1 /* 2 * Keystone NetCP Core driver 3 * 4 * Copyright (C) 2014 Texas Instruments Incorporated 5 * Authors: Sandeep Nair <sandeep_n@ti.com> 6 * Sandeep Paulraj <s-paulraj@ti.com> 7 * Cyril Chemparathy <cyril@ti.com> 8 * Santosh Shilimkar <santosh.shilimkar@ti.com> 9 * Murali Karicheri <m-karicheri2@ti.com> 10 * Wingman Kwok <w-kwok2@ti.com> 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License as 14 * published by the Free Software Foundation version 2. 15 * 16 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 17 * kind, whether express or implied; without even the implied warranty 18 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 */ 21 22 #include <linux/io.h> 23 #include <linux/module.h> 24 #include <linux/of_net.h> 25 #include <linux/of_address.h> 26 #include <linux/if_vlan.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/platform_device.h> 29 #include <linux/soc/ti/knav_qmss.h> 30 #include <linux/soc/ti/knav_dma.h> 31 32 #include "netcp.h" 33 34 #define NETCP_SOP_OFFSET (NET_IP_ALIGN + NET_SKB_PAD) 35 #define NETCP_NAPI_WEIGHT 64 36 #define NETCP_TX_TIMEOUT (5 * HZ) 37 #define NETCP_PACKET_SIZE (ETH_FRAME_LEN + ETH_FCS_LEN) 38 #define NETCP_MIN_PACKET_SIZE ETH_ZLEN 39 #define NETCP_MAX_MCAST_ADDR 16 40 41 #define NETCP_EFUSE_REG_INDEX 0 42 43 #define NETCP_MOD_PROBE_SKIPPED 1 44 #define NETCP_MOD_PROBE_FAILED 2 45 46 #define NETCP_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 47 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 48 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 49 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 50 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 51 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 52 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 53 NETIF_MSG_RX_STATUS) 54 55 #define NETCP_EFUSE_ADDR_SWAP 2 56 57 #define knav_queue_get_id(q) knav_queue_device_control(q, \ 58 KNAV_QUEUE_GET_ID, (unsigned long)NULL) 59 60 #define knav_queue_enable_notify(q) knav_queue_device_control(q, \ 61 KNAV_QUEUE_ENABLE_NOTIFY, \ 62 (unsigned long)NULL) 63 64 #define knav_queue_disable_notify(q) knav_queue_device_control(q, \ 65 KNAV_QUEUE_DISABLE_NOTIFY, \ 66 (unsigned long)NULL) 67 68 #define knav_queue_get_count(q) knav_queue_device_control(q, \ 69 KNAV_QUEUE_GET_COUNT, (unsigned long)NULL) 70 71 #define for_each_netcp_module(module) \ 72 list_for_each_entry(module, &netcp_modules, module_list) 73 74 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \ 75 list_for_each_entry(inst_modpriv, \ 76 &((netcp_device)->modpriv_head), inst_list) 77 78 #define for_each_module(netcp, intf_modpriv) \ 79 list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list) 80 81 /* Module management structures */ 82 struct netcp_device { 83 struct list_head device_list; 84 struct list_head interface_head; 85 struct list_head modpriv_head; 86 struct device *device; 87 }; 88 89 struct netcp_inst_modpriv { 90 struct netcp_device *netcp_device; 91 struct netcp_module *netcp_module; 92 struct list_head inst_list; 93 void *module_priv; 94 }; 95 96 struct netcp_intf_modpriv { 97 struct netcp_intf *netcp_priv; 98 struct netcp_module *netcp_module; 99 struct list_head intf_list; 100 void *module_priv; 101 }; 102 103 struct netcp_tx_cb { 104 void *ts_context; 105 void (*txtstamp)(void *context, struct sk_buff *skb); 106 }; 107 108 static LIST_HEAD(netcp_devices); 109 static LIST_HEAD(netcp_modules); 110 static DEFINE_MUTEX(netcp_modules_lock); 111 112 static int netcp_debug_level = -1; 113 module_param(netcp_debug_level, int, 0); 114 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)"); 115 116 /* Helper functions - Get/Set */ 117 static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc, 118 struct knav_dma_desc *desc) 119 { 120 *buff_len = le32_to_cpu(desc->buff_len); 121 *buff = le32_to_cpu(desc->buff); 122 *ndesc = le32_to_cpu(desc->next_desc); 123 } 124 125 static void get_desc_info(u32 *desc_info, u32 *pkt_info, 126 struct knav_dma_desc *desc) 127 { 128 *desc_info = le32_to_cpu(desc->desc_info); 129 *pkt_info = le32_to_cpu(desc->packet_info); 130 } 131 132 static u32 get_sw_data(int index, struct knav_dma_desc *desc) 133 { 134 /* No Endian conversion needed as this data is untouched by hw */ 135 return desc->sw_data[index]; 136 } 137 138 /* use these macros to get sw data */ 139 #define GET_SW_DATA0(desc) get_sw_data(0, desc) 140 #define GET_SW_DATA1(desc) get_sw_data(1, desc) 141 #define GET_SW_DATA2(desc) get_sw_data(2, desc) 142 #define GET_SW_DATA3(desc) get_sw_data(3, desc) 143 144 static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len, 145 struct knav_dma_desc *desc) 146 { 147 *buff = le32_to_cpu(desc->orig_buff); 148 *buff_len = le32_to_cpu(desc->orig_len); 149 } 150 151 static void get_words(dma_addr_t *words, int num_words, __le32 *desc) 152 { 153 int i; 154 155 for (i = 0; i < num_words; i++) 156 words[i] = le32_to_cpu(desc[i]); 157 } 158 159 static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc, 160 struct knav_dma_desc *desc) 161 { 162 desc->buff_len = cpu_to_le32(buff_len); 163 desc->buff = cpu_to_le32(buff); 164 desc->next_desc = cpu_to_le32(ndesc); 165 } 166 167 static void set_desc_info(u32 desc_info, u32 pkt_info, 168 struct knav_dma_desc *desc) 169 { 170 desc->desc_info = cpu_to_le32(desc_info); 171 desc->packet_info = cpu_to_le32(pkt_info); 172 } 173 174 static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc) 175 { 176 /* No Endian conversion needed as this data is untouched by hw */ 177 desc->sw_data[index] = data; 178 } 179 180 /* use these macros to set sw data */ 181 #define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc) 182 #define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc) 183 #define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc) 184 #define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc) 185 186 static void set_org_pkt_info(dma_addr_t buff, u32 buff_len, 187 struct knav_dma_desc *desc) 188 { 189 desc->orig_buff = cpu_to_le32(buff); 190 desc->orig_len = cpu_to_le32(buff_len); 191 } 192 193 static void set_words(u32 *words, int num_words, __le32 *desc) 194 { 195 int i; 196 197 for (i = 0; i < num_words; i++) 198 desc[i] = cpu_to_le32(words[i]); 199 } 200 201 /* Read the e-fuse value as 32 bit values to be endian independent */ 202 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap) 203 { 204 unsigned int addr0, addr1; 205 206 addr1 = readl(efuse_mac + 4); 207 addr0 = readl(efuse_mac); 208 209 switch (swap) { 210 case NETCP_EFUSE_ADDR_SWAP: 211 addr0 = addr1; 212 addr1 = readl(efuse_mac); 213 break; 214 default: 215 break; 216 } 217 218 x[0] = (addr1 & 0x0000ff00) >> 8; 219 x[1] = addr1 & 0x000000ff; 220 x[2] = (addr0 & 0xff000000) >> 24; 221 x[3] = (addr0 & 0x00ff0000) >> 16; 222 x[4] = (addr0 & 0x0000ff00) >> 8; 223 x[5] = addr0 & 0x000000ff; 224 225 return 0; 226 } 227 228 static const char *netcp_node_name(struct device_node *node) 229 { 230 const char *name; 231 232 if (of_property_read_string(node, "label", &name) < 0) 233 name = node->name; 234 if (!name) 235 name = "unknown"; 236 return name; 237 } 238 239 /* Module management routines */ 240 static int netcp_register_interface(struct netcp_intf *netcp) 241 { 242 int ret; 243 244 ret = register_netdev(netcp->ndev); 245 if (!ret) 246 netcp->netdev_registered = true; 247 return ret; 248 } 249 250 static int netcp_module_probe(struct netcp_device *netcp_device, 251 struct netcp_module *module) 252 { 253 struct device *dev = netcp_device->device; 254 struct device_node *devices, *interface, *node = dev->of_node; 255 struct device_node *child; 256 struct netcp_inst_modpriv *inst_modpriv; 257 struct netcp_intf *netcp_intf; 258 struct netcp_module *tmp; 259 bool primary_module_registered = false; 260 int ret; 261 262 /* Find this module in the sub-tree for this device */ 263 devices = of_get_child_by_name(node, "netcp-devices"); 264 if (!devices) { 265 dev_err(dev, "could not find netcp-devices node\n"); 266 return NETCP_MOD_PROBE_SKIPPED; 267 } 268 269 for_each_available_child_of_node(devices, child) { 270 const char *name = netcp_node_name(child); 271 272 if (!strcasecmp(module->name, name)) 273 break; 274 } 275 276 of_node_put(devices); 277 /* If module not used for this device, skip it */ 278 if (!child) { 279 dev_warn(dev, "module(%s) not used for device\n", module->name); 280 return NETCP_MOD_PROBE_SKIPPED; 281 } 282 283 inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL); 284 if (!inst_modpriv) { 285 of_node_put(child); 286 return -ENOMEM; 287 } 288 289 inst_modpriv->netcp_device = netcp_device; 290 inst_modpriv->netcp_module = module; 291 list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head); 292 293 ret = module->probe(netcp_device, dev, child, 294 &inst_modpriv->module_priv); 295 of_node_put(child); 296 if (ret) { 297 dev_err(dev, "Probe of module(%s) failed with %d\n", 298 module->name, ret); 299 list_del(&inst_modpriv->inst_list); 300 devm_kfree(dev, inst_modpriv); 301 return NETCP_MOD_PROBE_FAILED; 302 } 303 304 /* Attach modules only if the primary module is probed */ 305 for_each_netcp_module(tmp) { 306 if (tmp->primary) 307 primary_module_registered = true; 308 } 309 310 if (!primary_module_registered) 311 return 0; 312 313 /* Attach module to interfaces */ 314 list_for_each_entry(netcp_intf, &netcp_device->interface_head, 315 interface_list) { 316 struct netcp_intf_modpriv *intf_modpriv; 317 318 intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv), 319 GFP_KERNEL); 320 if (!intf_modpriv) 321 return -ENOMEM; 322 323 interface = of_parse_phandle(netcp_intf->node_interface, 324 module->name, 0); 325 326 if (!interface) { 327 devm_kfree(dev, intf_modpriv); 328 continue; 329 } 330 331 intf_modpriv->netcp_priv = netcp_intf; 332 intf_modpriv->netcp_module = module; 333 list_add_tail(&intf_modpriv->intf_list, 334 &netcp_intf->module_head); 335 336 ret = module->attach(inst_modpriv->module_priv, 337 netcp_intf->ndev, interface, 338 &intf_modpriv->module_priv); 339 of_node_put(interface); 340 if (ret) { 341 dev_dbg(dev, "Attach of module %s declined with %d\n", 342 module->name, ret); 343 list_del(&intf_modpriv->intf_list); 344 devm_kfree(dev, intf_modpriv); 345 continue; 346 } 347 } 348 349 /* Now register the interface with netdev */ 350 list_for_each_entry(netcp_intf, 351 &netcp_device->interface_head, 352 interface_list) { 353 /* If interface not registered then register now */ 354 if (!netcp_intf->netdev_registered) { 355 ret = netcp_register_interface(netcp_intf); 356 if (ret) 357 return -ENODEV; 358 } 359 } 360 return 0; 361 } 362 363 int netcp_register_module(struct netcp_module *module) 364 { 365 struct netcp_device *netcp_device; 366 struct netcp_module *tmp; 367 int ret; 368 369 if (!module->name) { 370 WARN(1, "error registering netcp module: no name\n"); 371 return -EINVAL; 372 } 373 374 if (!module->probe) { 375 WARN(1, "error registering netcp module: no probe\n"); 376 return -EINVAL; 377 } 378 379 mutex_lock(&netcp_modules_lock); 380 381 for_each_netcp_module(tmp) { 382 if (!strcasecmp(tmp->name, module->name)) { 383 mutex_unlock(&netcp_modules_lock); 384 return -EEXIST; 385 } 386 } 387 list_add_tail(&module->module_list, &netcp_modules); 388 389 list_for_each_entry(netcp_device, &netcp_devices, device_list) { 390 ret = netcp_module_probe(netcp_device, module); 391 if (ret < 0) 392 goto fail; 393 } 394 mutex_unlock(&netcp_modules_lock); 395 return 0; 396 397 fail: 398 mutex_unlock(&netcp_modules_lock); 399 netcp_unregister_module(module); 400 return ret; 401 } 402 EXPORT_SYMBOL_GPL(netcp_register_module); 403 404 static void netcp_release_module(struct netcp_device *netcp_device, 405 struct netcp_module *module) 406 { 407 struct netcp_inst_modpriv *inst_modpriv, *inst_tmp; 408 struct netcp_intf *netcp_intf, *netcp_tmp; 409 struct device *dev = netcp_device->device; 410 411 /* Release the module from each interface */ 412 list_for_each_entry_safe(netcp_intf, netcp_tmp, 413 &netcp_device->interface_head, 414 interface_list) { 415 struct netcp_intf_modpriv *intf_modpriv, *intf_tmp; 416 417 list_for_each_entry_safe(intf_modpriv, intf_tmp, 418 &netcp_intf->module_head, 419 intf_list) { 420 if (intf_modpriv->netcp_module == module) { 421 module->release(intf_modpriv->module_priv); 422 list_del(&intf_modpriv->intf_list); 423 devm_kfree(dev, intf_modpriv); 424 break; 425 } 426 } 427 } 428 429 /* Remove the module from each instance */ 430 list_for_each_entry_safe(inst_modpriv, inst_tmp, 431 &netcp_device->modpriv_head, inst_list) { 432 if (inst_modpriv->netcp_module == module) { 433 module->remove(netcp_device, 434 inst_modpriv->module_priv); 435 list_del(&inst_modpriv->inst_list); 436 devm_kfree(dev, inst_modpriv); 437 break; 438 } 439 } 440 } 441 442 void netcp_unregister_module(struct netcp_module *module) 443 { 444 struct netcp_device *netcp_device; 445 struct netcp_module *module_tmp; 446 447 mutex_lock(&netcp_modules_lock); 448 449 list_for_each_entry(netcp_device, &netcp_devices, device_list) { 450 netcp_release_module(netcp_device, module); 451 } 452 453 /* Remove the module from the module list */ 454 for_each_netcp_module(module_tmp) { 455 if (module == module_tmp) { 456 list_del(&module->module_list); 457 break; 458 } 459 } 460 461 mutex_unlock(&netcp_modules_lock); 462 } 463 EXPORT_SYMBOL_GPL(netcp_unregister_module); 464 465 void *netcp_module_get_intf_data(struct netcp_module *module, 466 struct netcp_intf *intf) 467 { 468 struct netcp_intf_modpriv *intf_modpriv; 469 470 list_for_each_entry(intf_modpriv, &intf->module_head, intf_list) 471 if (intf_modpriv->netcp_module == module) 472 return intf_modpriv->module_priv; 473 return NULL; 474 } 475 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data); 476 477 /* Module TX and RX Hook management */ 478 struct netcp_hook_list { 479 struct list_head list; 480 netcp_hook_rtn *hook_rtn; 481 void *hook_data; 482 int order; 483 }; 484 485 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order, 486 netcp_hook_rtn *hook_rtn, void *hook_data) 487 { 488 struct netcp_hook_list *entry; 489 struct netcp_hook_list *next; 490 unsigned long flags; 491 492 entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL); 493 if (!entry) 494 return -ENOMEM; 495 496 entry->hook_rtn = hook_rtn; 497 entry->hook_data = hook_data; 498 entry->order = order; 499 500 spin_lock_irqsave(&netcp_priv->lock, flags); 501 list_for_each_entry(next, &netcp_priv->txhook_list_head, list) { 502 if (next->order > order) 503 break; 504 } 505 __list_add(&entry->list, next->list.prev, &next->list); 506 spin_unlock_irqrestore(&netcp_priv->lock, flags); 507 508 return 0; 509 } 510 EXPORT_SYMBOL_GPL(netcp_register_txhook); 511 512 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order, 513 netcp_hook_rtn *hook_rtn, void *hook_data) 514 { 515 struct netcp_hook_list *next, *n; 516 unsigned long flags; 517 518 spin_lock_irqsave(&netcp_priv->lock, flags); 519 list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) { 520 if ((next->order == order) && 521 (next->hook_rtn == hook_rtn) && 522 (next->hook_data == hook_data)) { 523 list_del(&next->list); 524 spin_unlock_irqrestore(&netcp_priv->lock, flags); 525 devm_kfree(netcp_priv->dev, next); 526 return 0; 527 } 528 } 529 spin_unlock_irqrestore(&netcp_priv->lock, flags); 530 return -ENOENT; 531 } 532 EXPORT_SYMBOL_GPL(netcp_unregister_txhook); 533 534 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order, 535 netcp_hook_rtn *hook_rtn, void *hook_data) 536 { 537 struct netcp_hook_list *entry; 538 struct netcp_hook_list *next; 539 unsigned long flags; 540 541 entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL); 542 if (!entry) 543 return -ENOMEM; 544 545 entry->hook_rtn = hook_rtn; 546 entry->hook_data = hook_data; 547 entry->order = order; 548 549 spin_lock_irqsave(&netcp_priv->lock, flags); 550 list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) { 551 if (next->order > order) 552 break; 553 } 554 __list_add(&entry->list, next->list.prev, &next->list); 555 spin_unlock_irqrestore(&netcp_priv->lock, flags); 556 557 return 0; 558 } 559 EXPORT_SYMBOL_GPL(netcp_register_rxhook); 560 561 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order, 562 netcp_hook_rtn *hook_rtn, void *hook_data) 563 { 564 struct netcp_hook_list *next, *n; 565 unsigned long flags; 566 567 spin_lock_irqsave(&netcp_priv->lock, flags); 568 list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) { 569 if ((next->order == order) && 570 (next->hook_rtn == hook_rtn) && 571 (next->hook_data == hook_data)) { 572 list_del(&next->list); 573 spin_unlock_irqrestore(&netcp_priv->lock, flags); 574 devm_kfree(netcp_priv->dev, next); 575 return 0; 576 } 577 } 578 spin_unlock_irqrestore(&netcp_priv->lock, flags); 579 580 return -ENOENT; 581 } 582 EXPORT_SYMBOL_GPL(netcp_unregister_rxhook); 583 584 static void netcp_frag_free(bool is_frag, void *ptr) 585 { 586 if (is_frag) 587 skb_free_frag(ptr); 588 else 589 kfree(ptr); 590 } 591 592 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp, 593 struct knav_dma_desc *desc) 594 { 595 struct knav_dma_desc *ndesc; 596 dma_addr_t dma_desc, dma_buf; 597 unsigned int buf_len, dma_sz = sizeof(*ndesc); 598 void *buf_ptr; 599 u32 tmp; 600 601 get_words(&dma_desc, 1, &desc->next_desc); 602 603 while (dma_desc) { 604 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz); 605 if (unlikely(!ndesc)) { 606 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 607 break; 608 } 609 get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc); 610 /* warning!!!! We are retrieving the virtual ptr in the sw_data 611 * field as a 32bit value. Will not work on 64bit machines 612 */ 613 buf_ptr = (void *)GET_SW_DATA0(ndesc); 614 buf_len = (int)GET_SW_DATA1(desc); 615 dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE); 616 __free_page(buf_ptr); 617 knav_pool_desc_put(netcp->rx_pool, desc); 618 } 619 /* warning!!!! We are retrieving the virtual ptr in the sw_data 620 * field as a 32bit value. Will not work on 64bit machines 621 */ 622 buf_ptr = (void *)GET_SW_DATA0(desc); 623 buf_len = (int)GET_SW_DATA1(desc); 624 625 if (buf_ptr) 626 netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr); 627 knav_pool_desc_put(netcp->rx_pool, desc); 628 } 629 630 static void netcp_empty_rx_queue(struct netcp_intf *netcp) 631 { 632 struct netcp_stats *rx_stats = &netcp->stats; 633 struct knav_dma_desc *desc; 634 unsigned int dma_sz; 635 dma_addr_t dma; 636 637 for (; ;) { 638 dma = knav_queue_pop(netcp->rx_queue, &dma_sz); 639 if (!dma) 640 break; 641 642 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz); 643 if (unlikely(!desc)) { 644 dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n", 645 __func__); 646 rx_stats->rx_errors++; 647 continue; 648 } 649 netcp_free_rx_desc_chain(netcp, desc); 650 rx_stats->rx_dropped++; 651 } 652 } 653 654 static int netcp_process_one_rx_packet(struct netcp_intf *netcp) 655 { 656 struct netcp_stats *rx_stats = &netcp->stats; 657 unsigned int dma_sz, buf_len, org_buf_len; 658 struct knav_dma_desc *desc, *ndesc; 659 unsigned int pkt_sz = 0, accum_sz; 660 struct netcp_hook_list *rx_hook; 661 dma_addr_t dma_desc, dma_buff; 662 struct netcp_packet p_info; 663 struct sk_buff *skb; 664 void *org_buf_ptr; 665 u32 tmp; 666 667 dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz); 668 if (!dma_desc) 669 return -1; 670 671 desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz); 672 if (unlikely(!desc)) { 673 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 674 return 0; 675 } 676 677 get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc); 678 /* warning!!!! We are retrieving the virtual ptr in the sw_data 679 * field as a 32bit value. Will not work on 64bit machines 680 */ 681 org_buf_ptr = (void *)GET_SW_DATA0(desc); 682 org_buf_len = (int)GET_SW_DATA1(desc); 683 684 if (unlikely(!org_buf_ptr)) { 685 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n"); 686 goto free_desc; 687 } 688 689 pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK; 690 accum_sz = buf_len; 691 dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE); 692 693 /* Build a new sk_buff for the primary buffer */ 694 skb = build_skb(org_buf_ptr, org_buf_len); 695 if (unlikely(!skb)) { 696 dev_err(netcp->ndev_dev, "build_skb() failed\n"); 697 goto free_desc; 698 } 699 700 /* update data, tail and len */ 701 skb_reserve(skb, NETCP_SOP_OFFSET); 702 __skb_put(skb, buf_len); 703 704 /* Fill in the page fragment list */ 705 while (dma_desc) { 706 struct page *page; 707 708 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz); 709 if (unlikely(!ndesc)) { 710 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 711 goto free_desc; 712 } 713 714 get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc); 715 /* warning!!!! We are retrieving the virtual ptr in the sw_data 716 * field as a 32bit value. Will not work on 64bit machines 717 */ 718 page = (struct page *)GET_SW_DATA0(desc); 719 720 if (likely(dma_buff && buf_len && page)) { 721 dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE, 722 DMA_FROM_DEVICE); 723 } else { 724 dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n", 725 &dma_buff, buf_len, page); 726 goto free_desc; 727 } 728 729 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 730 offset_in_page(dma_buff), buf_len, PAGE_SIZE); 731 accum_sz += buf_len; 732 733 /* Free the descriptor */ 734 knav_pool_desc_put(netcp->rx_pool, ndesc); 735 } 736 737 /* check for packet len and warn */ 738 if (unlikely(pkt_sz != accum_sz)) 739 dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n", 740 pkt_sz, accum_sz); 741 742 /* Newer version of the Ethernet switch can trim the Ethernet FCS 743 * from the packet and is indicated in hw_cap. So trim it only for 744 * older h/w 745 */ 746 if (!(netcp->hw_cap & ETH_SW_CAN_REMOVE_ETH_FCS)) 747 __pskb_trim(skb, skb->len - ETH_FCS_LEN); 748 749 /* Call each of the RX hooks */ 750 p_info.skb = skb; 751 skb->dev = netcp->ndev; 752 p_info.rxtstamp_complete = false; 753 get_desc_info(&tmp, &p_info.eflags, desc); 754 p_info.epib = desc->epib; 755 p_info.psdata = (u32 __force *)desc->psdata; 756 p_info.eflags = ((p_info.eflags >> KNAV_DMA_DESC_EFLAGS_SHIFT) & 757 KNAV_DMA_DESC_EFLAGS_MASK); 758 list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) { 759 int ret; 760 761 ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data, 762 &p_info); 763 if (unlikely(ret)) { 764 dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n", 765 rx_hook->order, ret); 766 /* Free the primary descriptor */ 767 rx_stats->rx_dropped++; 768 knav_pool_desc_put(netcp->rx_pool, desc); 769 dev_kfree_skb(skb); 770 return 0; 771 } 772 } 773 /* Free the primary descriptor */ 774 knav_pool_desc_put(netcp->rx_pool, desc); 775 776 u64_stats_update_begin(&rx_stats->syncp_rx); 777 rx_stats->rx_packets++; 778 rx_stats->rx_bytes += skb->len; 779 u64_stats_update_end(&rx_stats->syncp_rx); 780 781 /* push skb up the stack */ 782 skb->protocol = eth_type_trans(skb, netcp->ndev); 783 netif_receive_skb(skb); 784 return 0; 785 786 free_desc: 787 netcp_free_rx_desc_chain(netcp, desc); 788 rx_stats->rx_errors++; 789 return 0; 790 } 791 792 static int netcp_process_rx_packets(struct netcp_intf *netcp, 793 unsigned int budget) 794 { 795 int i; 796 797 for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++) 798 ; 799 return i; 800 } 801 802 /* Release descriptors and attached buffers from Rx FDQ */ 803 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq) 804 { 805 struct knav_dma_desc *desc; 806 unsigned int buf_len, dma_sz; 807 dma_addr_t dma; 808 void *buf_ptr; 809 810 /* Allocate descriptor */ 811 while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) { 812 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz); 813 if (unlikely(!desc)) { 814 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 815 continue; 816 } 817 818 get_org_pkt_info(&dma, &buf_len, desc); 819 /* warning!!!! We are retrieving the virtual ptr in the sw_data 820 * field as a 32bit value. Will not work on 64bit machines 821 */ 822 buf_ptr = (void *)GET_SW_DATA0(desc); 823 824 if (unlikely(!dma)) { 825 dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n"); 826 knav_pool_desc_put(netcp->rx_pool, desc); 827 continue; 828 } 829 830 if (unlikely(!buf_ptr)) { 831 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n"); 832 knav_pool_desc_put(netcp->rx_pool, desc); 833 continue; 834 } 835 836 if (fdq == 0) { 837 dma_unmap_single(netcp->dev, dma, buf_len, 838 DMA_FROM_DEVICE); 839 netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr); 840 } else { 841 dma_unmap_page(netcp->dev, dma, buf_len, 842 DMA_FROM_DEVICE); 843 __free_page(buf_ptr); 844 } 845 846 knav_pool_desc_put(netcp->rx_pool, desc); 847 } 848 } 849 850 static void netcp_rxpool_free(struct netcp_intf *netcp) 851 { 852 int i; 853 854 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && 855 !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++) 856 netcp_free_rx_buf(netcp, i); 857 858 if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size) 859 dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n", 860 netcp->rx_pool_size - knav_pool_count(netcp->rx_pool)); 861 862 knav_pool_destroy(netcp->rx_pool); 863 netcp->rx_pool = NULL; 864 } 865 866 static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq) 867 { 868 struct knav_dma_desc *hwdesc; 869 unsigned int buf_len, dma_sz; 870 u32 desc_info, pkt_info; 871 struct page *page; 872 dma_addr_t dma; 873 void *bufptr; 874 u32 sw_data[2]; 875 876 /* Allocate descriptor */ 877 hwdesc = knav_pool_desc_get(netcp->rx_pool); 878 if (IS_ERR_OR_NULL(hwdesc)) { 879 dev_dbg(netcp->ndev_dev, "out of rx pool desc\n"); 880 return -ENOMEM; 881 } 882 883 if (likely(fdq == 0)) { 884 unsigned int primary_buf_len; 885 /* Allocate a primary receive queue entry */ 886 buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET; 887 primary_buf_len = SKB_DATA_ALIGN(buf_len) + 888 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 889 890 bufptr = netdev_alloc_frag(primary_buf_len); 891 sw_data[1] = primary_buf_len; 892 893 if (unlikely(!bufptr)) { 894 dev_warn_ratelimited(netcp->ndev_dev, 895 "Primary RX buffer alloc failed\n"); 896 goto fail; 897 } 898 dma = dma_map_single(netcp->dev, bufptr, buf_len, 899 DMA_TO_DEVICE); 900 if (unlikely(dma_mapping_error(netcp->dev, dma))) 901 goto fail; 902 903 /* warning!!!! We are saving the virtual ptr in the sw_data 904 * field as a 32bit value. Will not work on 64bit machines 905 */ 906 sw_data[0] = (u32)bufptr; 907 } else { 908 /* Allocate a secondary receive queue entry */ 909 page = alloc_page(GFP_ATOMIC | GFP_DMA | __GFP_COLD); 910 if (unlikely(!page)) { 911 dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n"); 912 goto fail; 913 } 914 buf_len = PAGE_SIZE; 915 dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE); 916 /* warning!!!! We are saving the virtual ptr in the sw_data 917 * field as a 32bit value. Will not work on 64bit machines 918 */ 919 sw_data[0] = (u32)page; 920 sw_data[1] = 0; 921 } 922 923 desc_info = KNAV_DMA_DESC_PS_INFO_IN_DESC; 924 desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK; 925 pkt_info = KNAV_DMA_DESC_HAS_EPIB; 926 pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT; 927 pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) << 928 KNAV_DMA_DESC_RETQ_SHIFT; 929 set_org_pkt_info(dma, buf_len, hwdesc); 930 SET_SW_DATA0(sw_data[0], hwdesc); 931 SET_SW_DATA1(sw_data[1], hwdesc); 932 set_desc_info(desc_info, pkt_info, hwdesc); 933 934 /* Push to FDQs */ 935 knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma, 936 &dma_sz); 937 knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0); 938 return 0; 939 940 fail: 941 knav_pool_desc_put(netcp->rx_pool, hwdesc); 942 return -ENOMEM; 943 } 944 945 /* Refill Rx FDQ with descriptors & attached buffers */ 946 static void netcp_rxpool_refill(struct netcp_intf *netcp) 947 { 948 u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0}; 949 int i, ret = 0; 950 951 /* Calculate the FDQ deficit and refill */ 952 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) { 953 fdq_deficit[i] = netcp->rx_queue_depths[i] - 954 knav_queue_get_count(netcp->rx_fdq[i]); 955 956 while (fdq_deficit[i]-- && !ret) 957 ret = netcp_allocate_rx_buf(netcp, i); 958 } /* end for fdqs */ 959 } 960 961 /* NAPI poll */ 962 static int netcp_rx_poll(struct napi_struct *napi, int budget) 963 { 964 struct netcp_intf *netcp = container_of(napi, struct netcp_intf, 965 rx_napi); 966 unsigned int packets; 967 968 packets = netcp_process_rx_packets(netcp, budget); 969 970 netcp_rxpool_refill(netcp); 971 if (packets < budget) { 972 napi_complete_done(&netcp->rx_napi, packets); 973 knav_queue_enable_notify(netcp->rx_queue); 974 } 975 976 return packets; 977 } 978 979 static void netcp_rx_notify(void *arg) 980 { 981 struct netcp_intf *netcp = arg; 982 983 knav_queue_disable_notify(netcp->rx_queue); 984 napi_schedule(&netcp->rx_napi); 985 } 986 987 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp, 988 struct knav_dma_desc *desc, 989 unsigned int desc_sz) 990 { 991 struct knav_dma_desc *ndesc = desc; 992 dma_addr_t dma_desc, dma_buf; 993 unsigned int buf_len; 994 995 while (ndesc) { 996 get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc); 997 998 if (dma_buf && buf_len) 999 dma_unmap_single(netcp->dev, dma_buf, buf_len, 1000 DMA_TO_DEVICE); 1001 else 1002 dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n", 1003 &dma_buf, buf_len); 1004 1005 knav_pool_desc_put(netcp->tx_pool, ndesc); 1006 ndesc = NULL; 1007 if (dma_desc) { 1008 ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc, 1009 desc_sz); 1010 if (!ndesc) 1011 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n"); 1012 } 1013 } 1014 } 1015 1016 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp, 1017 unsigned int budget) 1018 { 1019 struct netcp_stats *tx_stats = &netcp->stats; 1020 struct knav_dma_desc *desc; 1021 struct netcp_tx_cb *tx_cb; 1022 struct sk_buff *skb; 1023 unsigned int dma_sz; 1024 dma_addr_t dma; 1025 int pkts = 0; 1026 1027 while (budget--) { 1028 dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz); 1029 if (!dma) 1030 break; 1031 desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz); 1032 if (unlikely(!desc)) { 1033 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n"); 1034 tx_stats->tx_errors++; 1035 continue; 1036 } 1037 1038 /* warning!!!! We are retrieving the virtual ptr in the sw_data 1039 * field as a 32bit value. Will not work on 64bit machines 1040 */ 1041 skb = (struct sk_buff *)GET_SW_DATA0(desc); 1042 netcp_free_tx_desc_chain(netcp, desc, dma_sz); 1043 if (!skb) { 1044 dev_err(netcp->ndev_dev, "No skb in Tx desc\n"); 1045 tx_stats->tx_errors++; 1046 continue; 1047 } 1048 1049 tx_cb = (struct netcp_tx_cb *)skb->cb; 1050 if (tx_cb->txtstamp) 1051 tx_cb->txtstamp(tx_cb->ts_context, skb); 1052 1053 if (netif_subqueue_stopped(netcp->ndev, skb) && 1054 netif_running(netcp->ndev) && 1055 (knav_pool_count(netcp->tx_pool) > 1056 netcp->tx_resume_threshold)) { 1057 u16 subqueue = skb_get_queue_mapping(skb); 1058 1059 netif_wake_subqueue(netcp->ndev, subqueue); 1060 } 1061 1062 u64_stats_update_begin(&tx_stats->syncp_tx); 1063 tx_stats->tx_packets++; 1064 tx_stats->tx_bytes += skb->len; 1065 u64_stats_update_end(&tx_stats->syncp_tx); 1066 dev_kfree_skb(skb); 1067 pkts++; 1068 } 1069 return pkts; 1070 } 1071 1072 static int netcp_tx_poll(struct napi_struct *napi, int budget) 1073 { 1074 int packets; 1075 struct netcp_intf *netcp = container_of(napi, struct netcp_intf, 1076 tx_napi); 1077 1078 packets = netcp_process_tx_compl_packets(netcp, budget); 1079 if (packets < budget) { 1080 napi_complete(&netcp->tx_napi); 1081 knav_queue_enable_notify(netcp->tx_compl_q); 1082 } 1083 1084 return packets; 1085 } 1086 1087 static void netcp_tx_notify(void *arg) 1088 { 1089 struct netcp_intf *netcp = arg; 1090 1091 knav_queue_disable_notify(netcp->tx_compl_q); 1092 napi_schedule(&netcp->tx_napi); 1093 } 1094 1095 static struct knav_dma_desc* 1096 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp) 1097 { 1098 struct knav_dma_desc *desc, *ndesc, *pdesc; 1099 unsigned int pkt_len = skb_headlen(skb); 1100 struct device *dev = netcp->dev; 1101 dma_addr_t dma_addr; 1102 unsigned int dma_sz; 1103 int i; 1104 1105 /* Map the linear buffer */ 1106 dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE); 1107 if (unlikely(dma_mapping_error(dev, dma_addr))) { 1108 dev_err(netcp->ndev_dev, "Failed to map skb buffer\n"); 1109 return NULL; 1110 } 1111 1112 desc = knav_pool_desc_get(netcp->tx_pool); 1113 if (IS_ERR_OR_NULL(desc)) { 1114 dev_err(netcp->ndev_dev, "out of TX desc\n"); 1115 dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE); 1116 return NULL; 1117 } 1118 1119 set_pkt_info(dma_addr, pkt_len, 0, desc); 1120 if (skb_is_nonlinear(skb)) { 1121 prefetchw(skb_shinfo(skb)); 1122 } else { 1123 desc->next_desc = 0; 1124 goto upd_pkt_len; 1125 } 1126 1127 pdesc = desc; 1128 1129 /* Handle the case where skb is fragmented in pages */ 1130 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1131 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1132 struct page *page = skb_frag_page(frag); 1133 u32 page_offset = frag->page_offset; 1134 u32 buf_len = skb_frag_size(frag); 1135 dma_addr_t desc_dma; 1136 u32 desc_dma_32; 1137 u32 pkt_info; 1138 1139 dma_addr = dma_map_page(dev, page, page_offset, buf_len, 1140 DMA_TO_DEVICE); 1141 if (unlikely(!dma_addr)) { 1142 dev_err(netcp->ndev_dev, "Failed to map skb page\n"); 1143 goto free_descs; 1144 } 1145 1146 ndesc = knav_pool_desc_get(netcp->tx_pool); 1147 if (IS_ERR_OR_NULL(ndesc)) { 1148 dev_err(netcp->ndev_dev, "out of TX desc for frags\n"); 1149 dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE); 1150 goto free_descs; 1151 } 1152 1153 desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc); 1154 pkt_info = 1155 (netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) << 1156 KNAV_DMA_DESC_RETQ_SHIFT; 1157 set_pkt_info(dma_addr, buf_len, 0, ndesc); 1158 desc_dma_32 = (u32)desc_dma; 1159 set_words(&desc_dma_32, 1, &pdesc->next_desc); 1160 pkt_len += buf_len; 1161 if (pdesc != desc) 1162 knav_pool_desc_map(netcp->tx_pool, pdesc, 1163 sizeof(*pdesc), &desc_dma, &dma_sz); 1164 pdesc = ndesc; 1165 } 1166 if (pdesc != desc) 1167 knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc), 1168 &dma_addr, &dma_sz); 1169 1170 /* frag list based linkage is not supported for now. */ 1171 if (skb_shinfo(skb)->frag_list) { 1172 dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n"); 1173 goto free_descs; 1174 } 1175 1176 upd_pkt_len: 1177 WARN_ON(pkt_len != skb->len); 1178 1179 pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK; 1180 set_words(&pkt_len, 1, &desc->desc_info); 1181 return desc; 1182 1183 free_descs: 1184 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc)); 1185 return NULL; 1186 } 1187 1188 static int netcp_tx_submit_skb(struct netcp_intf *netcp, 1189 struct sk_buff *skb, 1190 struct knav_dma_desc *desc) 1191 { 1192 struct netcp_tx_pipe *tx_pipe = NULL; 1193 struct netcp_hook_list *tx_hook; 1194 struct netcp_packet p_info; 1195 struct netcp_tx_cb *tx_cb; 1196 unsigned int dma_sz; 1197 dma_addr_t dma; 1198 u32 tmp = 0; 1199 int ret = 0; 1200 1201 p_info.netcp = netcp; 1202 p_info.skb = skb; 1203 p_info.tx_pipe = NULL; 1204 p_info.psdata_len = 0; 1205 p_info.ts_context = NULL; 1206 p_info.txtstamp = NULL; 1207 p_info.epib = desc->epib; 1208 p_info.psdata = (u32 __force *)desc->psdata; 1209 memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32)); 1210 1211 /* Find out where to inject the packet for transmission */ 1212 list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) { 1213 ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data, 1214 &p_info); 1215 if (unlikely(ret != 0)) { 1216 dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n", 1217 tx_hook->order, ret); 1218 ret = (ret < 0) ? ret : NETDEV_TX_OK; 1219 goto out; 1220 } 1221 } 1222 1223 /* Make sure some TX hook claimed the packet */ 1224 tx_pipe = p_info.tx_pipe; 1225 if (!tx_pipe) { 1226 dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n"); 1227 ret = -ENXIO; 1228 goto out; 1229 } 1230 1231 tx_cb = (struct netcp_tx_cb *)skb->cb; 1232 tx_cb->ts_context = p_info.ts_context; 1233 tx_cb->txtstamp = p_info.txtstamp; 1234 1235 /* update descriptor */ 1236 if (p_info.psdata_len) { 1237 /* psdata points to both native-endian and device-endian data */ 1238 __le32 *psdata = (void __force *)p_info.psdata; 1239 1240 set_words((u32 *)psdata + 1241 (KNAV_DMA_NUM_PS_WORDS - p_info.psdata_len), 1242 p_info.psdata_len, psdata); 1243 tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) << 1244 KNAV_DMA_DESC_PSLEN_SHIFT; 1245 } 1246 1247 tmp |= KNAV_DMA_DESC_HAS_EPIB | 1248 ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) << 1249 KNAV_DMA_DESC_RETQ_SHIFT); 1250 1251 if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) { 1252 tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) << 1253 KNAV_DMA_DESC_PSFLAG_SHIFT); 1254 } 1255 1256 set_words(&tmp, 1, &desc->packet_info); 1257 /* warning!!!! We are saving the virtual ptr in the sw_data 1258 * field as a 32bit value. Will not work on 64bit machines 1259 */ 1260 SET_SW_DATA0((u32)skb, desc); 1261 1262 if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) { 1263 tmp = tx_pipe->switch_to_port; 1264 set_words(&tmp, 1, &desc->tag_info); 1265 } 1266 1267 /* submit packet descriptor */ 1268 ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma, 1269 &dma_sz); 1270 if (unlikely(ret)) { 1271 dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__); 1272 ret = -ENOMEM; 1273 goto out; 1274 } 1275 skb_tx_timestamp(skb); 1276 knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0); 1277 1278 out: 1279 return ret; 1280 } 1281 1282 /* Submit the packet */ 1283 static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev) 1284 { 1285 struct netcp_intf *netcp = netdev_priv(ndev); 1286 struct netcp_stats *tx_stats = &netcp->stats; 1287 int subqueue = skb_get_queue_mapping(skb); 1288 struct knav_dma_desc *desc; 1289 int desc_count, ret = 0; 1290 1291 if (unlikely(skb->len <= 0)) { 1292 dev_kfree_skb(skb); 1293 return NETDEV_TX_OK; 1294 } 1295 1296 if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) { 1297 ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE); 1298 if (ret < 0) { 1299 /* If we get here, the skb has already been dropped */ 1300 dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n", 1301 ret); 1302 tx_stats->tx_dropped++; 1303 return ret; 1304 } 1305 skb->len = NETCP_MIN_PACKET_SIZE; 1306 } 1307 1308 desc = netcp_tx_map_skb(skb, netcp); 1309 if (unlikely(!desc)) { 1310 netif_stop_subqueue(ndev, subqueue); 1311 ret = -ENOBUFS; 1312 goto drop; 1313 } 1314 1315 ret = netcp_tx_submit_skb(netcp, skb, desc); 1316 if (ret) 1317 goto drop; 1318 1319 /* Check Tx pool count & stop subqueue if needed */ 1320 desc_count = knav_pool_count(netcp->tx_pool); 1321 if (desc_count < netcp->tx_pause_threshold) { 1322 dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count); 1323 netif_stop_subqueue(ndev, subqueue); 1324 } 1325 return NETDEV_TX_OK; 1326 1327 drop: 1328 tx_stats->tx_dropped++; 1329 if (desc) 1330 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc)); 1331 dev_kfree_skb(skb); 1332 return ret; 1333 } 1334 1335 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe) 1336 { 1337 if (tx_pipe->dma_channel) { 1338 knav_dma_close_channel(tx_pipe->dma_channel); 1339 tx_pipe->dma_channel = NULL; 1340 } 1341 return 0; 1342 } 1343 EXPORT_SYMBOL_GPL(netcp_txpipe_close); 1344 1345 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe) 1346 { 1347 struct device *dev = tx_pipe->netcp_device->device; 1348 struct knav_dma_cfg config; 1349 int ret = 0; 1350 u8 name[16]; 1351 1352 memset(&config, 0, sizeof(config)); 1353 config.direction = DMA_MEM_TO_DEV; 1354 config.u.tx.filt_einfo = false; 1355 config.u.tx.filt_pswords = false; 1356 config.u.tx.priority = DMA_PRIO_MED_L; 1357 1358 tx_pipe->dma_channel = knav_dma_open_channel(dev, 1359 tx_pipe->dma_chan_name, &config); 1360 if (IS_ERR_OR_NULL(tx_pipe->dma_channel)) { 1361 dev_err(dev, "failed opening tx chan(%s)\n", 1362 tx_pipe->dma_chan_name); 1363 goto err; 1364 } 1365 1366 snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev)); 1367 tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id, 1368 KNAV_QUEUE_SHARED); 1369 if (IS_ERR(tx_pipe->dma_queue)) { 1370 dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n", 1371 name, ret); 1372 ret = PTR_ERR(tx_pipe->dma_queue); 1373 goto err; 1374 } 1375 1376 dev_dbg(dev, "opened tx pipe %s\n", name); 1377 return 0; 1378 1379 err: 1380 if (!IS_ERR_OR_NULL(tx_pipe->dma_channel)) 1381 knav_dma_close_channel(tx_pipe->dma_channel); 1382 tx_pipe->dma_channel = NULL; 1383 return ret; 1384 } 1385 EXPORT_SYMBOL_GPL(netcp_txpipe_open); 1386 1387 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe, 1388 struct netcp_device *netcp_device, 1389 const char *dma_chan_name, unsigned int dma_queue_id) 1390 { 1391 memset(tx_pipe, 0, sizeof(*tx_pipe)); 1392 tx_pipe->netcp_device = netcp_device; 1393 tx_pipe->dma_chan_name = dma_chan_name; 1394 tx_pipe->dma_queue_id = dma_queue_id; 1395 return 0; 1396 } 1397 EXPORT_SYMBOL_GPL(netcp_txpipe_init); 1398 1399 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp, 1400 const u8 *addr, 1401 enum netcp_addr_type type) 1402 { 1403 struct netcp_addr *naddr; 1404 1405 list_for_each_entry(naddr, &netcp->addr_list, node) { 1406 if (naddr->type != type) 1407 continue; 1408 if (addr && memcmp(addr, naddr->addr, ETH_ALEN)) 1409 continue; 1410 return naddr; 1411 } 1412 1413 return NULL; 1414 } 1415 1416 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp, 1417 const u8 *addr, 1418 enum netcp_addr_type type) 1419 { 1420 struct netcp_addr *naddr; 1421 1422 naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC); 1423 if (!naddr) 1424 return NULL; 1425 1426 naddr->type = type; 1427 naddr->flags = 0; 1428 naddr->netcp = netcp; 1429 if (addr) 1430 ether_addr_copy(naddr->addr, addr); 1431 else 1432 eth_zero_addr(naddr->addr); 1433 list_add_tail(&naddr->node, &netcp->addr_list); 1434 1435 return naddr; 1436 } 1437 1438 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr) 1439 { 1440 list_del(&naddr->node); 1441 devm_kfree(netcp->dev, naddr); 1442 } 1443 1444 static void netcp_addr_clear_mark(struct netcp_intf *netcp) 1445 { 1446 struct netcp_addr *naddr; 1447 1448 list_for_each_entry(naddr, &netcp->addr_list, node) 1449 naddr->flags = 0; 1450 } 1451 1452 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr, 1453 enum netcp_addr_type type) 1454 { 1455 struct netcp_addr *naddr; 1456 1457 naddr = netcp_addr_find(netcp, addr, type); 1458 if (naddr) { 1459 naddr->flags |= ADDR_VALID; 1460 return; 1461 } 1462 1463 naddr = netcp_addr_add(netcp, addr, type); 1464 if (!WARN_ON(!naddr)) 1465 naddr->flags |= ADDR_NEW; 1466 } 1467 1468 static void netcp_addr_sweep_del(struct netcp_intf *netcp) 1469 { 1470 struct netcp_addr *naddr, *tmp; 1471 struct netcp_intf_modpriv *priv; 1472 struct netcp_module *module; 1473 int error; 1474 1475 list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) { 1476 if (naddr->flags & (ADDR_VALID | ADDR_NEW)) 1477 continue; 1478 dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n", 1479 naddr->addr, naddr->type); 1480 for_each_module(netcp, priv) { 1481 module = priv->netcp_module; 1482 if (!module->del_addr) 1483 continue; 1484 error = module->del_addr(priv->module_priv, 1485 naddr); 1486 WARN_ON(error); 1487 } 1488 netcp_addr_del(netcp, naddr); 1489 } 1490 } 1491 1492 static void netcp_addr_sweep_add(struct netcp_intf *netcp) 1493 { 1494 struct netcp_addr *naddr, *tmp; 1495 struct netcp_intf_modpriv *priv; 1496 struct netcp_module *module; 1497 int error; 1498 1499 list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) { 1500 if (!(naddr->flags & ADDR_NEW)) 1501 continue; 1502 dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n", 1503 naddr->addr, naddr->type); 1504 1505 for_each_module(netcp, priv) { 1506 module = priv->netcp_module; 1507 if (!module->add_addr) 1508 continue; 1509 error = module->add_addr(priv->module_priv, naddr); 1510 WARN_ON(error); 1511 } 1512 } 1513 } 1514 1515 static void netcp_set_rx_mode(struct net_device *ndev) 1516 { 1517 struct netcp_intf *netcp = netdev_priv(ndev); 1518 struct netdev_hw_addr *ndev_addr; 1519 bool promisc; 1520 1521 promisc = (ndev->flags & IFF_PROMISC || 1522 ndev->flags & IFF_ALLMULTI || 1523 netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR); 1524 1525 spin_lock(&netcp->lock); 1526 /* first clear all marks */ 1527 netcp_addr_clear_mark(netcp); 1528 1529 /* next add new entries, mark existing ones */ 1530 netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST); 1531 for_each_dev_addr(ndev, ndev_addr) 1532 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV); 1533 netdev_for_each_uc_addr(ndev_addr, ndev) 1534 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST); 1535 netdev_for_each_mc_addr(ndev_addr, ndev) 1536 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST); 1537 1538 if (promisc) 1539 netcp_addr_add_mark(netcp, NULL, ADDR_ANY); 1540 1541 /* finally sweep and callout into modules */ 1542 netcp_addr_sweep_del(netcp); 1543 netcp_addr_sweep_add(netcp); 1544 spin_unlock(&netcp->lock); 1545 } 1546 1547 static void netcp_free_navigator_resources(struct netcp_intf *netcp) 1548 { 1549 int i; 1550 1551 if (netcp->rx_channel) { 1552 knav_dma_close_channel(netcp->rx_channel); 1553 netcp->rx_channel = NULL; 1554 } 1555 1556 if (!IS_ERR_OR_NULL(netcp->rx_pool)) 1557 netcp_rxpool_free(netcp); 1558 1559 if (!IS_ERR_OR_NULL(netcp->rx_queue)) { 1560 knav_queue_close(netcp->rx_queue); 1561 netcp->rx_queue = NULL; 1562 } 1563 1564 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && 1565 !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) { 1566 knav_queue_close(netcp->rx_fdq[i]); 1567 netcp->rx_fdq[i] = NULL; 1568 } 1569 1570 if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) { 1571 knav_queue_close(netcp->tx_compl_q); 1572 netcp->tx_compl_q = NULL; 1573 } 1574 1575 if (!IS_ERR_OR_NULL(netcp->tx_pool)) { 1576 knav_pool_destroy(netcp->tx_pool); 1577 netcp->tx_pool = NULL; 1578 } 1579 } 1580 1581 static int netcp_setup_navigator_resources(struct net_device *ndev) 1582 { 1583 struct netcp_intf *netcp = netdev_priv(ndev); 1584 struct knav_queue_notify_config notify_cfg; 1585 struct knav_dma_cfg config; 1586 u32 last_fdq = 0; 1587 u8 name[16]; 1588 int ret; 1589 int i; 1590 1591 /* Create Rx/Tx descriptor pools */ 1592 snprintf(name, sizeof(name), "rx-pool-%s", ndev->name); 1593 netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size, 1594 netcp->rx_pool_region_id); 1595 if (IS_ERR_OR_NULL(netcp->rx_pool)) { 1596 dev_err(netcp->ndev_dev, "Couldn't create rx pool\n"); 1597 ret = PTR_ERR(netcp->rx_pool); 1598 goto fail; 1599 } 1600 1601 snprintf(name, sizeof(name), "tx-pool-%s", ndev->name); 1602 netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size, 1603 netcp->tx_pool_region_id); 1604 if (IS_ERR_OR_NULL(netcp->tx_pool)) { 1605 dev_err(netcp->ndev_dev, "Couldn't create tx pool\n"); 1606 ret = PTR_ERR(netcp->tx_pool); 1607 goto fail; 1608 } 1609 1610 /* open Tx completion queue */ 1611 snprintf(name, sizeof(name), "tx-compl-%s", ndev->name); 1612 netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0); 1613 if (IS_ERR(netcp->tx_compl_q)) { 1614 ret = PTR_ERR(netcp->tx_compl_q); 1615 goto fail; 1616 } 1617 netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q); 1618 1619 /* Set notification for Tx completion */ 1620 notify_cfg.fn = netcp_tx_notify; 1621 notify_cfg.fn_arg = netcp; 1622 ret = knav_queue_device_control(netcp->tx_compl_q, 1623 KNAV_QUEUE_SET_NOTIFIER, 1624 (unsigned long)¬ify_cfg); 1625 if (ret) 1626 goto fail; 1627 1628 knav_queue_disable_notify(netcp->tx_compl_q); 1629 1630 /* open Rx completion queue */ 1631 snprintf(name, sizeof(name), "rx-compl-%s", ndev->name); 1632 netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0); 1633 if (IS_ERR(netcp->rx_queue)) { 1634 ret = PTR_ERR(netcp->rx_queue); 1635 goto fail; 1636 } 1637 netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue); 1638 1639 /* Set notification for Rx completion */ 1640 notify_cfg.fn = netcp_rx_notify; 1641 notify_cfg.fn_arg = netcp; 1642 ret = knav_queue_device_control(netcp->rx_queue, 1643 KNAV_QUEUE_SET_NOTIFIER, 1644 (unsigned long)¬ify_cfg); 1645 if (ret) 1646 goto fail; 1647 1648 knav_queue_disable_notify(netcp->rx_queue); 1649 1650 /* open Rx FDQs */ 1651 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i]; 1652 ++i) { 1653 snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i); 1654 netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0); 1655 if (IS_ERR(netcp->rx_fdq[i])) { 1656 ret = PTR_ERR(netcp->rx_fdq[i]); 1657 goto fail; 1658 } 1659 } 1660 1661 memset(&config, 0, sizeof(config)); 1662 config.direction = DMA_DEV_TO_MEM; 1663 config.u.rx.einfo_present = true; 1664 config.u.rx.psinfo_present = true; 1665 config.u.rx.err_mode = DMA_DROP; 1666 config.u.rx.desc_type = DMA_DESC_HOST; 1667 config.u.rx.psinfo_at_sop = false; 1668 config.u.rx.sop_offset = NETCP_SOP_OFFSET; 1669 config.u.rx.dst_q = netcp->rx_queue_id; 1670 config.u.rx.thresh = DMA_THRESH_NONE; 1671 1672 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) { 1673 if (netcp->rx_fdq[i]) 1674 last_fdq = knav_queue_get_id(netcp->rx_fdq[i]); 1675 config.u.rx.fdq[i] = last_fdq; 1676 } 1677 1678 netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device, 1679 netcp->dma_chan_name, &config); 1680 if (IS_ERR_OR_NULL(netcp->rx_channel)) { 1681 dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n", 1682 netcp->dma_chan_name); 1683 goto fail; 1684 } 1685 1686 dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel); 1687 return 0; 1688 1689 fail: 1690 netcp_free_navigator_resources(netcp); 1691 return ret; 1692 } 1693 1694 /* Open the device */ 1695 static int netcp_ndo_open(struct net_device *ndev) 1696 { 1697 struct netcp_intf *netcp = netdev_priv(ndev); 1698 struct netcp_intf_modpriv *intf_modpriv; 1699 struct netcp_module *module; 1700 int ret; 1701 1702 netif_carrier_off(ndev); 1703 ret = netcp_setup_navigator_resources(ndev); 1704 if (ret) { 1705 dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n"); 1706 goto fail; 1707 } 1708 1709 for_each_module(netcp, intf_modpriv) { 1710 module = intf_modpriv->netcp_module; 1711 if (module->open) { 1712 ret = module->open(intf_modpriv->module_priv, ndev); 1713 if (ret != 0) { 1714 dev_err(netcp->ndev_dev, "module open failed\n"); 1715 goto fail_open; 1716 } 1717 } 1718 } 1719 1720 napi_enable(&netcp->rx_napi); 1721 napi_enable(&netcp->tx_napi); 1722 knav_queue_enable_notify(netcp->tx_compl_q); 1723 knav_queue_enable_notify(netcp->rx_queue); 1724 netcp_rxpool_refill(netcp); 1725 netif_tx_wake_all_queues(ndev); 1726 dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name); 1727 return 0; 1728 1729 fail_open: 1730 for_each_module(netcp, intf_modpriv) { 1731 module = intf_modpriv->netcp_module; 1732 if (module->close) 1733 module->close(intf_modpriv->module_priv, ndev); 1734 } 1735 1736 fail: 1737 netcp_free_navigator_resources(netcp); 1738 return ret; 1739 } 1740 1741 /* Close the device */ 1742 static int netcp_ndo_stop(struct net_device *ndev) 1743 { 1744 struct netcp_intf *netcp = netdev_priv(ndev); 1745 struct netcp_intf_modpriv *intf_modpriv; 1746 struct netcp_module *module; 1747 int err = 0; 1748 1749 netif_tx_stop_all_queues(ndev); 1750 netif_carrier_off(ndev); 1751 netcp_addr_clear_mark(netcp); 1752 netcp_addr_sweep_del(netcp); 1753 knav_queue_disable_notify(netcp->rx_queue); 1754 knav_queue_disable_notify(netcp->tx_compl_q); 1755 napi_disable(&netcp->rx_napi); 1756 napi_disable(&netcp->tx_napi); 1757 1758 for_each_module(netcp, intf_modpriv) { 1759 module = intf_modpriv->netcp_module; 1760 if (module->close) { 1761 err = module->close(intf_modpriv->module_priv, ndev); 1762 if (err != 0) 1763 dev_err(netcp->ndev_dev, "Close failed\n"); 1764 } 1765 } 1766 1767 /* Recycle Rx descriptors from completion queue */ 1768 netcp_empty_rx_queue(netcp); 1769 1770 /* Recycle Tx descriptors from completion queue */ 1771 netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size); 1772 1773 if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size) 1774 dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n", 1775 netcp->tx_pool_size - knav_pool_count(netcp->tx_pool)); 1776 1777 netcp_free_navigator_resources(netcp); 1778 dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name); 1779 return 0; 1780 } 1781 1782 static int netcp_ndo_ioctl(struct net_device *ndev, 1783 struct ifreq *req, int cmd) 1784 { 1785 struct netcp_intf *netcp = netdev_priv(ndev); 1786 struct netcp_intf_modpriv *intf_modpriv; 1787 struct netcp_module *module; 1788 int ret = -1, err = -EOPNOTSUPP; 1789 1790 if (!netif_running(ndev)) 1791 return -EINVAL; 1792 1793 for_each_module(netcp, intf_modpriv) { 1794 module = intf_modpriv->netcp_module; 1795 if (!module->ioctl) 1796 continue; 1797 1798 err = module->ioctl(intf_modpriv->module_priv, req, cmd); 1799 if ((err < 0) && (err != -EOPNOTSUPP)) { 1800 ret = err; 1801 goto out; 1802 } 1803 if (err == 0) 1804 ret = err; 1805 } 1806 1807 out: 1808 return (ret == 0) ? 0 : err; 1809 } 1810 1811 static void netcp_ndo_tx_timeout(struct net_device *ndev) 1812 { 1813 struct netcp_intf *netcp = netdev_priv(ndev); 1814 unsigned int descs = knav_pool_count(netcp->tx_pool); 1815 1816 dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs); 1817 netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size); 1818 netif_trans_update(ndev); 1819 netif_tx_wake_all_queues(ndev); 1820 } 1821 1822 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 1823 { 1824 struct netcp_intf *netcp = netdev_priv(ndev); 1825 struct netcp_intf_modpriv *intf_modpriv; 1826 struct netcp_module *module; 1827 unsigned long flags; 1828 int err = 0; 1829 1830 dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid); 1831 1832 spin_lock_irqsave(&netcp->lock, flags); 1833 for_each_module(netcp, intf_modpriv) { 1834 module = intf_modpriv->netcp_module; 1835 if ((module->add_vid) && (vid != 0)) { 1836 err = module->add_vid(intf_modpriv->module_priv, vid); 1837 if (err != 0) { 1838 dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n", 1839 vid); 1840 break; 1841 } 1842 } 1843 } 1844 spin_unlock_irqrestore(&netcp->lock, flags); 1845 1846 return err; 1847 } 1848 1849 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 1850 { 1851 struct netcp_intf *netcp = netdev_priv(ndev); 1852 struct netcp_intf_modpriv *intf_modpriv; 1853 struct netcp_module *module; 1854 unsigned long flags; 1855 int err = 0; 1856 1857 dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid); 1858 1859 spin_lock_irqsave(&netcp->lock, flags); 1860 for_each_module(netcp, intf_modpriv) { 1861 module = intf_modpriv->netcp_module; 1862 if (module->del_vid) { 1863 err = module->del_vid(intf_modpriv->module_priv, vid); 1864 if (err != 0) { 1865 dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n", 1866 vid); 1867 break; 1868 } 1869 } 1870 } 1871 spin_unlock_irqrestore(&netcp->lock, flags); 1872 return err; 1873 } 1874 1875 static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb, 1876 void *accel_priv, 1877 select_queue_fallback_t fallback) 1878 { 1879 return 0; 1880 } 1881 1882 static int netcp_setup_tc(struct net_device *dev, u32 handle, __be16 proto, 1883 struct tc_to_netdev *tc) 1884 { 1885 int i; 1886 1887 /* setup tc must be called under rtnl lock */ 1888 ASSERT_RTNL(); 1889 1890 if (tc->type != TC_SETUP_MQPRIO) 1891 return -EINVAL; 1892 1893 /* Sanity-check the number of traffic classes requested */ 1894 if ((dev->real_num_tx_queues <= 1) || 1895 (dev->real_num_tx_queues < tc->tc)) 1896 return -EINVAL; 1897 1898 /* Configure traffic class to queue mappings */ 1899 if (tc->tc) { 1900 netdev_set_num_tc(dev, tc->tc); 1901 for (i = 0; i < tc->tc; i++) 1902 netdev_set_tc_queue(dev, i, 1, i); 1903 } else { 1904 netdev_reset_tc(dev); 1905 } 1906 1907 return 0; 1908 } 1909 1910 static void 1911 netcp_get_stats(struct net_device *ndev, struct rtnl_link_stats64 *stats) 1912 { 1913 struct netcp_intf *netcp = netdev_priv(ndev); 1914 struct netcp_stats *p = &netcp->stats; 1915 u64 rxpackets, rxbytes, txpackets, txbytes; 1916 unsigned int start; 1917 1918 do { 1919 start = u64_stats_fetch_begin_irq(&p->syncp_rx); 1920 rxpackets = p->rx_packets; 1921 rxbytes = p->rx_bytes; 1922 } while (u64_stats_fetch_retry_irq(&p->syncp_rx, start)); 1923 1924 do { 1925 start = u64_stats_fetch_begin_irq(&p->syncp_tx); 1926 txpackets = p->tx_packets; 1927 txbytes = p->tx_bytes; 1928 } while (u64_stats_fetch_retry_irq(&p->syncp_tx, start)); 1929 1930 stats->rx_packets = rxpackets; 1931 stats->rx_bytes = rxbytes; 1932 stats->tx_packets = txpackets; 1933 stats->tx_bytes = txbytes; 1934 1935 /* The following are stored as 32 bit */ 1936 stats->rx_errors = p->rx_errors; 1937 stats->rx_dropped = p->rx_dropped; 1938 stats->tx_dropped = p->tx_dropped; 1939 } 1940 1941 static const struct net_device_ops netcp_netdev_ops = { 1942 .ndo_open = netcp_ndo_open, 1943 .ndo_stop = netcp_ndo_stop, 1944 .ndo_start_xmit = netcp_ndo_start_xmit, 1945 .ndo_set_rx_mode = netcp_set_rx_mode, 1946 .ndo_do_ioctl = netcp_ndo_ioctl, 1947 .ndo_get_stats64 = netcp_get_stats, 1948 .ndo_set_mac_address = eth_mac_addr, 1949 .ndo_validate_addr = eth_validate_addr, 1950 .ndo_vlan_rx_add_vid = netcp_rx_add_vid, 1951 .ndo_vlan_rx_kill_vid = netcp_rx_kill_vid, 1952 .ndo_tx_timeout = netcp_ndo_tx_timeout, 1953 .ndo_select_queue = netcp_select_queue, 1954 .ndo_setup_tc = netcp_setup_tc, 1955 }; 1956 1957 static int netcp_create_interface(struct netcp_device *netcp_device, 1958 struct device_node *node_interface) 1959 { 1960 struct device *dev = netcp_device->device; 1961 struct device_node *node = dev->of_node; 1962 struct netcp_intf *netcp; 1963 struct net_device *ndev; 1964 resource_size_t size; 1965 struct resource res; 1966 void __iomem *efuse = NULL; 1967 u32 efuse_mac = 0; 1968 const void *mac_addr; 1969 u8 efuse_mac_addr[6]; 1970 u32 temp[2]; 1971 int ret = 0; 1972 1973 ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1); 1974 if (!ndev) { 1975 dev_err(dev, "Error allocating netdev\n"); 1976 return -ENOMEM; 1977 } 1978 1979 ndev->features |= NETIF_F_SG; 1980 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 1981 ndev->hw_features = ndev->features; 1982 ndev->vlan_features |= NETIF_F_SG; 1983 1984 /* MTU range: 68 - 9486 */ 1985 ndev->min_mtu = ETH_MIN_MTU; 1986 ndev->max_mtu = NETCP_MAX_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN); 1987 1988 netcp = netdev_priv(ndev); 1989 spin_lock_init(&netcp->lock); 1990 INIT_LIST_HEAD(&netcp->module_head); 1991 INIT_LIST_HEAD(&netcp->txhook_list_head); 1992 INIT_LIST_HEAD(&netcp->rxhook_list_head); 1993 INIT_LIST_HEAD(&netcp->addr_list); 1994 u64_stats_init(&netcp->stats.syncp_rx); 1995 u64_stats_init(&netcp->stats.syncp_tx); 1996 netcp->netcp_device = netcp_device; 1997 netcp->dev = netcp_device->device; 1998 netcp->ndev = ndev; 1999 netcp->ndev_dev = &ndev->dev; 2000 netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG); 2001 netcp->tx_pause_threshold = MAX_SKB_FRAGS; 2002 netcp->tx_resume_threshold = netcp->tx_pause_threshold; 2003 netcp->node_interface = node_interface; 2004 2005 ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac); 2006 if (efuse_mac) { 2007 if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) { 2008 dev_err(dev, "could not find efuse-mac reg resource\n"); 2009 ret = -ENODEV; 2010 goto quit; 2011 } 2012 size = resource_size(&res); 2013 2014 if (!devm_request_mem_region(dev, res.start, size, 2015 dev_name(dev))) { 2016 dev_err(dev, "could not reserve resource\n"); 2017 ret = -ENOMEM; 2018 goto quit; 2019 } 2020 2021 efuse = devm_ioremap_nocache(dev, res.start, size); 2022 if (!efuse) { 2023 dev_err(dev, "could not map resource\n"); 2024 devm_release_mem_region(dev, res.start, size); 2025 ret = -ENOMEM; 2026 goto quit; 2027 } 2028 2029 emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac); 2030 if (is_valid_ether_addr(efuse_mac_addr)) 2031 ether_addr_copy(ndev->dev_addr, efuse_mac_addr); 2032 else 2033 random_ether_addr(ndev->dev_addr); 2034 2035 devm_iounmap(dev, efuse); 2036 devm_release_mem_region(dev, res.start, size); 2037 } else { 2038 mac_addr = of_get_mac_address(node_interface); 2039 if (mac_addr) 2040 ether_addr_copy(ndev->dev_addr, mac_addr); 2041 else 2042 random_ether_addr(ndev->dev_addr); 2043 } 2044 2045 ret = of_property_read_string(node_interface, "rx-channel", 2046 &netcp->dma_chan_name); 2047 if (ret < 0) { 2048 dev_err(dev, "missing \"rx-channel\" parameter\n"); 2049 ret = -ENODEV; 2050 goto quit; 2051 } 2052 2053 ret = of_property_read_u32(node_interface, "rx-queue", 2054 &netcp->rx_queue_id); 2055 if (ret < 0) { 2056 dev_warn(dev, "missing \"rx-queue\" parameter\n"); 2057 netcp->rx_queue_id = KNAV_QUEUE_QPEND; 2058 } 2059 2060 ret = of_property_read_u32_array(node_interface, "rx-queue-depth", 2061 netcp->rx_queue_depths, 2062 KNAV_DMA_FDQ_PER_CHAN); 2063 if (ret < 0) { 2064 dev_err(dev, "missing \"rx-queue-depth\" parameter\n"); 2065 netcp->rx_queue_depths[0] = 128; 2066 } 2067 2068 ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2); 2069 if (ret < 0) { 2070 dev_err(dev, "missing \"rx-pool\" parameter\n"); 2071 ret = -ENODEV; 2072 goto quit; 2073 } 2074 netcp->rx_pool_size = temp[0]; 2075 netcp->rx_pool_region_id = temp[1]; 2076 2077 ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2); 2078 if (ret < 0) { 2079 dev_err(dev, "missing \"tx-pool\" parameter\n"); 2080 ret = -ENODEV; 2081 goto quit; 2082 } 2083 netcp->tx_pool_size = temp[0]; 2084 netcp->tx_pool_region_id = temp[1]; 2085 2086 if (netcp->tx_pool_size < MAX_SKB_FRAGS) { 2087 dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n", 2088 MAX_SKB_FRAGS); 2089 ret = -ENODEV; 2090 goto quit; 2091 } 2092 2093 ret = of_property_read_u32(node_interface, "tx-completion-queue", 2094 &netcp->tx_compl_qid); 2095 if (ret < 0) { 2096 dev_warn(dev, "missing \"tx-completion-queue\" parameter\n"); 2097 netcp->tx_compl_qid = KNAV_QUEUE_QPEND; 2098 } 2099 2100 /* NAPI register */ 2101 netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT); 2102 netif_tx_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT); 2103 2104 /* Register the network device */ 2105 ndev->dev_id = 0; 2106 ndev->watchdog_timeo = NETCP_TX_TIMEOUT; 2107 ndev->netdev_ops = &netcp_netdev_ops; 2108 SET_NETDEV_DEV(ndev, dev); 2109 2110 list_add_tail(&netcp->interface_list, &netcp_device->interface_head); 2111 return 0; 2112 2113 quit: 2114 free_netdev(ndev); 2115 return ret; 2116 } 2117 2118 static void netcp_delete_interface(struct netcp_device *netcp_device, 2119 struct net_device *ndev) 2120 { 2121 struct netcp_intf_modpriv *intf_modpriv, *tmp; 2122 struct netcp_intf *netcp = netdev_priv(ndev); 2123 struct netcp_module *module; 2124 2125 dev_dbg(netcp_device->device, "Removing interface \"%s\"\n", 2126 ndev->name); 2127 2128 /* Notify each of the modules that the interface is going away */ 2129 list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head, 2130 intf_list) { 2131 module = intf_modpriv->netcp_module; 2132 dev_dbg(netcp_device->device, "Releasing module \"%s\"\n", 2133 module->name); 2134 if (module->release) 2135 module->release(intf_modpriv->module_priv); 2136 list_del(&intf_modpriv->intf_list); 2137 } 2138 WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n", 2139 ndev->name); 2140 2141 list_del(&netcp->interface_list); 2142 2143 of_node_put(netcp->node_interface); 2144 unregister_netdev(ndev); 2145 netif_napi_del(&netcp->rx_napi); 2146 free_netdev(ndev); 2147 } 2148 2149 static int netcp_probe(struct platform_device *pdev) 2150 { 2151 struct device_node *node = pdev->dev.of_node; 2152 struct netcp_intf *netcp_intf, *netcp_tmp; 2153 struct device_node *child, *interfaces; 2154 struct netcp_device *netcp_device; 2155 struct device *dev = &pdev->dev; 2156 int ret; 2157 2158 if (!node) { 2159 dev_err(dev, "could not find device info\n"); 2160 return -ENODEV; 2161 } 2162 2163 /* Allocate a new NETCP device instance */ 2164 netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL); 2165 if (!netcp_device) 2166 return -ENOMEM; 2167 2168 pm_runtime_enable(&pdev->dev); 2169 ret = pm_runtime_get_sync(&pdev->dev); 2170 if (ret < 0) { 2171 dev_err(dev, "Failed to enable NETCP power-domain\n"); 2172 pm_runtime_disable(&pdev->dev); 2173 return ret; 2174 } 2175 2176 /* Initialize the NETCP device instance */ 2177 INIT_LIST_HEAD(&netcp_device->interface_head); 2178 INIT_LIST_HEAD(&netcp_device->modpriv_head); 2179 netcp_device->device = dev; 2180 platform_set_drvdata(pdev, netcp_device); 2181 2182 /* create interfaces */ 2183 interfaces = of_get_child_by_name(node, "netcp-interfaces"); 2184 if (!interfaces) { 2185 dev_err(dev, "could not find netcp-interfaces node\n"); 2186 ret = -ENODEV; 2187 goto probe_quit; 2188 } 2189 2190 for_each_available_child_of_node(interfaces, child) { 2191 ret = netcp_create_interface(netcp_device, child); 2192 if (ret) { 2193 dev_err(dev, "could not create interface(%s)\n", 2194 child->name); 2195 goto probe_quit_interface; 2196 } 2197 } 2198 2199 of_node_put(interfaces); 2200 2201 /* Add the device instance to the list */ 2202 list_add_tail(&netcp_device->device_list, &netcp_devices); 2203 2204 return 0; 2205 2206 probe_quit_interface: 2207 list_for_each_entry_safe(netcp_intf, netcp_tmp, 2208 &netcp_device->interface_head, 2209 interface_list) { 2210 netcp_delete_interface(netcp_device, netcp_intf->ndev); 2211 } 2212 2213 of_node_put(interfaces); 2214 2215 probe_quit: 2216 pm_runtime_put_sync(&pdev->dev); 2217 pm_runtime_disable(&pdev->dev); 2218 platform_set_drvdata(pdev, NULL); 2219 return ret; 2220 } 2221 2222 static int netcp_remove(struct platform_device *pdev) 2223 { 2224 struct netcp_device *netcp_device = platform_get_drvdata(pdev); 2225 struct netcp_intf *netcp_intf, *netcp_tmp; 2226 struct netcp_inst_modpriv *inst_modpriv, *tmp; 2227 struct netcp_module *module; 2228 2229 list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head, 2230 inst_list) { 2231 module = inst_modpriv->netcp_module; 2232 dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name); 2233 module->remove(netcp_device, inst_modpriv->module_priv); 2234 list_del(&inst_modpriv->inst_list); 2235 } 2236 2237 /* now that all modules are removed, clean up the interfaces */ 2238 list_for_each_entry_safe(netcp_intf, netcp_tmp, 2239 &netcp_device->interface_head, 2240 interface_list) { 2241 netcp_delete_interface(netcp_device, netcp_intf->ndev); 2242 } 2243 2244 WARN(!list_empty(&netcp_device->interface_head), 2245 "%s interface list not empty!\n", pdev->name); 2246 2247 pm_runtime_put_sync(&pdev->dev); 2248 pm_runtime_disable(&pdev->dev); 2249 platform_set_drvdata(pdev, NULL); 2250 return 0; 2251 } 2252 2253 static const struct of_device_id of_match[] = { 2254 { .compatible = "ti,netcp-1.0", }, 2255 {}, 2256 }; 2257 MODULE_DEVICE_TABLE(of, of_match); 2258 2259 static struct platform_driver netcp_driver = { 2260 .driver = { 2261 .name = "netcp-1.0", 2262 .of_match_table = of_match, 2263 }, 2264 .probe = netcp_probe, 2265 .remove = netcp_remove, 2266 }; 2267 module_platform_driver(netcp_driver); 2268 2269 MODULE_LICENSE("GPL v2"); 2270 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs"); 2271 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com"); 2272