1 /* 2 * Keystone NetCP Core driver 3 * 4 * Copyright (C) 2014 Texas Instruments Incorporated 5 * Authors: Sandeep Nair <sandeep_n@ti.com> 6 * Sandeep Paulraj <s-paulraj@ti.com> 7 * Cyril Chemparathy <cyril@ti.com> 8 * Santosh Shilimkar <santosh.shilimkar@ti.com> 9 * Murali Karicheri <m-karicheri2@ti.com> 10 * Wingman Kwok <w-kwok2@ti.com> 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License as 14 * published by the Free Software Foundation version 2. 15 * 16 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 17 * kind, whether express or implied; without even the implied warranty 18 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 */ 21 22 #include <linux/io.h> 23 #include <linux/module.h> 24 #include <linux/of_net.h> 25 #include <linux/of_address.h> 26 #include <linux/if_vlan.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/platform_device.h> 29 #include <linux/soc/ti/knav_qmss.h> 30 #include <linux/soc/ti/knav_dma.h> 31 32 #include "netcp.h" 33 34 #define NETCP_SOP_OFFSET (NET_IP_ALIGN + NET_SKB_PAD) 35 #define NETCP_NAPI_WEIGHT 64 36 #define NETCP_TX_TIMEOUT (5 * HZ) 37 #define NETCP_PACKET_SIZE (ETH_FRAME_LEN + ETH_FCS_LEN) 38 #define NETCP_MIN_PACKET_SIZE ETH_ZLEN 39 #define NETCP_MAX_MCAST_ADDR 16 40 41 #define NETCP_EFUSE_REG_INDEX 0 42 43 #define NETCP_MOD_PROBE_SKIPPED 1 44 #define NETCP_MOD_PROBE_FAILED 2 45 46 #define NETCP_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 47 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 48 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 49 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 50 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 51 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 52 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 53 NETIF_MSG_RX_STATUS) 54 55 #define NETCP_EFUSE_ADDR_SWAP 2 56 57 #define knav_queue_get_id(q) knav_queue_device_control(q, \ 58 KNAV_QUEUE_GET_ID, (unsigned long)NULL) 59 60 #define knav_queue_enable_notify(q) knav_queue_device_control(q, \ 61 KNAV_QUEUE_ENABLE_NOTIFY, \ 62 (unsigned long)NULL) 63 64 #define knav_queue_disable_notify(q) knav_queue_device_control(q, \ 65 KNAV_QUEUE_DISABLE_NOTIFY, \ 66 (unsigned long)NULL) 67 68 #define knav_queue_get_count(q) knav_queue_device_control(q, \ 69 KNAV_QUEUE_GET_COUNT, (unsigned long)NULL) 70 71 #define for_each_netcp_module(module) \ 72 list_for_each_entry(module, &netcp_modules, module_list) 73 74 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \ 75 list_for_each_entry(inst_modpriv, \ 76 &((netcp_device)->modpriv_head), inst_list) 77 78 #define for_each_module(netcp, intf_modpriv) \ 79 list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list) 80 81 /* Module management structures */ 82 struct netcp_device { 83 struct list_head device_list; 84 struct list_head interface_head; 85 struct list_head modpriv_head; 86 struct device *device; 87 }; 88 89 struct netcp_inst_modpriv { 90 struct netcp_device *netcp_device; 91 struct netcp_module *netcp_module; 92 struct list_head inst_list; 93 void *module_priv; 94 }; 95 96 struct netcp_intf_modpriv { 97 struct netcp_intf *netcp_priv; 98 struct netcp_module *netcp_module; 99 struct list_head intf_list; 100 void *module_priv; 101 }; 102 103 static LIST_HEAD(netcp_devices); 104 static LIST_HEAD(netcp_modules); 105 static DEFINE_MUTEX(netcp_modules_lock); 106 107 static int netcp_debug_level = -1; 108 module_param(netcp_debug_level, int, 0); 109 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)"); 110 111 /* Helper functions - Get/Set */ 112 static void get_pkt_info(u32 *buff, u32 *buff_len, u32 *ndesc, 113 struct knav_dma_desc *desc) 114 { 115 *buff_len = desc->buff_len; 116 *buff = desc->buff; 117 *ndesc = desc->next_desc; 118 } 119 120 static void get_pad_info(u32 *pad0, u32 *pad1, struct knav_dma_desc *desc) 121 { 122 *pad0 = desc->pad[0]; 123 *pad1 = desc->pad[1]; 124 } 125 126 static void get_org_pkt_info(u32 *buff, u32 *buff_len, 127 struct knav_dma_desc *desc) 128 { 129 *buff = desc->orig_buff; 130 *buff_len = desc->orig_len; 131 } 132 133 static void get_words(u32 *words, int num_words, u32 *desc) 134 { 135 int i; 136 137 for (i = 0; i < num_words; i++) 138 words[i] = desc[i]; 139 } 140 141 static void set_pkt_info(u32 buff, u32 buff_len, u32 ndesc, 142 struct knav_dma_desc *desc) 143 { 144 desc->buff_len = buff_len; 145 desc->buff = buff; 146 desc->next_desc = ndesc; 147 } 148 149 static void set_desc_info(u32 desc_info, u32 pkt_info, 150 struct knav_dma_desc *desc) 151 { 152 desc->desc_info = desc_info; 153 desc->packet_info = pkt_info; 154 } 155 156 static void set_pad_info(u32 pad0, u32 pad1, struct knav_dma_desc *desc) 157 { 158 desc->pad[0] = pad0; 159 desc->pad[1] = pad1; 160 } 161 162 static void set_org_pkt_info(u32 buff, u32 buff_len, 163 struct knav_dma_desc *desc) 164 { 165 desc->orig_buff = buff; 166 desc->orig_len = buff_len; 167 } 168 169 static void set_words(u32 *words, int num_words, u32 *desc) 170 { 171 int i; 172 173 for (i = 0; i < num_words; i++) 174 desc[i] = words[i]; 175 } 176 177 /* Read the e-fuse value as 32 bit values to be endian independent */ 178 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap) 179 { 180 unsigned int addr0, addr1; 181 182 addr1 = readl(efuse_mac + 4); 183 addr0 = readl(efuse_mac); 184 185 switch (swap) { 186 case NETCP_EFUSE_ADDR_SWAP: 187 addr0 = addr1; 188 addr1 = readl(efuse_mac); 189 break; 190 default: 191 break; 192 } 193 194 x[0] = (addr1 & 0x0000ff00) >> 8; 195 x[1] = addr1 & 0x000000ff; 196 x[2] = (addr0 & 0xff000000) >> 24; 197 x[3] = (addr0 & 0x00ff0000) >> 16; 198 x[4] = (addr0 & 0x0000ff00) >> 8; 199 x[5] = addr0 & 0x000000ff; 200 201 return 0; 202 } 203 204 static const char *netcp_node_name(struct device_node *node) 205 { 206 const char *name; 207 208 if (of_property_read_string(node, "label", &name) < 0) 209 name = node->name; 210 if (!name) 211 name = "unknown"; 212 return name; 213 } 214 215 /* Module management routines */ 216 static int netcp_register_interface(struct netcp_intf *netcp) 217 { 218 int ret; 219 220 ret = register_netdev(netcp->ndev); 221 if (!ret) 222 netcp->netdev_registered = true; 223 return ret; 224 } 225 226 static int netcp_module_probe(struct netcp_device *netcp_device, 227 struct netcp_module *module) 228 { 229 struct device *dev = netcp_device->device; 230 struct device_node *devices, *interface, *node = dev->of_node; 231 struct device_node *child; 232 struct netcp_inst_modpriv *inst_modpriv; 233 struct netcp_intf *netcp_intf; 234 struct netcp_module *tmp; 235 bool primary_module_registered = false; 236 int ret; 237 238 /* Find this module in the sub-tree for this device */ 239 devices = of_get_child_by_name(node, "netcp-devices"); 240 if (!devices) { 241 dev_err(dev, "could not find netcp-devices node\n"); 242 return NETCP_MOD_PROBE_SKIPPED; 243 } 244 245 for_each_available_child_of_node(devices, child) { 246 const char *name = netcp_node_name(child); 247 248 if (!strcasecmp(module->name, name)) 249 break; 250 } 251 252 of_node_put(devices); 253 /* If module not used for this device, skip it */ 254 if (!child) { 255 dev_warn(dev, "module(%s) not used for device\n", module->name); 256 return NETCP_MOD_PROBE_SKIPPED; 257 } 258 259 inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL); 260 if (!inst_modpriv) { 261 of_node_put(child); 262 return -ENOMEM; 263 } 264 265 inst_modpriv->netcp_device = netcp_device; 266 inst_modpriv->netcp_module = module; 267 list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head); 268 269 ret = module->probe(netcp_device, dev, child, 270 &inst_modpriv->module_priv); 271 of_node_put(child); 272 if (ret) { 273 dev_err(dev, "Probe of module(%s) failed with %d\n", 274 module->name, ret); 275 list_del(&inst_modpriv->inst_list); 276 devm_kfree(dev, inst_modpriv); 277 return NETCP_MOD_PROBE_FAILED; 278 } 279 280 /* Attach modules only if the primary module is probed */ 281 for_each_netcp_module(tmp) { 282 if (tmp->primary) 283 primary_module_registered = true; 284 } 285 286 if (!primary_module_registered) 287 return 0; 288 289 /* Attach module to interfaces */ 290 list_for_each_entry(netcp_intf, &netcp_device->interface_head, 291 interface_list) { 292 struct netcp_intf_modpriv *intf_modpriv; 293 294 /* If interface not registered then register now */ 295 if (!netcp_intf->netdev_registered) 296 ret = netcp_register_interface(netcp_intf); 297 298 if (ret) 299 return -ENODEV; 300 301 intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv), 302 GFP_KERNEL); 303 if (!intf_modpriv) 304 return -ENOMEM; 305 306 interface = of_parse_phandle(netcp_intf->node_interface, 307 module->name, 0); 308 309 intf_modpriv->netcp_priv = netcp_intf; 310 intf_modpriv->netcp_module = module; 311 list_add_tail(&intf_modpriv->intf_list, 312 &netcp_intf->module_head); 313 314 ret = module->attach(inst_modpriv->module_priv, 315 netcp_intf->ndev, interface, 316 &intf_modpriv->module_priv); 317 of_node_put(interface); 318 if (ret) { 319 dev_dbg(dev, "Attach of module %s declined with %d\n", 320 module->name, ret); 321 list_del(&intf_modpriv->intf_list); 322 devm_kfree(dev, intf_modpriv); 323 continue; 324 } 325 } 326 return 0; 327 } 328 329 int netcp_register_module(struct netcp_module *module) 330 { 331 struct netcp_device *netcp_device; 332 struct netcp_module *tmp; 333 int ret; 334 335 if (!module->name) { 336 WARN(1, "error registering netcp module: no name\n"); 337 return -EINVAL; 338 } 339 340 if (!module->probe) { 341 WARN(1, "error registering netcp module: no probe\n"); 342 return -EINVAL; 343 } 344 345 mutex_lock(&netcp_modules_lock); 346 347 for_each_netcp_module(tmp) { 348 if (!strcasecmp(tmp->name, module->name)) { 349 mutex_unlock(&netcp_modules_lock); 350 return -EEXIST; 351 } 352 } 353 list_add_tail(&module->module_list, &netcp_modules); 354 355 list_for_each_entry(netcp_device, &netcp_devices, device_list) { 356 ret = netcp_module_probe(netcp_device, module); 357 if (ret < 0) 358 goto fail; 359 } 360 361 mutex_unlock(&netcp_modules_lock); 362 return 0; 363 364 fail: 365 mutex_unlock(&netcp_modules_lock); 366 netcp_unregister_module(module); 367 return ret; 368 } 369 EXPORT_SYMBOL_GPL(netcp_register_module); 370 371 static void netcp_release_module(struct netcp_device *netcp_device, 372 struct netcp_module *module) 373 { 374 struct netcp_inst_modpriv *inst_modpriv, *inst_tmp; 375 struct netcp_intf *netcp_intf, *netcp_tmp; 376 struct device *dev = netcp_device->device; 377 378 /* Release the module from each interface */ 379 list_for_each_entry_safe(netcp_intf, netcp_tmp, 380 &netcp_device->interface_head, 381 interface_list) { 382 struct netcp_intf_modpriv *intf_modpriv, *intf_tmp; 383 384 list_for_each_entry_safe(intf_modpriv, intf_tmp, 385 &netcp_intf->module_head, 386 intf_list) { 387 if (intf_modpriv->netcp_module == module) { 388 module->release(intf_modpriv->module_priv); 389 list_del(&intf_modpriv->intf_list); 390 devm_kfree(dev, intf_modpriv); 391 break; 392 } 393 } 394 } 395 396 /* Remove the module from each instance */ 397 list_for_each_entry_safe(inst_modpriv, inst_tmp, 398 &netcp_device->modpriv_head, inst_list) { 399 if (inst_modpriv->netcp_module == module) { 400 module->remove(netcp_device, 401 inst_modpriv->module_priv); 402 list_del(&inst_modpriv->inst_list); 403 devm_kfree(dev, inst_modpriv); 404 break; 405 } 406 } 407 } 408 409 void netcp_unregister_module(struct netcp_module *module) 410 { 411 struct netcp_device *netcp_device; 412 struct netcp_module *module_tmp; 413 414 mutex_lock(&netcp_modules_lock); 415 416 list_for_each_entry(netcp_device, &netcp_devices, device_list) { 417 netcp_release_module(netcp_device, module); 418 } 419 420 /* Remove the module from the module list */ 421 for_each_netcp_module(module_tmp) { 422 if (module == module_tmp) { 423 list_del(&module->module_list); 424 break; 425 } 426 } 427 428 mutex_unlock(&netcp_modules_lock); 429 } 430 EXPORT_SYMBOL_GPL(netcp_unregister_module); 431 432 void *netcp_module_get_intf_data(struct netcp_module *module, 433 struct netcp_intf *intf) 434 { 435 struct netcp_intf_modpriv *intf_modpriv; 436 437 list_for_each_entry(intf_modpriv, &intf->module_head, intf_list) 438 if (intf_modpriv->netcp_module == module) 439 return intf_modpriv->module_priv; 440 return NULL; 441 } 442 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data); 443 444 /* Module TX and RX Hook management */ 445 struct netcp_hook_list { 446 struct list_head list; 447 netcp_hook_rtn *hook_rtn; 448 void *hook_data; 449 int order; 450 }; 451 452 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order, 453 netcp_hook_rtn *hook_rtn, void *hook_data) 454 { 455 struct netcp_hook_list *entry; 456 struct netcp_hook_list *next; 457 unsigned long flags; 458 459 entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL); 460 if (!entry) 461 return -ENOMEM; 462 463 entry->hook_rtn = hook_rtn; 464 entry->hook_data = hook_data; 465 entry->order = order; 466 467 spin_lock_irqsave(&netcp_priv->lock, flags); 468 list_for_each_entry(next, &netcp_priv->txhook_list_head, list) { 469 if (next->order > order) 470 break; 471 } 472 __list_add(&entry->list, next->list.prev, &next->list); 473 spin_unlock_irqrestore(&netcp_priv->lock, flags); 474 475 return 0; 476 } 477 EXPORT_SYMBOL_GPL(netcp_register_txhook); 478 479 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order, 480 netcp_hook_rtn *hook_rtn, void *hook_data) 481 { 482 struct netcp_hook_list *next, *n; 483 unsigned long flags; 484 485 spin_lock_irqsave(&netcp_priv->lock, flags); 486 list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) { 487 if ((next->order == order) && 488 (next->hook_rtn == hook_rtn) && 489 (next->hook_data == hook_data)) { 490 list_del(&next->list); 491 spin_unlock_irqrestore(&netcp_priv->lock, flags); 492 devm_kfree(netcp_priv->dev, next); 493 return 0; 494 } 495 } 496 spin_unlock_irqrestore(&netcp_priv->lock, flags); 497 return -ENOENT; 498 } 499 EXPORT_SYMBOL_GPL(netcp_unregister_txhook); 500 501 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order, 502 netcp_hook_rtn *hook_rtn, void *hook_data) 503 { 504 struct netcp_hook_list *entry; 505 struct netcp_hook_list *next; 506 unsigned long flags; 507 508 entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL); 509 if (!entry) 510 return -ENOMEM; 511 512 entry->hook_rtn = hook_rtn; 513 entry->hook_data = hook_data; 514 entry->order = order; 515 516 spin_lock_irqsave(&netcp_priv->lock, flags); 517 list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) { 518 if (next->order > order) 519 break; 520 } 521 __list_add(&entry->list, next->list.prev, &next->list); 522 spin_unlock_irqrestore(&netcp_priv->lock, flags); 523 524 return 0; 525 } 526 527 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order, 528 netcp_hook_rtn *hook_rtn, void *hook_data) 529 { 530 struct netcp_hook_list *next, *n; 531 unsigned long flags; 532 533 spin_lock_irqsave(&netcp_priv->lock, flags); 534 list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) { 535 if ((next->order == order) && 536 (next->hook_rtn == hook_rtn) && 537 (next->hook_data == hook_data)) { 538 list_del(&next->list); 539 spin_unlock_irqrestore(&netcp_priv->lock, flags); 540 devm_kfree(netcp_priv->dev, next); 541 return 0; 542 } 543 } 544 spin_unlock_irqrestore(&netcp_priv->lock, flags); 545 546 return -ENOENT; 547 } 548 549 static void netcp_frag_free(bool is_frag, void *ptr) 550 { 551 if (is_frag) 552 skb_free_frag(ptr); 553 else 554 kfree(ptr); 555 } 556 557 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp, 558 struct knav_dma_desc *desc) 559 { 560 struct knav_dma_desc *ndesc; 561 dma_addr_t dma_desc, dma_buf; 562 unsigned int buf_len, dma_sz = sizeof(*ndesc); 563 void *buf_ptr; 564 u32 tmp; 565 566 get_words(&dma_desc, 1, &desc->next_desc); 567 568 while (dma_desc) { 569 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz); 570 if (unlikely(!ndesc)) { 571 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 572 break; 573 } 574 get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc); 575 get_pad_info((u32 *)&buf_ptr, &tmp, ndesc); 576 dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE); 577 __free_page(buf_ptr); 578 knav_pool_desc_put(netcp->rx_pool, desc); 579 } 580 581 get_pad_info((u32 *)&buf_ptr, &buf_len, desc); 582 if (buf_ptr) 583 netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr); 584 knav_pool_desc_put(netcp->rx_pool, desc); 585 } 586 587 static void netcp_empty_rx_queue(struct netcp_intf *netcp) 588 { 589 struct knav_dma_desc *desc; 590 unsigned int dma_sz; 591 dma_addr_t dma; 592 593 for (; ;) { 594 dma = knav_queue_pop(netcp->rx_queue, &dma_sz); 595 if (!dma) 596 break; 597 598 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz); 599 if (unlikely(!desc)) { 600 dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n", 601 __func__); 602 netcp->ndev->stats.rx_errors++; 603 continue; 604 } 605 netcp_free_rx_desc_chain(netcp, desc); 606 netcp->ndev->stats.rx_dropped++; 607 } 608 } 609 610 static int netcp_process_one_rx_packet(struct netcp_intf *netcp) 611 { 612 unsigned int dma_sz, buf_len, org_buf_len; 613 struct knav_dma_desc *desc, *ndesc; 614 unsigned int pkt_sz = 0, accum_sz; 615 struct netcp_hook_list *rx_hook; 616 dma_addr_t dma_desc, dma_buff; 617 struct netcp_packet p_info; 618 struct sk_buff *skb; 619 void *org_buf_ptr; 620 u32 tmp; 621 622 dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz); 623 if (!dma_desc) 624 return -1; 625 626 desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz); 627 if (unlikely(!desc)) { 628 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 629 return 0; 630 } 631 632 get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc); 633 get_pad_info((u32 *)&org_buf_ptr, &org_buf_len, desc); 634 635 if (unlikely(!org_buf_ptr)) { 636 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n"); 637 goto free_desc; 638 } 639 640 pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK; 641 accum_sz = buf_len; 642 dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE); 643 644 /* Build a new sk_buff for the primary buffer */ 645 skb = build_skb(org_buf_ptr, org_buf_len); 646 if (unlikely(!skb)) { 647 dev_err(netcp->ndev_dev, "build_skb() failed\n"); 648 goto free_desc; 649 } 650 651 /* update data, tail and len */ 652 skb_reserve(skb, NETCP_SOP_OFFSET); 653 __skb_put(skb, buf_len); 654 655 /* Fill in the page fragment list */ 656 while (dma_desc) { 657 struct page *page; 658 659 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz); 660 if (unlikely(!ndesc)) { 661 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 662 goto free_desc; 663 } 664 665 get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc); 666 get_pad_info((u32 *)&page, &tmp, ndesc); 667 668 if (likely(dma_buff && buf_len && page)) { 669 dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE, 670 DMA_FROM_DEVICE); 671 } else { 672 dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%p), len(%d), page(%p)\n", 673 (void *)dma_buff, buf_len, page); 674 goto free_desc; 675 } 676 677 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 678 offset_in_page(dma_buff), buf_len, PAGE_SIZE); 679 accum_sz += buf_len; 680 681 /* Free the descriptor */ 682 knav_pool_desc_put(netcp->rx_pool, ndesc); 683 } 684 685 /* Free the primary descriptor */ 686 knav_pool_desc_put(netcp->rx_pool, desc); 687 688 /* check for packet len and warn */ 689 if (unlikely(pkt_sz != accum_sz)) 690 dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n", 691 pkt_sz, accum_sz); 692 693 /* Remove ethernet FCS from the packet */ 694 __pskb_trim(skb, skb->len - ETH_FCS_LEN); 695 696 /* Call each of the RX hooks */ 697 p_info.skb = skb; 698 p_info.rxtstamp_complete = false; 699 list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) { 700 int ret; 701 702 ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data, 703 &p_info); 704 if (unlikely(ret)) { 705 dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n", 706 rx_hook->order, ret); 707 netcp->ndev->stats.rx_errors++; 708 dev_kfree_skb(skb); 709 return 0; 710 } 711 } 712 713 netcp->ndev->stats.rx_packets++; 714 netcp->ndev->stats.rx_bytes += skb->len; 715 716 /* push skb up the stack */ 717 skb->protocol = eth_type_trans(skb, netcp->ndev); 718 netif_receive_skb(skb); 719 return 0; 720 721 free_desc: 722 netcp_free_rx_desc_chain(netcp, desc); 723 netcp->ndev->stats.rx_errors++; 724 return 0; 725 } 726 727 static int netcp_process_rx_packets(struct netcp_intf *netcp, 728 unsigned int budget) 729 { 730 int i; 731 732 for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++) 733 ; 734 return i; 735 } 736 737 /* Release descriptors and attached buffers from Rx FDQ */ 738 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq) 739 { 740 struct knav_dma_desc *desc; 741 unsigned int buf_len, dma_sz; 742 dma_addr_t dma; 743 void *buf_ptr; 744 u32 tmp; 745 746 /* Allocate descriptor */ 747 while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) { 748 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz); 749 if (unlikely(!desc)) { 750 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 751 continue; 752 } 753 754 get_org_pkt_info(&dma, &buf_len, desc); 755 get_pad_info((u32 *)&buf_ptr, &tmp, desc); 756 757 if (unlikely(!dma)) { 758 dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n"); 759 knav_pool_desc_put(netcp->rx_pool, desc); 760 continue; 761 } 762 763 if (unlikely(!buf_ptr)) { 764 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n"); 765 knav_pool_desc_put(netcp->rx_pool, desc); 766 continue; 767 } 768 769 if (fdq == 0) { 770 dma_unmap_single(netcp->dev, dma, buf_len, 771 DMA_FROM_DEVICE); 772 netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr); 773 } else { 774 dma_unmap_page(netcp->dev, dma, buf_len, 775 DMA_FROM_DEVICE); 776 __free_page(buf_ptr); 777 } 778 779 knav_pool_desc_put(netcp->rx_pool, desc); 780 } 781 } 782 783 static void netcp_rxpool_free(struct netcp_intf *netcp) 784 { 785 int i; 786 787 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && 788 !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++) 789 netcp_free_rx_buf(netcp, i); 790 791 if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size) 792 dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n", 793 netcp->rx_pool_size - knav_pool_count(netcp->rx_pool)); 794 795 knav_pool_destroy(netcp->rx_pool); 796 netcp->rx_pool = NULL; 797 } 798 799 static void netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq) 800 { 801 struct knav_dma_desc *hwdesc; 802 unsigned int buf_len, dma_sz; 803 u32 desc_info, pkt_info; 804 struct page *page; 805 dma_addr_t dma; 806 void *bufptr; 807 u32 pad[2]; 808 809 /* Allocate descriptor */ 810 hwdesc = knav_pool_desc_get(netcp->rx_pool); 811 if (IS_ERR_OR_NULL(hwdesc)) { 812 dev_dbg(netcp->ndev_dev, "out of rx pool desc\n"); 813 return; 814 } 815 816 if (likely(fdq == 0)) { 817 unsigned int primary_buf_len; 818 /* Allocate a primary receive queue entry */ 819 buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET; 820 primary_buf_len = SKB_DATA_ALIGN(buf_len) + 821 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 822 823 bufptr = netdev_alloc_frag(primary_buf_len); 824 pad[1] = primary_buf_len; 825 826 if (unlikely(!bufptr)) { 827 dev_warn_ratelimited(netcp->ndev_dev, 828 "Primary RX buffer alloc failed\n"); 829 goto fail; 830 } 831 dma = dma_map_single(netcp->dev, bufptr, buf_len, 832 DMA_TO_DEVICE); 833 if (unlikely(dma_mapping_error(netcp->dev, dma))) 834 goto fail; 835 836 pad[0] = (u32)bufptr; 837 838 } else { 839 /* Allocate a secondary receive queue entry */ 840 page = alloc_page(GFP_ATOMIC | GFP_DMA | __GFP_COLD); 841 if (unlikely(!page)) { 842 dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n"); 843 goto fail; 844 } 845 buf_len = PAGE_SIZE; 846 dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE); 847 pad[0] = (u32)page; 848 pad[1] = 0; 849 } 850 851 desc_info = KNAV_DMA_DESC_PS_INFO_IN_DESC; 852 desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK; 853 pkt_info = KNAV_DMA_DESC_HAS_EPIB; 854 pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT; 855 pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) << 856 KNAV_DMA_DESC_RETQ_SHIFT; 857 set_org_pkt_info(dma, buf_len, hwdesc); 858 set_pad_info(pad[0], pad[1], hwdesc); 859 set_desc_info(desc_info, pkt_info, hwdesc); 860 861 /* Push to FDQs */ 862 knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma, 863 &dma_sz); 864 knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0); 865 return; 866 867 fail: 868 knav_pool_desc_put(netcp->rx_pool, hwdesc); 869 } 870 871 /* Refill Rx FDQ with descriptors & attached buffers */ 872 static void netcp_rxpool_refill(struct netcp_intf *netcp) 873 { 874 u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0}; 875 int i; 876 877 /* Calculate the FDQ deficit and refill */ 878 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) { 879 fdq_deficit[i] = netcp->rx_queue_depths[i] - 880 knav_queue_get_count(netcp->rx_fdq[i]); 881 882 while (fdq_deficit[i]--) 883 netcp_allocate_rx_buf(netcp, i); 884 } /* end for fdqs */ 885 } 886 887 /* NAPI poll */ 888 static int netcp_rx_poll(struct napi_struct *napi, int budget) 889 { 890 struct netcp_intf *netcp = container_of(napi, struct netcp_intf, 891 rx_napi); 892 unsigned int packets; 893 894 packets = netcp_process_rx_packets(netcp, budget); 895 896 if (packets < budget) { 897 napi_complete(&netcp->rx_napi); 898 knav_queue_enable_notify(netcp->rx_queue); 899 } 900 901 netcp_rxpool_refill(netcp); 902 return packets; 903 } 904 905 static void netcp_rx_notify(void *arg) 906 { 907 struct netcp_intf *netcp = arg; 908 909 knav_queue_disable_notify(netcp->rx_queue); 910 napi_schedule(&netcp->rx_napi); 911 } 912 913 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp, 914 struct knav_dma_desc *desc, 915 unsigned int desc_sz) 916 { 917 struct knav_dma_desc *ndesc = desc; 918 dma_addr_t dma_desc, dma_buf; 919 unsigned int buf_len; 920 921 while (ndesc) { 922 get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc); 923 924 if (dma_buf && buf_len) 925 dma_unmap_single(netcp->dev, dma_buf, buf_len, 926 DMA_TO_DEVICE); 927 else 928 dev_warn(netcp->ndev_dev, "bad Tx desc buf(%p), len(%d)\n", 929 (void *)dma_buf, buf_len); 930 931 knav_pool_desc_put(netcp->tx_pool, ndesc); 932 ndesc = NULL; 933 if (dma_desc) { 934 ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc, 935 desc_sz); 936 if (!ndesc) 937 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n"); 938 } 939 } 940 } 941 942 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp, 943 unsigned int budget) 944 { 945 struct knav_dma_desc *desc; 946 struct sk_buff *skb; 947 unsigned int dma_sz; 948 dma_addr_t dma; 949 int pkts = 0; 950 u32 tmp; 951 952 while (budget--) { 953 dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz); 954 if (!dma) 955 break; 956 desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz); 957 if (unlikely(!desc)) { 958 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n"); 959 netcp->ndev->stats.tx_errors++; 960 continue; 961 } 962 963 get_pad_info((u32 *)&skb, &tmp, desc); 964 netcp_free_tx_desc_chain(netcp, desc, dma_sz); 965 if (!skb) { 966 dev_err(netcp->ndev_dev, "No skb in Tx desc\n"); 967 netcp->ndev->stats.tx_errors++; 968 continue; 969 } 970 971 if (netif_subqueue_stopped(netcp->ndev, skb) && 972 netif_running(netcp->ndev) && 973 (knav_pool_count(netcp->tx_pool) > 974 netcp->tx_resume_threshold)) { 975 u16 subqueue = skb_get_queue_mapping(skb); 976 977 netif_wake_subqueue(netcp->ndev, subqueue); 978 } 979 980 netcp->ndev->stats.tx_packets++; 981 netcp->ndev->stats.tx_bytes += skb->len; 982 dev_kfree_skb(skb); 983 pkts++; 984 } 985 return pkts; 986 } 987 988 static int netcp_tx_poll(struct napi_struct *napi, int budget) 989 { 990 int packets; 991 struct netcp_intf *netcp = container_of(napi, struct netcp_intf, 992 tx_napi); 993 994 packets = netcp_process_tx_compl_packets(netcp, budget); 995 if (packets < budget) { 996 napi_complete(&netcp->tx_napi); 997 knav_queue_enable_notify(netcp->tx_compl_q); 998 } 999 1000 return packets; 1001 } 1002 1003 static void netcp_tx_notify(void *arg) 1004 { 1005 struct netcp_intf *netcp = arg; 1006 1007 knav_queue_disable_notify(netcp->tx_compl_q); 1008 napi_schedule(&netcp->tx_napi); 1009 } 1010 1011 static struct knav_dma_desc* 1012 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp) 1013 { 1014 struct knav_dma_desc *desc, *ndesc, *pdesc; 1015 unsigned int pkt_len = skb_headlen(skb); 1016 struct device *dev = netcp->dev; 1017 dma_addr_t dma_addr; 1018 unsigned int dma_sz; 1019 int i; 1020 1021 /* Map the linear buffer */ 1022 dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE); 1023 if (unlikely(dma_mapping_error(dev, dma_addr))) { 1024 dev_err(netcp->ndev_dev, "Failed to map skb buffer\n"); 1025 return NULL; 1026 } 1027 1028 desc = knav_pool_desc_get(netcp->tx_pool); 1029 if (unlikely(IS_ERR_OR_NULL(desc))) { 1030 dev_err(netcp->ndev_dev, "out of TX desc\n"); 1031 dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE); 1032 return NULL; 1033 } 1034 1035 set_pkt_info(dma_addr, pkt_len, 0, desc); 1036 if (skb_is_nonlinear(skb)) { 1037 prefetchw(skb_shinfo(skb)); 1038 } else { 1039 desc->next_desc = 0; 1040 goto upd_pkt_len; 1041 } 1042 1043 pdesc = desc; 1044 1045 /* Handle the case where skb is fragmented in pages */ 1046 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1047 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1048 struct page *page = skb_frag_page(frag); 1049 u32 page_offset = frag->page_offset; 1050 u32 buf_len = skb_frag_size(frag); 1051 dma_addr_t desc_dma; 1052 u32 pkt_info; 1053 1054 dma_addr = dma_map_page(dev, page, page_offset, buf_len, 1055 DMA_TO_DEVICE); 1056 if (unlikely(!dma_addr)) { 1057 dev_err(netcp->ndev_dev, "Failed to map skb page\n"); 1058 goto free_descs; 1059 } 1060 1061 ndesc = knav_pool_desc_get(netcp->tx_pool); 1062 if (unlikely(IS_ERR_OR_NULL(ndesc))) { 1063 dev_err(netcp->ndev_dev, "out of TX desc for frags\n"); 1064 dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE); 1065 goto free_descs; 1066 } 1067 1068 desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, 1069 (void *)ndesc); 1070 pkt_info = 1071 (netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) << 1072 KNAV_DMA_DESC_RETQ_SHIFT; 1073 set_pkt_info(dma_addr, buf_len, 0, ndesc); 1074 set_words(&desc_dma, 1, &pdesc->next_desc); 1075 pkt_len += buf_len; 1076 if (pdesc != desc) 1077 knav_pool_desc_map(netcp->tx_pool, pdesc, 1078 sizeof(*pdesc), &desc_dma, &dma_sz); 1079 pdesc = ndesc; 1080 } 1081 if (pdesc != desc) 1082 knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc), 1083 &dma_addr, &dma_sz); 1084 1085 /* frag list based linkage is not supported for now. */ 1086 if (skb_shinfo(skb)->frag_list) { 1087 dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n"); 1088 goto free_descs; 1089 } 1090 1091 upd_pkt_len: 1092 WARN_ON(pkt_len != skb->len); 1093 1094 pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK; 1095 set_words(&pkt_len, 1, &desc->desc_info); 1096 return desc; 1097 1098 free_descs: 1099 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc)); 1100 return NULL; 1101 } 1102 1103 static int netcp_tx_submit_skb(struct netcp_intf *netcp, 1104 struct sk_buff *skb, 1105 struct knav_dma_desc *desc) 1106 { 1107 struct netcp_tx_pipe *tx_pipe = NULL; 1108 struct netcp_hook_list *tx_hook; 1109 struct netcp_packet p_info; 1110 unsigned int dma_sz; 1111 dma_addr_t dma; 1112 u32 tmp = 0; 1113 int ret = 0; 1114 1115 p_info.netcp = netcp; 1116 p_info.skb = skb; 1117 p_info.tx_pipe = NULL; 1118 p_info.psdata_len = 0; 1119 p_info.ts_context = NULL; 1120 p_info.txtstamp_complete = NULL; 1121 p_info.epib = desc->epib; 1122 p_info.psdata = desc->psdata; 1123 memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(u32)); 1124 1125 /* Find out where to inject the packet for transmission */ 1126 list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) { 1127 ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data, 1128 &p_info); 1129 if (unlikely(ret != 0)) { 1130 dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n", 1131 tx_hook->order, ret); 1132 ret = (ret < 0) ? ret : NETDEV_TX_OK; 1133 goto out; 1134 } 1135 } 1136 1137 /* Make sure some TX hook claimed the packet */ 1138 tx_pipe = p_info.tx_pipe; 1139 if (!tx_pipe) { 1140 dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n"); 1141 ret = -ENXIO; 1142 goto out; 1143 } 1144 1145 /* update descriptor */ 1146 if (p_info.psdata_len) { 1147 u32 *psdata = p_info.psdata; 1148 1149 memmove(p_info.psdata, p_info.psdata + p_info.psdata_len, 1150 p_info.psdata_len); 1151 set_words(psdata, p_info.psdata_len, psdata); 1152 tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) << 1153 KNAV_DMA_DESC_PSLEN_SHIFT; 1154 } 1155 1156 tmp |= KNAV_DMA_DESC_HAS_EPIB | 1157 ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) << 1158 KNAV_DMA_DESC_RETQ_SHIFT); 1159 1160 if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) { 1161 tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) << 1162 KNAV_DMA_DESC_PSFLAG_SHIFT); 1163 } 1164 1165 set_words(&tmp, 1, &desc->packet_info); 1166 set_words((u32 *)&skb, 1, &desc->pad[0]); 1167 1168 if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) { 1169 tmp = tx_pipe->switch_to_port; 1170 set_words((u32 *)&tmp, 1, &desc->tag_info); 1171 } 1172 1173 /* submit packet descriptor */ 1174 ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma, 1175 &dma_sz); 1176 if (unlikely(ret)) { 1177 dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__); 1178 ret = -ENOMEM; 1179 goto out; 1180 } 1181 skb_tx_timestamp(skb); 1182 knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0); 1183 1184 out: 1185 return ret; 1186 } 1187 1188 /* Submit the packet */ 1189 static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev) 1190 { 1191 struct netcp_intf *netcp = netdev_priv(ndev); 1192 int subqueue = skb_get_queue_mapping(skb); 1193 struct knav_dma_desc *desc; 1194 int desc_count, ret = 0; 1195 1196 if (unlikely(skb->len <= 0)) { 1197 dev_kfree_skb(skb); 1198 return NETDEV_TX_OK; 1199 } 1200 1201 if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) { 1202 ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE); 1203 if (ret < 0) { 1204 /* If we get here, the skb has already been dropped */ 1205 dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n", 1206 ret); 1207 ndev->stats.tx_dropped++; 1208 return ret; 1209 } 1210 skb->len = NETCP_MIN_PACKET_SIZE; 1211 } 1212 1213 desc = netcp_tx_map_skb(skb, netcp); 1214 if (unlikely(!desc)) { 1215 netif_stop_subqueue(ndev, subqueue); 1216 ret = -ENOBUFS; 1217 goto drop; 1218 } 1219 1220 ret = netcp_tx_submit_skb(netcp, skb, desc); 1221 if (ret) 1222 goto drop; 1223 1224 ndev->trans_start = jiffies; 1225 1226 /* Check Tx pool count & stop subqueue if needed */ 1227 desc_count = knav_pool_count(netcp->tx_pool); 1228 if (desc_count < netcp->tx_pause_threshold) { 1229 dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count); 1230 netif_stop_subqueue(ndev, subqueue); 1231 } 1232 return NETDEV_TX_OK; 1233 1234 drop: 1235 ndev->stats.tx_dropped++; 1236 if (desc) 1237 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc)); 1238 dev_kfree_skb(skb); 1239 return ret; 1240 } 1241 1242 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe) 1243 { 1244 if (tx_pipe->dma_channel) { 1245 knav_dma_close_channel(tx_pipe->dma_channel); 1246 tx_pipe->dma_channel = NULL; 1247 } 1248 return 0; 1249 } 1250 EXPORT_SYMBOL_GPL(netcp_txpipe_close); 1251 1252 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe) 1253 { 1254 struct device *dev = tx_pipe->netcp_device->device; 1255 struct knav_dma_cfg config; 1256 int ret = 0; 1257 u8 name[16]; 1258 1259 memset(&config, 0, sizeof(config)); 1260 config.direction = DMA_MEM_TO_DEV; 1261 config.u.tx.filt_einfo = false; 1262 config.u.tx.filt_pswords = false; 1263 config.u.tx.priority = DMA_PRIO_MED_L; 1264 1265 tx_pipe->dma_channel = knav_dma_open_channel(dev, 1266 tx_pipe->dma_chan_name, &config); 1267 if (IS_ERR_OR_NULL(tx_pipe->dma_channel)) { 1268 dev_err(dev, "failed opening tx chan(%s)\n", 1269 tx_pipe->dma_chan_name); 1270 goto err; 1271 } 1272 1273 snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev)); 1274 tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id, 1275 KNAV_QUEUE_SHARED); 1276 if (IS_ERR(tx_pipe->dma_queue)) { 1277 dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n", 1278 name, ret); 1279 ret = PTR_ERR(tx_pipe->dma_queue); 1280 goto err; 1281 } 1282 1283 dev_dbg(dev, "opened tx pipe %s\n", name); 1284 return 0; 1285 1286 err: 1287 if (!IS_ERR_OR_NULL(tx_pipe->dma_channel)) 1288 knav_dma_close_channel(tx_pipe->dma_channel); 1289 tx_pipe->dma_channel = NULL; 1290 return ret; 1291 } 1292 EXPORT_SYMBOL_GPL(netcp_txpipe_open); 1293 1294 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe, 1295 struct netcp_device *netcp_device, 1296 const char *dma_chan_name, unsigned int dma_queue_id) 1297 { 1298 memset(tx_pipe, 0, sizeof(*tx_pipe)); 1299 tx_pipe->netcp_device = netcp_device; 1300 tx_pipe->dma_chan_name = dma_chan_name; 1301 tx_pipe->dma_queue_id = dma_queue_id; 1302 return 0; 1303 } 1304 EXPORT_SYMBOL_GPL(netcp_txpipe_init); 1305 1306 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp, 1307 const u8 *addr, 1308 enum netcp_addr_type type) 1309 { 1310 struct netcp_addr *naddr; 1311 1312 list_for_each_entry(naddr, &netcp->addr_list, node) { 1313 if (naddr->type != type) 1314 continue; 1315 if (addr && memcmp(addr, naddr->addr, ETH_ALEN)) 1316 continue; 1317 return naddr; 1318 } 1319 1320 return NULL; 1321 } 1322 1323 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp, 1324 const u8 *addr, 1325 enum netcp_addr_type type) 1326 { 1327 struct netcp_addr *naddr; 1328 1329 naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC); 1330 if (!naddr) 1331 return NULL; 1332 1333 naddr->type = type; 1334 naddr->flags = 0; 1335 naddr->netcp = netcp; 1336 if (addr) 1337 ether_addr_copy(naddr->addr, addr); 1338 else 1339 eth_zero_addr(naddr->addr); 1340 list_add_tail(&naddr->node, &netcp->addr_list); 1341 1342 return naddr; 1343 } 1344 1345 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr) 1346 { 1347 list_del(&naddr->node); 1348 devm_kfree(netcp->dev, naddr); 1349 } 1350 1351 static void netcp_addr_clear_mark(struct netcp_intf *netcp) 1352 { 1353 struct netcp_addr *naddr; 1354 1355 list_for_each_entry(naddr, &netcp->addr_list, node) 1356 naddr->flags = 0; 1357 } 1358 1359 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr, 1360 enum netcp_addr_type type) 1361 { 1362 struct netcp_addr *naddr; 1363 1364 naddr = netcp_addr_find(netcp, addr, type); 1365 if (naddr) { 1366 naddr->flags |= ADDR_VALID; 1367 return; 1368 } 1369 1370 naddr = netcp_addr_add(netcp, addr, type); 1371 if (!WARN_ON(!naddr)) 1372 naddr->flags |= ADDR_NEW; 1373 } 1374 1375 static void netcp_addr_sweep_del(struct netcp_intf *netcp) 1376 { 1377 struct netcp_addr *naddr, *tmp; 1378 struct netcp_intf_modpriv *priv; 1379 struct netcp_module *module; 1380 int error; 1381 1382 list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) { 1383 if (naddr->flags & (ADDR_VALID | ADDR_NEW)) 1384 continue; 1385 dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n", 1386 naddr->addr, naddr->type); 1387 mutex_lock(&netcp_modules_lock); 1388 for_each_module(netcp, priv) { 1389 module = priv->netcp_module; 1390 if (!module->del_addr) 1391 continue; 1392 error = module->del_addr(priv->module_priv, 1393 naddr); 1394 WARN_ON(error); 1395 } 1396 mutex_unlock(&netcp_modules_lock); 1397 netcp_addr_del(netcp, naddr); 1398 } 1399 } 1400 1401 static void netcp_addr_sweep_add(struct netcp_intf *netcp) 1402 { 1403 struct netcp_addr *naddr, *tmp; 1404 struct netcp_intf_modpriv *priv; 1405 struct netcp_module *module; 1406 int error; 1407 1408 list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) { 1409 if (!(naddr->flags & ADDR_NEW)) 1410 continue; 1411 dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n", 1412 naddr->addr, naddr->type); 1413 mutex_lock(&netcp_modules_lock); 1414 for_each_module(netcp, priv) { 1415 module = priv->netcp_module; 1416 if (!module->add_addr) 1417 continue; 1418 error = module->add_addr(priv->module_priv, naddr); 1419 WARN_ON(error); 1420 } 1421 mutex_unlock(&netcp_modules_lock); 1422 } 1423 } 1424 1425 static void netcp_set_rx_mode(struct net_device *ndev) 1426 { 1427 struct netcp_intf *netcp = netdev_priv(ndev); 1428 struct netdev_hw_addr *ndev_addr; 1429 bool promisc; 1430 1431 promisc = (ndev->flags & IFF_PROMISC || 1432 ndev->flags & IFF_ALLMULTI || 1433 netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR); 1434 1435 /* first clear all marks */ 1436 netcp_addr_clear_mark(netcp); 1437 1438 /* next add new entries, mark existing ones */ 1439 netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST); 1440 for_each_dev_addr(ndev, ndev_addr) 1441 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV); 1442 netdev_for_each_uc_addr(ndev_addr, ndev) 1443 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST); 1444 netdev_for_each_mc_addr(ndev_addr, ndev) 1445 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST); 1446 1447 if (promisc) 1448 netcp_addr_add_mark(netcp, NULL, ADDR_ANY); 1449 1450 /* finally sweep and callout into modules */ 1451 netcp_addr_sweep_del(netcp); 1452 netcp_addr_sweep_add(netcp); 1453 } 1454 1455 static void netcp_free_navigator_resources(struct netcp_intf *netcp) 1456 { 1457 int i; 1458 1459 if (netcp->rx_channel) { 1460 knav_dma_close_channel(netcp->rx_channel); 1461 netcp->rx_channel = NULL; 1462 } 1463 1464 if (!IS_ERR_OR_NULL(netcp->rx_pool)) 1465 netcp_rxpool_free(netcp); 1466 1467 if (!IS_ERR_OR_NULL(netcp->rx_queue)) { 1468 knav_queue_close(netcp->rx_queue); 1469 netcp->rx_queue = NULL; 1470 } 1471 1472 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && 1473 !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) { 1474 knav_queue_close(netcp->rx_fdq[i]); 1475 netcp->rx_fdq[i] = NULL; 1476 } 1477 1478 if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) { 1479 knav_queue_close(netcp->tx_compl_q); 1480 netcp->tx_compl_q = NULL; 1481 } 1482 1483 if (!IS_ERR_OR_NULL(netcp->tx_pool)) { 1484 knav_pool_destroy(netcp->tx_pool); 1485 netcp->tx_pool = NULL; 1486 } 1487 } 1488 1489 static int netcp_setup_navigator_resources(struct net_device *ndev) 1490 { 1491 struct netcp_intf *netcp = netdev_priv(ndev); 1492 struct knav_queue_notify_config notify_cfg; 1493 struct knav_dma_cfg config; 1494 u32 last_fdq = 0; 1495 u8 name[16]; 1496 int ret; 1497 int i; 1498 1499 /* Create Rx/Tx descriptor pools */ 1500 snprintf(name, sizeof(name), "rx-pool-%s", ndev->name); 1501 netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size, 1502 netcp->rx_pool_region_id); 1503 if (IS_ERR_OR_NULL(netcp->rx_pool)) { 1504 dev_err(netcp->ndev_dev, "Couldn't create rx pool\n"); 1505 ret = PTR_ERR(netcp->rx_pool); 1506 goto fail; 1507 } 1508 1509 snprintf(name, sizeof(name), "tx-pool-%s", ndev->name); 1510 netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size, 1511 netcp->tx_pool_region_id); 1512 if (IS_ERR_OR_NULL(netcp->tx_pool)) { 1513 dev_err(netcp->ndev_dev, "Couldn't create tx pool\n"); 1514 ret = PTR_ERR(netcp->tx_pool); 1515 goto fail; 1516 } 1517 1518 /* open Tx completion queue */ 1519 snprintf(name, sizeof(name), "tx-compl-%s", ndev->name); 1520 netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0); 1521 if (IS_ERR_OR_NULL(netcp->tx_compl_q)) { 1522 ret = PTR_ERR(netcp->tx_compl_q); 1523 goto fail; 1524 } 1525 netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q); 1526 1527 /* Set notification for Tx completion */ 1528 notify_cfg.fn = netcp_tx_notify; 1529 notify_cfg.fn_arg = netcp; 1530 ret = knav_queue_device_control(netcp->tx_compl_q, 1531 KNAV_QUEUE_SET_NOTIFIER, 1532 (unsigned long)¬ify_cfg); 1533 if (ret) 1534 goto fail; 1535 1536 knav_queue_disable_notify(netcp->tx_compl_q); 1537 1538 /* open Rx completion queue */ 1539 snprintf(name, sizeof(name), "rx-compl-%s", ndev->name); 1540 netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0); 1541 if (IS_ERR_OR_NULL(netcp->rx_queue)) { 1542 ret = PTR_ERR(netcp->rx_queue); 1543 goto fail; 1544 } 1545 netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue); 1546 1547 /* Set notification for Rx completion */ 1548 notify_cfg.fn = netcp_rx_notify; 1549 notify_cfg.fn_arg = netcp; 1550 ret = knav_queue_device_control(netcp->rx_queue, 1551 KNAV_QUEUE_SET_NOTIFIER, 1552 (unsigned long)¬ify_cfg); 1553 if (ret) 1554 goto fail; 1555 1556 knav_queue_disable_notify(netcp->rx_queue); 1557 1558 /* open Rx FDQs */ 1559 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i]; 1560 ++i) { 1561 snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i); 1562 netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0); 1563 if (IS_ERR_OR_NULL(netcp->rx_fdq[i])) { 1564 ret = PTR_ERR(netcp->rx_fdq[i]); 1565 goto fail; 1566 } 1567 } 1568 1569 memset(&config, 0, sizeof(config)); 1570 config.direction = DMA_DEV_TO_MEM; 1571 config.u.rx.einfo_present = true; 1572 config.u.rx.psinfo_present = true; 1573 config.u.rx.err_mode = DMA_DROP; 1574 config.u.rx.desc_type = DMA_DESC_HOST; 1575 config.u.rx.psinfo_at_sop = false; 1576 config.u.rx.sop_offset = NETCP_SOP_OFFSET; 1577 config.u.rx.dst_q = netcp->rx_queue_id; 1578 config.u.rx.thresh = DMA_THRESH_NONE; 1579 1580 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) { 1581 if (netcp->rx_fdq[i]) 1582 last_fdq = knav_queue_get_id(netcp->rx_fdq[i]); 1583 config.u.rx.fdq[i] = last_fdq; 1584 } 1585 1586 netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device, 1587 netcp->dma_chan_name, &config); 1588 if (IS_ERR_OR_NULL(netcp->rx_channel)) { 1589 dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n", 1590 netcp->dma_chan_name); 1591 goto fail; 1592 } 1593 1594 dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel); 1595 return 0; 1596 1597 fail: 1598 netcp_free_navigator_resources(netcp); 1599 return ret; 1600 } 1601 1602 /* Open the device */ 1603 static int netcp_ndo_open(struct net_device *ndev) 1604 { 1605 struct netcp_intf *netcp = netdev_priv(ndev); 1606 struct netcp_intf_modpriv *intf_modpriv; 1607 struct netcp_module *module; 1608 int ret; 1609 1610 netif_carrier_off(ndev); 1611 ret = netcp_setup_navigator_resources(ndev); 1612 if (ret) { 1613 dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n"); 1614 goto fail; 1615 } 1616 1617 mutex_lock(&netcp_modules_lock); 1618 for_each_module(netcp, intf_modpriv) { 1619 module = intf_modpriv->netcp_module; 1620 if (module->open) { 1621 ret = module->open(intf_modpriv->module_priv, ndev); 1622 if (ret != 0) { 1623 dev_err(netcp->ndev_dev, "module open failed\n"); 1624 goto fail_open; 1625 } 1626 } 1627 } 1628 mutex_unlock(&netcp_modules_lock); 1629 1630 napi_enable(&netcp->rx_napi); 1631 napi_enable(&netcp->tx_napi); 1632 knav_queue_enable_notify(netcp->tx_compl_q); 1633 knav_queue_enable_notify(netcp->rx_queue); 1634 netcp_rxpool_refill(netcp); 1635 netif_tx_wake_all_queues(ndev); 1636 dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name); 1637 return 0; 1638 1639 fail_open: 1640 for_each_module(netcp, intf_modpriv) { 1641 module = intf_modpriv->netcp_module; 1642 if (module->close) 1643 module->close(intf_modpriv->module_priv, ndev); 1644 } 1645 mutex_unlock(&netcp_modules_lock); 1646 1647 fail: 1648 netcp_free_navigator_resources(netcp); 1649 return ret; 1650 } 1651 1652 /* Close the device */ 1653 static int netcp_ndo_stop(struct net_device *ndev) 1654 { 1655 struct netcp_intf *netcp = netdev_priv(ndev); 1656 struct netcp_intf_modpriv *intf_modpriv; 1657 struct netcp_module *module; 1658 int err = 0; 1659 1660 netif_tx_stop_all_queues(ndev); 1661 netif_carrier_off(ndev); 1662 netcp_addr_clear_mark(netcp); 1663 netcp_addr_sweep_del(netcp); 1664 knav_queue_disable_notify(netcp->rx_queue); 1665 knav_queue_disable_notify(netcp->tx_compl_q); 1666 napi_disable(&netcp->rx_napi); 1667 napi_disable(&netcp->tx_napi); 1668 1669 mutex_lock(&netcp_modules_lock); 1670 for_each_module(netcp, intf_modpriv) { 1671 module = intf_modpriv->netcp_module; 1672 if (module->close) { 1673 err = module->close(intf_modpriv->module_priv, ndev); 1674 if (err != 0) 1675 dev_err(netcp->ndev_dev, "Close failed\n"); 1676 } 1677 } 1678 mutex_unlock(&netcp_modules_lock); 1679 1680 /* Recycle Rx descriptors from completion queue */ 1681 netcp_empty_rx_queue(netcp); 1682 1683 /* Recycle Tx descriptors from completion queue */ 1684 netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size); 1685 1686 if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size) 1687 dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n", 1688 netcp->tx_pool_size - knav_pool_count(netcp->tx_pool)); 1689 1690 netcp_free_navigator_resources(netcp); 1691 dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name); 1692 return 0; 1693 } 1694 1695 static int netcp_ndo_ioctl(struct net_device *ndev, 1696 struct ifreq *req, int cmd) 1697 { 1698 struct netcp_intf *netcp = netdev_priv(ndev); 1699 struct netcp_intf_modpriv *intf_modpriv; 1700 struct netcp_module *module; 1701 int ret = -1, err = -EOPNOTSUPP; 1702 1703 if (!netif_running(ndev)) 1704 return -EINVAL; 1705 1706 mutex_lock(&netcp_modules_lock); 1707 for_each_module(netcp, intf_modpriv) { 1708 module = intf_modpriv->netcp_module; 1709 if (!module->ioctl) 1710 continue; 1711 1712 err = module->ioctl(intf_modpriv->module_priv, req, cmd); 1713 if ((err < 0) && (err != -EOPNOTSUPP)) { 1714 ret = err; 1715 goto out; 1716 } 1717 if (err == 0) 1718 ret = err; 1719 } 1720 1721 out: 1722 mutex_unlock(&netcp_modules_lock); 1723 return (ret == 0) ? 0 : err; 1724 } 1725 1726 static int netcp_ndo_change_mtu(struct net_device *ndev, int new_mtu) 1727 { 1728 struct netcp_intf *netcp = netdev_priv(ndev); 1729 1730 /* MTU < 68 is an error for IPv4 traffic */ 1731 if ((new_mtu < 68) || 1732 (new_mtu > (NETCP_MAX_FRAME_SIZE - ETH_HLEN - ETH_FCS_LEN))) { 1733 dev_err(netcp->ndev_dev, "Invalid mtu size = %d\n", new_mtu); 1734 return -EINVAL; 1735 } 1736 1737 ndev->mtu = new_mtu; 1738 return 0; 1739 } 1740 1741 static void netcp_ndo_tx_timeout(struct net_device *ndev) 1742 { 1743 struct netcp_intf *netcp = netdev_priv(ndev); 1744 unsigned int descs = knav_pool_count(netcp->tx_pool); 1745 1746 dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs); 1747 netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size); 1748 ndev->trans_start = jiffies; 1749 netif_tx_wake_all_queues(ndev); 1750 } 1751 1752 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 1753 { 1754 struct netcp_intf *netcp = netdev_priv(ndev); 1755 struct netcp_intf_modpriv *intf_modpriv; 1756 struct netcp_module *module; 1757 int err = 0; 1758 1759 dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid); 1760 1761 mutex_lock(&netcp_modules_lock); 1762 for_each_module(netcp, intf_modpriv) { 1763 module = intf_modpriv->netcp_module; 1764 if ((module->add_vid) && (vid != 0)) { 1765 err = module->add_vid(intf_modpriv->module_priv, vid); 1766 if (err != 0) { 1767 dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n", 1768 vid); 1769 break; 1770 } 1771 } 1772 } 1773 mutex_unlock(&netcp_modules_lock); 1774 return err; 1775 } 1776 1777 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 1778 { 1779 struct netcp_intf *netcp = netdev_priv(ndev); 1780 struct netcp_intf_modpriv *intf_modpriv; 1781 struct netcp_module *module; 1782 int err = 0; 1783 1784 dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid); 1785 1786 mutex_lock(&netcp_modules_lock); 1787 for_each_module(netcp, intf_modpriv) { 1788 module = intf_modpriv->netcp_module; 1789 if (module->del_vid) { 1790 err = module->del_vid(intf_modpriv->module_priv, vid); 1791 if (err != 0) { 1792 dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n", 1793 vid); 1794 break; 1795 } 1796 } 1797 } 1798 mutex_unlock(&netcp_modules_lock); 1799 return err; 1800 } 1801 1802 static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb, 1803 void *accel_priv, 1804 select_queue_fallback_t fallback) 1805 { 1806 return 0; 1807 } 1808 1809 static int netcp_setup_tc(struct net_device *dev, u8 num_tc) 1810 { 1811 int i; 1812 1813 /* setup tc must be called under rtnl lock */ 1814 ASSERT_RTNL(); 1815 1816 /* Sanity-check the number of traffic classes requested */ 1817 if ((dev->real_num_tx_queues <= 1) || 1818 (dev->real_num_tx_queues < num_tc)) 1819 return -EINVAL; 1820 1821 /* Configure traffic class to queue mappings */ 1822 if (num_tc) { 1823 netdev_set_num_tc(dev, num_tc); 1824 for (i = 0; i < num_tc; i++) 1825 netdev_set_tc_queue(dev, i, 1, i); 1826 } else { 1827 netdev_reset_tc(dev); 1828 } 1829 1830 return 0; 1831 } 1832 1833 static const struct net_device_ops netcp_netdev_ops = { 1834 .ndo_open = netcp_ndo_open, 1835 .ndo_stop = netcp_ndo_stop, 1836 .ndo_start_xmit = netcp_ndo_start_xmit, 1837 .ndo_set_rx_mode = netcp_set_rx_mode, 1838 .ndo_do_ioctl = netcp_ndo_ioctl, 1839 .ndo_change_mtu = netcp_ndo_change_mtu, 1840 .ndo_set_mac_address = eth_mac_addr, 1841 .ndo_validate_addr = eth_validate_addr, 1842 .ndo_vlan_rx_add_vid = netcp_rx_add_vid, 1843 .ndo_vlan_rx_kill_vid = netcp_rx_kill_vid, 1844 .ndo_tx_timeout = netcp_ndo_tx_timeout, 1845 .ndo_select_queue = netcp_select_queue, 1846 .ndo_setup_tc = netcp_setup_tc, 1847 }; 1848 1849 static int netcp_create_interface(struct netcp_device *netcp_device, 1850 struct device_node *node_interface) 1851 { 1852 struct device *dev = netcp_device->device; 1853 struct device_node *node = dev->of_node; 1854 struct netcp_intf *netcp; 1855 struct net_device *ndev; 1856 resource_size_t size; 1857 struct resource res; 1858 void __iomem *efuse = NULL; 1859 u32 efuse_mac = 0; 1860 const void *mac_addr; 1861 u8 efuse_mac_addr[6]; 1862 u32 temp[2]; 1863 int ret = 0; 1864 1865 ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1); 1866 if (!ndev) { 1867 dev_err(dev, "Error allocating netdev\n"); 1868 return -ENOMEM; 1869 } 1870 1871 ndev->features |= NETIF_F_SG; 1872 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 1873 ndev->hw_features = ndev->features; 1874 ndev->vlan_features |= NETIF_F_SG; 1875 1876 netcp = netdev_priv(ndev); 1877 spin_lock_init(&netcp->lock); 1878 INIT_LIST_HEAD(&netcp->module_head); 1879 INIT_LIST_HEAD(&netcp->txhook_list_head); 1880 INIT_LIST_HEAD(&netcp->rxhook_list_head); 1881 INIT_LIST_HEAD(&netcp->addr_list); 1882 netcp->netcp_device = netcp_device; 1883 netcp->dev = netcp_device->device; 1884 netcp->ndev = ndev; 1885 netcp->ndev_dev = &ndev->dev; 1886 netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG); 1887 netcp->tx_pause_threshold = MAX_SKB_FRAGS; 1888 netcp->tx_resume_threshold = netcp->tx_pause_threshold; 1889 netcp->node_interface = node_interface; 1890 1891 ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac); 1892 if (efuse_mac) { 1893 if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) { 1894 dev_err(dev, "could not find efuse-mac reg resource\n"); 1895 ret = -ENODEV; 1896 goto quit; 1897 } 1898 size = resource_size(&res); 1899 1900 if (!devm_request_mem_region(dev, res.start, size, 1901 dev_name(dev))) { 1902 dev_err(dev, "could not reserve resource\n"); 1903 ret = -ENOMEM; 1904 goto quit; 1905 } 1906 1907 efuse = devm_ioremap_nocache(dev, res.start, size); 1908 if (!efuse) { 1909 dev_err(dev, "could not map resource\n"); 1910 devm_release_mem_region(dev, res.start, size); 1911 ret = -ENOMEM; 1912 goto quit; 1913 } 1914 1915 emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac); 1916 if (is_valid_ether_addr(efuse_mac_addr)) 1917 ether_addr_copy(ndev->dev_addr, efuse_mac_addr); 1918 else 1919 random_ether_addr(ndev->dev_addr); 1920 1921 devm_iounmap(dev, efuse); 1922 devm_release_mem_region(dev, res.start, size); 1923 } else { 1924 mac_addr = of_get_mac_address(node_interface); 1925 if (mac_addr) 1926 ether_addr_copy(ndev->dev_addr, mac_addr); 1927 else 1928 random_ether_addr(ndev->dev_addr); 1929 } 1930 1931 ret = of_property_read_string(node_interface, "rx-channel", 1932 &netcp->dma_chan_name); 1933 if (ret < 0) { 1934 dev_err(dev, "missing \"rx-channel\" parameter\n"); 1935 ret = -ENODEV; 1936 goto quit; 1937 } 1938 1939 ret = of_property_read_u32(node_interface, "rx-queue", 1940 &netcp->rx_queue_id); 1941 if (ret < 0) { 1942 dev_warn(dev, "missing \"rx-queue\" parameter\n"); 1943 netcp->rx_queue_id = KNAV_QUEUE_QPEND; 1944 } 1945 1946 ret = of_property_read_u32_array(node_interface, "rx-queue-depth", 1947 netcp->rx_queue_depths, 1948 KNAV_DMA_FDQ_PER_CHAN); 1949 if (ret < 0) { 1950 dev_err(dev, "missing \"rx-queue-depth\" parameter\n"); 1951 netcp->rx_queue_depths[0] = 128; 1952 } 1953 1954 ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2); 1955 if (ret < 0) { 1956 dev_err(dev, "missing \"rx-pool\" parameter\n"); 1957 ret = -ENODEV; 1958 goto quit; 1959 } 1960 netcp->rx_pool_size = temp[0]; 1961 netcp->rx_pool_region_id = temp[1]; 1962 1963 ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2); 1964 if (ret < 0) { 1965 dev_err(dev, "missing \"tx-pool\" parameter\n"); 1966 ret = -ENODEV; 1967 goto quit; 1968 } 1969 netcp->tx_pool_size = temp[0]; 1970 netcp->tx_pool_region_id = temp[1]; 1971 1972 if (netcp->tx_pool_size < MAX_SKB_FRAGS) { 1973 dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n", 1974 MAX_SKB_FRAGS); 1975 ret = -ENODEV; 1976 goto quit; 1977 } 1978 1979 ret = of_property_read_u32(node_interface, "tx-completion-queue", 1980 &netcp->tx_compl_qid); 1981 if (ret < 0) { 1982 dev_warn(dev, "missing \"tx-completion-queue\" parameter\n"); 1983 netcp->tx_compl_qid = KNAV_QUEUE_QPEND; 1984 } 1985 1986 /* NAPI register */ 1987 netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT); 1988 netif_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT); 1989 1990 /* Register the network device */ 1991 ndev->dev_id = 0; 1992 ndev->watchdog_timeo = NETCP_TX_TIMEOUT; 1993 ndev->netdev_ops = &netcp_netdev_ops; 1994 SET_NETDEV_DEV(ndev, dev); 1995 1996 list_add_tail(&netcp->interface_list, &netcp_device->interface_head); 1997 return 0; 1998 1999 quit: 2000 free_netdev(ndev); 2001 return ret; 2002 } 2003 2004 static void netcp_delete_interface(struct netcp_device *netcp_device, 2005 struct net_device *ndev) 2006 { 2007 struct netcp_intf_modpriv *intf_modpriv, *tmp; 2008 struct netcp_intf *netcp = netdev_priv(ndev); 2009 struct netcp_module *module; 2010 2011 dev_dbg(netcp_device->device, "Removing interface \"%s\"\n", 2012 ndev->name); 2013 2014 /* Notify each of the modules that the interface is going away */ 2015 list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head, 2016 intf_list) { 2017 module = intf_modpriv->netcp_module; 2018 dev_dbg(netcp_device->device, "Releasing module \"%s\"\n", 2019 module->name); 2020 if (module->release) 2021 module->release(intf_modpriv->module_priv); 2022 list_del(&intf_modpriv->intf_list); 2023 kfree(intf_modpriv); 2024 } 2025 WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n", 2026 ndev->name); 2027 2028 list_del(&netcp->interface_list); 2029 2030 of_node_put(netcp->node_interface); 2031 unregister_netdev(ndev); 2032 netif_napi_del(&netcp->rx_napi); 2033 free_netdev(ndev); 2034 } 2035 2036 static int netcp_probe(struct platform_device *pdev) 2037 { 2038 struct device_node *node = pdev->dev.of_node; 2039 struct netcp_intf *netcp_intf, *netcp_tmp; 2040 struct device_node *child, *interfaces; 2041 struct netcp_device *netcp_device; 2042 struct device *dev = &pdev->dev; 2043 struct netcp_module *module; 2044 int ret; 2045 2046 if (!node) { 2047 dev_err(dev, "could not find device info\n"); 2048 return -ENODEV; 2049 } 2050 2051 /* Allocate a new NETCP device instance */ 2052 netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL); 2053 if (!netcp_device) 2054 return -ENOMEM; 2055 2056 pm_runtime_enable(&pdev->dev); 2057 ret = pm_runtime_get_sync(&pdev->dev); 2058 if (ret < 0) { 2059 dev_err(dev, "Failed to enable NETCP power-domain\n"); 2060 pm_runtime_disable(&pdev->dev); 2061 return ret; 2062 } 2063 2064 /* Initialize the NETCP device instance */ 2065 INIT_LIST_HEAD(&netcp_device->interface_head); 2066 INIT_LIST_HEAD(&netcp_device->modpriv_head); 2067 netcp_device->device = dev; 2068 platform_set_drvdata(pdev, netcp_device); 2069 2070 /* create interfaces */ 2071 interfaces = of_get_child_by_name(node, "netcp-interfaces"); 2072 if (!interfaces) { 2073 dev_err(dev, "could not find netcp-interfaces node\n"); 2074 ret = -ENODEV; 2075 goto probe_quit; 2076 } 2077 2078 for_each_available_child_of_node(interfaces, child) { 2079 ret = netcp_create_interface(netcp_device, child); 2080 if (ret) { 2081 dev_err(dev, "could not create interface(%s)\n", 2082 child->name); 2083 goto probe_quit_interface; 2084 } 2085 } 2086 2087 /* Add the device instance to the list */ 2088 list_add_tail(&netcp_device->device_list, &netcp_devices); 2089 2090 /* Probe & attach any modules already registered */ 2091 mutex_lock(&netcp_modules_lock); 2092 for_each_netcp_module(module) { 2093 ret = netcp_module_probe(netcp_device, module); 2094 if (ret < 0) 2095 dev_err(dev, "module(%s) probe failed\n", module->name); 2096 } 2097 mutex_unlock(&netcp_modules_lock); 2098 return 0; 2099 2100 probe_quit_interface: 2101 list_for_each_entry_safe(netcp_intf, netcp_tmp, 2102 &netcp_device->interface_head, 2103 interface_list) { 2104 netcp_delete_interface(netcp_device, netcp_intf->ndev); 2105 } 2106 2107 probe_quit: 2108 pm_runtime_put_sync(&pdev->dev); 2109 pm_runtime_disable(&pdev->dev); 2110 platform_set_drvdata(pdev, NULL); 2111 return ret; 2112 } 2113 2114 static int netcp_remove(struct platform_device *pdev) 2115 { 2116 struct netcp_device *netcp_device = platform_get_drvdata(pdev); 2117 struct netcp_intf *netcp_intf, *netcp_tmp; 2118 struct netcp_inst_modpriv *inst_modpriv, *tmp; 2119 struct netcp_module *module; 2120 2121 list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head, 2122 inst_list) { 2123 module = inst_modpriv->netcp_module; 2124 dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name); 2125 module->remove(netcp_device, inst_modpriv->module_priv); 2126 list_del(&inst_modpriv->inst_list); 2127 kfree(inst_modpriv); 2128 } 2129 2130 /* now that all modules are removed, clean up the interfaces */ 2131 list_for_each_entry_safe(netcp_intf, netcp_tmp, 2132 &netcp_device->interface_head, 2133 interface_list) { 2134 netcp_delete_interface(netcp_device, netcp_intf->ndev); 2135 } 2136 2137 WARN(!list_empty(&netcp_device->interface_head), 2138 "%s interface list not empty!\n", pdev->name); 2139 2140 pm_runtime_put_sync(&pdev->dev); 2141 pm_runtime_disable(&pdev->dev); 2142 platform_set_drvdata(pdev, NULL); 2143 return 0; 2144 } 2145 2146 static const struct of_device_id of_match[] = { 2147 { .compatible = "ti,netcp-1.0", }, 2148 {}, 2149 }; 2150 MODULE_DEVICE_TABLE(of, of_match); 2151 2152 static struct platform_driver netcp_driver = { 2153 .driver = { 2154 .name = "netcp-1.0", 2155 .of_match_table = of_match, 2156 }, 2157 .probe = netcp_probe, 2158 .remove = netcp_remove, 2159 }; 2160 module_platform_driver(netcp_driver); 2161 2162 MODULE_LICENSE("GPL v2"); 2163 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs"); 2164 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com"); 2165