xref: /linux/drivers/net/ethernet/ti/netcp_core.c (revision 3aed61d1eb06b8b19b7bb09d49b222ebc3f83347)
1 /*
2  * Keystone NetCP Core driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated
5  * Authors:	Sandeep Nair <sandeep_n@ti.com>
6  *		Sandeep Paulraj <s-paulraj@ti.com>
7  *		Cyril Chemparathy <cyril@ti.com>
8  *		Santosh Shilimkar <santosh.shilimkar@ti.com>
9  *		Murali Karicheri <m-karicheri2@ti.com>
10  *		Wingman Kwok <w-kwok2@ti.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation version 2.
15  *
16  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
17  * kind, whether express or implied; without even the implied warranty
18  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21 
22 #include <linux/io.h>
23 #include <linux/module.h>
24 #include <linux/of_net.h>
25 #include <linux/of_address.h>
26 #include <linux/if_vlan.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/platform_device.h>
29 #include <linux/soc/ti/knav_qmss.h>
30 #include <linux/soc/ti/knav_dma.h>
31 
32 #include "netcp.h"
33 
34 #define NETCP_SOP_OFFSET	(NET_IP_ALIGN + NET_SKB_PAD)
35 #define NETCP_NAPI_WEIGHT	64
36 #define NETCP_TX_TIMEOUT	(5 * HZ)
37 #define NETCP_PACKET_SIZE	(ETH_FRAME_LEN + ETH_FCS_LEN)
38 #define NETCP_MIN_PACKET_SIZE	ETH_ZLEN
39 #define NETCP_MAX_MCAST_ADDR	16
40 
41 #define NETCP_EFUSE_REG_INDEX	0
42 
43 #define NETCP_MOD_PROBE_SKIPPED	1
44 #define NETCP_MOD_PROBE_FAILED	2
45 
46 #define NETCP_DEBUG (NETIF_MSG_HW	| NETIF_MSG_WOL		|	\
47 		    NETIF_MSG_DRV	| NETIF_MSG_LINK	|	\
48 		    NETIF_MSG_IFUP	| NETIF_MSG_INTR	|	\
49 		    NETIF_MSG_PROBE	| NETIF_MSG_TIMER	|	\
50 		    NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	|	\
51 		    NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	|	\
52 		    NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	|	\
53 		    NETIF_MSG_RX_STATUS)
54 
55 #define NETCP_EFUSE_ADDR_SWAP	2
56 
57 #define knav_queue_get_id(q)	knav_queue_device_control(q, \
58 				KNAV_QUEUE_GET_ID, (unsigned long)NULL)
59 
60 #define knav_queue_enable_notify(q) knav_queue_device_control(q,	\
61 					KNAV_QUEUE_ENABLE_NOTIFY,	\
62 					(unsigned long)NULL)
63 
64 #define knav_queue_disable_notify(q) knav_queue_device_control(q,	\
65 					KNAV_QUEUE_DISABLE_NOTIFY,	\
66 					(unsigned long)NULL)
67 
68 #define knav_queue_get_count(q)	knav_queue_device_control(q, \
69 				KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
70 
71 #define for_each_netcp_module(module)			\
72 	list_for_each_entry(module, &netcp_modules, module_list)
73 
74 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \
75 	list_for_each_entry(inst_modpriv, \
76 		&((netcp_device)->modpriv_head), inst_list)
77 
78 #define for_each_module(netcp, intf_modpriv)			\
79 	list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
80 
81 /* Module management structures */
82 struct netcp_device {
83 	struct list_head	device_list;
84 	struct list_head	interface_head;
85 	struct list_head	modpriv_head;
86 	struct device		*device;
87 };
88 
89 struct netcp_inst_modpriv {
90 	struct netcp_device	*netcp_device;
91 	struct netcp_module	*netcp_module;
92 	struct list_head	inst_list;
93 	void			*module_priv;
94 };
95 
96 struct netcp_intf_modpriv {
97 	struct netcp_intf	*netcp_priv;
98 	struct netcp_module	*netcp_module;
99 	struct list_head	intf_list;
100 	void			*module_priv;
101 };
102 
103 static LIST_HEAD(netcp_devices);
104 static LIST_HEAD(netcp_modules);
105 static DEFINE_MUTEX(netcp_modules_lock);
106 
107 static int netcp_debug_level = -1;
108 module_param(netcp_debug_level, int, 0);
109 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
110 
111 /* Helper functions - Get/Set */
112 static void get_pkt_info(u32 *buff, u32 *buff_len, u32 *ndesc,
113 			 struct knav_dma_desc *desc)
114 {
115 	*buff_len = desc->buff_len;
116 	*buff = desc->buff;
117 	*ndesc = desc->next_desc;
118 }
119 
120 static void get_pad_info(u32 *pad0, u32 *pad1, struct knav_dma_desc *desc)
121 {
122 	*pad0 = desc->pad[0];
123 	*pad1 = desc->pad[1];
124 }
125 
126 static void get_org_pkt_info(u32 *buff, u32 *buff_len,
127 			     struct knav_dma_desc *desc)
128 {
129 	*buff = desc->orig_buff;
130 	*buff_len = desc->orig_len;
131 }
132 
133 static void get_words(u32 *words, int num_words, u32 *desc)
134 {
135 	int i;
136 
137 	for (i = 0; i < num_words; i++)
138 		words[i] = desc[i];
139 }
140 
141 static void set_pkt_info(u32 buff, u32 buff_len, u32 ndesc,
142 			 struct knav_dma_desc *desc)
143 {
144 	desc->buff_len = buff_len;
145 	desc->buff = buff;
146 	desc->next_desc = ndesc;
147 }
148 
149 static void set_desc_info(u32 desc_info, u32 pkt_info,
150 			  struct knav_dma_desc *desc)
151 {
152 	desc->desc_info = desc_info;
153 	desc->packet_info = pkt_info;
154 }
155 
156 static void set_pad_info(u32 pad0, u32 pad1, struct knav_dma_desc *desc)
157 {
158 	desc->pad[0] = pad0;
159 	desc->pad[1] = pad1;
160 }
161 
162 static void set_org_pkt_info(u32 buff, u32 buff_len,
163 			     struct knav_dma_desc *desc)
164 {
165 	desc->orig_buff = buff;
166 	desc->orig_len = buff_len;
167 }
168 
169 static void set_words(u32 *words, int num_words, u32 *desc)
170 {
171 	int i;
172 
173 	for (i = 0; i < num_words; i++)
174 		desc[i] = words[i];
175 }
176 
177 /* Read the e-fuse value as 32 bit values to be endian independent */
178 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
179 {
180 	unsigned int addr0, addr1;
181 
182 	addr1 = readl(efuse_mac + 4);
183 	addr0 = readl(efuse_mac);
184 
185 	switch (swap) {
186 	case NETCP_EFUSE_ADDR_SWAP:
187 		addr0 = addr1;
188 		addr1 = readl(efuse_mac);
189 		break;
190 	default:
191 		break;
192 	}
193 
194 	x[0] = (addr1 & 0x0000ff00) >> 8;
195 	x[1] = addr1 & 0x000000ff;
196 	x[2] = (addr0 & 0xff000000) >> 24;
197 	x[3] = (addr0 & 0x00ff0000) >> 16;
198 	x[4] = (addr0 & 0x0000ff00) >> 8;
199 	x[5] = addr0 & 0x000000ff;
200 
201 	return 0;
202 }
203 
204 static const char *netcp_node_name(struct device_node *node)
205 {
206 	const char *name;
207 
208 	if (of_property_read_string(node, "label", &name) < 0)
209 		name = node->name;
210 	if (!name)
211 		name = "unknown";
212 	return name;
213 }
214 
215 /* Module management routines */
216 static int netcp_register_interface(struct netcp_intf *netcp)
217 {
218 	int ret;
219 
220 	ret = register_netdev(netcp->ndev);
221 	if (!ret)
222 		netcp->netdev_registered = true;
223 	return ret;
224 }
225 
226 static int netcp_module_probe(struct netcp_device *netcp_device,
227 			      struct netcp_module *module)
228 {
229 	struct device *dev = netcp_device->device;
230 	struct device_node *devices, *interface, *node = dev->of_node;
231 	struct device_node *child;
232 	struct netcp_inst_modpriv *inst_modpriv;
233 	struct netcp_intf *netcp_intf;
234 	struct netcp_module *tmp;
235 	bool primary_module_registered = false;
236 	int ret;
237 
238 	/* Find this module in the sub-tree for this device */
239 	devices = of_get_child_by_name(node, "netcp-devices");
240 	if (!devices) {
241 		dev_err(dev, "could not find netcp-devices node\n");
242 		return NETCP_MOD_PROBE_SKIPPED;
243 	}
244 
245 	for_each_available_child_of_node(devices, child) {
246 		const char *name = netcp_node_name(child);
247 
248 		if (!strcasecmp(module->name, name))
249 			break;
250 	}
251 
252 	of_node_put(devices);
253 	/* If module not used for this device, skip it */
254 	if (!child) {
255 		dev_warn(dev, "module(%s) not used for device\n", module->name);
256 		return NETCP_MOD_PROBE_SKIPPED;
257 	}
258 
259 	inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
260 	if (!inst_modpriv) {
261 		of_node_put(child);
262 		return -ENOMEM;
263 	}
264 
265 	inst_modpriv->netcp_device = netcp_device;
266 	inst_modpriv->netcp_module = module;
267 	list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
268 
269 	ret = module->probe(netcp_device, dev, child,
270 			    &inst_modpriv->module_priv);
271 	of_node_put(child);
272 	if (ret) {
273 		dev_err(dev, "Probe of module(%s) failed with %d\n",
274 			module->name, ret);
275 		list_del(&inst_modpriv->inst_list);
276 		devm_kfree(dev, inst_modpriv);
277 		return NETCP_MOD_PROBE_FAILED;
278 	}
279 
280 	/* Attach modules only if the primary module is probed */
281 	for_each_netcp_module(tmp) {
282 		if (tmp->primary)
283 			primary_module_registered = true;
284 	}
285 
286 	if (!primary_module_registered)
287 		return 0;
288 
289 	/* Attach module to interfaces */
290 	list_for_each_entry(netcp_intf, &netcp_device->interface_head,
291 			    interface_list) {
292 		struct netcp_intf_modpriv *intf_modpriv;
293 
294 		/* If interface not registered then register now */
295 		if (!netcp_intf->netdev_registered)
296 			ret = netcp_register_interface(netcp_intf);
297 
298 		if (ret)
299 			return -ENODEV;
300 
301 		intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
302 					    GFP_KERNEL);
303 		if (!intf_modpriv)
304 			return -ENOMEM;
305 
306 		interface = of_parse_phandle(netcp_intf->node_interface,
307 					     module->name, 0);
308 
309 		intf_modpriv->netcp_priv = netcp_intf;
310 		intf_modpriv->netcp_module = module;
311 		list_add_tail(&intf_modpriv->intf_list,
312 			      &netcp_intf->module_head);
313 
314 		ret = module->attach(inst_modpriv->module_priv,
315 				     netcp_intf->ndev, interface,
316 				     &intf_modpriv->module_priv);
317 		of_node_put(interface);
318 		if (ret) {
319 			dev_dbg(dev, "Attach of module %s declined with %d\n",
320 				module->name, ret);
321 			list_del(&intf_modpriv->intf_list);
322 			devm_kfree(dev, intf_modpriv);
323 			continue;
324 		}
325 	}
326 	return 0;
327 }
328 
329 int netcp_register_module(struct netcp_module *module)
330 {
331 	struct netcp_device *netcp_device;
332 	struct netcp_module *tmp;
333 	int ret;
334 
335 	if (!module->name) {
336 		WARN(1, "error registering netcp module: no name\n");
337 		return -EINVAL;
338 	}
339 
340 	if (!module->probe) {
341 		WARN(1, "error registering netcp module: no probe\n");
342 		return -EINVAL;
343 	}
344 
345 	mutex_lock(&netcp_modules_lock);
346 
347 	for_each_netcp_module(tmp) {
348 		if (!strcasecmp(tmp->name, module->name)) {
349 			mutex_unlock(&netcp_modules_lock);
350 			return -EEXIST;
351 		}
352 	}
353 	list_add_tail(&module->module_list, &netcp_modules);
354 
355 	list_for_each_entry(netcp_device, &netcp_devices, device_list) {
356 		ret = netcp_module_probe(netcp_device, module);
357 		if (ret < 0)
358 			goto fail;
359 	}
360 
361 	mutex_unlock(&netcp_modules_lock);
362 	return 0;
363 
364 fail:
365 	mutex_unlock(&netcp_modules_lock);
366 	netcp_unregister_module(module);
367 	return ret;
368 }
369 EXPORT_SYMBOL_GPL(netcp_register_module);
370 
371 static void netcp_release_module(struct netcp_device *netcp_device,
372 				 struct netcp_module *module)
373 {
374 	struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
375 	struct netcp_intf *netcp_intf, *netcp_tmp;
376 	struct device *dev = netcp_device->device;
377 
378 	/* Release the module from each interface */
379 	list_for_each_entry_safe(netcp_intf, netcp_tmp,
380 				 &netcp_device->interface_head,
381 				 interface_list) {
382 		struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
383 
384 		list_for_each_entry_safe(intf_modpriv, intf_tmp,
385 					 &netcp_intf->module_head,
386 					 intf_list) {
387 			if (intf_modpriv->netcp_module == module) {
388 				module->release(intf_modpriv->module_priv);
389 				list_del(&intf_modpriv->intf_list);
390 				devm_kfree(dev, intf_modpriv);
391 				break;
392 			}
393 		}
394 	}
395 
396 	/* Remove the module from each instance */
397 	list_for_each_entry_safe(inst_modpriv, inst_tmp,
398 				 &netcp_device->modpriv_head, inst_list) {
399 		if (inst_modpriv->netcp_module == module) {
400 			module->remove(netcp_device,
401 				       inst_modpriv->module_priv);
402 			list_del(&inst_modpriv->inst_list);
403 			devm_kfree(dev, inst_modpriv);
404 			break;
405 		}
406 	}
407 }
408 
409 void netcp_unregister_module(struct netcp_module *module)
410 {
411 	struct netcp_device *netcp_device;
412 	struct netcp_module *module_tmp;
413 
414 	mutex_lock(&netcp_modules_lock);
415 
416 	list_for_each_entry(netcp_device, &netcp_devices, device_list) {
417 		netcp_release_module(netcp_device, module);
418 	}
419 
420 	/* Remove the module from the module list */
421 	for_each_netcp_module(module_tmp) {
422 		if (module == module_tmp) {
423 			list_del(&module->module_list);
424 			break;
425 		}
426 	}
427 
428 	mutex_unlock(&netcp_modules_lock);
429 }
430 EXPORT_SYMBOL_GPL(netcp_unregister_module);
431 
432 void *netcp_module_get_intf_data(struct netcp_module *module,
433 				 struct netcp_intf *intf)
434 {
435 	struct netcp_intf_modpriv *intf_modpriv;
436 
437 	list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
438 		if (intf_modpriv->netcp_module == module)
439 			return intf_modpriv->module_priv;
440 	return NULL;
441 }
442 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
443 
444 /* Module TX and RX Hook management */
445 struct netcp_hook_list {
446 	struct list_head	 list;
447 	netcp_hook_rtn		*hook_rtn;
448 	void			*hook_data;
449 	int			 order;
450 };
451 
452 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
453 			  netcp_hook_rtn *hook_rtn, void *hook_data)
454 {
455 	struct netcp_hook_list *entry;
456 	struct netcp_hook_list *next;
457 	unsigned long flags;
458 
459 	entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
460 	if (!entry)
461 		return -ENOMEM;
462 
463 	entry->hook_rtn  = hook_rtn;
464 	entry->hook_data = hook_data;
465 	entry->order     = order;
466 
467 	spin_lock_irqsave(&netcp_priv->lock, flags);
468 	list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
469 		if (next->order > order)
470 			break;
471 	}
472 	__list_add(&entry->list, next->list.prev, &next->list);
473 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
474 
475 	return 0;
476 }
477 EXPORT_SYMBOL_GPL(netcp_register_txhook);
478 
479 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
480 			    netcp_hook_rtn *hook_rtn, void *hook_data)
481 {
482 	struct netcp_hook_list *next, *n;
483 	unsigned long flags;
484 
485 	spin_lock_irqsave(&netcp_priv->lock, flags);
486 	list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
487 		if ((next->order     == order) &&
488 		    (next->hook_rtn  == hook_rtn) &&
489 		    (next->hook_data == hook_data)) {
490 			list_del(&next->list);
491 			spin_unlock_irqrestore(&netcp_priv->lock, flags);
492 			devm_kfree(netcp_priv->dev, next);
493 			return 0;
494 		}
495 	}
496 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
497 	return -ENOENT;
498 }
499 EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
500 
501 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
502 			  netcp_hook_rtn *hook_rtn, void *hook_data)
503 {
504 	struct netcp_hook_list *entry;
505 	struct netcp_hook_list *next;
506 	unsigned long flags;
507 
508 	entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
509 	if (!entry)
510 		return -ENOMEM;
511 
512 	entry->hook_rtn  = hook_rtn;
513 	entry->hook_data = hook_data;
514 	entry->order     = order;
515 
516 	spin_lock_irqsave(&netcp_priv->lock, flags);
517 	list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
518 		if (next->order > order)
519 			break;
520 	}
521 	__list_add(&entry->list, next->list.prev, &next->list);
522 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
523 
524 	return 0;
525 }
526 
527 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
528 			    netcp_hook_rtn *hook_rtn, void *hook_data)
529 {
530 	struct netcp_hook_list *next, *n;
531 	unsigned long flags;
532 
533 	spin_lock_irqsave(&netcp_priv->lock, flags);
534 	list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
535 		if ((next->order     == order) &&
536 		    (next->hook_rtn  == hook_rtn) &&
537 		    (next->hook_data == hook_data)) {
538 			list_del(&next->list);
539 			spin_unlock_irqrestore(&netcp_priv->lock, flags);
540 			devm_kfree(netcp_priv->dev, next);
541 			return 0;
542 		}
543 	}
544 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
545 
546 	return -ENOENT;
547 }
548 
549 static void netcp_frag_free(bool is_frag, void *ptr)
550 {
551 	if (is_frag)
552 		skb_free_frag(ptr);
553 	else
554 		kfree(ptr);
555 }
556 
557 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
558 				     struct knav_dma_desc *desc)
559 {
560 	struct knav_dma_desc *ndesc;
561 	dma_addr_t dma_desc, dma_buf;
562 	unsigned int buf_len, dma_sz = sizeof(*ndesc);
563 	void *buf_ptr;
564 	u32 tmp;
565 
566 	get_words(&dma_desc, 1, &desc->next_desc);
567 
568 	while (dma_desc) {
569 		ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
570 		if (unlikely(!ndesc)) {
571 			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
572 			break;
573 		}
574 		get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
575 		get_pad_info((u32 *)&buf_ptr, &tmp, ndesc);
576 		dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
577 		__free_page(buf_ptr);
578 		knav_pool_desc_put(netcp->rx_pool, desc);
579 	}
580 
581 	get_pad_info((u32 *)&buf_ptr, &buf_len, desc);
582 	if (buf_ptr)
583 		netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
584 	knav_pool_desc_put(netcp->rx_pool, desc);
585 }
586 
587 static void netcp_empty_rx_queue(struct netcp_intf *netcp)
588 {
589 	struct knav_dma_desc *desc;
590 	unsigned int dma_sz;
591 	dma_addr_t dma;
592 
593 	for (; ;) {
594 		dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
595 		if (!dma)
596 			break;
597 
598 		desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
599 		if (unlikely(!desc)) {
600 			dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
601 				__func__);
602 			netcp->ndev->stats.rx_errors++;
603 			continue;
604 		}
605 		netcp_free_rx_desc_chain(netcp, desc);
606 		netcp->ndev->stats.rx_dropped++;
607 	}
608 }
609 
610 static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
611 {
612 	unsigned int dma_sz, buf_len, org_buf_len;
613 	struct knav_dma_desc *desc, *ndesc;
614 	unsigned int pkt_sz = 0, accum_sz;
615 	struct netcp_hook_list *rx_hook;
616 	dma_addr_t dma_desc, dma_buff;
617 	struct netcp_packet p_info;
618 	struct sk_buff *skb;
619 	void *org_buf_ptr;
620 	u32 tmp;
621 
622 	dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
623 	if (!dma_desc)
624 		return -1;
625 
626 	desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
627 	if (unlikely(!desc)) {
628 		dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
629 		return 0;
630 	}
631 
632 	get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
633 	get_pad_info((u32 *)&org_buf_ptr, &org_buf_len, desc);
634 
635 	if (unlikely(!org_buf_ptr)) {
636 		dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
637 		goto free_desc;
638 	}
639 
640 	pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
641 	accum_sz = buf_len;
642 	dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
643 
644 	/* Build a new sk_buff for the primary buffer */
645 	skb = build_skb(org_buf_ptr, org_buf_len);
646 	if (unlikely(!skb)) {
647 		dev_err(netcp->ndev_dev, "build_skb() failed\n");
648 		goto free_desc;
649 	}
650 
651 	/* update data, tail and len */
652 	skb_reserve(skb, NETCP_SOP_OFFSET);
653 	__skb_put(skb, buf_len);
654 
655 	/* Fill in the page fragment list */
656 	while (dma_desc) {
657 		struct page *page;
658 
659 		ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
660 		if (unlikely(!ndesc)) {
661 			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
662 			goto free_desc;
663 		}
664 
665 		get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
666 		get_pad_info((u32 *)&page, &tmp, ndesc);
667 
668 		if (likely(dma_buff && buf_len && page)) {
669 			dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
670 				       DMA_FROM_DEVICE);
671 		} else {
672 			dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%p), len(%d), page(%p)\n",
673 				(void *)dma_buff, buf_len, page);
674 			goto free_desc;
675 		}
676 
677 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
678 				offset_in_page(dma_buff), buf_len, PAGE_SIZE);
679 		accum_sz += buf_len;
680 
681 		/* Free the descriptor */
682 		knav_pool_desc_put(netcp->rx_pool, ndesc);
683 	}
684 
685 	/* Free the primary descriptor */
686 	knav_pool_desc_put(netcp->rx_pool, desc);
687 
688 	/* check for packet len and warn */
689 	if (unlikely(pkt_sz != accum_sz))
690 		dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
691 			pkt_sz, accum_sz);
692 
693 	/* Remove ethernet FCS from the packet */
694 	__pskb_trim(skb, skb->len - ETH_FCS_LEN);
695 
696 	/* Call each of the RX hooks */
697 	p_info.skb = skb;
698 	p_info.rxtstamp_complete = false;
699 	list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
700 		int ret;
701 
702 		ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
703 					&p_info);
704 		if (unlikely(ret)) {
705 			dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
706 				rx_hook->order, ret);
707 			netcp->ndev->stats.rx_errors++;
708 			dev_kfree_skb(skb);
709 			return 0;
710 		}
711 	}
712 
713 	netcp->ndev->stats.rx_packets++;
714 	netcp->ndev->stats.rx_bytes += skb->len;
715 
716 	/* push skb up the stack */
717 	skb->protocol = eth_type_trans(skb, netcp->ndev);
718 	netif_receive_skb(skb);
719 	return 0;
720 
721 free_desc:
722 	netcp_free_rx_desc_chain(netcp, desc);
723 	netcp->ndev->stats.rx_errors++;
724 	return 0;
725 }
726 
727 static int netcp_process_rx_packets(struct netcp_intf *netcp,
728 				    unsigned int budget)
729 {
730 	int i;
731 
732 	for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
733 		;
734 	return i;
735 }
736 
737 /* Release descriptors and attached buffers from Rx FDQ */
738 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
739 {
740 	struct knav_dma_desc *desc;
741 	unsigned int buf_len, dma_sz;
742 	dma_addr_t dma;
743 	void *buf_ptr;
744 	u32 tmp;
745 
746 	/* Allocate descriptor */
747 	while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
748 		desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
749 		if (unlikely(!desc)) {
750 			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
751 			continue;
752 		}
753 
754 		get_org_pkt_info(&dma, &buf_len, desc);
755 		get_pad_info((u32 *)&buf_ptr, &tmp, desc);
756 
757 		if (unlikely(!dma)) {
758 			dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
759 			knav_pool_desc_put(netcp->rx_pool, desc);
760 			continue;
761 		}
762 
763 		if (unlikely(!buf_ptr)) {
764 			dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
765 			knav_pool_desc_put(netcp->rx_pool, desc);
766 			continue;
767 		}
768 
769 		if (fdq == 0) {
770 			dma_unmap_single(netcp->dev, dma, buf_len,
771 					 DMA_FROM_DEVICE);
772 			netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
773 		} else {
774 			dma_unmap_page(netcp->dev, dma, buf_len,
775 				       DMA_FROM_DEVICE);
776 			__free_page(buf_ptr);
777 		}
778 
779 		knav_pool_desc_put(netcp->rx_pool, desc);
780 	}
781 }
782 
783 static void netcp_rxpool_free(struct netcp_intf *netcp)
784 {
785 	int i;
786 
787 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
788 	     !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
789 		netcp_free_rx_buf(netcp, i);
790 
791 	if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
792 		dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
793 			netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
794 
795 	knav_pool_destroy(netcp->rx_pool);
796 	netcp->rx_pool = NULL;
797 }
798 
799 static void netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
800 {
801 	struct knav_dma_desc *hwdesc;
802 	unsigned int buf_len, dma_sz;
803 	u32 desc_info, pkt_info;
804 	struct page *page;
805 	dma_addr_t dma;
806 	void *bufptr;
807 	u32 pad[2];
808 
809 	/* Allocate descriptor */
810 	hwdesc = knav_pool_desc_get(netcp->rx_pool);
811 	if (IS_ERR_OR_NULL(hwdesc)) {
812 		dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
813 		return;
814 	}
815 
816 	if (likely(fdq == 0)) {
817 		unsigned int primary_buf_len;
818 		/* Allocate a primary receive queue entry */
819 		buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
820 		primary_buf_len = SKB_DATA_ALIGN(buf_len) +
821 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
822 
823 		bufptr = netdev_alloc_frag(primary_buf_len);
824 		pad[1] = primary_buf_len;
825 
826 		if (unlikely(!bufptr)) {
827 			dev_warn_ratelimited(netcp->ndev_dev,
828 					     "Primary RX buffer alloc failed\n");
829 			goto fail;
830 		}
831 		dma = dma_map_single(netcp->dev, bufptr, buf_len,
832 				     DMA_TO_DEVICE);
833 		if (unlikely(dma_mapping_error(netcp->dev, dma)))
834 			goto fail;
835 
836 		pad[0] = (u32)bufptr;
837 
838 	} else {
839 		/* Allocate a secondary receive queue entry */
840 		page = alloc_page(GFP_ATOMIC | GFP_DMA | __GFP_COLD);
841 		if (unlikely(!page)) {
842 			dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
843 			goto fail;
844 		}
845 		buf_len = PAGE_SIZE;
846 		dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
847 		pad[0] = (u32)page;
848 		pad[1] = 0;
849 	}
850 
851 	desc_info =  KNAV_DMA_DESC_PS_INFO_IN_DESC;
852 	desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
853 	pkt_info =  KNAV_DMA_DESC_HAS_EPIB;
854 	pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
855 	pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
856 		    KNAV_DMA_DESC_RETQ_SHIFT;
857 	set_org_pkt_info(dma, buf_len, hwdesc);
858 	set_pad_info(pad[0], pad[1], hwdesc);
859 	set_desc_info(desc_info, pkt_info, hwdesc);
860 
861 	/* Push to FDQs */
862 	knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
863 			   &dma_sz);
864 	knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
865 	return;
866 
867 fail:
868 	knav_pool_desc_put(netcp->rx_pool, hwdesc);
869 }
870 
871 /* Refill Rx FDQ with descriptors & attached buffers */
872 static void netcp_rxpool_refill(struct netcp_intf *netcp)
873 {
874 	u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
875 	int i;
876 
877 	/* Calculate the FDQ deficit and refill */
878 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
879 		fdq_deficit[i] = netcp->rx_queue_depths[i] -
880 				 knav_queue_get_count(netcp->rx_fdq[i]);
881 
882 		while (fdq_deficit[i]--)
883 			netcp_allocate_rx_buf(netcp, i);
884 	} /* end for fdqs */
885 }
886 
887 /* NAPI poll */
888 static int netcp_rx_poll(struct napi_struct *napi, int budget)
889 {
890 	struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
891 						rx_napi);
892 	unsigned int packets;
893 
894 	packets = netcp_process_rx_packets(netcp, budget);
895 
896 	if (packets < budget) {
897 		napi_complete(&netcp->rx_napi);
898 		knav_queue_enable_notify(netcp->rx_queue);
899 	}
900 
901 	netcp_rxpool_refill(netcp);
902 	return packets;
903 }
904 
905 static void netcp_rx_notify(void *arg)
906 {
907 	struct netcp_intf *netcp = arg;
908 
909 	knav_queue_disable_notify(netcp->rx_queue);
910 	napi_schedule(&netcp->rx_napi);
911 }
912 
913 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
914 				     struct knav_dma_desc *desc,
915 				     unsigned int desc_sz)
916 {
917 	struct knav_dma_desc *ndesc = desc;
918 	dma_addr_t dma_desc, dma_buf;
919 	unsigned int buf_len;
920 
921 	while (ndesc) {
922 		get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
923 
924 		if (dma_buf && buf_len)
925 			dma_unmap_single(netcp->dev, dma_buf, buf_len,
926 					 DMA_TO_DEVICE);
927 		else
928 			dev_warn(netcp->ndev_dev, "bad Tx desc buf(%p), len(%d)\n",
929 				 (void *)dma_buf, buf_len);
930 
931 		knav_pool_desc_put(netcp->tx_pool, ndesc);
932 		ndesc = NULL;
933 		if (dma_desc) {
934 			ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
935 						     desc_sz);
936 			if (!ndesc)
937 				dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
938 		}
939 	}
940 }
941 
942 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
943 					  unsigned int budget)
944 {
945 	struct knav_dma_desc *desc;
946 	struct sk_buff *skb;
947 	unsigned int dma_sz;
948 	dma_addr_t dma;
949 	int pkts = 0;
950 	u32 tmp;
951 
952 	while (budget--) {
953 		dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
954 		if (!dma)
955 			break;
956 		desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
957 		if (unlikely(!desc)) {
958 			dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
959 			netcp->ndev->stats.tx_errors++;
960 			continue;
961 		}
962 
963 		get_pad_info((u32 *)&skb, &tmp, desc);
964 		netcp_free_tx_desc_chain(netcp, desc, dma_sz);
965 		if (!skb) {
966 			dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
967 			netcp->ndev->stats.tx_errors++;
968 			continue;
969 		}
970 
971 		if (netif_subqueue_stopped(netcp->ndev, skb) &&
972 		    netif_running(netcp->ndev) &&
973 		    (knav_pool_count(netcp->tx_pool) >
974 		    netcp->tx_resume_threshold)) {
975 			u16 subqueue = skb_get_queue_mapping(skb);
976 
977 			netif_wake_subqueue(netcp->ndev, subqueue);
978 		}
979 
980 		netcp->ndev->stats.tx_packets++;
981 		netcp->ndev->stats.tx_bytes += skb->len;
982 		dev_kfree_skb(skb);
983 		pkts++;
984 	}
985 	return pkts;
986 }
987 
988 static int netcp_tx_poll(struct napi_struct *napi, int budget)
989 {
990 	int packets;
991 	struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
992 						tx_napi);
993 
994 	packets = netcp_process_tx_compl_packets(netcp, budget);
995 	if (packets < budget) {
996 		napi_complete(&netcp->tx_napi);
997 		knav_queue_enable_notify(netcp->tx_compl_q);
998 	}
999 
1000 	return packets;
1001 }
1002 
1003 static void netcp_tx_notify(void *arg)
1004 {
1005 	struct netcp_intf *netcp = arg;
1006 
1007 	knav_queue_disable_notify(netcp->tx_compl_q);
1008 	napi_schedule(&netcp->tx_napi);
1009 }
1010 
1011 static struct knav_dma_desc*
1012 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1013 {
1014 	struct knav_dma_desc *desc, *ndesc, *pdesc;
1015 	unsigned int pkt_len = skb_headlen(skb);
1016 	struct device *dev = netcp->dev;
1017 	dma_addr_t dma_addr;
1018 	unsigned int dma_sz;
1019 	int i;
1020 
1021 	/* Map the linear buffer */
1022 	dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1023 	if (unlikely(dma_mapping_error(dev, dma_addr))) {
1024 		dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1025 		return NULL;
1026 	}
1027 
1028 	desc = knav_pool_desc_get(netcp->tx_pool);
1029 	if (unlikely(IS_ERR_OR_NULL(desc))) {
1030 		dev_err(netcp->ndev_dev, "out of TX desc\n");
1031 		dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1032 		return NULL;
1033 	}
1034 
1035 	set_pkt_info(dma_addr, pkt_len, 0, desc);
1036 	if (skb_is_nonlinear(skb)) {
1037 		prefetchw(skb_shinfo(skb));
1038 	} else {
1039 		desc->next_desc = 0;
1040 		goto upd_pkt_len;
1041 	}
1042 
1043 	pdesc = desc;
1044 
1045 	/* Handle the case where skb is fragmented in pages */
1046 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1047 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1048 		struct page *page = skb_frag_page(frag);
1049 		u32 page_offset = frag->page_offset;
1050 		u32 buf_len = skb_frag_size(frag);
1051 		dma_addr_t desc_dma;
1052 		u32 pkt_info;
1053 
1054 		dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1055 					DMA_TO_DEVICE);
1056 		if (unlikely(!dma_addr)) {
1057 			dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1058 			goto free_descs;
1059 		}
1060 
1061 		ndesc = knav_pool_desc_get(netcp->tx_pool);
1062 		if (unlikely(IS_ERR_OR_NULL(ndesc))) {
1063 			dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1064 			dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1065 			goto free_descs;
1066 		}
1067 
1068 		desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool,
1069 						      (void *)ndesc);
1070 		pkt_info =
1071 			(netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1072 				KNAV_DMA_DESC_RETQ_SHIFT;
1073 		set_pkt_info(dma_addr, buf_len, 0, ndesc);
1074 		set_words(&desc_dma, 1, &pdesc->next_desc);
1075 		pkt_len += buf_len;
1076 		if (pdesc != desc)
1077 			knav_pool_desc_map(netcp->tx_pool, pdesc,
1078 					   sizeof(*pdesc), &desc_dma, &dma_sz);
1079 		pdesc = ndesc;
1080 	}
1081 	if (pdesc != desc)
1082 		knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1083 				   &dma_addr, &dma_sz);
1084 
1085 	/* frag list based linkage is not supported for now. */
1086 	if (skb_shinfo(skb)->frag_list) {
1087 		dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1088 		goto free_descs;
1089 	}
1090 
1091 upd_pkt_len:
1092 	WARN_ON(pkt_len != skb->len);
1093 
1094 	pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1095 	set_words(&pkt_len, 1, &desc->desc_info);
1096 	return desc;
1097 
1098 free_descs:
1099 	netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1100 	return NULL;
1101 }
1102 
1103 static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1104 			       struct sk_buff *skb,
1105 			       struct knav_dma_desc *desc)
1106 {
1107 	struct netcp_tx_pipe *tx_pipe = NULL;
1108 	struct netcp_hook_list *tx_hook;
1109 	struct netcp_packet p_info;
1110 	unsigned int dma_sz;
1111 	dma_addr_t dma;
1112 	u32 tmp = 0;
1113 	int ret = 0;
1114 
1115 	p_info.netcp = netcp;
1116 	p_info.skb = skb;
1117 	p_info.tx_pipe = NULL;
1118 	p_info.psdata_len = 0;
1119 	p_info.ts_context = NULL;
1120 	p_info.txtstamp_complete = NULL;
1121 	p_info.epib = desc->epib;
1122 	p_info.psdata = desc->psdata;
1123 	memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(u32));
1124 
1125 	/* Find out where to inject the packet for transmission */
1126 	list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1127 		ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1128 					&p_info);
1129 		if (unlikely(ret != 0)) {
1130 			dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1131 				tx_hook->order, ret);
1132 			ret = (ret < 0) ? ret : NETDEV_TX_OK;
1133 			goto out;
1134 		}
1135 	}
1136 
1137 	/* Make sure some TX hook claimed the packet */
1138 	tx_pipe = p_info.tx_pipe;
1139 	if (!tx_pipe) {
1140 		dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1141 		ret = -ENXIO;
1142 		goto out;
1143 	}
1144 
1145 	/* update descriptor */
1146 	if (p_info.psdata_len) {
1147 		u32 *psdata = p_info.psdata;
1148 
1149 		memmove(p_info.psdata, p_info.psdata + p_info.psdata_len,
1150 			p_info.psdata_len);
1151 		set_words(psdata, p_info.psdata_len, psdata);
1152 		tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1153 			KNAV_DMA_DESC_PSLEN_SHIFT;
1154 	}
1155 
1156 	tmp |= KNAV_DMA_DESC_HAS_EPIB |
1157 		((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1158 		KNAV_DMA_DESC_RETQ_SHIFT);
1159 
1160 	if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1161 		tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1162 			KNAV_DMA_DESC_PSFLAG_SHIFT);
1163 	}
1164 
1165 	set_words(&tmp, 1, &desc->packet_info);
1166 	set_words((u32 *)&skb, 1, &desc->pad[0]);
1167 
1168 	if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1169 		tmp = tx_pipe->switch_to_port;
1170 		set_words((u32 *)&tmp, 1, &desc->tag_info);
1171 	}
1172 
1173 	/* submit packet descriptor */
1174 	ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1175 				 &dma_sz);
1176 	if (unlikely(ret)) {
1177 		dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1178 		ret = -ENOMEM;
1179 		goto out;
1180 	}
1181 	skb_tx_timestamp(skb);
1182 	knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1183 
1184 out:
1185 	return ret;
1186 }
1187 
1188 /* Submit the packet */
1189 static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1190 {
1191 	struct netcp_intf *netcp = netdev_priv(ndev);
1192 	int subqueue = skb_get_queue_mapping(skb);
1193 	struct knav_dma_desc *desc;
1194 	int desc_count, ret = 0;
1195 
1196 	if (unlikely(skb->len <= 0)) {
1197 		dev_kfree_skb(skb);
1198 		return NETDEV_TX_OK;
1199 	}
1200 
1201 	if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1202 		ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1203 		if (ret < 0) {
1204 			/* If we get here, the skb has already been dropped */
1205 			dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1206 				 ret);
1207 			ndev->stats.tx_dropped++;
1208 			return ret;
1209 		}
1210 		skb->len = NETCP_MIN_PACKET_SIZE;
1211 	}
1212 
1213 	desc = netcp_tx_map_skb(skb, netcp);
1214 	if (unlikely(!desc)) {
1215 		netif_stop_subqueue(ndev, subqueue);
1216 		ret = -ENOBUFS;
1217 		goto drop;
1218 	}
1219 
1220 	ret = netcp_tx_submit_skb(netcp, skb, desc);
1221 	if (ret)
1222 		goto drop;
1223 
1224 	ndev->trans_start = jiffies;
1225 
1226 	/* Check Tx pool count & stop subqueue if needed */
1227 	desc_count = knav_pool_count(netcp->tx_pool);
1228 	if (desc_count < netcp->tx_pause_threshold) {
1229 		dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1230 		netif_stop_subqueue(ndev, subqueue);
1231 	}
1232 	return NETDEV_TX_OK;
1233 
1234 drop:
1235 	ndev->stats.tx_dropped++;
1236 	if (desc)
1237 		netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1238 	dev_kfree_skb(skb);
1239 	return ret;
1240 }
1241 
1242 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1243 {
1244 	if (tx_pipe->dma_channel) {
1245 		knav_dma_close_channel(tx_pipe->dma_channel);
1246 		tx_pipe->dma_channel = NULL;
1247 	}
1248 	return 0;
1249 }
1250 EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1251 
1252 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1253 {
1254 	struct device *dev = tx_pipe->netcp_device->device;
1255 	struct knav_dma_cfg config;
1256 	int ret = 0;
1257 	u8 name[16];
1258 
1259 	memset(&config, 0, sizeof(config));
1260 	config.direction = DMA_MEM_TO_DEV;
1261 	config.u.tx.filt_einfo = false;
1262 	config.u.tx.filt_pswords = false;
1263 	config.u.tx.priority = DMA_PRIO_MED_L;
1264 
1265 	tx_pipe->dma_channel = knav_dma_open_channel(dev,
1266 				tx_pipe->dma_chan_name, &config);
1267 	if (IS_ERR_OR_NULL(tx_pipe->dma_channel)) {
1268 		dev_err(dev, "failed opening tx chan(%s)\n",
1269 			tx_pipe->dma_chan_name);
1270 		goto err;
1271 	}
1272 
1273 	snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1274 	tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1275 					     KNAV_QUEUE_SHARED);
1276 	if (IS_ERR(tx_pipe->dma_queue)) {
1277 		dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
1278 			name, ret);
1279 		ret = PTR_ERR(tx_pipe->dma_queue);
1280 		goto err;
1281 	}
1282 
1283 	dev_dbg(dev, "opened tx pipe %s\n", name);
1284 	return 0;
1285 
1286 err:
1287 	if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1288 		knav_dma_close_channel(tx_pipe->dma_channel);
1289 	tx_pipe->dma_channel = NULL;
1290 	return ret;
1291 }
1292 EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1293 
1294 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1295 		      struct netcp_device *netcp_device,
1296 		      const char *dma_chan_name, unsigned int dma_queue_id)
1297 {
1298 	memset(tx_pipe, 0, sizeof(*tx_pipe));
1299 	tx_pipe->netcp_device = netcp_device;
1300 	tx_pipe->dma_chan_name = dma_chan_name;
1301 	tx_pipe->dma_queue_id = dma_queue_id;
1302 	return 0;
1303 }
1304 EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1305 
1306 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1307 					  const u8 *addr,
1308 					  enum netcp_addr_type type)
1309 {
1310 	struct netcp_addr *naddr;
1311 
1312 	list_for_each_entry(naddr, &netcp->addr_list, node) {
1313 		if (naddr->type != type)
1314 			continue;
1315 		if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1316 			continue;
1317 		return naddr;
1318 	}
1319 
1320 	return NULL;
1321 }
1322 
1323 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1324 					 const u8 *addr,
1325 					 enum netcp_addr_type type)
1326 {
1327 	struct netcp_addr *naddr;
1328 
1329 	naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1330 	if (!naddr)
1331 		return NULL;
1332 
1333 	naddr->type = type;
1334 	naddr->flags = 0;
1335 	naddr->netcp = netcp;
1336 	if (addr)
1337 		ether_addr_copy(naddr->addr, addr);
1338 	else
1339 		eth_zero_addr(naddr->addr);
1340 	list_add_tail(&naddr->node, &netcp->addr_list);
1341 
1342 	return naddr;
1343 }
1344 
1345 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1346 {
1347 	list_del(&naddr->node);
1348 	devm_kfree(netcp->dev, naddr);
1349 }
1350 
1351 static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1352 {
1353 	struct netcp_addr *naddr;
1354 
1355 	list_for_each_entry(naddr, &netcp->addr_list, node)
1356 		naddr->flags = 0;
1357 }
1358 
1359 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1360 				enum netcp_addr_type type)
1361 {
1362 	struct netcp_addr *naddr;
1363 
1364 	naddr = netcp_addr_find(netcp, addr, type);
1365 	if (naddr) {
1366 		naddr->flags |= ADDR_VALID;
1367 		return;
1368 	}
1369 
1370 	naddr = netcp_addr_add(netcp, addr, type);
1371 	if (!WARN_ON(!naddr))
1372 		naddr->flags |= ADDR_NEW;
1373 }
1374 
1375 static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1376 {
1377 	struct netcp_addr *naddr, *tmp;
1378 	struct netcp_intf_modpriv *priv;
1379 	struct netcp_module *module;
1380 	int error;
1381 
1382 	list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1383 		if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1384 			continue;
1385 		dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1386 			naddr->addr, naddr->type);
1387 		mutex_lock(&netcp_modules_lock);
1388 		for_each_module(netcp, priv) {
1389 			module = priv->netcp_module;
1390 			if (!module->del_addr)
1391 				continue;
1392 			error = module->del_addr(priv->module_priv,
1393 						 naddr);
1394 			WARN_ON(error);
1395 		}
1396 		mutex_unlock(&netcp_modules_lock);
1397 		netcp_addr_del(netcp, naddr);
1398 	}
1399 }
1400 
1401 static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1402 {
1403 	struct netcp_addr *naddr, *tmp;
1404 	struct netcp_intf_modpriv *priv;
1405 	struct netcp_module *module;
1406 	int error;
1407 
1408 	list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1409 		if (!(naddr->flags & ADDR_NEW))
1410 			continue;
1411 		dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1412 			naddr->addr, naddr->type);
1413 		mutex_lock(&netcp_modules_lock);
1414 		for_each_module(netcp, priv) {
1415 			module = priv->netcp_module;
1416 			if (!module->add_addr)
1417 				continue;
1418 			error = module->add_addr(priv->module_priv, naddr);
1419 			WARN_ON(error);
1420 		}
1421 		mutex_unlock(&netcp_modules_lock);
1422 	}
1423 }
1424 
1425 static void netcp_set_rx_mode(struct net_device *ndev)
1426 {
1427 	struct netcp_intf *netcp = netdev_priv(ndev);
1428 	struct netdev_hw_addr *ndev_addr;
1429 	bool promisc;
1430 
1431 	promisc = (ndev->flags & IFF_PROMISC ||
1432 		   ndev->flags & IFF_ALLMULTI ||
1433 		   netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1434 
1435 	/* first clear all marks */
1436 	netcp_addr_clear_mark(netcp);
1437 
1438 	/* next add new entries, mark existing ones */
1439 	netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1440 	for_each_dev_addr(ndev, ndev_addr)
1441 		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1442 	netdev_for_each_uc_addr(ndev_addr, ndev)
1443 		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1444 	netdev_for_each_mc_addr(ndev_addr, ndev)
1445 		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1446 
1447 	if (promisc)
1448 		netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1449 
1450 	/* finally sweep and callout into modules */
1451 	netcp_addr_sweep_del(netcp);
1452 	netcp_addr_sweep_add(netcp);
1453 }
1454 
1455 static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1456 {
1457 	int i;
1458 
1459 	if (netcp->rx_channel) {
1460 		knav_dma_close_channel(netcp->rx_channel);
1461 		netcp->rx_channel = NULL;
1462 	}
1463 
1464 	if (!IS_ERR_OR_NULL(netcp->rx_pool))
1465 		netcp_rxpool_free(netcp);
1466 
1467 	if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1468 		knav_queue_close(netcp->rx_queue);
1469 		netcp->rx_queue = NULL;
1470 	}
1471 
1472 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1473 	     !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1474 		knav_queue_close(netcp->rx_fdq[i]);
1475 		netcp->rx_fdq[i] = NULL;
1476 	}
1477 
1478 	if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1479 		knav_queue_close(netcp->tx_compl_q);
1480 		netcp->tx_compl_q = NULL;
1481 	}
1482 
1483 	if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1484 		knav_pool_destroy(netcp->tx_pool);
1485 		netcp->tx_pool = NULL;
1486 	}
1487 }
1488 
1489 static int netcp_setup_navigator_resources(struct net_device *ndev)
1490 {
1491 	struct netcp_intf *netcp = netdev_priv(ndev);
1492 	struct knav_queue_notify_config notify_cfg;
1493 	struct knav_dma_cfg config;
1494 	u32 last_fdq = 0;
1495 	u8 name[16];
1496 	int ret;
1497 	int i;
1498 
1499 	/* Create Rx/Tx descriptor pools */
1500 	snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1501 	netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1502 						netcp->rx_pool_region_id);
1503 	if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1504 		dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1505 		ret = PTR_ERR(netcp->rx_pool);
1506 		goto fail;
1507 	}
1508 
1509 	snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1510 	netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1511 						netcp->tx_pool_region_id);
1512 	if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1513 		dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1514 		ret = PTR_ERR(netcp->tx_pool);
1515 		goto fail;
1516 	}
1517 
1518 	/* open Tx completion queue */
1519 	snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1520 	netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1521 	if (IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1522 		ret = PTR_ERR(netcp->tx_compl_q);
1523 		goto fail;
1524 	}
1525 	netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1526 
1527 	/* Set notification for Tx completion */
1528 	notify_cfg.fn = netcp_tx_notify;
1529 	notify_cfg.fn_arg = netcp;
1530 	ret = knav_queue_device_control(netcp->tx_compl_q,
1531 					KNAV_QUEUE_SET_NOTIFIER,
1532 					(unsigned long)&notify_cfg);
1533 	if (ret)
1534 		goto fail;
1535 
1536 	knav_queue_disable_notify(netcp->tx_compl_q);
1537 
1538 	/* open Rx completion queue */
1539 	snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1540 	netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1541 	if (IS_ERR_OR_NULL(netcp->rx_queue)) {
1542 		ret = PTR_ERR(netcp->rx_queue);
1543 		goto fail;
1544 	}
1545 	netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1546 
1547 	/* Set notification for Rx completion */
1548 	notify_cfg.fn = netcp_rx_notify;
1549 	notify_cfg.fn_arg = netcp;
1550 	ret = knav_queue_device_control(netcp->rx_queue,
1551 					KNAV_QUEUE_SET_NOTIFIER,
1552 					(unsigned long)&notify_cfg);
1553 	if (ret)
1554 		goto fail;
1555 
1556 	knav_queue_disable_notify(netcp->rx_queue);
1557 
1558 	/* open Rx FDQs */
1559 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
1560 	     ++i) {
1561 		snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1562 		netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1563 		if (IS_ERR_OR_NULL(netcp->rx_fdq[i])) {
1564 			ret = PTR_ERR(netcp->rx_fdq[i]);
1565 			goto fail;
1566 		}
1567 	}
1568 
1569 	memset(&config, 0, sizeof(config));
1570 	config.direction		= DMA_DEV_TO_MEM;
1571 	config.u.rx.einfo_present	= true;
1572 	config.u.rx.psinfo_present	= true;
1573 	config.u.rx.err_mode		= DMA_DROP;
1574 	config.u.rx.desc_type		= DMA_DESC_HOST;
1575 	config.u.rx.psinfo_at_sop	= false;
1576 	config.u.rx.sop_offset		= NETCP_SOP_OFFSET;
1577 	config.u.rx.dst_q		= netcp->rx_queue_id;
1578 	config.u.rx.thresh		= DMA_THRESH_NONE;
1579 
1580 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1581 		if (netcp->rx_fdq[i])
1582 			last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1583 		config.u.rx.fdq[i] = last_fdq;
1584 	}
1585 
1586 	netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1587 					netcp->dma_chan_name, &config);
1588 	if (IS_ERR_OR_NULL(netcp->rx_channel)) {
1589 		dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1590 			netcp->dma_chan_name);
1591 		goto fail;
1592 	}
1593 
1594 	dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1595 	return 0;
1596 
1597 fail:
1598 	netcp_free_navigator_resources(netcp);
1599 	return ret;
1600 }
1601 
1602 /* Open the device */
1603 static int netcp_ndo_open(struct net_device *ndev)
1604 {
1605 	struct netcp_intf *netcp = netdev_priv(ndev);
1606 	struct netcp_intf_modpriv *intf_modpriv;
1607 	struct netcp_module *module;
1608 	int ret;
1609 
1610 	netif_carrier_off(ndev);
1611 	ret = netcp_setup_navigator_resources(ndev);
1612 	if (ret) {
1613 		dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1614 		goto fail;
1615 	}
1616 
1617 	mutex_lock(&netcp_modules_lock);
1618 	for_each_module(netcp, intf_modpriv) {
1619 		module = intf_modpriv->netcp_module;
1620 		if (module->open) {
1621 			ret = module->open(intf_modpriv->module_priv, ndev);
1622 			if (ret != 0) {
1623 				dev_err(netcp->ndev_dev, "module open failed\n");
1624 				goto fail_open;
1625 			}
1626 		}
1627 	}
1628 	mutex_unlock(&netcp_modules_lock);
1629 
1630 	napi_enable(&netcp->rx_napi);
1631 	napi_enable(&netcp->tx_napi);
1632 	knav_queue_enable_notify(netcp->tx_compl_q);
1633 	knav_queue_enable_notify(netcp->rx_queue);
1634 	netcp_rxpool_refill(netcp);
1635 	netif_tx_wake_all_queues(ndev);
1636 	dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1637 	return 0;
1638 
1639 fail_open:
1640 	for_each_module(netcp, intf_modpriv) {
1641 		module = intf_modpriv->netcp_module;
1642 		if (module->close)
1643 			module->close(intf_modpriv->module_priv, ndev);
1644 	}
1645 	mutex_unlock(&netcp_modules_lock);
1646 
1647 fail:
1648 	netcp_free_navigator_resources(netcp);
1649 	return ret;
1650 }
1651 
1652 /* Close the device */
1653 static int netcp_ndo_stop(struct net_device *ndev)
1654 {
1655 	struct netcp_intf *netcp = netdev_priv(ndev);
1656 	struct netcp_intf_modpriv *intf_modpriv;
1657 	struct netcp_module *module;
1658 	int err = 0;
1659 
1660 	netif_tx_stop_all_queues(ndev);
1661 	netif_carrier_off(ndev);
1662 	netcp_addr_clear_mark(netcp);
1663 	netcp_addr_sweep_del(netcp);
1664 	knav_queue_disable_notify(netcp->rx_queue);
1665 	knav_queue_disable_notify(netcp->tx_compl_q);
1666 	napi_disable(&netcp->rx_napi);
1667 	napi_disable(&netcp->tx_napi);
1668 
1669 	mutex_lock(&netcp_modules_lock);
1670 	for_each_module(netcp, intf_modpriv) {
1671 		module = intf_modpriv->netcp_module;
1672 		if (module->close) {
1673 			err = module->close(intf_modpriv->module_priv, ndev);
1674 			if (err != 0)
1675 				dev_err(netcp->ndev_dev, "Close failed\n");
1676 		}
1677 	}
1678 	mutex_unlock(&netcp_modules_lock);
1679 
1680 	/* Recycle Rx descriptors from completion queue */
1681 	netcp_empty_rx_queue(netcp);
1682 
1683 	/* Recycle Tx descriptors from completion queue */
1684 	netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1685 
1686 	if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1687 		dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1688 			netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1689 
1690 	netcp_free_navigator_resources(netcp);
1691 	dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1692 	return 0;
1693 }
1694 
1695 static int netcp_ndo_ioctl(struct net_device *ndev,
1696 			   struct ifreq *req, int cmd)
1697 {
1698 	struct netcp_intf *netcp = netdev_priv(ndev);
1699 	struct netcp_intf_modpriv *intf_modpriv;
1700 	struct netcp_module *module;
1701 	int ret = -1, err = -EOPNOTSUPP;
1702 
1703 	if (!netif_running(ndev))
1704 		return -EINVAL;
1705 
1706 	mutex_lock(&netcp_modules_lock);
1707 	for_each_module(netcp, intf_modpriv) {
1708 		module = intf_modpriv->netcp_module;
1709 		if (!module->ioctl)
1710 			continue;
1711 
1712 		err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1713 		if ((err < 0) && (err != -EOPNOTSUPP)) {
1714 			ret = err;
1715 			goto out;
1716 		}
1717 		if (err == 0)
1718 			ret = err;
1719 	}
1720 
1721 out:
1722 	mutex_unlock(&netcp_modules_lock);
1723 	return (ret == 0) ? 0 : err;
1724 }
1725 
1726 static int netcp_ndo_change_mtu(struct net_device *ndev, int new_mtu)
1727 {
1728 	struct netcp_intf *netcp = netdev_priv(ndev);
1729 
1730 	/* MTU < 68 is an error for IPv4 traffic */
1731 	if ((new_mtu < 68) ||
1732 	    (new_mtu > (NETCP_MAX_FRAME_SIZE - ETH_HLEN - ETH_FCS_LEN))) {
1733 		dev_err(netcp->ndev_dev, "Invalid mtu size = %d\n", new_mtu);
1734 		return -EINVAL;
1735 	}
1736 
1737 	ndev->mtu = new_mtu;
1738 	return 0;
1739 }
1740 
1741 static void netcp_ndo_tx_timeout(struct net_device *ndev)
1742 {
1743 	struct netcp_intf *netcp = netdev_priv(ndev);
1744 	unsigned int descs = knav_pool_count(netcp->tx_pool);
1745 
1746 	dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1747 	netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1748 	ndev->trans_start = jiffies;
1749 	netif_tx_wake_all_queues(ndev);
1750 }
1751 
1752 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1753 {
1754 	struct netcp_intf *netcp = netdev_priv(ndev);
1755 	struct netcp_intf_modpriv *intf_modpriv;
1756 	struct netcp_module *module;
1757 	int err = 0;
1758 
1759 	dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1760 
1761 	mutex_lock(&netcp_modules_lock);
1762 	for_each_module(netcp, intf_modpriv) {
1763 		module = intf_modpriv->netcp_module;
1764 		if ((module->add_vid) && (vid != 0)) {
1765 			err = module->add_vid(intf_modpriv->module_priv, vid);
1766 			if (err != 0) {
1767 				dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1768 					vid);
1769 				break;
1770 			}
1771 		}
1772 	}
1773 	mutex_unlock(&netcp_modules_lock);
1774 	return err;
1775 }
1776 
1777 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1778 {
1779 	struct netcp_intf *netcp = netdev_priv(ndev);
1780 	struct netcp_intf_modpriv *intf_modpriv;
1781 	struct netcp_module *module;
1782 	int err = 0;
1783 
1784 	dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1785 
1786 	mutex_lock(&netcp_modules_lock);
1787 	for_each_module(netcp, intf_modpriv) {
1788 		module = intf_modpriv->netcp_module;
1789 		if (module->del_vid) {
1790 			err = module->del_vid(intf_modpriv->module_priv, vid);
1791 			if (err != 0) {
1792 				dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1793 					vid);
1794 				break;
1795 			}
1796 		}
1797 	}
1798 	mutex_unlock(&netcp_modules_lock);
1799 	return err;
1800 }
1801 
1802 static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb,
1803 			      void *accel_priv,
1804 			      select_queue_fallback_t fallback)
1805 {
1806 	return 0;
1807 }
1808 
1809 static int netcp_setup_tc(struct net_device *dev, u8 num_tc)
1810 {
1811 	int i;
1812 
1813 	/* setup tc must be called under rtnl lock */
1814 	ASSERT_RTNL();
1815 
1816 	/* Sanity-check the number of traffic classes requested */
1817 	if ((dev->real_num_tx_queues <= 1) ||
1818 	    (dev->real_num_tx_queues < num_tc))
1819 		return -EINVAL;
1820 
1821 	/* Configure traffic class to queue mappings */
1822 	if (num_tc) {
1823 		netdev_set_num_tc(dev, num_tc);
1824 		for (i = 0; i < num_tc; i++)
1825 			netdev_set_tc_queue(dev, i, 1, i);
1826 	} else {
1827 		netdev_reset_tc(dev);
1828 	}
1829 
1830 	return 0;
1831 }
1832 
1833 static const struct net_device_ops netcp_netdev_ops = {
1834 	.ndo_open		= netcp_ndo_open,
1835 	.ndo_stop		= netcp_ndo_stop,
1836 	.ndo_start_xmit		= netcp_ndo_start_xmit,
1837 	.ndo_set_rx_mode	= netcp_set_rx_mode,
1838 	.ndo_do_ioctl           = netcp_ndo_ioctl,
1839 	.ndo_change_mtu		= netcp_ndo_change_mtu,
1840 	.ndo_set_mac_address	= eth_mac_addr,
1841 	.ndo_validate_addr	= eth_validate_addr,
1842 	.ndo_vlan_rx_add_vid	= netcp_rx_add_vid,
1843 	.ndo_vlan_rx_kill_vid	= netcp_rx_kill_vid,
1844 	.ndo_tx_timeout		= netcp_ndo_tx_timeout,
1845 	.ndo_select_queue	= netcp_select_queue,
1846 	.ndo_setup_tc		= netcp_setup_tc,
1847 };
1848 
1849 static int netcp_create_interface(struct netcp_device *netcp_device,
1850 				  struct device_node *node_interface)
1851 {
1852 	struct device *dev = netcp_device->device;
1853 	struct device_node *node = dev->of_node;
1854 	struct netcp_intf *netcp;
1855 	struct net_device *ndev;
1856 	resource_size_t size;
1857 	struct resource res;
1858 	void __iomem *efuse = NULL;
1859 	u32 efuse_mac = 0;
1860 	const void *mac_addr;
1861 	u8 efuse_mac_addr[6];
1862 	u32 temp[2];
1863 	int ret = 0;
1864 
1865 	ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1866 	if (!ndev) {
1867 		dev_err(dev, "Error allocating netdev\n");
1868 		return -ENOMEM;
1869 	}
1870 
1871 	ndev->features |= NETIF_F_SG;
1872 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1873 	ndev->hw_features = ndev->features;
1874 	ndev->vlan_features |=  NETIF_F_SG;
1875 
1876 	netcp = netdev_priv(ndev);
1877 	spin_lock_init(&netcp->lock);
1878 	INIT_LIST_HEAD(&netcp->module_head);
1879 	INIT_LIST_HEAD(&netcp->txhook_list_head);
1880 	INIT_LIST_HEAD(&netcp->rxhook_list_head);
1881 	INIT_LIST_HEAD(&netcp->addr_list);
1882 	netcp->netcp_device = netcp_device;
1883 	netcp->dev = netcp_device->device;
1884 	netcp->ndev = ndev;
1885 	netcp->ndev_dev  = &ndev->dev;
1886 	netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
1887 	netcp->tx_pause_threshold = MAX_SKB_FRAGS;
1888 	netcp->tx_resume_threshold = netcp->tx_pause_threshold;
1889 	netcp->node_interface = node_interface;
1890 
1891 	ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
1892 	if (efuse_mac) {
1893 		if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
1894 			dev_err(dev, "could not find efuse-mac reg resource\n");
1895 			ret = -ENODEV;
1896 			goto quit;
1897 		}
1898 		size = resource_size(&res);
1899 
1900 		if (!devm_request_mem_region(dev, res.start, size,
1901 					     dev_name(dev))) {
1902 			dev_err(dev, "could not reserve resource\n");
1903 			ret = -ENOMEM;
1904 			goto quit;
1905 		}
1906 
1907 		efuse = devm_ioremap_nocache(dev, res.start, size);
1908 		if (!efuse) {
1909 			dev_err(dev, "could not map resource\n");
1910 			devm_release_mem_region(dev, res.start, size);
1911 			ret = -ENOMEM;
1912 			goto quit;
1913 		}
1914 
1915 		emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
1916 		if (is_valid_ether_addr(efuse_mac_addr))
1917 			ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
1918 		else
1919 			random_ether_addr(ndev->dev_addr);
1920 
1921 		devm_iounmap(dev, efuse);
1922 		devm_release_mem_region(dev, res.start, size);
1923 	} else {
1924 		mac_addr = of_get_mac_address(node_interface);
1925 		if (mac_addr)
1926 			ether_addr_copy(ndev->dev_addr, mac_addr);
1927 		else
1928 			random_ether_addr(ndev->dev_addr);
1929 	}
1930 
1931 	ret = of_property_read_string(node_interface, "rx-channel",
1932 				      &netcp->dma_chan_name);
1933 	if (ret < 0) {
1934 		dev_err(dev, "missing \"rx-channel\" parameter\n");
1935 		ret = -ENODEV;
1936 		goto quit;
1937 	}
1938 
1939 	ret = of_property_read_u32(node_interface, "rx-queue",
1940 				   &netcp->rx_queue_id);
1941 	if (ret < 0) {
1942 		dev_warn(dev, "missing \"rx-queue\" parameter\n");
1943 		netcp->rx_queue_id = KNAV_QUEUE_QPEND;
1944 	}
1945 
1946 	ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
1947 					 netcp->rx_queue_depths,
1948 					 KNAV_DMA_FDQ_PER_CHAN);
1949 	if (ret < 0) {
1950 		dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
1951 		netcp->rx_queue_depths[0] = 128;
1952 	}
1953 
1954 	ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
1955 	if (ret < 0) {
1956 		dev_err(dev, "missing \"rx-pool\" parameter\n");
1957 		ret = -ENODEV;
1958 		goto quit;
1959 	}
1960 	netcp->rx_pool_size = temp[0];
1961 	netcp->rx_pool_region_id = temp[1];
1962 
1963 	ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
1964 	if (ret < 0) {
1965 		dev_err(dev, "missing \"tx-pool\" parameter\n");
1966 		ret = -ENODEV;
1967 		goto quit;
1968 	}
1969 	netcp->tx_pool_size = temp[0];
1970 	netcp->tx_pool_region_id = temp[1];
1971 
1972 	if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
1973 		dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
1974 			MAX_SKB_FRAGS);
1975 		ret = -ENODEV;
1976 		goto quit;
1977 	}
1978 
1979 	ret = of_property_read_u32(node_interface, "tx-completion-queue",
1980 				   &netcp->tx_compl_qid);
1981 	if (ret < 0) {
1982 		dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
1983 		netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
1984 	}
1985 
1986 	/* NAPI register */
1987 	netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
1988 	netif_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
1989 
1990 	/* Register the network device */
1991 	ndev->dev_id		= 0;
1992 	ndev->watchdog_timeo	= NETCP_TX_TIMEOUT;
1993 	ndev->netdev_ops	= &netcp_netdev_ops;
1994 	SET_NETDEV_DEV(ndev, dev);
1995 
1996 	list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
1997 	return 0;
1998 
1999 quit:
2000 	free_netdev(ndev);
2001 	return ret;
2002 }
2003 
2004 static void netcp_delete_interface(struct netcp_device *netcp_device,
2005 				   struct net_device *ndev)
2006 {
2007 	struct netcp_intf_modpriv *intf_modpriv, *tmp;
2008 	struct netcp_intf *netcp = netdev_priv(ndev);
2009 	struct netcp_module *module;
2010 
2011 	dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2012 		ndev->name);
2013 
2014 	/* Notify each of the modules that the interface is going away */
2015 	list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2016 				 intf_list) {
2017 		module = intf_modpriv->netcp_module;
2018 		dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2019 			module->name);
2020 		if (module->release)
2021 			module->release(intf_modpriv->module_priv);
2022 		list_del(&intf_modpriv->intf_list);
2023 		kfree(intf_modpriv);
2024 	}
2025 	WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2026 	     ndev->name);
2027 
2028 	list_del(&netcp->interface_list);
2029 
2030 	of_node_put(netcp->node_interface);
2031 	unregister_netdev(ndev);
2032 	netif_napi_del(&netcp->rx_napi);
2033 	free_netdev(ndev);
2034 }
2035 
2036 static int netcp_probe(struct platform_device *pdev)
2037 {
2038 	struct device_node *node = pdev->dev.of_node;
2039 	struct netcp_intf *netcp_intf, *netcp_tmp;
2040 	struct device_node *child, *interfaces;
2041 	struct netcp_device *netcp_device;
2042 	struct device *dev = &pdev->dev;
2043 	struct netcp_module *module;
2044 	int ret;
2045 
2046 	if (!node) {
2047 		dev_err(dev, "could not find device info\n");
2048 		return -ENODEV;
2049 	}
2050 
2051 	/* Allocate a new NETCP device instance */
2052 	netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2053 	if (!netcp_device)
2054 		return -ENOMEM;
2055 
2056 	pm_runtime_enable(&pdev->dev);
2057 	ret = pm_runtime_get_sync(&pdev->dev);
2058 	if (ret < 0) {
2059 		dev_err(dev, "Failed to enable NETCP power-domain\n");
2060 		pm_runtime_disable(&pdev->dev);
2061 		return ret;
2062 	}
2063 
2064 	/* Initialize the NETCP device instance */
2065 	INIT_LIST_HEAD(&netcp_device->interface_head);
2066 	INIT_LIST_HEAD(&netcp_device->modpriv_head);
2067 	netcp_device->device = dev;
2068 	platform_set_drvdata(pdev, netcp_device);
2069 
2070 	/* create interfaces */
2071 	interfaces = of_get_child_by_name(node, "netcp-interfaces");
2072 	if (!interfaces) {
2073 		dev_err(dev, "could not find netcp-interfaces node\n");
2074 		ret = -ENODEV;
2075 		goto probe_quit;
2076 	}
2077 
2078 	for_each_available_child_of_node(interfaces, child) {
2079 		ret = netcp_create_interface(netcp_device, child);
2080 		if (ret) {
2081 			dev_err(dev, "could not create interface(%s)\n",
2082 				child->name);
2083 			goto probe_quit_interface;
2084 		}
2085 	}
2086 
2087 	/* Add the device instance to the list */
2088 	list_add_tail(&netcp_device->device_list, &netcp_devices);
2089 
2090 	/* Probe & attach any modules already registered */
2091 	mutex_lock(&netcp_modules_lock);
2092 	for_each_netcp_module(module) {
2093 		ret = netcp_module_probe(netcp_device, module);
2094 		if (ret < 0)
2095 			dev_err(dev, "module(%s) probe failed\n", module->name);
2096 	}
2097 	mutex_unlock(&netcp_modules_lock);
2098 	return 0;
2099 
2100 probe_quit_interface:
2101 	list_for_each_entry_safe(netcp_intf, netcp_tmp,
2102 				 &netcp_device->interface_head,
2103 				 interface_list) {
2104 		netcp_delete_interface(netcp_device, netcp_intf->ndev);
2105 	}
2106 
2107 probe_quit:
2108 	pm_runtime_put_sync(&pdev->dev);
2109 	pm_runtime_disable(&pdev->dev);
2110 	platform_set_drvdata(pdev, NULL);
2111 	return ret;
2112 }
2113 
2114 static int netcp_remove(struct platform_device *pdev)
2115 {
2116 	struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2117 	struct netcp_intf *netcp_intf, *netcp_tmp;
2118 	struct netcp_inst_modpriv *inst_modpriv, *tmp;
2119 	struct netcp_module *module;
2120 
2121 	list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2122 				 inst_list) {
2123 		module = inst_modpriv->netcp_module;
2124 		dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2125 		module->remove(netcp_device, inst_modpriv->module_priv);
2126 		list_del(&inst_modpriv->inst_list);
2127 		kfree(inst_modpriv);
2128 	}
2129 
2130 	/* now that all modules are removed, clean up the interfaces */
2131 	list_for_each_entry_safe(netcp_intf, netcp_tmp,
2132 				 &netcp_device->interface_head,
2133 				 interface_list) {
2134 		netcp_delete_interface(netcp_device, netcp_intf->ndev);
2135 	}
2136 
2137 	WARN(!list_empty(&netcp_device->interface_head),
2138 	     "%s interface list not empty!\n", pdev->name);
2139 
2140 	pm_runtime_put_sync(&pdev->dev);
2141 	pm_runtime_disable(&pdev->dev);
2142 	platform_set_drvdata(pdev, NULL);
2143 	return 0;
2144 }
2145 
2146 static const struct of_device_id of_match[] = {
2147 	{ .compatible = "ti,netcp-1.0", },
2148 	{},
2149 };
2150 MODULE_DEVICE_TABLE(of, of_match);
2151 
2152 static struct platform_driver netcp_driver = {
2153 	.driver = {
2154 		.name		= "netcp-1.0",
2155 		.of_match_table	= of_match,
2156 	},
2157 	.probe = netcp_probe,
2158 	.remove = netcp_remove,
2159 };
2160 module_platform_driver(netcp_driver);
2161 
2162 MODULE_LICENSE("GPL v2");
2163 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2164 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");
2165