xref: /linux/drivers/net/ethernet/toshiba/tc35815.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
3  *
4  * Based on skelton.c by Donald Becker.
5  *
6  * This driver is a replacement of older and less maintained version.
7  * This is a header of the older version:
8  *	-----<snip>-----
9  *	Copyright 2001 MontaVista Software Inc.
10  *	Author: MontaVista Software, Inc.
11  *		ahennessy@mvista.com
12  *	Copyright (C) 2000-2001 Toshiba Corporation
13  *	static const char *version =
14  *		"tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
15  *	-----<snip>-----
16  *
17  * This file is subject to the terms and conditions of the GNU General Public
18  * License.  See the file "COPYING" in the main directory of this archive
19  * for more details.
20  *
21  * (C) Copyright TOSHIBA CORPORATION 2004-2005
22  * All Rights Reserved.
23  */
24 
25 #define DRV_VERSION	"1.39"
26 static const char *version = "tc35815.c:v" DRV_VERSION "\n";
27 #define MODNAME			"tc35815"
28 
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/fcntl.h>
33 #include <linux/interrupt.h>
34 #include <linux/ioport.h>
35 #include <linux/in.h>
36 #include <linux/if_vlan.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include <linux/spinlock.h>
40 #include <linux/errno.h>
41 #include <linux/netdevice.h>
42 #include <linux/etherdevice.h>
43 #include <linux/skbuff.h>
44 #include <linux/delay.h>
45 #include <linux/pci.h>
46 #include <linux/phy.h>
47 #include <linux/workqueue.h>
48 #include <linux/platform_device.h>
49 #include <linux/prefetch.h>
50 #include <asm/io.h>
51 #include <asm/byteorder.h>
52 
53 enum tc35815_chiptype {
54 	TC35815CF = 0,
55 	TC35815_NWU,
56 	TC35815_TX4939,
57 };
58 
59 /* indexed by tc35815_chiptype, above */
60 static const struct {
61 	const char *name;
62 } chip_info[] = {
63 	{ "TOSHIBA TC35815CF 10/100BaseTX" },
64 	{ "TOSHIBA TC35815 with Wake on LAN" },
65 	{ "TOSHIBA TC35815/TX4939" },
66 };
67 
68 static const struct pci_device_id tc35815_pci_tbl[] = {
69 	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
70 	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
71 	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
72 	{0,}
73 };
74 MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
75 
76 /* see MODULE_PARM_DESC */
77 static struct tc35815_options {
78 	int speed;
79 	int duplex;
80 } options;
81 
82 /*
83  * Registers
84  */
85 struct tc35815_regs {
86 	__u32 DMA_Ctl;		/* 0x00 */
87 	__u32 TxFrmPtr;
88 	__u32 TxThrsh;
89 	__u32 TxPollCtr;
90 	__u32 BLFrmPtr;
91 	__u32 RxFragSize;
92 	__u32 Int_En;
93 	__u32 FDA_Bas;
94 	__u32 FDA_Lim;		/* 0x20 */
95 	__u32 Int_Src;
96 	__u32 unused0[2];
97 	__u32 PauseCnt;
98 	__u32 RemPauCnt;
99 	__u32 TxCtlFrmStat;
100 	__u32 unused1;
101 	__u32 MAC_Ctl;		/* 0x40 */
102 	__u32 CAM_Ctl;
103 	__u32 Tx_Ctl;
104 	__u32 Tx_Stat;
105 	__u32 Rx_Ctl;
106 	__u32 Rx_Stat;
107 	__u32 MD_Data;
108 	__u32 MD_CA;
109 	__u32 CAM_Adr;		/* 0x60 */
110 	__u32 CAM_Data;
111 	__u32 CAM_Ena;
112 	__u32 PROM_Ctl;
113 	__u32 PROM_Data;
114 	__u32 Algn_Cnt;
115 	__u32 CRC_Cnt;
116 	__u32 Miss_Cnt;
117 };
118 
119 /*
120  * Bit assignments
121  */
122 /* DMA_Ctl bit assign ------------------------------------------------------- */
123 #define DMA_RxAlign	       0x00c00000 /* 1:Reception Alignment	     */
124 #define DMA_RxAlign_1	       0x00400000
125 #define DMA_RxAlign_2	       0x00800000
126 #define DMA_RxAlign_3	       0x00c00000
127 #define DMA_M66EnStat	       0x00080000 /* 1:66MHz Enable State	     */
128 #define DMA_IntMask	       0x00040000 /* 1:Interrupt mask		     */
129 #define DMA_SWIntReq	       0x00020000 /* 1:Software Interrupt request    */
130 #define DMA_TxWakeUp	       0x00010000 /* 1:Transmit Wake Up		     */
131 #define DMA_RxBigE	       0x00008000 /* 1:Receive Big Endian	     */
132 #define DMA_TxBigE	       0x00004000 /* 1:Transmit Big Endian	     */
133 #define DMA_TestMode	       0x00002000 /* 1:Test Mode		     */
134 #define DMA_PowrMgmnt	       0x00001000 /* 1:Power Management		     */
135 #define DMA_DmBurst_Mask       0x000001fc /* DMA Burst size		     */
136 
137 /* RxFragSize bit assign ---------------------------------------------------- */
138 #define RxFrag_EnPack	       0x00008000 /* 1:Enable Packing		     */
139 #define RxFrag_MinFragMask     0x00000ffc /* Minimum Fragment		     */
140 
141 /* MAC_Ctl bit assign ------------------------------------------------------- */
142 #define MAC_Link10	       0x00008000 /* 1:Link Status 10Mbits	     */
143 #define MAC_EnMissRoll	       0x00002000 /* 1:Enable Missed Roll	     */
144 #define MAC_MissRoll	       0x00000400 /* 1:Missed Roll		     */
145 #define MAC_Loop10	       0x00000080 /* 1:Loop 10 Mbps		     */
146 #define MAC_Conn_Auto	       0x00000000 /*00:Connection mode (Automatic)   */
147 #define MAC_Conn_10M	       0x00000020 /*01:		       (10Mbps endec)*/
148 #define MAC_Conn_Mll	       0x00000040 /*10:		       (Mll clock)   */
149 #define MAC_MacLoop	       0x00000010 /* 1:MAC Loopback		     */
150 #define MAC_FullDup	       0x00000008 /* 1:Full Duplex 0:Half Duplex     */
151 #define MAC_Reset	       0x00000004 /* 1:Software Reset		     */
152 #define MAC_HaltImm	       0x00000002 /* 1:Halt Immediate		     */
153 #define MAC_HaltReq	       0x00000001 /* 1:Halt request		     */
154 
155 /* PROM_Ctl bit assign ------------------------------------------------------ */
156 #define PROM_Busy	       0x00008000 /* 1:Busy (Start Operation)	     */
157 #define PROM_Read	       0x00004000 /*10:Read operation		     */
158 #define PROM_Write	       0x00002000 /*01:Write operation		     */
159 #define PROM_Erase	       0x00006000 /*11:Erase operation		     */
160 					  /*00:Enable or Disable Writting,   */
161 					  /*	  as specified in PROM_Addr. */
162 #define PROM_Addr_Ena	       0x00000030 /*11xxxx:PROM Write enable	     */
163 					  /*00xxxx:	      disable	     */
164 
165 /* CAM_Ctl bit assign ------------------------------------------------------- */
166 #define CAM_CompEn	       0x00000010 /* 1:CAM Compare Enable	     */
167 #define CAM_NegCAM	       0x00000008 /* 1:Reject packets CAM recognizes,*/
168 					  /*			accept other */
169 #define CAM_BroadAcc	       0x00000004 /* 1:Broadcast assept		     */
170 #define CAM_GroupAcc	       0x00000002 /* 1:Multicast assept		     */
171 #define CAM_StationAcc	       0x00000001 /* 1:unicast accept		     */
172 
173 /* CAM_Ena bit assign ------------------------------------------------------- */
174 #define CAM_ENTRY_MAX		       21   /* CAM Data entry max count	     */
175 #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits)  */
176 #define CAM_Ena_Bit(index)	(1 << (index))
177 #define CAM_ENTRY_DESTINATION	0
178 #define CAM_ENTRY_SOURCE	1
179 #define CAM_ENTRY_MACCTL	20
180 
181 /* Tx_Ctl bit assign -------------------------------------------------------- */
182 #define Tx_En		       0x00000001 /* 1:Transmit enable		     */
183 #define Tx_TxHalt	       0x00000002 /* 1:Transmit Halt Request	     */
184 #define Tx_NoPad	       0x00000004 /* 1:Suppress Padding		     */
185 #define Tx_NoCRC	       0x00000008 /* 1:Suppress Padding		     */
186 #define Tx_FBack	       0x00000010 /* 1:Fast Back-off		     */
187 #define Tx_EnUnder	       0x00000100 /* 1:Enable Underrun		     */
188 #define Tx_EnExDefer	       0x00000200 /* 1:Enable Excessive Deferral     */
189 #define Tx_EnLCarr	       0x00000400 /* 1:Enable Lost Carrier	     */
190 #define Tx_EnExColl	       0x00000800 /* 1:Enable Excessive Collision    */
191 #define Tx_EnLateColl	       0x00001000 /* 1:Enable Late Collision	     */
192 #define Tx_EnTxPar	       0x00002000 /* 1:Enable Transmit Parity	     */
193 #define Tx_EnComp	       0x00004000 /* 1:Enable Completion	     */
194 
195 /* Tx_Stat bit assign ------------------------------------------------------- */
196 #define Tx_TxColl_MASK	       0x0000000F /* Tx Collision Count		     */
197 #define Tx_ExColl	       0x00000010 /* Excessive Collision	     */
198 #define Tx_TXDefer	       0x00000020 /* Transmit Defered		     */
199 #define Tx_Paused	       0x00000040 /* Transmit Paused		     */
200 #define Tx_IntTx	       0x00000080 /* Interrupt on Tx		     */
201 #define Tx_Under	       0x00000100 /* Underrun			     */
202 #define Tx_Defer	       0x00000200 /* Deferral			     */
203 #define Tx_NCarr	       0x00000400 /* No Carrier			     */
204 #define Tx_10Stat	       0x00000800 /* 10Mbps Status		     */
205 #define Tx_LateColl	       0x00001000 /* Late Collision		     */
206 #define Tx_TxPar	       0x00002000 /* Tx Parity Error		     */
207 #define Tx_Comp		       0x00004000 /* Completion			     */
208 #define Tx_Halted	       0x00008000 /* Tx Halted			     */
209 #define Tx_SQErr	       0x00010000 /* Signal Quality Error(SQE)	     */
210 
211 /* Rx_Ctl bit assign -------------------------------------------------------- */
212 #define Rx_EnGood	       0x00004000 /* 1:Enable Good		     */
213 #define Rx_EnRxPar	       0x00002000 /* 1:Enable Receive Parity	     */
214 #define Rx_EnLongErr	       0x00000800 /* 1:Enable Long Error	     */
215 #define Rx_EnOver	       0x00000400 /* 1:Enable OverFlow		     */
216 #define Rx_EnCRCErr	       0x00000200 /* 1:Enable CRC Error		     */
217 #define Rx_EnAlign	       0x00000100 /* 1:Enable Alignment		     */
218 #define Rx_IgnoreCRC	       0x00000040 /* 1:Ignore CRC Value		     */
219 #define Rx_StripCRC	       0x00000010 /* 1:Strip CRC Value		     */
220 #define Rx_ShortEn	       0x00000008 /* 1:Short Enable		     */
221 #define Rx_LongEn	       0x00000004 /* 1:Long Enable		     */
222 #define Rx_RxHalt	       0x00000002 /* 1:Receive Halt Request	     */
223 #define Rx_RxEn		       0x00000001 /* 1:Receive Intrrupt Enable	     */
224 
225 /* Rx_Stat bit assign ------------------------------------------------------- */
226 #define Rx_Halted	       0x00008000 /* Rx Halted			     */
227 #define Rx_Good		       0x00004000 /* Rx Good			     */
228 #define Rx_RxPar	       0x00002000 /* Rx Parity Error		     */
229 #define Rx_TypePkt	       0x00001000 /* Rx Type Packet		     */
230 #define Rx_LongErr	       0x00000800 /* Rx Long Error		     */
231 #define Rx_Over		       0x00000400 /* Rx Overflow		     */
232 #define Rx_CRCErr	       0x00000200 /* Rx CRC Error		     */
233 #define Rx_Align	       0x00000100 /* Rx Alignment Error		     */
234 #define Rx_10Stat	       0x00000080 /* Rx 10Mbps Status		     */
235 #define Rx_IntRx	       0x00000040 /* Rx Interrupt		     */
236 #define Rx_CtlRecd	       0x00000020 /* Rx Control Receive		     */
237 #define Rx_InLenErr	       0x00000010 /* Rx In Range Frame Length Error  */
238 
239 #define Rx_Stat_Mask	       0x0000FFF0 /* Rx All Status Mask		     */
240 
241 /* Int_En bit assign -------------------------------------------------------- */
242 #define Int_NRAbtEn	       0x00000800 /* 1:Non-recoverable Abort Enable  */
243 #define Int_TxCtlCmpEn	       0x00000400 /* 1:Transmit Ctl Complete Enable  */
244 #define Int_DmParErrEn	       0x00000200 /* 1:DMA Parity Error Enable	     */
245 #define Int_DParDEn	       0x00000100 /* 1:Data Parity Error Enable	     */
246 #define Int_EarNotEn	       0x00000080 /* 1:Early Notify Enable	     */
247 #define Int_DParErrEn	       0x00000040 /* 1:Detected Parity Error Enable  */
248 #define Int_SSysErrEn	       0x00000020 /* 1:Signalled System Error Enable */
249 #define Int_RMasAbtEn	       0x00000010 /* 1:Received Master Abort Enable  */
250 #define Int_RTargAbtEn	       0x00000008 /* 1:Received Target Abort Enable  */
251 #define Int_STargAbtEn	       0x00000004 /* 1:Signalled Target Abort Enable */
252 #define Int_BLExEn	       0x00000002 /* 1:Buffer List Exhausted Enable  */
253 #define Int_FDAExEn	       0x00000001 /* 1:Free Descriptor Area	     */
254 					  /*		   Exhausted Enable  */
255 
256 /* Int_Src bit assign ------------------------------------------------------- */
257 #define Int_NRabt	       0x00004000 /* 1:Non Recoverable error	     */
258 #define Int_DmParErrStat       0x00002000 /* 1:DMA Parity Error & Clear	     */
259 #define Int_BLEx	       0x00001000 /* 1:Buffer List Empty & Clear     */
260 #define Int_FDAEx	       0x00000800 /* 1:FDA Empty & Clear	     */
261 #define Int_IntNRAbt	       0x00000400 /* 1:Non Recoverable Abort	     */
262 #define Int_IntCmp	       0x00000200 /* 1:MAC control packet complete   */
263 #define Int_IntExBD	       0x00000100 /* 1:Interrupt Extra BD & Clear    */
264 #define Int_DmParErr	       0x00000080 /* 1:DMA Parity Error & Clear	     */
265 #define Int_IntEarNot	       0x00000040 /* 1:Receive Data write & Clear    */
266 #define Int_SWInt	       0x00000020 /* 1:Software request & Clear	     */
267 #define Int_IntBLEx	       0x00000010 /* 1:Buffer List Empty & Clear     */
268 #define Int_IntFDAEx	       0x00000008 /* 1:FDA Empty & Clear	     */
269 #define Int_IntPCI	       0x00000004 /* 1:PCI controller & Clear	     */
270 #define Int_IntMacRx	       0x00000002 /* 1:Rx controller & Clear	     */
271 #define Int_IntMacTx	       0x00000001 /* 1:Tx controller & Clear	     */
272 
273 /* MD_CA bit assign --------------------------------------------------------- */
274 #define MD_CA_PreSup	       0x00001000 /* 1:Preamble Suppress		     */
275 #define MD_CA_Busy	       0x00000800 /* 1:Busy (Start Operation)	     */
276 #define MD_CA_Wr	       0x00000400 /* 1:Write 0:Read		     */
277 
278 
279 /*
280  * Descriptors
281  */
282 
283 /* Frame descripter */
284 struct FDesc {
285 	volatile __u32 FDNext;
286 	volatile __u32 FDSystem;
287 	volatile __u32 FDStat;
288 	volatile __u32 FDCtl;
289 };
290 
291 /* Buffer descripter */
292 struct BDesc {
293 	volatile __u32 BuffData;
294 	volatile __u32 BDCtl;
295 };
296 
297 #define FD_ALIGN	16
298 
299 /* Frame Descripter bit assign ---------------------------------------------- */
300 #define FD_FDLength_MASK       0x0000FFFF /* Length MASK		     */
301 #define FD_BDCnt_MASK	       0x001F0000 /* BD count MASK in FD	     */
302 #define FD_FrmOpt_MASK	       0x7C000000 /* Frame option MASK		     */
303 #define FD_FrmOpt_BigEndian    0x40000000 /* Tx/Rx */
304 #define FD_FrmOpt_IntTx	       0x20000000 /* Tx only */
305 #define FD_FrmOpt_NoCRC	       0x10000000 /* Tx only */
306 #define FD_FrmOpt_NoPadding    0x08000000 /* Tx only */
307 #define FD_FrmOpt_Packing      0x04000000 /* Rx only */
308 #define FD_CownsFD	       0x80000000 /* FD Controller owner bit	     */
309 #define FD_Next_EOL	       0x00000001 /* FD EOL indicator		     */
310 #define FD_BDCnt_SHIFT	       16
311 
312 /* Buffer Descripter bit assign --------------------------------------------- */
313 #define BD_BuffLength_MASK     0x0000FFFF /* Receive Data Size		     */
314 #define BD_RxBDID_MASK	       0x00FF0000 /* BD ID Number MASK		     */
315 #define BD_RxBDSeqN_MASK       0x7F000000 /* Rx BD Sequence Number	     */
316 #define BD_CownsBD	       0x80000000 /* BD Controller owner bit	     */
317 #define BD_RxBDID_SHIFT	       16
318 #define BD_RxBDSeqN_SHIFT      24
319 
320 
321 /* Some useful constants. */
322 
323 #define TX_CTL_CMD	(Tx_EnTxPar | Tx_EnLateColl | \
324 	Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
325 	Tx_En)	/* maybe  0x7b01 */
326 /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
327 #define RX_CTL_CMD	(Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
328 	| Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
329 #define INT_EN_CMD  (Int_NRAbtEn | \
330 	Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
331 	Int_SSysErrEn  | Int_RMasAbtEn | Int_RTargAbtEn | \
332 	Int_STargAbtEn | \
333 	Int_BLExEn  | Int_FDAExEn) /* maybe 0xb7f*/
334 #define DMA_CTL_CMD	DMA_BURST_SIZE
335 #define HAVE_DMA_RXALIGN(lp)	likely((lp)->chiptype != TC35815CF)
336 
337 /* Tuning parameters */
338 #define DMA_BURST_SIZE	32
339 #define TX_THRESHOLD	1024
340 /* used threshold with packet max byte for low pci transfer ability.*/
341 #define TX_THRESHOLD_MAX 1536
342 /* setting threshold max value when overrun error occurred this count. */
343 #define TX_THRESHOLD_KEEP_LIMIT 10
344 
345 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
346 #define FD_PAGE_NUM 4
347 #define RX_BUF_NUM	128	/* < 256 */
348 #define RX_FD_NUM	256	/* >= 32 */
349 #define TX_FD_NUM	128
350 #if RX_CTL_CMD & Rx_LongEn
351 #define RX_BUF_SIZE	PAGE_SIZE
352 #elif RX_CTL_CMD & Rx_StripCRC
353 #define RX_BUF_SIZE	\
354 	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
355 #else
356 #define RX_BUF_SIZE	\
357 	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
358 #endif
359 #define RX_FD_RESERVE	(2 / 2)	/* max 2 BD per RxFD */
360 #define NAPI_WEIGHT	16
361 
362 struct TxFD {
363 	struct FDesc fd;
364 	struct BDesc bd;
365 	struct BDesc unused;
366 };
367 
368 struct RxFD {
369 	struct FDesc fd;
370 	struct BDesc bd[0];	/* variable length */
371 };
372 
373 struct FrFD {
374 	struct FDesc fd;
375 	struct BDesc bd[RX_BUF_NUM];
376 };
377 
378 
379 #define tc_readl(addr)	ioread32(addr)
380 #define tc_writel(d, addr)	iowrite32(d, addr)
381 
382 #define TC35815_TX_TIMEOUT  msecs_to_jiffies(400)
383 
384 /* Information that need to be kept for each controller. */
385 struct tc35815_local {
386 	struct pci_dev *pci_dev;
387 
388 	struct net_device *dev;
389 	struct napi_struct napi;
390 
391 	/* statistics */
392 	struct {
393 		int max_tx_qlen;
394 		int tx_ints;
395 		int rx_ints;
396 		int tx_underrun;
397 	} lstats;
398 
399 	/* Tx control lock.  This protects the transmit buffer ring
400 	 * state along with the "tx full" state of the driver.  This
401 	 * means all netif_queue flow control actions are protected
402 	 * by this lock as well.
403 	 */
404 	spinlock_t lock;
405 	spinlock_t rx_lock;
406 
407 	struct mii_bus *mii_bus;
408 	struct phy_device *phy_dev;
409 	int duplex;
410 	int speed;
411 	int link;
412 	struct work_struct restart_work;
413 
414 	/*
415 	 * Transmitting: Batch Mode.
416 	 *	1 BD in 1 TxFD.
417 	 * Receiving: Non-Packing Mode.
418 	 *	1 circular FD for Free Buffer List.
419 	 *	RX_BUF_NUM BD in Free Buffer FD.
420 	 *	One Free Buffer BD has ETH_FRAME_LEN data buffer.
421 	 */
422 	void *fd_buf;	/* for TxFD, RxFD, FrFD */
423 	dma_addr_t fd_buf_dma;
424 	struct TxFD *tfd_base;
425 	unsigned int tfd_start;
426 	unsigned int tfd_end;
427 	struct RxFD *rfd_base;
428 	struct RxFD *rfd_limit;
429 	struct RxFD *rfd_cur;
430 	struct FrFD *fbl_ptr;
431 	unsigned int fbl_count;
432 	struct {
433 		struct sk_buff *skb;
434 		dma_addr_t skb_dma;
435 	} tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
436 	u32 msg_enable;
437 	enum tc35815_chiptype chiptype;
438 };
439 
440 static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
441 {
442 	return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
443 }
444 #ifdef DEBUG
445 static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
446 {
447 	return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
448 }
449 #endif
450 static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
451 				       struct pci_dev *hwdev,
452 				       dma_addr_t *dma_handle)
453 {
454 	struct sk_buff *skb;
455 	skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
456 	if (!skb)
457 		return NULL;
458 	*dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
459 				     PCI_DMA_FROMDEVICE);
460 	if (pci_dma_mapping_error(hwdev, *dma_handle)) {
461 		dev_kfree_skb_any(skb);
462 		return NULL;
463 	}
464 	skb_reserve(skb, 2);	/* make IP header 4byte aligned */
465 	return skb;
466 }
467 
468 static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
469 {
470 	pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
471 			 PCI_DMA_FROMDEVICE);
472 	dev_kfree_skb_any(skb);
473 }
474 
475 /* Index to functions, as function prototypes. */
476 
477 static int	tc35815_open(struct net_device *dev);
478 static int	tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
479 static irqreturn_t	tc35815_interrupt(int irq, void *dev_id);
480 static int	tc35815_rx(struct net_device *dev, int limit);
481 static int	tc35815_poll(struct napi_struct *napi, int budget);
482 static void	tc35815_txdone(struct net_device *dev);
483 static int	tc35815_close(struct net_device *dev);
484 static struct	net_device_stats *tc35815_get_stats(struct net_device *dev);
485 static void	tc35815_set_multicast_list(struct net_device *dev);
486 static void	tc35815_tx_timeout(struct net_device *dev);
487 static int	tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
488 #ifdef CONFIG_NET_POLL_CONTROLLER
489 static void	tc35815_poll_controller(struct net_device *dev);
490 #endif
491 static const struct ethtool_ops tc35815_ethtool_ops;
492 
493 /* Example routines you must write ;->. */
494 static void	tc35815_chip_reset(struct net_device *dev);
495 static void	tc35815_chip_init(struct net_device *dev);
496 
497 #ifdef DEBUG
498 static void	panic_queues(struct net_device *dev);
499 #endif
500 
501 static void tc35815_restart_work(struct work_struct *work);
502 
503 static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
504 {
505 	struct net_device *dev = bus->priv;
506 	struct tc35815_regs __iomem *tr =
507 		(struct tc35815_regs __iomem *)dev->base_addr;
508 	unsigned long timeout = jiffies + HZ;
509 
510 	tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
511 	udelay(12); /* it takes 32 x 400ns at least */
512 	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
513 		if (time_after(jiffies, timeout))
514 			return -EIO;
515 		cpu_relax();
516 	}
517 	return tc_readl(&tr->MD_Data) & 0xffff;
518 }
519 
520 static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
521 {
522 	struct net_device *dev = bus->priv;
523 	struct tc35815_regs __iomem *tr =
524 		(struct tc35815_regs __iomem *)dev->base_addr;
525 	unsigned long timeout = jiffies + HZ;
526 
527 	tc_writel(val, &tr->MD_Data);
528 	tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
529 		  &tr->MD_CA);
530 	udelay(12); /* it takes 32 x 400ns at least */
531 	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
532 		if (time_after(jiffies, timeout))
533 			return -EIO;
534 		cpu_relax();
535 	}
536 	return 0;
537 }
538 
539 static void tc_handle_link_change(struct net_device *dev)
540 {
541 	struct tc35815_local *lp = netdev_priv(dev);
542 	struct phy_device *phydev = lp->phy_dev;
543 	unsigned long flags;
544 	int status_change = 0;
545 
546 	spin_lock_irqsave(&lp->lock, flags);
547 	if (phydev->link &&
548 	    (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
549 		struct tc35815_regs __iomem *tr =
550 			(struct tc35815_regs __iomem *)dev->base_addr;
551 		u32 reg;
552 
553 		reg = tc_readl(&tr->MAC_Ctl);
554 		reg |= MAC_HaltReq;
555 		tc_writel(reg, &tr->MAC_Ctl);
556 		if (phydev->duplex == DUPLEX_FULL)
557 			reg |= MAC_FullDup;
558 		else
559 			reg &= ~MAC_FullDup;
560 		tc_writel(reg, &tr->MAC_Ctl);
561 		reg &= ~MAC_HaltReq;
562 		tc_writel(reg, &tr->MAC_Ctl);
563 
564 		/*
565 		 * TX4939 PCFG.SPEEDn bit will be changed on
566 		 * NETDEV_CHANGE event.
567 		 */
568 		/*
569 		 * WORKAROUND: enable LostCrS only if half duplex
570 		 * operation.
571 		 * (TX4939 does not have EnLCarr)
572 		 */
573 		if (phydev->duplex == DUPLEX_HALF &&
574 		    lp->chiptype != TC35815_TX4939)
575 			tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
576 				  &tr->Tx_Ctl);
577 
578 		lp->speed = phydev->speed;
579 		lp->duplex = phydev->duplex;
580 		status_change = 1;
581 	}
582 
583 	if (phydev->link != lp->link) {
584 		if (phydev->link) {
585 			/* delayed promiscuous enabling */
586 			if (dev->flags & IFF_PROMISC)
587 				tc35815_set_multicast_list(dev);
588 		} else {
589 			lp->speed = 0;
590 			lp->duplex = -1;
591 		}
592 		lp->link = phydev->link;
593 
594 		status_change = 1;
595 	}
596 	spin_unlock_irqrestore(&lp->lock, flags);
597 
598 	if (status_change && netif_msg_link(lp)) {
599 		phy_print_status(phydev);
600 		pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
601 			 dev->name,
602 			 phy_read(phydev, MII_BMCR),
603 			 phy_read(phydev, MII_BMSR),
604 			 phy_read(phydev, MII_LPA));
605 	}
606 }
607 
608 static int tc_mii_probe(struct net_device *dev)
609 {
610 	struct tc35815_local *lp = netdev_priv(dev);
611 	struct phy_device *phydev;
612 	u32 dropmask;
613 
614 	phydev = phy_find_first(lp->mii_bus);
615 	if (!phydev) {
616 		printk(KERN_ERR "%s: no PHY found\n", dev->name);
617 		return -ENODEV;
618 	}
619 
620 	/* attach the mac to the phy */
621 	phydev = phy_connect(dev, phydev_name(phydev),
622 			     &tc_handle_link_change,
623 			     lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
624 	if (IS_ERR(phydev)) {
625 		printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
626 		return PTR_ERR(phydev);
627 	}
628 
629 	phy_attached_info(phydev);
630 
631 	/* mask with MAC supported features */
632 	phydev->supported &= PHY_BASIC_FEATURES;
633 	dropmask = 0;
634 	if (options.speed == 10)
635 		dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full;
636 	else if (options.speed == 100)
637 		dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full;
638 	if (options.duplex == 1)
639 		dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full;
640 	else if (options.duplex == 2)
641 		dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half;
642 	phydev->supported &= ~dropmask;
643 	phydev->advertising = phydev->supported;
644 
645 	lp->link = 0;
646 	lp->speed = 0;
647 	lp->duplex = -1;
648 	lp->phy_dev = phydev;
649 
650 	return 0;
651 }
652 
653 static int tc_mii_init(struct net_device *dev)
654 {
655 	struct tc35815_local *lp = netdev_priv(dev);
656 	int err;
657 
658 	lp->mii_bus = mdiobus_alloc();
659 	if (lp->mii_bus == NULL) {
660 		err = -ENOMEM;
661 		goto err_out;
662 	}
663 
664 	lp->mii_bus->name = "tc35815_mii_bus";
665 	lp->mii_bus->read = tc_mdio_read;
666 	lp->mii_bus->write = tc_mdio_write;
667 	snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
668 		 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
669 	lp->mii_bus->priv = dev;
670 	lp->mii_bus->parent = &lp->pci_dev->dev;
671 	err = mdiobus_register(lp->mii_bus);
672 	if (err)
673 		goto err_out_free_mii_bus;
674 	err = tc_mii_probe(dev);
675 	if (err)
676 		goto err_out_unregister_bus;
677 	return 0;
678 
679 err_out_unregister_bus:
680 	mdiobus_unregister(lp->mii_bus);
681 err_out_free_mii_bus:
682 	mdiobus_free(lp->mii_bus);
683 err_out:
684 	return err;
685 }
686 
687 #ifdef CONFIG_CPU_TX49XX
688 /*
689  * Find a platform_device providing a MAC address.  The platform code
690  * should provide a "tc35815-mac" device with a MAC address in its
691  * platform_data.
692  */
693 static int tc35815_mac_match(struct device *dev, void *data)
694 {
695 	struct platform_device *plat_dev = to_platform_device(dev);
696 	struct pci_dev *pci_dev = data;
697 	unsigned int id = pci_dev->irq;
698 	return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
699 }
700 
701 static int tc35815_read_plat_dev_addr(struct net_device *dev)
702 {
703 	struct tc35815_local *lp = netdev_priv(dev);
704 	struct device *pd = bus_find_device(&platform_bus_type, NULL,
705 					    lp->pci_dev, tc35815_mac_match);
706 	if (pd) {
707 		if (pd->platform_data)
708 			memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
709 		put_device(pd);
710 		return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
711 	}
712 	return -ENODEV;
713 }
714 #else
715 static int tc35815_read_plat_dev_addr(struct net_device *dev)
716 {
717 	return -ENODEV;
718 }
719 #endif
720 
721 static int tc35815_init_dev_addr(struct net_device *dev)
722 {
723 	struct tc35815_regs __iomem *tr =
724 		(struct tc35815_regs __iomem *)dev->base_addr;
725 	int i;
726 
727 	while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
728 		;
729 	for (i = 0; i < 6; i += 2) {
730 		unsigned short data;
731 		tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
732 		while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
733 			;
734 		data = tc_readl(&tr->PROM_Data);
735 		dev->dev_addr[i] = data & 0xff;
736 		dev->dev_addr[i+1] = data >> 8;
737 	}
738 	if (!is_valid_ether_addr(dev->dev_addr))
739 		return tc35815_read_plat_dev_addr(dev);
740 	return 0;
741 }
742 
743 static const struct net_device_ops tc35815_netdev_ops = {
744 	.ndo_open		= tc35815_open,
745 	.ndo_stop		= tc35815_close,
746 	.ndo_start_xmit		= tc35815_send_packet,
747 	.ndo_get_stats		= tc35815_get_stats,
748 	.ndo_set_rx_mode	= tc35815_set_multicast_list,
749 	.ndo_tx_timeout		= tc35815_tx_timeout,
750 	.ndo_do_ioctl		= tc35815_ioctl,
751 	.ndo_validate_addr	= eth_validate_addr,
752 	.ndo_change_mtu		= eth_change_mtu,
753 	.ndo_set_mac_address	= eth_mac_addr,
754 #ifdef CONFIG_NET_POLL_CONTROLLER
755 	.ndo_poll_controller	= tc35815_poll_controller,
756 #endif
757 };
758 
759 static int tc35815_init_one(struct pci_dev *pdev,
760 			    const struct pci_device_id *ent)
761 {
762 	void __iomem *ioaddr = NULL;
763 	struct net_device *dev;
764 	struct tc35815_local *lp;
765 	int rc;
766 
767 	static int printed_version;
768 	if (!printed_version++) {
769 		printk(version);
770 		dev_printk(KERN_DEBUG, &pdev->dev,
771 			   "speed:%d duplex:%d\n",
772 			   options.speed, options.duplex);
773 	}
774 
775 	if (!pdev->irq) {
776 		dev_warn(&pdev->dev, "no IRQ assigned.\n");
777 		return -ENODEV;
778 	}
779 
780 	/* dev zeroed in alloc_etherdev */
781 	dev = alloc_etherdev(sizeof(*lp));
782 	if (dev == NULL)
783 		return -ENOMEM;
784 
785 	SET_NETDEV_DEV(dev, &pdev->dev);
786 	lp = netdev_priv(dev);
787 	lp->dev = dev;
788 
789 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
790 	rc = pcim_enable_device(pdev);
791 	if (rc)
792 		goto err_out;
793 	rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
794 	if (rc)
795 		goto err_out;
796 	pci_set_master(pdev);
797 	ioaddr = pcim_iomap_table(pdev)[1];
798 
799 	/* Initialize the device structure. */
800 	dev->netdev_ops = &tc35815_netdev_ops;
801 	dev->ethtool_ops = &tc35815_ethtool_ops;
802 	dev->watchdog_timeo = TC35815_TX_TIMEOUT;
803 	netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
804 
805 	dev->irq = pdev->irq;
806 	dev->base_addr = (unsigned long)ioaddr;
807 
808 	INIT_WORK(&lp->restart_work, tc35815_restart_work);
809 	spin_lock_init(&lp->lock);
810 	spin_lock_init(&lp->rx_lock);
811 	lp->pci_dev = pdev;
812 	lp->chiptype = ent->driver_data;
813 
814 	lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
815 	pci_set_drvdata(pdev, dev);
816 
817 	/* Soft reset the chip. */
818 	tc35815_chip_reset(dev);
819 
820 	/* Retrieve the ethernet address. */
821 	if (tc35815_init_dev_addr(dev)) {
822 		dev_warn(&pdev->dev, "not valid ether addr\n");
823 		eth_hw_addr_random(dev);
824 	}
825 
826 	rc = register_netdev(dev);
827 	if (rc)
828 		goto err_out;
829 
830 	printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
831 		dev->name,
832 		chip_info[ent->driver_data].name,
833 		dev->base_addr,
834 		dev->dev_addr,
835 		dev->irq);
836 
837 	rc = tc_mii_init(dev);
838 	if (rc)
839 		goto err_out_unregister;
840 
841 	return 0;
842 
843 err_out_unregister:
844 	unregister_netdev(dev);
845 err_out:
846 	free_netdev(dev);
847 	return rc;
848 }
849 
850 
851 static void tc35815_remove_one(struct pci_dev *pdev)
852 {
853 	struct net_device *dev = pci_get_drvdata(pdev);
854 	struct tc35815_local *lp = netdev_priv(dev);
855 
856 	phy_disconnect(lp->phy_dev);
857 	mdiobus_unregister(lp->mii_bus);
858 	mdiobus_free(lp->mii_bus);
859 	unregister_netdev(dev);
860 	free_netdev(dev);
861 }
862 
863 static int
864 tc35815_init_queues(struct net_device *dev)
865 {
866 	struct tc35815_local *lp = netdev_priv(dev);
867 	int i;
868 	unsigned long fd_addr;
869 
870 	if (!lp->fd_buf) {
871 		BUG_ON(sizeof(struct FDesc) +
872 		       sizeof(struct BDesc) * RX_BUF_NUM +
873 		       sizeof(struct FDesc) * RX_FD_NUM +
874 		       sizeof(struct TxFD) * TX_FD_NUM >
875 		       PAGE_SIZE * FD_PAGE_NUM);
876 
877 		lp->fd_buf = pci_alloc_consistent(lp->pci_dev,
878 						  PAGE_SIZE * FD_PAGE_NUM,
879 						  &lp->fd_buf_dma);
880 		if (!lp->fd_buf)
881 			return -ENOMEM;
882 		for (i = 0; i < RX_BUF_NUM; i++) {
883 			lp->rx_skbs[i].skb =
884 				alloc_rxbuf_skb(dev, lp->pci_dev,
885 						&lp->rx_skbs[i].skb_dma);
886 			if (!lp->rx_skbs[i].skb) {
887 				while (--i >= 0) {
888 					free_rxbuf_skb(lp->pci_dev,
889 						       lp->rx_skbs[i].skb,
890 						       lp->rx_skbs[i].skb_dma);
891 					lp->rx_skbs[i].skb = NULL;
892 				}
893 				pci_free_consistent(lp->pci_dev,
894 						    PAGE_SIZE * FD_PAGE_NUM,
895 						    lp->fd_buf,
896 						    lp->fd_buf_dma);
897 				lp->fd_buf = NULL;
898 				return -ENOMEM;
899 			}
900 		}
901 		printk(KERN_DEBUG "%s: FD buf %p DataBuf",
902 		       dev->name, lp->fd_buf);
903 		printk("\n");
904 	} else {
905 		for (i = 0; i < FD_PAGE_NUM; i++)
906 			clear_page((void *)((unsigned long)lp->fd_buf +
907 					    i * PAGE_SIZE));
908 	}
909 	fd_addr = (unsigned long)lp->fd_buf;
910 
911 	/* Free Descriptors (for Receive) */
912 	lp->rfd_base = (struct RxFD *)fd_addr;
913 	fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
914 	for (i = 0; i < RX_FD_NUM; i++)
915 		lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
916 	lp->rfd_cur = lp->rfd_base;
917 	lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
918 
919 	/* Transmit Descriptors */
920 	lp->tfd_base = (struct TxFD *)fd_addr;
921 	fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
922 	for (i = 0; i < TX_FD_NUM; i++) {
923 		lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
924 		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
925 		lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
926 	}
927 	lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
928 	lp->tfd_start = 0;
929 	lp->tfd_end = 0;
930 
931 	/* Buffer List (for Receive) */
932 	lp->fbl_ptr = (struct FrFD *)fd_addr;
933 	lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
934 	lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
935 	/*
936 	 * move all allocated skbs to head of rx_skbs[] array.
937 	 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
938 	 * tc35815_rx() had failed.
939 	 */
940 	lp->fbl_count = 0;
941 	for (i = 0; i < RX_BUF_NUM; i++) {
942 		if (lp->rx_skbs[i].skb) {
943 			if (i != lp->fbl_count) {
944 				lp->rx_skbs[lp->fbl_count].skb =
945 					lp->rx_skbs[i].skb;
946 				lp->rx_skbs[lp->fbl_count].skb_dma =
947 					lp->rx_skbs[i].skb_dma;
948 			}
949 			lp->fbl_count++;
950 		}
951 	}
952 	for (i = 0; i < RX_BUF_NUM; i++) {
953 		if (i >= lp->fbl_count) {
954 			lp->fbl_ptr->bd[i].BuffData = 0;
955 			lp->fbl_ptr->bd[i].BDCtl = 0;
956 			continue;
957 		}
958 		lp->fbl_ptr->bd[i].BuffData =
959 			cpu_to_le32(lp->rx_skbs[i].skb_dma);
960 		/* BDID is index of FrFD.bd[] */
961 		lp->fbl_ptr->bd[i].BDCtl =
962 			cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
963 				    RX_BUF_SIZE);
964 	}
965 
966 	printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
967 	       dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
968 	return 0;
969 }
970 
971 static void
972 tc35815_clear_queues(struct net_device *dev)
973 {
974 	struct tc35815_local *lp = netdev_priv(dev);
975 	int i;
976 
977 	for (i = 0; i < TX_FD_NUM; i++) {
978 		u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
979 		struct sk_buff *skb =
980 			fdsystem != 0xffffffff ?
981 			lp->tx_skbs[fdsystem].skb : NULL;
982 #ifdef DEBUG
983 		if (lp->tx_skbs[i].skb != skb) {
984 			printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
985 			panic_queues(dev);
986 		}
987 #else
988 		BUG_ON(lp->tx_skbs[i].skb != skb);
989 #endif
990 		if (skb) {
991 			pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
992 			lp->tx_skbs[i].skb = NULL;
993 			lp->tx_skbs[i].skb_dma = 0;
994 			dev_kfree_skb_any(skb);
995 		}
996 		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
997 	}
998 
999 	tc35815_init_queues(dev);
1000 }
1001 
1002 static void
1003 tc35815_free_queues(struct net_device *dev)
1004 {
1005 	struct tc35815_local *lp = netdev_priv(dev);
1006 	int i;
1007 
1008 	if (lp->tfd_base) {
1009 		for (i = 0; i < TX_FD_NUM; i++) {
1010 			u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1011 			struct sk_buff *skb =
1012 				fdsystem != 0xffffffff ?
1013 				lp->tx_skbs[fdsystem].skb : NULL;
1014 #ifdef DEBUG
1015 			if (lp->tx_skbs[i].skb != skb) {
1016 				printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1017 				panic_queues(dev);
1018 			}
1019 #else
1020 			BUG_ON(lp->tx_skbs[i].skb != skb);
1021 #endif
1022 			if (skb) {
1023 				dev_kfree_skb(skb);
1024 				pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1025 				lp->tx_skbs[i].skb = NULL;
1026 				lp->tx_skbs[i].skb_dma = 0;
1027 			}
1028 			lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1029 		}
1030 	}
1031 
1032 	lp->rfd_base = NULL;
1033 	lp->rfd_limit = NULL;
1034 	lp->rfd_cur = NULL;
1035 	lp->fbl_ptr = NULL;
1036 
1037 	for (i = 0; i < RX_BUF_NUM; i++) {
1038 		if (lp->rx_skbs[i].skb) {
1039 			free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1040 				       lp->rx_skbs[i].skb_dma);
1041 			lp->rx_skbs[i].skb = NULL;
1042 		}
1043 	}
1044 	if (lp->fd_buf) {
1045 		pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
1046 				    lp->fd_buf, lp->fd_buf_dma);
1047 		lp->fd_buf = NULL;
1048 	}
1049 }
1050 
1051 static void
1052 dump_txfd(struct TxFD *fd)
1053 {
1054 	printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1055 	       le32_to_cpu(fd->fd.FDNext),
1056 	       le32_to_cpu(fd->fd.FDSystem),
1057 	       le32_to_cpu(fd->fd.FDStat),
1058 	       le32_to_cpu(fd->fd.FDCtl));
1059 	printk("BD: ");
1060 	printk(" %08x %08x",
1061 	       le32_to_cpu(fd->bd.BuffData),
1062 	       le32_to_cpu(fd->bd.BDCtl));
1063 	printk("\n");
1064 }
1065 
1066 static int
1067 dump_rxfd(struct RxFD *fd)
1068 {
1069 	int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1070 	if (bd_count > 8)
1071 		bd_count = 8;
1072 	printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1073 	       le32_to_cpu(fd->fd.FDNext),
1074 	       le32_to_cpu(fd->fd.FDSystem),
1075 	       le32_to_cpu(fd->fd.FDStat),
1076 	       le32_to_cpu(fd->fd.FDCtl));
1077 	if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1078 		return 0;
1079 	printk("BD: ");
1080 	for (i = 0; i < bd_count; i++)
1081 		printk(" %08x %08x",
1082 		       le32_to_cpu(fd->bd[i].BuffData),
1083 		       le32_to_cpu(fd->bd[i].BDCtl));
1084 	printk("\n");
1085 	return bd_count;
1086 }
1087 
1088 #ifdef DEBUG
1089 static void
1090 dump_frfd(struct FrFD *fd)
1091 {
1092 	int i;
1093 	printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1094 	       le32_to_cpu(fd->fd.FDNext),
1095 	       le32_to_cpu(fd->fd.FDSystem),
1096 	       le32_to_cpu(fd->fd.FDStat),
1097 	       le32_to_cpu(fd->fd.FDCtl));
1098 	printk("BD: ");
1099 	for (i = 0; i < RX_BUF_NUM; i++)
1100 		printk(" %08x %08x",
1101 		       le32_to_cpu(fd->bd[i].BuffData),
1102 		       le32_to_cpu(fd->bd[i].BDCtl));
1103 	printk("\n");
1104 }
1105 
1106 static void
1107 panic_queues(struct net_device *dev)
1108 {
1109 	struct tc35815_local *lp = netdev_priv(dev);
1110 	int i;
1111 
1112 	printk("TxFD base %p, start %u, end %u\n",
1113 	       lp->tfd_base, lp->tfd_start, lp->tfd_end);
1114 	printk("RxFD base %p limit %p cur %p\n",
1115 	       lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1116 	printk("FrFD %p\n", lp->fbl_ptr);
1117 	for (i = 0; i < TX_FD_NUM; i++)
1118 		dump_txfd(&lp->tfd_base[i]);
1119 	for (i = 0; i < RX_FD_NUM; i++) {
1120 		int bd_count = dump_rxfd(&lp->rfd_base[i]);
1121 		i += (bd_count + 1) / 2;	/* skip BDs */
1122 	}
1123 	dump_frfd(lp->fbl_ptr);
1124 	panic("%s: Illegal queue state.", dev->name);
1125 }
1126 #endif
1127 
1128 static void print_eth(const u8 *add)
1129 {
1130 	printk(KERN_DEBUG "print_eth(%p)\n", add);
1131 	printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1132 		add + 6, add, add[12], add[13]);
1133 }
1134 
1135 static int tc35815_tx_full(struct net_device *dev)
1136 {
1137 	struct tc35815_local *lp = netdev_priv(dev);
1138 	return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
1139 }
1140 
1141 static void tc35815_restart(struct net_device *dev)
1142 {
1143 	struct tc35815_local *lp = netdev_priv(dev);
1144 	int ret;
1145 
1146 	if (lp->phy_dev) {
1147 		ret = phy_init_hw(lp->phy_dev);
1148 		if (ret)
1149 			printk(KERN_ERR "%s: PHY init failed.\n", dev->name);
1150 	}
1151 
1152 	spin_lock_bh(&lp->rx_lock);
1153 	spin_lock_irq(&lp->lock);
1154 	tc35815_chip_reset(dev);
1155 	tc35815_clear_queues(dev);
1156 	tc35815_chip_init(dev);
1157 	/* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1158 	tc35815_set_multicast_list(dev);
1159 	spin_unlock_irq(&lp->lock);
1160 	spin_unlock_bh(&lp->rx_lock);
1161 
1162 	netif_wake_queue(dev);
1163 }
1164 
1165 static void tc35815_restart_work(struct work_struct *work)
1166 {
1167 	struct tc35815_local *lp =
1168 		container_of(work, struct tc35815_local, restart_work);
1169 	struct net_device *dev = lp->dev;
1170 
1171 	tc35815_restart(dev);
1172 }
1173 
1174 static void tc35815_schedule_restart(struct net_device *dev)
1175 {
1176 	struct tc35815_local *lp = netdev_priv(dev);
1177 	struct tc35815_regs __iomem *tr =
1178 		(struct tc35815_regs __iomem *)dev->base_addr;
1179 	unsigned long flags;
1180 
1181 	/* disable interrupts */
1182 	spin_lock_irqsave(&lp->lock, flags);
1183 	tc_writel(0, &tr->Int_En);
1184 	tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1185 	schedule_work(&lp->restart_work);
1186 	spin_unlock_irqrestore(&lp->lock, flags);
1187 }
1188 
1189 static void tc35815_tx_timeout(struct net_device *dev)
1190 {
1191 	struct tc35815_regs __iomem *tr =
1192 		(struct tc35815_regs __iomem *)dev->base_addr;
1193 
1194 	printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1195 	       dev->name, tc_readl(&tr->Tx_Stat));
1196 
1197 	/* Try to restart the adaptor. */
1198 	tc35815_schedule_restart(dev);
1199 	dev->stats.tx_errors++;
1200 }
1201 
1202 /*
1203  * Open/initialize the controller. This is called (in the current kernel)
1204  * sometime after booting when the 'ifconfig' program is run.
1205  *
1206  * This routine should set everything up anew at each open, even
1207  * registers that "should" only need to be set once at boot, so that
1208  * there is non-reboot way to recover if something goes wrong.
1209  */
1210 static int
1211 tc35815_open(struct net_device *dev)
1212 {
1213 	struct tc35815_local *lp = netdev_priv(dev);
1214 
1215 	/*
1216 	 * This is used if the interrupt line can turned off (shared).
1217 	 * See 3c503.c for an example of selecting the IRQ at config-time.
1218 	 */
1219 	if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1220 			dev->name, dev))
1221 		return -EAGAIN;
1222 
1223 	tc35815_chip_reset(dev);
1224 
1225 	if (tc35815_init_queues(dev) != 0) {
1226 		free_irq(dev->irq, dev);
1227 		return -EAGAIN;
1228 	}
1229 
1230 	napi_enable(&lp->napi);
1231 
1232 	/* Reset the hardware here. Don't forget to set the station address. */
1233 	spin_lock_irq(&lp->lock);
1234 	tc35815_chip_init(dev);
1235 	spin_unlock_irq(&lp->lock);
1236 
1237 	netif_carrier_off(dev);
1238 	/* schedule a link state check */
1239 	phy_start(lp->phy_dev);
1240 
1241 	/* We are now ready to accept transmit requeusts from
1242 	 * the queueing layer of the networking.
1243 	 */
1244 	netif_start_queue(dev);
1245 
1246 	return 0;
1247 }
1248 
1249 /* This will only be invoked if your driver is _not_ in XOFF state.
1250  * What this means is that you need not check it, and that this
1251  * invariant will hold if you make sure that the netif_*_queue()
1252  * calls are done at the proper times.
1253  */
1254 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1255 {
1256 	struct tc35815_local *lp = netdev_priv(dev);
1257 	struct TxFD *txfd;
1258 	unsigned long flags;
1259 
1260 	/* If some error occurs while trying to transmit this
1261 	 * packet, you should return '1' from this function.
1262 	 * In such a case you _may not_ do anything to the
1263 	 * SKB, it is still owned by the network queueing
1264 	 * layer when an error is returned.  This means you
1265 	 * may not modify any SKB fields, you may not free
1266 	 * the SKB, etc.
1267 	 */
1268 
1269 	/* This is the most common case for modern hardware.
1270 	 * The spinlock protects this code from the TX complete
1271 	 * hardware interrupt handler.  Queue flow control is
1272 	 * thus managed under this lock as well.
1273 	 */
1274 	spin_lock_irqsave(&lp->lock, flags);
1275 
1276 	/* failsafe... (handle txdone now if half of FDs are used) */
1277 	if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1278 	    TX_FD_NUM / 2)
1279 		tc35815_txdone(dev);
1280 
1281 	if (netif_msg_pktdata(lp))
1282 		print_eth(skb->data);
1283 #ifdef DEBUG
1284 	if (lp->tx_skbs[lp->tfd_start].skb) {
1285 		printk("%s: tx_skbs conflict.\n", dev->name);
1286 		panic_queues(dev);
1287 	}
1288 #else
1289 	BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1290 #endif
1291 	lp->tx_skbs[lp->tfd_start].skb = skb;
1292 	lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
1293 
1294 	/*add to ring */
1295 	txfd = &lp->tfd_base[lp->tfd_start];
1296 	txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1297 	txfd->bd.BDCtl = cpu_to_le32(skb->len);
1298 	txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1299 	txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1300 
1301 	if (lp->tfd_start == lp->tfd_end) {
1302 		struct tc35815_regs __iomem *tr =
1303 			(struct tc35815_regs __iomem *)dev->base_addr;
1304 		/* Start DMA Transmitter. */
1305 		txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1306 		txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1307 		if (netif_msg_tx_queued(lp)) {
1308 			printk("%s: starting TxFD.\n", dev->name);
1309 			dump_txfd(txfd);
1310 		}
1311 		tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1312 	} else {
1313 		txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1314 		if (netif_msg_tx_queued(lp)) {
1315 			printk("%s: queueing TxFD.\n", dev->name);
1316 			dump_txfd(txfd);
1317 		}
1318 	}
1319 	lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1320 
1321 	/* If we just used up the very last entry in the
1322 	 * TX ring on this device, tell the queueing
1323 	 * layer to send no more.
1324 	 */
1325 	if (tc35815_tx_full(dev)) {
1326 		if (netif_msg_tx_queued(lp))
1327 			printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1328 		netif_stop_queue(dev);
1329 	}
1330 
1331 	/* When the TX completion hw interrupt arrives, this
1332 	 * is when the transmit statistics are updated.
1333 	 */
1334 
1335 	spin_unlock_irqrestore(&lp->lock, flags);
1336 	return NETDEV_TX_OK;
1337 }
1338 
1339 #define FATAL_ERROR_INT \
1340 	(Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1341 static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1342 {
1343 	static int count;
1344 	printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
1345 	       dev->name, status);
1346 	if (status & Int_IntPCI)
1347 		printk(" IntPCI");
1348 	if (status & Int_DmParErr)
1349 		printk(" DmParErr");
1350 	if (status & Int_IntNRAbt)
1351 		printk(" IntNRAbt");
1352 	printk("\n");
1353 	if (count++ > 100)
1354 		panic("%s: Too many fatal errors.", dev->name);
1355 	printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1356 	/* Try to restart the adaptor. */
1357 	tc35815_schedule_restart(dev);
1358 }
1359 
1360 static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1361 {
1362 	struct tc35815_local *lp = netdev_priv(dev);
1363 	int ret = -1;
1364 
1365 	/* Fatal errors... */
1366 	if (status & FATAL_ERROR_INT) {
1367 		tc35815_fatal_error_interrupt(dev, status);
1368 		return 0;
1369 	}
1370 	/* recoverable errors */
1371 	if (status & Int_IntFDAEx) {
1372 		if (netif_msg_rx_err(lp))
1373 			dev_warn(&dev->dev,
1374 				 "Free Descriptor Area Exhausted (%#x).\n",
1375 				 status);
1376 		dev->stats.rx_dropped++;
1377 		ret = 0;
1378 	}
1379 	if (status & Int_IntBLEx) {
1380 		if (netif_msg_rx_err(lp))
1381 			dev_warn(&dev->dev,
1382 				 "Buffer List Exhausted (%#x).\n",
1383 				 status);
1384 		dev->stats.rx_dropped++;
1385 		ret = 0;
1386 	}
1387 	if (status & Int_IntExBD) {
1388 		if (netif_msg_rx_err(lp))
1389 			dev_warn(&dev->dev,
1390 				 "Excessive Buffer Descriptiors (%#x).\n",
1391 				 status);
1392 		dev->stats.rx_length_errors++;
1393 		ret = 0;
1394 	}
1395 
1396 	/* normal notification */
1397 	if (status & Int_IntMacRx) {
1398 		/* Got a packet(s). */
1399 		ret = tc35815_rx(dev, limit);
1400 		lp->lstats.rx_ints++;
1401 	}
1402 	if (status & Int_IntMacTx) {
1403 		/* Transmit complete. */
1404 		lp->lstats.tx_ints++;
1405 		spin_lock_irq(&lp->lock);
1406 		tc35815_txdone(dev);
1407 		spin_unlock_irq(&lp->lock);
1408 		if (ret < 0)
1409 			ret = 0;
1410 	}
1411 	return ret;
1412 }
1413 
1414 /*
1415  * The typical workload of the driver:
1416  * Handle the network interface interrupts.
1417  */
1418 static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1419 {
1420 	struct net_device *dev = dev_id;
1421 	struct tc35815_local *lp = netdev_priv(dev);
1422 	struct tc35815_regs __iomem *tr =
1423 		(struct tc35815_regs __iomem *)dev->base_addr;
1424 	u32 dmactl = tc_readl(&tr->DMA_Ctl);
1425 
1426 	if (!(dmactl & DMA_IntMask)) {
1427 		/* disable interrupts */
1428 		tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1429 		if (napi_schedule_prep(&lp->napi))
1430 			__napi_schedule(&lp->napi);
1431 		else {
1432 			printk(KERN_ERR "%s: interrupt taken in poll\n",
1433 			       dev->name);
1434 			BUG();
1435 		}
1436 		(void)tc_readl(&tr->Int_Src);	/* flush */
1437 		return IRQ_HANDLED;
1438 	}
1439 	return IRQ_NONE;
1440 }
1441 
1442 #ifdef CONFIG_NET_POLL_CONTROLLER
1443 static void tc35815_poll_controller(struct net_device *dev)
1444 {
1445 	disable_irq(dev->irq);
1446 	tc35815_interrupt(dev->irq, dev);
1447 	enable_irq(dev->irq);
1448 }
1449 #endif
1450 
1451 /* We have a good packet(s), get it/them out of the buffers. */
1452 static int
1453 tc35815_rx(struct net_device *dev, int limit)
1454 {
1455 	struct tc35815_local *lp = netdev_priv(dev);
1456 	unsigned int fdctl;
1457 	int i;
1458 	int received = 0;
1459 
1460 	while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1461 		int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1462 		int pkt_len = fdctl & FD_FDLength_MASK;
1463 		int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1464 #ifdef DEBUG
1465 		struct RxFD *next_rfd;
1466 #endif
1467 #if (RX_CTL_CMD & Rx_StripCRC) == 0
1468 		pkt_len -= ETH_FCS_LEN;
1469 #endif
1470 
1471 		if (netif_msg_rx_status(lp))
1472 			dump_rxfd(lp->rfd_cur);
1473 		if (status & Rx_Good) {
1474 			struct sk_buff *skb;
1475 			unsigned char *data;
1476 			int cur_bd;
1477 
1478 			if (--limit < 0)
1479 				break;
1480 			BUG_ON(bd_count > 1);
1481 			cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1482 				  & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1483 #ifdef DEBUG
1484 			if (cur_bd >= RX_BUF_NUM) {
1485 				printk("%s: invalid BDID.\n", dev->name);
1486 				panic_queues(dev);
1487 			}
1488 			BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1489 			       (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1490 			if (!lp->rx_skbs[cur_bd].skb) {
1491 				printk("%s: NULL skb.\n", dev->name);
1492 				panic_queues(dev);
1493 			}
1494 #else
1495 			BUG_ON(cur_bd >= RX_BUF_NUM);
1496 #endif
1497 			skb = lp->rx_skbs[cur_bd].skb;
1498 			prefetch(skb->data);
1499 			lp->rx_skbs[cur_bd].skb = NULL;
1500 			pci_unmap_single(lp->pci_dev,
1501 					 lp->rx_skbs[cur_bd].skb_dma,
1502 					 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1503 			if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN)
1504 				memmove(skb->data, skb->data - NET_IP_ALIGN,
1505 					pkt_len);
1506 			data = skb_put(skb, pkt_len);
1507 			if (netif_msg_pktdata(lp))
1508 				print_eth(data);
1509 			skb->protocol = eth_type_trans(skb, dev);
1510 			netif_receive_skb(skb);
1511 			received++;
1512 			dev->stats.rx_packets++;
1513 			dev->stats.rx_bytes += pkt_len;
1514 		} else {
1515 			dev->stats.rx_errors++;
1516 			if (netif_msg_rx_err(lp))
1517 				dev_info(&dev->dev, "Rx error (status %x)\n",
1518 					 status & Rx_Stat_Mask);
1519 			/* WORKAROUND: LongErr and CRCErr means Overflow. */
1520 			if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1521 				status &= ~(Rx_LongErr|Rx_CRCErr);
1522 				status |= Rx_Over;
1523 			}
1524 			if (status & Rx_LongErr)
1525 				dev->stats.rx_length_errors++;
1526 			if (status & Rx_Over)
1527 				dev->stats.rx_fifo_errors++;
1528 			if (status & Rx_CRCErr)
1529 				dev->stats.rx_crc_errors++;
1530 			if (status & Rx_Align)
1531 				dev->stats.rx_frame_errors++;
1532 		}
1533 
1534 		if (bd_count > 0) {
1535 			/* put Free Buffer back to controller */
1536 			int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1537 			unsigned char id =
1538 				(bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1539 #ifdef DEBUG
1540 			if (id >= RX_BUF_NUM) {
1541 				printk("%s: invalid BDID.\n", dev->name);
1542 				panic_queues(dev);
1543 			}
1544 #else
1545 			BUG_ON(id >= RX_BUF_NUM);
1546 #endif
1547 			/* free old buffers */
1548 			lp->fbl_count--;
1549 			while (lp->fbl_count < RX_BUF_NUM)
1550 			{
1551 				unsigned char curid =
1552 					(id + 1 + lp->fbl_count) % RX_BUF_NUM;
1553 				struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1554 #ifdef DEBUG
1555 				bdctl = le32_to_cpu(bd->BDCtl);
1556 				if (bdctl & BD_CownsBD) {
1557 					printk("%s: Freeing invalid BD.\n",
1558 					       dev->name);
1559 					panic_queues(dev);
1560 				}
1561 #endif
1562 				/* pass BD to controller */
1563 				if (!lp->rx_skbs[curid].skb) {
1564 					lp->rx_skbs[curid].skb =
1565 						alloc_rxbuf_skb(dev,
1566 								lp->pci_dev,
1567 								&lp->rx_skbs[curid].skb_dma);
1568 					if (!lp->rx_skbs[curid].skb)
1569 						break; /* try on next reception */
1570 					bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1571 				}
1572 				/* Note: BDLength was modified by chip. */
1573 				bd->BDCtl = cpu_to_le32(BD_CownsBD |
1574 							(curid << BD_RxBDID_SHIFT) |
1575 							RX_BUF_SIZE);
1576 				lp->fbl_count++;
1577 			}
1578 		}
1579 
1580 		/* put RxFD back to controller */
1581 #ifdef DEBUG
1582 		next_rfd = fd_bus_to_virt(lp,
1583 					  le32_to_cpu(lp->rfd_cur->fd.FDNext));
1584 		if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1585 			printk("%s: RxFD FDNext invalid.\n", dev->name);
1586 			panic_queues(dev);
1587 		}
1588 #endif
1589 		for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1590 			/* pass FD to controller */
1591 #ifdef DEBUG
1592 			lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1593 #else
1594 			lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1595 #endif
1596 			lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1597 			lp->rfd_cur++;
1598 		}
1599 		if (lp->rfd_cur > lp->rfd_limit)
1600 			lp->rfd_cur = lp->rfd_base;
1601 #ifdef DEBUG
1602 		if (lp->rfd_cur != next_rfd)
1603 			printk("rfd_cur = %p, next_rfd %p\n",
1604 			       lp->rfd_cur, next_rfd);
1605 #endif
1606 	}
1607 
1608 	return received;
1609 }
1610 
1611 static int tc35815_poll(struct napi_struct *napi, int budget)
1612 {
1613 	struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1614 	struct net_device *dev = lp->dev;
1615 	struct tc35815_regs __iomem *tr =
1616 		(struct tc35815_regs __iomem *)dev->base_addr;
1617 	int received = 0, handled;
1618 	u32 status;
1619 
1620 	if (budget <= 0)
1621 		return received;
1622 
1623 	spin_lock(&lp->rx_lock);
1624 	status = tc_readl(&tr->Int_Src);
1625 	do {
1626 		/* BLEx, FDAEx will be cleared later */
1627 		tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1628 			  &tr->Int_Src);	/* write to clear */
1629 
1630 		handled = tc35815_do_interrupt(dev, status, budget - received);
1631 		if (status & (Int_BLEx | Int_FDAEx))
1632 			tc_writel(status & (Int_BLEx | Int_FDAEx),
1633 				  &tr->Int_Src);
1634 		if (handled >= 0) {
1635 			received += handled;
1636 			if (received >= budget)
1637 				break;
1638 		}
1639 		status = tc_readl(&tr->Int_Src);
1640 	} while (status);
1641 	spin_unlock(&lp->rx_lock);
1642 
1643 	if (received < budget) {
1644 		napi_complete(napi);
1645 		/* enable interrupts */
1646 		tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1647 	}
1648 	return received;
1649 }
1650 
1651 #define TX_STA_ERR	(Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1652 
1653 static void
1654 tc35815_check_tx_stat(struct net_device *dev, int status)
1655 {
1656 	struct tc35815_local *lp = netdev_priv(dev);
1657 	const char *msg = NULL;
1658 
1659 	/* count collisions */
1660 	if (status & Tx_ExColl)
1661 		dev->stats.collisions += 16;
1662 	if (status & Tx_TxColl_MASK)
1663 		dev->stats.collisions += status & Tx_TxColl_MASK;
1664 
1665 	/* TX4939 does not have NCarr */
1666 	if (lp->chiptype == TC35815_TX4939)
1667 		status &= ~Tx_NCarr;
1668 	/* WORKAROUND: ignore LostCrS in full duplex operation */
1669 	if (!lp->link || lp->duplex == DUPLEX_FULL)
1670 		status &= ~Tx_NCarr;
1671 
1672 	if (!(status & TX_STA_ERR)) {
1673 		/* no error. */
1674 		dev->stats.tx_packets++;
1675 		return;
1676 	}
1677 
1678 	dev->stats.tx_errors++;
1679 	if (status & Tx_ExColl) {
1680 		dev->stats.tx_aborted_errors++;
1681 		msg = "Excessive Collision.";
1682 	}
1683 	if (status & Tx_Under) {
1684 		dev->stats.tx_fifo_errors++;
1685 		msg = "Tx FIFO Underrun.";
1686 		if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1687 			lp->lstats.tx_underrun++;
1688 			if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1689 				struct tc35815_regs __iomem *tr =
1690 					(struct tc35815_regs __iomem *)dev->base_addr;
1691 				tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1692 				msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1693 			}
1694 		}
1695 	}
1696 	if (status & Tx_Defer) {
1697 		dev->stats.tx_fifo_errors++;
1698 		msg = "Excessive Deferral.";
1699 	}
1700 	if (status & Tx_NCarr) {
1701 		dev->stats.tx_carrier_errors++;
1702 		msg = "Lost Carrier Sense.";
1703 	}
1704 	if (status & Tx_LateColl) {
1705 		dev->stats.tx_aborted_errors++;
1706 		msg = "Late Collision.";
1707 	}
1708 	if (status & Tx_TxPar) {
1709 		dev->stats.tx_fifo_errors++;
1710 		msg = "Transmit Parity Error.";
1711 	}
1712 	if (status & Tx_SQErr) {
1713 		dev->stats.tx_heartbeat_errors++;
1714 		msg = "Signal Quality Error.";
1715 	}
1716 	if (msg && netif_msg_tx_err(lp))
1717 		printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1718 }
1719 
1720 /* This handles TX complete events posted by the device
1721  * via interrupts.
1722  */
1723 static void
1724 tc35815_txdone(struct net_device *dev)
1725 {
1726 	struct tc35815_local *lp = netdev_priv(dev);
1727 	struct TxFD *txfd;
1728 	unsigned int fdctl;
1729 
1730 	txfd = &lp->tfd_base[lp->tfd_end];
1731 	while (lp->tfd_start != lp->tfd_end &&
1732 	       !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1733 		int status = le32_to_cpu(txfd->fd.FDStat);
1734 		struct sk_buff *skb;
1735 		unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1736 		u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1737 
1738 		if (netif_msg_tx_done(lp)) {
1739 			printk("%s: complete TxFD.\n", dev->name);
1740 			dump_txfd(txfd);
1741 		}
1742 		tc35815_check_tx_stat(dev, status);
1743 
1744 		skb = fdsystem != 0xffffffff ?
1745 			lp->tx_skbs[fdsystem].skb : NULL;
1746 #ifdef DEBUG
1747 		if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1748 			printk("%s: tx_skbs mismatch.\n", dev->name);
1749 			panic_queues(dev);
1750 		}
1751 #else
1752 		BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1753 #endif
1754 		if (skb) {
1755 			dev->stats.tx_bytes += skb->len;
1756 			pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
1757 			lp->tx_skbs[lp->tfd_end].skb = NULL;
1758 			lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1759 			dev_kfree_skb_any(skb);
1760 		}
1761 		txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1762 
1763 		lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1764 		txfd = &lp->tfd_base[lp->tfd_end];
1765 #ifdef DEBUG
1766 		if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1767 			printk("%s: TxFD FDNext invalid.\n", dev->name);
1768 			panic_queues(dev);
1769 		}
1770 #endif
1771 		if (fdnext & FD_Next_EOL) {
1772 			/* DMA Transmitter has been stopping... */
1773 			if (lp->tfd_end != lp->tfd_start) {
1774 				struct tc35815_regs __iomem *tr =
1775 					(struct tc35815_regs __iomem *)dev->base_addr;
1776 				int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1777 				struct TxFD *txhead = &lp->tfd_base[head];
1778 				int qlen = (lp->tfd_start + TX_FD_NUM
1779 					    - lp->tfd_end) % TX_FD_NUM;
1780 
1781 #ifdef DEBUG
1782 				if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1783 					printk("%s: TxFD FDCtl invalid.\n", dev->name);
1784 					panic_queues(dev);
1785 				}
1786 #endif
1787 				/* log max queue length */
1788 				if (lp->lstats.max_tx_qlen < qlen)
1789 					lp->lstats.max_tx_qlen = qlen;
1790 
1791 
1792 				/* start DMA Transmitter again */
1793 				txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1794 				txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1795 				if (netif_msg_tx_queued(lp)) {
1796 					printk("%s: start TxFD on queue.\n",
1797 					       dev->name);
1798 					dump_txfd(txfd);
1799 				}
1800 				tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1801 			}
1802 			break;
1803 		}
1804 	}
1805 
1806 	/* If we had stopped the queue due to a "tx full"
1807 	 * condition, and space has now been made available,
1808 	 * wake up the queue.
1809 	 */
1810 	if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1811 		netif_wake_queue(dev);
1812 }
1813 
1814 /* The inverse routine to tc35815_open(). */
1815 static int
1816 tc35815_close(struct net_device *dev)
1817 {
1818 	struct tc35815_local *lp = netdev_priv(dev);
1819 
1820 	netif_stop_queue(dev);
1821 	napi_disable(&lp->napi);
1822 	if (lp->phy_dev)
1823 		phy_stop(lp->phy_dev);
1824 	cancel_work_sync(&lp->restart_work);
1825 
1826 	/* Flush the Tx and disable Rx here. */
1827 	tc35815_chip_reset(dev);
1828 	free_irq(dev->irq, dev);
1829 
1830 	tc35815_free_queues(dev);
1831 
1832 	return 0;
1833 
1834 }
1835 
1836 /*
1837  * Get the current statistics.
1838  * This may be called with the card open or closed.
1839  */
1840 static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1841 {
1842 	struct tc35815_regs __iomem *tr =
1843 		(struct tc35815_regs __iomem *)dev->base_addr;
1844 	if (netif_running(dev))
1845 		/* Update the statistics from the device registers. */
1846 		dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1847 
1848 	return &dev->stats;
1849 }
1850 
1851 static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
1852 {
1853 	struct tc35815_local *lp = netdev_priv(dev);
1854 	struct tc35815_regs __iomem *tr =
1855 		(struct tc35815_regs __iomem *)dev->base_addr;
1856 	int cam_index = index * 6;
1857 	u32 cam_data;
1858 	u32 saved_addr;
1859 
1860 	saved_addr = tc_readl(&tr->CAM_Adr);
1861 
1862 	if (netif_msg_hw(lp))
1863 		printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1864 			dev->name, index, addr);
1865 	if (index & 1) {
1866 		/* read modify write */
1867 		tc_writel(cam_index - 2, &tr->CAM_Adr);
1868 		cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1869 		cam_data |= addr[0] << 8 | addr[1];
1870 		tc_writel(cam_data, &tr->CAM_Data);
1871 		/* write whole word */
1872 		tc_writel(cam_index + 2, &tr->CAM_Adr);
1873 		cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1874 		tc_writel(cam_data, &tr->CAM_Data);
1875 	} else {
1876 		/* write whole word */
1877 		tc_writel(cam_index, &tr->CAM_Adr);
1878 		cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1879 		tc_writel(cam_data, &tr->CAM_Data);
1880 		/* read modify write */
1881 		tc_writel(cam_index + 4, &tr->CAM_Adr);
1882 		cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1883 		cam_data |= addr[4] << 24 | (addr[5] << 16);
1884 		tc_writel(cam_data, &tr->CAM_Data);
1885 	}
1886 
1887 	tc_writel(saved_addr, &tr->CAM_Adr);
1888 }
1889 
1890 
1891 /*
1892  * Set or clear the multicast filter for this adaptor.
1893  * num_addrs == -1	Promiscuous mode, receive all packets
1894  * num_addrs == 0	Normal mode, clear multicast list
1895  * num_addrs > 0	Multicast mode, receive normal and MC packets,
1896  *			and do best-effort filtering.
1897  */
1898 static void
1899 tc35815_set_multicast_list(struct net_device *dev)
1900 {
1901 	struct tc35815_regs __iomem *tr =
1902 		(struct tc35815_regs __iomem *)dev->base_addr;
1903 
1904 	if (dev->flags & IFF_PROMISC) {
1905 		/* With some (all?) 100MHalf HUB, controller will hang
1906 		 * if we enabled promiscuous mode before linkup... */
1907 		struct tc35815_local *lp = netdev_priv(dev);
1908 
1909 		if (!lp->link)
1910 			return;
1911 		/* Enable promiscuous mode */
1912 		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1913 	} else if ((dev->flags & IFF_ALLMULTI) ||
1914 		  netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1915 		/* CAM 0, 1, 20 are reserved. */
1916 		/* Disable promiscuous mode, use normal mode. */
1917 		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1918 	} else if (!netdev_mc_empty(dev)) {
1919 		struct netdev_hw_addr *ha;
1920 		int i;
1921 		int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1922 
1923 		tc_writel(0, &tr->CAM_Ctl);
1924 		/* Walk the address list, and load the filter */
1925 		i = 0;
1926 		netdev_for_each_mc_addr(ha, dev) {
1927 			/* entry 0,1 is reserved. */
1928 			tc35815_set_cam_entry(dev, i + 2, ha->addr);
1929 			ena_bits |= CAM_Ena_Bit(i + 2);
1930 			i++;
1931 		}
1932 		tc_writel(ena_bits, &tr->CAM_Ena);
1933 		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1934 	} else {
1935 		tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1936 		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1937 	}
1938 }
1939 
1940 static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1941 {
1942 	struct tc35815_local *lp = netdev_priv(dev);
1943 
1944 	strlcpy(info->driver, MODNAME, sizeof(info->driver));
1945 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1946 	strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
1947 }
1948 
1949 static int tc35815_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1950 {
1951 	struct tc35815_local *lp = netdev_priv(dev);
1952 
1953 	if (!lp->phy_dev)
1954 		return -ENODEV;
1955 	return phy_ethtool_gset(lp->phy_dev, cmd);
1956 }
1957 
1958 static int tc35815_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1959 {
1960 	struct tc35815_local *lp = netdev_priv(dev);
1961 
1962 	if (!lp->phy_dev)
1963 		return -ENODEV;
1964 	return phy_ethtool_sset(lp->phy_dev, cmd);
1965 }
1966 
1967 static u32 tc35815_get_msglevel(struct net_device *dev)
1968 {
1969 	struct tc35815_local *lp = netdev_priv(dev);
1970 	return lp->msg_enable;
1971 }
1972 
1973 static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
1974 {
1975 	struct tc35815_local *lp = netdev_priv(dev);
1976 	lp->msg_enable = datum;
1977 }
1978 
1979 static int tc35815_get_sset_count(struct net_device *dev, int sset)
1980 {
1981 	struct tc35815_local *lp = netdev_priv(dev);
1982 
1983 	switch (sset) {
1984 	case ETH_SS_STATS:
1985 		return sizeof(lp->lstats) / sizeof(int);
1986 	default:
1987 		return -EOPNOTSUPP;
1988 	}
1989 }
1990 
1991 static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
1992 {
1993 	struct tc35815_local *lp = netdev_priv(dev);
1994 	data[0] = lp->lstats.max_tx_qlen;
1995 	data[1] = lp->lstats.tx_ints;
1996 	data[2] = lp->lstats.rx_ints;
1997 	data[3] = lp->lstats.tx_underrun;
1998 }
1999 
2000 static struct {
2001 	const char str[ETH_GSTRING_LEN];
2002 } ethtool_stats_keys[] = {
2003 	{ "max_tx_qlen" },
2004 	{ "tx_ints" },
2005 	{ "rx_ints" },
2006 	{ "tx_underrun" },
2007 };
2008 
2009 static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2010 {
2011 	memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
2012 }
2013 
2014 static const struct ethtool_ops tc35815_ethtool_ops = {
2015 	.get_drvinfo		= tc35815_get_drvinfo,
2016 	.get_settings		= tc35815_get_settings,
2017 	.set_settings		= tc35815_set_settings,
2018 	.get_link		= ethtool_op_get_link,
2019 	.get_msglevel		= tc35815_get_msglevel,
2020 	.set_msglevel		= tc35815_set_msglevel,
2021 	.get_strings		= tc35815_get_strings,
2022 	.get_sset_count		= tc35815_get_sset_count,
2023 	.get_ethtool_stats	= tc35815_get_ethtool_stats,
2024 };
2025 
2026 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2027 {
2028 	struct tc35815_local *lp = netdev_priv(dev);
2029 
2030 	if (!netif_running(dev))
2031 		return -EINVAL;
2032 	if (!lp->phy_dev)
2033 		return -ENODEV;
2034 	return phy_mii_ioctl(lp->phy_dev, rq, cmd);
2035 }
2036 
2037 static void tc35815_chip_reset(struct net_device *dev)
2038 {
2039 	struct tc35815_regs __iomem *tr =
2040 		(struct tc35815_regs __iomem *)dev->base_addr;
2041 	int i;
2042 	/* reset the controller */
2043 	tc_writel(MAC_Reset, &tr->MAC_Ctl);
2044 	udelay(4); /* 3200ns */
2045 	i = 0;
2046 	while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2047 		if (i++ > 100) {
2048 			printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2049 			break;
2050 		}
2051 		mdelay(1);
2052 	}
2053 	tc_writel(0, &tr->MAC_Ctl);
2054 
2055 	/* initialize registers to default value */
2056 	tc_writel(0, &tr->DMA_Ctl);
2057 	tc_writel(0, &tr->TxThrsh);
2058 	tc_writel(0, &tr->TxPollCtr);
2059 	tc_writel(0, &tr->RxFragSize);
2060 	tc_writel(0, &tr->Int_En);
2061 	tc_writel(0, &tr->FDA_Bas);
2062 	tc_writel(0, &tr->FDA_Lim);
2063 	tc_writel(0xffffffff, &tr->Int_Src);	/* Write 1 to clear */
2064 	tc_writel(0, &tr->CAM_Ctl);
2065 	tc_writel(0, &tr->Tx_Ctl);
2066 	tc_writel(0, &tr->Rx_Ctl);
2067 	tc_writel(0, &tr->CAM_Ena);
2068 	(void)tc_readl(&tr->Miss_Cnt);	/* Read to clear */
2069 
2070 	/* initialize internal SRAM */
2071 	tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2072 	for (i = 0; i < 0x1000; i += 4) {
2073 		tc_writel(i, &tr->CAM_Adr);
2074 		tc_writel(0, &tr->CAM_Data);
2075 	}
2076 	tc_writel(0, &tr->DMA_Ctl);
2077 }
2078 
2079 static void tc35815_chip_init(struct net_device *dev)
2080 {
2081 	struct tc35815_local *lp = netdev_priv(dev);
2082 	struct tc35815_regs __iomem *tr =
2083 		(struct tc35815_regs __iomem *)dev->base_addr;
2084 	unsigned long txctl = TX_CTL_CMD;
2085 
2086 	/* load station address to CAM */
2087 	tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2088 
2089 	/* Enable CAM (broadcast and unicast) */
2090 	tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2091 	tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2092 
2093 	/* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2094 	if (HAVE_DMA_RXALIGN(lp))
2095 		tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2096 	else
2097 		tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2098 	tc_writel(0, &tr->TxPollCtr);	/* Batch mode */
2099 	tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2100 	tc_writel(INT_EN_CMD, &tr->Int_En);
2101 
2102 	/* set queues */
2103 	tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2104 	tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2105 		  &tr->FDA_Lim);
2106 	/*
2107 	 * Activation method:
2108 	 * First, enable the MAC Transmitter and the DMA Receive circuits.
2109 	 * Then enable the DMA Transmitter and the MAC Receive circuits.
2110 	 */
2111 	tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr);	/* start DMA receiver */
2112 	tc_writel(RX_CTL_CMD, &tr->Rx_Ctl);	/* start MAC receiver */
2113 
2114 	/* start MAC transmitter */
2115 	/* TX4939 does not have EnLCarr */
2116 	if (lp->chiptype == TC35815_TX4939)
2117 		txctl &= ~Tx_EnLCarr;
2118 	/* WORKAROUND: ignore LostCrS in full duplex operation */
2119 	if (!lp->phy_dev || !lp->link || lp->duplex == DUPLEX_FULL)
2120 		txctl &= ~Tx_EnLCarr;
2121 	tc_writel(txctl, &tr->Tx_Ctl);
2122 }
2123 
2124 #ifdef CONFIG_PM
2125 static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2126 {
2127 	struct net_device *dev = pci_get_drvdata(pdev);
2128 	struct tc35815_local *lp = netdev_priv(dev);
2129 	unsigned long flags;
2130 
2131 	pci_save_state(pdev);
2132 	if (!netif_running(dev))
2133 		return 0;
2134 	netif_device_detach(dev);
2135 	if (lp->phy_dev)
2136 		phy_stop(lp->phy_dev);
2137 	spin_lock_irqsave(&lp->lock, flags);
2138 	tc35815_chip_reset(dev);
2139 	spin_unlock_irqrestore(&lp->lock, flags);
2140 	pci_set_power_state(pdev, PCI_D3hot);
2141 	return 0;
2142 }
2143 
2144 static int tc35815_resume(struct pci_dev *pdev)
2145 {
2146 	struct net_device *dev = pci_get_drvdata(pdev);
2147 	struct tc35815_local *lp = netdev_priv(dev);
2148 
2149 	pci_restore_state(pdev);
2150 	if (!netif_running(dev))
2151 		return 0;
2152 	pci_set_power_state(pdev, PCI_D0);
2153 	tc35815_restart(dev);
2154 	netif_carrier_off(dev);
2155 	if (lp->phy_dev)
2156 		phy_start(lp->phy_dev);
2157 	netif_device_attach(dev);
2158 	return 0;
2159 }
2160 #endif /* CONFIG_PM */
2161 
2162 static struct pci_driver tc35815_pci_driver = {
2163 	.name		= MODNAME,
2164 	.id_table	= tc35815_pci_tbl,
2165 	.probe		= tc35815_init_one,
2166 	.remove		= tc35815_remove_one,
2167 #ifdef CONFIG_PM
2168 	.suspend	= tc35815_suspend,
2169 	.resume		= tc35815_resume,
2170 #endif
2171 };
2172 
2173 module_param_named(speed, options.speed, int, 0);
2174 MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2175 module_param_named(duplex, options.duplex, int, 0);
2176 MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2177 
2178 module_pci_driver(tc35815_pci_driver);
2179 MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2180 MODULE_LICENSE("GPL");
2181