907 for (i = 0; i < FD_PAGE_NUM; i++) 908 clear_page((void *)((unsigned long)lp->fd_buf + 909 i * PAGE_SIZE)); 910 } 911 fd_addr = (unsigned long)lp->fd_buf; 912 913 /* Free Descriptors (for Receive) */ 914 lp->rfd_base = (struct RxFD *)fd_addr; 915 fd_addr += sizeof(struct RxFD) * RX_FD_NUM; 916 for (i = 0; i < RX_FD_NUM; i++) 917 lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD); 918 lp->rfd_cur = lp->rfd_base; 919 lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1); 920 921 /* Transmit Descriptors */ 922 lp->tfd_base = (struct TxFD *)fd_addr; 923 fd_addr += sizeof(struct TxFD) * TX_FD_NUM; 924 for (i = 0; i < TX_FD_NUM; i++) { 925 lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1])); 926 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); 927 lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0); 928 } 929 lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0])); 930 lp->tfd_start = 0; 931 lp->tfd_end = 0; 932 933 /* Buffer List (for Receive) */ 934 lp->fbl_ptr = (struct FrFD *)fd_addr; 935 lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr)); 936 lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD); 937 /* 938 * move all allocated skbs to head of rx_skbs[] array. 939 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in 940 * tc35815_rx() had failed. 941 */ 942 lp->fbl_count = 0; 943 for (i = 0; i < RX_BUF_NUM; i++) { 944 if (lp->rx_skbs[i].skb) { 945 if (i != lp->fbl_count) { 946 lp->rx_skbs[lp->fbl_count].skb = 947 lp->rx_skbs[i].skb; 948 lp->rx_skbs[lp->fbl_count].skb_dma = 949 lp->rx_skbs[i].skb_dma; 950 } 951 lp->fbl_count++; 952 } 953 } 954 for (i = 0; i < RX_BUF_NUM; i++) { 955 if (i >= lp->fbl_count) { 956 lp->fbl_ptr->bd[i].BuffData = 0; 957 lp->fbl_ptr->bd[i].BDCtl = 0; 958 continue; 959 } 960 lp->fbl_ptr->bd[i].BuffData = 961 cpu_to_le32(lp->rx_skbs[i].skb_dma); 962 /* BDID is index of FrFD.bd[] */ 963 lp->fbl_ptr->bd[i].BDCtl = 964 cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) | 965 RX_BUF_SIZE); 966 } 967 968 printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n", 969 dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr); 970 return 0; 971 } 972 973 static void 974 tc35815_clear_queues(struct net_device *dev) 975 { 976 struct tc35815_local *lp = netdev_priv(dev); 977 int i; 978 979 for (i = 0; i < TX_FD_NUM; i++) { 980 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem); 981 struct sk_buff *skb = 982 fdsystem != 0xffffffff ? 983 lp->tx_skbs[fdsystem].skb : NULL; 984 #ifdef DEBUG 985 if (lp->tx_skbs[i].skb != skb) { 986 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i); 987 panic_queues(dev); 988 } 989 #else 990 BUG_ON(lp->tx_skbs[i].skb != skb); 991 #endif 992 if (skb) { 993 dma_unmap_single(&lp->pci_dev->dev, 994 lp->tx_skbs[i].skb_dma, skb->len, 995 DMA_TO_DEVICE); 996 lp->tx_skbs[i].skb = NULL; 997 lp->tx_skbs[i].skb_dma = 0; 998 dev_kfree_skb_any(skb); 999 } 1000 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); 1001 } 1002 1003 tc35815_init_queues(dev); 1004 } 1005 1006 static void 1007 tc35815_free_queues(struct net_device *dev) 1008 { 1009 struct tc35815_local *lp = netdev_priv(dev); 1010 int i; 1011 1012 if (lp->tfd_base) { 1013 for (i = 0; i < TX_FD_NUM; i++) { 1014 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem); 1015 struct sk_buff *skb = 1016 fdsystem != 0xffffffff ? 1017 lp->tx_skbs[fdsystem].skb : NULL; 1018 #ifdef DEBUG 1019 if (lp->tx_skbs[i].skb != skb) { 1020 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i); 1021 panic_queues(dev); 1022 } 1023 #else 1024 BUG_ON(lp->tx_skbs[i].skb != skb); 1025 #endif 1026 if (skb) { 1027 dma_unmap_single(&lp->pci_dev->dev, 1028 lp->tx_skbs[i].skb_dma, 1029 skb->len, DMA_TO_DEVICE); 1030 dev_kfree_skb(skb); 1031 lp->tx_skbs[i].skb = NULL; 1032 lp->tx_skbs[i].skb_dma = 0; 1033 } 1034 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); 1035 } 1036 } 1037 1038 lp->rfd_base = NULL; 1039 lp->rfd_limit = NULL; 1040 lp->rfd_cur = NULL; 1041 lp->fbl_ptr = NULL; 1042 1043 for (i = 0; i < RX_BUF_NUM; i++) { 1044 if (lp->rx_skbs[i].skb) { 1045 free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb, 1046 lp->rx_skbs[i].skb_dma); 1047 lp->rx_skbs[i].skb = NULL; 1048 } 1049 } 1050 if (lp->fd_buf) { 1051 dma_free_coherent(&lp->pci_dev->dev, PAGE_SIZE * FD_PAGE_NUM, 1052 lp->fd_buf, lp->fd_buf_dma); 1053 lp->fd_buf = NULL; 1054 } 1055 } 1056 1057 static void 1058 dump_txfd(struct TxFD *fd) 1059 { 1060 printk("TxFD(%p): %08x %08x %08x %08x\n", fd, 1061 le32_to_cpu(fd->fd.FDNext), 1062 le32_to_cpu(fd->fd.FDSystem), 1063 le32_to_cpu(fd->fd.FDStat), 1064 le32_to_cpu(fd->fd.FDCtl)); 1065 printk("BD: "); 1066 printk(" %08x %08x", 1067 le32_to_cpu(fd->bd.BuffData), 1068 le32_to_cpu(fd->bd.BDCtl)); 1069 printk("\n"); 1070 } 1071 1072 static int 1073 dump_rxfd(struct RxFD *fd) 1074 { 1075 int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT; 1076 if (bd_count > 8) 1077 bd_count = 8; 1078 printk("RxFD(%p): %08x %08x %08x %08x\n", fd, 1079 le32_to_cpu(fd->fd.FDNext), 1080 le32_to_cpu(fd->fd.FDSystem), 1081 le32_to_cpu(fd->fd.FDStat), 1082 le32_to_cpu(fd->fd.FDCtl)); 1083 if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD) 1084 return 0; 1085 printk("BD: "); 1086 for (i = 0; i < bd_count; i++) 1087 printk(" %08x %08x", 1088 le32_to_cpu(fd->bd[i].BuffData), 1089 le32_to_cpu(fd->bd[i].BDCtl)); 1090 printk("\n"); 1091 return bd_count; 1092 } 1093 1094 #ifdef DEBUG 1095 static void 1096 dump_frfd(struct FrFD *fd) 1097 { 1098 int i; 1099 printk("FrFD(%p): %08x %08x %08x %08x\n", fd, 1100 le32_to_cpu(fd->fd.FDNext), 1101 le32_to_cpu(fd->fd.FDSystem), 1102 le32_to_cpu(fd->fd.FDStat), 1103 le32_to_cpu(fd->fd.FDCtl)); 1104 printk("BD: "); 1105 for (i = 0; i < RX_BUF_NUM; i++) 1106 printk(" %08x %08x", 1107 le32_to_cpu(fd->bd[i].BuffData), 1108 le32_to_cpu(fd->bd[i].BDCtl)); 1109 printk("\n"); 1110 } 1111 1112 static void 1113 panic_queues(struct net_device *dev) 1114 { 1115 struct tc35815_local *lp = netdev_priv(dev); 1116 int i; 1117 1118 printk("TxFD base %p, start %u, end %u\n", 1119 lp->tfd_base, lp->tfd_start, lp->tfd_end); 1120 printk("RxFD base %p limit %p cur %p\n", 1121 lp->rfd_base, lp->rfd_limit, lp->rfd_cur); 1122 printk("FrFD %p\n", lp->fbl_ptr); 1123 for (i = 0; i < TX_FD_NUM; i++) 1124 dump_txfd(&lp->tfd_base[i]); 1125 for (i = 0; i < RX_FD_NUM; i++) { 1126 int bd_count = dump_rxfd(&lp->rfd_base[i]); 1127 i += (bd_count + 1) / 2; /* skip BDs */ 1128 } 1129 dump_frfd(lp->fbl_ptr); 1130 panic("%s: Illegal queue state.", dev->name); 1131 } 1132 #endif 1133 1134 static void print_eth(const u8 *add) 1135 { 1136 printk(KERN_DEBUG "print_eth(%p)\n", add); 1137 printk(KERN_DEBUG " %pM => %pM : %02x%02x\n", 1138 add + 6, add, add[12], add[13]); 1139 } 1140 1141 static int tc35815_tx_full(struct net_device *dev) 1142 { 1143 struct tc35815_local *lp = netdev_priv(dev); 1144 return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end; 1145 } 1146 1147 static void tc35815_restart(struct net_device *dev) 1148 { 1149 struct tc35815_local *lp = netdev_priv(dev); 1150 int ret; 1151 1152 if (dev->phydev) { 1153 ret = phy_init_hw(dev->phydev); 1154 if (ret) 1155 printk(KERN_ERR "%s: PHY init failed.\n", dev->name); 1156 } 1157 1158 spin_lock_bh(&lp->rx_lock); 1159 spin_lock_irq(&lp->lock); 1160 tc35815_chip_reset(dev); 1161 tc35815_clear_queues(dev); 1162 tc35815_chip_init(dev); 1163 /* Reconfigure CAM again since tc35815_chip_init() initialize it. */ 1164 tc35815_set_multicast_list(dev); 1165 spin_unlock_irq(&lp->lock); 1166 spin_unlock_bh(&lp->rx_lock); 1167 1168 netif_wake_queue(dev); 1169 } 1170 1171 static void tc35815_restart_work(struct work_struct *work) 1172 { 1173 struct tc35815_local *lp = 1174 container_of(work, struct tc35815_local, restart_work); 1175 struct net_device *dev = lp->dev; 1176 1177 tc35815_restart(dev); 1178 } 1179 1180 static void tc35815_schedule_restart(struct net_device *dev) 1181 { 1182 struct tc35815_local *lp = netdev_priv(dev); 1183 struct tc35815_regs __iomem *tr = 1184 (struct tc35815_regs __iomem *)dev->base_addr; 1185 unsigned long flags; 1186 1187 /* disable interrupts */ 1188 spin_lock_irqsave(&lp->lock, flags); 1189 tc_writel(0, &tr->Int_En); 1190 tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl); 1191 schedule_work(&lp->restart_work); 1192 spin_unlock_irqrestore(&lp->lock, flags); 1193 } 1194 1195 static void tc35815_tx_timeout(struct net_device *dev, unsigned int txqueue) 1196 { 1197 struct tc35815_regs __iomem *tr = 1198 (struct tc35815_regs __iomem *)dev->base_addr; 1199 1200 printk(KERN_WARNING "%s: transmit timed out, status %#x\n", 1201 dev->name, tc_readl(&tr->Tx_Stat)); 1202 1203 /* Try to restart the adaptor. */ 1204 tc35815_schedule_restart(dev); 1205 dev->stats.tx_errors++; 1206 } 1207 1208 /* 1209 * Open/initialize the controller. This is called (in the current kernel) 1210 * sometime after booting when the 'ifconfig' program is run. 1211 * 1212 * This routine should set everything up anew at each open, even 1213 * registers that "should" only need to be set once at boot, so that 1214 * there is non-reboot way to recover if something goes wrong. 1215 */ 1216 static int 1217 tc35815_open(struct net_device *dev) 1218 { 1219 struct tc35815_local *lp = netdev_priv(dev); 1220 1221 /* 1222 * This is used if the interrupt line can turned off (shared). 1223 * See 3c503.c for an example of selecting the IRQ at config-time. 1224 */ 1225 if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED, 1226 dev->name, dev)) 1227 return -EAGAIN; 1228 1229 tc35815_chip_reset(dev); 1230 1231 if (tc35815_init_queues(dev) != 0) { 1232 free_irq(dev->irq, dev); 1233 return -EAGAIN; 1234 } 1235 1236 napi_enable(&lp->napi); 1237 1238 /* Reset the hardware here. Don't forget to set the station address. */ 1239 spin_lock_irq(&lp->lock); 1240 tc35815_chip_init(dev); 1241 spin_unlock_irq(&lp->lock); 1242 1243 netif_carrier_off(dev); 1244 /* schedule a link state check */ 1245 phy_start(dev->phydev); 1246 1247 /* We are now ready to accept transmit requeusts from 1248 * the queueing layer of the networking. 1249 */ 1250 netif_start_queue(dev); 1251 1252 return 0; 1253 } 1254 1255 /* This will only be invoked if your driver is _not_ in XOFF state. 1256 * What this means is that you need not check it, and that this 1257 * invariant will hold if you make sure that the netif_*_queue() 1258 * calls are done at the proper times. 1259 */ 1260 static netdev_tx_t 1261 tc35815_send_packet(struct sk_buff *skb, struct net_device *dev) 1262 { 1263 struct tc35815_local *lp = netdev_priv(dev); 1264 struct TxFD *txfd; 1265 unsigned long flags; 1266 1267 /* If some error occurs while trying to transmit this 1268 * packet, you should return '1' from this function. 1269 * In such a case you _may not_ do anything to the 1270 * SKB, it is still owned by the network queueing 1271 * layer when an error is returned. This means you 1272 * may not modify any SKB fields, you may not free 1273 * the SKB, etc. 1274 */ 1275 1276 /* This is the most common case for modern hardware. 1277 * The spinlock protects this code from the TX complete 1278 * hardware interrupt handler. Queue flow control is 1279 * thus managed under this lock as well. 1280 */ 1281 spin_lock_irqsave(&lp->lock, flags); 1282 1283 /* failsafe... (handle txdone now if half of FDs are used) */ 1284 if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM > 1285 TX_FD_NUM / 2) 1286 tc35815_txdone(dev); 1287 1288 if (netif_msg_pktdata(lp)) 1289 print_eth(skb->data); 1290 #ifdef DEBUG 1291 if (lp->tx_skbs[lp->tfd_start].skb) { 1292 printk("%s: tx_skbs conflict.\n", dev->name); 1293 panic_queues(dev); 1294 } 1295 #else 1296 BUG_ON(lp->tx_skbs[lp->tfd_start].skb); 1297 #endif 1298 lp->tx_skbs[lp->tfd_start].skb = skb; 1299 lp->tx_skbs[lp->tfd_start].skb_dma = dma_map_single(&lp->pci_dev->dev, 1300 skb->data, 1301 skb->len, 1302 DMA_TO_DEVICE); 1303 1304 /*add to ring */ 1305 txfd = &lp->tfd_base[lp->tfd_start]; 1306 txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma); 1307 txfd->bd.BDCtl = cpu_to_le32(skb->len); 1308 txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start); 1309 txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT)); 1310 1311 if (lp->tfd_start == lp->tfd_end) { 1312 struct tc35815_regs __iomem *tr = 1313 (struct tc35815_regs __iomem *)dev->base_addr; 1314 /* Start DMA Transmitter. */ 1315 txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL); 1316 txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx); 1317 if (netif_msg_tx_queued(lp)) { 1318 printk("%s: starting TxFD.\n", dev->name); 1319 dump_txfd(txfd); 1320 } 1321 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr); 1322 } else { 1323 txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL); 1324 if (netif_msg_tx_queued(lp)) { 1325 printk("%s: queueing TxFD.\n", dev->name); 1326 dump_txfd(txfd); 1327 } 1328 } 1329 lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM; 1330 1331 /* If we just used up the very last entry in the 1332 * TX ring on this device, tell the queueing 1333 * layer to send no more. 1334 */ 1335 if (tc35815_tx_full(dev)) { 1336 if (netif_msg_tx_queued(lp)) 1337 printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name); 1338 netif_stop_queue(dev); 1339 } 1340 1341 /* When the TX completion hw interrupt arrives, this 1342 * is when the transmit statistics are updated. 1343 */ 1344 1345 spin_unlock_irqrestore(&lp->lock, flags); 1346 return NETDEV_TX_OK; 1347 } 1348 1349 #define FATAL_ERROR_INT \ 1350 (Int_IntPCI | Int_DmParErr | Int_IntNRAbt) 1351 static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status) 1352 { 1353 static int count; 1354 printk(KERN_WARNING "%s: Fatal Error Interrupt (%#x):", 1355 dev->name, status); 1356 if (status & Int_IntPCI) 1357 printk(" IntPCI"); 1358 if (status & Int_DmParErr) 1359 printk(" DmParErr"); 1360 if (status & Int_IntNRAbt) 1361 printk(" IntNRAbt"); 1362 printk("\n"); 1363 if (count++ > 100) 1364 panic("%s: Too many fatal errors.", dev->name); 1365 printk(KERN_WARNING "%s: Resetting ...\n", dev->name); 1366 /* Try to restart the adaptor. */ 1367 tc35815_schedule_restart(dev); 1368 } 1369 1370 static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit) 1371 { 1372 struct tc35815_local *lp = netdev_priv(dev); 1373 int ret = -1; 1374 1375 /* Fatal errors... */ 1376 if (status & FATAL_ERROR_INT) { 1377 tc35815_fatal_error_interrupt(dev, status); 1378 return 0; 1379 } 1380 /* recoverable errors */ 1381 if (status & Int_IntFDAEx) { 1382 if (netif_msg_rx_err(lp)) 1383 dev_warn(&dev->dev, 1384 "Free Descriptor Area Exhausted (%#x).\n", 1385 status); 1386 dev->stats.rx_dropped++; 1387 ret = 0; 1388 } 1389 if (status & Int_IntBLEx) { 1390 if (netif_msg_rx_err(lp)) 1391 dev_warn(&dev->dev, 1392 "Buffer List Exhausted (%#x).\n", 1393 status); 1394 dev->stats.rx_dropped++; 1395 ret = 0; 1396 } 1397 if (status & Int_IntExBD) { 1398 if (netif_msg_rx_err(lp)) 1399 dev_warn(&dev->dev, 1400 "Excessive Buffer Descriptors (%#x).\n", 1401 status); 1402 dev->stats.rx_length_errors++; 1403 ret = 0; 1404 } 1405 1406 /* normal notification */ 1407 if (status & Int_IntMacRx) { 1408 /* Got a packet(s). */ 1409 ret = tc35815_rx(dev, limit); 1410 lp->lstats.rx_ints++; 1411 } 1412 if (status & Int_IntMacTx) { 1413 /* Transmit complete. */ 1414 lp->lstats.tx_ints++; 1415 spin_lock_irq(&lp->lock); 1416 tc35815_txdone(dev); 1417 spin_unlock_irq(&lp->lock); 1418 if (ret < 0) 1419 ret = 0; 1420 } 1421 return ret; 1422 } 1423 1424 /* 1425 * The typical workload of the driver: 1426 * Handle the network interface interrupts. 1427 */ 1428 static irqreturn_t tc35815_interrupt(int irq, void *dev_id) 1429 { 1430 struct net_device *dev = dev_id; 1431 struct tc35815_local *lp = netdev_priv(dev); 1432 struct tc35815_regs __iomem *tr = 1433 (struct tc35815_regs __iomem *)dev->base_addr; 1434 u32 dmactl = tc_readl(&tr->DMA_Ctl); 1435 1436 if (!(dmactl & DMA_IntMask)) { 1437 if (napi_schedule_prep(&lp->napi)) { 1438 /* disable interrupts */ 1439 tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl); 1440 __napi_schedule(&lp->napi); 1441 } 1442 (void)tc_readl(&tr->Int_Src); /* flush */ 1443 return IRQ_HANDLED; 1444 } 1445 return IRQ_NONE; 1446 } 1447 1448 #ifdef CONFIG_NET_POLL_CONTROLLER 1449 static void tc35815_poll_controller(struct net_device *dev) 1450 { 1451 disable_irq(dev->irq); 1452 tc35815_interrupt(dev->irq, dev); 1453 enable_irq(dev->irq); 1454 } 1455 #endif 1456 1457 /* We have a good packet(s), get it/them out of the buffers. */ 1458 static int 1459 tc35815_rx(struct net_device *dev, int limit) 1460 { 1461 struct tc35815_local *lp = netdev_priv(dev); 1462 unsigned int fdctl; 1463 int i; 1464 int received = 0; 1465 1466 while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) { 1467 int status = le32_to_cpu(lp->rfd_cur->fd.FDStat); 1468 int pkt_len = fdctl & FD_FDLength_MASK; 1469 int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT; 1470 #ifdef DEBUG 1471 struct RxFD *next_rfd; 1472 #endif 1473 #if (RX_CTL_CMD & Rx_StripCRC) == 0 1474 pkt_len -= ETH_FCS_LEN; 1475 #endif 1476 1477 if (netif_msg_rx_status(lp)) 1478 dump_rxfd(lp->rfd_cur); 1479 if (status & Rx_Good) { 1480 struct sk_buff *skb; 1481 unsigned char *data; 1482 int cur_bd; 1483 1484 if (--limit < 0) 1485 break; 1486 BUG_ON(bd_count > 1); 1487 cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl) 1488 & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT; 1489 #ifdef DEBUG 1490 if (cur_bd >= RX_BUF_NUM) { 1491 printk("%s: invalid BDID.\n", dev->name); 1492 panic_queues(dev); 1493 } 1494 BUG_ON(lp->rx_skbs[cur_bd].skb_dma != 1495 (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3)); 1496 if (!lp->rx_skbs[cur_bd].skb) { 1497 printk("%s: NULL skb.\n", dev->name); 1498 panic_queues(dev); 1499 } 1500 #else 1501 BUG_ON(cur_bd >= RX_BUF_NUM); 1502 #endif 1503 skb = lp->rx_skbs[cur_bd].skb; 1504 prefetch(skb->data); 1505 lp->rx_skbs[cur_bd].skb = NULL; 1506 dma_unmap_single(&lp->pci_dev->dev, 1507 lp->rx_skbs[cur_bd].skb_dma, 1508 RX_BUF_SIZE, DMA_FROM_DEVICE); 1509 if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN != 0) 1510 memmove(skb->data, skb->data - NET_IP_ALIGN, 1511 pkt_len); 1512 data = skb_put(skb, pkt_len); 1513 if (netif_msg_pktdata(lp)) 1514 print_eth(data); 1515 skb->protocol = eth_type_trans(skb, dev); 1516 netif_receive_skb(skb); 1517 received++; 1518 dev->stats.rx_packets++; 1519 dev->stats.rx_bytes += pkt_len; 1520 } else { 1521 dev->stats.rx_errors++; 1522 if (netif_msg_rx_err(lp)) 1523 dev_info(&dev->dev, "Rx error (status %x)\n", 1524 status & Rx_Stat_Mask); 1525 /* WORKAROUND: LongErr and CRCErr means Overflow. */ 1526 if ((status & Rx_LongErr) && (status & Rx_CRCErr)) { 1527 status &= ~(Rx_LongErr|Rx_CRCErr); 1528 status |= Rx_Over; 1529 } 1530 if (status & Rx_LongErr) 1531 dev->stats.rx_length_errors++; 1532 if (status & Rx_Over) 1533 dev->stats.rx_fifo_errors++; 1534 if (status & Rx_CRCErr) 1535 dev->stats.rx_crc_errors++; 1536 if (status & Rx_Align) 1537 dev->stats.rx_frame_errors++; 1538 } 1539 1540 if (bd_count > 0) { 1541 /* put Free Buffer back to controller */ 1542 int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl); 1543 unsigned char id = 1544 (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT; 1545 #ifdef DEBUG 1546 if (id >= RX_BUF_NUM) { 1547 printk("%s: invalid BDID.\n", dev->name); 1548 panic_queues(dev); 1549 } 1550 #else 1551 BUG_ON(id >= RX_BUF_NUM); 1552 #endif 1553 /* free old buffers */ 1554 lp->fbl_count--; 1555 while (lp->fbl_count < RX_BUF_NUM) 1556 { 1557 unsigned char curid = 1558 (id + 1 + lp->fbl_count) % RX_BUF_NUM; 1559 struct BDesc *bd = &lp->fbl_ptr->bd[curid]; 1560 #ifdef DEBUG 1561 bdctl = le32_to_cpu(bd->BDCtl); 1562 if (bdctl & BD_CownsBD) { 1563 printk("%s: Freeing invalid BD.\n", 1564 dev->name); 1565 panic_queues(dev); 1566 } 1567 #endif 1568 /* pass BD to controller */ 1569 if (!lp->rx_skbs[curid].skb) { 1570 lp->rx_skbs[curid].skb = 1571 alloc_rxbuf_skb(dev, 1572 lp->pci_dev, 1573 &lp->rx_skbs[curid].skb_dma); 1574 if (!lp->rx_skbs[curid].skb) 1575 break; /* try on next reception */ 1576 bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma); 1577 } 1578 /* Note: BDLength was modified by chip. */ 1579 bd->BDCtl = cpu_to_le32(BD_CownsBD | 1580 (curid << BD_RxBDID_SHIFT) | 1581 RX_BUF_SIZE); 1582 lp->fbl_count++; 1583 } 1584 } 1585 1586 /* put RxFD back to controller */ 1587 #ifdef DEBUG 1588 next_rfd = fd_bus_to_virt(lp, 1589 le32_to_cpu(lp->rfd_cur->fd.FDNext)); 1590 if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) { 1591 printk("%s: RxFD FDNext invalid.\n", dev->name); 1592 panic_queues(dev); 1593 } 1594 #endif 1595 for (i = 0; i < (bd_count + 1) / 2 + 1; i++) { 1596 /* pass FD to controller */ 1597 #ifdef DEBUG 1598 lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead); 1599 #else 1600 lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL); 1601 #endif 1602 lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD); 1603 lp->rfd_cur++; 1604 } 1605 if (lp->rfd_cur > lp->rfd_limit) 1606 lp->rfd_cur = lp->rfd_base; 1607 #ifdef DEBUG 1608 if (lp->rfd_cur != next_rfd) 1609 printk("rfd_cur = %p, next_rfd %p\n", 1610 lp->rfd_cur, next_rfd); 1611 #endif 1612 } 1613 1614 return received; 1615 } 1616 1617 static int tc35815_poll(struct napi_struct *napi, int budget) 1618 { 1619 struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi); 1620 struct net_device *dev = lp->dev; 1621 struct tc35815_regs __iomem *tr = 1622 (struct tc35815_regs __iomem *)dev->base_addr; 1623 int received = 0, handled; 1624 u32 status; 1625 1626 if (budget <= 0) 1627 return received; 1628 1629 spin_lock(&lp->rx_lock); 1630 status = tc_readl(&tr->Int_Src); 1631 do { 1632 /* BLEx, FDAEx will be cleared later */ 1633 tc_writel(status & ~(Int_BLEx | Int_FDAEx), 1634 &tr->Int_Src); /* write to clear */ 1635 1636 handled = tc35815_do_interrupt(dev, status, budget - received); 1637 if (status & (Int_BLEx | Int_FDAEx)) 1638 tc_writel(status & (Int_BLEx | Int_FDAEx), 1639 &tr->Int_Src); 1640 if (handled >= 0) { 1641 received += handled; 1642 if (received >= budget) 1643 break; 1644 } 1645 status = tc_readl(&tr->Int_Src); 1646 } while (status); 1647 spin_unlock(&lp->rx_lock); 1648 1649 if (received < budget) { 1650 napi_complete_done(napi, received); 1651 /* enable interrupts */ 1652 tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl); 1653 } 1654 return received; 1655 } 1656 1657 #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr) 1658 1659 static void 1660 tc35815_check_tx_stat(struct net_device *dev, int status) 1661 { 1662 struct tc35815_local *lp = netdev_priv(dev); 1663 const char *msg = NULL; 1664 1665 /* count collisions */ 1666 if (status & Tx_ExColl) 1667 dev->stats.collisions += 16; 1668 if (status & Tx_TxColl_MASK) 1669 dev->stats.collisions += status & Tx_TxColl_MASK; 1670 1671 /* TX4939 does not have NCarr */ 1672 if (lp->chiptype == TC35815_TX4939) 1673 status &= ~Tx_NCarr; 1674 /* WORKAROUND: ignore LostCrS in full duplex operation */ 1675 if (!lp->link || lp->duplex == DUPLEX_FULL) 1676 status &= ~Tx_NCarr; 1677 1678 if (!(status & TX_STA_ERR)) { 1679 /* no error. */ 1680 dev->stats.tx_packets++; 1681 return; 1682 } 1683 1684 dev->stats.tx_errors++; 1685 if (status & Tx_ExColl) { 1686 dev->stats.tx_aborted_errors++; 1687 msg = "Excessive Collision."; 1688 } 1689 if (status & Tx_Under) { 1690 dev->stats.tx_fifo_errors++; 1691 msg = "Tx FIFO Underrun."; 1692 if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) { 1693 lp->lstats.tx_underrun++; 1694 if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) { 1695 struct tc35815_regs __iomem *tr = 1696 (struct tc35815_regs __iomem *)dev->base_addr; 1697 tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh); 1698 msg = "Tx FIFO Underrun.Change Tx threshold to max."; 1699 } 1700 } 1701 } 1702 if (status & Tx_Defer) { 1703 dev->stats.tx_fifo_errors++; 1704 msg = "Excessive Deferral."; 1705 } 1706 if (status & Tx_NCarr) { 1707 dev->stats.tx_carrier_errors++; 1708 msg = "Lost Carrier Sense."; 1709 } 1710 if (status & Tx_LateColl) { 1711 dev->stats.tx_aborted_errors++; 1712 msg = "Late Collision."; 1713 } 1714 if (status & Tx_TxPar) { 1715 dev->stats.tx_fifo_errors++; 1716 msg = "Transmit Parity Error."; 1717 } 1718 if (status & Tx_SQErr) { 1719 dev->stats.tx_heartbeat_errors++; 1720 msg = "Signal Quality Error."; 1721 } 1722 if (msg && netif_msg_tx_err(lp)) 1723 printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status); 1724 } 1725 1726 /* This handles TX complete events posted by the device 1727 * via interrupts. 1728 */ 1729 static void 1730 tc35815_txdone(struct net_device *dev) 1731 { 1732 struct tc35815_local *lp = netdev_priv(dev); 1733 struct TxFD *txfd; 1734 unsigned int fdctl; 1735 1736 txfd = &lp->tfd_base[lp->tfd_end]; 1737 while (lp->tfd_start != lp->tfd_end && 1738 !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) { 1739 int status = le32_to_cpu(txfd->fd.FDStat); 1740 struct sk_buff *skb; 1741 unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext); 1742 u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem); 1743 1744 if (netif_msg_tx_done(lp)) { 1745 printk("%s: complete TxFD.\n", dev->name); 1746 dump_txfd(txfd); 1747 } 1748 tc35815_check_tx_stat(dev, status); 1749 1750 skb = fdsystem != 0xffffffff ? 1751 lp->tx_skbs[fdsystem].skb : NULL; 1752 #ifdef DEBUG 1753 if (lp->tx_skbs[lp->tfd_end].skb != skb) { 1754 printk("%s: tx_skbs mismatch.\n", dev->name); 1755 panic_queues(dev); 1756 } 1757 #else 1758 BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb); 1759 #endif 1760 if (skb) { 1761 dev->stats.tx_bytes += skb->len; 1762 dma_unmap_single(&lp->pci_dev->dev, 1763 lp->tx_skbs[lp->tfd_end].skb_dma, 1764 skb->len, DMA_TO_DEVICE); 1765 lp->tx_skbs[lp->tfd_end].skb = NULL; 1766 lp->tx_skbs[lp->tfd_end].skb_dma = 0; 1767 dev_kfree_skb_any(skb); 1768 } 1769 txfd->fd.FDSystem = cpu_to_le32(0xffffffff); 1770 1771 lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM; 1772 txfd = &lp->tfd_base[lp->tfd_end]; 1773 #ifdef DEBUG 1774 if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) { 1775 printk("%s: TxFD FDNext invalid.\n", dev->name); 1776 panic_queues(dev); 1777 } 1778 #endif 1779 if (fdnext & FD_Next_EOL) { 1780 /* DMA Transmitter has been stopping... */ 1781 if (lp->tfd_end != lp->tfd_start) { 1782 struct tc35815_regs __iomem *tr = 1783 (struct tc35815_regs __iomem *)dev->base_addr; 1784 int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM; 1785 struct TxFD *txhead = &lp->tfd_base[head]; 1786 int qlen = (lp->tfd_start + TX_FD_NUM 1787 - lp->tfd_end) % TX_FD_NUM; 1788 1789 #ifdef DEBUG 1790 if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) { 1791 printk("%s: TxFD FDCtl invalid.\n", dev->name); 1792 panic_queues(dev); 1793 } 1794 #endif 1795 /* log max queue length */ 1796 if (lp->lstats.max_tx_qlen < qlen) 1797 lp->lstats.max_tx_qlen = qlen; 1798 1799 1800 /* start DMA Transmitter again */ 1801 txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL); 1802 txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx); 1803 if (netif_msg_tx_queued(lp)) { 1804 printk("%s: start TxFD on queue.\n", 1805 dev->name); 1806 dump_txfd(txfd); 1807 } 1808 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr); 1809 } 1810 break; 1811 } 1812 } 1813 1814 /* If we had stopped the queue due to a "tx full" 1815 * condition, and space has now been made available, 1816 * wake up the queue. 1817 */ 1818 if (netif_queue_stopped(dev) && !tc35815_tx_full(dev)) 1819 netif_wake_queue(dev); 1820 } 1821 1822 /* The inverse routine to tc35815_open(). */ 1823 static int 1824 tc35815_close(struct net_device *dev) 1825 { 1826 struct tc35815_local *lp = netdev_priv(dev); 1827 1828 netif_stop_queue(dev); 1829 napi_disable(&lp->napi); 1830 if (dev->phydev) 1831 phy_stop(dev->phydev); 1832 cancel_work_sync(&lp->restart_work); 1833 1834 /* Flush the Tx and disable Rx here. */ 1835 tc35815_chip_reset(dev); 1836 free_irq(dev->irq, dev); 1837 1838 tc35815_free_queues(dev); 1839 1840 return 0; 1841 1842 } 1843 1844 /* 1845 * Get the current statistics. 1846 * This may be called with the card open or closed. 1847 */ 1848 static struct net_device_stats *tc35815_get_stats(struct net_device *dev) 1849 { 1850 struct tc35815_regs __iomem *tr = 1851 (struct tc35815_regs __iomem *)dev->base_addr; 1852 if (netif_running(dev)) 1853 /* Update the statistics from the device registers. */ 1854 dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt); 1855 1856 return &dev->stats; 1857 } 1858 1859 static void tc35815_set_cam_entry(struct net_device *dev, int index, 1860 const unsigned char *addr) 1861 { 1862 struct tc35815_local *lp = netdev_priv(dev); 1863 struct tc35815_regs __iomem *tr = 1864 (struct tc35815_regs __iomem *)dev->base_addr; 1865 int cam_index = index * 6; 1866 u32 cam_data; 1867 u32 saved_addr; 1868 1869 saved_addr = tc_readl(&tr->CAM_Adr); 1870 1871 if (netif_msg_hw(lp)) 1872 printk(KERN_DEBUG "%s: CAM %d: %pM\n", 1873 dev->name, index, addr); 1874 if (index & 1) { 1875 /* read modify write */ 1876 tc_writel(cam_index - 2, &tr->CAM_Adr); 1877 cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000; 1878 cam_data |= addr[0] << 8 | addr[1]; 1879 tc_writel(cam_data, &tr->CAM_Data); 1880 /* write whole word */ 1881 tc_writel(cam_index + 2, &tr->CAM_Adr); 1882 cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5]; 1883 tc_writel(cam_data, &tr->CAM_Data); 1884 } else { 1885 /* write whole word */ 1886 tc_writel(cam_index, &tr->CAM_Adr); 1887 cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3]; 1888 tc_writel(cam_data, &tr->CAM_Data); 1889 /* read modify write */ 1890 tc_writel(cam_index + 4, &tr->CAM_Adr); 1891 cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff; 1892 cam_data |= addr[4] << 24 | (addr[5] << 16); 1893 tc_writel(cam_data, &tr->CAM_Data); 1894 } 1895 1896 tc_writel(saved_addr, &tr->CAM_Adr); 1897 } 1898 1899 1900 /* 1901 * Set or clear the multicast filter for this adaptor. 1902 * num_addrs == -1 Promiscuous mode, receive all packets 1903 * num_addrs == 0 Normal mode, clear multicast list 1904 * num_addrs > 0 Multicast mode, receive normal and MC packets, 1905 * and do best-effort filtering. 1906 */ 1907 static void 1908 tc35815_set_multicast_list(struct net_device *dev) 1909 { 1910 struct tc35815_regs __iomem *tr = 1911 (struct tc35815_regs __iomem *)dev->base_addr; 1912 1913 if (dev->flags & IFF_PROMISC) { 1914 /* With some (all?) 100MHalf HUB, controller will hang 1915 * if we enabled promiscuous mode before linkup... 1916 */ 1917 struct tc35815_local *lp = netdev_priv(dev); 1918 1919 if (!lp->link) 1920 return; 1921 /* Enable promiscuous mode */ 1922 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl); 1923 } else if ((dev->flags & IFF_ALLMULTI) || 1924 netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) { 1925 /* CAM 0, 1, 20 are reserved. */ 1926 /* Disable promiscuous mode, use normal mode. */ 1927 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl); 1928 } else if (!netdev_mc_empty(dev)) { 1929 struct netdev_hw_addr *ha; 1930 int i; 1931 int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE); 1932 1933 tc_writel(0, &tr->CAM_Ctl); 1934 /* Walk the address list, and load the filter */ 1935 i = 0; 1936 netdev_for_each_mc_addr(ha, dev) { 1937 /* entry 0,1 is reserved. */ 1938 tc35815_set_cam_entry(dev, i + 2, ha->addr); 1939 ena_bits |= CAM_Ena_Bit(i + 2); 1940 i++; 1941 } 1942 tc_writel(ena_bits, &tr->CAM_Ena); 1943 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); 1944 } else { 1945 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena); 1946 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); 1947 } 1948 } 1949 1950 static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1951 { 1952 struct tc35815_local *lp = netdev_priv(dev); 1953 1954 strscpy(info->driver, MODNAME, sizeof(info->driver)); 1955 strscpy(info->version, DRV_VERSION, sizeof(info->version)); 1956 strscpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info)); 1957 } 1958 1959 static u32 tc35815_get_msglevel(struct net_device *dev) 1960 { 1961 struct tc35815_local *lp = netdev_priv(dev); 1962 return lp->msg_enable; 1963 } 1964 1965 static void tc35815_set_msglevel(struct net_device *dev, u32 datum) 1966 { 1967 struct tc35815_local *lp = netdev_priv(dev); 1968 lp->msg_enable = datum; 1969 } 1970 1971 static int tc35815_get_sset_count(struct net_device *dev, int sset) 1972 { 1973 struct tc35815_local *lp = netdev_priv(dev); 1974 1975 switch (sset) { 1976 case ETH_SS_STATS: 1977 return sizeof(lp->lstats) / sizeof(int); 1978 default: 1979 return -EOPNOTSUPP; 1980 } 1981 } 1982 1983 static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) 1984 { 1985 struct tc35815_local *lp = netdev_priv(dev); 1986 data[0] = lp->lstats.max_tx_qlen; 1987 data[1] = lp->lstats.tx_ints; 1988 data[2] = lp->lstats.rx_ints; 1989 data[3] = lp->lstats.tx_underrun; 1990 } 1991 1992 static struct { 1993 const char str[ETH_GSTRING_LEN]; 1994 } ethtool_stats_keys[] = { 1995 { "max_tx_qlen" }, 1996 { "tx_ints" }, 1997 { "rx_ints" }, 1998 { "tx_underrun" }, 1999 }; 2000 2001 static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data) 2002 { 2003 memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys)); 2004 } 2005 2006 static const struct ethtool_ops tc35815_ethtool_ops = { 2007 .get_drvinfo = tc35815_get_drvinfo, 2008 .get_link = ethtool_op_get_link, 2009 .get_msglevel = tc35815_get_msglevel, 2010 .set_msglevel = tc35815_set_msglevel, 2011 .get_strings = tc35815_get_strings, 2012 .get_sset_count = tc35815_get_sset_count, 2013 .get_ethtool_stats = tc35815_get_ethtool_stats, 2014 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2015 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2016 }; 2017 2018 static void tc35815_chip_reset(struct net_device *dev) 2019 { 2020 struct tc35815_regs __iomem *tr = 2021 (struct tc35815_regs __iomem *)dev->base_addr; 2022 int i; 2023 /* reset the controller */ 2024 tc_writel(MAC_Reset, &tr->MAC_Ctl); 2025 udelay(4); /* 3200ns */ 2026 i = 0; 2027 while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) { 2028 if (i++ > 100) { 2029 printk(KERN_ERR "%s: MAC reset failed.\n", dev->name); 2030 break; 2031 } 2032 mdelay(1); 2033 } 2034 tc_writel(0, &tr->MAC_Ctl); 2035 2036 /* initialize registers to default value */ 2037 tc_writel(0, &tr->DMA_Ctl); 2038 tc_writel(0, &tr->TxThrsh); 2039 tc_writel(0, &tr->TxPollCtr); 2040 tc_writel(0, &tr->RxFragSize); 2041 tc_writel(0, &tr->Int_En); 2042 tc_writel(0, &tr->FDA_Bas); 2043 tc_writel(0, &tr->FDA_Lim); 2044 tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */ 2045 tc_writel(0, &tr->CAM_Ctl); 2046 tc_writel(0, &tr->Tx_Ctl); 2047 tc_writel(0, &tr->Rx_Ctl); 2048 tc_writel(0, &tr->CAM_Ena); 2049 (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */ 2050 2051 /* initialize internal SRAM */ 2052 tc_writel(DMA_TestMode, &tr->DMA_Ctl); 2053 for (i = 0; i < 0x1000; i += 4) { 2054 tc_writel(i, &tr->CAM_Adr); 2055 tc_writel(0, &tr->CAM_Data); 2056 } 2057 tc_writel(0, &tr->DMA_Ctl); 2058 } 2059 2060 static void tc35815_chip_init(struct net_device *dev) 2061 { 2062 struct tc35815_local *lp = netdev_priv(dev); 2063 struct tc35815_regs __iomem *tr = 2064 (struct tc35815_regs __iomem *)dev->base_addr; 2065 unsigned long txctl = TX_CTL_CMD; 2066 2067 /* load station address to CAM */ 2068 tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr); 2069 2070 /* Enable CAM (broadcast and unicast) */ 2071 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena); 2072 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); 2073 2074 /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */ 2075 if (HAVE_DMA_RXALIGN(lp)) 2076 tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl); 2077 else 2078 tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl); 2079 tc_writel(0, &tr->TxPollCtr); /* Batch mode */ 2080 tc_writel(TX_THRESHOLD, &tr->TxThrsh); 2081 tc_writel(INT_EN_CMD, &tr->Int_En); 2082 2083 /* set queues */ 2084 tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas); 2085 tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base, 2086 &tr->FDA_Lim); 2087 /* 2088 * Activation method: 2089 * First, enable the MAC Transmitter and the DMA Receive circuits. 2090 * Then enable the DMA Transmitter and the MAC Receive circuits. 2091 */ 2092 tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */ 2093 tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */ 2094 2095 /* start MAC transmitter */ 2096 /* TX4939 does not have EnLCarr */ 2097 if (lp->chiptype == TC35815_TX4939) 2098 txctl &= ~Tx_EnLCarr; 2099 /* WORKAROUND: ignore LostCrS in full duplex operation */ 2100 if (!dev->phydev || !lp->link || lp->duplex == DUPLEX_FULL) 2101 txctl &= ~Tx_EnLCarr; 2102 tc_writel(txctl, &tr->Tx_Ctl); 2103 } 2104 2105 #ifdef CONFIG_PM 2106 static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state) 2107 { 2108 struct net_device *dev = pci_get_drvdata(pdev); 2109 struct tc35815_local *lp = netdev_priv(dev); 2110 unsigned long flags; 2111 2112 pci_save_state(pdev); 2113 if (!netif_running(dev)) 2114 return 0; 2115 netif_device_detach(dev); 2116 if (dev->phydev) 2117 phy_stop(dev->phydev); 2118 spin_lock_irqsave(&lp->lock, flags); 2119 tc35815_chip_reset(dev); 2120 spin_unlock_irqrestore(&lp->lock, flags); 2121 pci_set_power_state(pdev, PCI_D3hot); 2122 return 0; 2123 } 2124 2125 static int tc35815_resume(struct pci_dev *pdev) 2126 { 2127 struct net_device *dev = pci_get_drvdata(pdev); 2128 2129 pci_restore_state(pdev); 2130 if (!netif_running(dev)) 2131 return 0; 2132 pci_set_power_state(pdev, PCI_D0); 2133 tc35815_restart(dev); 2134 netif_carrier_off(dev); 2135 if (dev->phydev) 2136 phy_start(dev->phydev); 2137 netif_device_attach(dev); 2138 return 0; 2139 } 2140 #endif /* CONFIG_PM */ 2141 2142 static struct pci_driver tc35815_pci_driver = { 2143 .name = MODNAME, 2144 .id_table = tc35815_pci_tbl, 2145 .probe = tc35815_init_one, 2146 .remove = tc35815_remove_one, 2147 #ifdef CONFIG_PM 2148 .suspend = tc35815_suspend, 2149 .resume = tc35815_resume, 2150 #endif 2151 }; 2152 2153 module_param_named(speed, options.speed, int, 0); 2154 MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps"); 2155 module_param_named(duplex, options.duplex, int, 0); 2156 MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full"); 2157 2158 module_pci_driver(tc35815_pci_driver); 2159 MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver"); 2160 MODULE_LICENSE("GPL"); 2161