1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Keystone NetCP Core driver 4 * 5 * Copyright (C) 2014 Texas Instruments Incorporated 6 * Authors: Sandeep Nair <sandeep_n@ti.com> 7 * Sandeep Paulraj <s-paulraj@ti.com> 8 * Cyril Chemparathy <cyril@ti.com> 9 * Santosh Shilimkar <santosh.shilimkar@ti.com> 10 * Murali Karicheri <m-karicheri2@ti.com> 11 * Wingman Kwok <w-kwok2@ti.com> 12 */ 13 14 #include <linux/io.h> 15 #include <linux/module.h> 16 #include <linux/of_net.h> 17 #include <linux/of_address.h> 18 #include <linux/if_vlan.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/platform_device.h> 21 #include <linux/soc/ti/knav_qmss.h> 22 #include <linux/soc/ti/knav_dma.h> 23 24 #include "netcp.h" 25 26 #define NETCP_SOP_OFFSET (NET_IP_ALIGN + NET_SKB_PAD) 27 #define NETCP_TX_TIMEOUT (5 * HZ) 28 #define NETCP_PACKET_SIZE (ETH_FRAME_LEN + ETH_FCS_LEN) 29 #define NETCP_MIN_PACKET_SIZE ETH_ZLEN 30 #define NETCP_MAX_MCAST_ADDR 16 31 32 #define NETCP_EFUSE_REG_INDEX 0 33 34 #define NETCP_MOD_PROBE_SKIPPED 1 35 #define NETCP_MOD_PROBE_FAILED 2 36 37 #define NETCP_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 38 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 39 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 40 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 41 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 42 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 43 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 44 NETIF_MSG_RX_STATUS) 45 46 #define NETCP_EFUSE_ADDR_SWAP 2 47 48 #define knav_queue_get_id(q) knav_queue_device_control(q, \ 49 KNAV_QUEUE_GET_ID, (unsigned long)NULL) 50 51 #define knav_queue_enable_notify(q) knav_queue_device_control(q, \ 52 KNAV_QUEUE_ENABLE_NOTIFY, \ 53 (unsigned long)NULL) 54 55 #define knav_queue_disable_notify(q) knav_queue_device_control(q, \ 56 KNAV_QUEUE_DISABLE_NOTIFY, \ 57 (unsigned long)NULL) 58 59 #define knav_queue_get_count(q) knav_queue_device_control(q, \ 60 KNAV_QUEUE_GET_COUNT, (unsigned long)NULL) 61 62 #define for_each_netcp_module(module) \ 63 list_for_each_entry(module, &netcp_modules, module_list) 64 65 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \ 66 list_for_each_entry(inst_modpriv, \ 67 &((netcp_device)->modpriv_head), inst_list) 68 69 #define for_each_module(netcp, intf_modpriv) \ 70 list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list) 71 72 /* Module management structures */ 73 struct netcp_device { 74 struct list_head device_list; 75 struct list_head interface_head; 76 struct list_head modpriv_head; 77 struct device *device; 78 }; 79 80 struct netcp_inst_modpriv { 81 struct netcp_device *netcp_device; 82 struct netcp_module *netcp_module; 83 struct list_head inst_list; 84 void *module_priv; 85 }; 86 87 struct netcp_intf_modpriv { 88 struct netcp_intf *netcp_priv; 89 struct netcp_module *netcp_module; 90 struct list_head intf_list; 91 void *module_priv; 92 }; 93 94 struct netcp_tx_cb { 95 void *ts_context; 96 void (*txtstamp)(void *context, struct sk_buff *skb); 97 }; 98 99 static LIST_HEAD(netcp_devices); 100 static LIST_HEAD(netcp_modules); 101 static DEFINE_MUTEX(netcp_modules_lock); 102 103 static int netcp_debug_level = -1; 104 module_param(netcp_debug_level, int, 0); 105 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)"); 106 107 /* Helper functions - Get/Set */ 108 static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc, 109 struct knav_dma_desc *desc) 110 { 111 *buff_len = le32_to_cpu(desc->buff_len); 112 *buff = le32_to_cpu(desc->buff); 113 *ndesc = le32_to_cpu(desc->next_desc); 114 } 115 116 static void get_desc_info(u32 *desc_info, u32 *pkt_info, 117 struct knav_dma_desc *desc) 118 { 119 *desc_info = le32_to_cpu(desc->desc_info); 120 *pkt_info = le32_to_cpu(desc->packet_info); 121 } 122 123 static u32 get_sw_data(int index, struct knav_dma_desc *desc) 124 { 125 /* No Endian conversion needed as this data is untouched by hw */ 126 return desc->sw_data[index]; 127 } 128 129 /* use these macros to get sw data */ 130 #define GET_SW_DATA0(desc) get_sw_data(0, desc) 131 #define GET_SW_DATA1(desc) get_sw_data(1, desc) 132 #define GET_SW_DATA2(desc) get_sw_data(2, desc) 133 #define GET_SW_DATA3(desc) get_sw_data(3, desc) 134 135 static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len, 136 struct knav_dma_desc *desc) 137 { 138 *buff = le32_to_cpu(desc->orig_buff); 139 *buff_len = le32_to_cpu(desc->orig_len); 140 } 141 142 static void get_words(dma_addr_t *words, int num_words, __le32 *desc) 143 { 144 int i; 145 146 for (i = 0; i < num_words; i++) 147 words[i] = le32_to_cpu(desc[i]); 148 } 149 150 static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc, 151 struct knav_dma_desc *desc) 152 { 153 desc->buff_len = cpu_to_le32(buff_len); 154 desc->buff = cpu_to_le32(buff); 155 desc->next_desc = cpu_to_le32(ndesc); 156 } 157 158 static void set_desc_info(u32 desc_info, u32 pkt_info, 159 struct knav_dma_desc *desc) 160 { 161 desc->desc_info = cpu_to_le32(desc_info); 162 desc->packet_info = cpu_to_le32(pkt_info); 163 } 164 165 static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc) 166 { 167 /* No Endian conversion needed as this data is untouched by hw */ 168 desc->sw_data[index] = data; 169 } 170 171 /* use these macros to set sw data */ 172 #define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc) 173 #define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc) 174 #define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc) 175 #define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc) 176 177 static void set_org_pkt_info(dma_addr_t buff, u32 buff_len, 178 struct knav_dma_desc *desc) 179 { 180 desc->orig_buff = cpu_to_le32(buff); 181 desc->orig_len = cpu_to_le32(buff_len); 182 } 183 184 static void set_words(u32 *words, int num_words, __le32 *desc) 185 { 186 int i; 187 188 for (i = 0; i < num_words; i++) 189 desc[i] = cpu_to_le32(words[i]); 190 } 191 192 /* Read the e-fuse value as 32 bit values to be endian independent */ 193 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap) 194 { 195 unsigned int addr0, addr1; 196 197 addr1 = readl(efuse_mac + 4); 198 addr0 = readl(efuse_mac); 199 200 switch (swap) { 201 case NETCP_EFUSE_ADDR_SWAP: 202 addr0 = addr1; 203 addr1 = readl(efuse_mac); 204 break; 205 default: 206 break; 207 } 208 209 x[0] = (addr1 & 0x0000ff00) >> 8; 210 x[1] = addr1 & 0x000000ff; 211 x[2] = (addr0 & 0xff000000) >> 24; 212 x[3] = (addr0 & 0x00ff0000) >> 16; 213 x[4] = (addr0 & 0x0000ff00) >> 8; 214 x[5] = addr0 & 0x000000ff; 215 216 return 0; 217 } 218 219 /* Module management routines */ 220 static int netcp_register_interface(struct netcp_intf *netcp) 221 { 222 int ret; 223 224 ret = register_netdev(netcp->ndev); 225 if (!ret) 226 netcp->netdev_registered = true; 227 return ret; 228 } 229 230 static int netcp_module_probe(struct netcp_device *netcp_device, 231 struct netcp_module *module) 232 { 233 struct device *dev = netcp_device->device; 234 struct device_node *devices, *interface, *node = dev->of_node; 235 struct device_node *child; 236 struct netcp_inst_modpriv *inst_modpriv; 237 struct netcp_intf *netcp_intf; 238 struct netcp_module *tmp; 239 bool primary_module_registered = false; 240 int ret; 241 242 /* Find this module in the sub-tree for this device */ 243 devices = of_get_child_by_name(node, "netcp-devices"); 244 if (!devices) { 245 dev_err(dev, "could not find netcp-devices node\n"); 246 return NETCP_MOD_PROBE_SKIPPED; 247 } 248 249 for_each_available_child_of_node(devices, child) { 250 const char *name; 251 char node_name[32]; 252 253 if (of_property_read_string(child, "label", &name) < 0) { 254 snprintf(node_name, sizeof(node_name), "%pOFn", child); 255 name = node_name; 256 } 257 if (!strcasecmp(module->name, name)) 258 break; 259 } 260 261 of_node_put(devices); 262 /* If module not used for this device, skip it */ 263 if (!child) { 264 dev_warn(dev, "module(%s) not used for device\n", module->name); 265 return NETCP_MOD_PROBE_SKIPPED; 266 } 267 268 inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL); 269 if (!inst_modpriv) { 270 of_node_put(child); 271 return -ENOMEM; 272 } 273 274 inst_modpriv->netcp_device = netcp_device; 275 inst_modpriv->netcp_module = module; 276 list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head); 277 278 ret = module->probe(netcp_device, dev, child, 279 &inst_modpriv->module_priv); 280 of_node_put(child); 281 if (ret) { 282 dev_err(dev, "Probe of module(%s) failed with %d\n", 283 module->name, ret); 284 list_del(&inst_modpriv->inst_list); 285 devm_kfree(dev, inst_modpriv); 286 return NETCP_MOD_PROBE_FAILED; 287 } 288 289 /* Attach modules only if the primary module is probed */ 290 for_each_netcp_module(tmp) { 291 if (tmp->primary) 292 primary_module_registered = true; 293 } 294 295 if (!primary_module_registered) 296 return 0; 297 298 /* Attach module to interfaces */ 299 list_for_each_entry(netcp_intf, &netcp_device->interface_head, 300 interface_list) { 301 struct netcp_intf_modpriv *intf_modpriv; 302 303 intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv), 304 GFP_KERNEL); 305 if (!intf_modpriv) 306 return -ENOMEM; 307 308 interface = of_parse_phandle(netcp_intf->node_interface, 309 module->name, 0); 310 311 if (!interface) { 312 devm_kfree(dev, intf_modpriv); 313 continue; 314 } 315 316 intf_modpriv->netcp_priv = netcp_intf; 317 intf_modpriv->netcp_module = module; 318 list_add_tail(&intf_modpriv->intf_list, 319 &netcp_intf->module_head); 320 321 ret = module->attach(inst_modpriv->module_priv, 322 netcp_intf->ndev, interface, 323 &intf_modpriv->module_priv); 324 of_node_put(interface); 325 if (ret) { 326 dev_dbg(dev, "Attach of module %s declined with %d\n", 327 module->name, ret); 328 list_del(&intf_modpriv->intf_list); 329 devm_kfree(dev, intf_modpriv); 330 continue; 331 } 332 } 333 334 /* Now register the interface with netdev */ 335 list_for_each_entry(netcp_intf, 336 &netcp_device->interface_head, 337 interface_list) { 338 /* If interface not registered then register now */ 339 if (!netcp_intf->netdev_registered) { 340 ret = netcp_register_interface(netcp_intf); 341 if (ret) 342 return -ENODEV; 343 } 344 } 345 return 0; 346 } 347 348 int netcp_register_module(struct netcp_module *module) 349 { 350 struct netcp_device *netcp_device; 351 struct netcp_module *tmp; 352 int ret; 353 354 if (!module->name) { 355 WARN(1, "error registering netcp module: no name\n"); 356 return -EINVAL; 357 } 358 359 if (!module->probe) { 360 WARN(1, "error registering netcp module: no probe\n"); 361 return -EINVAL; 362 } 363 364 mutex_lock(&netcp_modules_lock); 365 366 for_each_netcp_module(tmp) { 367 if (!strcasecmp(tmp->name, module->name)) { 368 mutex_unlock(&netcp_modules_lock); 369 return -EEXIST; 370 } 371 } 372 list_add_tail(&module->module_list, &netcp_modules); 373 374 list_for_each_entry(netcp_device, &netcp_devices, device_list) { 375 ret = netcp_module_probe(netcp_device, module); 376 if (ret < 0) 377 goto fail; 378 } 379 mutex_unlock(&netcp_modules_lock); 380 return 0; 381 382 fail: 383 mutex_unlock(&netcp_modules_lock); 384 netcp_unregister_module(module); 385 return ret; 386 } 387 EXPORT_SYMBOL_GPL(netcp_register_module); 388 389 static void netcp_release_module(struct netcp_device *netcp_device, 390 struct netcp_module *module) 391 { 392 struct netcp_inst_modpriv *inst_modpriv, *inst_tmp; 393 struct netcp_intf *netcp_intf, *netcp_tmp; 394 struct device *dev = netcp_device->device; 395 396 /* Release the module from each interface */ 397 list_for_each_entry_safe(netcp_intf, netcp_tmp, 398 &netcp_device->interface_head, 399 interface_list) { 400 struct netcp_intf_modpriv *intf_modpriv, *intf_tmp; 401 402 list_for_each_entry_safe(intf_modpriv, intf_tmp, 403 &netcp_intf->module_head, 404 intf_list) { 405 if (intf_modpriv->netcp_module == module) { 406 module->release(intf_modpriv->module_priv); 407 list_del(&intf_modpriv->intf_list); 408 devm_kfree(dev, intf_modpriv); 409 break; 410 } 411 } 412 } 413 414 /* Remove the module from each instance */ 415 list_for_each_entry_safe(inst_modpriv, inst_tmp, 416 &netcp_device->modpriv_head, inst_list) { 417 if (inst_modpriv->netcp_module == module) { 418 module->remove(netcp_device, 419 inst_modpriv->module_priv); 420 list_del(&inst_modpriv->inst_list); 421 devm_kfree(dev, inst_modpriv); 422 break; 423 } 424 } 425 } 426 427 void netcp_unregister_module(struct netcp_module *module) 428 { 429 struct netcp_device *netcp_device; 430 struct netcp_module *module_tmp; 431 432 mutex_lock(&netcp_modules_lock); 433 434 list_for_each_entry(netcp_device, &netcp_devices, device_list) { 435 netcp_release_module(netcp_device, module); 436 } 437 438 /* Remove the module from the module list */ 439 for_each_netcp_module(module_tmp) { 440 if (module == module_tmp) { 441 list_del(&module->module_list); 442 break; 443 } 444 } 445 446 mutex_unlock(&netcp_modules_lock); 447 } 448 EXPORT_SYMBOL_GPL(netcp_unregister_module); 449 450 void *netcp_module_get_intf_data(struct netcp_module *module, 451 struct netcp_intf *intf) 452 { 453 struct netcp_intf_modpriv *intf_modpriv; 454 455 list_for_each_entry(intf_modpriv, &intf->module_head, intf_list) 456 if (intf_modpriv->netcp_module == module) 457 return intf_modpriv->module_priv; 458 return NULL; 459 } 460 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data); 461 462 /* Module TX and RX Hook management */ 463 struct netcp_hook_list { 464 struct list_head list; 465 netcp_hook_rtn *hook_rtn; 466 void *hook_data; 467 int order; 468 }; 469 470 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order, 471 netcp_hook_rtn *hook_rtn, void *hook_data) 472 { 473 struct netcp_hook_list *entry; 474 struct netcp_hook_list *next; 475 unsigned long flags; 476 477 entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL); 478 if (!entry) 479 return -ENOMEM; 480 481 entry->hook_rtn = hook_rtn; 482 entry->hook_data = hook_data; 483 entry->order = order; 484 485 spin_lock_irqsave(&netcp_priv->lock, flags); 486 list_for_each_entry(next, &netcp_priv->txhook_list_head, list) { 487 if (next->order > order) 488 break; 489 } 490 __list_add(&entry->list, next->list.prev, &next->list); 491 spin_unlock_irqrestore(&netcp_priv->lock, flags); 492 493 return 0; 494 } 495 EXPORT_SYMBOL_GPL(netcp_register_txhook); 496 497 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order, 498 netcp_hook_rtn *hook_rtn, void *hook_data) 499 { 500 struct netcp_hook_list *next, *n; 501 unsigned long flags; 502 503 spin_lock_irqsave(&netcp_priv->lock, flags); 504 list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) { 505 if ((next->order == order) && 506 (next->hook_rtn == hook_rtn) && 507 (next->hook_data == hook_data)) { 508 list_del(&next->list); 509 spin_unlock_irqrestore(&netcp_priv->lock, flags); 510 devm_kfree(netcp_priv->dev, next); 511 return 0; 512 } 513 } 514 spin_unlock_irqrestore(&netcp_priv->lock, flags); 515 return -ENOENT; 516 } 517 EXPORT_SYMBOL_GPL(netcp_unregister_txhook); 518 519 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order, 520 netcp_hook_rtn *hook_rtn, void *hook_data) 521 { 522 struct netcp_hook_list *entry; 523 struct netcp_hook_list *next; 524 unsigned long flags; 525 526 entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL); 527 if (!entry) 528 return -ENOMEM; 529 530 entry->hook_rtn = hook_rtn; 531 entry->hook_data = hook_data; 532 entry->order = order; 533 534 spin_lock_irqsave(&netcp_priv->lock, flags); 535 list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) { 536 if (next->order > order) 537 break; 538 } 539 __list_add(&entry->list, next->list.prev, &next->list); 540 spin_unlock_irqrestore(&netcp_priv->lock, flags); 541 542 return 0; 543 } 544 EXPORT_SYMBOL_GPL(netcp_register_rxhook); 545 546 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order, 547 netcp_hook_rtn *hook_rtn, void *hook_data) 548 { 549 struct netcp_hook_list *next, *n; 550 unsigned long flags; 551 552 spin_lock_irqsave(&netcp_priv->lock, flags); 553 list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) { 554 if ((next->order == order) && 555 (next->hook_rtn == hook_rtn) && 556 (next->hook_data == hook_data)) { 557 list_del(&next->list); 558 spin_unlock_irqrestore(&netcp_priv->lock, flags); 559 devm_kfree(netcp_priv->dev, next); 560 return 0; 561 } 562 } 563 spin_unlock_irqrestore(&netcp_priv->lock, flags); 564 565 return -ENOENT; 566 } 567 EXPORT_SYMBOL_GPL(netcp_unregister_rxhook); 568 569 static void netcp_frag_free(bool is_frag, void *ptr) 570 { 571 if (is_frag) 572 skb_free_frag(ptr); 573 else 574 kfree(ptr); 575 } 576 577 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp, 578 struct knav_dma_desc *desc) 579 { 580 struct knav_dma_desc *ndesc; 581 dma_addr_t dma_desc, dma_buf; 582 unsigned int buf_len, dma_sz = sizeof(*ndesc); 583 void *buf_ptr; 584 u32 tmp; 585 586 get_words(&dma_desc, 1, &desc->next_desc); 587 588 while (dma_desc) { 589 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz); 590 if (unlikely(!ndesc)) { 591 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 592 break; 593 } 594 get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc); 595 /* warning!!!! We are retrieving the virtual ptr in the sw_data 596 * field as a 32bit value. Will not work on 64bit machines 597 */ 598 buf_ptr = (void *)GET_SW_DATA0(ndesc); 599 buf_len = (int)GET_SW_DATA1(desc); 600 dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE); 601 __free_page(buf_ptr); 602 knav_pool_desc_put(netcp->rx_pool, desc); 603 } 604 /* warning!!!! We are retrieving the virtual ptr in the sw_data 605 * field as a 32bit value. Will not work on 64bit machines 606 */ 607 buf_ptr = (void *)GET_SW_DATA0(desc); 608 buf_len = (int)GET_SW_DATA1(desc); 609 610 if (buf_ptr) 611 netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr); 612 knav_pool_desc_put(netcp->rx_pool, desc); 613 } 614 615 static void netcp_empty_rx_queue(struct netcp_intf *netcp) 616 { 617 struct netcp_stats *rx_stats = &netcp->stats; 618 struct knav_dma_desc *desc; 619 unsigned int dma_sz; 620 dma_addr_t dma; 621 622 for (; ;) { 623 dma = knav_queue_pop(netcp->rx_queue, &dma_sz); 624 if (!dma) 625 break; 626 627 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz); 628 if (unlikely(!desc)) { 629 dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n", 630 __func__); 631 rx_stats->rx_errors++; 632 continue; 633 } 634 netcp_free_rx_desc_chain(netcp, desc); 635 rx_stats->rx_dropped++; 636 } 637 } 638 639 static int netcp_process_one_rx_packet(struct netcp_intf *netcp) 640 { 641 struct netcp_stats *rx_stats = &netcp->stats; 642 unsigned int dma_sz, buf_len, org_buf_len; 643 struct knav_dma_desc *desc, *ndesc; 644 unsigned int pkt_sz = 0, accum_sz; 645 struct netcp_hook_list *rx_hook; 646 dma_addr_t dma_desc, dma_buff; 647 struct netcp_packet p_info; 648 struct sk_buff *skb; 649 void *org_buf_ptr; 650 u32 tmp; 651 652 dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz); 653 if (!dma_desc) 654 return -1; 655 656 desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz); 657 if (unlikely(!desc)) { 658 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 659 return 0; 660 } 661 662 get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc); 663 /* warning!!!! We are retrieving the virtual ptr in the sw_data 664 * field as a 32bit value. Will not work on 64bit machines 665 */ 666 org_buf_ptr = (void *)GET_SW_DATA0(desc); 667 org_buf_len = (int)GET_SW_DATA1(desc); 668 669 if (unlikely(!org_buf_ptr)) { 670 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n"); 671 goto free_desc; 672 } 673 674 pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK; 675 accum_sz = buf_len; 676 dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE); 677 678 /* Build a new sk_buff for the primary buffer */ 679 skb = build_skb(org_buf_ptr, org_buf_len); 680 if (unlikely(!skb)) { 681 dev_err(netcp->ndev_dev, "build_skb() failed\n"); 682 goto free_desc; 683 } 684 685 /* update data, tail and len */ 686 skb_reserve(skb, NETCP_SOP_OFFSET); 687 __skb_put(skb, buf_len); 688 689 /* Fill in the page fragment list */ 690 while (dma_desc) { 691 struct page *page; 692 693 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz); 694 if (unlikely(!ndesc)) { 695 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 696 goto free_desc; 697 } 698 699 get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc); 700 /* warning!!!! We are retrieving the virtual ptr in the sw_data 701 * field as a 32bit value. Will not work on 64bit machines 702 */ 703 page = (struct page *)GET_SW_DATA0(ndesc); 704 705 if (likely(dma_buff && buf_len && page)) { 706 dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE, 707 DMA_FROM_DEVICE); 708 } else { 709 dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n", 710 &dma_buff, buf_len, page); 711 goto free_desc; 712 } 713 714 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 715 offset_in_page(dma_buff), buf_len, PAGE_SIZE); 716 accum_sz += buf_len; 717 718 /* Free the descriptor */ 719 knav_pool_desc_put(netcp->rx_pool, ndesc); 720 } 721 722 /* check for packet len and warn */ 723 if (unlikely(pkt_sz != accum_sz)) 724 dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n", 725 pkt_sz, accum_sz); 726 727 /* Newer version of the Ethernet switch can trim the Ethernet FCS 728 * from the packet and is indicated in hw_cap. So trim it only for 729 * older h/w 730 */ 731 if (!(netcp->hw_cap & ETH_SW_CAN_REMOVE_ETH_FCS)) 732 __pskb_trim(skb, skb->len - ETH_FCS_LEN); 733 734 /* Call each of the RX hooks */ 735 p_info.skb = skb; 736 skb->dev = netcp->ndev; 737 p_info.rxtstamp_complete = false; 738 get_desc_info(&tmp, &p_info.eflags, desc); 739 p_info.epib = desc->epib; 740 p_info.psdata = (u32 __force *)desc->psdata; 741 p_info.eflags = ((p_info.eflags >> KNAV_DMA_DESC_EFLAGS_SHIFT) & 742 KNAV_DMA_DESC_EFLAGS_MASK); 743 list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) { 744 int ret; 745 746 ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data, 747 &p_info); 748 if (unlikely(ret)) { 749 dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n", 750 rx_hook->order, ret); 751 /* Free the primary descriptor */ 752 rx_stats->rx_dropped++; 753 knav_pool_desc_put(netcp->rx_pool, desc); 754 dev_kfree_skb(skb); 755 return 0; 756 } 757 } 758 /* Free the primary descriptor */ 759 knav_pool_desc_put(netcp->rx_pool, desc); 760 761 u64_stats_update_begin(&rx_stats->syncp_rx); 762 rx_stats->rx_packets++; 763 rx_stats->rx_bytes += skb->len; 764 u64_stats_update_end(&rx_stats->syncp_rx); 765 766 /* push skb up the stack */ 767 skb->protocol = eth_type_trans(skb, netcp->ndev); 768 netif_receive_skb(skb); 769 return 0; 770 771 free_desc: 772 netcp_free_rx_desc_chain(netcp, desc); 773 rx_stats->rx_errors++; 774 return 0; 775 } 776 777 static int netcp_process_rx_packets(struct netcp_intf *netcp, 778 unsigned int budget) 779 { 780 int i; 781 782 for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++) 783 ; 784 return i; 785 } 786 787 /* Release descriptors and attached buffers from Rx FDQ */ 788 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq) 789 { 790 struct knav_dma_desc *desc; 791 unsigned int buf_len, dma_sz; 792 dma_addr_t dma; 793 void *buf_ptr; 794 795 /* Allocate descriptor */ 796 while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) { 797 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz); 798 if (unlikely(!desc)) { 799 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 800 continue; 801 } 802 803 get_org_pkt_info(&dma, &buf_len, desc); 804 /* warning!!!! We are retrieving the virtual ptr in the sw_data 805 * field as a 32bit value. Will not work on 64bit machines 806 */ 807 buf_ptr = (void *)GET_SW_DATA0(desc); 808 809 if (unlikely(!dma)) { 810 dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n"); 811 knav_pool_desc_put(netcp->rx_pool, desc); 812 continue; 813 } 814 815 if (unlikely(!buf_ptr)) { 816 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n"); 817 knav_pool_desc_put(netcp->rx_pool, desc); 818 continue; 819 } 820 821 if (fdq == 0) { 822 dma_unmap_single(netcp->dev, dma, buf_len, 823 DMA_FROM_DEVICE); 824 netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr); 825 } else { 826 dma_unmap_page(netcp->dev, dma, buf_len, 827 DMA_FROM_DEVICE); 828 __free_page(buf_ptr); 829 } 830 831 knav_pool_desc_put(netcp->rx_pool, desc); 832 } 833 } 834 835 static void netcp_rxpool_free(struct netcp_intf *netcp) 836 { 837 int i; 838 839 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && 840 !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++) 841 netcp_free_rx_buf(netcp, i); 842 843 if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size) 844 dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n", 845 netcp->rx_pool_size - knav_pool_count(netcp->rx_pool)); 846 847 knav_pool_destroy(netcp->rx_pool); 848 netcp->rx_pool = NULL; 849 } 850 851 static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq) 852 { 853 struct knav_dma_desc *hwdesc; 854 unsigned int buf_len, dma_sz; 855 u32 desc_info, pkt_info; 856 struct page *page; 857 dma_addr_t dma; 858 void *bufptr; 859 u32 sw_data[2]; 860 861 /* Allocate descriptor */ 862 hwdesc = knav_pool_desc_get(netcp->rx_pool); 863 if (IS_ERR_OR_NULL(hwdesc)) { 864 dev_dbg(netcp->ndev_dev, "out of rx pool desc\n"); 865 return -ENOMEM; 866 } 867 868 if (likely(fdq == 0)) { 869 unsigned int primary_buf_len; 870 /* Allocate a primary receive queue entry */ 871 buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET; 872 primary_buf_len = SKB_DATA_ALIGN(buf_len) + 873 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 874 875 bufptr = netdev_alloc_frag(primary_buf_len); 876 sw_data[1] = primary_buf_len; 877 878 if (unlikely(!bufptr)) { 879 dev_warn_ratelimited(netcp->ndev_dev, 880 "Primary RX buffer alloc failed\n"); 881 goto fail; 882 } 883 dma = dma_map_single(netcp->dev, bufptr, buf_len, 884 DMA_TO_DEVICE); 885 if (unlikely(dma_mapping_error(netcp->dev, dma))) 886 goto fail; 887 888 /* warning!!!! We are saving the virtual ptr in the sw_data 889 * field as a 32bit value. Will not work on 64bit machines 890 */ 891 sw_data[0] = (u32)bufptr; 892 } else { 893 /* Allocate a secondary receive queue entry */ 894 page = alloc_page(GFP_ATOMIC | GFP_DMA); 895 if (unlikely(!page)) { 896 dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n"); 897 goto fail; 898 } 899 buf_len = PAGE_SIZE; 900 dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE); 901 /* warning!!!! We are saving the virtual ptr in the sw_data 902 * field as a 32bit value. Will not work on 64bit machines 903 */ 904 sw_data[0] = (u32)page; 905 sw_data[1] = 0; 906 } 907 908 desc_info = KNAV_DMA_DESC_PS_INFO_IN_DESC; 909 desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK; 910 pkt_info = KNAV_DMA_DESC_HAS_EPIB; 911 pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT; 912 pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) << 913 KNAV_DMA_DESC_RETQ_SHIFT; 914 set_org_pkt_info(dma, buf_len, hwdesc); 915 SET_SW_DATA0(sw_data[0], hwdesc); 916 SET_SW_DATA1(sw_data[1], hwdesc); 917 set_desc_info(desc_info, pkt_info, hwdesc); 918 919 /* Push to FDQs */ 920 knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma, 921 &dma_sz); 922 knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0); 923 return 0; 924 925 fail: 926 knav_pool_desc_put(netcp->rx_pool, hwdesc); 927 return -ENOMEM; 928 } 929 930 /* Refill Rx FDQ with descriptors & attached buffers */ 931 static void netcp_rxpool_refill(struct netcp_intf *netcp) 932 { 933 u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0}; 934 int i, ret = 0; 935 936 /* Calculate the FDQ deficit and refill */ 937 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) { 938 fdq_deficit[i] = netcp->rx_queue_depths[i] - 939 knav_queue_get_count(netcp->rx_fdq[i]); 940 941 while (fdq_deficit[i]-- && !ret) 942 ret = netcp_allocate_rx_buf(netcp, i); 943 } /* end for fdqs */ 944 } 945 946 /* NAPI poll */ 947 static int netcp_rx_poll(struct napi_struct *napi, int budget) 948 { 949 struct netcp_intf *netcp = container_of(napi, struct netcp_intf, 950 rx_napi); 951 unsigned int packets; 952 953 packets = netcp_process_rx_packets(netcp, budget); 954 955 netcp_rxpool_refill(netcp); 956 if (packets < budget) { 957 napi_complete_done(&netcp->rx_napi, packets); 958 knav_queue_enable_notify(netcp->rx_queue); 959 } 960 961 return packets; 962 } 963 964 static void netcp_rx_notify(void *arg) 965 { 966 struct netcp_intf *netcp = arg; 967 968 knav_queue_disable_notify(netcp->rx_queue); 969 napi_schedule(&netcp->rx_napi); 970 } 971 972 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp, 973 struct knav_dma_desc *desc, 974 unsigned int desc_sz) 975 { 976 struct knav_dma_desc *ndesc = desc; 977 dma_addr_t dma_desc, dma_buf; 978 unsigned int buf_len; 979 980 while (ndesc) { 981 get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc); 982 983 if (dma_buf && buf_len) 984 dma_unmap_single(netcp->dev, dma_buf, buf_len, 985 DMA_TO_DEVICE); 986 else 987 dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n", 988 &dma_buf, buf_len); 989 990 knav_pool_desc_put(netcp->tx_pool, ndesc); 991 ndesc = NULL; 992 if (dma_desc) { 993 ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc, 994 desc_sz); 995 if (!ndesc) 996 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n"); 997 } 998 } 999 } 1000 1001 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp, 1002 unsigned int budget) 1003 { 1004 struct netcp_stats *tx_stats = &netcp->stats; 1005 struct knav_dma_desc *desc; 1006 struct netcp_tx_cb *tx_cb; 1007 struct sk_buff *skb; 1008 unsigned int dma_sz; 1009 dma_addr_t dma; 1010 int pkts = 0; 1011 1012 while (budget--) { 1013 dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz); 1014 if (!dma) 1015 break; 1016 desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz); 1017 if (unlikely(!desc)) { 1018 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n"); 1019 tx_stats->tx_errors++; 1020 continue; 1021 } 1022 1023 /* warning!!!! We are retrieving the virtual ptr in the sw_data 1024 * field as a 32bit value. Will not work on 64bit machines 1025 */ 1026 skb = (struct sk_buff *)GET_SW_DATA0(desc); 1027 netcp_free_tx_desc_chain(netcp, desc, dma_sz); 1028 if (!skb) { 1029 dev_err(netcp->ndev_dev, "No skb in Tx desc\n"); 1030 tx_stats->tx_errors++; 1031 continue; 1032 } 1033 1034 tx_cb = (struct netcp_tx_cb *)skb->cb; 1035 if (tx_cb->txtstamp) 1036 tx_cb->txtstamp(tx_cb->ts_context, skb); 1037 1038 if (netif_subqueue_stopped(netcp->ndev, skb) && 1039 netif_running(netcp->ndev) && 1040 (knav_pool_count(netcp->tx_pool) > 1041 netcp->tx_resume_threshold)) { 1042 u16 subqueue = skb_get_queue_mapping(skb); 1043 1044 netif_wake_subqueue(netcp->ndev, subqueue); 1045 } 1046 1047 u64_stats_update_begin(&tx_stats->syncp_tx); 1048 tx_stats->tx_packets++; 1049 tx_stats->tx_bytes += skb->len; 1050 u64_stats_update_end(&tx_stats->syncp_tx); 1051 dev_kfree_skb(skb); 1052 pkts++; 1053 } 1054 return pkts; 1055 } 1056 1057 static int netcp_tx_poll(struct napi_struct *napi, int budget) 1058 { 1059 int packets; 1060 struct netcp_intf *netcp = container_of(napi, struct netcp_intf, 1061 tx_napi); 1062 1063 packets = netcp_process_tx_compl_packets(netcp, budget); 1064 if (packets < budget) { 1065 napi_complete(&netcp->tx_napi); 1066 knav_queue_enable_notify(netcp->tx_compl_q); 1067 } 1068 1069 return packets; 1070 } 1071 1072 static void netcp_tx_notify(void *arg) 1073 { 1074 struct netcp_intf *netcp = arg; 1075 1076 knav_queue_disable_notify(netcp->tx_compl_q); 1077 napi_schedule(&netcp->tx_napi); 1078 } 1079 1080 static struct knav_dma_desc* 1081 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp) 1082 { 1083 struct knav_dma_desc *desc, *ndesc, *pdesc; 1084 unsigned int pkt_len = skb_headlen(skb); 1085 struct device *dev = netcp->dev; 1086 dma_addr_t dma_addr; 1087 unsigned int dma_sz; 1088 int i; 1089 1090 /* Map the linear buffer */ 1091 dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE); 1092 if (unlikely(dma_mapping_error(dev, dma_addr))) { 1093 dev_err(netcp->ndev_dev, "Failed to map skb buffer\n"); 1094 return NULL; 1095 } 1096 1097 desc = knav_pool_desc_get(netcp->tx_pool); 1098 if (IS_ERR_OR_NULL(desc)) { 1099 dev_err(netcp->ndev_dev, "out of TX desc\n"); 1100 dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE); 1101 return NULL; 1102 } 1103 1104 set_pkt_info(dma_addr, pkt_len, 0, desc); 1105 if (skb_is_nonlinear(skb)) { 1106 prefetchw(skb_shinfo(skb)); 1107 } else { 1108 desc->next_desc = 0; 1109 goto upd_pkt_len; 1110 } 1111 1112 pdesc = desc; 1113 1114 /* Handle the case where skb is fragmented in pages */ 1115 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1116 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1117 struct page *page = skb_frag_page(frag); 1118 u32 page_offset = skb_frag_off(frag); 1119 u32 buf_len = skb_frag_size(frag); 1120 dma_addr_t desc_dma; 1121 u32 desc_dma_32; 1122 1123 dma_addr = dma_map_page(dev, page, page_offset, buf_len, 1124 DMA_TO_DEVICE); 1125 if (unlikely(!dma_addr)) { 1126 dev_err(netcp->ndev_dev, "Failed to map skb page\n"); 1127 goto free_descs; 1128 } 1129 1130 ndesc = knav_pool_desc_get(netcp->tx_pool); 1131 if (IS_ERR_OR_NULL(ndesc)) { 1132 dev_err(netcp->ndev_dev, "out of TX desc for frags\n"); 1133 dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE); 1134 goto free_descs; 1135 } 1136 1137 desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc); 1138 set_pkt_info(dma_addr, buf_len, 0, ndesc); 1139 desc_dma_32 = (u32)desc_dma; 1140 set_words(&desc_dma_32, 1, &pdesc->next_desc); 1141 pkt_len += buf_len; 1142 if (pdesc != desc) 1143 knav_pool_desc_map(netcp->tx_pool, pdesc, 1144 sizeof(*pdesc), &desc_dma, &dma_sz); 1145 pdesc = ndesc; 1146 } 1147 if (pdesc != desc) 1148 knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc), 1149 &dma_addr, &dma_sz); 1150 1151 /* frag list based linkage is not supported for now. */ 1152 if (skb_shinfo(skb)->frag_list) { 1153 dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n"); 1154 goto free_descs; 1155 } 1156 1157 upd_pkt_len: 1158 WARN_ON(pkt_len != skb->len); 1159 1160 pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK; 1161 set_words(&pkt_len, 1, &desc->desc_info); 1162 return desc; 1163 1164 free_descs: 1165 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc)); 1166 return NULL; 1167 } 1168 1169 static int netcp_tx_submit_skb(struct netcp_intf *netcp, 1170 struct sk_buff *skb, 1171 struct knav_dma_desc *desc) 1172 { 1173 struct netcp_tx_pipe *tx_pipe = NULL; 1174 struct netcp_hook_list *tx_hook; 1175 struct netcp_packet p_info; 1176 struct netcp_tx_cb *tx_cb; 1177 unsigned int dma_sz; 1178 dma_addr_t dma; 1179 u32 tmp = 0; 1180 int ret = 0; 1181 1182 p_info.netcp = netcp; 1183 p_info.skb = skb; 1184 p_info.tx_pipe = NULL; 1185 p_info.psdata_len = 0; 1186 p_info.ts_context = NULL; 1187 p_info.txtstamp = NULL; 1188 p_info.epib = desc->epib; 1189 p_info.psdata = (u32 __force *)desc->psdata; 1190 memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32)); 1191 1192 /* Find out where to inject the packet for transmission */ 1193 list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) { 1194 ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data, 1195 &p_info); 1196 if (unlikely(ret != 0)) { 1197 dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n", 1198 tx_hook->order, ret); 1199 ret = (ret < 0) ? ret : NETDEV_TX_OK; 1200 goto out; 1201 } 1202 } 1203 1204 /* Make sure some TX hook claimed the packet */ 1205 tx_pipe = p_info.tx_pipe; 1206 if (!tx_pipe) { 1207 dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n"); 1208 ret = -ENXIO; 1209 goto out; 1210 } 1211 1212 tx_cb = (struct netcp_tx_cb *)skb->cb; 1213 tx_cb->ts_context = p_info.ts_context; 1214 tx_cb->txtstamp = p_info.txtstamp; 1215 1216 /* update descriptor */ 1217 if (p_info.psdata_len) { 1218 /* psdata points to both native-endian and device-endian data */ 1219 __le32 *psdata = (void __force *)p_info.psdata; 1220 1221 set_words((u32 *)psdata + 1222 (KNAV_DMA_NUM_PS_WORDS - p_info.psdata_len), 1223 p_info.psdata_len, psdata); 1224 tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) << 1225 KNAV_DMA_DESC_PSLEN_SHIFT; 1226 } 1227 1228 tmp |= KNAV_DMA_DESC_HAS_EPIB | 1229 ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) << 1230 KNAV_DMA_DESC_RETQ_SHIFT); 1231 1232 if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) { 1233 tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) << 1234 KNAV_DMA_DESC_PSFLAG_SHIFT); 1235 } 1236 1237 set_words(&tmp, 1, &desc->packet_info); 1238 /* warning!!!! We are saving the virtual ptr in the sw_data 1239 * field as a 32bit value. Will not work on 64bit machines 1240 */ 1241 SET_SW_DATA0((u32)skb, desc); 1242 1243 if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) { 1244 tmp = tx_pipe->switch_to_port; 1245 set_words(&tmp, 1, &desc->tag_info); 1246 } 1247 1248 /* submit packet descriptor */ 1249 ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma, 1250 &dma_sz); 1251 if (unlikely(ret)) { 1252 dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__); 1253 ret = -ENOMEM; 1254 goto out; 1255 } 1256 skb_tx_timestamp(skb); 1257 knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0); 1258 1259 out: 1260 return ret; 1261 } 1262 1263 /* Submit the packet */ 1264 static netdev_tx_t netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev) 1265 { 1266 struct netcp_intf *netcp = netdev_priv(ndev); 1267 struct netcp_stats *tx_stats = &netcp->stats; 1268 int subqueue = skb_get_queue_mapping(skb); 1269 struct knav_dma_desc *desc; 1270 int desc_count, ret = 0; 1271 1272 if (unlikely(skb->len <= 0)) { 1273 dev_kfree_skb(skb); 1274 return NETDEV_TX_OK; 1275 } 1276 1277 if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) { 1278 ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE); 1279 if (ret < 0) { 1280 /* If we get here, the skb has already been dropped */ 1281 dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n", 1282 ret); 1283 tx_stats->tx_dropped++; 1284 return ret; 1285 } 1286 skb->len = NETCP_MIN_PACKET_SIZE; 1287 } 1288 1289 desc = netcp_tx_map_skb(skb, netcp); 1290 if (unlikely(!desc)) { 1291 netif_stop_subqueue(ndev, subqueue); 1292 ret = -ENOBUFS; 1293 goto drop; 1294 } 1295 1296 ret = netcp_tx_submit_skb(netcp, skb, desc); 1297 if (ret) 1298 goto drop; 1299 1300 /* Check Tx pool count & stop subqueue if needed */ 1301 desc_count = knav_pool_count(netcp->tx_pool); 1302 if (desc_count < netcp->tx_pause_threshold) { 1303 dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count); 1304 netif_stop_subqueue(ndev, subqueue); 1305 } 1306 return NETDEV_TX_OK; 1307 1308 drop: 1309 tx_stats->tx_dropped++; 1310 if (desc) 1311 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc)); 1312 dev_kfree_skb(skb); 1313 return ret; 1314 } 1315 1316 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe) 1317 { 1318 if (tx_pipe->dma_channel) { 1319 knav_dma_close_channel(tx_pipe->dma_channel); 1320 tx_pipe->dma_channel = NULL; 1321 } 1322 return 0; 1323 } 1324 EXPORT_SYMBOL_GPL(netcp_txpipe_close); 1325 1326 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe) 1327 { 1328 struct device *dev = tx_pipe->netcp_device->device; 1329 struct knav_dma_cfg config; 1330 int ret = 0; 1331 u8 name[16]; 1332 1333 memset(&config, 0, sizeof(config)); 1334 config.direction = DMA_MEM_TO_DEV; 1335 config.u.tx.filt_einfo = false; 1336 config.u.tx.filt_pswords = false; 1337 config.u.tx.priority = DMA_PRIO_MED_L; 1338 1339 tx_pipe->dma_channel = knav_dma_open_channel(dev, 1340 tx_pipe->dma_chan_name, &config); 1341 if (IS_ERR(tx_pipe->dma_channel)) { 1342 dev_err(dev, "failed opening tx chan(%s)\n", 1343 tx_pipe->dma_chan_name); 1344 ret = PTR_ERR(tx_pipe->dma_channel); 1345 goto err; 1346 } 1347 1348 snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev)); 1349 tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id, 1350 KNAV_QUEUE_SHARED); 1351 if (IS_ERR(tx_pipe->dma_queue)) { 1352 dev_err(dev, "Could not open DMA queue for channel \"%s\": %pe\n", 1353 name, tx_pipe->dma_queue); 1354 ret = PTR_ERR(tx_pipe->dma_queue); 1355 goto err; 1356 } 1357 1358 dev_dbg(dev, "opened tx pipe %s\n", name); 1359 return 0; 1360 1361 err: 1362 if (!IS_ERR_OR_NULL(tx_pipe->dma_channel)) 1363 knav_dma_close_channel(tx_pipe->dma_channel); 1364 tx_pipe->dma_channel = NULL; 1365 return ret; 1366 } 1367 EXPORT_SYMBOL_GPL(netcp_txpipe_open); 1368 1369 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe, 1370 struct netcp_device *netcp_device, 1371 const char *dma_chan_name, unsigned int dma_queue_id) 1372 { 1373 memset(tx_pipe, 0, sizeof(*tx_pipe)); 1374 tx_pipe->netcp_device = netcp_device; 1375 tx_pipe->dma_chan_name = dma_chan_name; 1376 tx_pipe->dma_queue_id = dma_queue_id; 1377 return 0; 1378 } 1379 EXPORT_SYMBOL_GPL(netcp_txpipe_init); 1380 1381 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp, 1382 const u8 *addr, 1383 enum netcp_addr_type type) 1384 { 1385 struct netcp_addr *naddr; 1386 1387 list_for_each_entry(naddr, &netcp->addr_list, node) { 1388 if (naddr->type != type) 1389 continue; 1390 if (addr && memcmp(addr, naddr->addr, ETH_ALEN)) 1391 continue; 1392 return naddr; 1393 } 1394 1395 return NULL; 1396 } 1397 1398 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp, 1399 const u8 *addr, 1400 enum netcp_addr_type type) 1401 { 1402 struct netcp_addr *naddr; 1403 1404 naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC); 1405 if (!naddr) 1406 return NULL; 1407 1408 naddr->type = type; 1409 naddr->flags = 0; 1410 naddr->netcp = netcp; 1411 if (addr) 1412 ether_addr_copy(naddr->addr, addr); 1413 else 1414 eth_zero_addr(naddr->addr); 1415 list_add_tail(&naddr->node, &netcp->addr_list); 1416 1417 return naddr; 1418 } 1419 1420 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr) 1421 { 1422 list_del(&naddr->node); 1423 devm_kfree(netcp->dev, naddr); 1424 } 1425 1426 static void netcp_addr_clear_mark(struct netcp_intf *netcp) 1427 { 1428 struct netcp_addr *naddr; 1429 1430 list_for_each_entry(naddr, &netcp->addr_list, node) 1431 naddr->flags = 0; 1432 } 1433 1434 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr, 1435 enum netcp_addr_type type) 1436 { 1437 struct netcp_addr *naddr; 1438 1439 naddr = netcp_addr_find(netcp, addr, type); 1440 if (naddr) { 1441 naddr->flags |= ADDR_VALID; 1442 return; 1443 } 1444 1445 naddr = netcp_addr_add(netcp, addr, type); 1446 if (!WARN_ON(!naddr)) 1447 naddr->flags |= ADDR_NEW; 1448 } 1449 1450 static void netcp_addr_sweep_del(struct netcp_intf *netcp) 1451 { 1452 struct netcp_addr *naddr, *tmp; 1453 struct netcp_intf_modpriv *priv; 1454 struct netcp_module *module; 1455 int error; 1456 1457 list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) { 1458 if (naddr->flags & (ADDR_VALID | ADDR_NEW)) 1459 continue; 1460 dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n", 1461 naddr->addr, naddr->type); 1462 for_each_module(netcp, priv) { 1463 module = priv->netcp_module; 1464 if (!module->del_addr) 1465 continue; 1466 error = module->del_addr(priv->module_priv, 1467 naddr); 1468 WARN_ON(error); 1469 } 1470 netcp_addr_del(netcp, naddr); 1471 } 1472 } 1473 1474 static void netcp_addr_sweep_add(struct netcp_intf *netcp) 1475 { 1476 struct netcp_addr *naddr, *tmp; 1477 struct netcp_intf_modpriv *priv; 1478 struct netcp_module *module; 1479 int error; 1480 1481 list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) { 1482 if (!(naddr->flags & ADDR_NEW)) 1483 continue; 1484 dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n", 1485 naddr->addr, naddr->type); 1486 1487 for_each_module(netcp, priv) { 1488 module = priv->netcp_module; 1489 if (!module->add_addr) 1490 continue; 1491 error = module->add_addr(priv->module_priv, naddr); 1492 WARN_ON(error); 1493 } 1494 } 1495 } 1496 1497 static int netcp_set_promiscuous(struct netcp_intf *netcp, bool promisc) 1498 { 1499 struct netcp_intf_modpriv *priv; 1500 struct netcp_module *module; 1501 int error; 1502 1503 for_each_module(netcp, priv) { 1504 module = priv->netcp_module; 1505 if (!module->set_rx_mode) 1506 continue; 1507 1508 error = module->set_rx_mode(priv->module_priv, promisc); 1509 if (error) 1510 return error; 1511 } 1512 return 0; 1513 } 1514 1515 static void netcp_set_rx_mode(struct net_device *ndev) 1516 { 1517 struct netcp_intf *netcp = netdev_priv(ndev); 1518 struct netdev_hw_addr *ndev_addr; 1519 bool promisc; 1520 1521 promisc = (ndev->flags & IFF_PROMISC || 1522 ndev->flags & IFF_ALLMULTI || 1523 netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR); 1524 1525 spin_lock(&netcp->lock); 1526 /* first clear all marks */ 1527 netcp_addr_clear_mark(netcp); 1528 1529 /* next add new entries, mark existing ones */ 1530 netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST); 1531 for_each_dev_addr(ndev, ndev_addr) 1532 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV); 1533 netdev_for_each_uc_addr(ndev_addr, ndev) 1534 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST); 1535 netdev_for_each_mc_addr(ndev_addr, ndev) 1536 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST); 1537 1538 if (promisc) 1539 netcp_addr_add_mark(netcp, NULL, ADDR_ANY); 1540 1541 /* finally sweep and callout into modules */ 1542 netcp_addr_sweep_del(netcp); 1543 netcp_addr_sweep_add(netcp); 1544 netcp_set_promiscuous(netcp, promisc); 1545 spin_unlock(&netcp->lock); 1546 } 1547 1548 static void netcp_free_navigator_resources(struct netcp_intf *netcp) 1549 { 1550 int i; 1551 1552 if (netcp->rx_channel) { 1553 knav_dma_close_channel(netcp->rx_channel); 1554 netcp->rx_channel = NULL; 1555 } 1556 1557 if (!IS_ERR_OR_NULL(netcp->rx_pool)) 1558 netcp_rxpool_free(netcp); 1559 1560 if (!IS_ERR_OR_NULL(netcp->rx_queue)) { 1561 knav_queue_close(netcp->rx_queue); 1562 netcp->rx_queue = NULL; 1563 } 1564 1565 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && 1566 !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) { 1567 knav_queue_close(netcp->rx_fdq[i]); 1568 netcp->rx_fdq[i] = NULL; 1569 } 1570 1571 if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) { 1572 knav_queue_close(netcp->tx_compl_q); 1573 netcp->tx_compl_q = NULL; 1574 } 1575 1576 if (!IS_ERR_OR_NULL(netcp->tx_pool)) { 1577 knav_pool_destroy(netcp->tx_pool); 1578 netcp->tx_pool = NULL; 1579 } 1580 } 1581 1582 static int netcp_setup_navigator_resources(struct net_device *ndev) 1583 { 1584 struct netcp_intf *netcp = netdev_priv(ndev); 1585 struct knav_queue_notify_config notify_cfg; 1586 struct knav_dma_cfg config; 1587 u32 last_fdq = 0; 1588 u8 name[16]; 1589 int ret; 1590 int i; 1591 1592 /* Create Rx/Tx descriptor pools */ 1593 snprintf(name, sizeof(name), "rx-pool-%s", ndev->name); 1594 netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size, 1595 netcp->rx_pool_region_id); 1596 if (IS_ERR_OR_NULL(netcp->rx_pool)) { 1597 dev_err(netcp->ndev_dev, "Couldn't create rx pool\n"); 1598 ret = PTR_ERR(netcp->rx_pool); 1599 goto fail; 1600 } 1601 1602 snprintf(name, sizeof(name), "tx-pool-%s", ndev->name); 1603 netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size, 1604 netcp->tx_pool_region_id); 1605 if (IS_ERR_OR_NULL(netcp->tx_pool)) { 1606 dev_err(netcp->ndev_dev, "Couldn't create tx pool\n"); 1607 ret = PTR_ERR(netcp->tx_pool); 1608 goto fail; 1609 } 1610 1611 /* open Tx completion queue */ 1612 snprintf(name, sizeof(name), "tx-compl-%s", ndev->name); 1613 netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0); 1614 if (IS_ERR(netcp->tx_compl_q)) { 1615 ret = PTR_ERR(netcp->tx_compl_q); 1616 goto fail; 1617 } 1618 netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q); 1619 1620 /* Set notification for Tx completion */ 1621 notify_cfg.fn = netcp_tx_notify; 1622 notify_cfg.fn_arg = netcp; 1623 ret = knav_queue_device_control(netcp->tx_compl_q, 1624 KNAV_QUEUE_SET_NOTIFIER, 1625 (unsigned long)¬ify_cfg); 1626 if (ret) 1627 goto fail; 1628 1629 knav_queue_disable_notify(netcp->tx_compl_q); 1630 1631 /* open Rx completion queue */ 1632 snprintf(name, sizeof(name), "rx-compl-%s", ndev->name); 1633 netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0); 1634 if (IS_ERR(netcp->rx_queue)) { 1635 ret = PTR_ERR(netcp->rx_queue); 1636 goto fail; 1637 } 1638 netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue); 1639 1640 /* Set notification for Rx completion */ 1641 notify_cfg.fn = netcp_rx_notify; 1642 notify_cfg.fn_arg = netcp; 1643 ret = knav_queue_device_control(netcp->rx_queue, 1644 KNAV_QUEUE_SET_NOTIFIER, 1645 (unsigned long)¬ify_cfg); 1646 if (ret) 1647 goto fail; 1648 1649 knav_queue_disable_notify(netcp->rx_queue); 1650 1651 /* open Rx FDQs */ 1652 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i]; 1653 ++i) { 1654 snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i); 1655 netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0); 1656 if (IS_ERR(netcp->rx_fdq[i])) { 1657 ret = PTR_ERR(netcp->rx_fdq[i]); 1658 goto fail; 1659 } 1660 } 1661 1662 memset(&config, 0, sizeof(config)); 1663 config.direction = DMA_DEV_TO_MEM; 1664 config.u.rx.einfo_present = true; 1665 config.u.rx.psinfo_present = true; 1666 config.u.rx.err_mode = DMA_DROP; 1667 config.u.rx.desc_type = DMA_DESC_HOST; 1668 config.u.rx.psinfo_at_sop = false; 1669 config.u.rx.sop_offset = NETCP_SOP_OFFSET; 1670 config.u.rx.dst_q = netcp->rx_queue_id; 1671 config.u.rx.thresh = DMA_THRESH_NONE; 1672 1673 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) { 1674 if (netcp->rx_fdq[i]) 1675 last_fdq = knav_queue_get_id(netcp->rx_fdq[i]); 1676 config.u.rx.fdq[i] = last_fdq; 1677 } 1678 1679 netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device, 1680 netcp->dma_chan_name, &config); 1681 if (IS_ERR(netcp->rx_channel)) { 1682 dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n", 1683 netcp->dma_chan_name); 1684 ret = PTR_ERR(netcp->rx_channel); 1685 goto fail; 1686 } 1687 1688 dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel); 1689 return 0; 1690 1691 fail: 1692 netcp_free_navigator_resources(netcp); 1693 return ret; 1694 } 1695 1696 /* Open the device */ 1697 static int netcp_ndo_open(struct net_device *ndev) 1698 { 1699 struct netcp_intf *netcp = netdev_priv(ndev); 1700 struct netcp_intf_modpriv *intf_modpriv; 1701 struct netcp_module *module; 1702 int ret; 1703 1704 netif_carrier_off(ndev); 1705 ret = netcp_setup_navigator_resources(ndev); 1706 if (ret) { 1707 dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n"); 1708 goto fail; 1709 } 1710 1711 for_each_module(netcp, intf_modpriv) { 1712 module = intf_modpriv->netcp_module; 1713 if (module->open) { 1714 ret = module->open(intf_modpriv->module_priv, ndev); 1715 if (ret != 0) { 1716 dev_err(netcp->ndev_dev, "module open failed\n"); 1717 goto fail_open; 1718 } 1719 } 1720 } 1721 1722 napi_enable(&netcp->rx_napi); 1723 napi_enable(&netcp->tx_napi); 1724 knav_queue_enable_notify(netcp->tx_compl_q); 1725 knav_queue_enable_notify(netcp->rx_queue); 1726 netcp_rxpool_refill(netcp); 1727 netif_tx_wake_all_queues(ndev); 1728 dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name); 1729 return 0; 1730 1731 fail_open: 1732 for_each_module(netcp, intf_modpriv) { 1733 module = intf_modpriv->netcp_module; 1734 if (module->close) 1735 module->close(intf_modpriv->module_priv, ndev); 1736 } 1737 1738 fail: 1739 netcp_free_navigator_resources(netcp); 1740 return ret; 1741 } 1742 1743 /* Close the device */ 1744 static int netcp_ndo_stop(struct net_device *ndev) 1745 { 1746 struct netcp_intf *netcp = netdev_priv(ndev); 1747 struct netcp_intf_modpriv *intf_modpriv; 1748 struct netcp_module *module; 1749 int err = 0; 1750 1751 netif_tx_stop_all_queues(ndev); 1752 netif_carrier_off(ndev); 1753 netcp_addr_clear_mark(netcp); 1754 netcp_addr_sweep_del(netcp); 1755 knav_queue_disable_notify(netcp->rx_queue); 1756 knav_queue_disable_notify(netcp->tx_compl_q); 1757 napi_disable(&netcp->rx_napi); 1758 napi_disable(&netcp->tx_napi); 1759 1760 for_each_module(netcp, intf_modpriv) { 1761 module = intf_modpriv->netcp_module; 1762 if (module->close) { 1763 err = module->close(intf_modpriv->module_priv, ndev); 1764 if (err != 0) 1765 dev_err(netcp->ndev_dev, "Close failed\n"); 1766 } 1767 } 1768 1769 /* Recycle Rx descriptors from completion queue */ 1770 netcp_empty_rx_queue(netcp); 1771 1772 /* Recycle Tx descriptors from completion queue */ 1773 netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size); 1774 1775 if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size) 1776 dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n", 1777 netcp->tx_pool_size - knav_pool_count(netcp->tx_pool)); 1778 1779 netcp_free_navigator_resources(netcp); 1780 dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name); 1781 return 0; 1782 } 1783 1784 static int netcp_ndo_ioctl(struct net_device *ndev, 1785 struct ifreq *req, int cmd) 1786 { 1787 struct netcp_intf *netcp = netdev_priv(ndev); 1788 struct netcp_intf_modpriv *intf_modpriv; 1789 struct netcp_module *module; 1790 int ret = -1, err = -EOPNOTSUPP; 1791 1792 if (!netif_running(ndev)) 1793 return -EINVAL; 1794 1795 for_each_module(netcp, intf_modpriv) { 1796 module = intf_modpriv->netcp_module; 1797 if (!module->ioctl) 1798 continue; 1799 1800 err = module->ioctl(intf_modpriv->module_priv, req, cmd); 1801 if ((err < 0) && (err != -EOPNOTSUPP)) { 1802 ret = err; 1803 goto out; 1804 } 1805 if (err == 0) 1806 ret = err; 1807 } 1808 1809 out: 1810 return (ret == 0) ? 0 : err; 1811 } 1812 1813 static void netcp_ndo_tx_timeout(struct net_device *ndev, unsigned int txqueue) 1814 { 1815 struct netcp_intf *netcp = netdev_priv(ndev); 1816 unsigned int descs = knav_pool_count(netcp->tx_pool); 1817 1818 dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs); 1819 netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size); 1820 netif_trans_update(ndev); 1821 netif_tx_wake_all_queues(ndev); 1822 } 1823 1824 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 1825 { 1826 struct netcp_intf *netcp = netdev_priv(ndev); 1827 struct netcp_intf_modpriv *intf_modpriv; 1828 struct netcp_module *module; 1829 unsigned long flags; 1830 int err = 0; 1831 1832 dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid); 1833 1834 spin_lock_irqsave(&netcp->lock, flags); 1835 for_each_module(netcp, intf_modpriv) { 1836 module = intf_modpriv->netcp_module; 1837 if ((module->add_vid) && (vid != 0)) { 1838 err = module->add_vid(intf_modpriv->module_priv, vid); 1839 if (err != 0) { 1840 dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n", 1841 vid); 1842 break; 1843 } 1844 } 1845 } 1846 spin_unlock_irqrestore(&netcp->lock, flags); 1847 1848 return err; 1849 } 1850 1851 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 1852 { 1853 struct netcp_intf *netcp = netdev_priv(ndev); 1854 struct netcp_intf_modpriv *intf_modpriv; 1855 struct netcp_module *module; 1856 unsigned long flags; 1857 int err = 0; 1858 1859 dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid); 1860 1861 spin_lock_irqsave(&netcp->lock, flags); 1862 for_each_module(netcp, intf_modpriv) { 1863 module = intf_modpriv->netcp_module; 1864 if (module->del_vid) { 1865 err = module->del_vid(intf_modpriv->module_priv, vid); 1866 if (err != 0) { 1867 dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n", 1868 vid); 1869 break; 1870 } 1871 } 1872 } 1873 spin_unlock_irqrestore(&netcp->lock, flags); 1874 return err; 1875 } 1876 1877 static int netcp_setup_tc(struct net_device *dev, enum tc_setup_type type, 1878 void *type_data) 1879 { 1880 struct tc_mqprio_qopt *mqprio = type_data; 1881 u8 num_tc; 1882 int i; 1883 1884 /* setup tc must be called under rtnl lock */ 1885 ASSERT_RTNL(); 1886 1887 if (type != TC_SETUP_QDISC_MQPRIO) 1888 return -EOPNOTSUPP; 1889 1890 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 1891 num_tc = mqprio->num_tc; 1892 1893 /* Sanity-check the number of traffic classes requested */ 1894 if ((dev->real_num_tx_queues <= 1) || 1895 (dev->real_num_tx_queues < num_tc)) 1896 return -EINVAL; 1897 1898 /* Configure traffic class to queue mappings */ 1899 if (num_tc) { 1900 netdev_set_num_tc(dev, num_tc); 1901 for (i = 0; i < num_tc; i++) 1902 netdev_set_tc_queue(dev, i, 1, i); 1903 } else { 1904 netdev_reset_tc(dev); 1905 } 1906 1907 return 0; 1908 } 1909 1910 static void 1911 netcp_get_stats(struct net_device *ndev, struct rtnl_link_stats64 *stats) 1912 { 1913 struct netcp_intf *netcp = netdev_priv(ndev); 1914 struct netcp_stats *p = &netcp->stats; 1915 u64 rxpackets, rxbytes, txpackets, txbytes; 1916 unsigned int start; 1917 1918 do { 1919 start = u64_stats_fetch_begin(&p->syncp_rx); 1920 rxpackets = p->rx_packets; 1921 rxbytes = p->rx_bytes; 1922 } while (u64_stats_fetch_retry(&p->syncp_rx, start)); 1923 1924 do { 1925 start = u64_stats_fetch_begin(&p->syncp_tx); 1926 txpackets = p->tx_packets; 1927 txbytes = p->tx_bytes; 1928 } while (u64_stats_fetch_retry(&p->syncp_tx, start)); 1929 1930 stats->rx_packets = rxpackets; 1931 stats->rx_bytes = rxbytes; 1932 stats->tx_packets = txpackets; 1933 stats->tx_bytes = txbytes; 1934 1935 /* The following are stored as 32 bit */ 1936 stats->rx_errors = p->rx_errors; 1937 stats->rx_dropped = p->rx_dropped; 1938 stats->tx_dropped = p->tx_dropped; 1939 } 1940 1941 static const struct net_device_ops netcp_netdev_ops = { 1942 .ndo_open = netcp_ndo_open, 1943 .ndo_stop = netcp_ndo_stop, 1944 .ndo_start_xmit = netcp_ndo_start_xmit, 1945 .ndo_set_rx_mode = netcp_set_rx_mode, 1946 .ndo_eth_ioctl = netcp_ndo_ioctl, 1947 .ndo_get_stats64 = netcp_get_stats, 1948 .ndo_set_mac_address = eth_mac_addr, 1949 .ndo_validate_addr = eth_validate_addr, 1950 .ndo_vlan_rx_add_vid = netcp_rx_add_vid, 1951 .ndo_vlan_rx_kill_vid = netcp_rx_kill_vid, 1952 .ndo_tx_timeout = netcp_ndo_tx_timeout, 1953 .ndo_select_queue = dev_pick_tx_zero, 1954 .ndo_setup_tc = netcp_setup_tc, 1955 }; 1956 1957 static int netcp_create_interface(struct netcp_device *netcp_device, 1958 struct device_node *node_interface) 1959 { 1960 struct device *dev = netcp_device->device; 1961 struct device_node *node = dev->of_node; 1962 struct netcp_intf *netcp; 1963 struct net_device *ndev; 1964 resource_size_t size; 1965 struct resource res; 1966 void __iomem *efuse = NULL; 1967 u32 efuse_mac = 0; 1968 u8 efuse_mac_addr[6]; 1969 u32 temp[2]; 1970 int ret = 0; 1971 1972 ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1); 1973 if (!ndev) { 1974 dev_err(dev, "Error allocating netdev\n"); 1975 return -ENOMEM; 1976 } 1977 1978 ndev->features |= NETIF_F_SG; 1979 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 1980 ndev->hw_features = ndev->features; 1981 ndev->vlan_features |= NETIF_F_SG; 1982 1983 /* MTU range: 68 - 9486 */ 1984 ndev->min_mtu = ETH_MIN_MTU; 1985 ndev->max_mtu = NETCP_MAX_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN); 1986 1987 netcp = netdev_priv(ndev); 1988 spin_lock_init(&netcp->lock); 1989 INIT_LIST_HEAD(&netcp->module_head); 1990 INIT_LIST_HEAD(&netcp->txhook_list_head); 1991 INIT_LIST_HEAD(&netcp->rxhook_list_head); 1992 INIT_LIST_HEAD(&netcp->addr_list); 1993 u64_stats_init(&netcp->stats.syncp_rx); 1994 u64_stats_init(&netcp->stats.syncp_tx); 1995 netcp->netcp_device = netcp_device; 1996 netcp->dev = netcp_device->device; 1997 netcp->ndev = ndev; 1998 netcp->ndev_dev = &ndev->dev; 1999 netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG); 2000 netcp->tx_pause_threshold = MAX_SKB_FRAGS; 2001 netcp->tx_resume_threshold = netcp->tx_pause_threshold; 2002 netcp->node_interface = node_interface; 2003 2004 ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac); 2005 if (efuse_mac) { 2006 if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) { 2007 dev_err(dev, "could not find efuse-mac reg resource\n"); 2008 ret = -ENODEV; 2009 goto quit; 2010 } 2011 size = resource_size(&res); 2012 2013 if (!devm_request_mem_region(dev, res.start, size, 2014 dev_name(dev))) { 2015 dev_err(dev, "could not reserve resource\n"); 2016 ret = -ENOMEM; 2017 goto quit; 2018 } 2019 2020 efuse = devm_ioremap(dev, res.start, size); 2021 if (!efuse) { 2022 dev_err(dev, "could not map resource\n"); 2023 devm_release_mem_region(dev, res.start, size); 2024 ret = -ENOMEM; 2025 goto quit; 2026 } 2027 2028 emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac); 2029 if (is_valid_ether_addr(efuse_mac_addr)) 2030 eth_hw_addr_set(ndev, efuse_mac_addr); 2031 else 2032 eth_hw_addr_random(ndev); 2033 2034 devm_iounmap(dev, efuse); 2035 devm_release_mem_region(dev, res.start, size); 2036 } else { 2037 ret = of_get_ethdev_address(node_interface, ndev); 2038 if (ret) 2039 eth_hw_addr_random(ndev); 2040 } 2041 2042 ret = of_property_read_string(node_interface, "rx-channel", 2043 &netcp->dma_chan_name); 2044 if (ret < 0) { 2045 dev_err(dev, "missing \"rx-channel\" parameter\n"); 2046 ret = -ENODEV; 2047 goto quit; 2048 } 2049 2050 ret = of_property_read_u32(node_interface, "rx-queue", 2051 &netcp->rx_queue_id); 2052 if (ret < 0) { 2053 dev_warn(dev, "missing \"rx-queue\" parameter\n"); 2054 netcp->rx_queue_id = KNAV_QUEUE_QPEND; 2055 } 2056 2057 ret = of_property_read_u32_array(node_interface, "rx-queue-depth", 2058 netcp->rx_queue_depths, 2059 KNAV_DMA_FDQ_PER_CHAN); 2060 if (ret < 0) { 2061 dev_err(dev, "missing \"rx-queue-depth\" parameter\n"); 2062 netcp->rx_queue_depths[0] = 128; 2063 } 2064 2065 ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2); 2066 if (ret < 0) { 2067 dev_err(dev, "missing \"rx-pool\" parameter\n"); 2068 ret = -ENODEV; 2069 goto quit; 2070 } 2071 netcp->rx_pool_size = temp[0]; 2072 netcp->rx_pool_region_id = temp[1]; 2073 2074 ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2); 2075 if (ret < 0) { 2076 dev_err(dev, "missing \"tx-pool\" parameter\n"); 2077 ret = -ENODEV; 2078 goto quit; 2079 } 2080 netcp->tx_pool_size = temp[0]; 2081 netcp->tx_pool_region_id = temp[1]; 2082 2083 if (netcp->tx_pool_size < MAX_SKB_FRAGS) { 2084 dev_err(dev, "tx-pool size too small, must be at least %u\n", 2085 (unsigned int)MAX_SKB_FRAGS); 2086 ret = -ENODEV; 2087 goto quit; 2088 } 2089 2090 ret = of_property_read_u32(node_interface, "tx-completion-queue", 2091 &netcp->tx_compl_qid); 2092 if (ret < 0) { 2093 dev_warn(dev, "missing \"tx-completion-queue\" parameter\n"); 2094 netcp->tx_compl_qid = KNAV_QUEUE_QPEND; 2095 } 2096 2097 /* NAPI register */ 2098 netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll); 2099 netif_napi_add_tx(ndev, &netcp->tx_napi, netcp_tx_poll); 2100 2101 /* Register the network device */ 2102 ndev->dev_id = 0; 2103 ndev->watchdog_timeo = NETCP_TX_TIMEOUT; 2104 ndev->netdev_ops = &netcp_netdev_ops; 2105 SET_NETDEV_DEV(ndev, dev); 2106 2107 list_add_tail(&netcp->interface_list, &netcp_device->interface_head); 2108 return 0; 2109 2110 quit: 2111 free_netdev(ndev); 2112 return ret; 2113 } 2114 2115 static void netcp_delete_interface(struct netcp_device *netcp_device, 2116 struct net_device *ndev) 2117 { 2118 struct netcp_intf_modpriv *intf_modpriv, *tmp; 2119 struct netcp_intf *netcp = netdev_priv(ndev); 2120 struct netcp_module *module; 2121 2122 dev_dbg(netcp_device->device, "Removing interface \"%s\"\n", 2123 ndev->name); 2124 2125 /* Notify each of the modules that the interface is going away */ 2126 list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head, 2127 intf_list) { 2128 module = intf_modpriv->netcp_module; 2129 dev_dbg(netcp_device->device, "Releasing module \"%s\"\n", 2130 module->name); 2131 if (module->release) 2132 module->release(intf_modpriv->module_priv); 2133 list_del(&intf_modpriv->intf_list); 2134 } 2135 WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n", 2136 ndev->name); 2137 2138 list_del(&netcp->interface_list); 2139 2140 of_node_put(netcp->node_interface); 2141 unregister_netdev(ndev); 2142 free_netdev(ndev); 2143 } 2144 2145 static int netcp_probe(struct platform_device *pdev) 2146 { 2147 struct device_node *node = pdev->dev.of_node; 2148 struct netcp_intf *netcp_intf, *netcp_tmp; 2149 struct device_node *child, *interfaces; 2150 struct netcp_device *netcp_device; 2151 struct device *dev = &pdev->dev; 2152 struct netcp_module *module; 2153 int ret; 2154 2155 if (!knav_dma_device_ready() || 2156 !knav_qmss_device_ready()) 2157 return -EPROBE_DEFER; 2158 2159 if (!node) { 2160 dev_err(dev, "could not find device info\n"); 2161 return -ENODEV; 2162 } 2163 2164 /* Allocate a new NETCP device instance */ 2165 netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL); 2166 if (!netcp_device) 2167 return -ENOMEM; 2168 2169 pm_runtime_enable(&pdev->dev); 2170 ret = pm_runtime_get_sync(&pdev->dev); 2171 if (ret < 0) { 2172 dev_err(dev, "Failed to enable NETCP power-domain\n"); 2173 pm_runtime_disable(&pdev->dev); 2174 return ret; 2175 } 2176 2177 /* Initialize the NETCP device instance */ 2178 INIT_LIST_HEAD(&netcp_device->interface_head); 2179 INIT_LIST_HEAD(&netcp_device->modpriv_head); 2180 netcp_device->device = dev; 2181 platform_set_drvdata(pdev, netcp_device); 2182 2183 /* create interfaces */ 2184 interfaces = of_get_child_by_name(node, "netcp-interfaces"); 2185 if (!interfaces) { 2186 dev_err(dev, "could not find netcp-interfaces node\n"); 2187 ret = -ENODEV; 2188 goto probe_quit; 2189 } 2190 2191 for_each_available_child_of_node(interfaces, child) { 2192 ret = netcp_create_interface(netcp_device, child); 2193 if (ret) { 2194 dev_err(dev, "could not create interface(%pOFn)\n", 2195 child); 2196 goto probe_quit_interface; 2197 } 2198 } 2199 2200 of_node_put(interfaces); 2201 2202 /* Add the device instance to the list */ 2203 list_add_tail(&netcp_device->device_list, &netcp_devices); 2204 2205 /* Probe & attach any modules already registered */ 2206 mutex_lock(&netcp_modules_lock); 2207 for_each_netcp_module(module) { 2208 ret = netcp_module_probe(netcp_device, module); 2209 if (ret < 0) 2210 dev_err(dev, "module(%s) probe failed\n", module->name); 2211 } 2212 mutex_unlock(&netcp_modules_lock); 2213 return 0; 2214 2215 probe_quit_interface: 2216 list_for_each_entry_safe(netcp_intf, netcp_tmp, 2217 &netcp_device->interface_head, 2218 interface_list) { 2219 netcp_delete_interface(netcp_device, netcp_intf->ndev); 2220 } 2221 2222 of_node_put(interfaces); 2223 2224 probe_quit: 2225 pm_runtime_put_sync(&pdev->dev); 2226 pm_runtime_disable(&pdev->dev); 2227 platform_set_drvdata(pdev, NULL); 2228 return ret; 2229 } 2230 2231 static void netcp_remove(struct platform_device *pdev) 2232 { 2233 struct netcp_device *netcp_device = platform_get_drvdata(pdev); 2234 struct netcp_intf *netcp_intf, *netcp_tmp; 2235 struct netcp_inst_modpriv *inst_modpriv, *tmp; 2236 struct netcp_module *module; 2237 2238 list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head, 2239 inst_list) { 2240 module = inst_modpriv->netcp_module; 2241 dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name); 2242 module->remove(netcp_device, inst_modpriv->module_priv); 2243 list_del(&inst_modpriv->inst_list); 2244 } 2245 2246 /* now that all modules are removed, clean up the interfaces */ 2247 list_for_each_entry_safe(netcp_intf, netcp_tmp, 2248 &netcp_device->interface_head, 2249 interface_list) { 2250 netcp_delete_interface(netcp_device, netcp_intf->ndev); 2251 } 2252 2253 WARN(!list_empty(&netcp_device->interface_head), 2254 "%s interface list not empty!\n", pdev->name); 2255 2256 pm_runtime_put_sync(&pdev->dev); 2257 pm_runtime_disable(&pdev->dev); 2258 platform_set_drvdata(pdev, NULL); 2259 } 2260 2261 static const struct of_device_id of_match[] = { 2262 { .compatible = "ti,netcp-1.0", }, 2263 {}, 2264 }; 2265 MODULE_DEVICE_TABLE(of, of_match); 2266 2267 static struct platform_driver netcp_driver = { 2268 .driver = { 2269 .name = "netcp-1.0", 2270 .of_match_table = of_match, 2271 }, 2272 .probe = netcp_probe, 2273 .remove_new = netcp_remove, 2274 }; 2275 module_platform_driver(netcp_driver); 2276 2277 MODULE_LICENSE("GPL v2"); 2278 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs"); 2279 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com"); 2280