1 /* 2 * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux. 3 * 4 * Based on skelton.c by Donald Becker. 5 * 6 * This driver is a replacement of older and less maintained version. 7 * This is a header of the older version: 8 * -----<snip>----- 9 * Copyright 2001 MontaVista Software Inc. 10 * Author: MontaVista Software, Inc. 11 * ahennessy@mvista.com 12 * Copyright (C) 2000-2001 Toshiba Corporation 13 * static const char *version = 14 * "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n"; 15 * -----<snip>----- 16 * 17 * This file is subject to the terms and conditions of the GNU General Public 18 * License. See the file "COPYING" in the main directory of this archive 19 * for more details. 20 * 21 * (C) Copyright TOSHIBA CORPORATION 2004-2005 22 * All Rights Reserved. 23 */ 24 25 #define DRV_VERSION "1.39" 26 static const char *version = "tc35815.c:v" DRV_VERSION "\n"; 27 #define MODNAME "tc35815" 28 29 #include <linux/module.h> 30 #include <linux/kernel.h> 31 #include <linux/types.h> 32 #include <linux/fcntl.h> 33 #include <linux/interrupt.h> 34 #include <linux/ioport.h> 35 #include <linux/in.h> 36 #include <linux/if_vlan.h> 37 #include <linux/slab.h> 38 #include <linux/string.h> 39 #include <linux/spinlock.h> 40 #include <linux/errno.h> 41 #include <linux/netdevice.h> 42 #include <linux/etherdevice.h> 43 #include <linux/skbuff.h> 44 #include <linux/delay.h> 45 #include <linux/pci.h> 46 #include <linux/phy.h> 47 #include <linux/workqueue.h> 48 #include <linux/platform_device.h> 49 #include <linux/prefetch.h> 50 #include <asm/io.h> 51 #include <asm/byteorder.h> 52 53 enum tc35815_chiptype { 54 TC35815CF = 0, 55 TC35815_NWU, 56 TC35815_TX4939, 57 }; 58 59 /* indexed by tc35815_chiptype, above */ 60 static const struct { 61 const char *name; 62 } chip_info[] = { 63 { "TOSHIBA TC35815CF 10/100BaseTX" }, 64 { "TOSHIBA TC35815 with Wake on LAN" }, 65 { "TOSHIBA TC35815/TX4939" }, 66 }; 67 68 static const struct pci_device_id tc35815_pci_tbl[] = { 69 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF }, 70 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU }, 71 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 }, 72 {0,} 73 }; 74 MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl); 75 76 /* see MODULE_PARM_DESC */ 77 static struct tc35815_options { 78 int speed; 79 int duplex; 80 } options; 81 82 /* 83 * Registers 84 */ 85 struct tc35815_regs { 86 __u32 DMA_Ctl; /* 0x00 */ 87 __u32 TxFrmPtr; 88 __u32 TxThrsh; 89 __u32 TxPollCtr; 90 __u32 BLFrmPtr; 91 __u32 RxFragSize; 92 __u32 Int_En; 93 __u32 FDA_Bas; 94 __u32 FDA_Lim; /* 0x20 */ 95 __u32 Int_Src; 96 __u32 unused0[2]; 97 __u32 PauseCnt; 98 __u32 RemPauCnt; 99 __u32 TxCtlFrmStat; 100 __u32 unused1; 101 __u32 MAC_Ctl; /* 0x40 */ 102 __u32 CAM_Ctl; 103 __u32 Tx_Ctl; 104 __u32 Tx_Stat; 105 __u32 Rx_Ctl; 106 __u32 Rx_Stat; 107 __u32 MD_Data; 108 __u32 MD_CA; 109 __u32 CAM_Adr; /* 0x60 */ 110 __u32 CAM_Data; 111 __u32 CAM_Ena; 112 __u32 PROM_Ctl; 113 __u32 PROM_Data; 114 __u32 Algn_Cnt; 115 __u32 CRC_Cnt; 116 __u32 Miss_Cnt; 117 }; 118 119 /* 120 * Bit assignments 121 */ 122 /* DMA_Ctl bit assign ------------------------------------------------------- */ 123 #define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */ 124 #define DMA_RxAlign_1 0x00400000 125 #define DMA_RxAlign_2 0x00800000 126 #define DMA_RxAlign_3 0x00c00000 127 #define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */ 128 #define DMA_IntMask 0x00040000 /* 1:Interrupt mask */ 129 #define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */ 130 #define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */ 131 #define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */ 132 #define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */ 133 #define DMA_TestMode 0x00002000 /* 1:Test Mode */ 134 #define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */ 135 #define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */ 136 137 /* RxFragSize bit assign ---------------------------------------------------- */ 138 #define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */ 139 #define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */ 140 141 /* MAC_Ctl bit assign ------------------------------------------------------- */ 142 #define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */ 143 #define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */ 144 #define MAC_MissRoll 0x00000400 /* 1:Missed Roll */ 145 #define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */ 146 #define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */ 147 #define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/ 148 #define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */ 149 #define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */ 150 #define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */ 151 #define MAC_Reset 0x00000004 /* 1:Software Reset */ 152 #define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */ 153 #define MAC_HaltReq 0x00000001 /* 1:Halt request */ 154 155 /* PROM_Ctl bit assign ------------------------------------------------------ */ 156 #define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */ 157 #define PROM_Read 0x00004000 /*10:Read operation */ 158 #define PROM_Write 0x00002000 /*01:Write operation */ 159 #define PROM_Erase 0x00006000 /*11:Erase operation */ 160 /*00:Enable or Disable Writting, */ 161 /* as specified in PROM_Addr. */ 162 #define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */ 163 /*00xxxx: disable */ 164 165 /* CAM_Ctl bit assign ------------------------------------------------------- */ 166 #define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */ 167 #define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/ 168 /* accept other */ 169 #define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */ 170 #define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */ 171 #define CAM_StationAcc 0x00000001 /* 1:unicast accept */ 172 173 /* CAM_Ena bit assign ------------------------------------------------------- */ 174 #define CAM_ENTRY_MAX 21 /* CAM Data entry max count */ 175 #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */ 176 #define CAM_Ena_Bit(index) (1 << (index)) 177 #define CAM_ENTRY_DESTINATION 0 178 #define CAM_ENTRY_SOURCE 1 179 #define CAM_ENTRY_MACCTL 20 180 181 /* Tx_Ctl bit assign -------------------------------------------------------- */ 182 #define Tx_En 0x00000001 /* 1:Transmit enable */ 183 #define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */ 184 #define Tx_NoPad 0x00000004 /* 1:Suppress Padding */ 185 #define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */ 186 #define Tx_FBack 0x00000010 /* 1:Fast Back-off */ 187 #define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */ 188 #define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */ 189 #define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */ 190 #define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */ 191 #define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */ 192 #define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */ 193 #define Tx_EnComp 0x00004000 /* 1:Enable Completion */ 194 195 /* Tx_Stat bit assign ------------------------------------------------------- */ 196 #define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */ 197 #define Tx_ExColl 0x00000010 /* Excessive Collision */ 198 #define Tx_TXDefer 0x00000020 /* Transmit Defered */ 199 #define Tx_Paused 0x00000040 /* Transmit Paused */ 200 #define Tx_IntTx 0x00000080 /* Interrupt on Tx */ 201 #define Tx_Under 0x00000100 /* Underrun */ 202 #define Tx_Defer 0x00000200 /* Deferral */ 203 #define Tx_NCarr 0x00000400 /* No Carrier */ 204 #define Tx_10Stat 0x00000800 /* 10Mbps Status */ 205 #define Tx_LateColl 0x00001000 /* Late Collision */ 206 #define Tx_TxPar 0x00002000 /* Tx Parity Error */ 207 #define Tx_Comp 0x00004000 /* Completion */ 208 #define Tx_Halted 0x00008000 /* Tx Halted */ 209 #define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */ 210 211 /* Rx_Ctl bit assign -------------------------------------------------------- */ 212 #define Rx_EnGood 0x00004000 /* 1:Enable Good */ 213 #define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */ 214 #define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */ 215 #define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */ 216 #define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */ 217 #define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */ 218 #define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */ 219 #define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */ 220 #define Rx_ShortEn 0x00000008 /* 1:Short Enable */ 221 #define Rx_LongEn 0x00000004 /* 1:Long Enable */ 222 #define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */ 223 #define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */ 224 225 /* Rx_Stat bit assign ------------------------------------------------------- */ 226 #define Rx_Halted 0x00008000 /* Rx Halted */ 227 #define Rx_Good 0x00004000 /* Rx Good */ 228 #define Rx_RxPar 0x00002000 /* Rx Parity Error */ 229 #define Rx_TypePkt 0x00001000 /* Rx Type Packet */ 230 #define Rx_LongErr 0x00000800 /* Rx Long Error */ 231 #define Rx_Over 0x00000400 /* Rx Overflow */ 232 #define Rx_CRCErr 0x00000200 /* Rx CRC Error */ 233 #define Rx_Align 0x00000100 /* Rx Alignment Error */ 234 #define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */ 235 #define Rx_IntRx 0x00000040 /* Rx Interrupt */ 236 #define Rx_CtlRecd 0x00000020 /* Rx Control Receive */ 237 #define Rx_InLenErr 0x00000010 /* Rx In Range Frame Length Error */ 238 239 #define Rx_Stat_Mask 0x0000FFF0 /* Rx All Status Mask */ 240 241 /* Int_En bit assign -------------------------------------------------------- */ 242 #define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */ 243 #define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Ctl Complete Enable */ 244 #define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */ 245 #define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */ 246 #define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */ 247 #define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */ 248 #define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */ 249 #define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */ 250 #define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */ 251 #define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */ 252 #define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */ 253 #define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */ 254 /* Exhausted Enable */ 255 256 /* Int_Src bit assign ------------------------------------------------------- */ 257 #define Int_NRabt 0x00004000 /* 1:Non Recoverable error */ 258 #define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */ 259 #define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */ 260 #define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */ 261 #define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */ 262 #define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */ 263 #define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */ 264 #define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */ 265 #define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */ 266 #define Int_SWInt 0x00000020 /* 1:Software request & Clear */ 267 #define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */ 268 #define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */ 269 #define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */ 270 #define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */ 271 #define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */ 272 273 /* MD_CA bit assign --------------------------------------------------------- */ 274 #define MD_CA_PreSup 0x00001000 /* 1:Preamble Suppress */ 275 #define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */ 276 #define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */ 277 278 279 /* 280 * Descriptors 281 */ 282 283 /* Frame descripter */ 284 struct FDesc { 285 volatile __u32 FDNext; 286 volatile __u32 FDSystem; 287 volatile __u32 FDStat; 288 volatile __u32 FDCtl; 289 }; 290 291 /* Buffer descripter */ 292 struct BDesc { 293 volatile __u32 BuffData; 294 volatile __u32 BDCtl; 295 }; 296 297 #define FD_ALIGN 16 298 299 /* Frame Descripter bit assign ---------------------------------------------- */ 300 #define FD_FDLength_MASK 0x0000FFFF /* Length MASK */ 301 #define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */ 302 #define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */ 303 #define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */ 304 #define FD_FrmOpt_IntTx 0x20000000 /* Tx only */ 305 #define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */ 306 #define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */ 307 #define FD_FrmOpt_Packing 0x04000000 /* Rx only */ 308 #define FD_CownsFD 0x80000000 /* FD Controller owner bit */ 309 #define FD_Next_EOL 0x00000001 /* FD EOL indicator */ 310 #define FD_BDCnt_SHIFT 16 311 312 /* Buffer Descripter bit assign --------------------------------------------- */ 313 #define BD_BuffLength_MASK 0x0000FFFF /* Receive Data Size */ 314 #define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */ 315 #define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */ 316 #define BD_CownsBD 0x80000000 /* BD Controller owner bit */ 317 #define BD_RxBDID_SHIFT 16 318 #define BD_RxBDSeqN_SHIFT 24 319 320 321 /* Some useful constants. */ 322 323 #define TX_CTL_CMD (Tx_EnTxPar | Tx_EnLateColl | \ 324 Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \ 325 Tx_En) /* maybe 0x7b01 */ 326 /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */ 327 #define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \ 328 | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */ 329 #define INT_EN_CMD (Int_NRAbtEn | \ 330 Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \ 331 Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \ 332 Int_STargAbtEn | \ 333 Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/ 334 #define DMA_CTL_CMD DMA_BURST_SIZE 335 #define HAVE_DMA_RXALIGN(lp) likely((lp)->chiptype != TC35815CF) 336 337 /* Tuning parameters */ 338 #define DMA_BURST_SIZE 32 339 #define TX_THRESHOLD 1024 340 /* used threshold with packet max byte for low pci transfer ability.*/ 341 #define TX_THRESHOLD_MAX 1536 342 /* setting threshold max value when overrun error occurred this count. */ 343 #define TX_THRESHOLD_KEEP_LIMIT 10 344 345 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */ 346 #define FD_PAGE_NUM 4 347 #define RX_BUF_NUM 128 /* < 256 */ 348 #define RX_FD_NUM 256 /* >= 32 */ 349 #define TX_FD_NUM 128 350 #if RX_CTL_CMD & Rx_LongEn 351 #define RX_BUF_SIZE PAGE_SIZE 352 #elif RX_CTL_CMD & Rx_StripCRC 353 #define RX_BUF_SIZE \ 354 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN) 355 #else 356 #define RX_BUF_SIZE \ 357 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN) 358 #endif 359 #define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */ 360 #define NAPI_WEIGHT 16 361 362 struct TxFD { 363 struct FDesc fd; 364 struct BDesc bd; 365 struct BDesc unused; 366 }; 367 368 struct RxFD { 369 struct FDesc fd; 370 struct BDesc bd[0]; /* variable length */ 371 }; 372 373 struct FrFD { 374 struct FDesc fd; 375 struct BDesc bd[RX_BUF_NUM]; 376 }; 377 378 379 #define tc_readl(addr) ioread32(addr) 380 #define tc_writel(d, addr) iowrite32(d, addr) 381 382 #define TC35815_TX_TIMEOUT msecs_to_jiffies(400) 383 384 /* Information that need to be kept for each controller. */ 385 struct tc35815_local { 386 struct pci_dev *pci_dev; 387 388 struct net_device *dev; 389 struct napi_struct napi; 390 391 /* statistics */ 392 struct { 393 int max_tx_qlen; 394 int tx_ints; 395 int rx_ints; 396 int tx_underrun; 397 } lstats; 398 399 /* Tx control lock. This protects the transmit buffer ring 400 * state along with the "tx full" state of the driver. This 401 * means all netif_queue flow control actions are protected 402 * by this lock as well. 403 */ 404 spinlock_t lock; 405 spinlock_t rx_lock; 406 407 struct mii_bus *mii_bus; 408 struct phy_device *phy_dev; 409 int duplex; 410 int speed; 411 int link; 412 struct work_struct restart_work; 413 414 /* 415 * Transmitting: Batch Mode. 416 * 1 BD in 1 TxFD. 417 * Receiving: Non-Packing Mode. 418 * 1 circular FD for Free Buffer List. 419 * RX_BUF_NUM BD in Free Buffer FD. 420 * One Free Buffer BD has ETH_FRAME_LEN data buffer. 421 */ 422 void *fd_buf; /* for TxFD, RxFD, FrFD */ 423 dma_addr_t fd_buf_dma; 424 struct TxFD *tfd_base; 425 unsigned int tfd_start; 426 unsigned int tfd_end; 427 struct RxFD *rfd_base; 428 struct RxFD *rfd_limit; 429 struct RxFD *rfd_cur; 430 struct FrFD *fbl_ptr; 431 unsigned int fbl_count; 432 struct { 433 struct sk_buff *skb; 434 dma_addr_t skb_dma; 435 } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM]; 436 u32 msg_enable; 437 enum tc35815_chiptype chiptype; 438 }; 439 440 static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt) 441 { 442 return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf); 443 } 444 #ifdef DEBUG 445 static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus) 446 { 447 return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma)); 448 } 449 #endif 450 static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev, 451 struct pci_dev *hwdev, 452 dma_addr_t *dma_handle) 453 { 454 struct sk_buff *skb; 455 skb = netdev_alloc_skb(dev, RX_BUF_SIZE); 456 if (!skb) 457 return NULL; 458 *dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE, 459 PCI_DMA_FROMDEVICE); 460 if (pci_dma_mapping_error(hwdev, *dma_handle)) { 461 dev_kfree_skb_any(skb); 462 return NULL; 463 } 464 skb_reserve(skb, 2); /* make IP header 4byte aligned */ 465 return skb; 466 } 467 468 static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle) 469 { 470 pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE, 471 PCI_DMA_FROMDEVICE); 472 dev_kfree_skb_any(skb); 473 } 474 475 /* Index to functions, as function prototypes. */ 476 477 static int tc35815_open(struct net_device *dev); 478 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev); 479 static irqreturn_t tc35815_interrupt(int irq, void *dev_id); 480 static int tc35815_rx(struct net_device *dev, int limit); 481 static int tc35815_poll(struct napi_struct *napi, int budget); 482 static void tc35815_txdone(struct net_device *dev); 483 static int tc35815_close(struct net_device *dev); 484 static struct net_device_stats *tc35815_get_stats(struct net_device *dev); 485 static void tc35815_set_multicast_list(struct net_device *dev); 486 static void tc35815_tx_timeout(struct net_device *dev); 487 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 488 #ifdef CONFIG_NET_POLL_CONTROLLER 489 static void tc35815_poll_controller(struct net_device *dev); 490 #endif 491 static const struct ethtool_ops tc35815_ethtool_ops; 492 493 /* Example routines you must write ;->. */ 494 static void tc35815_chip_reset(struct net_device *dev); 495 static void tc35815_chip_init(struct net_device *dev); 496 497 #ifdef DEBUG 498 static void panic_queues(struct net_device *dev); 499 #endif 500 501 static void tc35815_restart_work(struct work_struct *work); 502 503 static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 504 { 505 struct net_device *dev = bus->priv; 506 struct tc35815_regs __iomem *tr = 507 (struct tc35815_regs __iomem *)dev->base_addr; 508 unsigned long timeout = jiffies + HZ; 509 510 tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA); 511 udelay(12); /* it takes 32 x 400ns at least */ 512 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) { 513 if (time_after(jiffies, timeout)) 514 return -EIO; 515 cpu_relax(); 516 } 517 return tc_readl(&tr->MD_Data) & 0xffff; 518 } 519 520 static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val) 521 { 522 struct net_device *dev = bus->priv; 523 struct tc35815_regs __iomem *tr = 524 (struct tc35815_regs __iomem *)dev->base_addr; 525 unsigned long timeout = jiffies + HZ; 526 527 tc_writel(val, &tr->MD_Data); 528 tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f), 529 &tr->MD_CA); 530 udelay(12); /* it takes 32 x 400ns at least */ 531 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) { 532 if (time_after(jiffies, timeout)) 533 return -EIO; 534 cpu_relax(); 535 } 536 return 0; 537 } 538 539 static void tc_handle_link_change(struct net_device *dev) 540 { 541 struct tc35815_local *lp = netdev_priv(dev); 542 struct phy_device *phydev = lp->phy_dev; 543 unsigned long flags; 544 int status_change = 0; 545 546 spin_lock_irqsave(&lp->lock, flags); 547 if (phydev->link && 548 (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) { 549 struct tc35815_regs __iomem *tr = 550 (struct tc35815_regs __iomem *)dev->base_addr; 551 u32 reg; 552 553 reg = tc_readl(&tr->MAC_Ctl); 554 reg |= MAC_HaltReq; 555 tc_writel(reg, &tr->MAC_Ctl); 556 if (phydev->duplex == DUPLEX_FULL) 557 reg |= MAC_FullDup; 558 else 559 reg &= ~MAC_FullDup; 560 tc_writel(reg, &tr->MAC_Ctl); 561 reg &= ~MAC_HaltReq; 562 tc_writel(reg, &tr->MAC_Ctl); 563 564 /* 565 * TX4939 PCFG.SPEEDn bit will be changed on 566 * NETDEV_CHANGE event. 567 */ 568 /* 569 * WORKAROUND: enable LostCrS only if half duplex 570 * operation. 571 * (TX4939 does not have EnLCarr) 572 */ 573 if (phydev->duplex == DUPLEX_HALF && 574 lp->chiptype != TC35815_TX4939) 575 tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr, 576 &tr->Tx_Ctl); 577 578 lp->speed = phydev->speed; 579 lp->duplex = phydev->duplex; 580 status_change = 1; 581 } 582 583 if (phydev->link != lp->link) { 584 if (phydev->link) { 585 /* delayed promiscuous enabling */ 586 if (dev->flags & IFF_PROMISC) 587 tc35815_set_multicast_list(dev); 588 } else { 589 lp->speed = 0; 590 lp->duplex = -1; 591 } 592 lp->link = phydev->link; 593 594 status_change = 1; 595 } 596 spin_unlock_irqrestore(&lp->lock, flags); 597 598 if (status_change && netif_msg_link(lp)) { 599 phy_print_status(phydev); 600 pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n", 601 dev->name, 602 phy_read(phydev, MII_BMCR), 603 phy_read(phydev, MII_BMSR), 604 phy_read(phydev, MII_LPA)); 605 } 606 } 607 608 static int tc_mii_probe(struct net_device *dev) 609 { 610 struct tc35815_local *lp = netdev_priv(dev); 611 struct phy_device *phydev; 612 u32 dropmask; 613 614 phydev = phy_find_first(lp->mii_bus); 615 if (!phydev) { 616 printk(KERN_ERR "%s: no PHY found\n", dev->name); 617 return -ENODEV; 618 } 619 620 /* attach the mac to the phy */ 621 phydev = phy_connect(dev, phydev_name(phydev), 622 &tc_handle_link_change, 623 lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII); 624 if (IS_ERR(phydev)) { 625 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name); 626 return PTR_ERR(phydev); 627 } 628 629 phy_attached_info(phydev); 630 631 /* mask with MAC supported features */ 632 phydev->supported &= PHY_BASIC_FEATURES; 633 dropmask = 0; 634 if (options.speed == 10) 635 dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full; 636 else if (options.speed == 100) 637 dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full; 638 if (options.duplex == 1) 639 dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full; 640 else if (options.duplex == 2) 641 dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half; 642 phydev->supported &= ~dropmask; 643 phydev->advertising = phydev->supported; 644 645 lp->link = 0; 646 lp->speed = 0; 647 lp->duplex = -1; 648 lp->phy_dev = phydev; 649 650 return 0; 651 } 652 653 static int tc_mii_init(struct net_device *dev) 654 { 655 struct tc35815_local *lp = netdev_priv(dev); 656 int err; 657 658 lp->mii_bus = mdiobus_alloc(); 659 if (lp->mii_bus == NULL) { 660 err = -ENOMEM; 661 goto err_out; 662 } 663 664 lp->mii_bus->name = "tc35815_mii_bus"; 665 lp->mii_bus->read = tc_mdio_read; 666 lp->mii_bus->write = tc_mdio_write; 667 snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x", 668 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn); 669 lp->mii_bus->priv = dev; 670 lp->mii_bus->parent = &lp->pci_dev->dev; 671 err = mdiobus_register(lp->mii_bus); 672 if (err) 673 goto err_out_free_mii_bus; 674 err = tc_mii_probe(dev); 675 if (err) 676 goto err_out_unregister_bus; 677 return 0; 678 679 err_out_unregister_bus: 680 mdiobus_unregister(lp->mii_bus); 681 err_out_free_mii_bus: 682 mdiobus_free(lp->mii_bus); 683 err_out: 684 return err; 685 } 686 687 #ifdef CONFIG_CPU_TX49XX 688 /* 689 * Find a platform_device providing a MAC address. The platform code 690 * should provide a "tc35815-mac" device with a MAC address in its 691 * platform_data. 692 */ 693 static int tc35815_mac_match(struct device *dev, void *data) 694 { 695 struct platform_device *plat_dev = to_platform_device(dev); 696 struct pci_dev *pci_dev = data; 697 unsigned int id = pci_dev->irq; 698 return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id; 699 } 700 701 static int tc35815_read_plat_dev_addr(struct net_device *dev) 702 { 703 struct tc35815_local *lp = netdev_priv(dev); 704 struct device *pd = bus_find_device(&platform_bus_type, NULL, 705 lp->pci_dev, tc35815_mac_match); 706 if (pd) { 707 if (pd->platform_data) 708 memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN); 709 put_device(pd); 710 return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV; 711 } 712 return -ENODEV; 713 } 714 #else 715 static int tc35815_read_plat_dev_addr(struct net_device *dev) 716 { 717 return -ENODEV; 718 } 719 #endif 720 721 static int tc35815_init_dev_addr(struct net_device *dev) 722 { 723 struct tc35815_regs __iomem *tr = 724 (struct tc35815_regs __iomem *)dev->base_addr; 725 int i; 726 727 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy) 728 ; 729 for (i = 0; i < 6; i += 2) { 730 unsigned short data; 731 tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl); 732 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy) 733 ; 734 data = tc_readl(&tr->PROM_Data); 735 dev->dev_addr[i] = data & 0xff; 736 dev->dev_addr[i+1] = data >> 8; 737 } 738 if (!is_valid_ether_addr(dev->dev_addr)) 739 return tc35815_read_plat_dev_addr(dev); 740 return 0; 741 } 742 743 static const struct net_device_ops tc35815_netdev_ops = { 744 .ndo_open = tc35815_open, 745 .ndo_stop = tc35815_close, 746 .ndo_start_xmit = tc35815_send_packet, 747 .ndo_get_stats = tc35815_get_stats, 748 .ndo_set_rx_mode = tc35815_set_multicast_list, 749 .ndo_tx_timeout = tc35815_tx_timeout, 750 .ndo_do_ioctl = tc35815_ioctl, 751 .ndo_validate_addr = eth_validate_addr, 752 .ndo_change_mtu = eth_change_mtu, 753 .ndo_set_mac_address = eth_mac_addr, 754 #ifdef CONFIG_NET_POLL_CONTROLLER 755 .ndo_poll_controller = tc35815_poll_controller, 756 #endif 757 }; 758 759 static int tc35815_init_one(struct pci_dev *pdev, 760 const struct pci_device_id *ent) 761 { 762 void __iomem *ioaddr = NULL; 763 struct net_device *dev; 764 struct tc35815_local *lp; 765 int rc; 766 767 static int printed_version; 768 if (!printed_version++) { 769 printk(version); 770 dev_printk(KERN_DEBUG, &pdev->dev, 771 "speed:%d duplex:%d\n", 772 options.speed, options.duplex); 773 } 774 775 if (!pdev->irq) { 776 dev_warn(&pdev->dev, "no IRQ assigned.\n"); 777 return -ENODEV; 778 } 779 780 /* dev zeroed in alloc_etherdev */ 781 dev = alloc_etherdev(sizeof(*lp)); 782 if (dev == NULL) 783 return -ENOMEM; 784 785 SET_NETDEV_DEV(dev, &pdev->dev); 786 lp = netdev_priv(dev); 787 lp->dev = dev; 788 789 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 790 rc = pcim_enable_device(pdev); 791 if (rc) 792 goto err_out; 793 rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME); 794 if (rc) 795 goto err_out; 796 pci_set_master(pdev); 797 ioaddr = pcim_iomap_table(pdev)[1]; 798 799 /* Initialize the device structure. */ 800 dev->netdev_ops = &tc35815_netdev_ops; 801 dev->ethtool_ops = &tc35815_ethtool_ops; 802 dev->watchdog_timeo = TC35815_TX_TIMEOUT; 803 netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT); 804 805 dev->irq = pdev->irq; 806 dev->base_addr = (unsigned long)ioaddr; 807 808 INIT_WORK(&lp->restart_work, tc35815_restart_work); 809 spin_lock_init(&lp->lock); 810 spin_lock_init(&lp->rx_lock); 811 lp->pci_dev = pdev; 812 lp->chiptype = ent->driver_data; 813 814 lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK; 815 pci_set_drvdata(pdev, dev); 816 817 /* Soft reset the chip. */ 818 tc35815_chip_reset(dev); 819 820 /* Retrieve the ethernet address. */ 821 if (tc35815_init_dev_addr(dev)) { 822 dev_warn(&pdev->dev, "not valid ether addr\n"); 823 eth_hw_addr_random(dev); 824 } 825 826 rc = register_netdev(dev); 827 if (rc) 828 goto err_out; 829 830 printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n", 831 dev->name, 832 chip_info[ent->driver_data].name, 833 dev->base_addr, 834 dev->dev_addr, 835 dev->irq); 836 837 rc = tc_mii_init(dev); 838 if (rc) 839 goto err_out_unregister; 840 841 return 0; 842 843 err_out_unregister: 844 unregister_netdev(dev); 845 err_out: 846 free_netdev(dev); 847 return rc; 848 } 849 850 851 static void tc35815_remove_one(struct pci_dev *pdev) 852 { 853 struct net_device *dev = pci_get_drvdata(pdev); 854 struct tc35815_local *lp = netdev_priv(dev); 855 856 phy_disconnect(lp->phy_dev); 857 mdiobus_unregister(lp->mii_bus); 858 mdiobus_free(lp->mii_bus); 859 unregister_netdev(dev); 860 free_netdev(dev); 861 } 862 863 static int 864 tc35815_init_queues(struct net_device *dev) 865 { 866 struct tc35815_local *lp = netdev_priv(dev); 867 int i; 868 unsigned long fd_addr; 869 870 if (!lp->fd_buf) { 871 BUG_ON(sizeof(struct FDesc) + 872 sizeof(struct BDesc) * RX_BUF_NUM + 873 sizeof(struct FDesc) * RX_FD_NUM + 874 sizeof(struct TxFD) * TX_FD_NUM > 875 PAGE_SIZE * FD_PAGE_NUM); 876 877 lp->fd_buf = pci_alloc_consistent(lp->pci_dev, 878 PAGE_SIZE * FD_PAGE_NUM, 879 &lp->fd_buf_dma); 880 if (!lp->fd_buf) 881 return -ENOMEM; 882 for (i = 0; i < RX_BUF_NUM; i++) { 883 lp->rx_skbs[i].skb = 884 alloc_rxbuf_skb(dev, lp->pci_dev, 885 &lp->rx_skbs[i].skb_dma); 886 if (!lp->rx_skbs[i].skb) { 887 while (--i >= 0) { 888 free_rxbuf_skb(lp->pci_dev, 889 lp->rx_skbs[i].skb, 890 lp->rx_skbs[i].skb_dma); 891 lp->rx_skbs[i].skb = NULL; 892 } 893 pci_free_consistent(lp->pci_dev, 894 PAGE_SIZE * FD_PAGE_NUM, 895 lp->fd_buf, 896 lp->fd_buf_dma); 897 lp->fd_buf = NULL; 898 return -ENOMEM; 899 } 900 } 901 printk(KERN_DEBUG "%s: FD buf %p DataBuf", 902 dev->name, lp->fd_buf); 903 printk("\n"); 904 } else { 905 for (i = 0; i < FD_PAGE_NUM; i++) 906 clear_page((void *)((unsigned long)lp->fd_buf + 907 i * PAGE_SIZE)); 908 } 909 fd_addr = (unsigned long)lp->fd_buf; 910 911 /* Free Descriptors (for Receive) */ 912 lp->rfd_base = (struct RxFD *)fd_addr; 913 fd_addr += sizeof(struct RxFD) * RX_FD_NUM; 914 for (i = 0; i < RX_FD_NUM; i++) 915 lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD); 916 lp->rfd_cur = lp->rfd_base; 917 lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1); 918 919 /* Transmit Descriptors */ 920 lp->tfd_base = (struct TxFD *)fd_addr; 921 fd_addr += sizeof(struct TxFD) * TX_FD_NUM; 922 for (i = 0; i < TX_FD_NUM; i++) { 923 lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1])); 924 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); 925 lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0); 926 } 927 lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0])); 928 lp->tfd_start = 0; 929 lp->tfd_end = 0; 930 931 /* Buffer List (for Receive) */ 932 lp->fbl_ptr = (struct FrFD *)fd_addr; 933 lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr)); 934 lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD); 935 /* 936 * move all allocated skbs to head of rx_skbs[] array. 937 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in 938 * tc35815_rx() had failed. 939 */ 940 lp->fbl_count = 0; 941 for (i = 0; i < RX_BUF_NUM; i++) { 942 if (lp->rx_skbs[i].skb) { 943 if (i != lp->fbl_count) { 944 lp->rx_skbs[lp->fbl_count].skb = 945 lp->rx_skbs[i].skb; 946 lp->rx_skbs[lp->fbl_count].skb_dma = 947 lp->rx_skbs[i].skb_dma; 948 } 949 lp->fbl_count++; 950 } 951 } 952 for (i = 0; i < RX_BUF_NUM; i++) { 953 if (i >= lp->fbl_count) { 954 lp->fbl_ptr->bd[i].BuffData = 0; 955 lp->fbl_ptr->bd[i].BDCtl = 0; 956 continue; 957 } 958 lp->fbl_ptr->bd[i].BuffData = 959 cpu_to_le32(lp->rx_skbs[i].skb_dma); 960 /* BDID is index of FrFD.bd[] */ 961 lp->fbl_ptr->bd[i].BDCtl = 962 cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) | 963 RX_BUF_SIZE); 964 } 965 966 printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n", 967 dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr); 968 return 0; 969 } 970 971 static void 972 tc35815_clear_queues(struct net_device *dev) 973 { 974 struct tc35815_local *lp = netdev_priv(dev); 975 int i; 976 977 for (i = 0; i < TX_FD_NUM; i++) { 978 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem); 979 struct sk_buff *skb = 980 fdsystem != 0xffffffff ? 981 lp->tx_skbs[fdsystem].skb : NULL; 982 #ifdef DEBUG 983 if (lp->tx_skbs[i].skb != skb) { 984 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i); 985 panic_queues(dev); 986 } 987 #else 988 BUG_ON(lp->tx_skbs[i].skb != skb); 989 #endif 990 if (skb) { 991 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE); 992 lp->tx_skbs[i].skb = NULL; 993 lp->tx_skbs[i].skb_dma = 0; 994 dev_kfree_skb_any(skb); 995 } 996 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); 997 } 998 999 tc35815_init_queues(dev); 1000 } 1001 1002 static void 1003 tc35815_free_queues(struct net_device *dev) 1004 { 1005 struct tc35815_local *lp = netdev_priv(dev); 1006 int i; 1007 1008 if (lp->tfd_base) { 1009 for (i = 0; i < TX_FD_NUM; i++) { 1010 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem); 1011 struct sk_buff *skb = 1012 fdsystem != 0xffffffff ? 1013 lp->tx_skbs[fdsystem].skb : NULL; 1014 #ifdef DEBUG 1015 if (lp->tx_skbs[i].skb != skb) { 1016 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i); 1017 panic_queues(dev); 1018 } 1019 #else 1020 BUG_ON(lp->tx_skbs[i].skb != skb); 1021 #endif 1022 if (skb) { 1023 dev_kfree_skb(skb); 1024 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE); 1025 lp->tx_skbs[i].skb = NULL; 1026 lp->tx_skbs[i].skb_dma = 0; 1027 } 1028 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); 1029 } 1030 } 1031 1032 lp->rfd_base = NULL; 1033 lp->rfd_limit = NULL; 1034 lp->rfd_cur = NULL; 1035 lp->fbl_ptr = NULL; 1036 1037 for (i = 0; i < RX_BUF_NUM; i++) { 1038 if (lp->rx_skbs[i].skb) { 1039 free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb, 1040 lp->rx_skbs[i].skb_dma); 1041 lp->rx_skbs[i].skb = NULL; 1042 } 1043 } 1044 if (lp->fd_buf) { 1045 pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM, 1046 lp->fd_buf, lp->fd_buf_dma); 1047 lp->fd_buf = NULL; 1048 } 1049 } 1050 1051 static void 1052 dump_txfd(struct TxFD *fd) 1053 { 1054 printk("TxFD(%p): %08x %08x %08x %08x\n", fd, 1055 le32_to_cpu(fd->fd.FDNext), 1056 le32_to_cpu(fd->fd.FDSystem), 1057 le32_to_cpu(fd->fd.FDStat), 1058 le32_to_cpu(fd->fd.FDCtl)); 1059 printk("BD: "); 1060 printk(" %08x %08x", 1061 le32_to_cpu(fd->bd.BuffData), 1062 le32_to_cpu(fd->bd.BDCtl)); 1063 printk("\n"); 1064 } 1065 1066 static int 1067 dump_rxfd(struct RxFD *fd) 1068 { 1069 int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT; 1070 if (bd_count > 8) 1071 bd_count = 8; 1072 printk("RxFD(%p): %08x %08x %08x %08x\n", fd, 1073 le32_to_cpu(fd->fd.FDNext), 1074 le32_to_cpu(fd->fd.FDSystem), 1075 le32_to_cpu(fd->fd.FDStat), 1076 le32_to_cpu(fd->fd.FDCtl)); 1077 if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD) 1078 return 0; 1079 printk("BD: "); 1080 for (i = 0; i < bd_count; i++) 1081 printk(" %08x %08x", 1082 le32_to_cpu(fd->bd[i].BuffData), 1083 le32_to_cpu(fd->bd[i].BDCtl)); 1084 printk("\n"); 1085 return bd_count; 1086 } 1087 1088 #ifdef DEBUG 1089 static void 1090 dump_frfd(struct FrFD *fd) 1091 { 1092 int i; 1093 printk("FrFD(%p): %08x %08x %08x %08x\n", fd, 1094 le32_to_cpu(fd->fd.FDNext), 1095 le32_to_cpu(fd->fd.FDSystem), 1096 le32_to_cpu(fd->fd.FDStat), 1097 le32_to_cpu(fd->fd.FDCtl)); 1098 printk("BD: "); 1099 for (i = 0; i < RX_BUF_NUM; i++) 1100 printk(" %08x %08x", 1101 le32_to_cpu(fd->bd[i].BuffData), 1102 le32_to_cpu(fd->bd[i].BDCtl)); 1103 printk("\n"); 1104 } 1105 1106 static void 1107 panic_queues(struct net_device *dev) 1108 { 1109 struct tc35815_local *lp = netdev_priv(dev); 1110 int i; 1111 1112 printk("TxFD base %p, start %u, end %u\n", 1113 lp->tfd_base, lp->tfd_start, lp->tfd_end); 1114 printk("RxFD base %p limit %p cur %p\n", 1115 lp->rfd_base, lp->rfd_limit, lp->rfd_cur); 1116 printk("FrFD %p\n", lp->fbl_ptr); 1117 for (i = 0; i < TX_FD_NUM; i++) 1118 dump_txfd(&lp->tfd_base[i]); 1119 for (i = 0; i < RX_FD_NUM; i++) { 1120 int bd_count = dump_rxfd(&lp->rfd_base[i]); 1121 i += (bd_count + 1) / 2; /* skip BDs */ 1122 } 1123 dump_frfd(lp->fbl_ptr); 1124 panic("%s: Illegal queue state.", dev->name); 1125 } 1126 #endif 1127 1128 static void print_eth(const u8 *add) 1129 { 1130 printk(KERN_DEBUG "print_eth(%p)\n", add); 1131 printk(KERN_DEBUG " %pM => %pM : %02x%02x\n", 1132 add + 6, add, add[12], add[13]); 1133 } 1134 1135 static int tc35815_tx_full(struct net_device *dev) 1136 { 1137 struct tc35815_local *lp = netdev_priv(dev); 1138 return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end; 1139 } 1140 1141 static void tc35815_restart(struct net_device *dev) 1142 { 1143 struct tc35815_local *lp = netdev_priv(dev); 1144 int ret; 1145 1146 if (lp->phy_dev) { 1147 ret = phy_init_hw(lp->phy_dev); 1148 if (ret) 1149 printk(KERN_ERR "%s: PHY init failed.\n", dev->name); 1150 } 1151 1152 spin_lock_bh(&lp->rx_lock); 1153 spin_lock_irq(&lp->lock); 1154 tc35815_chip_reset(dev); 1155 tc35815_clear_queues(dev); 1156 tc35815_chip_init(dev); 1157 /* Reconfigure CAM again since tc35815_chip_init() initialize it. */ 1158 tc35815_set_multicast_list(dev); 1159 spin_unlock_irq(&lp->lock); 1160 spin_unlock_bh(&lp->rx_lock); 1161 1162 netif_wake_queue(dev); 1163 } 1164 1165 static void tc35815_restart_work(struct work_struct *work) 1166 { 1167 struct tc35815_local *lp = 1168 container_of(work, struct tc35815_local, restart_work); 1169 struct net_device *dev = lp->dev; 1170 1171 tc35815_restart(dev); 1172 } 1173 1174 static void tc35815_schedule_restart(struct net_device *dev) 1175 { 1176 struct tc35815_local *lp = netdev_priv(dev); 1177 struct tc35815_regs __iomem *tr = 1178 (struct tc35815_regs __iomem *)dev->base_addr; 1179 unsigned long flags; 1180 1181 /* disable interrupts */ 1182 spin_lock_irqsave(&lp->lock, flags); 1183 tc_writel(0, &tr->Int_En); 1184 tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl); 1185 schedule_work(&lp->restart_work); 1186 spin_unlock_irqrestore(&lp->lock, flags); 1187 } 1188 1189 static void tc35815_tx_timeout(struct net_device *dev) 1190 { 1191 struct tc35815_regs __iomem *tr = 1192 (struct tc35815_regs __iomem *)dev->base_addr; 1193 1194 printk(KERN_WARNING "%s: transmit timed out, status %#x\n", 1195 dev->name, tc_readl(&tr->Tx_Stat)); 1196 1197 /* Try to restart the adaptor. */ 1198 tc35815_schedule_restart(dev); 1199 dev->stats.tx_errors++; 1200 } 1201 1202 /* 1203 * Open/initialize the controller. This is called (in the current kernel) 1204 * sometime after booting when the 'ifconfig' program is run. 1205 * 1206 * This routine should set everything up anew at each open, even 1207 * registers that "should" only need to be set once at boot, so that 1208 * there is non-reboot way to recover if something goes wrong. 1209 */ 1210 static int 1211 tc35815_open(struct net_device *dev) 1212 { 1213 struct tc35815_local *lp = netdev_priv(dev); 1214 1215 /* 1216 * This is used if the interrupt line can turned off (shared). 1217 * See 3c503.c for an example of selecting the IRQ at config-time. 1218 */ 1219 if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED, 1220 dev->name, dev)) 1221 return -EAGAIN; 1222 1223 tc35815_chip_reset(dev); 1224 1225 if (tc35815_init_queues(dev) != 0) { 1226 free_irq(dev->irq, dev); 1227 return -EAGAIN; 1228 } 1229 1230 napi_enable(&lp->napi); 1231 1232 /* Reset the hardware here. Don't forget to set the station address. */ 1233 spin_lock_irq(&lp->lock); 1234 tc35815_chip_init(dev); 1235 spin_unlock_irq(&lp->lock); 1236 1237 netif_carrier_off(dev); 1238 /* schedule a link state check */ 1239 phy_start(lp->phy_dev); 1240 1241 /* We are now ready to accept transmit requeusts from 1242 * the queueing layer of the networking. 1243 */ 1244 netif_start_queue(dev); 1245 1246 return 0; 1247 } 1248 1249 /* This will only be invoked if your driver is _not_ in XOFF state. 1250 * What this means is that you need not check it, and that this 1251 * invariant will hold if you make sure that the netif_*_queue() 1252 * calls are done at the proper times. 1253 */ 1254 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev) 1255 { 1256 struct tc35815_local *lp = netdev_priv(dev); 1257 struct TxFD *txfd; 1258 unsigned long flags; 1259 1260 /* If some error occurs while trying to transmit this 1261 * packet, you should return '1' from this function. 1262 * In such a case you _may not_ do anything to the 1263 * SKB, it is still owned by the network queueing 1264 * layer when an error is returned. This means you 1265 * may not modify any SKB fields, you may not free 1266 * the SKB, etc. 1267 */ 1268 1269 /* This is the most common case for modern hardware. 1270 * The spinlock protects this code from the TX complete 1271 * hardware interrupt handler. Queue flow control is 1272 * thus managed under this lock as well. 1273 */ 1274 spin_lock_irqsave(&lp->lock, flags); 1275 1276 /* failsafe... (handle txdone now if half of FDs are used) */ 1277 if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM > 1278 TX_FD_NUM / 2) 1279 tc35815_txdone(dev); 1280 1281 if (netif_msg_pktdata(lp)) 1282 print_eth(skb->data); 1283 #ifdef DEBUG 1284 if (lp->tx_skbs[lp->tfd_start].skb) { 1285 printk("%s: tx_skbs conflict.\n", dev->name); 1286 panic_queues(dev); 1287 } 1288 #else 1289 BUG_ON(lp->tx_skbs[lp->tfd_start].skb); 1290 #endif 1291 lp->tx_skbs[lp->tfd_start].skb = skb; 1292 lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE); 1293 1294 /*add to ring */ 1295 txfd = &lp->tfd_base[lp->tfd_start]; 1296 txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma); 1297 txfd->bd.BDCtl = cpu_to_le32(skb->len); 1298 txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start); 1299 txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT)); 1300 1301 if (lp->tfd_start == lp->tfd_end) { 1302 struct tc35815_regs __iomem *tr = 1303 (struct tc35815_regs __iomem *)dev->base_addr; 1304 /* Start DMA Transmitter. */ 1305 txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL); 1306 txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx); 1307 if (netif_msg_tx_queued(lp)) { 1308 printk("%s: starting TxFD.\n", dev->name); 1309 dump_txfd(txfd); 1310 } 1311 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr); 1312 } else { 1313 txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL); 1314 if (netif_msg_tx_queued(lp)) { 1315 printk("%s: queueing TxFD.\n", dev->name); 1316 dump_txfd(txfd); 1317 } 1318 } 1319 lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM; 1320 1321 /* If we just used up the very last entry in the 1322 * TX ring on this device, tell the queueing 1323 * layer to send no more. 1324 */ 1325 if (tc35815_tx_full(dev)) { 1326 if (netif_msg_tx_queued(lp)) 1327 printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name); 1328 netif_stop_queue(dev); 1329 } 1330 1331 /* When the TX completion hw interrupt arrives, this 1332 * is when the transmit statistics are updated. 1333 */ 1334 1335 spin_unlock_irqrestore(&lp->lock, flags); 1336 return NETDEV_TX_OK; 1337 } 1338 1339 #define FATAL_ERROR_INT \ 1340 (Int_IntPCI | Int_DmParErr | Int_IntNRAbt) 1341 static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status) 1342 { 1343 static int count; 1344 printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):", 1345 dev->name, status); 1346 if (status & Int_IntPCI) 1347 printk(" IntPCI"); 1348 if (status & Int_DmParErr) 1349 printk(" DmParErr"); 1350 if (status & Int_IntNRAbt) 1351 printk(" IntNRAbt"); 1352 printk("\n"); 1353 if (count++ > 100) 1354 panic("%s: Too many fatal errors.", dev->name); 1355 printk(KERN_WARNING "%s: Resetting ...\n", dev->name); 1356 /* Try to restart the adaptor. */ 1357 tc35815_schedule_restart(dev); 1358 } 1359 1360 static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit) 1361 { 1362 struct tc35815_local *lp = netdev_priv(dev); 1363 int ret = -1; 1364 1365 /* Fatal errors... */ 1366 if (status & FATAL_ERROR_INT) { 1367 tc35815_fatal_error_interrupt(dev, status); 1368 return 0; 1369 } 1370 /* recoverable errors */ 1371 if (status & Int_IntFDAEx) { 1372 if (netif_msg_rx_err(lp)) 1373 dev_warn(&dev->dev, 1374 "Free Descriptor Area Exhausted (%#x).\n", 1375 status); 1376 dev->stats.rx_dropped++; 1377 ret = 0; 1378 } 1379 if (status & Int_IntBLEx) { 1380 if (netif_msg_rx_err(lp)) 1381 dev_warn(&dev->dev, 1382 "Buffer List Exhausted (%#x).\n", 1383 status); 1384 dev->stats.rx_dropped++; 1385 ret = 0; 1386 } 1387 if (status & Int_IntExBD) { 1388 if (netif_msg_rx_err(lp)) 1389 dev_warn(&dev->dev, 1390 "Excessive Buffer Descriptiors (%#x).\n", 1391 status); 1392 dev->stats.rx_length_errors++; 1393 ret = 0; 1394 } 1395 1396 /* normal notification */ 1397 if (status & Int_IntMacRx) { 1398 /* Got a packet(s). */ 1399 ret = tc35815_rx(dev, limit); 1400 lp->lstats.rx_ints++; 1401 } 1402 if (status & Int_IntMacTx) { 1403 /* Transmit complete. */ 1404 lp->lstats.tx_ints++; 1405 spin_lock_irq(&lp->lock); 1406 tc35815_txdone(dev); 1407 spin_unlock_irq(&lp->lock); 1408 if (ret < 0) 1409 ret = 0; 1410 } 1411 return ret; 1412 } 1413 1414 /* 1415 * The typical workload of the driver: 1416 * Handle the network interface interrupts. 1417 */ 1418 static irqreturn_t tc35815_interrupt(int irq, void *dev_id) 1419 { 1420 struct net_device *dev = dev_id; 1421 struct tc35815_local *lp = netdev_priv(dev); 1422 struct tc35815_regs __iomem *tr = 1423 (struct tc35815_regs __iomem *)dev->base_addr; 1424 u32 dmactl = tc_readl(&tr->DMA_Ctl); 1425 1426 if (!(dmactl & DMA_IntMask)) { 1427 /* disable interrupts */ 1428 tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl); 1429 if (napi_schedule_prep(&lp->napi)) 1430 __napi_schedule(&lp->napi); 1431 else { 1432 printk(KERN_ERR "%s: interrupt taken in poll\n", 1433 dev->name); 1434 BUG(); 1435 } 1436 (void)tc_readl(&tr->Int_Src); /* flush */ 1437 return IRQ_HANDLED; 1438 } 1439 return IRQ_NONE; 1440 } 1441 1442 #ifdef CONFIG_NET_POLL_CONTROLLER 1443 static void tc35815_poll_controller(struct net_device *dev) 1444 { 1445 disable_irq(dev->irq); 1446 tc35815_interrupt(dev->irq, dev); 1447 enable_irq(dev->irq); 1448 } 1449 #endif 1450 1451 /* We have a good packet(s), get it/them out of the buffers. */ 1452 static int 1453 tc35815_rx(struct net_device *dev, int limit) 1454 { 1455 struct tc35815_local *lp = netdev_priv(dev); 1456 unsigned int fdctl; 1457 int i; 1458 int received = 0; 1459 1460 while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) { 1461 int status = le32_to_cpu(lp->rfd_cur->fd.FDStat); 1462 int pkt_len = fdctl & FD_FDLength_MASK; 1463 int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT; 1464 #ifdef DEBUG 1465 struct RxFD *next_rfd; 1466 #endif 1467 #if (RX_CTL_CMD & Rx_StripCRC) == 0 1468 pkt_len -= ETH_FCS_LEN; 1469 #endif 1470 1471 if (netif_msg_rx_status(lp)) 1472 dump_rxfd(lp->rfd_cur); 1473 if (status & Rx_Good) { 1474 struct sk_buff *skb; 1475 unsigned char *data; 1476 int cur_bd; 1477 1478 if (--limit < 0) 1479 break; 1480 BUG_ON(bd_count > 1); 1481 cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl) 1482 & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT; 1483 #ifdef DEBUG 1484 if (cur_bd >= RX_BUF_NUM) { 1485 printk("%s: invalid BDID.\n", dev->name); 1486 panic_queues(dev); 1487 } 1488 BUG_ON(lp->rx_skbs[cur_bd].skb_dma != 1489 (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3)); 1490 if (!lp->rx_skbs[cur_bd].skb) { 1491 printk("%s: NULL skb.\n", dev->name); 1492 panic_queues(dev); 1493 } 1494 #else 1495 BUG_ON(cur_bd >= RX_BUF_NUM); 1496 #endif 1497 skb = lp->rx_skbs[cur_bd].skb; 1498 prefetch(skb->data); 1499 lp->rx_skbs[cur_bd].skb = NULL; 1500 pci_unmap_single(lp->pci_dev, 1501 lp->rx_skbs[cur_bd].skb_dma, 1502 RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 1503 if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN) 1504 memmove(skb->data, skb->data - NET_IP_ALIGN, 1505 pkt_len); 1506 data = skb_put(skb, pkt_len); 1507 if (netif_msg_pktdata(lp)) 1508 print_eth(data); 1509 skb->protocol = eth_type_trans(skb, dev); 1510 netif_receive_skb(skb); 1511 received++; 1512 dev->stats.rx_packets++; 1513 dev->stats.rx_bytes += pkt_len; 1514 } else { 1515 dev->stats.rx_errors++; 1516 if (netif_msg_rx_err(lp)) 1517 dev_info(&dev->dev, "Rx error (status %x)\n", 1518 status & Rx_Stat_Mask); 1519 /* WORKAROUND: LongErr and CRCErr means Overflow. */ 1520 if ((status & Rx_LongErr) && (status & Rx_CRCErr)) { 1521 status &= ~(Rx_LongErr|Rx_CRCErr); 1522 status |= Rx_Over; 1523 } 1524 if (status & Rx_LongErr) 1525 dev->stats.rx_length_errors++; 1526 if (status & Rx_Over) 1527 dev->stats.rx_fifo_errors++; 1528 if (status & Rx_CRCErr) 1529 dev->stats.rx_crc_errors++; 1530 if (status & Rx_Align) 1531 dev->stats.rx_frame_errors++; 1532 } 1533 1534 if (bd_count > 0) { 1535 /* put Free Buffer back to controller */ 1536 int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl); 1537 unsigned char id = 1538 (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT; 1539 #ifdef DEBUG 1540 if (id >= RX_BUF_NUM) { 1541 printk("%s: invalid BDID.\n", dev->name); 1542 panic_queues(dev); 1543 } 1544 #else 1545 BUG_ON(id >= RX_BUF_NUM); 1546 #endif 1547 /* free old buffers */ 1548 lp->fbl_count--; 1549 while (lp->fbl_count < RX_BUF_NUM) 1550 { 1551 unsigned char curid = 1552 (id + 1 + lp->fbl_count) % RX_BUF_NUM; 1553 struct BDesc *bd = &lp->fbl_ptr->bd[curid]; 1554 #ifdef DEBUG 1555 bdctl = le32_to_cpu(bd->BDCtl); 1556 if (bdctl & BD_CownsBD) { 1557 printk("%s: Freeing invalid BD.\n", 1558 dev->name); 1559 panic_queues(dev); 1560 } 1561 #endif 1562 /* pass BD to controller */ 1563 if (!lp->rx_skbs[curid].skb) { 1564 lp->rx_skbs[curid].skb = 1565 alloc_rxbuf_skb(dev, 1566 lp->pci_dev, 1567 &lp->rx_skbs[curid].skb_dma); 1568 if (!lp->rx_skbs[curid].skb) 1569 break; /* try on next reception */ 1570 bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma); 1571 } 1572 /* Note: BDLength was modified by chip. */ 1573 bd->BDCtl = cpu_to_le32(BD_CownsBD | 1574 (curid << BD_RxBDID_SHIFT) | 1575 RX_BUF_SIZE); 1576 lp->fbl_count++; 1577 } 1578 } 1579 1580 /* put RxFD back to controller */ 1581 #ifdef DEBUG 1582 next_rfd = fd_bus_to_virt(lp, 1583 le32_to_cpu(lp->rfd_cur->fd.FDNext)); 1584 if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) { 1585 printk("%s: RxFD FDNext invalid.\n", dev->name); 1586 panic_queues(dev); 1587 } 1588 #endif 1589 for (i = 0; i < (bd_count + 1) / 2 + 1; i++) { 1590 /* pass FD to controller */ 1591 #ifdef DEBUG 1592 lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead); 1593 #else 1594 lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL); 1595 #endif 1596 lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD); 1597 lp->rfd_cur++; 1598 } 1599 if (lp->rfd_cur > lp->rfd_limit) 1600 lp->rfd_cur = lp->rfd_base; 1601 #ifdef DEBUG 1602 if (lp->rfd_cur != next_rfd) 1603 printk("rfd_cur = %p, next_rfd %p\n", 1604 lp->rfd_cur, next_rfd); 1605 #endif 1606 } 1607 1608 return received; 1609 } 1610 1611 static int tc35815_poll(struct napi_struct *napi, int budget) 1612 { 1613 struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi); 1614 struct net_device *dev = lp->dev; 1615 struct tc35815_regs __iomem *tr = 1616 (struct tc35815_regs __iomem *)dev->base_addr; 1617 int received = 0, handled; 1618 u32 status; 1619 1620 if (budget <= 0) 1621 return received; 1622 1623 spin_lock(&lp->rx_lock); 1624 status = tc_readl(&tr->Int_Src); 1625 do { 1626 /* BLEx, FDAEx will be cleared later */ 1627 tc_writel(status & ~(Int_BLEx | Int_FDAEx), 1628 &tr->Int_Src); /* write to clear */ 1629 1630 handled = tc35815_do_interrupt(dev, status, budget - received); 1631 if (status & (Int_BLEx | Int_FDAEx)) 1632 tc_writel(status & (Int_BLEx | Int_FDAEx), 1633 &tr->Int_Src); 1634 if (handled >= 0) { 1635 received += handled; 1636 if (received >= budget) 1637 break; 1638 } 1639 status = tc_readl(&tr->Int_Src); 1640 } while (status); 1641 spin_unlock(&lp->rx_lock); 1642 1643 if (received < budget) { 1644 napi_complete(napi); 1645 /* enable interrupts */ 1646 tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl); 1647 } 1648 return received; 1649 } 1650 1651 #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr) 1652 1653 static void 1654 tc35815_check_tx_stat(struct net_device *dev, int status) 1655 { 1656 struct tc35815_local *lp = netdev_priv(dev); 1657 const char *msg = NULL; 1658 1659 /* count collisions */ 1660 if (status & Tx_ExColl) 1661 dev->stats.collisions += 16; 1662 if (status & Tx_TxColl_MASK) 1663 dev->stats.collisions += status & Tx_TxColl_MASK; 1664 1665 /* TX4939 does not have NCarr */ 1666 if (lp->chiptype == TC35815_TX4939) 1667 status &= ~Tx_NCarr; 1668 /* WORKAROUND: ignore LostCrS in full duplex operation */ 1669 if (!lp->link || lp->duplex == DUPLEX_FULL) 1670 status &= ~Tx_NCarr; 1671 1672 if (!(status & TX_STA_ERR)) { 1673 /* no error. */ 1674 dev->stats.tx_packets++; 1675 return; 1676 } 1677 1678 dev->stats.tx_errors++; 1679 if (status & Tx_ExColl) { 1680 dev->stats.tx_aborted_errors++; 1681 msg = "Excessive Collision."; 1682 } 1683 if (status & Tx_Under) { 1684 dev->stats.tx_fifo_errors++; 1685 msg = "Tx FIFO Underrun."; 1686 if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) { 1687 lp->lstats.tx_underrun++; 1688 if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) { 1689 struct tc35815_regs __iomem *tr = 1690 (struct tc35815_regs __iomem *)dev->base_addr; 1691 tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh); 1692 msg = "Tx FIFO Underrun.Change Tx threshold to max."; 1693 } 1694 } 1695 } 1696 if (status & Tx_Defer) { 1697 dev->stats.tx_fifo_errors++; 1698 msg = "Excessive Deferral."; 1699 } 1700 if (status & Tx_NCarr) { 1701 dev->stats.tx_carrier_errors++; 1702 msg = "Lost Carrier Sense."; 1703 } 1704 if (status & Tx_LateColl) { 1705 dev->stats.tx_aborted_errors++; 1706 msg = "Late Collision."; 1707 } 1708 if (status & Tx_TxPar) { 1709 dev->stats.tx_fifo_errors++; 1710 msg = "Transmit Parity Error."; 1711 } 1712 if (status & Tx_SQErr) { 1713 dev->stats.tx_heartbeat_errors++; 1714 msg = "Signal Quality Error."; 1715 } 1716 if (msg && netif_msg_tx_err(lp)) 1717 printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status); 1718 } 1719 1720 /* This handles TX complete events posted by the device 1721 * via interrupts. 1722 */ 1723 static void 1724 tc35815_txdone(struct net_device *dev) 1725 { 1726 struct tc35815_local *lp = netdev_priv(dev); 1727 struct TxFD *txfd; 1728 unsigned int fdctl; 1729 1730 txfd = &lp->tfd_base[lp->tfd_end]; 1731 while (lp->tfd_start != lp->tfd_end && 1732 !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) { 1733 int status = le32_to_cpu(txfd->fd.FDStat); 1734 struct sk_buff *skb; 1735 unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext); 1736 u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem); 1737 1738 if (netif_msg_tx_done(lp)) { 1739 printk("%s: complete TxFD.\n", dev->name); 1740 dump_txfd(txfd); 1741 } 1742 tc35815_check_tx_stat(dev, status); 1743 1744 skb = fdsystem != 0xffffffff ? 1745 lp->tx_skbs[fdsystem].skb : NULL; 1746 #ifdef DEBUG 1747 if (lp->tx_skbs[lp->tfd_end].skb != skb) { 1748 printk("%s: tx_skbs mismatch.\n", dev->name); 1749 panic_queues(dev); 1750 } 1751 #else 1752 BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb); 1753 #endif 1754 if (skb) { 1755 dev->stats.tx_bytes += skb->len; 1756 pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE); 1757 lp->tx_skbs[lp->tfd_end].skb = NULL; 1758 lp->tx_skbs[lp->tfd_end].skb_dma = 0; 1759 dev_kfree_skb_any(skb); 1760 } 1761 txfd->fd.FDSystem = cpu_to_le32(0xffffffff); 1762 1763 lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM; 1764 txfd = &lp->tfd_base[lp->tfd_end]; 1765 #ifdef DEBUG 1766 if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) { 1767 printk("%s: TxFD FDNext invalid.\n", dev->name); 1768 panic_queues(dev); 1769 } 1770 #endif 1771 if (fdnext & FD_Next_EOL) { 1772 /* DMA Transmitter has been stopping... */ 1773 if (lp->tfd_end != lp->tfd_start) { 1774 struct tc35815_regs __iomem *tr = 1775 (struct tc35815_regs __iomem *)dev->base_addr; 1776 int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM; 1777 struct TxFD *txhead = &lp->tfd_base[head]; 1778 int qlen = (lp->tfd_start + TX_FD_NUM 1779 - lp->tfd_end) % TX_FD_NUM; 1780 1781 #ifdef DEBUG 1782 if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) { 1783 printk("%s: TxFD FDCtl invalid.\n", dev->name); 1784 panic_queues(dev); 1785 } 1786 #endif 1787 /* log max queue length */ 1788 if (lp->lstats.max_tx_qlen < qlen) 1789 lp->lstats.max_tx_qlen = qlen; 1790 1791 1792 /* start DMA Transmitter again */ 1793 txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL); 1794 txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx); 1795 if (netif_msg_tx_queued(lp)) { 1796 printk("%s: start TxFD on queue.\n", 1797 dev->name); 1798 dump_txfd(txfd); 1799 } 1800 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr); 1801 } 1802 break; 1803 } 1804 } 1805 1806 /* If we had stopped the queue due to a "tx full" 1807 * condition, and space has now been made available, 1808 * wake up the queue. 1809 */ 1810 if (netif_queue_stopped(dev) && !tc35815_tx_full(dev)) 1811 netif_wake_queue(dev); 1812 } 1813 1814 /* The inverse routine to tc35815_open(). */ 1815 static int 1816 tc35815_close(struct net_device *dev) 1817 { 1818 struct tc35815_local *lp = netdev_priv(dev); 1819 1820 netif_stop_queue(dev); 1821 napi_disable(&lp->napi); 1822 if (lp->phy_dev) 1823 phy_stop(lp->phy_dev); 1824 cancel_work_sync(&lp->restart_work); 1825 1826 /* Flush the Tx and disable Rx here. */ 1827 tc35815_chip_reset(dev); 1828 free_irq(dev->irq, dev); 1829 1830 tc35815_free_queues(dev); 1831 1832 return 0; 1833 1834 } 1835 1836 /* 1837 * Get the current statistics. 1838 * This may be called with the card open or closed. 1839 */ 1840 static struct net_device_stats *tc35815_get_stats(struct net_device *dev) 1841 { 1842 struct tc35815_regs __iomem *tr = 1843 (struct tc35815_regs __iomem *)dev->base_addr; 1844 if (netif_running(dev)) 1845 /* Update the statistics from the device registers. */ 1846 dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt); 1847 1848 return &dev->stats; 1849 } 1850 1851 static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr) 1852 { 1853 struct tc35815_local *lp = netdev_priv(dev); 1854 struct tc35815_regs __iomem *tr = 1855 (struct tc35815_regs __iomem *)dev->base_addr; 1856 int cam_index = index * 6; 1857 u32 cam_data; 1858 u32 saved_addr; 1859 1860 saved_addr = tc_readl(&tr->CAM_Adr); 1861 1862 if (netif_msg_hw(lp)) 1863 printk(KERN_DEBUG "%s: CAM %d: %pM\n", 1864 dev->name, index, addr); 1865 if (index & 1) { 1866 /* read modify write */ 1867 tc_writel(cam_index - 2, &tr->CAM_Adr); 1868 cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000; 1869 cam_data |= addr[0] << 8 | addr[1]; 1870 tc_writel(cam_data, &tr->CAM_Data); 1871 /* write whole word */ 1872 tc_writel(cam_index + 2, &tr->CAM_Adr); 1873 cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5]; 1874 tc_writel(cam_data, &tr->CAM_Data); 1875 } else { 1876 /* write whole word */ 1877 tc_writel(cam_index, &tr->CAM_Adr); 1878 cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3]; 1879 tc_writel(cam_data, &tr->CAM_Data); 1880 /* read modify write */ 1881 tc_writel(cam_index + 4, &tr->CAM_Adr); 1882 cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff; 1883 cam_data |= addr[4] << 24 | (addr[5] << 16); 1884 tc_writel(cam_data, &tr->CAM_Data); 1885 } 1886 1887 tc_writel(saved_addr, &tr->CAM_Adr); 1888 } 1889 1890 1891 /* 1892 * Set or clear the multicast filter for this adaptor. 1893 * num_addrs == -1 Promiscuous mode, receive all packets 1894 * num_addrs == 0 Normal mode, clear multicast list 1895 * num_addrs > 0 Multicast mode, receive normal and MC packets, 1896 * and do best-effort filtering. 1897 */ 1898 static void 1899 tc35815_set_multicast_list(struct net_device *dev) 1900 { 1901 struct tc35815_regs __iomem *tr = 1902 (struct tc35815_regs __iomem *)dev->base_addr; 1903 1904 if (dev->flags & IFF_PROMISC) { 1905 /* With some (all?) 100MHalf HUB, controller will hang 1906 * if we enabled promiscuous mode before linkup... */ 1907 struct tc35815_local *lp = netdev_priv(dev); 1908 1909 if (!lp->link) 1910 return; 1911 /* Enable promiscuous mode */ 1912 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl); 1913 } else if ((dev->flags & IFF_ALLMULTI) || 1914 netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) { 1915 /* CAM 0, 1, 20 are reserved. */ 1916 /* Disable promiscuous mode, use normal mode. */ 1917 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl); 1918 } else if (!netdev_mc_empty(dev)) { 1919 struct netdev_hw_addr *ha; 1920 int i; 1921 int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE); 1922 1923 tc_writel(0, &tr->CAM_Ctl); 1924 /* Walk the address list, and load the filter */ 1925 i = 0; 1926 netdev_for_each_mc_addr(ha, dev) { 1927 /* entry 0,1 is reserved. */ 1928 tc35815_set_cam_entry(dev, i + 2, ha->addr); 1929 ena_bits |= CAM_Ena_Bit(i + 2); 1930 i++; 1931 } 1932 tc_writel(ena_bits, &tr->CAM_Ena); 1933 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); 1934 } else { 1935 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena); 1936 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); 1937 } 1938 } 1939 1940 static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1941 { 1942 struct tc35815_local *lp = netdev_priv(dev); 1943 1944 strlcpy(info->driver, MODNAME, sizeof(info->driver)); 1945 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1946 strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info)); 1947 } 1948 1949 static int tc35815_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1950 { 1951 struct tc35815_local *lp = netdev_priv(dev); 1952 1953 if (!lp->phy_dev) 1954 return -ENODEV; 1955 return phy_ethtool_gset(lp->phy_dev, cmd); 1956 } 1957 1958 static int tc35815_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1959 { 1960 struct tc35815_local *lp = netdev_priv(dev); 1961 1962 if (!lp->phy_dev) 1963 return -ENODEV; 1964 return phy_ethtool_sset(lp->phy_dev, cmd); 1965 } 1966 1967 static u32 tc35815_get_msglevel(struct net_device *dev) 1968 { 1969 struct tc35815_local *lp = netdev_priv(dev); 1970 return lp->msg_enable; 1971 } 1972 1973 static void tc35815_set_msglevel(struct net_device *dev, u32 datum) 1974 { 1975 struct tc35815_local *lp = netdev_priv(dev); 1976 lp->msg_enable = datum; 1977 } 1978 1979 static int tc35815_get_sset_count(struct net_device *dev, int sset) 1980 { 1981 struct tc35815_local *lp = netdev_priv(dev); 1982 1983 switch (sset) { 1984 case ETH_SS_STATS: 1985 return sizeof(lp->lstats) / sizeof(int); 1986 default: 1987 return -EOPNOTSUPP; 1988 } 1989 } 1990 1991 static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) 1992 { 1993 struct tc35815_local *lp = netdev_priv(dev); 1994 data[0] = lp->lstats.max_tx_qlen; 1995 data[1] = lp->lstats.tx_ints; 1996 data[2] = lp->lstats.rx_ints; 1997 data[3] = lp->lstats.tx_underrun; 1998 } 1999 2000 static struct { 2001 const char str[ETH_GSTRING_LEN]; 2002 } ethtool_stats_keys[] = { 2003 { "max_tx_qlen" }, 2004 { "tx_ints" }, 2005 { "rx_ints" }, 2006 { "tx_underrun" }, 2007 }; 2008 2009 static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data) 2010 { 2011 memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys)); 2012 } 2013 2014 static const struct ethtool_ops tc35815_ethtool_ops = { 2015 .get_drvinfo = tc35815_get_drvinfo, 2016 .get_settings = tc35815_get_settings, 2017 .set_settings = tc35815_set_settings, 2018 .get_link = ethtool_op_get_link, 2019 .get_msglevel = tc35815_get_msglevel, 2020 .set_msglevel = tc35815_set_msglevel, 2021 .get_strings = tc35815_get_strings, 2022 .get_sset_count = tc35815_get_sset_count, 2023 .get_ethtool_stats = tc35815_get_ethtool_stats, 2024 }; 2025 2026 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2027 { 2028 struct tc35815_local *lp = netdev_priv(dev); 2029 2030 if (!netif_running(dev)) 2031 return -EINVAL; 2032 if (!lp->phy_dev) 2033 return -ENODEV; 2034 return phy_mii_ioctl(lp->phy_dev, rq, cmd); 2035 } 2036 2037 static void tc35815_chip_reset(struct net_device *dev) 2038 { 2039 struct tc35815_regs __iomem *tr = 2040 (struct tc35815_regs __iomem *)dev->base_addr; 2041 int i; 2042 /* reset the controller */ 2043 tc_writel(MAC_Reset, &tr->MAC_Ctl); 2044 udelay(4); /* 3200ns */ 2045 i = 0; 2046 while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) { 2047 if (i++ > 100) { 2048 printk(KERN_ERR "%s: MAC reset failed.\n", dev->name); 2049 break; 2050 } 2051 mdelay(1); 2052 } 2053 tc_writel(0, &tr->MAC_Ctl); 2054 2055 /* initialize registers to default value */ 2056 tc_writel(0, &tr->DMA_Ctl); 2057 tc_writel(0, &tr->TxThrsh); 2058 tc_writel(0, &tr->TxPollCtr); 2059 tc_writel(0, &tr->RxFragSize); 2060 tc_writel(0, &tr->Int_En); 2061 tc_writel(0, &tr->FDA_Bas); 2062 tc_writel(0, &tr->FDA_Lim); 2063 tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */ 2064 tc_writel(0, &tr->CAM_Ctl); 2065 tc_writel(0, &tr->Tx_Ctl); 2066 tc_writel(0, &tr->Rx_Ctl); 2067 tc_writel(0, &tr->CAM_Ena); 2068 (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */ 2069 2070 /* initialize internal SRAM */ 2071 tc_writel(DMA_TestMode, &tr->DMA_Ctl); 2072 for (i = 0; i < 0x1000; i += 4) { 2073 tc_writel(i, &tr->CAM_Adr); 2074 tc_writel(0, &tr->CAM_Data); 2075 } 2076 tc_writel(0, &tr->DMA_Ctl); 2077 } 2078 2079 static void tc35815_chip_init(struct net_device *dev) 2080 { 2081 struct tc35815_local *lp = netdev_priv(dev); 2082 struct tc35815_regs __iomem *tr = 2083 (struct tc35815_regs __iomem *)dev->base_addr; 2084 unsigned long txctl = TX_CTL_CMD; 2085 2086 /* load station address to CAM */ 2087 tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr); 2088 2089 /* Enable CAM (broadcast and unicast) */ 2090 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena); 2091 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); 2092 2093 /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */ 2094 if (HAVE_DMA_RXALIGN(lp)) 2095 tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl); 2096 else 2097 tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl); 2098 tc_writel(0, &tr->TxPollCtr); /* Batch mode */ 2099 tc_writel(TX_THRESHOLD, &tr->TxThrsh); 2100 tc_writel(INT_EN_CMD, &tr->Int_En); 2101 2102 /* set queues */ 2103 tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas); 2104 tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base, 2105 &tr->FDA_Lim); 2106 /* 2107 * Activation method: 2108 * First, enable the MAC Transmitter and the DMA Receive circuits. 2109 * Then enable the DMA Transmitter and the MAC Receive circuits. 2110 */ 2111 tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */ 2112 tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */ 2113 2114 /* start MAC transmitter */ 2115 /* TX4939 does not have EnLCarr */ 2116 if (lp->chiptype == TC35815_TX4939) 2117 txctl &= ~Tx_EnLCarr; 2118 /* WORKAROUND: ignore LostCrS in full duplex operation */ 2119 if (!lp->phy_dev || !lp->link || lp->duplex == DUPLEX_FULL) 2120 txctl &= ~Tx_EnLCarr; 2121 tc_writel(txctl, &tr->Tx_Ctl); 2122 } 2123 2124 #ifdef CONFIG_PM 2125 static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state) 2126 { 2127 struct net_device *dev = pci_get_drvdata(pdev); 2128 struct tc35815_local *lp = netdev_priv(dev); 2129 unsigned long flags; 2130 2131 pci_save_state(pdev); 2132 if (!netif_running(dev)) 2133 return 0; 2134 netif_device_detach(dev); 2135 if (lp->phy_dev) 2136 phy_stop(lp->phy_dev); 2137 spin_lock_irqsave(&lp->lock, flags); 2138 tc35815_chip_reset(dev); 2139 spin_unlock_irqrestore(&lp->lock, flags); 2140 pci_set_power_state(pdev, PCI_D3hot); 2141 return 0; 2142 } 2143 2144 static int tc35815_resume(struct pci_dev *pdev) 2145 { 2146 struct net_device *dev = pci_get_drvdata(pdev); 2147 struct tc35815_local *lp = netdev_priv(dev); 2148 2149 pci_restore_state(pdev); 2150 if (!netif_running(dev)) 2151 return 0; 2152 pci_set_power_state(pdev, PCI_D0); 2153 tc35815_restart(dev); 2154 netif_carrier_off(dev); 2155 if (lp->phy_dev) 2156 phy_start(lp->phy_dev); 2157 netif_device_attach(dev); 2158 return 0; 2159 } 2160 #endif /* CONFIG_PM */ 2161 2162 static struct pci_driver tc35815_pci_driver = { 2163 .name = MODNAME, 2164 .id_table = tc35815_pci_tbl, 2165 .probe = tc35815_init_one, 2166 .remove = tc35815_remove_one, 2167 #ifdef CONFIG_PM 2168 .suspend = tc35815_suspend, 2169 .resume = tc35815_resume, 2170 #endif 2171 }; 2172 2173 module_param_named(speed, options.speed, int, 0); 2174 MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps"); 2175 module_param_named(duplex, options.duplex, int, 0); 2176 MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full"); 2177 2178 module_pci_driver(tc35815_pci_driver); 2179 MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver"); 2180 MODULE_LICENSE("GPL"); 2181