xref: /linux/drivers/net/ethernet/ti/netcp_core.c (revision 2ba9268dd603d23e17643437b2246acb6844953b)
1 /*
2  * Keystone NetCP Core driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated
5  * Authors:	Sandeep Nair <sandeep_n@ti.com>
6  *		Sandeep Paulraj <s-paulraj@ti.com>
7  *		Cyril Chemparathy <cyril@ti.com>
8  *		Santosh Shilimkar <santosh.shilimkar@ti.com>
9  *		Murali Karicheri <m-karicheri2@ti.com>
10  *		Wingman Kwok <w-kwok2@ti.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation version 2.
15  *
16  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
17  * kind, whether express or implied; without even the implied warranty
18  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21 
22 #include <linux/io.h>
23 #include <linux/module.h>
24 #include <linux/of_net.h>
25 #include <linux/of_address.h>
26 #include <linux/if_vlan.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/platform_device.h>
29 #include <linux/soc/ti/knav_qmss.h>
30 #include <linux/soc/ti/knav_dma.h>
31 
32 #include "netcp.h"
33 
34 #define NETCP_SOP_OFFSET	(NET_IP_ALIGN + NET_SKB_PAD)
35 #define NETCP_NAPI_WEIGHT	64
36 #define NETCP_TX_TIMEOUT	(5 * HZ)
37 #define NETCP_MIN_PACKET_SIZE	ETH_ZLEN
38 #define NETCP_MAX_MCAST_ADDR	16
39 
40 #define NETCP_EFUSE_REG_INDEX	0
41 
42 #define NETCP_MOD_PROBE_SKIPPED	1
43 #define NETCP_MOD_PROBE_FAILED	2
44 
45 #define NETCP_DEBUG (NETIF_MSG_HW	| NETIF_MSG_WOL		|	\
46 		    NETIF_MSG_DRV	| NETIF_MSG_LINK	|	\
47 		    NETIF_MSG_IFUP	| NETIF_MSG_INTR	|	\
48 		    NETIF_MSG_PROBE	| NETIF_MSG_TIMER	|	\
49 		    NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	|	\
50 		    NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	|	\
51 		    NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	|	\
52 		    NETIF_MSG_RX_STATUS)
53 
54 #define knav_queue_get_id(q)	knav_queue_device_control(q, \
55 				KNAV_QUEUE_GET_ID, (unsigned long)NULL)
56 
57 #define knav_queue_enable_notify(q) knav_queue_device_control(q,	\
58 					KNAV_QUEUE_ENABLE_NOTIFY,	\
59 					(unsigned long)NULL)
60 
61 #define knav_queue_disable_notify(q) knav_queue_device_control(q,	\
62 					KNAV_QUEUE_DISABLE_NOTIFY,	\
63 					(unsigned long)NULL)
64 
65 #define knav_queue_get_count(q)	knav_queue_device_control(q, \
66 				KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
67 
68 #define for_each_netcp_module(module)			\
69 	list_for_each_entry(module, &netcp_modules, module_list)
70 
71 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \
72 	list_for_each_entry(inst_modpriv, \
73 		&((netcp_device)->modpriv_head), inst_list)
74 
75 #define for_each_module(netcp, intf_modpriv)			\
76 	list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
77 
78 /* Module management structures */
79 struct netcp_device {
80 	struct list_head	device_list;
81 	struct list_head	interface_head;
82 	struct list_head	modpriv_head;
83 	struct device		*device;
84 };
85 
86 struct netcp_inst_modpriv {
87 	struct netcp_device	*netcp_device;
88 	struct netcp_module	*netcp_module;
89 	struct list_head	inst_list;
90 	void			*module_priv;
91 };
92 
93 struct netcp_intf_modpriv {
94 	struct netcp_intf	*netcp_priv;
95 	struct netcp_module	*netcp_module;
96 	struct list_head	intf_list;
97 	void			*module_priv;
98 };
99 
100 static LIST_HEAD(netcp_devices);
101 static LIST_HEAD(netcp_modules);
102 static DEFINE_MUTEX(netcp_modules_lock);
103 
104 static int netcp_debug_level = -1;
105 module_param(netcp_debug_level, int, 0);
106 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
107 
108 /* Helper functions - Get/Set */
109 static void get_pkt_info(u32 *buff, u32 *buff_len, u32 *ndesc,
110 			 struct knav_dma_desc *desc)
111 {
112 	*buff_len = desc->buff_len;
113 	*buff = desc->buff;
114 	*ndesc = desc->next_desc;
115 }
116 
117 static void get_pad_info(u32 *pad0, u32 *pad1, struct knav_dma_desc *desc)
118 {
119 	*pad0 = desc->pad[0];
120 	*pad1 = desc->pad[1];
121 }
122 
123 static void get_org_pkt_info(u32 *buff, u32 *buff_len,
124 			     struct knav_dma_desc *desc)
125 {
126 	*buff = desc->orig_buff;
127 	*buff_len = desc->orig_len;
128 }
129 
130 static void get_words(u32 *words, int num_words, u32 *desc)
131 {
132 	int i;
133 
134 	for (i = 0; i < num_words; i++)
135 		words[i] = desc[i];
136 }
137 
138 static void set_pkt_info(u32 buff, u32 buff_len, u32 ndesc,
139 			 struct knav_dma_desc *desc)
140 {
141 	desc->buff_len = buff_len;
142 	desc->buff = buff;
143 	desc->next_desc = ndesc;
144 }
145 
146 static void set_desc_info(u32 desc_info, u32 pkt_info,
147 			  struct knav_dma_desc *desc)
148 {
149 	desc->desc_info = desc_info;
150 	desc->packet_info = pkt_info;
151 }
152 
153 static void set_pad_info(u32 pad0, u32 pad1, struct knav_dma_desc *desc)
154 {
155 	desc->pad[0] = pad0;
156 	desc->pad[1] = pad1;
157 }
158 
159 static void set_org_pkt_info(u32 buff, u32 buff_len,
160 			     struct knav_dma_desc *desc)
161 {
162 	desc->orig_buff = buff;
163 	desc->orig_len = buff_len;
164 }
165 
166 static void set_words(u32 *words, int num_words, u32 *desc)
167 {
168 	int i;
169 
170 	for (i = 0; i < num_words; i++)
171 		desc[i] = words[i];
172 }
173 
174 /* Read the e-fuse value as 32 bit values to be endian independent */
175 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac)
176 {
177 	unsigned int addr0, addr1;
178 
179 	addr1 = readl(efuse_mac + 4);
180 	addr0 = readl(efuse_mac);
181 
182 	x[0] = (addr1 & 0x0000ff00) >> 8;
183 	x[1] = addr1 & 0x000000ff;
184 	x[2] = (addr0 & 0xff000000) >> 24;
185 	x[3] = (addr0 & 0x00ff0000) >> 16;
186 	x[4] = (addr0 & 0x0000ff00) >> 8;
187 	x[5] = addr0 & 0x000000ff;
188 
189 	return 0;
190 }
191 
192 static const char *netcp_node_name(struct device_node *node)
193 {
194 	const char *name;
195 
196 	if (of_property_read_string(node, "label", &name) < 0)
197 		name = node->name;
198 	if (!name)
199 		name = "unknown";
200 	return name;
201 }
202 
203 /* Module management routines */
204 static int netcp_register_interface(struct netcp_intf *netcp)
205 {
206 	int ret;
207 
208 	ret = register_netdev(netcp->ndev);
209 	if (!ret)
210 		netcp->netdev_registered = true;
211 	return ret;
212 }
213 
214 static int netcp_module_probe(struct netcp_device *netcp_device,
215 			      struct netcp_module *module)
216 {
217 	struct device *dev = netcp_device->device;
218 	struct device_node *devices, *interface, *node = dev->of_node;
219 	struct device_node *child;
220 	struct netcp_inst_modpriv *inst_modpriv;
221 	struct netcp_intf *netcp_intf;
222 	struct netcp_module *tmp;
223 	bool primary_module_registered = false;
224 	int ret;
225 
226 	/* Find this module in the sub-tree for this device */
227 	devices = of_get_child_by_name(node, "netcp-devices");
228 	if (!devices) {
229 		dev_err(dev, "could not find netcp-devices node\n");
230 		return NETCP_MOD_PROBE_SKIPPED;
231 	}
232 
233 	for_each_available_child_of_node(devices, child) {
234 		const char *name = netcp_node_name(child);
235 
236 		if (!strcasecmp(module->name, name))
237 			break;
238 	}
239 
240 	of_node_put(devices);
241 	/* If module not used for this device, skip it */
242 	if (!child) {
243 		dev_warn(dev, "module(%s) not used for device\n", module->name);
244 		return NETCP_MOD_PROBE_SKIPPED;
245 	}
246 
247 	inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
248 	if (!inst_modpriv) {
249 		of_node_put(child);
250 		return -ENOMEM;
251 	}
252 
253 	inst_modpriv->netcp_device = netcp_device;
254 	inst_modpriv->netcp_module = module;
255 	list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
256 
257 	ret = module->probe(netcp_device, dev, child,
258 			    &inst_modpriv->module_priv);
259 	of_node_put(child);
260 	if (ret) {
261 		dev_err(dev, "Probe of module(%s) failed with %d\n",
262 			module->name, ret);
263 		list_del(&inst_modpriv->inst_list);
264 		devm_kfree(dev, inst_modpriv);
265 		return NETCP_MOD_PROBE_FAILED;
266 	}
267 
268 	/* Attach modules only if the primary module is probed */
269 	for_each_netcp_module(tmp) {
270 		if (tmp->primary)
271 			primary_module_registered = true;
272 	}
273 
274 	if (!primary_module_registered)
275 		return 0;
276 
277 	/* Attach module to interfaces */
278 	list_for_each_entry(netcp_intf, &netcp_device->interface_head,
279 			    interface_list) {
280 		struct netcp_intf_modpriv *intf_modpriv;
281 
282 		/* If interface not registered then register now */
283 		if (!netcp_intf->netdev_registered)
284 			ret = netcp_register_interface(netcp_intf);
285 
286 		if (ret)
287 			return -ENODEV;
288 
289 		intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
290 					    GFP_KERNEL);
291 		if (!intf_modpriv)
292 			return -ENOMEM;
293 
294 		interface = of_parse_phandle(netcp_intf->node_interface,
295 					     module->name, 0);
296 
297 		intf_modpriv->netcp_priv = netcp_intf;
298 		intf_modpriv->netcp_module = module;
299 		list_add_tail(&intf_modpriv->intf_list,
300 			      &netcp_intf->module_head);
301 
302 		ret = module->attach(inst_modpriv->module_priv,
303 				     netcp_intf->ndev, interface,
304 				     &intf_modpriv->module_priv);
305 		of_node_put(interface);
306 		if (ret) {
307 			dev_dbg(dev, "Attach of module %s declined with %d\n",
308 				module->name, ret);
309 			list_del(&intf_modpriv->intf_list);
310 			devm_kfree(dev, intf_modpriv);
311 			continue;
312 		}
313 	}
314 	return 0;
315 }
316 
317 int netcp_register_module(struct netcp_module *module)
318 {
319 	struct netcp_device *netcp_device;
320 	struct netcp_module *tmp;
321 	int ret;
322 
323 	if (!module->name) {
324 		WARN(1, "error registering netcp module: no name\n");
325 		return -EINVAL;
326 	}
327 
328 	if (!module->probe) {
329 		WARN(1, "error registering netcp module: no probe\n");
330 		return -EINVAL;
331 	}
332 
333 	mutex_lock(&netcp_modules_lock);
334 
335 	for_each_netcp_module(tmp) {
336 		if (!strcasecmp(tmp->name, module->name)) {
337 			mutex_unlock(&netcp_modules_lock);
338 			return -EEXIST;
339 		}
340 	}
341 	list_add_tail(&module->module_list, &netcp_modules);
342 
343 	list_for_each_entry(netcp_device, &netcp_devices, device_list) {
344 		ret = netcp_module_probe(netcp_device, module);
345 		if (ret < 0)
346 			goto fail;
347 	}
348 
349 	mutex_unlock(&netcp_modules_lock);
350 	return 0;
351 
352 fail:
353 	mutex_unlock(&netcp_modules_lock);
354 	netcp_unregister_module(module);
355 	return ret;
356 }
357 EXPORT_SYMBOL_GPL(netcp_register_module);
358 
359 static void netcp_release_module(struct netcp_device *netcp_device,
360 				 struct netcp_module *module)
361 {
362 	struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
363 	struct netcp_intf *netcp_intf, *netcp_tmp;
364 	struct device *dev = netcp_device->device;
365 
366 	/* Release the module from each interface */
367 	list_for_each_entry_safe(netcp_intf, netcp_tmp,
368 				 &netcp_device->interface_head,
369 				 interface_list) {
370 		struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
371 
372 		list_for_each_entry_safe(intf_modpriv, intf_tmp,
373 					 &netcp_intf->module_head,
374 					 intf_list) {
375 			if (intf_modpriv->netcp_module == module) {
376 				module->release(intf_modpriv->module_priv);
377 				list_del(&intf_modpriv->intf_list);
378 				devm_kfree(dev, intf_modpriv);
379 				break;
380 			}
381 		}
382 	}
383 
384 	/* Remove the module from each instance */
385 	list_for_each_entry_safe(inst_modpriv, inst_tmp,
386 				 &netcp_device->modpriv_head, inst_list) {
387 		if (inst_modpriv->netcp_module == module) {
388 			module->remove(netcp_device,
389 				       inst_modpriv->module_priv);
390 			list_del(&inst_modpriv->inst_list);
391 			devm_kfree(dev, inst_modpriv);
392 			break;
393 		}
394 	}
395 }
396 
397 void netcp_unregister_module(struct netcp_module *module)
398 {
399 	struct netcp_device *netcp_device;
400 	struct netcp_module *module_tmp;
401 
402 	mutex_lock(&netcp_modules_lock);
403 
404 	list_for_each_entry(netcp_device, &netcp_devices, device_list) {
405 		netcp_release_module(netcp_device, module);
406 	}
407 
408 	/* Remove the module from the module list */
409 	for_each_netcp_module(module_tmp) {
410 		if (module == module_tmp) {
411 			list_del(&module->module_list);
412 			break;
413 		}
414 	}
415 
416 	mutex_unlock(&netcp_modules_lock);
417 }
418 EXPORT_SYMBOL_GPL(netcp_unregister_module);
419 
420 void *netcp_module_get_intf_data(struct netcp_module *module,
421 				 struct netcp_intf *intf)
422 {
423 	struct netcp_intf_modpriv *intf_modpriv;
424 
425 	list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
426 		if (intf_modpriv->netcp_module == module)
427 			return intf_modpriv->module_priv;
428 	return NULL;
429 }
430 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
431 
432 /* Module TX and RX Hook management */
433 struct netcp_hook_list {
434 	struct list_head	 list;
435 	netcp_hook_rtn		*hook_rtn;
436 	void			*hook_data;
437 	int			 order;
438 };
439 
440 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
441 			  netcp_hook_rtn *hook_rtn, void *hook_data)
442 {
443 	struct netcp_hook_list *entry;
444 	struct netcp_hook_list *next;
445 	unsigned long flags;
446 
447 	entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
448 	if (!entry)
449 		return -ENOMEM;
450 
451 	entry->hook_rtn  = hook_rtn;
452 	entry->hook_data = hook_data;
453 	entry->order     = order;
454 
455 	spin_lock_irqsave(&netcp_priv->lock, flags);
456 	list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
457 		if (next->order > order)
458 			break;
459 	}
460 	__list_add(&entry->list, next->list.prev, &next->list);
461 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
462 
463 	return 0;
464 }
465 EXPORT_SYMBOL_GPL(netcp_register_txhook);
466 
467 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
468 			    netcp_hook_rtn *hook_rtn, void *hook_data)
469 {
470 	struct netcp_hook_list *next, *n;
471 	unsigned long flags;
472 
473 	spin_lock_irqsave(&netcp_priv->lock, flags);
474 	list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
475 		if ((next->order     == order) &&
476 		    (next->hook_rtn  == hook_rtn) &&
477 		    (next->hook_data == hook_data)) {
478 			list_del(&next->list);
479 			spin_unlock_irqrestore(&netcp_priv->lock, flags);
480 			devm_kfree(netcp_priv->dev, next);
481 			return 0;
482 		}
483 	}
484 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
485 	return -ENOENT;
486 }
487 EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
488 
489 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
490 			  netcp_hook_rtn *hook_rtn, void *hook_data)
491 {
492 	struct netcp_hook_list *entry;
493 	struct netcp_hook_list *next;
494 	unsigned long flags;
495 
496 	entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
497 	if (!entry)
498 		return -ENOMEM;
499 
500 	entry->hook_rtn  = hook_rtn;
501 	entry->hook_data = hook_data;
502 	entry->order     = order;
503 
504 	spin_lock_irqsave(&netcp_priv->lock, flags);
505 	list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
506 		if (next->order > order)
507 			break;
508 	}
509 	__list_add(&entry->list, next->list.prev, &next->list);
510 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
511 
512 	return 0;
513 }
514 
515 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
516 			    netcp_hook_rtn *hook_rtn, void *hook_data)
517 {
518 	struct netcp_hook_list *next, *n;
519 	unsigned long flags;
520 
521 	spin_lock_irqsave(&netcp_priv->lock, flags);
522 	list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
523 		if ((next->order     == order) &&
524 		    (next->hook_rtn  == hook_rtn) &&
525 		    (next->hook_data == hook_data)) {
526 			list_del(&next->list);
527 			spin_unlock_irqrestore(&netcp_priv->lock, flags);
528 			devm_kfree(netcp_priv->dev, next);
529 			return 0;
530 		}
531 	}
532 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
533 
534 	return -ENOENT;
535 }
536 
537 static void netcp_frag_free(bool is_frag, void *ptr)
538 {
539 	if (is_frag)
540 		put_page(virt_to_head_page(ptr));
541 	else
542 		kfree(ptr);
543 }
544 
545 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
546 				     struct knav_dma_desc *desc)
547 {
548 	struct knav_dma_desc *ndesc;
549 	dma_addr_t dma_desc, dma_buf;
550 	unsigned int buf_len, dma_sz = sizeof(*ndesc);
551 	void *buf_ptr;
552 	u32 tmp;
553 
554 	get_words(&dma_desc, 1, &desc->next_desc);
555 
556 	while (dma_desc) {
557 		ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
558 		if (unlikely(!ndesc)) {
559 			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
560 			break;
561 		}
562 		get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
563 		get_pad_info((u32 *)&buf_ptr, &tmp, ndesc);
564 		dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
565 		__free_page(buf_ptr);
566 		knav_pool_desc_put(netcp->rx_pool, desc);
567 	}
568 
569 	get_pad_info((u32 *)&buf_ptr, &buf_len, desc);
570 	if (buf_ptr)
571 		netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
572 	knav_pool_desc_put(netcp->rx_pool, desc);
573 }
574 
575 static void netcp_empty_rx_queue(struct netcp_intf *netcp)
576 {
577 	struct knav_dma_desc *desc;
578 	unsigned int dma_sz;
579 	dma_addr_t dma;
580 
581 	for (; ;) {
582 		dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
583 		if (!dma)
584 			break;
585 
586 		desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
587 		if (unlikely(!desc)) {
588 			dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
589 				__func__);
590 			netcp->ndev->stats.rx_errors++;
591 			continue;
592 		}
593 		netcp_free_rx_desc_chain(netcp, desc);
594 		netcp->ndev->stats.rx_dropped++;
595 	}
596 }
597 
598 static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
599 {
600 	unsigned int dma_sz, buf_len, org_buf_len;
601 	struct knav_dma_desc *desc, *ndesc;
602 	unsigned int pkt_sz = 0, accum_sz;
603 	struct netcp_hook_list *rx_hook;
604 	dma_addr_t dma_desc, dma_buff;
605 	struct netcp_packet p_info;
606 	struct sk_buff *skb;
607 	void *org_buf_ptr;
608 	u32 tmp;
609 
610 	dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
611 	if (!dma_desc)
612 		return -1;
613 
614 	desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
615 	if (unlikely(!desc)) {
616 		dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
617 		return 0;
618 	}
619 
620 	get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
621 	get_pad_info((u32 *)&org_buf_ptr, &org_buf_len, desc);
622 
623 	if (unlikely(!org_buf_ptr)) {
624 		dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
625 		goto free_desc;
626 	}
627 
628 	pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
629 	accum_sz = buf_len;
630 	dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
631 
632 	/* Build a new sk_buff for the primary buffer */
633 	skb = build_skb(org_buf_ptr, org_buf_len);
634 	if (unlikely(!skb)) {
635 		dev_err(netcp->ndev_dev, "build_skb() failed\n");
636 		goto free_desc;
637 	}
638 
639 	/* update data, tail and len */
640 	skb_reserve(skb, NETCP_SOP_OFFSET);
641 	__skb_put(skb, buf_len);
642 
643 	/* Fill in the page fragment list */
644 	while (dma_desc) {
645 		struct page *page;
646 
647 		ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
648 		if (unlikely(!ndesc)) {
649 			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
650 			goto free_desc;
651 		}
652 
653 		get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
654 		get_pad_info((u32 *)&page, &tmp, ndesc);
655 
656 		if (likely(dma_buff && buf_len && page)) {
657 			dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
658 				       DMA_FROM_DEVICE);
659 		} else {
660 			dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%p), len(%d), page(%p)\n",
661 				(void *)dma_buff, buf_len, page);
662 			goto free_desc;
663 		}
664 
665 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
666 				offset_in_page(dma_buff), buf_len, PAGE_SIZE);
667 		accum_sz += buf_len;
668 
669 		/* Free the descriptor */
670 		knav_pool_desc_put(netcp->rx_pool, ndesc);
671 	}
672 
673 	/* Free the primary descriptor */
674 	knav_pool_desc_put(netcp->rx_pool, desc);
675 
676 	/* check for packet len and warn */
677 	if (unlikely(pkt_sz != accum_sz))
678 		dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
679 			pkt_sz, accum_sz);
680 
681 	/* Remove ethernet FCS from the packet */
682 	__pskb_trim(skb, skb->len - ETH_FCS_LEN);
683 
684 	/* Call each of the RX hooks */
685 	p_info.skb = skb;
686 	p_info.rxtstamp_complete = false;
687 	list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
688 		int ret;
689 
690 		ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
691 					&p_info);
692 		if (unlikely(ret)) {
693 			dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
694 				rx_hook->order, ret);
695 			netcp->ndev->stats.rx_errors++;
696 			dev_kfree_skb(skb);
697 			return 0;
698 		}
699 	}
700 
701 	netcp->ndev->last_rx = jiffies;
702 	netcp->ndev->stats.rx_packets++;
703 	netcp->ndev->stats.rx_bytes += skb->len;
704 
705 	/* push skb up the stack */
706 	skb->protocol = eth_type_trans(skb, netcp->ndev);
707 	netif_receive_skb(skb);
708 	return 0;
709 
710 free_desc:
711 	netcp_free_rx_desc_chain(netcp, desc);
712 	netcp->ndev->stats.rx_errors++;
713 	return 0;
714 }
715 
716 static int netcp_process_rx_packets(struct netcp_intf *netcp,
717 				    unsigned int budget)
718 {
719 	int i;
720 
721 	for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
722 		;
723 	return i;
724 }
725 
726 /* Release descriptors and attached buffers from Rx FDQ */
727 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
728 {
729 	struct knav_dma_desc *desc;
730 	unsigned int buf_len, dma_sz;
731 	dma_addr_t dma;
732 	void *buf_ptr;
733 	u32 tmp;
734 
735 	/* Allocate descriptor */
736 	while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
737 		desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
738 		if (unlikely(!desc)) {
739 			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
740 			continue;
741 		}
742 
743 		get_org_pkt_info(&dma, &buf_len, desc);
744 		get_pad_info((u32 *)&buf_ptr, &tmp, desc);
745 
746 		if (unlikely(!dma)) {
747 			dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
748 			knav_pool_desc_put(netcp->rx_pool, desc);
749 			continue;
750 		}
751 
752 		if (unlikely(!buf_ptr)) {
753 			dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
754 			knav_pool_desc_put(netcp->rx_pool, desc);
755 			continue;
756 		}
757 
758 		if (fdq == 0) {
759 			dma_unmap_single(netcp->dev, dma, buf_len,
760 					 DMA_FROM_DEVICE);
761 			netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
762 		} else {
763 			dma_unmap_page(netcp->dev, dma, buf_len,
764 				       DMA_FROM_DEVICE);
765 			__free_page(buf_ptr);
766 		}
767 
768 		knav_pool_desc_put(netcp->rx_pool, desc);
769 	}
770 }
771 
772 static void netcp_rxpool_free(struct netcp_intf *netcp)
773 {
774 	int i;
775 
776 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
777 	     !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
778 		netcp_free_rx_buf(netcp, i);
779 
780 	if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
781 		dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
782 			netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
783 
784 	knav_pool_destroy(netcp->rx_pool);
785 	netcp->rx_pool = NULL;
786 }
787 
788 static void netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
789 {
790 	struct knav_dma_desc *hwdesc;
791 	unsigned int buf_len, dma_sz;
792 	u32 desc_info, pkt_info;
793 	struct page *page;
794 	dma_addr_t dma;
795 	void *bufptr;
796 	u32 pad[2];
797 
798 	/* Allocate descriptor */
799 	hwdesc = knav_pool_desc_get(netcp->rx_pool);
800 	if (IS_ERR_OR_NULL(hwdesc)) {
801 		dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
802 		return;
803 	}
804 
805 	if (likely(fdq == 0)) {
806 		unsigned int primary_buf_len;
807 		/* Allocate a primary receive queue entry */
808 		buf_len = netcp->rx_buffer_sizes[0] + NETCP_SOP_OFFSET;
809 		primary_buf_len = SKB_DATA_ALIGN(buf_len) +
810 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
811 
812 		if (primary_buf_len <= PAGE_SIZE) {
813 			bufptr = netdev_alloc_frag(primary_buf_len);
814 			pad[1] = primary_buf_len;
815 		} else {
816 			bufptr = kmalloc(primary_buf_len, GFP_ATOMIC |
817 					 GFP_DMA32 | __GFP_COLD);
818 			pad[1] = 0;
819 		}
820 
821 		if (unlikely(!bufptr)) {
822 			dev_warn_ratelimited(netcp->ndev_dev, "Primary RX buffer alloc failed\n");
823 			goto fail;
824 		}
825 		dma = dma_map_single(netcp->dev, bufptr, buf_len,
826 				     DMA_TO_DEVICE);
827 		pad[0] = (u32)bufptr;
828 
829 	} else {
830 		/* Allocate a secondary receive queue entry */
831 		page = alloc_page(GFP_ATOMIC | GFP_DMA32 | __GFP_COLD);
832 		if (unlikely(!page)) {
833 			dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
834 			goto fail;
835 		}
836 		buf_len = PAGE_SIZE;
837 		dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
838 		pad[0] = (u32)page;
839 		pad[1] = 0;
840 	}
841 
842 	desc_info =  KNAV_DMA_DESC_PS_INFO_IN_DESC;
843 	desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
844 	pkt_info =  KNAV_DMA_DESC_HAS_EPIB;
845 	pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
846 	pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
847 		    KNAV_DMA_DESC_RETQ_SHIFT;
848 	set_org_pkt_info(dma, buf_len, hwdesc);
849 	set_pad_info(pad[0], pad[1], hwdesc);
850 	set_desc_info(desc_info, pkt_info, hwdesc);
851 
852 	/* Push to FDQs */
853 	knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
854 			   &dma_sz);
855 	knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
856 	return;
857 
858 fail:
859 	knav_pool_desc_put(netcp->rx_pool, hwdesc);
860 }
861 
862 /* Refill Rx FDQ with descriptors & attached buffers */
863 static void netcp_rxpool_refill(struct netcp_intf *netcp)
864 {
865 	u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
866 	int i;
867 
868 	/* Calculate the FDQ deficit and refill */
869 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
870 		fdq_deficit[i] = netcp->rx_queue_depths[i] -
871 				 knav_queue_get_count(netcp->rx_fdq[i]);
872 
873 		while (fdq_deficit[i]--)
874 			netcp_allocate_rx_buf(netcp, i);
875 	} /* end for fdqs */
876 }
877 
878 /* NAPI poll */
879 static int netcp_rx_poll(struct napi_struct *napi, int budget)
880 {
881 	struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
882 						rx_napi);
883 	unsigned int packets;
884 
885 	packets = netcp_process_rx_packets(netcp, budget);
886 
887 	if (packets < budget) {
888 		napi_complete(&netcp->rx_napi);
889 		knav_queue_enable_notify(netcp->rx_queue);
890 	}
891 
892 	netcp_rxpool_refill(netcp);
893 	return packets;
894 }
895 
896 static void netcp_rx_notify(void *arg)
897 {
898 	struct netcp_intf *netcp = arg;
899 
900 	knav_queue_disable_notify(netcp->rx_queue);
901 	napi_schedule(&netcp->rx_napi);
902 }
903 
904 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
905 				     struct knav_dma_desc *desc,
906 				     unsigned int desc_sz)
907 {
908 	struct knav_dma_desc *ndesc = desc;
909 	dma_addr_t dma_desc, dma_buf;
910 	unsigned int buf_len;
911 
912 	while (ndesc) {
913 		get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
914 
915 		if (dma_buf && buf_len)
916 			dma_unmap_single(netcp->dev, dma_buf, buf_len,
917 					 DMA_TO_DEVICE);
918 		else
919 			dev_warn(netcp->ndev_dev, "bad Tx desc buf(%p), len(%d)\n",
920 				 (void *)dma_buf, buf_len);
921 
922 		knav_pool_desc_put(netcp->tx_pool, ndesc);
923 		ndesc = NULL;
924 		if (dma_desc) {
925 			ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
926 						     desc_sz);
927 			if (!ndesc)
928 				dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
929 		}
930 	}
931 }
932 
933 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
934 					  unsigned int budget)
935 {
936 	struct knav_dma_desc *desc;
937 	struct sk_buff *skb;
938 	unsigned int dma_sz;
939 	dma_addr_t dma;
940 	int pkts = 0;
941 	u32 tmp;
942 
943 	while (budget--) {
944 		dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
945 		if (!dma)
946 			break;
947 		desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
948 		if (unlikely(!desc)) {
949 			dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
950 			netcp->ndev->stats.tx_errors++;
951 			continue;
952 		}
953 
954 		get_pad_info((u32 *)&skb, &tmp, desc);
955 		netcp_free_tx_desc_chain(netcp, desc, dma_sz);
956 		if (!skb) {
957 			dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
958 			netcp->ndev->stats.tx_errors++;
959 			continue;
960 		}
961 
962 		if (netif_subqueue_stopped(netcp->ndev, skb) &&
963 		    netif_running(netcp->ndev) &&
964 		    (knav_pool_count(netcp->tx_pool) >
965 		    netcp->tx_resume_threshold)) {
966 			u16 subqueue = skb_get_queue_mapping(skb);
967 
968 			netif_wake_subqueue(netcp->ndev, subqueue);
969 		}
970 
971 		netcp->ndev->stats.tx_packets++;
972 		netcp->ndev->stats.tx_bytes += skb->len;
973 		dev_kfree_skb(skb);
974 		pkts++;
975 	}
976 	return pkts;
977 }
978 
979 static int netcp_tx_poll(struct napi_struct *napi, int budget)
980 {
981 	int packets;
982 	struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
983 						tx_napi);
984 
985 	packets = netcp_process_tx_compl_packets(netcp, budget);
986 	if (packets < budget) {
987 		napi_complete(&netcp->tx_napi);
988 		knav_queue_enable_notify(netcp->tx_compl_q);
989 	}
990 
991 	return packets;
992 }
993 
994 static void netcp_tx_notify(void *arg)
995 {
996 	struct netcp_intf *netcp = arg;
997 
998 	knav_queue_disable_notify(netcp->tx_compl_q);
999 	napi_schedule(&netcp->tx_napi);
1000 }
1001 
1002 static struct knav_dma_desc*
1003 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1004 {
1005 	struct knav_dma_desc *desc, *ndesc, *pdesc;
1006 	unsigned int pkt_len = skb_headlen(skb);
1007 	struct device *dev = netcp->dev;
1008 	dma_addr_t dma_addr;
1009 	unsigned int dma_sz;
1010 	int i;
1011 
1012 	/* Map the linear buffer */
1013 	dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1014 	if (unlikely(!dma_addr)) {
1015 		dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1016 		return NULL;
1017 	}
1018 
1019 	desc = knav_pool_desc_get(netcp->tx_pool);
1020 	if (unlikely(IS_ERR_OR_NULL(desc))) {
1021 		dev_err(netcp->ndev_dev, "out of TX desc\n");
1022 		dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1023 		return NULL;
1024 	}
1025 
1026 	set_pkt_info(dma_addr, pkt_len, 0, desc);
1027 	if (skb_is_nonlinear(skb)) {
1028 		prefetchw(skb_shinfo(skb));
1029 	} else {
1030 		desc->next_desc = 0;
1031 		goto upd_pkt_len;
1032 	}
1033 
1034 	pdesc = desc;
1035 
1036 	/* Handle the case where skb is fragmented in pages */
1037 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1038 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1039 		struct page *page = skb_frag_page(frag);
1040 		u32 page_offset = frag->page_offset;
1041 		u32 buf_len = skb_frag_size(frag);
1042 		dma_addr_t desc_dma;
1043 		u32 pkt_info;
1044 
1045 		dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1046 					DMA_TO_DEVICE);
1047 		if (unlikely(!dma_addr)) {
1048 			dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1049 			goto free_descs;
1050 		}
1051 
1052 		ndesc = knav_pool_desc_get(netcp->tx_pool);
1053 		if (unlikely(IS_ERR_OR_NULL(ndesc))) {
1054 			dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1055 			dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1056 			goto free_descs;
1057 		}
1058 
1059 		desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool,
1060 						      (void *)ndesc);
1061 		pkt_info =
1062 			(netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1063 				KNAV_DMA_DESC_RETQ_SHIFT;
1064 		set_pkt_info(dma_addr, buf_len, 0, ndesc);
1065 		set_words(&desc_dma, 1, &pdesc->next_desc);
1066 		pkt_len += buf_len;
1067 		if (pdesc != desc)
1068 			knav_pool_desc_map(netcp->tx_pool, pdesc,
1069 					   sizeof(*pdesc), &desc_dma, &dma_sz);
1070 		pdesc = ndesc;
1071 	}
1072 	if (pdesc != desc)
1073 		knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1074 				   &dma_addr, &dma_sz);
1075 
1076 	/* frag list based linkage is not supported for now. */
1077 	if (skb_shinfo(skb)->frag_list) {
1078 		dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1079 		goto free_descs;
1080 	}
1081 
1082 upd_pkt_len:
1083 	WARN_ON(pkt_len != skb->len);
1084 
1085 	pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1086 	set_words(&pkt_len, 1, &desc->desc_info);
1087 	return desc;
1088 
1089 free_descs:
1090 	netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1091 	return NULL;
1092 }
1093 
1094 static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1095 			       struct sk_buff *skb,
1096 			       struct knav_dma_desc *desc)
1097 {
1098 	struct netcp_tx_pipe *tx_pipe = NULL;
1099 	struct netcp_hook_list *tx_hook;
1100 	struct netcp_packet p_info;
1101 	u32 packet_info = 0;
1102 	unsigned int dma_sz;
1103 	dma_addr_t dma;
1104 	int ret = 0;
1105 
1106 	p_info.netcp = netcp;
1107 	p_info.skb = skb;
1108 	p_info.tx_pipe = NULL;
1109 	p_info.psdata_len = 0;
1110 	p_info.ts_context = NULL;
1111 	p_info.txtstamp_complete = NULL;
1112 	p_info.epib = desc->epib;
1113 	p_info.psdata = desc->psdata;
1114 	memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(u32));
1115 
1116 	/* Find out where to inject the packet for transmission */
1117 	list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1118 		ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1119 					&p_info);
1120 		if (unlikely(ret != 0)) {
1121 			dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1122 				tx_hook->order, ret);
1123 			ret = (ret < 0) ? ret : NETDEV_TX_OK;
1124 			goto out;
1125 		}
1126 	}
1127 
1128 	/* Make sure some TX hook claimed the packet */
1129 	tx_pipe = p_info.tx_pipe;
1130 	if (!tx_pipe) {
1131 		dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1132 		ret = -ENXIO;
1133 		goto out;
1134 	}
1135 
1136 	/* update descriptor */
1137 	if (p_info.psdata_len) {
1138 		u32 *psdata = p_info.psdata;
1139 
1140 		memmove(p_info.psdata, p_info.psdata + p_info.psdata_len,
1141 			p_info.psdata_len);
1142 		set_words(psdata, p_info.psdata_len, psdata);
1143 		packet_info |=
1144 			(p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1145 			KNAV_DMA_DESC_PSLEN_SHIFT;
1146 	}
1147 
1148 	packet_info |= KNAV_DMA_DESC_HAS_EPIB |
1149 		((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1150 		KNAV_DMA_DESC_RETQ_SHIFT) |
1151 		((tx_pipe->dma_psflags & KNAV_DMA_DESC_PSFLAG_MASK) <<
1152 		KNAV_DMA_DESC_PSFLAG_SHIFT);
1153 
1154 	set_words(&packet_info, 1, &desc->packet_info);
1155 	set_words((u32 *)&skb, 1, &desc->pad[0]);
1156 
1157 	/* submit packet descriptor */
1158 	ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1159 				 &dma_sz);
1160 	if (unlikely(ret)) {
1161 		dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1162 		ret = -ENOMEM;
1163 		goto out;
1164 	}
1165 	skb_tx_timestamp(skb);
1166 	knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1167 
1168 out:
1169 	return ret;
1170 }
1171 
1172 /* Submit the packet */
1173 static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1174 {
1175 	struct netcp_intf *netcp = netdev_priv(ndev);
1176 	int subqueue = skb_get_queue_mapping(skb);
1177 	struct knav_dma_desc *desc;
1178 	int desc_count, ret = 0;
1179 
1180 	if (unlikely(skb->len <= 0)) {
1181 		dev_kfree_skb(skb);
1182 		return NETDEV_TX_OK;
1183 	}
1184 
1185 	if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1186 		ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1187 		if (ret < 0) {
1188 			/* If we get here, the skb has already been dropped */
1189 			dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1190 				 ret);
1191 			ndev->stats.tx_dropped++;
1192 			return ret;
1193 		}
1194 		skb->len = NETCP_MIN_PACKET_SIZE;
1195 	}
1196 
1197 	desc = netcp_tx_map_skb(skb, netcp);
1198 	if (unlikely(!desc)) {
1199 		netif_stop_subqueue(ndev, subqueue);
1200 		ret = -ENOBUFS;
1201 		goto drop;
1202 	}
1203 
1204 	ret = netcp_tx_submit_skb(netcp, skb, desc);
1205 	if (ret)
1206 		goto drop;
1207 
1208 	ndev->trans_start = jiffies;
1209 
1210 	/* Check Tx pool count & stop subqueue if needed */
1211 	desc_count = knav_pool_count(netcp->tx_pool);
1212 	if (desc_count < netcp->tx_pause_threshold) {
1213 		dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1214 		netif_stop_subqueue(ndev, subqueue);
1215 	}
1216 	return NETDEV_TX_OK;
1217 
1218 drop:
1219 	ndev->stats.tx_dropped++;
1220 	if (desc)
1221 		netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1222 	dev_kfree_skb(skb);
1223 	return ret;
1224 }
1225 
1226 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1227 {
1228 	if (tx_pipe->dma_channel) {
1229 		knav_dma_close_channel(tx_pipe->dma_channel);
1230 		tx_pipe->dma_channel = NULL;
1231 	}
1232 	return 0;
1233 }
1234 EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1235 
1236 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1237 {
1238 	struct device *dev = tx_pipe->netcp_device->device;
1239 	struct knav_dma_cfg config;
1240 	int ret = 0;
1241 	u8 name[16];
1242 
1243 	memset(&config, 0, sizeof(config));
1244 	config.direction = DMA_MEM_TO_DEV;
1245 	config.u.tx.filt_einfo = false;
1246 	config.u.tx.filt_pswords = false;
1247 	config.u.tx.priority = DMA_PRIO_MED_L;
1248 
1249 	tx_pipe->dma_channel = knav_dma_open_channel(dev,
1250 				tx_pipe->dma_chan_name, &config);
1251 	if (IS_ERR_OR_NULL(tx_pipe->dma_channel)) {
1252 		dev_err(dev, "failed opening tx chan(%s)\n",
1253 			tx_pipe->dma_chan_name);
1254 		goto err;
1255 	}
1256 
1257 	snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1258 	tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1259 					     KNAV_QUEUE_SHARED);
1260 	if (IS_ERR(tx_pipe->dma_queue)) {
1261 		dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
1262 			name, ret);
1263 		ret = PTR_ERR(tx_pipe->dma_queue);
1264 		goto err;
1265 	}
1266 
1267 	dev_dbg(dev, "opened tx pipe %s\n", name);
1268 	return 0;
1269 
1270 err:
1271 	if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1272 		knav_dma_close_channel(tx_pipe->dma_channel);
1273 	tx_pipe->dma_channel = NULL;
1274 	return ret;
1275 }
1276 EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1277 
1278 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1279 		      struct netcp_device *netcp_device,
1280 		      const char *dma_chan_name, unsigned int dma_queue_id)
1281 {
1282 	memset(tx_pipe, 0, sizeof(*tx_pipe));
1283 	tx_pipe->netcp_device = netcp_device;
1284 	tx_pipe->dma_chan_name = dma_chan_name;
1285 	tx_pipe->dma_queue_id = dma_queue_id;
1286 	return 0;
1287 }
1288 EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1289 
1290 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1291 					  const u8 *addr,
1292 					  enum netcp_addr_type type)
1293 {
1294 	struct netcp_addr *naddr;
1295 
1296 	list_for_each_entry(naddr, &netcp->addr_list, node) {
1297 		if (naddr->type != type)
1298 			continue;
1299 		if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1300 			continue;
1301 		return naddr;
1302 	}
1303 
1304 	return NULL;
1305 }
1306 
1307 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1308 					 const u8 *addr,
1309 					 enum netcp_addr_type type)
1310 {
1311 	struct netcp_addr *naddr;
1312 
1313 	naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1314 	if (!naddr)
1315 		return NULL;
1316 
1317 	naddr->type = type;
1318 	naddr->flags = 0;
1319 	naddr->netcp = netcp;
1320 	if (addr)
1321 		ether_addr_copy(naddr->addr, addr);
1322 	else
1323 		memset(naddr->addr, 0, ETH_ALEN);
1324 	list_add_tail(&naddr->node, &netcp->addr_list);
1325 
1326 	return naddr;
1327 }
1328 
1329 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1330 {
1331 	list_del(&naddr->node);
1332 	devm_kfree(netcp->dev, naddr);
1333 }
1334 
1335 static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1336 {
1337 	struct netcp_addr *naddr;
1338 
1339 	list_for_each_entry(naddr, &netcp->addr_list, node)
1340 		naddr->flags = 0;
1341 }
1342 
1343 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1344 				enum netcp_addr_type type)
1345 {
1346 	struct netcp_addr *naddr;
1347 
1348 	naddr = netcp_addr_find(netcp, addr, type);
1349 	if (naddr) {
1350 		naddr->flags |= ADDR_VALID;
1351 		return;
1352 	}
1353 
1354 	naddr = netcp_addr_add(netcp, addr, type);
1355 	if (!WARN_ON(!naddr))
1356 		naddr->flags |= ADDR_NEW;
1357 }
1358 
1359 static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1360 {
1361 	struct netcp_addr *naddr, *tmp;
1362 	struct netcp_intf_modpriv *priv;
1363 	struct netcp_module *module;
1364 	int error;
1365 
1366 	list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1367 		if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1368 			continue;
1369 		dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1370 			naddr->addr, naddr->type);
1371 		mutex_lock(&netcp_modules_lock);
1372 		for_each_module(netcp, priv) {
1373 			module = priv->netcp_module;
1374 			if (!module->del_addr)
1375 				continue;
1376 			error = module->del_addr(priv->module_priv,
1377 						 naddr);
1378 			WARN_ON(error);
1379 		}
1380 		mutex_unlock(&netcp_modules_lock);
1381 		netcp_addr_del(netcp, naddr);
1382 	}
1383 }
1384 
1385 static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1386 {
1387 	struct netcp_addr *naddr, *tmp;
1388 	struct netcp_intf_modpriv *priv;
1389 	struct netcp_module *module;
1390 	int error;
1391 
1392 	list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1393 		if (!(naddr->flags & ADDR_NEW))
1394 			continue;
1395 		dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1396 			naddr->addr, naddr->type);
1397 		mutex_lock(&netcp_modules_lock);
1398 		for_each_module(netcp, priv) {
1399 			module = priv->netcp_module;
1400 			if (!module->add_addr)
1401 				continue;
1402 			error = module->add_addr(priv->module_priv, naddr);
1403 			WARN_ON(error);
1404 		}
1405 		mutex_unlock(&netcp_modules_lock);
1406 	}
1407 }
1408 
1409 static void netcp_set_rx_mode(struct net_device *ndev)
1410 {
1411 	struct netcp_intf *netcp = netdev_priv(ndev);
1412 	struct netdev_hw_addr *ndev_addr;
1413 	bool promisc;
1414 
1415 	promisc = (ndev->flags & IFF_PROMISC ||
1416 		   ndev->flags & IFF_ALLMULTI ||
1417 		   netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1418 
1419 	/* first clear all marks */
1420 	netcp_addr_clear_mark(netcp);
1421 
1422 	/* next add new entries, mark existing ones */
1423 	netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1424 	for_each_dev_addr(ndev, ndev_addr)
1425 		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1426 	netdev_for_each_uc_addr(ndev_addr, ndev)
1427 		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1428 	netdev_for_each_mc_addr(ndev_addr, ndev)
1429 		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1430 
1431 	if (promisc)
1432 		netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1433 
1434 	/* finally sweep and callout into modules */
1435 	netcp_addr_sweep_del(netcp);
1436 	netcp_addr_sweep_add(netcp);
1437 }
1438 
1439 static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1440 {
1441 	int i;
1442 
1443 	if (netcp->rx_channel) {
1444 		knav_dma_close_channel(netcp->rx_channel);
1445 		netcp->rx_channel = NULL;
1446 	}
1447 
1448 	if (!IS_ERR_OR_NULL(netcp->rx_pool))
1449 		netcp_rxpool_free(netcp);
1450 
1451 	if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1452 		knav_queue_close(netcp->rx_queue);
1453 		netcp->rx_queue = NULL;
1454 	}
1455 
1456 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1457 	     !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1458 		knav_queue_close(netcp->rx_fdq[i]);
1459 		netcp->rx_fdq[i] = NULL;
1460 	}
1461 
1462 	if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1463 		knav_queue_close(netcp->tx_compl_q);
1464 		netcp->tx_compl_q = NULL;
1465 	}
1466 
1467 	if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1468 		knav_pool_destroy(netcp->tx_pool);
1469 		netcp->tx_pool = NULL;
1470 	}
1471 }
1472 
1473 static int netcp_setup_navigator_resources(struct net_device *ndev)
1474 {
1475 	struct netcp_intf *netcp = netdev_priv(ndev);
1476 	struct knav_queue_notify_config notify_cfg;
1477 	struct knav_dma_cfg config;
1478 	u32 last_fdq = 0;
1479 	u8 name[16];
1480 	int ret;
1481 	int i;
1482 
1483 	/* Create Rx/Tx descriptor pools */
1484 	snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1485 	netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1486 						netcp->rx_pool_region_id);
1487 	if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1488 		dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1489 		ret = PTR_ERR(netcp->rx_pool);
1490 		goto fail;
1491 	}
1492 
1493 	snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1494 	netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1495 						netcp->tx_pool_region_id);
1496 	if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1497 		dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1498 		ret = PTR_ERR(netcp->tx_pool);
1499 		goto fail;
1500 	}
1501 
1502 	/* open Tx completion queue */
1503 	snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1504 	netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1505 	if (IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1506 		ret = PTR_ERR(netcp->tx_compl_q);
1507 		goto fail;
1508 	}
1509 	netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1510 
1511 	/* Set notification for Tx completion */
1512 	notify_cfg.fn = netcp_tx_notify;
1513 	notify_cfg.fn_arg = netcp;
1514 	ret = knav_queue_device_control(netcp->tx_compl_q,
1515 					KNAV_QUEUE_SET_NOTIFIER,
1516 					(unsigned long)&notify_cfg);
1517 	if (ret)
1518 		goto fail;
1519 
1520 	knav_queue_disable_notify(netcp->tx_compl_q);
1521 
1522 	/* open Rx completion queue */
1523 	snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1524 	netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1525 	if (IS_ERR_OR_NULL(netcp->rx_queue)) {
1526 		ret = PTR_ERR(netcp->rx_queue);
1527 		goto fail;
1528 	}
1529 	netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1530 
1531 	/* Set notification for Rx completion */
1532 	notify_cfg.fn = netcp_rx_notify;
1533 	notify_cfg.fn_arg = netcp;
1534 	ret = knav_queue_device_control(netcp->rx_queue,
1535 					KNAV_QUEUE_SET_NOTIFIER,
1536 					(unsigned long)&notify_cfg);
1537 	if (ret)
1538 		goto fail;
1539 
1540 	knav_queue_disable_notify(netcp->rx_queue);
1541 
1542 	/* open Rx FDQs */
1543 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1544 	     netcp->rx_queue_depths[i] && netcp->rx_buffer_sizes[i]; ++i) {
1545 		snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1546 		netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1547 		if (IS_ERR_OR_NULL(netcp->rx_fdq[i])) {
1548 			ret = PTR_ERR(netcp->rx_fdq[i]);
1549 			goto fail;
1550 		}
1551 	}
1552 
1553 	memset(&config, 0, sizeof(config));
1554 	config.direction		= DMA_DEV_TO_MEM;
1555 	config.u.rx.einfo_present	= true;
1556 	config.u.rx.psinfo_present	= true;
1557 	config.u.rx.err_mode		= DMA_DROP;
1558 	config.u.rx.desc_type		= DMA_DESC_HOST;
1559 	config.u.rx.psinfo_at_sop	= false;
1560 	config.u.rx.sop_offset		= NETCP_SOP_OFFSET;
1561 	config.u.rx.dst_q		= netcp->rx_queue_id;
1562 	config.u.rx.thresh		= DMA_THRESH_NONE;
1563 
1564 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1565 		if (netcp->rx_fdq[i])
1566 			last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1567 		config.u.rx.fdq[i] = last_fdq;
1568 	}
1569 
1570 	netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1571 					netcp->dma_chan_name, &config);
1572 	if (IS_ERR_OR_NULL(netcp->rx_channel)) {
1573 		dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1574 			netcp->dma_chan_name);
1575 		goto fail;
1576 	}
1577 
1578 	dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1579 	return 0;
1580 
1581 fail:
1582 	netcp_free_navigator_resources(netcp);
1583 	return ret;
1584 }
1585 
1586 /* Open the device */
1587 static int netcp_ndo_open(struct net_device *ndev)
1588 {
1589 	struct netcp_intf *netcp = netdev_priv(ndev);
1590 	struct netcp_intf_modpriv *intf_modpriv;
1591 	struct netcp_module *module;
1592 	int ret;
1593 
1594 	netif_carrier_off(ndev);
1595 	ret = netcp_setup_navigator_resources(ndev);
1596 	if (ret) {
1597 		dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1598 		goto fail;
1599 	}
1600 
1601 	mutex_lock(&netcp_modules_lock);
1602 	for_each_module(netcp, intf_modpriv) {
1603 		module = intf_modpriv->netcp_module;
1604 		if (module->open) {
1605 			ret = module->open(intf_modpriv->module_priv, ndev);
1606 			if (ret != 0) {
1607 				dev_err(netcp->ndev_dev, "module open failed\n");
1608 				goto fail_open;
1609 			}
1610 		}
1611 	}
1612 	mutex_unlock(&netcp_modules_lock);
1613 
1614 	netcp_rxpool_refill(netcp);
1615 	napi_enable(&netcp->rx_napi);
1616 	napi_enable(&netcp->tx_napi);
1617 	knav_queue_enable_notify(netcp->tx_compl_q);
1618 	knav_queue_enable_notify(netcp->rx_queue);
1619 	netif_tx_wake_all_queues(ndev);
1620 	dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1621 	return 0;
1622 
1623 fail_open:
1624 	for_each_module(netcp, intf_modpriv) {
1625 		module = intf_modpriv->netcp_module;
1626 		if (module->close)
1627 			module->close(intf_modpriv->module_priv, ndev);
1628 	}
1629 	mutex_unlock(&netcp_modules_lock);
1630 
1631 fail:
1632 	netcp_free_navigator_resources(netcp);
1633 	return ret;
1634 }
1635 
1636 /* Close the device */
1637 static int netcp_ndo_stop(struct net_device *ndev)
1638 {
1639 	struct netcp_intf *netcp = netdev_priv(ndev);
1640 	struct netcp_intf_modpriv *intf_modpriv;
1641 	struct netcp_module *module;
1642 	int err = 0;
1643 
1644 	netif_tx_stop_all_queues(ndev);
1645 	netif_carrier_off(ndev);
1646 	netcp_addr_clear_mark(netcp);
1647 	netcp_addr_sweep_del(netcp);
1648 	knav_queue_disable_notify(netcp->rx_queue);
1649 	knav_queue_disable_notify(netcp->tx_compl_q);
1650 	napi_disable(&netcp->rx_napi);
1651 	napi_disable(&netcp->tx_napi);
1652 
1653 	mutex_lock(&netcp_modules_lock);
1654 	for_each_module(netcp, intf_modpriv) {
1655 		module = intf_modpriv->netcp_module;
1656 		if (module->close) {
1657 			err = module->close(intf_modpriv->module_priv, ndev);
1658 			if (err != 0)
1659 				dev_err(netcp->ndev_dev, "Close failed\n");
1660 		}
1661 	}
1662 	mutex_unlock(&netcp_modules_lock);
1663 
1664 	/* Recycle Rx descriptors from completion queue */
1665 	netcp_empty_rx_queue(netcp);
1666 
1667 	/* Recycle Tx descriptors from completion queue */
1668 	netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1669 
1670 	if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1671 		dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1672 			netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1673 
1674 	netcp_free_navigator_resources(netcp);
1675 	dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1676 	return 0;
1677 }
1678 
1679 static int netcp_ndo_ioctl(struct net_device *ndev,
1680 			   struct ifreq *req, int cmd)
1681 {
1682 	struct netcp_intf *netcp = netdev_priv(ndev);
1683 	struct netcp_intf_modpriv *intf_modpriv;
1684 	struct netcp_module *module;
1685 	int ret = -1, err = -EOPNOTSUPP;
1686 
1687 	if (!netif_running(ndev))
1688 		return -EINVAL;
1689 
1690 	mutex_lock(&netcp_modules_lock);
1691 	for_each_module(netcp, intf_modpriv) {
1692 		module = intf_modpriv->netcp_module;
1693 		if (!module->ioctl)
1694 			continue;
1695 
1696 		err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1697 		if ((err < 0) && (err != -EOPNOTSUPP)) {
1698 			ret = err;
1699 			goto out;
1700 		}
1701 		if (err == 0)
1702 			ret = err;
1703 	}
1704 
1705 out:
1706 	mutex_unlock(&netcp_modules_lock);
1707 	return (ret == 0) ? 0 : err;
1708 }
1709 
1710 static int netcp_ndo_change_mtu(struct net_device *ndev, int new_mtu)
1711 {
1712 	struct netcp_intf *netcp = netdev_priv(ndev);
1713 
1714 	/* MTU < 68 is an error for IPv4 traffic */
1715 	if ((new_mtu < 68) ||
1716 	    (new_mtu > (NETCP_MAX_FRAME_SIZE - ETH_HLEN - ETH_FCS_LEN))) {
1717 		dev_err(netcp->ndev_dev, "Invalid mtu size = %d\n", new_mtu);
1718 		return -EINVAL;
1719 	}
1720 
1721 	ndev->mtu = new_mtu;
1722 	return 0;
1723 }
1724 
1725 static void netcp_ndo_tx_timeout(struct net_device *ndev)
1726 {
1727 	struct netcp_intf *netcp = netdev_priv(ndev);
1728 	unsigned int descs = knav_pool_count(netcp->tx_pool);
1729 
1730 	dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1731 	netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1732 	ndev->trans_start = jiffies;
1733 	netif_tx_wake_all_queues(ndev);
1734 }
1735 
1736 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1737 {
1738 	struct netcp_intf *netcp = netdev_priv(ndev);
1739 	struct netcp_intf_modpriv *intf_modpriv;
1740 	struct netcp_module *module;
1741 	int err = 0;
1742 
1743 	dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1744 
1745 	mutex_lock(&netcp_modules_lock);
1746 	for_each_module(netcp, intf_modpriv) {
1747 		module = intf_modpriv->netcp_module;
1748 		if ((module->add_vid) && (vid != 0)) {
1749 			err = module->add_vid(intf_modpriv->module_priv, vid);
1750 			if (err != 0) {
1751 				dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1752 					vid);
1753 				break;
1754 			}
1755 		}
1756 	}
1757 	mutex_unlock(&netcp_modules_lock);
1758 	return err;
1759 }
1760 
1761 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1762 {
1763 	struct netcp_intf *netcp = netdev_priv(ndev);
1764 	struct netcp_intf_modpriv *intf_modpriv;
1765 	struct netcp_module *module;
1766 	int err = 0;
1767 
1768 	dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1769 
1770 	mutex_lock(&netcp_modules_lock);
1771 	for_each_module(netcp, intf_modpriv) {
1772 		module = intf_modpriv->netcp_module;
1773 		if (module->del_vid) {
1774 			err = module->del_vid(intf_modpriv->module_priv, vid);
1775 			if (err != 0) {
1776 				dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1777 					vid);
1778 				break;
1779 			}
1780 		}
1781 	}
1782 	mutex_unlock(&netcp_modules_lock);
1783 	return err;
1784 }
1785 
1786 static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb,
1787 			      void *accel_priv,
1788 			      select_queue_fallback_t fallback)
1789 {
1790 	return 0;
1791 }
1792 
1793 static int netcp_setup_tc(struct net_device *dev, u8 num_tc)
1794 {
1795 	int i;
1796 
1797 	/* setup tc must be called under rtnl lock */
1798 	ASSERT_RTNL();
1799 
1800 	/* Sanity-check the number of traffic classes requested */
1801 	if ((dev->real_num_tx_queues <= 1) ||
1802 	    (dev->real_num_tx_queues < num_tc))
1803 		return -EINVAL;
1804 
1805 	/* Configure traffic class to queue mappings */
1806 	if (num_tc) {
1807 		netdev_set_num_tc(dev, num_tc);
1808 		for (i = 0; i < num_tc; i++)
1809 			netdev_set_tc_queue(dev, i, 1, i);
1810 	} else {
1811 		netdev_reset_tc(dev);
1812 	}
1813 
1814 	return 0;
1815 }
1816 
1817 static const struct net_device_ops netcp_netdev_ops = {
1818 	.ndo_open		= netcp_ndo_open,
1819 	.ndo_stop		= netcp_ndo_stop,
1820 	.ndo_start_xmit		= netcp_ndo_start_xmit,
1821 	.ndo_set_rx_mode	= netcp_set_rx_mode,
1822 	.ndo_do_ioctl           = netcp_ndo_ioctl,
1823 	.ndo_change_mtu		= netcp_ndo_change_mtu,
1824 	.ndo_set_mac_address	= eth_mac_addr,
1825 	.ndo_validate_addr	= eth_validate_addr,
1826 	.ndo_vlan_rx_add_vid	= netcp_rx_add_vid,
1827 	.ndo_vlan_rx_kill_vid	= netcp_rx_kill_vid,
1828 	.ndo_tx_timeout		= netcp_ndo_tx_timeout,
1829 	.ndo_select_queue	= netcp_select_queue,
1830 	.ndo_setup_tc		= netcp_setup_tc,
1831 };
1832 
1833 static int netcp_create_interface(struct netcp_device *netcp_device,
1834 				  struct device_node *node_interface)
1835 {
1836 	struct device *dev = netcp_device->device;
1837 	struct device_node *node = dev->of_node;
1838 	struct netcp_intf *netcp;
1839 	struct net_device *ndev;
1840 	resource_size_t size;
1841 	struct resource res;
1842 	void __iomem *efuse = NULL;
1843 	u32 efuse_mac = 0;
1844 	const void *mac_addr;
1845 	u8 efuse_mac_addr[6];
1846 	u32 temp[2];
1847 	int ret = 0;
1848 
1849 	ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1850 	if (!ndev) {
1851 		dev_err(dev, "Error allocating netdev\n");
1852 		return -ENOMEM;
1853 	}
1854 
1855 	ndev->features |= NETIF_F_SG;
1856 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1857 	ndev->hw_features = ndev->features;
1858 	ndev->vlan_features |=  NETIF_F_SG;
1859 
1860 	netcp = netdev_priv(ndev);
1861 	spin_lock_init(&netcp->lock);
1862 	INIT_LIST_HEAD(&netcp->module_head);
1863 	INIT_LIST_HEAD(&netcp->txhook_list_head);
1864 	INIT_LIST_HEAD(&netcp->rxhook_list_head);
1865 	INIT_LIST_HEAD(&netcp->addr_list);
1866 	netcp->netcp_device = netcp_device;
1867 	netcp->dev = netcp_device->device;
1868 	netcp->ndev = ndev;
1869 	netcp->ndev_dev  = &ndev->dev;
1870 	netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
1871 	netcp->tx_pause_threshold = MAX_SKB_FRAGS;
1872 	netcp->tx_resume_threshold = netcp->tx_pause_threshold;
1873 	netcp->node_interface = node_interface;
1874 
1875 	ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
1876 	if (efuse_mac) {
1877 		if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
1878 			dev_err(dev, "could not find efuse-mac reg resource\n");
1879 			ret = -ENODEV;
1880 			goto quit;
1881 		}
1882 		size = resource_size(&res);
1883 
1884 		if (!devm_request_mem_region(dev, res.start, size,
1885 					     dev_name(dev))) {
1886 			dev_err(dev, "could not reserve resource\n");
1887 			ret = -ENOMEM;
1888 			goto quit;
1889 		}
1890 
1891 		efuse = devm_ioremap_nocache(dev, res.start, size);
1892 		if (!efuse) {
1893 			dev_err(dev, "could not map resource\n");
1894 			devm_release_mem_region(dev, res.start, size);
1895 			ret = -ENOMEM;
1896 			goto quit;
1897 		}
1898 
1899 		emac_arch_get_mac_addr(efuse_mac_addr, efuse);
1900 		if (is_valid_ether_addr(efuse_mac_addr))
1901 			ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
1902 		else
1903 			random_ether_addr(ndev->dev_addr);
1904 
1905 		devm_iounmap(dev, efuse);
1906 		devm_release_mem_region(dev, res.start, size);
1907 	} else {
1908 		mac_addr = of_get_mac_address(node_interface);
1909 		if (mac_addr)
1910 			ether_addr_copy(ndev->dev_addr, mac_addr);
1911 		else
1912 			random_ether_addr(ndev->dev_addr);
1913 	}
1914 
1915 	ret = of_property_read_string(node_interface, "rx-channel",
1916 				      &netcp->dma_chan_name);
1917 	if (ret < 0) {
1918 		dev_err(dev, "missing \"rx-channel\" parameter\n");
1919 		ret = -ENODEV;
1920 		goto quit;
1921 	}
1922 
1923 	ret = of_property_read_u32(node_interface, "rx-queue",
1924 				   &netcp->rx_queue_id);
1925 	if (ret < 0) {
1926 		dev_warn(dev, "missing \"rx-queue\" parameter\n");
1927 		netcp->rx_queue_id = KNAV_QUEUE_QPEND;
1928 	}
1929 
1930 	ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
1931 					 netcp->rx_queue_depths,
1932 					 KNAV_DMA_FDQ_PER_CHAN);
1933 	if (ret < 0) {
1934 		dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
1935 		netcp->rx_queue_depths[0] = 128;
1936 	}
1937 
1938 	ret = of_property_read_u32_array(node_interface, "rx-buffer-size",
1939 					 netcp->rx_buffer_sizes,
1940 					 KNAV_DMA_FDQ_PER_CHAN);
1941 	if (ret) {
1942 		dev_err(dev, "missing \"rx-buffer-size\" parameter\n");
1943 		netcp->rx_buffer_sizes[0] = 1536;
1944 	}
1945 
1946 	ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
1947 	if (ret < 0) {
1948 		dev_err(dev, "missing \"rx-pool\" parameter\n");
1949 		ret = -ENODEV;
1950 		goto quit;
1951 	}
1952 	netcp->rx_pool_size = temp[0];
1953 	netcp->rx_pool_region_id = temp[1];
1954 
1955 	ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
1956 	if (ret < 0) {
1957 		dev_err(dev, "missing \"tx-pool\" parameter\n");
1958 		ret = -ENODEV;
1959 		goto quit;
1960 	}
1961 	netcp->tx_pool_size = temp[0];
1962 	netcp->tx_pool_region_id = temp[1];
1963 
1964 	if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
1965 		dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
1966 			MAX_SKB_FRAGS);
1967 		ret = -ENODEV;
1968 		goto quit;
1969 	}
1970 
1971 	ret = of_property_read_u32(node_interface, "tx-completion-queue",
1972 				   &netcp->tx_compl_qid);
1973 	if (ret < 0) {
1974 		dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
1975 		netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
1976 	}
1977 
1978 	/* NAPI register */
1979 	netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
1980 	netif_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
1981 
1982 	/* Register the network device */
1983 	ndev->dev_id		= 0;
1984 	ndev->watchdog_timeo	= NETCP_TX_TIMEOUT;
1985 	ndev->netdev_ops	= &netcp_netdev_ops;
1986 	SET_NETDEV_DEV(ndev, dev);
1987 
1988 	list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
1989 	return 0;
1990 
1991 quit:
1992 	free_netdev(ndev);
1993 	return ret;
1994 }
1995 
1996 static void netcp_delete_interface(struct netcp_device *netcp_device,
1997 				   struct net_device *ndev)
1998 {
1999 	struct netcp_intf_modpriv *intf_modpriv, *tmp;
2000 	struct netcp_intf *netcp = netdev_priv(ndev);
2001 	struct netcp_module *module;
2002 
2003 	dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2004 		ndev->name);
2005 
2006 	/* Notify each of the modules that the interface is going away */
2007 	list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2008 				 intf_list) {
2009 		module = intf_modpriv->netcp_module;
2010 		dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2011 			module->name);
2012 		if (module->release)
2013 			module->release(intf_modpriv->module_priv);
2014 		list_del(&intf_modpriv->intf_list);
2015 		kfree(intf_modpriv);
2016 	}
2017 	WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2018 	     ndev->name);
2019 
2020 	list_del(&netcp->interface_list);
2021 
2022 	of_node_put(netcp->node_interface);
2023 	unregister_netdev(ndev);
2024 	netif_napi_del(&netcp->rx_napi);
2025 	free_netdev(ndev);
2026 }
2027 
2028 static int netcp_probe(struct platform_device *pdev)
2029 {
2030 	struct device_node *node = pdev->dev.of_node;
2031 	struct netcp_intf *netcp_intf, *netcp_tmp;
2032 	struct device_node *child, *interfaces;
2033 	struct netcp_device *netcp_device;
2034 	struct device *dev = &pdev->dev;
2035 	struct netcp_module *module;
2036 	int ret;
2037 
2038 	if (!node) {
2039 		dev_err(dev, "could not find device info\n");
2040 		return -ENODEV;
2041 	}
2042 
2043 	/* Allocate a new NETCP device instance */
2044 	netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2045 	if (!netcp_device)
2046 		return -ENOMEM;
2047 
2048 	pm_runtime_enable(&pdev->dev);
2049 	ret = pm_runtime_get_sync(&pdev->dev);
2050 	if (ret < 0) {
2051 		dev_err(dev, "Failed to enable NETCP power-domain\n");
2052 		pm_runtime_disable(&pdev->dev);
2053 		return ret;
2054 	}
2055 
2056 	/* Initialize the NETCP device instance */
2057 	INIT_LIST_HEAD(&netcp_device->interface_head);
2058 	INIT_LIST_HEAD(&netcp_device->modpriv_head);
2059 	netcp_device->device = dev;
2060 	platform_set_drvdata(pdev, netcp_device);
2061 
2062 	/* create interfaces */
2063 	interfaces = of_get_child_by_name(node, "netcp-interfaces");
2064 	if (!interfaces) {
2065 		dev_err(dev, "could not find netcp-interfaces node\n");
2066 		ret = -ENODEV;
2067 		goto probe_quit;
2068 	}
2069 
2070 	for_each_available_child_of_node(interfaces, child) {
2071 		ret = netcp_create_interface(netcp_device, child);
2072 		if (ret) {
2073 			dev_err(dev, "could not create interface(%s)\n",
2074 				child->name);
2075 			goto probe_quit_interface;
2076 		}
2077 	}
2078 
2079 	/* Add the device instance to the list */
2080 	list_add_tail(&netcp_device->device_list, &netcp_devices);
2081 
2082 	/* Probe & attach any modules already registered */
2083 	mutex_lock(&netcp_modules_lock);
2084 	for_each_netcp_module(module) {
2085 		ret = netcp_module_probe(netcp_device, module);
2086 		if (ret < 0)
2087 			dev_err(dev, "module(%s) probe failed\n", module->name);
2088 	}
2089 	mutex_unlock(&netcp_modules_lock);
2090 	return 0;
2091 
2092 probe_quit_interface:
2093 	list_for_each_entry_safe(netcp_intf, netcp_tmp,
2094 				 &netcp_device->interface_head,
2095 				 interface_list) {
2096 		netcp_delete_interface(netcp_device, netcp_intf->ndev);
2097 	}
2098 
2099 probe_quit:
2100 	pm_runtime_put_sync(&pdev->dev);
2101 	pm_runtime_disable(&pdev->dev);
2102 	platform_set_drvdata(pdev, NULL);
2103 	return ret;
2104 }
2105 
2106 static int netcp_remove(struct platform_device *pdev)
2107 {
2108 	struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2109 	struct netcp_inst_modpriv *inst_modpriv, *tmp;
2110 	struct netcp_module *module;
2111 
2112 	list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2113 				 inst_list) {
2114 		module = inst_modpriv->netcp_module;
2115 		dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2116 		module->remove(netcp_device, inst_modpriv->module_priv);
2117 		list_del(&inst_modpriv->inst_list);
2118 		kfree(inst_modpriv);
2119 	}
2120 	WARN(!list_empty(&netcp_device->interface_head), "%s interface list not empty!\n",
2121 	     pdev->name);
2122 
2123 	devm_kfree(&pdev->dev, netcp_device);
2124 	pm_runtime_put_sync(&pdev->dev);
2125 	pm_runtime_disable(&pdev->dev);
2126 	platform_set_drvdata(pdev, NULL);
2127 	return 0;
2128 }
2129 
2130 static struct of_device_id of_match[] = {
2131 	{ .compatible = "ti,netcp-1.0", },
2132 	{},
2133 };
2134 MODULE_DEVICE_TABLE(of, of_match);
2135 
2136 static struct platform_driver netcp_driver = {
2137 	.driver = {
2138 		.name		= "netcp-1.0",
2139 		.owner		= THIS_MODULE,
2140 		.of_match_table	= of_match,
2141 	},
2142 	.probe = netcp_probe,
2143 	.remove = netcp_remove,
2144 };
2145 module_platform_driver(netcp_driver);
2146 
2147 MODULE_LICENSE("GPL v2");
2148 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2149 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");
2150