xref: /linux/drivers/net/ethernet/ti/icssg/icssg_prueth.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Texas Instruments ICSSG Ethernet Driver
4  *
5  * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/
6  *
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dma/ti-cppi5.h>
14 #include <linux/etherdevice.h>
15 #include <linux/genalloc.h>
16 #include <linux/if_vlan.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/mfd/syscon.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/of_mdio.h>
23 #include <linux/of_net.h>
24 #include <linux/platform_device.h>
25 #include <linux/phy.h>
26 #include <linux/property.h>
27 #include <linux/remoteproc/pruss.h>
28 #include <linux/regmap.h>
29 #include <linux/remoteproc.h>
30 
31 #include "icssg_prueth.h"
32 #include "icssg_mii_rt.h"
33 #include "../k3-cppi-desc-pool.h"
34 
35 #define PRUETH_MODULE_DESCRIPTION "PRUSS ICSSG Ethernet driver"
36 
37 /* Netif debug messages possible */
38 #define PRUETH_EMAC_DEBUG       (NETIF_MSG_DRV | \
39 				 NETIF_MSG_PROBE | \
40 				 NETIF_MSG_LINK | \
41 				 NETIF_MSG_TIMER | \
42 				 NETIF_MSG_IFDOWN | \
43 				 NETIF_MSG_IFUP | \
44 				 NETIF_MSG_RX_ERR | \
45 				 NETIF_MSG_TX_ERR | \
46 				 NETIF_MSG_TX_QUEUED | \
47 				 NETIF_MSG_INTR | \
48 				 NETIF_MSG_TX_DONE | \
49 				 NETIF_MSG_RX_STATUS | \
50 				 NETIF_MSG_PKTDATA | \
51 				 NETIF_MSG_HW | \
52 				 NETIF_MSG_WOL)
53 
54 #define prueth_napi_to_emac(napi) container_of(napi, struct prueth_emac, napi_rx)
55 
56 /* CTRLMMR_ICSSG_RGMII_CTRL register bits */
57 #define ICSSG_CTRL_RGMII_ID_MODE                BIT(24)
58 
59 #define IEP_DEFAULT_CYCLE_TIME_NS	1000000	/* 1 ms */
60 
61 static void prueth_cleanup_rx_chns(struct prueth_emac *emac,
62 				   struct prueth_rx_chn *rx_chn,
63 				   int max_rflows)
64 {
65 	if (rx_chn->desc_pool)
66 		k3_cppi_desc_pool_destroy(rx_chn->desc_pool);
67 
68 	if (rx_chn->rx_chn)
69 		k3_udma_glue_release_rx_chn(rx_chn->rx_chn);
70 }
71 
72 static void prueth_cleanup_tx_chns(struct prueth_emac *emac)
73 {
74 	int i;
75 
76 	for (i = 0; i < emac->tx_ch_num; i++) {
77 		struct prueth_tx_chn *tx_chn = &emac->tx_chns[i];
78 
79 		if (tx_chn->desc_pool)
80 			k3_cppi_desc_pool_destroy(tx_chn->desc_pool);
81 
82 		if (tx_chn->tx_chn)
83 			k3_udma_glue_release_tx_chn(tx_chn->tx_chn);
84 
85 		/* Assume prueth_cleanup_tx_chns() is called at the
86 		 * end after all channel resources are freed
87 		 */
88 		memset(tx_chn, 0, sizeof(*tx_chn));
89 	}
90 }
91 
92 static void prueth_ndev_del_tx_napi(struct prueth_emac *emac, int num)
93 {
94 	int i;
95 
96 	for (i = 0; i < num; i++) {
97 		struct prueth_tx_chn *tx_chn = &emac->tx_chns[i];
98 
99 		if (tx_chn->irq)
100 			free_irq(tx_chn->irq, tx_chn);
101 		netif_napi_del(&tx_chn->napi_tx);
102 	}
103 }
104 
105 static void prueth_xmit_free(struct prueth_tx_chn *tx_chn,
106 			     struct cppi5_host_desc_t *desc)
107 {
108 	struct cppi5_host_desc_t *first_desc, *next_desc;
109 	dma_addr_t buf_dma, next_desc_dma;
110 	u32 buf_dma_len;
111 
112 	first_desc = desc;
113 	next_desc = first_desc;
114 
115 	cppi5_hdesc_get_obuf(first_desc, &buf_dma, &buf_dma_len);
116 	k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &buf_dma);
117 
118 	dma_unmap_single(tx_chn->dma_dev, buf_dma, buf_dma_len,
119 			 DMA_TO_DEVICE);
120 
121 	next_desc_dma = cppi5_hdesc_get_next_hbdesc(first_desc);
122 	k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &next_desc_dma);
123 	while (next_desc_dma) {
124 		next_desc = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool,
125 						       next_desc_dma);
126 		cppi5_hdesc_get_obuf(next_desc, &buf_dma, &buf_dma_len);
127 		k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &buf_dma);
128 
129 		dma_unmap_page(tx_chn->dma_dev, buf_dma, buf_dma_len,
130 			       DMA_TO_DEVICE);
131 
132 		next_desc_dma = cppi5_hdesc_get_next_hbdesc(next_desc);
133 		k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &next_desc_dma);
134 
135 		k3_cppi_desc_pool_free(tx_chn->desc_pool, next_desc);
136 	}
137 
138 	k3_cppi_desc_pool_free(tx_chn->desc_pool, first_desc);
139 }
140 
141 static int emac_tx_complete_packets(struct prueth_emac *emac, int chn,
142 				    int budget)
143 {
144 	struct net_device *ndev = emac->ndev;
145 	struct cppi5_host_desc_t *desc_tx;
146 	struct netdev_queue *netif_txq;
147 	struct prueth_tx_chn *tx_chn;
148 	unsigned int total_bytes = 0;
149 	struct sk_buff *skb;
150 	dma_addr_t desc_dma;
151 	int res, num_tx = 0;
152 	void **swdata;
153 
154 	tx_chn = &emac->tx_chns[chn];
155 
156 	while (true) {
157 		res = k3_udma_glue_pop_tx_chn(tx_chn->tx_chn, &desc_dma);
158 		if (res == -ENODATA)
159 			break;
160 
161 		/* teardown completion */
162 		if (cppi5_desc_is_tdcm(desc_dma)) {
163 			if (atomic_dec_and_test(&emac->tdown_cnt))
164 				complete(&emac->tdown_complete);
165 			break;
166 		}
167 
168 		desc_tx = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool,
169 						     desc_dma);
170 		swdata = cppi5_hdesc_get_swdata(desc_tx);
171 
172 		skb = *(swdata);
173 		prueth_xmit_free(tx_chn, desc_tx);
174 
175 		ndev = skb->dev;
176 		ndev->stats.tx_packets++;
177 		ndev->stats.tx_bytes += skb->len;
178 		total_bytes += skb->len;
179 		napi_consume_skb(skb, budget);
180 		num_tx++;
181 	}
182 
183 	if (!num_tx)
184 		return 0;
185 
186 	netif_txq = netdev_get_tx_queue(ndev, chn);
187 	netdev_tx_completed_queue(netif_txq, num_tx, total_bytes);
188 
189 	if (netif_tx_queue_stopped(netif_txq)) {
190 		/* If the TX queue was stopped, wake it now
191 		 * if we have enough room.
192 		 */
193 		__netif_tx_lock(netif_txq, smp_processor_id());
194 		if (netif_running(ndev) &&
195 		    (k3_cppi_desc_pool_avail(tx_chn->desc_pool) >=
196 		     MAX_SKB_FRAGS))
197 			netif_tx_wake_queue(netif_txq);
198 		__netif_tx_unlock(netif_txq);
199 	}
200 
201 	return num_tx;
202 }
203 
204 static int emac_napi_tx_poll(struct napi_struct *napi_tx, int budget)
205 {
206 	struct prueth_tx_chn *tx_chn = prueth_napi_to_tx_chn(napi_tx);
207 	struct prueth_emac *emac = tx_chn->emac;
208 	int num_tx_packets;
209 
210 	num_tx_packets = emac_tx_complete_packets(emac, tx_chn->id, budget);
211 
212 	if (num_tx_packets >= budget)
213 		return budget;
214 
215 	if (napi_complete_done(napi_tx, num_tx_packets))
216 		enable_irq(tx_chn->irq);
217 
218 	return num_tx_packets;
219 }
220 
221 static irqreturn_t prueth_tx_irq(int irq, void *dev_id)
222 {
223 	struct prueth_tx_chn *tx_chn = dev_id;
224 
225 	disable_irq_nosync(irq);
226 	napi_schedule(&tx_chn->napi_tx);
227 
228 	return IRQ_HANDLED;
229 }
230 
231 static int prueth_ndev_add_tx_napi(struct prueth_emac *emac)
232 {
233 	struct prueth *prueth = emac->prueth;
234 	int i, ret;
235 
236 	for (i = 0; i < emac->tx_ch_num; i++) {
237 		struct prueth_tx_chn *tx_chn = &emac->tx_chns[i];
238 
239 		netif_napi_add_tx(emac->ndev, &tx_chn->napi_tx, emac_napi_tx_poll);
240 		ret = request_irq(tx_chn->irq, prueth_tx_irq,
241 				  IRQF_TRIGGER_HIGH, tx_chn->name,
242 				  tx_chn);
243 		if (ret) {
244 			netif_napi_del(&tx_chn->napi_tx);
245 			dev_err(prueth->dev, "unable to request TX IRQ %d\n",
246 				tx_chn->irq);
247 			goto fail;
248 		}
249 	}
250 
251 	return 0;
252 fail:
253 	prueth_ndev_del_tx_napi(emac, i);
254 	return ret;
255 }
256 
257 static int prueth_init_tx_chns(struct prueth_emac *emac)
258 {
259 	static const struct k3_ring_cfg ring_cfg = {
260 		.elm_size = K3_RINGACC_RING_ELSIZE_8,
261 		.mode = K3_RINGACC_RING_MODE_RING,
262 		.flags = 0,
263 		.size = PRUETH_MAX_TX_DESC,
264 	};
265 	struct k3_udma_glue_tx_channel_cfg tx_cfg;
266 	struct device *dev = emac->prueth->dev;
267 	struct net_device *ndev = emac->ndev;
268 	int ret, slice, i;
269 	u32 hdesc_size;
270 
271 	slice = prueth_emac_slice(emac);
272 	if (slice < 0)
273 		return slice;
274 
275 	init_completion(&emac->tdown_complete);
276 
277 	hdesc_size = cppi5_hdesc_calc_size(true, PRUETH_NAV_PS_DATA_SIZE,
278 					   PRUETH_NAV_SW_DATA_SIZE);
279 	memset(&tx_cfg, 0, sizeof(tx_cfg));
280 	tx_cfg.swdata_size = PRUETH_NAV_SW_DATA_SIZE;
281 	tx_cfg.tx_cfg = ring_cfg;
282 	tx_cfg.txcq_cfg = ring_cfg;
283 
284 	for (i = 0; i < emac->tx_ch_num; i++) {
285 		struct prueth_tx_chn *tx_chn = &emac->tx_chns[i];
286 
287 		/* To differentiate channels for SLICE0 vs SLICE1 */
288 		snprintf(tx_chn->name, sizeof(tx_chn->name),
289 			 "tx%d-%d", slice, i);
290 
291 		tx_chn->emac = emac;
292 		tx_chn->id = i;
293 		tx_chn->descs_num = PRUETH_MAX_TX_DESC;
294 
295 		tx_chn->tx_chn =
296 			k3_udma_glue_request_tx_chn(dev, tx_chn->name,
297 						    &tx_cfg);
298 		if (IS_ERR(tx_chn->tx_chn)) {
299 			ret = PTR_ERR(tx_chn->tx_chn);
300 			tx_chn->tx_chn = NULL;
301 			netdev_err(ndev,
302 				   "Failed to request tx dma ch: %d\n", ret);
303 			goto fail;
304 		}
305 
306 		tx_chn->dma_dev = k3_udma_glue_tx_get_dma_device(tx_chn->tx_chn);
307 		tx_chn->desc_pool =
308 			k3_cppi_desc_pool_create_name(tx_chn->dma_dev,
309 						      tx_chn->descs_num,
310 						      hdesc_size,
311 						      tx_chn->name);
312 		if (IS_ERR(tx_chn->desc_pool)) {
313 			ret = PTR_ERR(tx_chn->desc_pool);
314 			tx_chn->desc_pool = NULL;
315 			netdev_err(ndev, "Failed to create tx pool: %d\n", ret);
316 			goto fail;
317 		}
318 
319 		ret = k3_udma_glue_tx_get_irq(tx_chn->tx_chn);
320 		if (ret < 0) {
321 			netdev_err(ndev, "failed to get tx irq\n");
322 			goto fail;
323 		}
324 		tx_chn->irq = ret;
325 
326 		snprintf(tx_chn->name, sizeof(tx_chn->name), "%s-tx%d",
327 			 dev_name(dev), tx_chn->id);
328 	}
329 
330 	return 0;
331 
332 fail:
333 	prueth_cleanup_tx_chns(emac);
334 	return ret;
335 }
336 
337 static int prueth_init_rx_chns(struct prueth_emac *emac,
338 			       struct prueth_rx_chn *rx_chn,
339 			       char *name, u32 max_rflows,
340 			       u32 max_desc_num)
341 {
342 	struct k3_udma_glue_rx_channel_cfg rx_cfg;
343 	struct device *dev = emac->prueth->dev;
344 	struct net_device *ndev = emac->ndev;
345 	u32 fdqring_id, hdesc_size;
346 	int i, ret = 0, slice;
347 
348 	slice = prueth_emac_slice(emac);
349 	if (slice < 0)
350 		return slice;
351 
352 	/* To differentiate channels for SLICE0 vs SLICE1 */
353 	snprintf(rx_chn->name, sizeof(rx_chn->name), "%s%d", name, slice);
354 
355 	hdesc_size = cppi5_hdesc_calc_size(true, PRUETH_NAV_PS_DATA_SIZE,
356 					   PRUETH_NAV_SW_DATA_SIZE);
357 	memset(&rx_cfg, 0, sizeof(rx_cfg));
358 	rx_cfg.swdata_size = PRUETH_NAV_SW_DATA_SIZE;
359 	rx_cfg.flow_id_num = max_rflows;
360 	rx_cfg.flow_id_base = -1; /* udmax will auto select flow id base */
361 
362 	/* init all flows */
363 	rx_chn->dev = dev;
364 	rx_chn->descs_num = max_desc_num;
365 
366 	rx_chn->rx_chn = k3_udma_glue_request_rx_chn(dev, rx_chn->name,
367 						     &rx_cfg);
368 	if (IS_ERR(rx_chn->rx_chn)) {
369 		ret = PTR_ERR(rx_chn->rx_chn);
370 		rx_chn->rx_chn = NULL;
371 		netdev_err(ndev, "Failed to request rx dma ch: %d\n", ret);
372 		goto fail;
373 	}
374 
375 	rx_chn->dma_dev = k3_udma_glue_rx_get_dma_device(rx_chn->rx_chn);
376 	rx_chn->desc_pool = k3_cppi_desc_pool_create_name(rx_chn->dma_dev,
377 							  rx_chn->descs_num,
378 							  hdesc_size,
379 							  rx_chn->name);
380 	if (IS_ERR(rx_chn->desc_pool)) {
381 		ret = PTR_ERR(rx_chn->desc_pool);
382 		rx_chn->desc_pool = NULL;
383 		netdev_err(ndev, "Failed to create rx pool: %d\n", ret);
384 		goto fail;
385 	}
386 
387 	emac->rx_flow_id_base = k3_udma_glue_rx_get_flow_id_base(rx_chn->rx_chn);
388 	netdev_dbg(ndev, "flow id base = %d\n", emac->rx_flow_id_base);
389 
390 	fdqring_id = K3_RINGACC_RING_ID_ANY;
391 	for (i = 0; i < rx_cfg.flow_id_num; i++) {
392 		struct k3_ring_cfg rxring_cfg = {
393 			.elm_size = K3_RINGACC_RING_ELSIZE_8,
394 			.mode = K3_RINGACC_RING_MODE_RING,
395 			.flags = 0,
396 		};
397 		struct k3_ring_cfg fdqring_cfg = {
398 			.elm_size = K3_RINGACC_RING_ELSIZE_8,
399 			.flags = K3_RINGACC_RING_SHARED,
400 		};
401 		struct k3_udma_glue_rx_flow_cfg rx_flow_cfg = {
402 			.rx_cfg = rxring_cfg,
403 			.rxfdq_cfg = fdqring_cfg,
404 			.ring_rxq_id = K3_RINGACC_RING_ID_ANY,
405 			.src_tag_lo_sel =
406 				K3_UDMA_GLUE_SRC_TAG_LO_USE_REMOTE_SRC_TAG,
407 		};
408 
409 		rx_flow_cfg.ring_rxfdq0_id = fdqring_id;
410 		rx_flow_cfg.rx_cfg.size = max_desc_num;
411 		rx_flow_cfg.rxfdq_cfg.size = max_desc_num;
412 		rx_flow_cfg.rxfdq_cfg.mode = emac->prueth->pdata.fdqring_mode;
413 
414 		ret = k3_udma_glue_rx_flow_init(rx_chn->rx_chn,
415 						i, &rx_flow_cfg);
416 		if (ret) {
417 			netdev_err(ndev, "Failed to init rx flow%d %d\n",
418 				   i, ret);
419 			goto fail;
420 		}
421 		if (!i)
422 			fdqring_id = k3_udma_glue_rx_flow_get_fdq_id(rx_chn->rx_chn,
423 								     i);
424 		rx_chn->irq[i] = k3_udma_glue_rx_get_irq(rx_chn->rx_chn, i);
425 		if (rx_chn->irq[i] <= 0) {
426 			ret = rx_chn->irq[i];
427 			netdev_err(ndev, "Failed to get rx dma irq");
428 			goto fail;
429 		}
430 	}
431 
432 	return 0;
433 
434 fail:
435 	prueth_cleanup_rx_chns(emac, rx_chn, max_rflows);
436 	return ret;
437 }
438 
439 static int prueth_dma_rx_push(struct prueth_emac *emac,
440 			      struct sk_buff *skb,
441 			      struct prueth_rx_chn *rx_chn)
442 {
443 	struct net_device *ndev = emac->ndev;
444 	struct cppi5_host_desc_t *desc_rx;
445 	u32 pkt_len = skb_tailroom(skb);
446 	dma_addr_t desc_dma;
447 	dma_addr_t buf_dma;
448 	void **swdata;
449 
450 	desc_rx = k3_cppi_desc_pool_alloc(rx_chn->desc_pool);
451 	if (!desc_rx) {
452 		netdev_err(ndev, "rx push: failed to allocate descriptor\n");
453 		return -ENOMEM;
454 	}
455 	desc_dma = k3_cppi_desc_pool_virt2dma(rx_chn->desc_pool, desc_rx);
456 
457 	buf_dma = dma_map_single(rx_chn->dma_dev, skb->data, pkt_len, DMA_FROM_DEVICE);
458 	if (unlikely(dma_mapping_error(rx_chn->dma_dev, buf_dma))) {
459 		k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx);
460 		netdev_err(ndev, "rx push: failed to map rx pkt buffer\n");
461 		return -EINVAL;
462 	}
463 
464 	cppi5_hdesc_init(desc_rx, CPPI5_INFO0_HDESC_EPIB_PRESENT,
465 			 PRUETH_NAV_PS_DATA_SIZE);
466 	k3_udma_glue_rx_dma_to_cppi5_addr(rx_chn->rx_chn, &buf_dma);
467 	cppi5_hdesc_attach_buf(desc_rx, buf_dma, skb_tailroom(skb), buf_dma, skb_tailroom(skb));
468 
469 	swdata = cppi5_hdesc_get_swdata(desc_rx);
470 	*swdata = skb;
471 
472 	return k3_udma_glue_push_rx_chn(rx_chn->rx_chn, 0,
473 					desc_rx, desc_dma);
474 }
475 
476 static u64 icssg_ts_to_ns(u32 hi_sw, u32 hi, u32 lo, u32 cycle_time_ns)
477 {
478 	u32 iepcount_lo, iepcount_hi, hi_rollover_count;
479 	u64 ns;
480 
481 	iepcount_lo = lo & GENMASK(19, 0);
482 	iepcount_hi = (hi & GENMASK(11, 0)) << 12 | lo >> 20;
483 	hi_rollover_count = hi >> 11;
484 
485 	ns = ((u64)hi_rollover_count) << 23 | (iepcount_hi + hi_sw);
486 	ns = ns * cycle_time_ns + iepcount_lo;
487 
488 	return ns;
489 }
490 
491 static void emac_rx_timestamp(struct prueth_emac *emac,
492 			      struct sk_buff *skb, u32 *psdata)
493 {
494 	struct skb_shared_hwtstamps *ssh;
495 	u64 ns;
496 
497 	u32 hi_sw = readl(emac->prueth->shram.va +
498 			  TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET);
499 	ns = icssg_ts_to_ns(hi_sw, psdata[1], psdata[0],
500 			    IEP_DEFAULT_CYCLE_TIME_NS);
501 
502 	ssh = skb_hwtstamps(skb);
503 	memset(ssh, 0, sizeof(*ssh));
504 	ssh->hwtstamp = ns_to_ktime(ns);
505 }
506 
507 static int emac_rx_packet(struct prueth_emac *emac, u32 flow_id)
508 {
509 	struct prueth_rx_chn *rx_chn = &emac->rx_chns;
510 	u32 buf_dma_len, pkt_len, port_id = 0;
511 	struct net_device *ndev = emac->ndev;
512 	struct cppi5_host_desc_t *desc_rx;
513 	struct sk_buff *skb, *new_skb;
514 	dma_addr_t desc_dma, buf_dma;
515 	void **swdata;
516 	u32 *psdata;
517 	int ret;
518 
519 	ret = k3_udma_glue_pop_rx_chn(rx_chn->rx_chn, flow_id, &desc_dma);
520 	if (ret) {
521 		if (ret != -ENODATA)
522 			netdev_err(ndev, "rx pop: failed: %d\n", ret);
523 		return ret;
524 	}
525 
526 	if (cppi5_desc_is_tdcm(desc_dma)) /* Teardown ? */
527 		return 0;
528 
529 	desc_rx = k3_cppi_desc_pool_dma2virt(rx_chn->desc_pool, desc_dma);
530 
531 	swdata = cppi5_hdesc_get_swdata(desc_rx);
532 	skb = *swdata;
533 
534 	psdata = cppi5_hdesc_get_psdata(desc_rx);
535 	/* RX HW timestamp */
536 	if (emac->rx_ts_enabled)
537 		emac_rx_timestamp(emac, skb, psdata);
538 
539 	cppi5_hdesc_get_obuf(desc_rx, &buf_dma, &buf_dma_len);
540 	k3_udma_glue_rx_cppi5_to_dma_addr(rx_chn->rx_chn, &buf_dma);
541 	pkt_len = cppi5_hdesc_get_pktlen(desc_rx);
542 	/* firmware adds 4 CRC bytes, strip them */
543 	pkt_len -= 4;
544 	cppi5_desc_get_tags_ids(&desc_rx->hdr, &port_id, NULL);
545 
546 	dma_unmap_single(rx_chn->dma_dev, buf_dma, buf_dma_len, DMA_FROM_DEVICE);
547 	k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx);
548 
549 	skb->dev = ndev;
550 	new_skb = netdev_alloc_skb_ip_align(ndev, PRUETH_MAX_PKT_SIZE);
551 	/* if allocation fails we drop the packet but push the
552 	 * descriptor back to the ring with old skb to prevent a stall
553 	 */
554 	if (!new_skb) {
555 		ndev->stats.rx_dropped++;
556 		new_skb = skb;
557 	} else {
558 		/* send the filled skb up the n/w stack */
559 		skb_put(skb, pkt_len);
560 		skb->protocol = eth_type_trans(skb, ndev);
561 		napi_gro_receive(&emac->napi_rx, skb);
562 		ndev->stats.rx_bytes += pkt_len;
563 		ndev->stats.rx_packets++;
564 	}
565 
566 	/* queue another RX DMA */
567 	ret = prueth_dma_rx_push(emac, new_skb, &emac->rx_chns);
568 	if (WARN_ON(ret < 0)) {
569 		dev_kfree_skb_any(new_skb);
570 		ndev->stats.rx_errors++;
571 		ndev->stats.rx_dropped++;
572 	}
573 
574 	return ret;
575 }
576 
577 static void prueth_rx_cleanup(void *data, dma_addr_t desc_dma)
578 {
579 	struct prueth_rx_chn *rx_chn = data;
580 	struct cppi5_host_desc_t *desc_rx;
581 	struct sk_buff *skb;
582 	dma_addr_t buf_dma;
583 	u32 buf_dma_len;
584 	void **swdata;
585 
586 	desc_rx = k3_cppi_desc_pool_dma2virt(rx_chn->desc_pool, desc_dma);
587 	swdata = cppi5_hdesc_get_swdata(desc_rx);
588 	skb = *swdata;
589 	cppi5_hdesc_get_obuf(desc_rx, &buf_dma, &buf_dma_len);
590 	k3_udma_glue_rx_cppi5_to_dma_addr(rx_chn->rx_chn, &buf_dma);
591 
592 	dma_unmap_single(rx_chn->dma_dev, buf_dma, buf_dma_len,
593 			 DMA_FROM_DEVICE);
594 	k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx);
595 
596 	dev_kfree_skb_any(skb);
597 }
598 
599 static int emac_get_tx_ts(struct prueth_emac *emac,
600 			  struct emac_tx_ts_response *rsp)
601 {
602 	struct prueth *prueth = emac->prueth;
603 	int slice = prueth_emac_slice(emac);
604 	int addr;
605 
606 	addr = icssg_queue_pop(prueth, slice == 0 ?
607 			       ICSSG_TS_POP_SLICE0 : ICSSG_TS_POP_SLICE1);
608 	if (addr < 0)
609 		return addr;
610 
611 	memcpy_fromio(rsp, prueth->shram.va + addr, sizeof(*rsp));
612 	/* return buffer back for to pool */
613 	icssg_queue_push(prueth, slice == 0 ?
614 			 ICSSG_TS_PUSH_SLICE0 : ICSSG_TS_PUSH_SLICE1, addr);
615 
616 	return 0;
617 }
618 
619 static void tx_ts_work(struct prueth_emac *emac)
620 {
621 	struct skb_shared_hwtstamps ssh;
622 	struct emac_tx_ts_response tsr;
623 	struct sk_buff *skb;
624 	int ret = 0;
625 	u32 hi_sw;
626 	u64 ns;
627 
628 	/* There may be more than one pending requests */
629 	while (1) {
630 		ret = emac_get_tx_ts(emac, &tsr);
631 		if (ret) /* nothing more */
632 			break;
633 
634 		if (tsr.cookie >= PRUETH_MAX_TX_TS_REQUESTS ||
635 		    !emac->tx_ts_skb[tsr.cookie]) {
636 			netdev_err(emac->ndev, "Invalid TX TS cookie 0x%x\n",
637 				   tsr.cookie);
638 			break;
639 		}
640 
641 		skb = emac->tx_ts_skb[tsr.cookie];
642 		emac->tx_ts_skb[tsr.cookie] = NULL;	/* free slot */
643 		if (!skb) {
644 			netdev_err(emac->ndev, "Driver Bug! got NULL skb\n");
645 			break;
646 		}
647 
648 		hi_sw = readl(emac->prueth->shram.va +
649 			      TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET);
650 		ns = icssg_ts_to_ns(hi_sw, tsr.hi_ts, tsr.lo_ts,
651 				    IEP_DEFAULT_CYCLE_TIME_NS);
652 
653 		memset(&ssh, 0, sizeof(ssh));
654 		ssh.hwtstamp = ns_to_ktime(ns);
655 
656 		skb_tstamp_tx(skb, &ssh);
657 		dev_consume_skb_any(skb);
658 
659 		if (atomic_dec_and_test(&emac->tx_ts_pending))	/* no more? */
660 			break;
661 	}
662 }
663 
664 static int prueth_tx_ts_cookie_get(struct prueth_emac *emac)
665 {
666 	int i;
667 
668 	/* search and get the next free slot */
669 	for (i = 0; i < PRUETH_MAX_TX_TS_REQUESTS; i++) {
670 		if (!emac->tx_ts_skb[i]) {
671 			emac->tx_ts_skb[i] = ERR_PTR(-EBUSY); /* reserve slot */
672 			return i;
673 		}
674 	}
675 
676 	return -EBUSY;
677 }
678 
679 /**
680  * emac_ndo_start_xmit - EMAC Transmit function
681  * @skb: SKB pointer
682  * @ndev: EMAC network adapter
683  *
684  * Called by the system to transmit a packet  - we queue the packet in
685  * EMAC hardware transmit queue
686  * Doesn't wait for completion we'll check for TX completion in
687  * emac_tx_complete_packets().
688  *
689  * Return: enum netdev_tx
690  */
691 static enum netdev_tx emac_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
692 {
693 	struct cppi5_host_desc_t *first_desc, *next_desc, *cur_desc;
694 	struct prueth_emac *emac = netdev_priv(ndev);
695 	struct netdev_queue *netif_txq;
696 	struct prueth_tx_chn *tx_chn;
697 	dma_addr_t desc_dma, buf_dma;
698 	int i, ret = 0, q_idx;
699 	bool in_tx_ts = 0;
700 	int tx_ts_cookie;
701 	void **swdata;
702 	u32 pkt_len;
703 	u32 *epib;
704 
705 	pkt_len = skb_headlen(skb);
706 	q_idx = skb_get_queue_mapping(skb);
707 
708 	tx_chn = &emac->tx_chns[q_idx];
709 	netif_txq = netdev_get_tx_queue(ndev, q_idx);
710 
711 	/* Map the linear buffer */
712 	buf_dma = dma_map_single(tx_chn->dma_dev, skb->data, pkt_len, DMA_TO_DEVICE);
713 	if (dma_mapping_error(tx_chn->dma_dev, buf_dma)) {
714 		netdev_err(ndev, "tx: failed to map skb buffer\n");
715 		ret = NETDEV_TX_OK;
716 		goto drop_free_skb;
717 	}
718 
719 	first_desc = k3_cppi_desc_pool_alloc(tx_chn->desc_pool);
720 	if (!first_desc) {
721 		netdev_dbg(ndev, "tx: failed to allocate descriptor\n");
722 		dma_unmap_single(tx_chn->dma_dev, buf_dma, pkt_len, DMA_TO_DEVICE);
723 		goto drop_stop_q_busy;
724 	}
725 
726 	cppi5_hdesc_init(first_desc, CPPI5_INFO0_HDESC_EPIB_PRESENT,
727 			 PRUETH_NAV_PS_DATA_SIZE);
728 	cppi5_hdesc_set_pkttype(first_desc, 0);
729 	epib = first_desc->epib;
730 	epib[0] = 0;
731 	epib[1] = 0;
732 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
733 	    emac->tx_ts_enabled) {
734 		tx_ts_cookie = prueth_tx_ts_cookie_get(emac);
735 		if (tx_ts_cookie >= 0) {
736 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
737 			/* Request TX timestamp */
738 			epib[0] = (u32)tx_ts_cookie;
739 			epib[1] = 0x80000000;	/* TX TS request */
740 			emac->tx_ts_skb[tx_ts_cookie] = skb_get(skb);
741 			in_tx_ts = 1;
742 		}
743 	}
744 
745 	/* set dst tag to indicate internal qid at the firmware which is at
746 	 * bit8..bit15. bit0..bit7 indicates port num for directed
747 	 * packets in case of switch mode operation
748 	 */
749 	cppi5_desc_set_tags_ids(&first_desc->hdr, 0, (emac->port_id | (q_idx << 8)));
750 	k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &buf_dma);
751 	cppi5_hdesc_attach_buf(first_desc, buf_dma, pkt_len, buf_dma, pkt_len);
752 	swdata = cppi5_hdesc_get_swdata(first_desc);
753 	*swdata = skb;
754 
755 	/* Handle the case where skb is fragmented in pages */
756 	cur_desc = first_desc;
757 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
758 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
759 		u32 frag_size = skb_frag_size(frag);
760 
761 		next_desc = k3_cppi_desc_pool_alloc(tx_chn->desc_pool);
762 		if (!next_desc) {
763 			netdev_err(ndev,
764 				   "tx: failed to allocate frag. descriptor\n");
765 			goto free_desc_stop_q_busy_cleanup_tx_ts;
766 		}
767 
768 		buf_dma = skb_frag_dma_map(tx_chn->dma_dev, frag, 0, frag_size,
769 					   DMA_TO_DEVICE);
770 		if (dma_mapping_error(tx_chn->dma_dev, buf_dma)) {
771 			netdev_err(ndev, "tx: Failed to map skb page\n");
772 			k3_cppi_desc_pool_free(tx_chn->desc_pool, next_desc);
773 			ret = NETDEV_TX_OK;
774 			goto cleanup_tx_ts;
775 		}
776 
777 		cppi5_hdesc_reset_hbdesc(next_desc);
778 		k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &buf_dma);
779 		cppi5_hdesc_attach_buf(next_desc,
780 				       buf_dma, frag_size, buf_dma, frag_size);
781 
782 		desc_dma = k3_cppi_desc_pool_virt2dma(tx_chn->desc_pool,
783 						      next_desc);
784 		k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &desc_dma);
785 		cppi5_hdesc_link_hbdesc(cur_desc, desc_dma);
786 
787 		pkt_len += frag_size;
788 		cur_desc = next_desc;
789 	}
790 	WARN_ON_ONCE(pkt_len != skb->len);
791 
792 	/* report bql before sending packet */
793 	netdev_tx_sent_queue(netif_txq, pkt_len);
794 
795 	cppi5_hdesc_set_pktlen(first_desc, pkt_len);
796 	desc_dma = k3_cppi_desc_pool_virt2dma(tx_chn->desc_pool, first_desc);
797 	/* cppi5_desc_dump(first_desc, 64); */
798 
799 	skb_tx_timestamp(skb);  /* SW timestamp if SKBTX_IN_PROGRESS not set */
800 	ret = k3_udma_glue_push_tx_chn(tx_chn->tx_chn, first_desc, desc_dma);
801 	if (ret) {
802 		netdev_err(ndev, "tx: push failed: %d\n", ret);
803 		goto drop_free_descs;
804 	}
805 
806 	if (in_tx_ts)
807 		atomic_inc(&emac->tx_ts_pending);
808 
809 	if (k3_cppi_desc_pool_avail(tx_chn->desc_pool) < MAX_SKB_FRAGS) {
810 		netif_tx_stop_queue(netif_txq);
811 		/* Barrier, so that stop_queue visible to other cpus */
812 		smp_mb__after_atomic();
813 
814 		if (k3_cppi_desc_pool_avail(tx_chn->desc_pool) >=
815 		    MAX_SKB_FRAGS)
816 			netif_tx_wake_queue(netif_txq);
817 	}
818 
819 	return NETDEV_TX_OK;
820 
821 cleanup_tx_ts:
822 	if (in_tx_ts) {
823 		dev_kfree_skb_any(emac->tx_ts_skb[tx_ts_cookie]);
824 		emac->tx_ts_skb[tx_ts_cookie] = NULL;
825 	}
826 
827 drop_free_descs:
828 	prueth_xmit_free(tx_chn, first_desc);
829 
830 drop_free_skb:
831 	dev_kfree_skb_any(skb);
832 
833 	/* error */
834 	ndev->stats.tx_dropped++;
835 	netdev_err(ndev, "tx: error: %d\n", ret);
836 
837 	return ret;
838 
839 free_desc_stop_q_busy_cleanup_tx_ts:
840 	if (in_tx_ts) {
841 		dev_kfree_skb_any(emac->tx_ts_skb[tx_ts_cookie]);
842 		emac->tx_ts_skb[tx_ts_cookie] = NULL;
843 	}
844 	prueth_xmit_free(tx_chn, first_desc);
845 
846 drop_stop_q_busy:
847 	netif_tx_stop_queue(netif_txq);
848 	return NETDEV_TX_BUSY;
849 }
850 
851 static void prueth_tx_cleanup(void *data, dma_addr_t desc_dma)
852 {
853 	struct prueth_tx_chn *tx_chn = data;
854 	struct cppi5_host_desc_t *desc_tx;
855 	struct sk_buff *skb;
856 	void **swdata;
857 
858 	desc_tx = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool, desc_dma);
859 	swdata = cppi5_hdesc_get_swdata(desc_tx);
860 	skb = *(swdata);
861 	prueth_xmit_free(tx_chn, desc_tx);
862 
863 	dev_kfree_skb_any(skb);
864 }
865 
866 static irqreturn_t prueth_tx_ts_irq(int irq, void *dev_id)
867 {
868 	struct prueth_emac *emac = dev_id;
869 
870 	/* currently only TX timestamp is being returned */
871 	tx_ts_work(emac);
872 
873 	return IRQ_HANDLED;
874 }
875 
876 static irqreturn_t prueth_rx_irq(int irq, void *dev_id)
877 {
878 	struct prueth_emac *emac = dev_id;
879 
880 	disable_irq_nosync(irq);
881 	napi_schedule(&emac->napi_rx);
882 
883 	return IRQ_HANDLED;
884 }
885 
886 struct icssg_firmwares {
887 	char *pru;
888 	char *rtu;
889 	char *txpru;
890 };
891 
892 static struct icssg_firmwares icssg_emac_firmwares[] = {
893 	{
894 		.pru = "ti-pruss/am65x-sr2-pru0-prueth-fw.elf",
895 		.rtu = "ti-pruss/am65x-sr2-rtu0-prueth-fw.elf",
896 		.txpru = "ti-pruss/am65x-sr2-txpru0-prueth-fw.elf",
897 	},
898 	{
899 		.pru = "ti-pruss/am65x-sr2-pru1-prueth-fw.elf",
900 		.rtu = "ti-pruss/am65x-sr2-rtu1-prueth-fw.elf",
901 		.txpru = "ti-pruss/am65x-sr2-txpru1-prueth-fw.elf",
902 	}
903 };
904 
905 static int prueth_emac_start(struct prueth *prueth, struct prueth_emac *emac)
906 {
907 	struct icssg_firmwares *firmwares;
908 	struct device *dev = prueth->dev;
909 	int slice, ret;
910 
911 	firmwares = icssg_emac_firmwares;
912 
913 	slice = prueth_emac_slice(emac);
914 	if (slice < 0) {
915 		netdev_err(emac->ndev, "invalid port\n");
916 		return -EINVAL;
917 	}
918 
919 	ret = icssg_config(prueth, emac, slice);
920 	if (ret)
921 		return ret;
922 
923 	ret = rproc_set_firmware(prueth->pru[slice], firmwares[slice].pru);
924 	ret = rproc_boot(prueth->pru[slice]);
925 	if (ret) {
926 		dev_err(dev, "failed to boot PRU%d: %d\n", slice, ret);
927 		return -EINVAL;
928 	}
929 
930 	ret = rproc_set_firmware(prueth->rtu[slice], firmwares[slice].rtu);
931 	ret = rproc_boot(prueth->rtu[slice]);
932 	if (ret) {
933 		dev_err(dev, "failed to boot RTU%d: %d\n", slice, ret);
934 		goto halt_pru;
935 	}
936 
937 	ret = rproc_set_firmware(prueth->txpru[slice], firmwares[slice].txpru);
938 	ret = rproc_boot(prueth->txpru[slice]);
939 	if (ret) {
940 		dev_err(dev, "failed to boot TX_PRU%d: %d\n", slice, ret);
941 		goto halt_rtu;
942 	}
943 
944 	emac->fw_running = 1;
945 	return 0;
946 
947 halt_rtu:
948 	rproc_shutdown(prueth->rtu[slice]);
949 
950 halt_pru:
951 	rproc_shutdown(prueth->pru[slice]);
952 
953 	return ret;
954 }
955 
956 static void prueth_emac_stop(struct prueth_emac *emac)
957 {
958 	struct prueth *prueth = emac->prueth;
959 	int slice;
960 
961 	switch (emac->port_id) {
962 	case PRUETH_PORT_MII0:
963 		slice = ICSS_SLICE0;
964 		break;
965 	case PRUETH_PORT_MII1:
966 		slice = ICSS_SLICE1;
967 		break;
968 	default:
969 		netdev_err(emac->ndev, "invalid port\n");
970 		return;
971 	}
972 
973 	emac->fw_running = 0;
974 	rproc_shutdown(prueth->txpru[slice]);
975 	rproc_shutdown(prueth->rtu[slice]);
976 	rproc_shutdown(prueth->pru[slice]);
977 }
978 
979 static void prueth_cleanup_tx_ts(struct prueth_emac *emac)
980 {
981 	int i;
982 
983 	for (i = 0; i < PRUETH_MAX_TX_TS_REQUESTS; i++) {
984 		if (emac->tx_ts_skb[i]) {
985 			dev_kfree_skb_any(emac->tx_ts_skb[i]);
986 			emac->tx_ts_skb[i] = NULL;
987 		}
988 	}
989 }
990 
991 /* called back by PHY layer if there is change in link state of hw port*/
992 static void emac_adjust_link(struct net_device *ndev)
993 {
994 	struct prueth_emac *emac = netdev_priv(ndev);
995 	struct phy_device *phydev = ndev->phydev;
996 	struct prueth *prueth = emac->prueth;
997 	bool new_state = false;
998 	unsigned long flags;
999 
1000 	if (phydev->link) {
1001 		/* check the mode of operation - full/half duplex */
1002 		if (phydev->duplex != emac->duplex) {
1003 			new_state = true;
1004 			emac->duplex = phydev->duplex;
1005 		}
1006 		if (phydev->speed != emac->speed) {
1007 			new_state = true;
1008 			emac->speed = phydev->speed;
1009 		}
1010 		if (!emac->link) {
1011 			new_state = true;
1012 			emac->link = 1;
1013 		}
1014 	} else if (emac->link) {
1015 		new_state = true;
1016 		emac->link = 0;
1017 
1018 		/* f/w should support 100 & 1000 */
1019 		emac->speed = SPEED_1000;
1020 
1021 		/* half duplex may not be supported by f/w */
1022 		emac->duplex = DUPLEX_FULL;
1023 	}
1024 
1025 	if (new_state) {
1026 		phy_print_status(phydev);
1027 
1028 		/* update RGMII and MII configuration based on PHY negotiated
1029 		 * values
1030 		 */
1031 		if (emac->link) {
1032 			if (emac->duplex == DUPLEX_HALF)
1033 				icssg_config_half_duplex(emac);
1034 			/* Set the RGMII cfg for gig en and full duplex */
1035 			icssg_update_rgmii_cfg(prueth->miig_rt, emac);
1036 
1037 			/* update the Tx IPG based on 100M/1G speed */
1038 			spin_lock_irqsave(&emac->lock, flags);
1039 			icssg_config_ipg(emac);
1040 			spin_unlock_irqrestore(&emac->lock, flags);
1041 			icssg_config_set_speed(emac);
1042 			emac_set_port_state(emac, ICSSG_EMAC_PORT_FORWARD);
1043 
1044 		} else {
1045 			emac_set_port_state(emac, ICSSG_EMAC_PORT_DISABLE);
1046 		}
1047 	}
1048 
1049 	if (emac->link) {
1050 		/* reactivate the transmit queue */
1051 		netif_tx_wake_all_queues(ndev);
1052 	} else {
1053 		netif_tx_stop_all_queues(ndev);
1054 		prueth_cleanup_tx_ts(emac);
1055 	}
1056 }
1057 
1058 static int emac_napi_rx_poll(struct napi_struct *napi_rx, int budget)
1059 {
1060 	struct prueth_emac *emac = prueth_napi_to_emac(napi_rx);
1061 	int rx_flow = PRUETH_RX_FLOW_DATA;
1062 	int flow = PRUETH_MAX_RX_FLOWS;
1063 	int num_rx = 0;
1064 	int cur_budget;
1065 	int ret;
1066 
1067 	while (flow--) {
1068 		cur_budget = budget - num_rx;
1069 
1070 		while (cur_budget--) {
1071 			ret = emac_rx_packet(emac, flow);
1072 			if (ret)
1073 				break;
1074 			num_rx++;
1075 		}
1076 
1077 		if (num_rx >= budget)
1078 			break;
1079 	}
1080 
1081 	if (num_rx < budget && napi_complete_done(napi_rx, num_rx))
1082 		enable_irq(emac->rx_chns.irq[rx_flow]);
1083 
1084 	return num_rx;
1085 }
1086 
1087 static int prueth_prepare_rx_chan(struct prueth_emac *emac,
1088 				  struct prueth_rx_chn *chn,
1089 				  int buf_size)
1090 {
1091 	struct sk_buff *skb;
1092 	int i, ret;
1093 
1094 	for (i = 0; i < chn->descs_num; i++) {
1095 		skb = __netdev_alloc_skb_ip_align(NULL, buf_size, GFP_KERNEL);
1096 		if (!skb)
1097 			return -ENOMEM;
1098 
1099 		ret = prueth_dma_rx_push(emac, skb, chn);
1100 		if (ret < 0) {
1101 			netdev_err(emac->ndev,
1102 				   "cannot submit skb for rx chan %s ret %d\n",
1103 				   chn->name, ret);
1104 			kfree_skb(skb);
1105 			return ret;
1106 		}
1107 	}
1108 
1109 	return 0;
1110 }
1111 
1112 static void prueth_reset_tx_chan(struct prueth_emac *emac, int ch_num,
1113 				 bool free_skb)
1114 {
1115 	int i;
1116 
1117 	for (i = 0; i < ch_num; i++) {
1118 		if (free_skb)
1119 			k3_udma_glue_reset_tx_chn(emac->tx_chns[i].tx_chn,
1120 						  &emac->tx_chns[i],
1121 						  prueth_tx_cleanup);
1122 		k3_udma_glue_disable_tx_chn(emac->tx_chns[i].tx_chn);
1123 	}
1124 }
1125 
1126 static void prueth_reset_rx_chan(struct prueth_rx_chn *chn,
1127 				 int num_flows, bool disable)
1128 {
1129 	int i;
1130 
1131 	for (i = 0; i < num_flows; i++)
1132 		k3_udma_glue_reset_rx_chn(chn->rx_chn, i, chn,
1133 					  prueth_rx_cleanup, !!i);
1134 	if (disable)
1135 		k3_udma_glue_disable_rx_chn(chn->rx_chn);
1136 }
1137 
1138 static int emac_phy_connect(struct prueth_emac *emac)
1139 {
1140 	struct prueth *prueth = emac->prueth;
1141 	struct net_device *ndev = emac->ndev;
1142 	/* connect PHY */
1143 	ndev->phydev = of_phy_connect(emac->ndev, emac->phy_node,
1144 				      &emac_adjust_link, 0,
1145 				      emac->phy_if);
1146 	if (!ndev->phydev) {
1147 		dev_err(prueth->dev, "couldn't connect to phy %s\n",
1148 			emac->phy_node->full_name);
1149 		return -ENODEV;
1150 	}
1151 
1152 	if (!emac->half_duplex) {
1153 		dev_dbg(prueth->dev, "half duplex mode is not supported\n");
1154 		phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1155 		phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1156 	}
1157 
1158 	/* remove unsupported modes */
1159 	phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1160 	phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1161 	phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1162 
1163 	if (emac->phy_if == PHY_INTERFACE_MODE_MII)
1164 		phy_set_max_speed(ndev->phydev, SPEED_100);
1165 
1166 	return 0;
1167 }
1168 
1169 static u64 prueth_iep_gettime(void *clockops_data, struct ptp_system_timestamp *sts)
1170 {
1171 	u32 hi_rollover_count, hi_rollover_count_r;
1172 	struct prueth_emac *emac = clockops_data;
1173 	struct prueth *prueth = emac->prueth;
1174 	void __iomem *fw_hi_r_count_addr;
1175 	void __iomem *fw_count_hi_addr;
1176 	u32 iepcount_hi, iepcount_hi_r;
1177 	unsigned long flags;
1178 	u32 iepcount_lo;
1179 	u64 ts = 0;
1180 
1181 	fw_count_hi_addr = prueth->shram.va + TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET;
1182 	fw_hi_r_count_addr = prueth->shram.va + TIMESYNC_FW_WC_HI_ROLLOVER_COUNT_OFFSET;
1183 
1184 	local_irq_save(flags);
1185 	do {
1186 		iepcount_hi = icss_iep_get_count_hi(emac->iep);
1187 		iepcount_hi += readl(fw_count_hi_addr);
1188 		hi_rollover_count = readl(fw_hi_r_count_addr);
1189 		ptp_read_system_prets(sts);
1190 		iepcount_lo = icss_iep_get_count_low(emac->iep);
1191 		ptp_read_system_postts(sts);
1192 
1193 		iepcount_hi_r = icss_iep_get_count_hi(emac->iep);
1194 		iepcount_hi_r += readl(fw_count_hi_addr);
1195 		hi_rollover_count_r = readl(fw_hi_r_count_addr);
1196 	} while ((iepcount_hi_r != iepcount_hi) ||
1197 		 (hi_rollover_count != hi_rollover_count_r));
1198 	local_irq_restore(flags);
1199 
1200 	ts = ((u64)hi_rollover_count) << 23 | iepcount_hi;
1201 	ts = ts * (u64)IEP_DEFAULT_CYCLE_TIME_NS + iepcount_lo;
1202 
1203 	return ts;
1204 }
1205 
1206 static void prueth_iep_settime(void *clockops_data, u64 ns)
1207 {
1208 	struct icssg_setclock_desc __iomem *sc_descp;
1209 	struct prueth_emac *emac = clockops_data;
1210 	struct icssg_setclock_desc sc_desc;
1211 	u64 cyclecount;
1212 	u32 cycletime;
1213 	int timeout;
1214 
1215 	if (!emac->fw_running)
1216 		return;
1217 
1218 	sc_descp = emac->prueth->shram.va + TIMESYNC_FW_WC_SETCLOCK_DESC_OFFSET;
1219 
1220 	cycletime = IEP_DEFAULT_CYCLE_TIME_NS;
1221 	cyclecount = ns / cycletime;
1222 
1223 	memset(&sc_desc, 0, sizeof(sc_desc));
1224 	sc_desc.margin = cycletime - 1000;
1225 	sc_desc.cyclecounter0_set = cyclecount & GENMASK(31, 0);
1226 	sc_desc.cyclecounter1_set = (cyclecount & GENMASK(63, 32)) >> 32;
1227 	sc_desc.iepcount_set = ns % cycletime;
1228 	sc_desc.CMP0_current = cycletime - 4; //Count from 0 to (cycle time)-4
1229 
1230 	memcpy_toio(sc_descp, &sc_desc, sizeof(sc_desc));
1231 
1232 	writeb(1, &sc_descp->request);
1233 
1234 	timeout = 5;	/* fw should take 2-3 ms */
1235 	while (timeout--) {
1236 		if (readb(&sc_descp->acknowledgment))
1237 			return;
1238 
1239 		usleep_range(500, 1000);
1240 	}
1241 
1242 	dev_err(emac->prueth->dev, "settime timeout\n");
1243 }
1244 
1245 static int prueth_perout_enable(void *clockops_data,
1246 				struct ptp_perout_request *req, int on,
1247 				u64 *cmp)
1248 {
1249 	struct prueth_emac *emac = clockops_data;
1250 	u32 reduction_factor = 0, offset = 0;
1251 	struct timespec64 ts;
1252 	u64 ns_period;
1253 
1254 	if (!on)
1255 		return 0;
1256 
1257 	/* Any firmware specific stuff for PPS/PEROUT handling */
1258 	ts.tv_sec = req->period.sec;
1259 	ts.tv_nsec = req->period.nsec;
1260 	ns_period = timespec64_to_ns(&ts);
1261 
1262 	/* f/w doesn't support period less than cycle time */
1263 	if (ns_period < IEP_DEFAULT_CYCLE_TIME_NS)
1264 		return -ENXIO;
1265 
1266 	reduction_factor = ns_period / IEP_DEFAULT_CYCLE_TIME_NS;
1267 	offset = ns_period % IEP_DEFAULT_CYCLE_TIME_NS;
1268 
1269 	/* f/w requires at least 1uS within a cycle so CMP
1270 	 * can trigger after SYNC is enabled
1271 	 */
1272 	if (offset < 5 * NSEC_PER_USEC)
1273 		offset = 5 * NSEC_PER_USEC;
1274 
1275 	/* if offset is close to cycle time then we will miss
1276 	 * the CMP event for last tick when IEP rolls over.
1277 	 * In normal mode, IEP tick is 4ns.
1278 	 * In slow compensation it could be 0ns or 8ns at
1279 	 * every slow compensation cycle.
1280 	 */
1281 	if (offset > IEP_DEFAULT_CYCLE_TIME_NS - 8)
1282 		offset = IEP_DEFAULT_CYCLE_TIME_NS - 8;
1283 
1284 	/* we're in shadow mode so need to set upper 32-bits */
1285 	*cmp = (u64)offset << 32;
1286 
1287 	writel(reduction_factor, emac->prueth->shram.va +
1288 		TIMESYNC_FW_WC_SYNCOUT_REDUCTION_FACTOR_OFFSET);
1289 
1290 	writel(0, emac->prueth->shram.va +
1291 		TIMESYNC_FW_WC_SYNCOUT_START_TIME_CYCLECOUNT_OFFSET);
1292 
1293 	return 0;
1294 }
1295 
1296 const struct icss_iep_clockops prueth_iep_clockops = {
1297 	.settime = prueth_iep_settime,
1298 	.gettime = prueth_iep_gettime,
1299 	.perout_enable = prueth_perout_enable,
1300 };
1301 
1302 /**
1303  * emac_ndo_open - EMAC device open
1304  * @ndev: network adapter device
1305  *
1306  * Called when system wants to start the interface.
1307  *
1308  * Return: 0 for a successful open, or appropriate error code
1309  */
1310 static int emac_ndo_open(struct net_device *ndev)
1311 {
1312 	struct prueth_emac *emac = netdev_priv(ndev);
1313 	int ret, i, num_data_chn = emac->tx_ch_num;
1314 	struct prueth *prueth = emac->prueth;
1315 	int slice = prueth_emac_slice(emac);
1316 	struct device *dev = prueth->dev;
1317 	int max_rx_flows;
1318 	int rx_flow;
1319 
1320 	/* clear SMEM and MSMC settings for all slices */
1321 	if (!prueth->emacs_initialized) {
1322 		memset_io(prueth->msmcram.va, 0, prueth->msmcram.size);
1323 		memset_io(prueth->shram.va, 0, ICSSG_CONFIG_OFFSET_SLICE1 * PRUETH_NUM_MACS);
1324 	}
1325 
1326 	/* set h/w MAC as user might have re-configured */
1327 	ether_addr_copy(emac->mac_addr, ndev->dev_addr);
1328 
1329 	icssg_class_set_mac_addr(prueth->miig_rt, slice, emac->mac_addr);
1330 	icssg_ft1_set_mac_addr(prueth->miig_rt, slice, emac->mac_addr);
1331 
1332 	icssg_class_default(prueth->miig_rt, slice, 0);
1333 
1334 	/* Notify the stack of the actual queue counts. */
1335 	ret = netif_set_real_num_tx_queues(ndev, num_data_chn);
1336 	if (ret) {
1337 		dev_err(dev, "cannot set real number of tx queues\n");
1338 		return ret;
1339 	}
1340 
1341 	init_completion(&emac->cmd_complete);
1342 	ret = prueth_init_tx_chns(emac);
1343 	if (ret) {
1344 		dev_err(dev, "failed to init tx channel: %d\n", ret);
1345 		return ret;
1346 	}
1347 
1348 	max_rx_flows = PRUETH_MAX_RX_FLOWS;
1349 	ret = prueth_init_rx_chns(emac, &emac->rx_chns, "rx",
1350 				  max_rx_flows, PRUETH_MAX_RX_DESC);
1351 	if (ret) {
1352 		dev_err(dev, "failed to init rx channel: %d\n", ret);
1353 		goto cleanup_tx;
1354 	}
1355 
1356 	ret = prueth_ndev_add_tx_napi(emac);
1357 	if (ret)
1358 		goto cleanup_rx;
1359 
1360 	/* we use only the highest priority flow for now i.e. @irq[3] */
1361 	rx_flow = PRUETH_RX_FLOW_DATA;
1362 	ret = request_irq(emac->rx_chns.irq[rx_flow], prueth_rx_irq,
1363 			  IRQF_TRIGGER_HIGH, dev_name(dev), emac);
1364 	if (ret) {
1365 		dev_err(dev, "unable to request RX IRQ\n");
1366 		goto cleanup_napi;
1367 	}
1368 
1369 	/* reset and start PRU firmware */
1370 	ret = prueth_emac_start(prueth, emac);
1371 	if (ret)
1372 		goto free_rx_irq;
1373 
1374 	icssg_mii_update_mtu(prueth->mii_rt, slice, ndev->max_mtu);
1375 
1376 	if (!prueth->emacs_initialized) {
1377 		ret = icss_iep_init(emac->iep, &prueth_iep_clockops,
1378 				    emac, IEP_DEFAULT_CYCLE_TIME_NS);
1379 	}
1380 
1381 	ret = request_threaded_irq(emac->tx_ts_irq, NULL, prueth_tx_ts_irq,
1382 				   IRQF_ONESHOT, dev_name(dev), emac);
1383 	if (ret)
1384 		goto stop;
1385 
1386 	/* Prepare RX */
1387 	ret = prueth_prepare_rx_chan(emac, &emac->rx_chns, PRUETH_MAX_PKT_SIZE);
1388 	if (ret)
1389 		goto free_tx_ts_irq;
1390 
1391 	ret = k3_udma_glue_enable_rx_chn(emac->rx_chns.rx_chn);
1392 	if (ret)
1393 		goto reset_rx_chn;
1394 
1395 	for (i = 0; i < emac->tx_ch_num; i++) {
1396 		ret = k3_udma_glue_enable_tx_chn(emac->tx_chns[i].tx_chn);
1397 		if (ret)
1398 			goto reset_tx_chan;
1399 	}
1400 
1401 	/* Enable NAPI in Tx and Rx direction */
1402 	for (i = 0; i < emac->tx_ch_num; i++)
1403 		napi_enable(&emac->tx_chns[i].napi_tx);
1404 	napi_enable(&emac->napi_rx);
1405 
1406 	/* start PHY */
1407 	phy_start(ndev->phydev);
1408 
1409 	prueth->emacs_initialized++;
1410 
1411 	queue_work(system_long_wq, &emac->stats_work.work);
1412 
1413 	return 0;
1414 
1415 reset_tx_chan:
1416 	/* Since interface is not yet up, there is wouldn't be
1417 	 * any SKB for completion. So set false to free_skb
1418 	 */
1419 	prueth_reset_tx_chan(emac, i, false);
1420 reset_rx_chn:
1421 	prueth_reset_rx_chan(&emac->rx_chns, max_rx_flows, false);
1422 free_tx_ts_irq:
1423 	free_irq(emac->tx_ts_irq, emac);
1424 stop:
1425 	prueth_emac_stop(emac);
1426 free_rx_irq:
1427 	free_irq(emac->rx_chns.irq[rx_flow], emac);
1428 cleanup_napi:
1429 	prueth_ndev_del_tx_napi(emac, emac->tx_ch_num);
1430 cleanup_rx:
1431 	prueth_cleanup_rx_chns(emac, &emac->rx_chns, max_rx_flows);
1432 cleanup_tx:
1433 	prueth_cleanup_tx_chns(emac);
1434 
1435 	return ret;
1436 }
1437 
1438 /**
1439  * emac_ndo_stop - EMAC device stop
1440  * @ndev: network adapter device
1441  *
1442  * Called when system wants to stop or down the interface.
1443  *
1444  * Return: Always 0 (Success)
1445  */
1446 static int emac_ndo_stop(struct net_device *ndev)
1447 {
1448 	struct prueth_emac *emac = netdev_priv(ndev);
1449 	struct prueth *prueth = emac->prueth;
1450 	int rx_flow = PRUETH_RX_FLOW_DATA;
1451 	int max_rx_flows;
1452 	int ret, i;
1453 
1454 	/* inform the upper layers. */
1455 	netif_tx_stop_all_queues(ndev);
1456 
1457 	/* block packets from wire */
1458 	if (ndev->phydev)
1459 		phy_stop(ndev->phydev);
1460 
1461 	icssg_class_disable(prueth->miig_rt, prueth_emac_slice(emac));
1462 
1463 	atomic_set(&emac->tdown_cnt, emac->tx_ch_num);
1464 	/* ensure new tdown_cnt value is visible */
1465 	smp_mb__after_atomic();
1466 	/* tear down and disable UDMA channels */
1467 	reinit_completion(&emac->tdown_complete);
1468 	for (i = 0; i < emac->tx_ch_num; i++)
1469 		k3_udma_glue_tdown_tx_chn(emac->tx_chns[i].tx_chn, false);
1470 
1471 	ret = wait_for_completion_timeout(&emac->tdown_complete,
1472 					  msecs_to_jiffies(1000));
1473 	if (!ret)
1474 		netdev_err(ndev, "tx teardown timeout\n");
1475 
1476 	prueth_reset_tx_chan(emac, emac->tx_ch_num, true);
1477 	for (i = 0; i < emac->tx_ch_num; i++)
1478 		napi_disable(&emac->tx_chns[i].napi_tx);
1479 
1480 	max_rx_flows = PRUETH_MAX_RX_FLOWS;
1481 	k3_udma_glue_tdown_rx_chn(emac->rx_chns.rx_chn, true);
1482 
1483 	prueth_reset_rx_chan(&emac->rx_chns, max_rx_flows, true);
1484 
1485 	napi_disable(&emac->napi_rx);
1486 
1487 	cancel_work_sync(&emac->rx_mode_work);
1488 
1489 	/* Destroying the queued work in ndo_stop() */
1490 	cancel_delayed_work_sync(&emac->stats_work);
1491 
1492 	if (prueth->emacs_initialized == 1)
1493 		icss_iep_exit(emac->iep);
1494 
1495 	/* stop PRUs */
1496 	prueth_emac_stop(emac);
1497 
1498 	free_irq(emac->tx_ts_irq, emac);
1499 
1500 	free_irq(emac->rx_chns.irq[rx_flow], emac);
1501 	prueth_ndev_del_tx_napi(emac, emac->tx_ch_num);
1502 
1503 	prueth_cleanup_rx_chns(emac, &emac->rx_chns, max_rx_flows);
1504 	prueth_cleanup_tx_chns(emac);
1505 
1506 	prueth->emacs_initialized--;
1507 
1508 	return 0;
1509 }
1510 
1511 static void emac_ndo_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1512 {
1513 	ndev->stats.tx_errors++;
1514 }
1515 
1516 static void emac_ndo_set_rx_mode_work(struct work_struct *work)
1517 {
1518 	struct prueth_emac *emac = container_of(work, struct prueth_emac, rx_mode_work);
1519 	struct net_device *ndev = emac->ndev;
1520 	bool promisc, allmulti;
1521 
1522 	if (!netif_running(ndev))
1523 		return;
1524 
1525 	promisc = ndev->flags & IFF_PROMISC;
1526 	allmulti = ndev->flags & IFF_ALLMULTI;
1527 	emac_set_port_state(emac, ICSSG_EMAC_PORT_UC_FLOODING_DISABLE);
1528 	emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_DISABLE);
1529 
1530 	if (promisc) {
1531 		emac_set_port_state(emac, ICSSG_EMAC_PORT_UC_FLOODING_ENABLE);
1532 		emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE);
1533 		return;
1534 	}
1535 
1536 	if (allmulti) {
1537 		emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE);
1538 		return;
1539 	}
1540 
1541 	if (!netdev_mc_empty(ndev)) {
1542 		emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE);
1543 		return;
1544 	}
1545 }
1546 
1547 /**
1548  * emac_ndo_set_rx_mode - EMAC set receive mode function
1549  * @ndev: The EMAC network adapter
1550  *
1551  * Called when system wants to set the receive mode of the device.
1552  *
1553  */
1554 static void emac_ndo_set_rx_mode(struct net_device *ndev)
1555 {
1556 	struct prueth_emac *emac = netdev_priv(ndev);
1557 
1558 	queue_work(emac->cmd_wq, &emac->rx_mode_work);
1559 }
1560 
1561 static int emac_set_ts_config(struct net_device *ndev, struct ifreq *ifr)
1562 {
1563 	struct prueth_emac *emac = netdev_priv(ndev);
1564 	struct hwtstamp_config config;
1565 
1566 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1567 		return -EFAULT;
1568 
1569 	switch (config.tx_type) {
1570 	case HWTSTAMP_TX_OFF:
1571 		emac->tx_ts_enabled = 0;
1572 		break;
1573 	case HWTSTAMP_TX_ON:
1574 		emac->tx_ts_enabled = 1;
1575 		break;
1576 	default:
1577 		return -ERANGE;
1578 	}
1579 
1580 	switch (config.rx_filter) {
1581 	case HWTSTAMP_FILTER_NONE:
1582 		emac->rx_ts_enabled = 0;
1583 		break;
1584 	case HWTSTAMP_FILTER_ALL:
1585 	case HWTSTAMP_FILTER_SOME:
1586 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1587 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1588 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1589 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1590 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1591 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1592 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1593 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1594 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1595 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1596 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1597 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1598 	case HWTSTAMP_FILTER_NTP_ALL:
1599 		emac->rx_ts_enabled = 1;
1600 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1601 		break;
1602 	default:
1603 		return -ERANGE;
1604 	}
1605 
1606 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1607 		-EFAULT : 0;
1608 }
1609 
1610 static int emac_get_ts_config(struct net_device *ndev, struct ifreq *ifr)
1611 {
1612 	struct prueth_emac *emac = netdev_priv(ndev);
1613 	struct hwtstamp_config config;
1614 
1615 	config.flags = 0;
1616 	config.tx_type = emac->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1617 	config.rx_filter = emac->rx_ts_enabled ? HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;
1618 
1619 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1620 			    -EFAULT : 0;
1621 }
1622 
1623 static int emac_ndo_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
1624 {
1625 	switch (cmd) {
1626 	case SIOCGHWTSTAMP:
1627 		return emac_get_ts_config(ndev, ifr);
1628 	case SIOCSHWTSTAMP:
1629 		return emac_set_ts_config(ndev, ifr);
1630 	default:
1631 		break;
1632 	}
1633 
1634 	return phy_do_ioctl(ndev, ifr, cmd);
1635 }
1636 
1637 static void emac_ndo_get_stats64(struct net_device *ndev,
1638 				 struct rtnl_link_stats64 *stats)
1639 {
1640 	struct prueth_emac *emac = netdev_priv(ndev);
1641 
1642 	emac_update_hardware_stats(emac);
1643 
1644 	stats->rx_packets     = emac_get_stat_by_name(emac, "rx_packets");
1645 	stats->rx_bytes       = emac_get_stat_by_name(emac, "rx_bytes");
1646 	stats->tx_packets     = emac_get_stat_by_name(emac, "tx_packets");
1647 	stats->tx_bytes       = emac_get_stat_by_name(emac, "tx_bytes");
1648 	stats->rx_crc_errors  = emac_get_stat_by_name(emac, "rx_crc_errors");
1649 	stats->rx_over_errors = emac_get_stat_by_name(emac, "rx_over_errors");
1650 	stats->multicast      = emac_get_stat_by_name(emac, "rx_multicast_frames");
1651 
1652 	stats->rx_errors  = ndev->stats.rx_errors;
1653 	stats->rx_dropped = ndev->stats.rx_dropped;
1654 	stats->tx_errors  = ndev->stats.tx_errors;
1655 	stats->tx_dropped = ndev->stats.tx_dropped;
1656 }
1657 
1658 static int emac_ndo_get_phys_port_name(struct net_device *ndev, char *name,
1659 				       size_t len)
1660 {
1661 	struct prueth_emac *emac = netdev_priv(ndev);
1662 	int ret;
1663 
1664 	ret = snprintf(name, len, "p%d", emac->port_id);
1665 	if (ret >= len)
1666 		return -EINVAL;
1667 
1668 	return 0;
1669 }
1670 
1671 static const struct net_device_ops emac_netdev_ops = {
1672 	.ndo_open = emac_ndo_open,
1673 	.ndo_stop = emac_ndo_stop,
1674 	.ndo_start_xmit = emac_ndo_start_xmit,
1675 	.ndo_set_mac_address = eth_mac_addr,
1676 	.ndo_validate_addr = eth_validate_addr,
1677 	.ndo_tx_timeout = emac_ndo_tx_timeout,
1678 	.ndo_set_rx_mode = emac_ndo_set_rx_mode,
1679 	.ndo_eth_ioctl = emac_ndo_ioctl,
1680 	.ndo_get_stats64 = emac_ndo_get_stats64,
1681 	.ndo_get_phys_port_name = emac_ndo_get_phys_port_name,
1682 };
1683 
1684 /* get emac_port corresponding to eth_node name */
1685 static int prueth_node_port(struct device_node *eth_node)
1686 {
1687 	u32 port_id;
1688 	int ret;
1689 
1690 	ret = of_property_read_u32(eth_node, "reg", &port_id);
1691 	if (ret)
1692 		return ret;
1693 
1694 	if (port_id == 0)
1695 		return PRUETH_PORT_MII0;
1696 	else if (port_id == 1)
1697 		return PRUETH_PORT_MII1;
1698 	else
1699 		return PRUETH_PORT_INVALID;
1700 }
1701 
1702 /* get MAC instance corresponding to eth_node name */
1703 static int prueth_node_mac(struct device_node *eth_node)
1704 {
1705 	u32 port_id;
1706 	int ret;
1707 
1708 	ret = of_property_read_u32(eth_node, "reg", &port_id);
1709 	if (ret)
1710 		return ret;
1711 
1712 	if (port_id == 0)
1713 		return PRUETH_MAC0;
1714 	else if (port_id == 1)
1715 		return PRUETH_MAC1;
1716 	else
1717 		return PRUETH_MAC_INVALID;
1718 }
1719 
1720 static int prueth_netdev_init(struct prueth *prueth,
1721 			      struct device_node *eth_node)
1722 {
1723 	int ret, num_tx_chn = PRUETH_MAX_TX_QUEUES;
1724 	struct prueth_emac *emac;
1725 	struct net_device *ndev;
1726 	enum prueth_port port;
1727 	const char *irq_name;
1728 	enum prueth_mac mac;
1729 
1730 	port = prueth_node_port(eth_node);
1731 	if (port == PRUETH_PORT_INVALID)
1732 		return -EINVAL;
1733 
1734 	mac = prueth_node_mac(eth_node);
1735 	if (mac == PRUETH_MAC_INVALID)
1736 		return -EINVAL;
1737 
1738 	ndev = alloc_etherdev_mq(sizeof(*emac), num_tx_chn);
1739 	if (!ndev)
1740 		return -ENOMEM;
1741 
1742 	emac = netdev_priv(ndev);
1743 	emac->prueth = prueth;
1744 	emac->ndev = ndev;
1745 	emac->port_id = port;
1746 	emac->cmd_wq = create_singlethread_workqueue("icssg_cmd_wq");
1747 	if (!emac->cmd_wq) {
1748 		ret = -ENOMEM;
1749 		goto free_ndev;
1750 	}
1751 	INIT_WORK(&emac->rx_mode_work, emac_ndo_set_rx_mode_work);
1752 
1753 	INIT_DELAYED_WORK(&emac->stats_work, emac_stats_work_handler);
1754 
1755 	ret = pruss_request_mem_region(prueth->pruss,
1756 				       port == PRUETH_PORT_MII0 ?
1757 				       PRUSS_MEM_DRAM0 : PRUSS_MEM_DRAM1,
1758 				       &emac->dram);
1759 	if (ret) {
1760 		dev_err(prueth->dev, "unable to get DRAM: %d\n", ret);
1761 		ret = -ENOMEM;
1762 		goto free_wq;
1763 	}
1764 
1765 	emac->tx_ch_num = 1;
1766 
1767 	irq_name = "tx_ts0";
1768 	if (emac->port_id == PRUETH_PORT_MII1)
1769 		irq_name = "tx_ts1";
1770 	emac->tx_ts_irq = platform_get_irq_byname_optional(prueth->pdev, irq_name);
1771 	if (emac->tx_ts_irq < 0) {
1772 		ret = dev_err_probe(prueth->dev, emac->tx_ts_irq, "could not get tx_ts_irq\n");
1773 		goto free;
1774 	}
1775 
1776 	SET_NETDEV_DEV(ndev, prueth->dev);
1777 	spin_lock_init(&emac->lock);
1778 	mutex_init(&emac->cmd_lock);
1779 
1780 	emac->phy_node = of_parse_phandle(eth_node, "phy-handle", 0);
1781 	if (!emac->phy_node && !of_phy_is_fixed_link(eth_node)) {
1782 		dev_err(prueth->dev, "couldn't find phy-handle\n");
1783 		ret = -ENODEV;
1784 		goto free;
1785 	} else if (of_phy_is_fixed_link(eth_node)) {
1786 		ret = of_phy_register_fixed_link(eth_node);
1787 		if (ret) {
1788 			ret = dev_err_probe(prueth->dev, ret,
1789 					    "failed to register fixed-link phy\n");
1790 			goto free;
1791 		}
1792 
1793 		emac->phy_node = eth_node;
1794 	}
1795 
1796 	ret = of_get_phy_mode(eth_node, &emac->phy_if);
1797 	if (ret) {
1798 		dev_err(prueth->dev, "could not get phy-mode property\n");
1799 		goto free;
1800 	}
1801 
1802 	if (emac->phy_if != PHY_INTERFACE_MODE_MII &&
1803 	    !phy_interface_mode_is_rgmii(emac->phy_if)) {
1804 		dev_err(prueth->dev, "PHY mode unsupported %s\n", phy_modes(emac->phy_if));
1805 		ret = -EINVAL;
1806 		goto free;
1807 	}
1808 
1809 	/* AM65 SR2.0 has TX Internal delay always enabled by hardware
1810 	 * and it is not possible to disable TX Internal delay. The below
1811 	 * switch case block describes how we handle different phy modes
1812 	 * based on hardware restriction.
1813 	 */
1814 	switch (emac->phy_if) {
1815 	case PHY_INTERFACE_MODE_RGMII_ID:
1816 		emac->phy_if = PHY_INTERFACE_MODE_RGMII_RXID;
1817 		break;
1818 	case PHY_INTERFACE_MODE_RGMII_TXID:
1819 		emac->phy_if = PHY_INTERFACE_MODE_RGMII;
1820 		break;
1821 	case PHY_INTERFACE_MODE_RGMII:
1822 	case PHY_INTERFACE_MODE_RGMII_RXID:
1823 		dev_err(prueth->dev, "RGMII mode without TX delay is not supported");
1824 		ret = -EINVAL;
1825 		goto free;
1826 	default:
1827 		break;
1828 	}
1829 
1830 	/* get mac address from DT and set private and netdev addr */
1831 	ret = of_get_ethdev_address(eth_node, ndev);
1832 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1833 		eth_hw_addr_random(ndev);
1834 		dev_warn(prueth->dev, "port %d: using random MAC addr: %pM\n",
1835 			 port, ndev->dev_addr);
1836 	}
1837 	ether_addr_copy(emac->mac_addr, ndev->dev_addr);
1838 
1839 	ndev->min_mtu = PRUETH_MIN_PKT_SIZE;
1840 	ndev->max_mtu = PRUETH_MAX_MTU;
1841 	ndev->netdev_ops = &emac_netdev_ops;
1842 	ndev->ethtool_ops = &icssg_ethtool_ops;
1843 	ndev->hw_features = NETIF_F_SG;
1844 	ndev->features = ndev->hw_features;
1845 
1846 	netif_napi_add(ndev, &emac->napi_rx, emac_napi_rx_poll);
1847 	prueth->emac[mac] = emac;
1848 
1849 	return 0;
1850 
1851 free:
1852 	pruss_release_mem_region(prueth->pruss, &emac->dram);
1853 free_wq:
1854 	destroy_workqueue(emac->cmd_wq);
1855 free_ndev:
1856 	emac->ndev = NULL;
1857 	prueth->emac[mac] = NULL;
1858 	free_netdev(ndev);
1859 
1860 	return ret;
1861 }
1862 
1863 static void prueth_netdev_exit(struct prueth *prueth,
1864 			       struct device_node *eth_node)
1865 {
1866 	struct prueth_emac *emac;
1867 	enum prueth_mac mac;
1868 
1869 	mac = prueth_node_mac(eth_node);
1870 	if (mac == PRUETH_MAC_INVALID)
1871 		return;
1872 
1873 	emac = prueth->emac[mac];
1874 	if (!emac)
1875 		return;
1876 
1877 	if (of_phy_is_fixed_link(emac->phy_node))
1878 		of_phy_deregister_fixed_link(emac->phy_node);
1879 
1880 	netif_napi_del(&emac->napi_rx);
1881 
1882 	pruss_release_mem_region(prueth->pruss, &emac->dram);
1883 	destroy_workqueue(emac->cmd_wq);
1884 	free_netdev(emac->ndev);
1885 	prueth->emac[mac] = NULL;
1886 }
1887 
1888 static int prueth_get_cores(struct prueth *prueth, int slice)
1889 {
1890 	struct device *dev = prueth->dev;
1891 	enum pruss_pru_id pruss_id;
1892 	struct device_node *np;
1893 	int idx = -1, ret;
1894 
1895 	np = dev->of_node;
1896 
1897 	switch (slice) {
1898 	case ICSS_SLICE0:
1899 		idx = 0;
1900 		break;
1901 	case ICSS_SLICE1:
1902 		idx = 3;
1903 		break;
1904 	default:
1905 		return -EINVAL;
1906 	}
1907 
1908 	prueth->pru[slice] = pru_rproc_get(np, idx, &pruss_id);
1909 	if (IS_ERR(prueth->pru[slice])) {
1910 		ret = PTR_ERR(prueth->pru[slice]);
1911 		prueth->pru[slice] = NULL;
1912 		return dev_err_probe(dev, ret, "unable to get PRU%d\n", slice);
1913 	}
1914 	prueth->pru_id[slice] = pruss_id;
1915 
1916 	idx++;
1917 	prueth->rtu[slice] = pru_rproc_get(np, idx, NULL);
1918 	if (IS_ERR(prueth->rtu[slice])) {
1919 		ret = PTR_ERR(prueth->rtu[slice]);
1920 		prueth->rtu[slice] = NULL;
1921 		return dev_err_probe(dev, ret, "unable to get RTU%d\n", slice);
1922 	}
1923 
1924 	idx++;
1925 	prueth->txpru[slice] = pru_rproc_get(np, idx, NULL);
1926 	if (IS_ERR(prueth->txpru[slice])) {
1927 		ret = PTR_ERR(prueth->txpru[slice]);
1928 		prueth->txpru[slice] = NULL;
1929 		return dev_err_probe(dev, ret, "unable to get TX_PRU%d\n", slice);
1930 	}
1931 
1932 	return 0;
1933 }
1934 
1935 static void prueth_put_cores(struct prueth *prueth, int slice)
1936 {
1937 	if (prueth->txpru[slice])
1938 		pru_rproc_put(prueth->txpru[slice]);
1939 
1940 	if (prueth->rtu[slice])
1941 		pru_rproc_put(prueth->rtu[slice]);
1942 
1943 	if (prueth->pru[slice])
1944 		pru_rproc_put(prueth->pru[slice]);
1945 }
1946 
1947 static int prueth_probe(struct platform_device *pdev)
1948 {
1949 	struct device_node *eth_node, *eth_ports_node;
1950 	struct device_node  *eth0_node = NULL;
1951 	struct device_node  *eth1_node = NULL;
1952 	struct genpool_data_align gp_data = {
1953 		.align = SZ_64K,
1954 	};
1955 	struct device *dev = &pdev->dev;
1956 	struct device_node *np;
1957 	struct prueth *prueth;
1958 	struct pruss *pruss;
1959 	u32 msmc_ram_size;
1960 	int i, ret;
1961 
1962 	np = dev->of_node;
1963 
1964 	prueth = devm_kzalloc(dev, sizeof(*prueth), GFP_KERNEL);
1965 	if (!prueth)
1966 		return -ENOMEM;
1967 
1968 	dev_set_drvdata(dev, prueth);
1969 	prueth->pdev = pdev;
1970 	prueth->pdata = *(const struct prueth_pdata *)device_get_match_data(dev);
1971 
1972 	prueth->dev = dev;
1973 	eth_ports_node = of_get_child_by_name(np, "ethernet-ports");
1974 	if (!eth_ports_node)
1975 		return -ENOENT;
1976 
1977 	for_each_child_of_node(eth_ports_node, eth_node) {
1978 		u32 reg;
1979 
1980 		if (strcmp(eth_node->name, "port"))
1981 			continue;
1982 		ret = of_property_read_u32(eth_node, "reg", &reg);
1983 		if (ret < 0) {
1984 			dev_err(dev, "%pOF error reading port_id %d\n",
1985 				eth_node, ret);
1986 		}
1987 
1988 		of_node_get(eth_node);
1989 
1990 		if (reg == 0) {
1991 			eth0_node = eth_node;
1992 			if (!of_device_is_available(eth0_node)) {
1993 				of_node_put(eth0_node);
1994 				eth0_node = NULL;
1995 			}
1996 		} else if (reg == 1) {
1997 			eth1_node = eth_node;
1998 			if (!of_device_is_available(eth1_node)) {
1999 				of_node_put(eth1_node);
2000 				eth1_node = NULL;
2001 			}
2002 		} else {
2003 			dev_err(dev, "port reg should be 0 or 1\n");
2004 		}
2005 	}
2006 
2007 	of_node_put(eth_ports_node);
2008 
2009 	/* At least one node must be present and available else we fail */
2010 	if (!eth0_node && !eth1_node) {
2011 		dev_err(dev, "neither port0 nor port1 node available\n");
2012 		return -ENODEV;
2013 	}
2014 
2015 	if (eth0_node == eth1_node) {
2016 		dev_err(dev, "port0 and port1 can't have same reg\n");
2017 		of_node_put(eth0_node);
2018 		return -ENODEV;
2019 	}
2020 
2021 	prueth->eth_node[PRUETH_MAC0] = eth0_node;
2022 	prueth->eth_node[PRUETH_MAC1] = eth1_node;
2023 
2024 	prueth->miig_rt = syscon_regmap_lookup_by_phandle(np, "ti,mii-g-rt");
2025 	if (IS_ERR(prueth->miig_rt)) {
2026 		dev_err(dev, "couldn't get ti,mii-g-rt syscon regmap\n");
2027 		return -ENODEV;
2028 	}
2029 
2030 	prueth->mii_rt = syscon_regmap_lookup_by_phandle(np, "ti,mii-rt");
2031 	if (IS_ERR(prueth->mii_rt)) {
2032 		dev_err(dev, "couldn't get ti,mii-rt syscon regmap\n");
2033 		return -ENODEV;
2034 	}
2035 
2036 	if (eth0_node) {
2037 		ret = prueth_get_cores(prueth, ICSS_SLICE0);
2038 		if (ret)
2039 			goto put_cores;
2040 	}
2041 
2042 	if (eth1_node) {
2043 		ret = prueth_get_cores(prueth, ICSS_SLICE1);
2044 		if (ret)
2045 			goto put_cores;
2046 	}
2047 
2048 	pruss = pruss_get(eth0_node ?
2049 			  prueth->pru[ICSS_SLICE0] : prueth->pru[ICSS_SLICE1]);
2050 	if (IS_ERR(pruss)) {
2051 		ret = PTR_ERR(pruss);
2052 		dev_err(dev, "unable to get pruss handle\n");
2053 		goto put_cores;
2054 	}
2055 
2056 	prueth->pruss = pruss;
2057 
2058 	ret = pruss_request_mem_region(pruss, PRUSS_MEM_SHRD_RAM2,
2059 				       &prueth->shram);
2060 	if (ret) {
2061 		dev_err(dev, "unable to get PRUSS SHRD RAM2: %d\n", ret);
2062 		goto put_pruss;
2063 	}
2064 
2065 	prueth->sram_pool = of_gen_pool_get(np, "sram", 0);
2066 	if (!prueth->sram_pool) {
2067 		dev_err(dev, "unable to get SRAM pool\n");
2068 		ret = -ENODEV;
2069 
2070 		goto put_mem;
2071 	}
2072 
2073 	msmc_ram_size = MSMC_RAM_SIZE;
2074 
2075 	/* NOTE: FW bug needs buffer base to be 64KB aligned */
2076 	prueth->msmcram.va =
2077 		(void __iomem *)gen_pool_alloc_algo(prueth->sram_pool,
2078 						    msmc_ram_size,
2079 						    gen_pool_first_fit_align,
2080 						    &gp_data);
2081 
2082 	if (!prueth->msmcram.va) {
2083 		ret = -ENOMEM;
2084 		dev_err(dev, "unable to allocate MSMC resource\n");
2085 		goto put_mem;
2086 	}
2087 	prueth->msmcram.pa = gen_pool_virt_to_phys(prueth->sram_pool,
2088 						   (unsigned long)prueth->msmcram.va);
2089 	prueth->msmcram.size = msmc_ram_size;
2090 	memset_io(prueth->msmcram.va, 0, msmc_ram_size);
2091 	dev_dbg(dev, "sram: pa %llx va %p size %zx\n", prueth->msmcram.pa,
2092 		prueth->msmcram.va, prueth->msmcram.size);
2093 
2094 	prueth->iep0 = icss_iep_get_idx(np, 0);
2095 	if (IS_ERR(prueth->iep0)) {
2096 		ret = dev_err_probe(dev, PTR_ERR(prueth->iep0), "iep0 get failed\n");
2097 		prueth->iep0 = NULL;
2098 		goto free_pool;
2099 	}
2100 
2101 	prueth->iep1 = icss_iep_get_idx(np, 1);
2102 	if (IS_ERR(prueth->iep1)) {
2103 		ret = dev_err_probe(dev, PTR_ERR(prueth->iep1), "iep1 get failed\n");
2104 		goto put_iep0;
2105 	}
2106 
2107 	if (prueth->pdata.quirk_10m_link_issue) {
2108 		/* Enable IEP1 for FW in 64bit mode as W/A for 10M FD link detect issue under TX
2109 		 * traffic.
2110 		 */
2111 		icss_iep_init_fw(prueth->iep1);
2112 	}
2113 
2114 	/* setup netdev interfaces */
2115 	if (eth0_node) {
2116 		ret = prueth_netdev_init(prueth, eth0_node);
2117 		if (ret) {
2118 			dev_err_probe(dev, ret, "netdev init %s failed\n",
2119 				      eth0_node->name);
2120 			goto exit_iep;
2121 		}
2122 
2123 		if (of_find_property(eth0_node, "ti,half-duplex-capable", NULL))
2124 			prueth->emac[PRUETH_MAC0]->half_duplex = 1;
2125 
2126 		prueth->emac[PRUETH_MAC0]->iep = prueth->iep0;
2127 	}
2128 
2129 	if (eth1_node) {
2130 		ret = prueth_netdev_init(prueth, eth1_node);
2131 		if (ret) {
2132 			dev_err_probe(dev, ret, "netdev init %s failed\n",
2133 				      eth1_node->name);
2134 			goto netdev_exit;
2135 		}
2136 
2137 		if (of_find_property(eth1_node, "ti,half-duplex-capable", NULL))
2138 			prueth->emac[PRUETH_MAC1]->half_duplex = 1;
2139 
2140 		prueth->emac[PRUETH_MAC1]->iep = prueth->iep0;
2141 	}
2142 
2143 	/* register the network devices */
2144 	if (eth0_node) {
2145 		ret = register_netdev(prueth->emac[PRUETH_MAC0]->ndev);
2146 		if (ret) {
2147 			dev_err(dev, "can't register netdev for port MII0");
2148 			goto netdev_exit;
2149 		}
2150 
2151 		prueth->registered_netdevs[PRUETH_MAC0] = prueth->emac[PRUETH_MAC0]->ndev;
2152 
2153 		emac_phy_connect(prueth->emac[PRUETH_MAC0]);
2154 		phy_attached_info(prueth->emac[PRUETH_MAC0]->ndev->phydev);
2155 	}
2156 
2157 	if (eth1_node) {
2158 		ret = register_netdev(prueth->emac[PRUETH_MAC1]->ndev);
2159 		if (ret) {
2160 			dev_err(dev, "can't register netdev for port MII1");
2161 			goto netdev_unregister;
2162 		}
2163 
2164 		prueth->registered_netdevs[PRUETH_MAC1] = prueth->emac[PRUETH_MAC1]->ndev;
2165 		emac_phy_connect(prueth->emac[PRUETH_MAC1]);
2166 		phy_attached_info(prueth->emac[PRUETH_MAC1]->ndev->phydev);
2167 	}
2168 
2169 	dev_info(dev, "TI PRU ethernet driver initialized: %s EMAC mode\n",
2170 		 (!eth0_node || !eth1_node) ? "single" : "dual");
2171 
2172 	if (eth1_node)
2173 		of_node_put(eth1_node);
2174 	if (eth0_node)
2175 		of_node_put(eth0_node);
2176 	return 0;
2177 
2178 netdev_unregister:
2179 	for (i = 0; i < PRUETH_NUM_MACS; i++) {
2180 		if (!prueth->registered_netdevs[i])
2181 			continue;
2182 		if (prueth->emac[i]->ndev->phydev) {
2183 			phy_disconnect(prueth->emac[i]->ndev->phydev);
2184 			prueth->emac[i]->ndev->phydev = NULL;
2185 		}
2186 		unregister_netdev(prueth->registered_netdevs[i]);
2187 	}
2188 
2189 netdev_exit:
2190 	for (i = 0; i < PRUETH_NUM_MACS; i++) {
2191 		eth_node = prueth->eth_node[i];
2192 		if (!eth_node)
2193 			continue;
2194 
2195 		prueth_netdev_exit(prueth, eth_node);
2196 	}
2197 
2198 exit_iep:
2199 	if (prueth->pdata.quirk_10m_link_issue)
2200 		icss_iep_exit_fw(prueth->iep1);
2201 	icss_iep_put(prueth->iep1);
2202 
2203 put_iep0:
2204 	icss_iep_put(prueth->iep0);
2205 	prueth->iep0 = NULL;
2206 	prueth->iep1 = NULL;
2207 
2208 free_pool:
2209 	gen_pool_free(prueth->sram_pool,
2210 		      (unsigned long)prueth->msmcram.va, msmc_ram_size);
2211 
2212 put_mem:
2213 	pruss_release_mem_region(prueth->pruss, &prueth->shram);
2214 
2215 put_pruss:
2216 	pruss_put(prueth->pruss);
2217 
2218 put_cores:
2219 	if (eth1_node) {
2220 		prueth_put_cores(prueth, ICSS_SLICE1);
2221 		of_node_put(eth1_node);
2222 	}
2223 
2224 	if (eth0_node) {
2225 		prueth_put_cores(prueth, ICSS_SLICE0);
2226 		of_node_put(eth0_node);
2227 	}
2228 
2229 	return ret;
2230 }
2231 
2232 static void prueth_remove(struct platform_device *pdev)
2233 {
2234 	struct prueth *prueth = platform_get_drvdata(pdev);
2235 	struct device_node *eth_node;
2236 	int i;
2237 
2238 	for (i = 0; i < PRUETH_NUM_MACS; i++) {
2239 		if (!prueth->registered_netdevs[i])
2240 			continue;
2241 		phy_stop(prueth->emac[i]->ndev->phydev);
2242 		phy_disconnect(prueth->emac[i]->ndev->phydev);
2243 		prueth->emac[i]->ndev->phydev = NULL;
2244 		unregister_netdev(prueth->registered_netdevs[i]);
2245 	}
2246 
2247 	for (i = 0; i < PRUETH_NUM_MACS; i++) {
2248 		eth_node = prueth->eth_node[i];
2249 		if (!eth_node)
2250 			continue;
2251 
2252 		prueth_netdev_exit(prueth, eth_node);
2253 	}
2254 
2255 	if (prueth->pdata.quirk_10m_link_issue)
2256 		icss_iep_exit_fw(prueth->iep1);
2257 
2258 	icss_iep_put(prueth->iep1);
2259 	icss_iep_put(prueth->iep0);
2260 
2261 	gen_pool_free(prueth->sram_pool,
2262 		      (unsigned long)prueth->msmcram.va,
2263 		      MSMC_RAM_SIZE);
2264 
2265 	pruss_release_mem_region(prueth->pruss, &prueth->shram);
2266 
2267 	pruss_put(prueth->pruss);
2268 
2269 	if (prueth->eth_node[PRUETH_MAC1])
2270 		prueth_put_cores(prueth, ICSS_SLICE1);
2271 
2272 	if (prueth->eth_node[PRUETH_MAC0])
2273 		prueth_put_cores(prueth, ICSS_SLICE0);
2274 }
2275 
2276 #ifdef CONFIG_PM_SLEEP
2277 static int prueth_suspend(struct device *dev)
2278 {
2279 	struct prueth *prueth = dev_get_drvdata(dev);
2280 	struct net_device *ndev;
2281 	int i, ret;
2282 
2283 	for (i = 0; i < PRUETH_NUM_MACS; i++) {
2284 		ndev = prueth->registered_netdevs[i];
2285 
2286 		if (!ndev)
2287 			continue;
2288 
2289 		if (netif_running(ndev)) {
2290 			netif_device_detach(ndev);
2291 			ret = emac_ndo_stop(ndev);
2292 			if (ret < 0) {
2293 				netdev_err(ndev, "failed to stop: %d", ret);
2294 				return ret;
2295 			}
2296 		}
2297 	}
2298 
2299 	return 0;
2300 }
2301 
2302 static int prueth_resume(struct device *dev)
2303 {
2304 	struct prueth *prueth = dev_get_drvdata(dev);
2305 	struct net_device *ndev;
2306 	int i, ret;
2307 
2308 	for (i = 0; i < PRUETH_NUM_MACS; i++) {
2309 		ndev = prueth->registered_netdevs[i];
2310 
2311 		if (!ndev)
2312 			continue;
2313 
2314 		if (netif_running(ndev)) {
2315 			ret = emac_ndo_open(ndev);
2316 			if (ret < 0) {
2317 				netdev_err(ndev, "failed to start: %d", ret);
2318 				return ret;
2319 			}
2320 			netif_device_attach(ndev);
2321 		}
2322 	}
2323 
2324 	return 0;
2325 }
2326 #endif /* CONFIG_PM_SLEEP */
2327 
2328 static const struct dev_pm_ops prueth_dev_pm_ops = {
2329 	SET_SYSTEM_SLEEP_PM_OPS(prueth_suspend, prueth_resume)
2330 };
2331 
2332 static const struct prueth_pdata am654_icssg_pdata = {
2333 	.fdqring_mode = K3_RINGACC_RING_MODE_MESSAGE,
2334 	.quirk_10m_link_issue = 1,
2335 };
2336 
2337 static const struct prueth_pdata am64x_icssg_pdata = {
2338 	.fdqring_mode = K3_RINGACC_RING_MODE_RING,
2339 };
2340 
2341 static const struct of_device_id prueth_dt_match[] = {
2342 	{ .compatible = "ti,am654-icssg-prueth", .data = &am654_icssg_pdata },
2343 	{ .compatible = "ti,am642-icssg-prueth", .data = &am64x_icssg_pdata },
2344 	{ /* sentinel */ }
2345 };
2346 MODULE_DEVICE_TABLE(of, prueth_dt_match);
2347 
2348 static struct platform_driver prueth_driver = {
2349 	.probe = prueth_probe,
2350 	.remove_new = prueth_remove,
2351 	.driver = {
2352 		.name = "icssg-prueth",
2353 		.of_match_table = prueth_dt_match,
2354 		.pm = &prueth_dev_pm_ops,
2355 	},
2356 };
2357 module_platform_driver(prueth_driver);
2358 
2359 MODULE_AUTHOR("Roger Quadros <rogerq@ti.com>");
2360 MODULE_AUTHOR("Md Danish Anwar <danishanwar@ti.com>");
2361 MODULE_DESCRIPTION("PRUSS ICSSG Ethernet Driver");
2362 MODULE_LICENSE("GPL");
2363