xref: /linux/drivers/net/ethernet/ti/netcp_core.c (revision 9f2c9170934eace462499ba0bfe042cc72900173)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Keystone NetCP Core driver
4  *
5  * Copyright (C) 2014 Texas Instruments Incorporated
6  * Authors:	Sandeep Nair <sandeep_n@ti.com>
7  *		Sandeep Paulraj <s-paulraj@ti.com>
8  *		Cyril Chemparathy <cyril@ti.com>
9  *		Santosh Shilimkar <santosh.shilimkar@ti.com>
10  *		Murali Karicheri <m-karicheri2@ti.com>
11  *		Wingman Kwok <w-kwok2@ti.com>
12  */
13 
14 #include <linux/io.h>
15 #include <linux/module.h>
16 #include <linux/of_net.h>
17 #include <linux/of_address.h>
18 #include <linux/if_vlan.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/platform_device.h>
21 #include <linux/soc/ti/knav_qmss.h>
22 #include <linux/soc/ti/knav_dma.h>
23 
24 #include "netcp.h"
25 
26 #define NETCP_SOP_OFFSET	(NET_IP_ALIGN + NET_SKB_PAD)
27 #define NETCP_TX_TIMEOUT	(5 * HZ)
28 #define NETCP_PACKET_SIZE	(ETH_FRAME_LEN + ETH_FCS_LEN)
29 #define NETCP_MIN_PACKET_SIZE	ETH_ZLEN
30 #define NETCP_MAX_MCAST_ADDR	16
31 
32 #define NETCP_EFUSE_REG_INDEX	0
33 
34 #define NETCP_MOD_PROBE_SKIPPED	1
35 #define NETCP_MOD_PROBE_FAILED	2
36 
37 #define NETCP_DEBUG (NETIF_MSG_HW	| NETIF_MSG_WOL		|	\
38 		    NETIF_MSG_DRV	| NETIF_MSG_LINK	|	\
39 		    NETIF_MSG_IFUP	| NETIF_MSG_INTR	|	\
40 		    NETIF_MSG_PROBE	| NETIF_MSG_TIMER	|	\
41 		    NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	|	\
42 		    NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	|	\
43 		    NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	|	\
44 		    NETIF_MSG_RX_STATUS)
45 
46 #define NETCP_EFUSE_ADDR_SWAP	2
47 
48 #define knav_queue_get_id(q)	knav_queue_device_control(q, \
49 				KNAV_QUEUE_GET_ID, (unsigned long)NULL)
50 
51 #define knav_queue_enable_notify(q) knav_queue_device_control(q,	\
52 					KNAV_QUEUE_ENABLE_NOTIFY,	\
53 					(unsigned long)NULL)
54 
55 #define knav_queue_disable_notify(q) knav_queue_device_control(q,	\
56 					KNAV_QUEUE_DISABLE_NOTIFY,	\
57 					(unsigned long)NULL)
58 
59 #define knav_queue_get_count(q)	knav_queue_device_control(q, \
60 				KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
61 
62 #define for_each_netcp_module(module)			\
63 	list_for_each_entry(module, &netcp_modules, module_list)
64 
65 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \
66 	list_for_each_entry(inst_modpriv, \
67 		&((netcp_device)->modpriv_head), inst_list)
68 
69 #define for_each_module(netcp, intf_modpriv)			\
70 	list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
71 
72 /* Module management structures */
73 struct netcp_device {
74 	struct list_head	device_list;
75 	struct list_head	interface_head;
76 	struct list_head	modpriv_head;
77 	struct device		*device;
78 };
79 
80 struct netcp_inst_modpriv {
81 	struct netcp_device	*netcp_device;
82 	struct netcp_module	*netcp_module;
83 	struct list_head	inst_list;
84 	void			*module_priv;
85 };
86 
87 struct netcp_intf_modpriv {
88 	struct netcp_intf	*netcp_priv;
89 	struct netcp_module	*netcp_module;
90 	struct list_head	intf_list;
91 	void			*module_priv;
92 };
93 
94 struct netcp_tx_cb {
95 	void	*ts_context;
96 	void	(*txtstamp)(void *context, struct sk_buff *skb);
97 };
98 
99 static LIST_HEAD(netcp_devices);
100 static LIST_HEAD(netcp_modules);
101 static DEFINE_MUTEX(netcp_modules_lock);
102 
103 static int netcp_debug_level = -1;
104 module_param(netcp_debug_level, int, 0);
105 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
106 
107 /* Helper functions - Get/Set */
108 static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc,
109 			 struct knav_dma_desc *desc)
110 {
111 	*buff_len = le32_to_cpu(desc->buff_len);
112 	*buff = le32_to_cpu(desc->buff);
113 	*ndesc = le32_to_cpu(desc->next_desc);
114 }
115 
116 static void get_desc_info(u32 *desc_info, u32 *pkt_info,
117 			  struct knav_dma_desc *desc)
118 {
119 	*desc_info = le32_to_cpu(desc->desc_info);
120 	*pkt_info = le32_to_cpu(desc->packet_info);
121 }
122 
123 static u32 get_sw_data(int index, struct knav_dma_desc *desc)
124 {
125 	/* No Endian conversion needed as this data is untouched by hw */
126 	return desc->sw_data[index];
127 }
128 
129 /* use these macros to get sw data */
130 #define GET_SW_DATA0(desc) get_sw_data(0, desc)
131 #define GET_SW_DATA1(desc) get_sw_data(1, desc)
132 #define GET_SW_DATA2(desc) get_sw_data(2, desc)
133 #define GET_SW_DATA3(desc) get_sw_data(3, desc)
134 
135 static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len,
136 			     struct knav_dma_desc *desc)
137 {
138 	*buff = le32_to_cpu(desc->orig_buff);
139 	*buff_len = le32_to_cpu(desc->orig_len);
140 }
141 
142 static void get_words(dma_addr_t *words, int num_words, __le32 *desc)
143 {
144 	int i;
145 
146 	for (i = 0; i < num_words; i++)
147 		words[i] = le32_to_cpu(desc[i]);
148 }
149 
150 static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc,
151 			 struct knav_dma_desc *desc)
152 {
153 	desc->buff_len = cpu_to_le32(buff_len);
154 	desc->buff = cpu_to_le32(buff);
155 	desc->next_desc = cpu_to_le32(ndesc);
156 }
157 
158 static void set_desc_info(u32 desc_info, u32 pkt_info,
159 			  struct knav_dma_desc *desc)
160 {
161 	desc->desc_info = cpu_to_le32(desc_info);
162 	desc->packet_info = cpu_to_le32(pkt_info);
163 }
164 
165 static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc)
166 {
167 	/* No Endian conversion needed as this data is untouched by hw */
168 	desc->sw_data[index] = data;
169 }
170 
171 /* use these macros to set sw data */
172 #define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc)
173 #define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc)
174 #define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc)
175 #define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc)
176 
177 static void set_org_pkt_info(dma_addr_t buff, u32 buff_len,
178 			     struct knav_dma_desc *desc)
179 {
180 	desc->orig_buff = cpu_to_le32(buff);
181 	desc->orig_len = cpu_to_le32(buff_len);
182 }
183 
184 static void set_words(u32 *words, int num_words, __le32 *desc)
185 {
186 	int i;
187 
188 	for (i = 0; i < num_words; i++)
189 		desc[i] = cpu_to_le32(words[i]);
190 }
191 
192 /* Read the e-fuse value as 32 bit values to be endian independent */
193 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
194 {
195 	unsigned int addr0, addr1;
196 
197 	addr1 = readl(efuse_mac + 4);
198 	addr0 = readl(efuse_mac);
199 
200 	switch (swap) {
201 	case NETCP_EFUSE_ADDR_SWAP:
202 		addr0 = addr1;
203 		addr1 = readl(efuse_mac);
204 		break;
205 	default:
206 		break;
207 	}
208 
209 	x[0] = (addr1 & 0x0000ff00) >> 8;
210 	x[1] = addr1 & 0x000000ff;
211 	x[2] = (addr0 & 0xff000000) >> 24;
212 	x[3] = (addr0 & 0x00ff0000) >> 16;
213 	x[4] = (addr0 & 0x0000ff00) >> 8;
214 	x[5] = addr0 & 0x000000ff;
215 
216 	return 0;
217 }
218 
219 /* Module management routines */
220 static int netcp_register_interface(struct netcp_intf *netcp)
221 {
222 	int ret;
223 
224 	ret = register_netdev(netcp->ndev);
225 	if (!ret)
226 		netcp->netdev_registered = true;
227 	return ret;
228 }
229 
230 static int netcp_module_probe(struct netcp_device *netcp_device,
231 			      struct netcp_module *module)
232 {
233 	struct device *dev = netcp_device->device;
234 	struct device_node *devices, *interface, *node = dev->of_node;
235 	struct device_node *child;
236 	struct netcp_inst_modpriv *inst_modpriv;
237 	struct netcp_intf *netcp_intf;
238 	struct netcp_module *tmp;
239 	bool primary_module_registered = false;
240 	int ret;
241 
242 	/* Find this module in the sub-tree for this device */
243 	devices = of_get_child_by_name(node, "netcp-devices");
244 	if (!devices) {
245 		dev_err(dev, "could not find netcp-devices node\n");
246 		return NETCP_MOD_PROBE_SKIPPED;
247 	}
248 
249 	for_each_available_child_of_node(devices, child) {
250 		const char *name;
251 		char node_name[32];
252 
253 		if (of_property_read_string(child, "label", &name) < 0) {
254 			snprintf(node_name, sizeof(node_name), "%pOFn", child);
255 			name = node_name;
256 		}
257 		if (!strcasecmp(module->name, name))
258 			break;
259 	}
260 
261 	of_node_put(devices);
262 	/* If module not used for this device, skip it */
263 	if (!child) {
264 		dev_warn(dev, "module(%s) not used for device\n", module->name);
265 		return NETCP_MOD_PROBE_SKIPPED;
266 	}
267 
268 	inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
269 	if (!inst_modpriv) {
270 		of_node_put(child);
271 		return -ENOMEM;
272 	}
273 
274 	inst_modpriv->netcp_device = netcp_device;
275 	inst_modpriv->netcp_module = module;
276 	list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
277 
278 	ret = module->probe(netcp_device, dev, child,
279 			    &inst_modpriv->module_priv);
280 	of_node_put(child);
281 	if (ret) {
282 		dev_err(dev, "Probe of module(%s) failed with %d\n",
283 			module->name, ret);
284 		list_del(&inst_modpriv->inst_list);
285 		devm_kfree(dev, inst_modpriv);
286 		return NETCP_MOD_PROBE_FAILED;
287 	}
288 
289 	/* Attach modules only if the primary module is probed */
290 	for_each_netcp_module(tmp) {
291 		if (tmp->primary)
292 			primary_module_registered = true;
293 	}
294 
295 	if (!primary_module_registered)
296 		return 0;
297 
298 	/* Attach module to interfaces */
299 	list_for_each_entry(netcp_intf, &netcp_device->interface_head,
300 			    interface_list) {
301 		struct netcp_intf_modpriv *intf_modpriv;
302 
303 		intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
304 					    GFP_KERNEL);
305 		if (!intf_modpriv)
306 			return -ENOMEM;
307 
308 		interface = of_parse_phandle(netcp_intf->node_interface,
309 					     module->name, 0);
310 
311 		if (!interface) {
312 			devm_kfree(dev, intf_modpriv);
313 			continue;
314 		}
315 
316 		intf_modpriv->netcp_priv = netcp_intf;
317 		intf_modpriv->netcp_module = module;
318 		list_add_tail(&intf_modpriv->intf_list,
319 			      &netcp_intf->module_head);
320 
321 		ret = module->attach(inst_modpriv->module_priv,
322 				     netcp_intf->ndev, interface,
323 				     &intf_modpriv->module_priv);
324 		of_node_put(interface);
325 		if (ret) {
326 			dev_dbg(dev, "Attach of module %s declined with %d\n",
327 				module->name, ret);
328 			list_del(&intf_modpriv->intf_list);
329 			devm_kfree(dev, intf_modpriv);
330 			continue;
331 		}
332 	}
333 
334 	/* Now register the interface with netdev */
335 	list_for_each_entry(netcp_intf,
336 			    &netcp_device->interface_head,
337 			    interface_list) {
338 		/* If interface not registered then register now */
339 		if (!netcp_intf->netdev_registered) {
340 			ret = netcp_register_interface(netcp_intf);
341 			if (ret)
342 				return -ENODEV;
343 		}
344 	}
345 	return 0;
346 }
347 
348 int netcp_register_module(struct netcp_module *module)
349 {
350 	struct netcp_device *netcp_device;
351 	struct netcp_module *tmp;
352 	int ret;
353 
354 	if (!module->name) {
355 		WARN(1, "error registering netcp module: no name\n");
356 		return -EINVAL;
357 	}
358 
359 	if (!module->probe) {
360 		WARN(1, "error registering netcp module: no probe\n");
361 		return -EINVAL;
362 	}
363 
364 	mutex_lock(&netcp_modules_lock);
365 
366 	for_each_netcp_module(tmp) {
367 		if (!strcasecmp(tmp->name, module->name)) {
368 			mutex_unlock(&netcp_modules_lock);
369 			return -EEXIST;
370 		}
371 	}
372 	list_add_tail(&module->module_list, &netcp_modules);
373 
374 	list_for_each_entry(netcp_device, &netcp_devices, device_list) {
375 		ret = netcp_module_probe(netcp_device, module);
376 		if (ret < 0)
377 			goto fail;
378 	}
379 	mutex_unlock(&netcp_modules_lock);
380 	return 0;
381 
382 fail:
383 	mutex_unlock(&netcp_modules_lock);
384 	netcp_unregister_module(module);
385 	return ret;
386 }
387 EXPORT_SYMBOL_GPL(netcp_register_module);
388 
389 static void netcp_release_module(struct netcp_device *netcp_device,
390 				 struct netcp_module *module)
391 {
392 	struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
393 	struct netcp_intf *netcp_intf, *netcp_tmp;
394 	struct device *dev = netcp_device->device;
395 
396 	/* Release the module from each interface */
397 	list_for_each_entry_safe(netcp_intf, netcp_tmp,
398 				 &netcp_device->interface_head,
399 				 interface_list) {
400 		struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
401 
402 		list_for_each_entry_safe(intf_modpriv, intf_tmp,
403 					 &netcp_intf->module_head,
404 					 intf_list) {
405 			if (intf_modpriv->netcp_module == module) {
406 				module->release(intf_modpriv->module_priv);
407 				list_del(&intf_modpriv->intf_list);
408 				devm_kfree(dev, intf_modpriv);
409 				break;
410 			}
411 		}
412 	}
413 
414 	/* Remove the module from each instance */
415 	list_for_each_entry_safe(inst_modpriv, inst_tmp,
416 				 &netcp_device->modpriv_head, inst_list) {
417 		if (inst_modpriv->netcp_module == module) {
418 			module->remove(netcp_device,
419 				       inst_modpriv->module_priv);
420 			list_del(&inst_modpriv->inst_list);
421 			devm_kfree(dev, inst_modpriv);
422 			break;
423 		}
424 	}
425 }
426 
427 void netcp_unregister_module(struct netcp_module *module)
428 {
429 	struct netcp_device *netcp_device;
430 	struct netcp_module *module_tmp;
431 
432 	mutex_lock(&netcp_modules_lock);
433 
434 	list_for_each_entry(netcp_device, &netcp_devices, device_list) {
435 		netcp_release_module(netcp_device, module);
436 	}
437 
438 	/* Remove the module from the module list */
439 	for_each_netcp_module(module_tmp) {
440 		if (module == module_tmp) {
441 			list_del(&module->module_list);
442 			break;
443 		}
444 	}
445 
446 	mutex_unlock(&netcp_modules_lock);
447 }
448 EXPORT_SYMBOL_GPL(netcp_unregister_module);
449 
450 void *netcp_module_get_intf_data(struct netcp_module *module,
451 				 struct netcp_intf *intf)
452 {
453 	struct netcp_intf_modpriv *intf_modpriv;
454 
455 	list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
456 		if (intf_modpriv->netcp_module == module)
457 			return intf_modpriv->module_priv;
458 	return NULL;
459 }
460 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
461 
462 /* Module TX and RX Hook management */
463 struct netcp_hook_list {
464 	struct list_head	 list;
465 	netcp_hook_rtn		*hook_rtn;
466 	void			*hook_data;
467 	int			 order;
468 };
469 
470 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
471 			  netcp_hook_rtn *hook_rtn, void *hook_data)
472 {
473 	struct netcp_hook_list *entry;
474 	struct netcp_hook_list *next;
475 	unsigned long flags;
476 
477 	entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
478 	if (!entry)
479 		return -ENOMEM;
480 
481 	entry->hook_rtn  = hook_rtn;
482 	entry->hook_data = hook_data;
483 	entry->order     = order;
484 
485 	spin_lock_irqsave(&netcp_priv->lock, flags);
486 	list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
487 		if (next->order > order)
488 			break;
489 	}
490 	__list_add(&entry->list, next->list.prev, &next->list);
491 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
492 
493 	return 0;
494 }
495 EXPORT_SYMBOL_GPL(netcp_register_txhook);
496 
497 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
498 			    netcp_hook_rtn *hook_rtn, void *hook_data)
499 {
500 	struct netcp_hook_list *next, *n;
501 	unsigned long flags;
502 
503 	spin_lock_irqsave(&netcp_priv->lock, flags);
504 	list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
505 		if ((next->order     == order) &&
506 		    (next->hook_rtn  == hook_rtn) &&
507 		    (next->hook_data == hook_data)) {
508 			list_del(&next->list);
509 			spin_unlock_irqrestore(&netcp_priv->lock, flags);
510 			devm_kfree(netcp_priv->dev, next);
511 			return 0;
512 		}
513 	}
514 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
515 	return -ENOENT;
516 }
517 EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
518 
519 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
520 			  netcp_hook_rtn *hook_rtn, void *hook_data)
521 {
522 	struct netcp_hook_list *entry;
523 	struct netcp_hook_list *next;
524 	unsigned long flags;
525 
526 	entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
527 	if (!entry)
528 		return -ENOMEM;
529 
530 	entry->hook_rtn  = hook_rtn;
531 	entry->hook_data = hook_data;
532 	entry->order     = order;
533 
534 	spin_lock_irqsave(&netcp_priv->lock, flags);
535 	list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
536 		if (next->order > order)
537 			break;
538 	}
539 	__list_add(&entry->list, next->list.prev, &next->list);
540 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
541 
542 	return 0;
543 }
544 EXPORT_SYMBOL_GPL(netcp_register_rxhook);
545 
546 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
547 			    netcp_hook_rtn *hook_rtn, void *hook_data)
548 {
549 	struct netcp_hook_list *next, *n;
550 	unsigned long flags;
551 
552 	spin_lock_irqsave(&netcp_priv->lock, flags);
553 	list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
554 		if ((next->order     == order) &&
555 		    (next->hook_rtn  == hook_rtn) &&
556 		    (next->hook_data == hook_data)) {
557 			list_del(&next->list);
558 			spin_unlock_irqrestore(&netcp_priv->lock, flags);
559 			devm_kfree(netcp_priv->dev, next);
560 			return 0;
561 		}
562 	}
563 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
564 
565 	return -ENOENT;
566 }
567 EXPORT_SYMBOL_GPL(netcp_unregister_rxhook);
568 
569 static void netcp_frag_free(bool is_frag, void *ptr)
570 {
571 	if (is_frag)
572 		skb_free_frag(ptr);
573 	else
574 		kfree(ptr);
575 }
576 
577 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
578 				     struct knav_dma_desc *desc)
579 {
580 	struct knav_dma_desc *ndesc;
581 	dma_addr_t dma_desc, dma_buf;
582 	unsigned int buf_len, dma_sz = sizeof(*ndesc);
583 	void *buf_ptr;
584 	u32 tmp;
585 
586 	get_words(&dma_desc, 1, &desc->next_desc);
587 
588 	while (dma_desc) {
589 		ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
590 		if (unlikely(!ndesc)) {
591 			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
592 			break;
593 		}
594 		get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
595 		/* warning!!!! We are retrieving the virtual ptr in the sw_data
596 		 * field as a 32bit value. Will not work on 64bit machines
597 		 */
598 		buf_ptr = (void *)GET_SW_DATA0(ndesc);
599 		buf_len = (int)GET_SW_DATA1(desc);
600 		dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
601 		__free_page(buf_ptr);
602 		knav_pool_desc_put(netcp->rx_pool, desc);
603 	}
604 	/* warning!!!! We are retrieving the virtual ptr in the sw_data
605 	 * field as a 32bit value. Will not work on 64bit machines
606 	 */
607 	buf_ptr = (void *)GET_SW_DATA0(desc);
608 	buf_len = (int)GET_SW_DATA1(desc);
609 
610 	if (buf_ptr)
611 		netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
612 	knav_pool_desc_put(netcp->rx_pool, desc);
613 }
614 
615 static void netcp_empty_rx_queue(struct netcp_intf *netcp)
616 {
617 	struct netcp_stats *rx_stats = &netcp->stats;
618 	struct knav_dma_desc *desc;
619 	unsigned int dma_sz;
620 	dma_addr_t dma;
621 
622 	for (; ;) {
623 		dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
624 		if (!dma)
625 			break;
626 
627 		desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
628 		if (unlikely(!desc)) {
629 			dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
630 				__func__);
631 			rx_stats->rx_errors++;
632 			continue;
633 		}
634 		netcp_free_rx_desc_chain(netcp, desc);
635 		rx_stats->rx_dropped++;
636 	}
637 }
638 
639 static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
640 {
641 	struct netcp_stats *rx_stats = &netcp->stats;
642 	unsigned int dma_sz, buf_len, org_buf_len;
643 	struct knav_dma_desc *desc, *ndesc;
644 	unsigned int pkt_sz = 0, accum_sz;
645 	struct netcp_hook_list *rx_hook;
646 	dma_addr_t dma_desc, dma_buff;
647 	struct netcp_packet p_info;
648 	struct sk_buff *skb;
649 	void *org_buf_ptr;
650 	u32 tmp;
651 
652 	dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
653 	if (!dma_desc)
654 		return -1;
655 
656 	desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
657 	if (unlikely(!desc)) {
658 		dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
659 		return 0;
660 	}
661 
662 	get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
663 	/* warning!!!! We are retrieving the virtual ptr in the sw_data
664 	 * field as a 32bit value. Will not work on 64bit machines
665 	 */
666 	org_buf_ptr = (void *)GET_SW_DATA0(desc);
667 	org_buf_len = (int)GET_SW_DATA1(desc);
668 
669 	if (unlikely(!org_buf_ptr)) {
670 		dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
671 		goto free_desc;
672 	}
673 
674 	pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
675 	accum_sz = buf_len;
676 	dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
677 
678 	/* Build a new sk_buff for the primary buffer */
679 	skb = build_skb(org_buf_ptr, org_buf_len);
680 	if (unlikely(!skb)) {
681 		dev_err(netcp->ndev_dev, "build_skb() failed\n");
682 		goto free_desc;
683 	}
684 
685 	/* update data, tail and len */
686 	skb_reserve(skb, NETCP_SOP_OFFSET);
687 	__skb_put(skb, buf_len);
688 
689 	/* Fill in the page fragment list */
690 	while (dma_desc) {
691 		struct page *page;
692 
693 		ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
694 		if (unlikely(!ndesc)) {
695 			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
696 			goto free_desc;
697 		}
698 
699 		get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
700 		/* warning!!!! We are retrieving the virtual ptr in the sw_data
701 		 * field as a 32bit value. Will not work on 64bit machines
702 		 */
703 		page = (struct page *)GET_SW_DATA0(ndesc);
704 
705 		if (likely(dma_buff && buf_len && page)) {
706 			dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
707 				       DMA_FROM_DEVICE);
708 		} else {
709 			dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n",
710 				&dma_buff, buf_len, page);
711 			goto free_desc;
712 		}
713 
714 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
715 				offset_in_page(dma_buff), buf_len, PAGE_SIZE);
716 		accum_sz += buf_len;
717 
718 		/* Free the descriptor */
719 		knav_pool_desc_put(netcp->rx_pool, ndesc);
720 	}
721 
722 	/* check for packet len and warn */
723 	if (unlikely(pkt_sz != accum_sz))
724 		dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
725 			pkt_sz, accum_sz);
726 
727 	/* Newer version of the Ethernet switch can trim the Ethernet FCS
728 	 * from the packet and is indicated in hw_cap. So trim it only for
729 	 * older h/w
730 	 */
731 	if (!(netcp->hw_cap & ETH_SW_CAN_REMOVE_ETH_FCS))
732 		__pskb_trim(skb, skb->len - ETH_FCS_LEN);
733 
734 	/* Call each of the RX hooks */
735 	p_info.skb = skb;
736 	skb->dev = netcp->ndev;
737 	p_info.rxtstamp_complete = false;
738 	get_desc_info(&tmp, &p_info.eflags, desc);
739 	p_info.epib = desc->epib;
740 	p_info.psdata = (u32 __force *)desc->psdata;
741 	p_info.eflags = ((p_info.eflags >> KNAV_DMA_DESC_EFLAGS_SHIFT) &
742 			 KNAV_DMA_DESC_EFLAGS_MASK);
743 	list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
744 		int ret;
745 
746 		ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
747 					&p_info);
748 		if (unlikely(ret)) {
749 			dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
750 				rx_hook->order, ret);
751 			/* Free the primary descriptor */
752 			rx_stats->rx_dropped++;
753 			knav_pool_desc_put(netcp->rx_pool, desc);
754 			dev_kfree_skb(skb);
755 			return 0;
756 		}
757 	}
758 	/* Free the primary descriptor */
759 	knav_pool_desc_put(netcp->rx_pool, desc);
760 
761 	u64_stats_update_begin(&rx_stats->syncp_rx);
762 	rx_stats->rx_packets++;
763 	rx_stats->rx_bytes += skb->len;
764 	u64_stats_update_end(&rx_stats->syncp_rx);
765 
766 	/* push skb up the stack */
767 	skb->protocol = eth_type_trans(skb, netcp->ndev);
768 	netif_receive_skb(skb);
769 	return 0;
770 
771 free_desc:
772 	netcp_free_rx_desc_chain(netcp, desc);
773 	rx_stats->rx_errors++;
774 	return 0;
775 }
776 
777 static int netcp_process_rx_packets(struct netcp_intf *netcp,
778 				    unsigned int budget)
779 {
780 	int i;
781 
782 	for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
783 		;
784 	return i;
785 }
786 
787 /* Release descriptors and attached buffers from Rx FDQ */
788 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
789 {
790 	struct knav_dma_desc *desc;
791 	unsigned int buf_len, dma_sz;
792 	dma_addr_t dma;
793 	void *buf_ptr;
794 
795 	/* Allocate descriptor */
796 	while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
797 		desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
798 		if (unlikely(!desc)) {
799 			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
800 			continue;
801 		}
802 
803 		get_org_pkt_info(&dma, &buf_len, desc);
804 		/* warning!!!! We are retrieving the virtual ptr in the sw_data
805 		 * field as a 32bit value. Will not work on 64bit machines
806 		 */
807 		buf_ptr = (void *)GET_SW_DATA0(desc);
808 
809 		if (unlikely(!dma)) {
810 			dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
811 			knav_pool_desc_put(netcp->rx_pool, desc);
812 			continue;
813 		}
814 
815 		if (unlikely(!buf_ptr)) {
816 			dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
817 			knav_pool_desc_put(netcp->rx_pool, desc);
818 			continue;
819 		}
820 
821 		if (fdq == 0) {
822 			dma_unmap_single(netcp->dev, dma, buf_len,
823 					 DMA_FROM_DEVICE);
824 			netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
825 		} else {
826 			dma_unmap_page(netcp->dev, dma, buf_len,
827 				       DMA_FROM_DEVICE);
828 			__free_page(buf_ptr);
829 		}
830 
831 		knav_pool_desc_put(netcp->rx_pool, desc);
832 	}
833 }
834 
835 static void netcp_rxpool_free(struct netcp_intf *netcp)
836 {
837 	int i;
838 
839 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
840 	     !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
841 		netcp_free_rx_buf(netcp, i);
842 
843 	if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
844 		dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
845 			netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
846 
847 	knav_pool_destroy(netcp->rx_pool);
848 	netcp->rx_pool = NULL;
849 }
850 
851 static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
852 {
853 	struct knav_dma_desc *hwdesc;
854 	unsigned int buf_len, dma_sz;
855 	u32 desc_info, pkt_info;
856 	struct page *page;
857 	dma_addr_t dma;
858 	void *bufptr;
859 	u32 sw_data[2];
860 
861 	/* Allocate descriptor */
862 	hwdesc = knav_pool_desc_get(netcp->rx_pool);
863 	if (IS_ERR_OR_NULL(hwdesc)) {
864 		dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
865 		return -ENOMEM;
866 	}
867 
868 	if (likely(fdq == 0)) {
869 		unsigned int primary_buf_len;
870 		/* Allocate a primary receive queue entry */
871 		buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
872 		primary_buf_len = SKB_DATA_ALIGN(buf_len) +
873 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
874 
875 		bufptr = netdev_alloc_frag(primary_buf_len);
876 		sw_data[1] = primary_buf_len;
877 
878 		if (unlikely(!bufptr)) {
879 			dev_warn_ratelimited(netcp->ndev_dev,
880 					     "Primary RX buffer alloc failed\n");
881 			goto fail;
882 		}
883 		dma = dma_map_single(netcp->dev, bufptr, buf_len,
884 				     DMA_TO_DEVICE);
885 		if (unlikely(dma_mapping_error(netcp->dev, dma)))
886 			goto fail;
887 
888 		/* warning!!!! We are saving the virtual ptr in the sw_data
889 		 * field as a 32bit value. Will not work on 64bit machines
890 		 */
891 		sw_data[0] = (u32)bufptr;
892 	} else {
893 		/* Allocate a secondary receive queue entry */
894 		page = alloc_page(GFP_ATOMIC | GFP_DMA);
895 		if (unlikely(!page)) {
896 			dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
897 			goto fail;
898 		}
899 		buf_len = PAGE_SIZE;
900 		dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
901 		/* warning!!!! We are saving the virtual ptr in the sw_data
902 		 * field as a 32bit value. Will not work on 64bit machines
903 		 */
904 		sw_data[0] = (u32)page;
905 		sw_data[1] = 0;
906 	}
907 
908 	desc_info =  KNAV_DMA_DESC_PS_INFO_IN_DESC;
909 	desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
910 	pkt_info =  KNAV_DMA_DESC_HAS_EPIB;
911 	pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
912 	pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
913 		    KNAV_DMA_DESC_RETQ_SHIFT;
914 	set_org_pkt_info(dma, buf_len, hwdesc);
915 	SET_SW_DATA0(sw_data[0], hwdesc);
916 	SET_SW_DATA1(sw_data[1], hwdesc);
917 	set_desc_info(desc_info, pkt_info, hwdesc);
918 
919 	/* Push to FDQs */
920 	knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
921 			   &dma_sz);
922 	knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
923 	return 0;
924 
925 fail:
926 	knav_pool_desc_put(netcp->rx_pool, hwdesc);
927 	return -ENOMEM;
928 }
929 
930 /* Refill Rx FDQ with descriptors & attached buffers */
931 static void netcp_rxpool_refill(struct netcp_intf *netcp)
932 {
933 	u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
934 	int i, ret = 0;
935 
936 	/* Calculate the FDQ deficit and refill */
937 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
938 		fdq_deficit[i] = netcp->rx_queue_depths[i] -
939 				 knav_queue_get_count(netcp->rx_fdq[i]);
940 
941 		while (fdq_deficit[i]-- && !ret)
942 			ret = netcp_allocate_rx_buf(netcp, i);
943 	} /* end for fdqs */
944 }
945 
946 /* NAPI poll */
947 static int netcp_rx_poll(struct napi_struct *napi, int budget)
948 {
949 	struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
950 						rx_napi);
951 	unsigned int packets;
952 
953 	packets = netcp_process_rx_packets(netcp, budget);
954 
955 	netcp_rxpool_refill(netcp);
956 	if (packets < budget) {
957 		napi_complete_done(&netcp->rx_napi, packets);
958 		knav_queue_enable_notify(netcp->rx_queue);
959 	}
960 
961 	return packets;
962 }
963 
964 static void netcp_rx_notify(void *arg)
965 {
966 	struct netcp_intf *netcp = arg;
967 
968 	knav_queue_disable_notify(netcp->rx_queue);
969 	napi_schedule(&netcp->rx_napi);
970 }
971 
972 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
973 				     struct knav_dma_desc *desc,
974 				     unsigned int desc_sz)
975 {
976 	struct knav_dma_desc *ndesc = desc;
977 	dma_addr_t dma_desc, dma_buf;
978 	unsigned int buf_len;
979 
980 	while (ndesc) {
981 		get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
982 
983 		if (dma_buf && buf_len)
984 			dma_unmap_single(netcp->dev, dma_buf, buf_len,
985 					 DMA_TO_DEVICE);
986 		else
987 			dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n",
988 				 &dma_buf, buf_len);
989 
990 		knav_pool_desc_put(netcp->tx_pool, ndesc);
991 		ndesc = NULL;
992 		if (dma_desc) {
993 			ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
994 						     desc_sz);
995 			if (!ndesc)
996 				dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
997 		}
998 	}
999 }
1000 
1001 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
1002 					  unsigned int budget)
1003 {
1004 	struct netcp_stats *tx_stats = &netcp->stats;
1005 	struct knav_dma_desc *desc;
1006 	struct netcp_tx_cb *tx_cb;
1007 	struct sk_buff *skb;
1008 	unsigned int dma_sz;
1009 	dma_addr_t dma;
1010 	int pkts = 0;
1011 
1012 	while (budget--) {
1013 		dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
1014 		if (!dma)
1015 			break;
1016 		desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
1017 		if (unlikely(!desc)) {
1018 			dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
1019 			tx_stats->tx_errors++;
1020 			continue;
1021 		}
1022 
1023 		/* warning!!!! We are retrieving the virtual ptr in the sw_data
1024 		 * field as a 32bit value. Will not work on 64bit machines
1025 		 */
1026 		skb = (struct sk_buff *)GET_SW_DATA0(desc);
1027 		netcp_free_tx_desc_chain(netcp, desc, dma_sz);
1028 		if (!skb) {
1029 			dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
1030 			tx_stats->tx_errors++;
1031 			continue;
1032 		}
1033 
1034 		tx_cb = (struct netcp_tx_cb *)skb->cb;
1035 		if (tx_cb->txtstamp)
1036 			tx_cb->txtstamp(tx_cb->ts_context, skb);
1037 
1038 		if (netif_subqueue_stopped(netcp->ndev, skb) &&
1039 		    netif_running(netcp->ndev) &&
1040 		    (knav_pool_count(netcp->tx_pool) >
1041 		    netcp->tx_resume_threshold)) {
1042 			u16 subqueue = skb_get_queue_mapping(skb);
1043 
1044 			netif_wake_subqueue(netcp->ndev, subqueue);
1045 		}
1046 
1047 		u64_stats_update_begin(&tx_stats->syncp_tx);
1048 		tx_stats->tx_packets++;
1049 		tx_stats->tx_bytes += skb->len;
1050 		u64_stats_update_end(&tx_stats->syncp_tx);
1051 		dev_kfree_skb(skb);
1052 		pkts++;
1053 	}
1054 	return pkts;
1055 }
1056 
1057 static int netcp_tx_poll(struct napi_struct *napi, int budget)
1058 {
1059 	int packets;
1060 	struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
1061 						tx_napi);
1062 
1063 	packets = netcp_process_tx_compl_packets(netcp, budget);
1064 	if (packets < budget) {
1065 		napi_complete(&netcp->tx_napi);
1066 		knav_queue_enable_notify(netcp->tx_compl_q);
1067 	}
1068 
1069 	return packets;
1070 }
1071 
1072 static void netcp_tx_notify(void *arg)
1073 {
1074 	struct netcp_intf *netcp = arg;
1075 
1076 	knav_queue_disable_notify(netcp->tx_compl_q);
1077 	napi_schedule(&netcp->tx_napi);
1078 }
1079 
1080 static struct knav_dma_desc*
1081 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1082 {
1083 	struct knav_dma_desc *desc, *ndesc, *pdesc;
1084 	unsigned int pkt_len = skb_headlen(skb);
1085 	struct device *dev = netcp->dev;
1086 	dma_addr_t dma_addr;
1087 	unsigned int dma_sz;
1088 	int i;
1089 
1090 	/* Map the linear buffer */
1091 	dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1092 	if (unlikely(dma_mapping_error(dev, dma_addr))) {
1093 		dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1094 		return NULL;
1095 	}
1096 
1097 	desc = knav_pool_desc_get(netcp->tx_pool);
1098 	if (IS_ERR_OR_NULL(desc)) {
1099 		dev_err(netcp->ndev_dev, "out of TX desc\n");
1100 		dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1101 		return NULL;
1102 	}
1103 
1104 	set_pkt_info(dma_addr, pkt_len, 0, desc);
1105 	if (skb_is_nonlinear(skb)) {
1106 		prefetchw(skb_shinfo(skb));
1107 	} else {
1108 		desc->next_desc = 0;
1109 		goto upd_pkt_len;
1110 	}
1111 
1112 	pdesc = desc;
1113 
1114 	/* Handle the case where skb is fragmented in pages */
1115 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1116 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1117 		struct page *page = skb_frag_page(frag);
1118 		u32 page_offset = skb_frag_off(frag);
1119 		u32 buf_len = skb_frag_size(frag);
1120 		dma_addr_t desc_dma;
1121 		u32 desc_dma_32;
1122 
1123 		dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1124 					DMA_TO_DEVICE);
1125 		if (unlikely(!dma_addr)) {
1126 			dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1127 			goto free_descs;
1128 		}
1129 
1130 		ndesc = knav_pool_desc_get(netcp->tx_pool);
1131 		if (IS_ERR_OR_NULL(ndesc)) {
1132 			dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1133 			dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1134 			goto free_descs;
1135 		}
1136 
1137 		desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc);
1138 		set_pkt_info(dma_addr, buf_len, 0, ndesc);
1139 		desc_dma_32 = (u32)desc_dma;
1140 		set_words(&desc_dma_32, 1, &pdesc->next_desc);
1141 		pkt_len += buf_len;
1142 		if (pdesc != desc)
1143 			knav_pool_desc_map(netcp->tx_pool, pdesc,
1144 					   sizeof(*pdesc), &desc_dma, &dma_sz);
1145 		pdesc = ndesc;
1146 	}
1147 	if (pdesc != desc)
1148 		knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1149 				   &dma_addr, &dma_sz);
1150 
1151 	/* frag list based linkage is not supported for now. */
1152 	if (skb_shinfo(skb)->frag_list) {
1153 		dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1154 		goto free_descs;
1155 	}
1156 
1157 upd_pkt_len:
1158 	WARN_ON(pkt_len != skb->len);
1159 
1160 	pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1161 	set_words(&pkt_len, 1, &desc->desc_info);
1162 	return desc;
1163 
1164 free_descs:
1165 	netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1166 	return NULL;
1167 }
1168 
1169 static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1170 			       struct sk_buff *skb,
1171 			       struct knav_dma_desc *desc)
1172 {
1173 	struct netcp_tx_pipe *tx_pipe = NULL;
1174 	struct netcp_hook_list *tx_hook;
1175 	struct netcp_packet p_info;
1176 	struct netcp_tx_cb *tx_cb;
1177 	unsigned int dma_sz;
1178 	dma_addr_t dma;
1179 	u32 tmp = 0;
1180 	int ret = 0;
1181 
1182 	p_info.netcp = netcp;
1183 	p_info.skb = skb;
1184 	p_info.tx_pipe = NULL;
1185 	p_info.psdata_len = 0;
1186 	p_info.ts_context = NULL;
1187 	p_info.txtstamp = NULL;
1188 	p_info.epib = desc->epib;
1189 	p_info.psdata = (u32 __force *)desc->psdata;
1190 	memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32));
1191 
1192 	/* Find out where to inject the packet for transmission */
1193 	list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1194 		ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1195 					&p_info);
1196 		if (unlikely(ret != 0)) {
1197 			dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1198 				tx_hook->order, ret);
1199 			ret = (ret < 0) ? ret : NETDEV_TX_OK;
1200 			goto out;
1201 		}
1202 	}
1203 
1204 	/* Make sure some TX hook claimed the packet */
1205 	tx_pipe = p_info.tx_pipe;
1206 	if (!tx_pipe) {
1207 		dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1208 		ret = -ENXIO;
1209 		goto out;
1210 	}
1211 
1212 	tx_cb = (struct netcp_tx_cb *)skb->cb;
1213 	tx_cb->ts_context = p_info.ts_context;
1214 	tx_cb->txtstamp = p_info.txtstamp;
1215 
1216 	/* update descriptor */
1217 	if (p_info.psdata_len) {
1218 		/* psdata points to both native-endian and device-endian data */
1219 		__le32 *psdata = (void __force *)p_info.psdata;
1220 
1221 		set_words((u32 *)psdata +
1222 			  (KNAV_DMA_NUM_PS_WORDS - p_info.psdata_len),
1223 			  p_info.psdata_len, psdata);
1224 		tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1225 			KNAV_DMA_DESC_PSLEN_SHIFT;
1226 	}
1227 
1228 	tmp |= KNAV_DMA_DESC_HAS_EPIB |
1229 		((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1230 		KNAV_DMA_DESC_RETQ_SHIFT);
1231 
1232 	if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1233 		tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1234 			KNAV_DMA_DESC_PSFLAG_SHIFT);
1235 	}
1236 
1237 	set_words(&tmp, 1, &desc->packet_info);
1238 	/* warning!!!! We are saving the virtual ptr in the sw_data
1239 	 * field as a 32bit value. Will not work on 64bit machines
1240 	 */
1241 	SET_SW_DATA0((u32)skb, desc);
1242 
1243 	if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1244 		tmp = tx_pipe->switch_to_port;
1245 		set_words(&tmp, 1, &desc->tag_info);
1246 	}
1247 
1248 	/* submit packet descriptor */
1249 	ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1250 				 &dma_sz);
1251 	if (unlikely(ret)) {
1252 		dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1253 		ret = -ENOMEM;
1254 		goto out;
1255 	}
1256 	skb_tx_timestamp(skb);
1257 	knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1258 
1259 out:
1260 	return ret;
1261 }
1262 
1263 /* Submit the packet */
1264 static netdev_tx_t netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1265 {
1266 	struct netcp_intf *netcp = netdev_priv(ndev);
1267 	struct netcp_stats *tx_stats = &netcp->stats;
1268 	int subqueue = skb_get_queue_mapping(skb);
1269 	struct knav_dma_desc *desc;
1270 	int desc_count, ret = 0;
1271 
1272 	if (unlikely(skb->len <= 0)) {
1273 		dev_kfree_skb(skb);
1274 		return NETDEV_TX_OK;
1275 	}
1276 
1277 	if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1278 		ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1279 		if (ret < 0) {
1280 			/* If we get here, the skb has already been dropped */
1281 			dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1282 				 ret);
1283 			tx_stats->tx_dropped++;
1284 			return ret;
1285 		}
1286 		skb->len = NETCP_MIN_PACKET_SIZE;
1287 	}
1288 
1289 	desc = netcp_tx_map_skb(skb, netcp);
1290 	if (unlikely(!desc)) {
1291 		netif_stop_subqueue(ndev, subqueue);
1292 		ret = -ENOBUFS;
1293 		goto drop;
1294 	}
1295 
1296 	ret = netcp_tx_submit_skb(netcp, skb, desc);
1297 	if (ret)
1298 		goto drop;
1299 
1300 	/* Check Tx pool count & stop subqueue if needed */
1301 	desc_count = knav_pool_count(netcp->tx_pool);
1302 	if (desc_count < netcp->tx_pause_threshold) {
1303 		dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1304 		netif_stop_subqueue(ndev, subqueue);
1305 	}
1306 	return NETDEV_TX_OK;
1307 
1308 drop:
1309 	tx_stats->tx_dropped++;
1310 	if (desc)
1311 		netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1312 	dev_kfree_skb(skb);
1313 	return ret;
1314 }
1315 
1316 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1317 {
1318 	if (tx_pipe->dma_channel) {
1319 		knav_dma_close_channel(tx_pipe->dma_channel);
1320 		tx_pipe->dma_channel = NULL;
1321 	}
1322 	return 0;
1323 }
1324 EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1325 
1326 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1327 {
1328 	struct device *dev = tx_pipe->netcp_device->device;
1329 	struct knav_dma_cfg config;
1330 	int ret = 0;
1331 	u8 name[16];
1332 
1333 	memset(&config, 0, sizeof(config));
1334 	config.direction = DMA_MEM_TO_DEV;
1335 	config.u.tx.filt_einfo = false;
1336 	config.u.tx.filt_pswords = false;
1337 	config.u.tx.priority = DMA_PRIO_MED_L;
1338 
1339 	tx_pipe->dma_channel = knav_dma_open_channel(dev,
1340 				tx_pipe->dma_chan_name, &config);
1341 	if (IS_ERR(tx_pipe->dma_channel)) {
1342 		dev_err(dev, "failed opening tx chan(%s)\n",
1343 			tx_pipe->dma_chan_name);
1344 		ret = PTR_ERR(tx_pipe->dma_channel);
1345 		goto err;
1346 	}
1347 
1348 	snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1349 	tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1350 					     KNAV_QUEUE_SHARED);
1351 	if (IS_ERR(tx_pipe->dma_queue)) {
1352 		dev_err(dev, "Could not open DMA queue for channel \"%s\": %pe\n",
1353 			name, tx_pipe->dma_queue);
1354 		ret = PTR_ERR(tx_pipe->dma_queue);
1355 		goto err;
1356 	}
1357 
1358 	dev_dbg(dev, "opened tx pipe %s\n", name);
1359 	return 0;
1360 
1361 err:
1362 	if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1363 		knav_dma_close_channel(tx_pipe->dma_channel);
1364 	tx_pipe->dma_channel = NULL;
1365 	return ret;
1366 }
1367 EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1368 
1369 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1370 		      struct netcp_device *netcp_device,
1371 		      const char *dma_chan_name, unsigned int dma_queue_id)
1372 {
1373 	memset(tx_pipe, 0, sizeof(*tx_pipe));
1374 	tx_pipe->netcp_device = netcp_device;
1375 	tx_pipe->dma_chan_name = dma_chan_name;
1376 	tx_pipe->dma_queue_id = dma_queue_id;
1377 	return 0;
1378 }
1379 EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1380 
1381 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1382 					  const u8 *addr,
1383 					  enum netcp_addr_type type)
1384 {
1385 	struct netcp_addr *naddr;
1386 
1387 	list_for_each_entry(naddr, &netcp->addr_list, node) {
1388 		if (naddr->type != type)
1389 			continue;
1390 		if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1391 			continue;
1392 		return naddr;
1393 	}
1394 
1395 	return NULL;
1396 }
1397 
1398 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1399 					 const u8 *addr,
1400 					 enum netcp_addr_type type)
1401 {
1402 	struct netcp_addr *naddr;
1403 
1404 	naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1405 	if (!naddr)
1406 		return NULL;
1407 
1408 	naddr->type = type;
1409 	naddr->flags = 0;
1410 	naddr->netcp = netcp;
1411 	if (addr)
1412 		ether_addr_copy(naddr->addr, addr);
1413 	else
1414 		eth_zero_addr(naddr->addr);
1415 	list_add_tail(&naddr->node, &netcp->addr_list);
1416 
1417 	return naddr;
1418 }
1419 
1420 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1421 {
1422 	list_del(&naddr->node);
1423 	devm_kfree(netcp->dev, naddr);
1424 }
1425 
1426 static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1427 {
1428 	struct netcp_addr *naddr;
1429 
1430 	list_for_each_entry(naddr, &netcp->addr_list, node)
1431 		naddr->flags = 0;
1432 }
1433 
1434 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1435 				enum netcp_addr_type type)
1436 {
1437 	struct netcp_addr *naddr;
1438 
1439 	naddr = netcp_addr_find(netcp, addr, type);
1440 	if (naddr) {
1441 		naddr->flags |= ADDR_VALID;
1442 		return;
1443 	}
1444 
1445 	naddr = netcp_addr_add(netcp, addr, type);
1446 	if (!WARN_ON(!naddr))
1447 		naddr->flags |= ADDR_NEW;
1448 }
1449 
1450 static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1451 {
1452 	struct netcp_addr *naddr, *tmp;
1453 	struct netcp_intf_modpriv *priv;
1454 	struct netcp_module *module;
1455 	int error;
1456 
1457 	list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1458 		if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1459 			continue;
1460 		dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1461 			naddr->addr, naddr->type);
1462 		for_each_module(netcp, priv) {
1463 			module = priv->netcp_module;
1464 			if (!module->del_addr)
1465 				continue;
1466 			error = module->del_addr(priv->module_priv,
1467 						 naddr);
1468 			WARN_ON(error);
1469 		}
1470 		netcp_addr_del(netcp, naddr);
1471 	}
1472 }
1473 
1474 static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1475 {
1476 	struct netcp_addr *naddr, *tmp;
1477 	struct netcp_intf_modpriv *priv;
1478 	struct netcp_module *module;
1479 	int error;
1480 
1481 	list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1482 		if (!(naddr->flags & ADDR_NEW))
1483 			continue;
1484 		dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1485 			naddr->addr, naddr->type);
1486 
1487 		for_each_module(netcp, priv) {
1488 			module = priv->netcp_module;
1489 			if (!module->add_addr)
1490 				continue;
1491 			error = module->add_addr(priv->module_priv, naddr);
1492 			WARN_ON(error);
1493 		}
1494 	}
1495 }
1496 
1497 static int netcp_set_promiscuous(struct netcp_intf *netcp, bool promisc)
1498 {
1499 	struct netcp_intf_modpriv *priv;
1500 	struct netcp_module *module;
1501 	int error;
1502 
1503 	for_each_module(netcp, priv) {
1504 		module = priv->netcp_module;
1505 		if (!module->set_rx_mode)
1506 			continue;
1507 
1508 		error = module->set_rx_mode(priv->module_priv, promisc);
1509 		if (error)
1510 			return error;
1511 	}
1512 	return 0;
1513 }
1514 
1515 static void netcp_set_rx_mode(struct net_device *ndev)
1516 {
1517 	struct netcp_intf *netcp = netdev_priv(ndev);
1518 	struct netdev_hw_addr *ndev_addr;
1519 	bool promisc;
1520 
1521 	promisc = (ndev->flags & IFF_PROMISC ||
1522 		   ndev->flags & IFF_ALLMULTI ||
1523 		   netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1524 
1525 	spin_lock(&netcp->lock);
1526 	/* first clear all marks */
1527 	netcp_addr_clear_mark(netcp);
1528 
1529 	/* next add new entries, mark existing ones */
1530 	netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1531 	for_each_dev_addr(ndev, ndev_addr)
1532 		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1533 	netdev_for_each_uc_addr(ndev_addr, ndev)
1534 		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1535 	netdev_for_each_mc_addr(ndev_addr, ndev)
1536 		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1537 
1538 	if (promisc)
1539 		netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1540 
1541 	/* finally sweep and callout into modules */
1542 	netcp_addr_sweep_del(netcp);
1543 	netcp_addr_sweep_add(netcp);
1544 	netcp_set_promiscuous(netcp, promisc);
1545 	spin_unlock(&netcp->lock);
1546 }
1547 
1548 static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1549 {
1550 	int i;
1551 
1552 	if (netcp->rx_channel) {
1553 		knav_dma_close_channel(netcp->rx_channel);
1554 		netcp->rx_channel = NULL;
1555 	}
1556 
1557 	if (!IS_ERR_OR_NULL(netcp->rx_pool))
1558 		netcp_rxpool_free(netcp);
1559 
1560 	if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1561 		knav_queue_close(netcp->rx_queue);
1562 		netcp->rx_queue = NULL;
1563 	}
1564 
1565 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1566 	     !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1567 		knav_queue_close(netcp->rx_fdq[i]);
1568 		netcp->rx_fdq[i] = NULL;
1569 	}
1570 
1571 	if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1572 		knav_queue_close(netcp->tx_compl_q);
1573 		netcp->tx_compl_q = NULL;
1574 	}
1575 
1576 	if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1577 		knav_pool_destroy(netcp->tx_pool);
1578 		netcp->tx_pool = NULL;
1579 	}
1580 }
1581 
1582 static int netcp_setup_navigator_resources(struct net_device *ndev)
1583 {
1584 	struct netcp_intf *netcp = netdev_priv(ndev);
1585 	struct knav_queue_notify_config notify_cfg;
1586 	struct knav_dma_cfg config;
1587 	u32 last_fdq = 0;
1588 	u8 name[16];
1589 	int ret;
1590 	int i;
1591 
1592 	/* Create Rx/Tx descriptor pools */
1593 	snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1594 	netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1595 						netcp->rx_pool_region_id);
1596 	if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1597 		dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1598 		ret = PTR_ERR(netcp->rx_pool);
1599 		goto fail;
1600 	}
1601 
1602 	snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1603 	netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1604 						netcp->tx_pool_region_id);
1605 	if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1606 		dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1607 		ret = PTR_ERR(netcp->tx_pool);
1608 		goto fail;
1609 	}
1610 
1611 	/* open Tx completion queue */
1612 	snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1613 	netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1614 	if (IS_ERR(netcp->tx_compl_q)) {
1615 		ret = PTR_ERR(netcp->tx_compl_q);
1616 		goto fail;
1617 	}
1618 	netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1619 
1620 	/* Set notification for Tx completion */
1621 	notify_cfg.fn = netcp_tx_notify;
1622 	notify_cfg.fn_arg = netcp;
1623 	ret = knav_queue_device_control(netcp->tx_compl_q,
1624 					KNAV_QUEUE_SET_NOTIFIER,
1625 					(unsigned long)&notify_cfg);
1626 	if (ret)
1627 		goto fail;
1628 
1629 	knav_queue_disable_notify(netcp->tx_compl_q);
1630 
1631 	/* open Rx completion queue */
1632 	snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1633 	netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1634 	if (IS_ERR(netcp->rx_queue)) {
1635 		ret = PTR_ERR(netcp->rx_queue);
1636 		goto fail;
1637 	}
1638 	netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1639 
1640 	/* Set notification for Rx completion */
1641 	notify_cfg.fn = netcp_rx_notify;
1642 	notify_cfg.fn_arg = netcp;
1643 	ret = knav_queue_device_control(netcp->rx_queue,
1644 					KNAV_QUEUE_SET_NOTIFIER,
1645 					(unsigned long)&notify_cfg);
1646 	if (ret)
1647 		goto fail;
1648 
1649 	knav_queue_disable_notify(netcp->rx_queue);
1650 
1651 	/* open Rx FDQs */
1652 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
1653 	     ++i) {
1654 		snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1655 		netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1656 		if (IS_ERR(netcp->rx_fdq[i])) {
1657 			ret = PTR_ERR(netcp->rx_fdq[i]);
1658 			goto fail;
1659 		}
1660 	}
1661 
1662 	memset(&config, 0, sizeof(config));
1663 	config.direction		= DMA_DEV_TO_MEM;
1664 	config.u.rx.einfo_present	= true;
1665 	config.u.rx.psinfo_present	= true;
1666 	config.u.rx.err_mode		= DMA_DROP;
1667 	config.u.rx.desc_type		= DMA_DESC_HOST;
1668 	config.u.rx.psinfo_at_sop	= false;
1669 	config.u.rx.sop_offset		= NETCP_SOP_OFFSET;
1670 	config.u.rx.dst_q		= netcp->rx_queue_id;
1671 	config.u.rx.thresh		= DMA_THRESH_NONE;
1672 
1673 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1674 		if (netcp->rx_fdq[i])
1675 			last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1676 		config.u.rx.fdq[i] = last_fdq;
1677 	}
1678 
1679 	netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1680 					netcp->dma_chan_name, &config);
1681 	if (IS_ERR(netcp->rx_channel)) {
1682 		dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1683 			netcp->dma_chan_name);
1684 		ret = PTR_ERR(netcp->rx_channel);
1685 		goto fail;
1686 	}
1687 
1688 	dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1689 	return 0;
1690 
1691 fail:
1692 	netcp_free_navigator_resources(netcp);
1693 	return ret;
1694 }
1695 
1696 /* Open the device */
1697 static int netcp_ndo_open(struct net_device *ndev)
1698 {
1699 	struct netcp_intf *netcp = netdev_priv(ndev);
1700 	struct netcp_intf_modpriv *intf_modpriv;
1701 	struct netcp_module *module;
1702 	int ret;
1703 
1704 	netif_carrier_off(ndev);
1705 	ret = netcp_setup_navigator_resources(ndev);
1706 	if (ret) {
1707 		dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1708 		goto fail;
1709 	}
1710 
1711 	for_each_module(netcp, intf_modpriv) {
1712 		module = intf_modpriv->netcp_module;
1713 		if (module->open) {
1714 			ret = module->open(intf_modpriv->module_priv, ndev);
1715 			if (ret != 0) {
1716 				dev_err(netcp->ndev_dev, "module open failed\n");
1717 				goto fail_open;
1718 			}
1719 		}
1720 	}
1721 
1722 	napi_enable(&netcp->rx_napi);
1723 	napi_enable(&netcp->tx_napi);
1724 	knav_queue_enable_notify(netcp->tx_compl_q);
1725 	knav_queue_enable_notify(netcp->rx_queue);
1726 	netcp_rxpool_refill(netcp);
1727 	netif_tx_wake_all_queues(ndev);
1728 	dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1729 	return 0;
1730 
1731 fail_open:
1732 	for_each_module(netcp, intf_modpriv) {
1733 		module = intf_modpriv->netcp_module;
1734 		if (module->close)
1735 			module->close(intf_modpriv->module_priv, ndev);
1736 	}
1737 
1738 fail:
1739 	netcp_free_navigator_resources(netcp);
1740 	return ret;
1741 }
1742 
1743 /* Close the device */
1744 static int netcp_ndo_stop(struct net_device *ndev)
1745 {
1746 	struct netcp_intf *netcp = netdev_priv(ndev);
1747 	struct netcp_intf_modpriv *intf_modpriv;
1748 	struct netcp_module *module;
1749 	int err = 0;
1750 
1751 	netif_tx_stop_all_queues(ndev);
1752 	netif_carrier_off(ndev);
1753 	netcp_addr_clear_mark(netcp);
1754 	netcp_addr_sweep_del(netcp);
1755 	knav_queue_disable_notify(netcp->rx_queue);
1756 	knav_queue_disable_notify(netcp->tx_compl_q);
1757 	napi_disable(&netcp->rx_napi);
1758 	napi_disable(&netcp->tx_napi);
1759 
1760 	for_each_module(netcp, intf_modpriv) {
1761 		module = intf_modpriv->netcp_module;
1762 		if (module->close) {
1763 			err = module->close(intf_modpriv->module_priv, ndev);
1764 			if (err != 0)
1765 				dev_err(netcp->ndev_dev, "Close failed\n");
1766 		}
1767 	}
1768 
1769 	/* Recycle Rx descriptors from completion queue */
1770 	netcp_empty_rx_queue(netcp);
1771 
1772 	/* Recycle Tx descriptors from completion queue */
1773 	netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1774 
1775 	if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1776 		dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1777 			netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1778 
1779 	netcp_free_navigator_resources(netcp);
1780 	dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1781 	return 0;
1782 }
1783 
1784 static int netcp_ndo_ioctl(struct net_device *ndev,
1785 			   struct ifreq *req, int cmd)
1786 {
1787 	struct netcp_intf *netcp = netdev_priv(ndev);
1788 	struct netcp_intf_modpriv *intf_modpriv;
1789 	struct netcp_module *module;
1790 	int ret = -1, err = -EOPNOTSUPP;
1791 
1792 	if (!netif_running(ndev))
1793 		return -EINVAL;
1794 
1795 	for_each_module(netcp, intf_modpriv) {
1796 		module = intf_modpriv->netcp_module;
1797 		if (!module->ioctl)
1798 			continue;
1799 
1800 		err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1801 		if ((err < 0) && (err != -EOPNOTSUPP)) {
1802 			ret = err;
1803 			goto out;
1804 		}
1805 		if (err == 0)
1806 			ret = err;
1807 	}
1808 
1809 out:
1810 	return (ret == 0) ? 0 : err;
1811 }
1812 
1813 static void netcp_ndo_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1814 {
1815 	struct netcp_intf *netcp = netdev_priv(ndev);
1816 	unsigned int descs = knav_pool_count(netcp->tx_pool);
1817 
1818 	dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1819 	netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1820 	netif_trans_update(ndev);
1821 	netif_tx_wake_all_queues(ndev);
1822 }
1823 
1824 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1825 {
1826 	struct netcp_intf *netcp = netdev_priv(ndev);
1827 	struct netcp_intf_modpriv *intf_modpriv;
1828 	struct netcp_module *module;
1829 	unsigned long flags;
1830 	int err = 0;
1831 
1832 	dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1833 
1834 	spin_lock_irqsave(&netcp->lock, flags);
1835 	for_each_module(netcp, intf_modpriv) {
1836 		module = intf_modpriv->netcp_module;
1837 		if ((module->add_vid) && (vid != 0)) {
1838 			err = module->add_vid(intf_modpriv->module_priv, vid);
1839 			if (err != 0) {
1840 				dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1841 					vid);
1842 				break;
1843 			}
1844 		}
1845 	}
1846 	spin_unlock_irqrestore(&netcp->lock, flags);
1847 
1848 	return err;
1849 }
1850 
1851 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1852 {
1853 	struct netcp_intf *netcp = netdev_priv(ndev);
1854 	struct netcp_intf_modpriv *intf_modpriv;
1855 	struct netcp_module *module;
1856 	unsigned long flags;
1857 	int err = 0;
1858 
1859 	dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1860 
1861 	spin_lock_irqsave(&netcp->lock, flags);
1862 	for_each_module(netcp, intf_modpriv) {
1863 		module = intf_modpriv->netcp_module;
1864 		if (module->del_vid) {
1865 			err = module->del_vid(intf_modpriv->module_priv, vid);
1866 			if (err != 0) {
1867 				dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1868 					vid);
1869 				break;
1870 			}
1871 		}
1872 	}
1873 	spin_unlock_irqrestore(&netcp->lock, flags);
1874 	return err;
1875 }
1876 
1877 static int netcp_setup_tc(struct net_device *dev, enum tc_setup_type type,
1878 			  void *type_data)
1879 {
1880 	struct tc_mqprio_qopt *mqprio = type_data;
1881 	u8 num_tc;
1882 	int i;
1883 
1884 	/* setup tc must be called under rtnl lock */
1885 	ASSERT_RTNL();
1886 
1887 	if (type != TC_SETUP_QDISC_MQPRIO)
1888 		return -EOPNOTSUPP;
1889 
1890 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1891 	num_tc = mqprio->num_tc;
1892 
1893 	/* Sanity-check the number of traffic classes requested */
1894 	if ((dev->real_num_tx_queues <= 1) ||
1895 	    (dev->real_num_tx_queues < num_tc))
1896 		return -EINVAL;
1897 
1898 	/* Configure traffic class to queue mappings */
1899 	if (num_tc) {
1900 		netdev_set_num_tc(dev, num_tc);
1901 		for (i = 0; i < num_tc; i++)
1902 			netdev_set_tc_queue(dev, i, 1, i);
1903 	} else {
1904 		netdev_reset_tc(dev);
1905 	}
1906 
1907 	return 0;
1908 }
1909 
1910 static void
1911 netcp_get_stats(struct net_device *ndev, struct rtnl_link_stats64 *stats)
1912 {
1913 	struct netcp_intf *netcp = netdev_priv(ndev);
1914 	struct netcp_stats *p = &netcp->stats;
1915 	u64 rxpackets, rxbytes, txpackets, txbytes;
1916 	unsigned int start;
1917 
1918 	do {
1919 		start = u64_stats_fetch_begin(&p->syncp_rx);
1920 		rxpackets       = p->rx_packets;
1921 		rxbytes         = p->rx_bytes;
1922 	} while (u64_stats_fetch_retry(&p->syncp_rx, start));
1923 
1924 	do {
1925 		start = u64_stats_fetch_begin(&p->syncp_tx);
1926 		txpackets       = p->tx_packets;
1927 		txbytes         = p->tx_bytes;
1928 	} while (u64_stats_fetch_retry(&p->syncp_tx, start));
1929 
1930 	stats->rx_packets = rxpackets;
1931 	stats->rx_bytes = rxbytes;
1932 	stats->tx_packets = txpackets;
1933 	stats->tx_bytes = txbytes;
1934 
1935 	/* The following are stored as 32 bit */
1936 	stats->rx_errors = p->rx_errors;
1937 	stats->rx_dropped = p->rx_dropped;
1938 	stats->tx_dropped = p->tx_dropped;
1939 }
1940 
1941 static const struct net_device_ops netcp_netdev_ops = {
1942 	.ndo_open		= netcp_ndo_open,
1943 	.ndo_stop		= netcp_ndo_stop,
1944 	.ndo_start_xmit		= netcp_ndo_start_xmit,
1945 	.ndo_set_rx_mode	= netcp_set_rx_mode,
1946 	.ndo_eth_ioctl           = netcp_ndo_ioctl,
1947 	.ndo_get_stats64        = netcp_get_stats,
1948 	.ndo_set_mac_address	= eth_mac_addr,
1949 	.ndo_validate_addr	= eth_validate_addr,
1950 	.ndo_vlan_rx_add_vid	= netcp_rx_add_vid,
1951 	.ndo_vlan_rx_kill_vid	= netcp_rx_kill_vid,
1952 	.ndo_tx_timeout		= netcp_ndo_tx_timeout,
1953 	.ndo_select_queue	= dev_pick_tx_zero,
1954 	.ndo_setup_tc		= netcp_setup_tc,
1955 };
1956 
1957 static int netcp_create_interface(struct netcp_device *netcp_device,
1958 				  struct device_node *node_interface)
1959 {
1960 	struct device *dev = netcp_device->device;
1961 	struct device_node *node = dev->of_node;
1962 	struct netcp_intf *netcp;
1963 	struct net_device *ndev;
1964 	resource_size_t size;
1965 	struct resource res;
1966 	void __iomem *efuse = NULL;
1967 	u32 efuse_mac = 0;
1968 	u8 efuse_mac_addr[6];
1969 	u32 temp[2];
1970 	int ret = 0;
1971 
1972 	ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1973 	if (!ndev) {
1974 		dev_err(dev, "Error allocating netdev\n");
1975 		return -ENOMEM;
1976 	}
1977 
1978 	ndev->features |= NETIF_F_SG;
1979 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1980 	ndev->hw_features = ndev->features;
1981 	ndev->vlan_features |=  NETIF_F_SG;
1982 
1983 	/* MTU range: 68 - 9486 */
1984 	ndev->min_mtu = ETH_MIN_MTU;
1985 	ndev->max_mtu = NETCP_MAX_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1986 
1987 	netcp = netdev_priv(ndev);
1988 	spin_lock_init(&netcp->lock);
1989 	INIT_LIST_HEAD(&netcp->module_head);
1990 	INIT_LIST_HEAD(&netcp->txhook_list_head);
1991 	INIT_LIST_HEAD(&netcp->rxhook_list_head);
1992 	INIT_LIST_HEAD(&netcp->addr_list);
1993 	u64_stats_init(&netcp->stats.syncp_rx);
1994 	u64_stats_init(&netcp->stats.syncp_tx);
1995 	netcp->netcp_device = netcp_device;
1996 	netcp->dev = netcp_device->device;
1997 	netcp->ndev = ndev;
1998 	netcp->ndev_dev  = &ndev->dev;
1999 	netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
2000 	netcp->tx_pause_threshold = MAX_SKB_FRAGS;
2001 	netcp->tx_resume_threshold = netcp->tx_pause_threshold;
2002 	netcp->node_interface = node_interface;
2003 
2004 	ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
2005 	if (efuse_mac) {
2006 		if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
2007 			dev_err(dev, "could not find efuse-mac reg resource\n");
2008 			ret = -ENODEV;
2009 			goto quit;
2010 		}
2011 		size = resource_size(&res);
2012 
2013 		if (!devm_request_mem_region(dev, res.start, size,
2014 					     dev_name(dev))) {
2015 			dev_err(dev, "could not reserve resource\n");
2016 			ret = -ENOMEM;
2017 			goto quit;
2018 		}
2019 
2020 		efuse = devm_ioremap(dev, res.start, size);
2021 		if (!efuse) {
2022 			dev_err(dev, "could not map resource\n");
2023 			devm_release_mem_region(dev, res.start, size);
2024 			ret = -ENOMEM;
2025 			goto quit;
2026 		}
2027 
2028 		emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
2029 		if (is_valid_ether_addr(efuse_mac_addr))
2030 			eth_hw_addr_set(ndev, efuse_mac_addr);
2031 		else
2032 			eth_hw_addr_random(ndev);
2033 
2034 		devm_iounmap(dev, efuse);
2035 		devm_release_mem_region(dev, res.start, size);
2036 	} else {
2037 		ret = of_get_ethdev_address(node_interface, ndev);
2038 		if (ret)
2039 			eth_hw_addr_random(ndev);
2040 	}
2041 
2042 	ret = of_property_read_string(node_interface, "rx-channel",
2043 				      &netcp->dma_chan_name);
2044 	if (ret < 0) {
2045 		dev_err(dev, "missing \"rx-channel\" parameter\n");
2046 		ret = -ENODEV;
2047 		goto quit;
2048 	}
2049 
2050 	ret = of_property_read_u32(node_interface, "rx-queue",
2051 				   &netcp->rx_queue_id);
2052 	if (ret < 0) {
2053 		dev_warn(dev, "missing \"rx-queue\" parameter\n");
2054 		netcp->rx_queue_id = KNAV_QUEUE_QPEND;
2055 	}
2056 
2057 	ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
2058 					 netcp->rx_queue_depths,
2059 					 KNAV_DMA_FDQ_PER_CHAN);
2060 	if (ret < 0) {
2061 		dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
2062 		netcp->rx_queue_depths[0] = 128;
2063 	}
2064 
2065 	ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
2066 	if (ret < 0) {
2067 		dev_err(dev, "missing \"rx-pool\" parameter\n");
2068 		ret = -ENODEV;
2069 		goto quit;
2070 	}
2071 	netcp->rx_pool_size = temp[0];
2072 	netcp->rx_pool_region_id = temp[1];
2073 
2074 	ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
2075 	if (ret < 0) {
2076 		dev_err(dev, "missing \"tx-pool\" parameter\n");
2077 		ret = -ENODEV;
2078 		goto quit;
2079 	}
2080 	netcp->tx_pool_size = temp[0];
2081 	netcp->tx_pool_region_id = temp[1];
2082 
2083 	if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
2084 		dev_err(dev, "tx-pool size too small, must be at least %ld\n",
2085 			MAX_SKB_FRAGS);
2086 		ret = -ENODEV;
2087 		goto quit;
2088 	}
2089 
2090 	ret = of_property_read_u32(node_interface, "tx-completion-queue",
2091 				   &netcp->tx_compl_qid);
2092 	if (ret < 0) {
2093 		dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
2094 		netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
2095 	}
2096 
2097 	/* NAPI register */
2098 	netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll);
2099 	netif_napi_add_tx(ndev, &netcp->tx_napi, netcp_tx_poll);
2100 
2101 	/* Register the network device */
2102 	ndev->dev_id		= 0;
2103 	ndev->watchdog_timeo	= NETCP_TX_TIMEOUT;
2104 	ndev->netdev_ops	= &netcp_netdev_ops;
2105 	SET_NETDEV_DEV(ndev, dev);
2106 
2107 	list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
2108 	return 0;
2109 
2110 quit:
2111 	free_netdev(ndev);
2112 	return ret;
2113 }
2114 
2115 static void netcp_delete_interface(struct netcp_device *netcp_device,
2116 				   struct net_device *ndev)
2117 {
2118 	struct netcp_intf_modpriv *intf_modpriv, *tmp;
2119 	struct netcp_intf *netcp = netdev_priv(ndev);
2120 	struct netcp_module *module;
2121 
2122 	dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2123 		ndev->name);
2124 
2125 	/* Notify each of the modules that the interface is going away */
2126 	list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2127 				 intf_list) {
2128 		module = intf_modpriv->netcp_module;
2129 		dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2130 			module->name);
2131 		if (module->release)
2132 			module->release(intf_modpriv->module_priv);
2133 		list_del(&intf_modpriv->intf_list);
2134 	}
2135 	WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2136 	     ndev->name);
2137 
2138 	list_del(&netcp->interface_list);
2139 
2140 	of_node_put(netcp->node_interface);
2141 	unregister_netdev(ndev);
2142 	free_netdev(ndev);
2143 }
2144 
2145 static int netcp_probe(struct platform_device *pdev)
2146 {
2147 	struct device_node *node = pdev->dev.of_node;
2148 	struct netcp_intf *netcp_intf, *netcp_tmp;
2149 	struct device_node *child, *interfaces;
2150 	struct netcp_device *netcp_device;
2151 	struct device *dev = &pdev->dev;
2152 	struct netcp_module *module;
2153 	int ret;
2154 
2155 	if (!knav_dma_device_ready() ||
2156 	    !knav_qmss_device_ready())
2157 		return -EPROBE_DEFER;
2158 
2159 	if (!node) {
2160 		dev_err(dev, "could not find device info\n");
2161 		return -ENODEV;
2162 	}
2163 
2164 	/* Allocate a new NETCP device instance */
2165 	netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2166 	if (!netcp_device)
2167 		return -ENOMEM;
2168 
2169 	pm_runtime_enable(&pdev->dev);
2170 	ret = pm_runtime_get_sync(&pdev->dev);
2171 	if (ret < 0) {
2172 		dev_err(dev, "Failed to enable NETCP power-domain\n");
2173 		pm_runtime_disable(&pdev->dev);
2174 		return ret;
2175 	}
2176 
2177 	/* Initialize the NETCP device instance */
2178 	INIT_LIST_HEAD(&netcp_device->interface_head);
2179 	INIT_LIST_HEAD(&netcp_device->modpriv_head);
2180 	netcp_device->device = dev;
2181 	platform_set_drvdata(pdev, netcp_device);
2182 
2183 	/* create interfaces */
2184 	interfaces = of_get_child_by_name(node, "netcp-interfaces");
2185 	if (!interfaces) {
2186 		dev_err(dev, "could not find netcp-interfaces node\n");
2187 		ret = -ENODEV;
2188 		goto probe_quit;
2189 	}
2190 
2191 	for_each_available_child_of_node(interfaces, child) {
2192 		ret = netcp_create_interface(netcp_device, child);
2193 		if (ret) {
2194 			dev_err(dev, "could not create interface(%pOFn)\n",
2195 				child);
2196 			goto probe_quit_interface;
2197 		}
2198 	}
2199 
2200 	of_node_put(interfaces);
2201 
2202 	/* Add the device instance to the list */
2203 	list_add_tail(&netcp_device->device_list, &netcp_devices);
2204 
2205 	/* Probe & attach any modules already registered */
2206 	mutex_lock(&netcp_modules_lock);
2207 	for_each_netcp_module(module) {
2208 		ret = netcp_module_probe(netcp_device, module);
2209 		if (ret < 0)
2210 			dev_err(dev, "module(%s) probe failed\n", module->name);
2211 	}
2212 	mutex_unlock(&netcp_modules_lock);
2213 	return 0;
2214 
2215 probe_quit_interface:
2216 	list_for_each_entry_safe(netcp_intf, netcp_tmp,
2217 				 &netcp_device->interface_head,
2218 				 interface_list) {
2219 		netcp_delete_interface(netcp_device, netcp_intf->ndev);
2220 	}
2221 
2222 	of_node_put(interfaces);
2223 
2224 probe_quit:
2225 	pm_runtime_put_sync(&pdev->dev);
2226 	pm_runtime_disable(&pdev->dev);
2227 	platform_set_drvdata(pdev, NULL);
2228 	return ret;
2229 }
2230 
2231 static int netcp_remove(struct platform_device *pdev)
2232 {
2233 	struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2234 	struct netcp_intf *netcp_intf, *netcp_tmp;
2235 	struct netcp_inst_modpriv *inst_modpriv, *tmp;
2236 	struct netcp_module *module;
2237 
2238 	list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2239 				 inst_list) {
2240 		module = inst_modpriv->netcp_module;
2241 		dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2242 		module->remove(netcp_device, inst_modpriv->module_priv);
2243 		list_del(&inst_modpriv->inst_list);
2244 	}
2245 
2246 	/* now that all modules are removed, clean up the interfaces */
2247 	list_for_each_entry_safe(netcp_intf, netcp_tmp,
2248 				 &netcp_device->interface_head,
2249 				 interface_list) {
2250 		netcp_delete_interface(netcp_device, netcp_intf->ndev);
2251 	}
2252 
2253 	WARN(!list_empty(&netcp_device->interface_head),
2254 	     "%s interface list not empty!\n", pdev->name);
2255 
2256 	pm_runtime_put_sync(&pdev->dev);
2257 	pm_runtime_disable(&pdev->dev);
2258 	platform_set_drvdata(pdev, NULL);
2259 	return 0;
2260 }
2261 
2262 static const struct of_device_id of_match[] = {
2263 	{ .compatible = "ti,netcp-1.0", },
2264 	{},
2265 };
2266 MODULE_DEVICE_TABLE(of, of_match);
2267 
2268 static struct platform_driver netcp_driver = {
2269 	.driver = {
2270 		.name		= "netcp-1.0",
2271 		.of_match_table	= of_match,
2272 	},
2273 	.probe = netcp_probe,
2274 	.remove = netcp_remove,
2275 };
2276 module_platform_driver(netcp_driver);
2277 
2278 MODULE_LICENSE("GPL v2");
2279 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2280 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");
2281