xref: /linux/drivers/net/ethernet/ti/icssg/icssg_prueth.c (revision 981368e1440b76f68b1ac8f5fb14e739f80ecc4e)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Texas Instruments ICSSG Ethernet Driver
4  *
5  * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/
6  *
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dma/ti-cppi5.h>
14 #include <linux/etherdevice.h>
15 #include <linux/genalloc.h>
16 #include <linux/if_vlan.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/mfd/syscon.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/of_platform.h>
26 #include <linux/phy.h>
27 #include <linux/remoteproc/pruss.h>
28 #include <linux/regmap.h>
29 #include <linux/remoteproc.h>
30 
31 #include "icssg_prueth.h"
32 #include "icssg_mii_rt.h"
33 #include "../k3-cppi-desc-pool.h"
34 
35 #define PRUETH_MODULE_DESCRIPTION "PRUSS ICSSG Ethernet driver"
36 
37 /* Netif debug messages possible */
38 #define PRUETH_EMAC_DEBUG       (NETIF_MSG_DRV | \
39 				 NETIF_MSG_PROBE | \
40 				 NETIF_MSG_LINK | \
41 				 NETIF_MSG_TIMER | \
42 				 NETIF_MSG_IFDOWN | \
43 				 NETIF_MSG_IFUP | \
44 				 NETIF_MSG_RX_ERR | \
45 				 NETIF_MSG_TX_ERR | \
46 				 NETIF_MSG_TX_QUEUED | \
47 				 NETIF_MSG_INTR | \
48 				 NETIF_MSG_TX_DONE | \
49 				 NETIF_MSG_RX_STATUS | \
50 				 NETIF_MSG_PKTDATA | \
51 				 NETIF_MSG_HW | \
52 				 NETIF_MSG_WOL)
53 
54 #define prueth_napi_to_emac(napi) container_of(napi, struct prueth_emac, napi_rx)
55 
56 /* CTRLMMR_ICSSG_RGMII_CTRL register bits */
57 #define ICSSG_CTRL_RGMII_ID_MODE                BIT(24)
58 
59 #define IEP_DEFAULT_CYCLE_TIME_NS	1000000	/* 1 ms */
60 
61 static void prueth_cleanup_rx_chns(struct prueth_emac *emac,
62 				   struct prueth_rx_chn *rx_chn,
63 				   int max_rflows)
64 {
65 	if (rx_chn->desc_pool)
66 		k3_cppi_desc_pool_destroy(rx_chn->desc_pool);
67 
68 	if (rx_chn->rx_chn)
69 		k3_udma_glue_release_rx_chn(rx_chn->rx_chn);
70 }
71 
72 static void prueth_cleanup_tx_chns(struct prueth_emac *emac)
73 {
74 	int i;
75 
76 	for (i = 0; i < emac->tx_ch_num; i++) {
77 		struct prueth_tx_chn *tx_chn = &emac->tx_chns[i];
78 
79 		if (tx_chn->desc_pool)
80 			k3_cppi_desc_pool_destroy(tx_chn->desc_pool);
81 
82 		if (tx_chn->tx_chn)
83 			k3_udma_glue_release_tx_chn(tx_chn->tx_chn);
84 
85 		/* Assume prueth_cleanup_tx_chns() is called at the
86 		 * end after all channel resources are freed
87 		 */
88 		memset(tx_chn, 0, sizeof(*tx_chn));
89 	}
90 }
91 
92 static void prueth_ndev_del_tx_napi(struct prueth_emac *emac, int num)
93 {
94 	int i;
95 
96 	for (i = 0; i < num; i++) {
97 		struct prueth_tx_chn *tx_chn = &emac->tx_chns[i];
98 
99 		if (tx_chn->irq)
100 			free_irq(tx_chn->irq, tx_chn);
101 		netif_napi_del(&tx_chn->napi_tx);
102 	}
103 }
104 
105 static void prueth_xmit_free(struct prueth_tx_chn *tx_chn,
106 			     struct cppi5_host_desc_t *desc)
107 {
108 	struct cppi5_host_desc_t *first_desc, *next_desc;
109 	dma_addr_t buf_dma, next_desc_dma;
110 	u32 buf_dma_len;
111 
112 	first_desc = desc;
113 	next_desc = first_desc;
114 
115 	cppi5_hdesc_get_obuf(first_desc, &buf_dma, &buf_dma_len);
116 	k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &buf_dma);
117 
118 	dma_unmap_single(tx_chn->dma_dev, buf_dma, buf_dma_len,
119 			 DMA_TO_DEVICE);
120 
121 	next_desc_dma = cppi5_hdesc_get_next_hbdesc(first_desc);
122 	k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &next_desc_dma);
123 	while (next_desc_dma) {
124 		next_desc = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool,
125 						       next_desc_dma);
126 		cppi5_hdesc_get_obuf(next_desc, &buf_dma, &buf_dma_len);
127 		k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &buf_dma);
128 
129 		dma_unmap_page(tx_chn->dma_dev, buf_dma, buf_dma_len,
130 			       DMA_TO_DEVICE);
131 
132 		next_desc_dma = cppi5_hdesc_get_next_hbdesc(next_desc);
133 		k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &next_desc_dma);
134 
135 		k3_cppi_desc_pool_free(tx_chn->desc_pool, next_desc);
136 	}
137 
138 	k3_cppi_desc_pool_free(tx_chn->desc_pool, first_desc);
139 }
140 
141 static int emac_tx_complete_packets(struct prueth_emac *emac, int chn,
142 				    int budget)
143 {
144 	struct net_device *ndev = emac->ndev;
145 	struct cppi5_host_desc_t *desc_tx;
146 	struct netdev_queue *netif_txq;
147 	struct prueth_tx_chn *tx_chn;
148 	unsigned int total_bytes = 0;
149 	struct sk_buff *skb;
150 	dma_addr_t desc_dma;
151 	int res, num_tx = 0;
152 	void **swdata;
153 
154 	tx_chn = &emac->tx_chns[chn];
155 
156 	while (true) {
157 		res = k3_udma_glue_pop_tx_chn(tx_chn->tx_chn, &desc_dma);
158 		if (res == -ENODATA)
159 			break;
160 
161 		/* teardown completion */
162 		if (cppi5_desc_is_tdcm(desc_dma)) {
163 			if (atomic_dec_and_test(&emac->tdown_cnt))
164 				complete(&emac->tdown_complete);
165 			break;
166 		}
167 
168 		desc_tx = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool,
169 						     desc_dma);
170 		swdata = cppi5_hdesc_get_swdata(desc_tx);
171 
172 		skb = *(swdata);
173 		prueth_xmit_free(tx_chn, desc_tx);
174 
175 		ndev = skb->dev;
176 		ndev->stats.tx_packets++;
177 		ndev->stats.tx_bytes += skb->len;
178 		total_bytes += skb->len;
179 		napi_consume_skb(skb, budget);
180 		num_tx++;
181 	}
182 
183 	if (!num_tx)
184 		return 0;
185 
186 	netif_txq = netdev_get_tx_queue(ndev, chn);
187 	netdev_tx_completed_queue(netif_txq, num_tx, total_bytes);
188 
189 	if (netif_tx_queue_stopped(netif_txq)) {
190 		/* If the TX queue was stopped, wake it now
191 		 * if we have enough room.
192 		 */
193 		__netif_tx_lock(netif_txq, smp_processor_id());
194 		if (netif_running(ndev) &&
195 		    (k3_cppi_desc_pool_avail(tx_chn->desc_pool) >=
196 		     MAX_SKB_FRAGS))
197 			netif_tx_wake_queue(netif_txq);
198 		__netif_tx_unlock(netif_txq);
199 	}
200 
201 	return num_tx;
202 }
203 
204 static int emac_napi_tx_poll(struct napi_struct *napi_tx, int budget)
205 {
206 	struct prueth_tx_chn *tx_chn = prueth_napi_to_tx_chn(napi_tx);
207 	struct prueth_emac *emac = tx_chn->emac;
208 	int num_tx_packets;
209 
210 	num_tx_packets = emac_tx_complete_packets(emac, tx_chn->id, budget);
211 
212 	if (num_tx_packets >= budget)
213 		return budget;
214 
215 	if (napi_complete_done(napi_tx, num_tx_packets))
216 		enable_irq(tx_chn->irq);
217 
218 	return num_tx_packets;
219 }
220 
221 static irqreturn_t prueth_tx_irq(int irq, void *dev_id)
222 {
223 	struct prueth_tx_chn *tx_chn = dev_id;
224 
225 	disable_irq_nosync(irq);
226 	napi_schedule(&tx_chn->napi_tx);
227 
228 	return IRQ_HANDLED;
229 }
230 
231 static int prueth_ndev_add_tx_napi(struct prueth_emac *emac)
232 {
233 	struct prueth *prueth = emac->prueth;
234 	int i, ret;
235 
236 	for (i = 0; i < emac->tx_ch_num; i++) {
237 		struct prueth_tx_chn *tx_chn = &emac->tx_chns[i];
238 
239 		netif_napi_add_tx(emac->ndev, &tx_chn->napi_tx, emac_napi_tx_poll);
240 		ret = request_irq(tx_chn->irq, prueth_tx_irq,
241 				  IRQF_TRIGGER_HIGH, tx_chn->name,
242 				  tx_chn);
243 		if (ret) {
244 			netif_napi_del(&tx_chn->napi_tx);
245 			dev_err(prueth->dev, "unable to request TX IRQ %d\n",
246 				tx_chn->irq);
247 			goto fail;
248 		}
249 	}
250 
251 	return 0;
252 fail:
253 	prueth_ndev_del_tx_napi(emac, i);
254 	return ret;
255 }
256 
257 static int prueth_init_tx_chns(struct prueth_emac *emac)
258 {
259 	static const struct k3_ring_cfg ring_cfg = {
260 		.elm_size = K3_RINGACC_RING_ELSIZE_8,
261 		.mode = K3_RINGACC_RING_MODE_RING,
262 		.flags = 0,
263 		.size = PRUETH_MAX_TX_DESC,
264 	};
265 	struct k3_udma_glue_tx_channel_cfg tx_cfg;
266 	struct device *dev = emac->prueth->dev;
267 	struct net_device *ndev = emac->ndev;
268 	int ret, slice, i;
269 	u32 hdesc_size;
270 
271 	slice = prueth_emac_slice(emac);
272 	if (slice < 0)
273 		return slice;
274 
275 	init_completion(&emac->tdown_complete);
276 
277 	hdesc_size = cppi5_hdesc_calc_size(true, PRUETH_NAV_PS_DATA_SIZE,
278 					   PRUETH_NAV_SW_DATA_SIZE);
279 	memset(&tx_cfg, 0, sizeof(tx_cfg));
280 	tx_cfg.swdata_size = PRUETH_NAV_SW_DATA_SIZE;
281 	tx_cfg.tx_cfg = ring_cfg;
282 	tx_cfg.txcq_cfg = ring_cfg;
283 
284 	for (i = 0; i < emac->tx_ch_num; i++) {
285 		struct prueth_tx_chn *tx_chn = &emac->tx_chns[i];
286 
287 		/* To differentiate channels for SLICE0 vs SLICE1 */
288 		snprintf(tx_chn->name, sizeof(tx_chn->name),
289 			 "tx%d-%d", slice, i);
290 
291 		tx_chn->emac = emac;
292 		tx_chn->id = i;
293 		tx_chn->descs_num = PRUETH_MAX_TX_DESC;
294 
295 		tx_chn->tx_chn =
296 			k3_udma_glue_request_tx_chn(dev, tx_chn->name,
297 						    &tx_cfg);
298 		if (IS_ERR(tx_chn->tx_chn)) {
299 			ret = PTR_ERR(tx_chn->tx_chn);
300 			tx_chn->tx_chn = NULL;
301 			netdev_err(ndev,
302 				   "Failed to request tx dma ch: %d\n", ret);
303 			goto fail;
304 		}
305 
306 		tx_chn->dma_dev = k3_udma_glue_tx_get_dma_device(tx_chn->tx_chn);
307 		tx_chn->desc_pool =
308 			k3_cppi_desc_pool_create_name(tx_chn->dma_dev,
309 						      tx_chn->descs_num,
310 						      hdesc_size,
311 						      tx_chn->name);
312 		if (IS_ERR(tx_chn->desc_pool)) {
313 			ret = PTR_ERR(tx_chn->desc_pool);
314 			tx_chn->desc_pool = NULL;
315 			netdev_err(ndev, "Failed to create tx pool: %d\n", ret);
316 			goto fail;
317 		}
318 
319 		tx_chn->irq = k3_udma_glue_tx_get_irq(tx_chn->tx_chn);
320 		if (tx_chn->irq <= 0) {
321 			ret = -EINVAL;
322 			netdev_err(ndev, "failed to get tx irq\n");
323 			goto fail;
324 		}
325 
326 		snprintf(tx_chn->name, sizeof(tx_chn->name), "%s-tx%d",
327 			 dev_name(dev), tx_chn->id);
328 	}
329 
330 	return 0;
331 
332 fail:
333 	prueth_cleanup_tx_chns(emac);
334 	return ret;
335 }
336 
337 static int prueth_init_rx_chns(struct prueth_emac *emac,
338 			       struct prueth_rx_chn *rx_chn,
339 			       char *name, u32 max_rflows,
340 			       u32 max_desc_num)
341 {
342 	struct k3_udma_glue_rx_channel_cfg rx_cfg;
343 	struct device *dev = emac->prueth->dev;
344 	struct net_device *ndev = emac->ndev;
345 	u32 fdqring_id, hdesc_size;
346 	int i, ret = 0, slice;
347 
348 	slice = prueth_emac_slice(emac);
349 	if (slice < 0)
350 		return slice;
351 
352 	/* To differentiate channels for SLICE0 vs SLICE1 */
353 	snprintf(rx_chn->name, sizeof(rx_chn->name), "%s%d", name, slice);
354 
355 	hdesc_size = cppi5_hdesc_calc_size(true, PRUETH_NAV_PS_DATA_SIZE,
356 					   PRUETH_NAV_SW_DATA_SIZE);
357 	memset(&rx_cfg, 0, sizeof(rx_cfg));
358 	rx_cfg.swdata_size = PRUETH_NAV_SW_DATA_SIZE;
359 	rx_cfg.flow_id_num = max_rflows;
360 	rx_cfg.flow_id_base = -1; /* udmax will auto select flow id base */
361 
362 	/* init all flows */
363 	rx_chn->dev = dev;
364 	rx_chn->descs_num = max_desc_num;
365 
366 	rx_chn->rx_chn = k3_udma_glue_request_rx_chn(dev, rx_chn->name,
367 						     &rx_cfg);
368 	if (IS_ERR(rx_chn->rx_chn)) {
369 		ret = PTR_ERR(rx_chn->rx_chn);
370 		rx_chn->rx_chn = NULL;
371 		netdev_err(ndev, "Failed to request rx dma ch: %d\n", ret);
372 		goto fail;
373 	}
374 
375 	rx_chn->dma_dev = k3_udma_glue_rx_get_dma_device(rx_chn->rx_chn);
376 	rx_chn->desc_pool = k3_cppi_desc_pool_create_name(rx_chn->dma_dev,
377 							  rx_chn->descs_num,
378 							  hdesc_size,
379 							  rx_chn->name);
380 	if (IS_ERR(rx_chn->desc_pool)) {
381 		ret = PTR_ERR(rx_chn->desc_pool);
382 		rx_chn->desc_pool = NULL;
383 		netdev_err(ndev, "Failed to create rx pool: %d\n", ret);
384 		goto fail;
385 	}
386 
387 	emac->rx_flow_id_base = k3_udma_glue_rx_get_flow_id_base(rx_chn->rx_chn);
388 	netdev_dbg(ndev, "flow id base = %d\n", emac->rx_flow_id_base);
389 
390 	fdqring_id = K3_RINGACC_RING_ID_ANY;
391 	for (i = 0; i < rx_cfg.flow_id_num; i++) {
392 		struct k3_ring_cfg rxring_cfg = {
393 			.elm_size = K3_RINGACC_RING_ELSIZE_8,
394 			.mode = K3_RINGACC_RING_MODE_RING,
395 			.flags = 0,
396 		};
397 		struct k3_ring_cfg fdqring_cfg = {
398 			.elm_size = K3_RINGACC_RING_ELSIZE_8,
399 			.flags = K3_RINGACC_RING_SHARED,
400 		};
401 		struct k3_udma_glue_rx_flow_cfg rx_flow_cfg = {
402 			.rx_cfg = rxring_cfg,
403 			.rxfdq_cfg = fdqring_cfg,
404 			.ring_rxq_id = K3_RINGACC_RING_ID_ANY,
405 			.src_tag_lo_sel =
406 				K3_UDMA_GLUE_SRC_TAG_LO_USE_REMOTE_SRC_TAG,
407 		};
408 
409 		rx_flow_cfg.ring_rxfdq0_id = fdqring_id;
410 		rx_flow_cfg.rx_cfg.size = max_desc_num;
411 		rx_flow_cfg.rxfdq_cfg.size = max_desc_num;
412 		rx_flow_cfg.rxfdq_cfg.mode = emac->prueth->pdata.fdqring_mode;
413 
414 		ret = k3_udma_glue_rx_flow_init(rx_chn->rx_chn,
415 						i, &rx_flow_cfg);
416 		if (ret) {
417 			netdev_err(ndev, "Failed to init rx flow%d %d\n",
418 				   i, ret);
419 			goto fail;
420 		}
421 		if (!i)
422 			fdqring_id = k3_udma_glue_rx_flow_get_fdq_id(rx_chn->rx_chn,
423 								     i);
424 		rx_chn->irq[i] = k3_udma_glue_rx_get_irq(rx_chn->rx_chn, i);
425 		if (rx_chn->irq[i] <= 0) {
426 			ret = rx_chn->irq[i];
427 			netdev_err(ndev, "Failed to get rx dma irq");
428 			goto fail;
429 		}
430 	}
431 
432 	return 0;
433 
434 fail:
435 	prueth_cleanup_rx_chns(emac, rx_chn, max_rflows);
436 	return ret;
437 }
438 
439 static int prueth_dma_rx_push(struct prueth_emac *emac,
440 			      struct sk_buff *skb,
441 			      struct prueth_rx_chn *rx_chn)
442 {
443 	struct net_device *ndev = emac->ndev;
444 	struct cppi5_host_desc_t *desc_rx;
445 	u32 pkt_len = skb_tailroom(skb);
446 	dma_addr_t desc_dma;
447 	dma_addr_t buf_dma;
448 	void **swdata;
449 
450 	desc_rx = k3_cppi_desc_pool_alloc(rx_chn->desc_pool);
451 	if (!desc_rx) {
452 		netdev_err(ndev, "rx push: failed to allocate descriptor\n");
453 		return -ENOMEM;
454 	}
455 	desc_dma = k3_cppi_desc_pool_virt2dma(rx_chn->desc_pool, desc_rx);
456 
457 	buf_dma = dma_map_single(rx_chn->dma_dev, skb->data, pkt_len, DMA_FROM_DEVICE);
458 	if (unlikely(dma_mapping_error(rx_chn->dma_dev, buf_dma))) {
459 		k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx);
460 		netdev_err(ndev, "rx push: failed to map rx pkt buffer\n");
461 		return -EINVAL;
462 	}
463 
464 	cppi5_hdesc_init(desc_rx, CPPI5_INFO0_HDESC_EPIB_PRESENT,
465 			 PRUETH_NAV_PS_DATA_SIZE);
466 	k3_udma_glue_rx_dma_to_cppi5_addr(rx_chn->rx_chn, &buf_dma);
467 	cppi5_hdesc_attach_buf(desc_rx, buf_dma, skb_tailroom(skb), buf_dma, skb_tailroom(skb));
468 
469 	swdata = cppi5_hdesc_get_swdata(desc_rx);
470 	*swdata = skb;
471 
472 	return k3_udma_glue_push_rx_chn(rx_chn->rx_chn, 0,
473 					desc_rx, desc_dma);
474 }
475 
476 static u64 icssg_ts_to_ns(u32 hi_sw, u32 hi, u32 lo, u32 cycle_time_ns)
477 {
478 	u32 iepcount_lo, iepcount_hi, hi_rollover_count;
479 	u64 ns;
480 
481 	iepcount_lo = lo & GENMASK(19, 0);
482 	iepcount_hi = (hi & GENMASK(11, 0)) << 12 | lo >> 20;
483 	hi_rollover_count = hi >> 11;
484 
485 	ns = ((u64)hi_rollover_count) << 23 | (iepcount_hi + hi_sw);
486 	ns = ns * cycle_time_ns + iepcount_lo;
487 
488 	return ns;
489 }
490 
491 static void emac_rx_timestamp(struct prueth_emac *emac,
492 			      struct sk_buff *skb, u32 *psdata)
493 {
494 	struct skb_shared_hwtstamps *ssh;
495 	u64 ns;
496 
497 	u32 hi_sw = readl(emac->prueth->shram.va +
498 			  TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET);
499 	ns = icssg_ts_to_ns(hi_sw, psdata[1], psdata[0],
500 			    IEP_DEFAULT_CYCLE_TIME_NS);
501 
502 	ssh = skb_hwtstamps(skb);
503 	memset(ssh, 0, sizeof(*ssh));
504 	ssh->hwtstamp = ns_to_ktime(ns);
505 }
506 
507 static int emac_rx_packet(struct prueth_emac *emac, u32 flow_id)
508 {
509 	struct prueth_rx_chn *rx_chn = &emac->rx_chns;
510 	u32 buf_dma_len, pkt_len, port_id = 0;
511 	struct net_device *ndev = emac->ndev;
512 	struct cppi5_host_desc_t *desc_rx;
513 	struct sk_buff *skb, *new_skb;
514 	dma_addr_t desc_dma, buf_dma;
515 	void **swdata;
516 	u32 *psdata;
517 	int ret;
518 
519 	ret = k3_udma_glue_pop_rx_chn(rx_chn->rx_chn, flow_id, &desc_dma);
520 	if (ret) {
521 		if (ret != -ENODATA)
522 			netdev_err(ndev, "rx pop: failed: %d\n", ret);
523 		return ret;
524 	}
525 
526 	if (cppi5_desc_is_tdcm(desc_dma)) /* Teardown ? */
527 		return 0;
528 
529 	desc_rx = k3_cppi_desc_pool_dma2virt(rx_chn->desc_pool, desc_dma);
530 
531 	swdata = cppi5_hdesc_get_swdata(desc_rx);
532 	skb = *swdata;
533 
534 	psdata = cppi5_hdesc_get_psdata(desc_rx);
535 	/* RX HW timestamp */
536 	if (emac->rx_ts_enabled)
537 		emac_rx_timestamp(emac, skb, psdata);
538 
539 	cppi5_hdesc_get_obuf(desc_rx, &buf_dma, &buf_dma_len);
540 	k3_udma_glue_rx_cppi5_to_dma_addr(rx_chn->rx_chn, &buf_dma);
541 	pkt_len = cppi5_hdesc_get_pktlen(desc_rx);
542 	/* firmware adds 4 CRC bytes, strip them */
543 	pkt_len -= 4;
544 	cppi5_desc_get_tags_ids(&desc_rx->hdr, &port_id, NULL);
545 
546 	dma_unmap_single(rx_chn->dma_dev, buf_dma, buf_dma_len, DMA_FROM_DEVICE);
547 	k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx);
548 
549 	skb->dev = ndev;
550 	new_skb = netdev_alloc_skb_ip_align(ndev, PRUETH_MAX_PKT_SIZE);
551 	/* if allocation fails we drop the packet but push the
552 	 * descriptor back to the ring with old skb to prevent a stall
553 	 */
554 	if (!new_skb) {
555 		ndev->stats.rx_dropped++;
556 		new_skb = skb;
557 	} else {
558 		/* send the filled skb up the n/w stack */
559 		skb_put(skb, pkt_len);
560 		skb->protocol = eth_type_trans(skb, ndev);
561 		napi_gro_receive(&emac->napi_rx, skb);
562 		ndev->stats.rx_bytes += pkt_len;
563 		ndev->stats.rx_packets++;
564 	}
565 
566 	/* queue another RX DMA */
567 	ret = prueth_dma_rx_push(emac, new_skb, &emac->rx_chns);
568 	if (WARN_ON(ret < 0)) {
569 		dev_kfree_skb_any(new_skb);
570 		ndev->stats.rx_errors++;
571 		ndev->stats.rx_dropped++;
572 	}
573 
574 	return ret;
575 }
576 
577 static void prueth_rx_cleanup(void *data, dma_addr_t desc_dma)
578 {
579 	struct prueth_rx_chn *rx_chn = data;
580 	struct cppi5_host_desc_t *desc_rx;
581 	struct sk_buff *skb;
582 	dma_addr_t buf_dma;
583 	u32 buf_dma_len;
584 	void **swdata;
585 
586 	desc_rx = k3_cppi_desc_pool_dma2virt(rx_chn->desc_pool, desc_dma);
587 	swdata = cppi5_hdesc_get_swdata(desc_rx);
588 	skb = *swdata;
589 	cppi5_hdesc_get_obuf(desc_rx, &buf_dma, &buf_dma_len);
590 	k3_udma_glue_rx_cppi5_to_dma_addr(rx_chn->rx_chn, &buf_dma);
591 
592 	dma_unmap_single(rx_chn->dma_dev, buf_dma, buf_dma_len,
593 			 DMA_FROM_DEVICE);
594 	k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx);
595 
596 	dev_kfree_skb_any(skb);
597 }
598 
599 static int emac_get_tx_ts(struct prueth_emac *emac,
600 			  struct emac_tx_ts_response *rsp)
601 {
602 	struct prueth *prueth = emac->prueth;
603 	int slice = prueth_emac_slice(emac);
604 	int addr;
605 
606 	addr = icssg_queue_pop(prueth, slice == 0 ?
607 			       ICSSG_TS_POP_SLICE0 : ICSSG_TS_POP_SLICE1);
608 	if (addr < 0)
609 		return addr;
610 
611 	memcpy_fromio(rsp, prueth->shram.va + addr, sizeof(*rsp));
612 	/* return buffer back for to pool */
613 	icssg_queue_push(prueth, slice == 0 ?
614 			 ICSSG_TS_PUSH_SLICE0 : ICSSG_TS_PUSH_SLICE1, addr);
615 
616 	return 0;
617 }
618 
619 static void tx_ts_work(struct prueth_emac *emac)
620 {
621 	struct skb_shared_hwtstamps ssh;
622 	struct emac_tx_ts_response tsr;
623 	struct sk_buff *skb;
624 	int ret = 0;
625 	u32 hi_sw;
626 	u64 ns;
627 
628 	/* There may be more than one pending requests */
629 	while (1) {
630 		ret = emac_get_tx_ts(emac, &tsr);
631 		if (ret) /* nothing more */
632 			break;
633 
634 		if (tsr.cookie >= PRUETH_MAX_TX_TS_REQUESTS ||
635 		    !emac->tx_ts_skb[tsr.cookie]) {
636 			netdev_err(emac->ndev, "Invalid TX TS cookie 0x%x\n",
637 				   tsr.cookie);
638 			break;
639 		}
640 
641 		skb = emac->tx_ts_skb[tsr.cookie];
642 		emac->tx_ts_skb[tsr.cookie] = NULL;	/* free slot */
643 		if (!skb) {
644 			netdev_err(emac->ndev, "Driver Bug! got NULL skb\n");
645 			break;
646 		}
647 
648 		hi_sw = readl(emac->prueth->shram.va +
649 			      TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET);
650 		ns = icssg_ts_to_ns(hi_sw, tsr.hi_ts, tsr.lo_ts,
651 				    IEP_DEFAULT_CYCLE_TIME_NS);
652 
653 		memset(&ssh, 0, sizeof(ssh));
654 		ssh.hwtstamp = ns_to_ktime(ns);
655 
656 		skb_tstamp_tx(skb, &ssh);
657 		dev_consume_skb_any(skb);
658 
659 		if (atomic_dec_and_test(&emac->tx_ts_pending))	/* no more? */
660 			break;
661 	}
662 }
663 
664 static int prueth_tx_ts_cookie_get(struct prueth_emac *emac)
665 {
666 	int i;
667 
668 	/* search and get the next free slot */
669 	for (i = 0; i < PRUETH_MAX_TX_TS_REQUESTS; i++) {
670 		if (!emac->tx_ts_skb[i]) {
671 			emac->tx_ts_skb[i] = ERR_PTR(-EBUSY); /* reserve slot */
672 			return i;
673 		}
674 	}
675 
676 	return -EBUSY;
677 }
678 
679 /**
680  * emac_ndo_start_xmit - EMAC Transmit function
681  * @skb: SKB pointer
682  * @ndev: EMAC network adapter
683  *
684  * Called by the system to transmit a packet  - we queue the packet in
685  * EMAC hardware transmit queue
686  * Doesn't wait for completion we'll check for TX completion in
687  * emac_tx_complete_packets().
688  *
689  * Return: enum netdev_tx
690  */
691 static enum netdev_tx emac_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
692 {
693 	struct cppi5_host_desc_t *first_desc, *next_desc, *cur_desc;
694 	struct prueth_emac *emac = netdev_priv(ndev);
695 	struct netdev_queue *netif_txq;
696 	struct prueth_tx_chn *tx_chn;
697 	dma_addr_t desc_dma, buf_dma;
698 	int i, ret = 0, q_idx;
699 	bool in_tx_ts = 0;
700 	int tx_ts_cookie;
701 	void **swdata;
702 	u32 pkt_len;
703 	u32 *epib;
704 
705 	pkt_len = skb_headlen(skb);
706 	q_idx = skb_get_queue_mapping(skb);
707 
708 	tx_chn = &emac->tx_chns[q_idx];
709 	netif_txq = netdev_get_tx_queue(ndev, q_idx);
710 
711 	/* Map the linear buffer */
712 	buf_dma = dma_map_single(tx_chn->dma_dev, skb->data, pkt_len, DMA_TO_DEVICE);
713 	if (dma_mapping_error(tx_chn->dma_dev, buf_dma)) {
714 		netdev_err(ndev, "tx: failed to map skb buffer\n");
715 		ret = NETDEV_TX_OK;
716 		goto drop_free_skb;
717 	}
718 
719 	first_desc = k3_cppi_desc_pool_alloc(tx_chn->desc_pool);
720 	if (!first_desc) {
721 		netdev_dbg(ndev, "tx: failed to allocate descriptor\n");
722 		dma_unmap_single(tx_chn->dma_dev, buf_dma, pkt_len, DMA_TO_DEVICE);
723 		goto drop_stop_q_busy;
724 	}
725 
726 	cppi5_hdesc_init(first_desc, CPPI5_INFO0_HDESC_EPIB_PRESENT,
727 			 PRUETH_NAV_PS_DATA_SIZE);
728 	cppi5_hdesc_set_pkttype(first_desc, 0);
729 	epib = first_desc->epib;
730 	epib[0] = 0;
731 	epib[1] = 0;
732 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
733 	    emac->tx_ts_enabled) {
734 		tx_ts_cookie = prueth_tx_ts_cookie_get(emac);
735 		if (tx_ts_cookie >= 0) {
736 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
737 			/* Request TX timestamp */
738 			epib[0] = (u32)tx_ts_cookie;
739 			epib[1] = 0x80000000;	/* TX TS request */
740 			emac->tx_ts_skb[tx_ts_cookie] = skb_get(skb);
741 			in_tx_ts = 1;
742 		}
743 	}
744 
745 	/* set dst tag to indicate internal qid at the firmware which is at
746 	 * bit8..bit15. bit0..bit7 indicates port num for directed
747 	 * packets in case of switch mode operation
748 	 */
749 	cppi5_desc_set_tags_ids(&first_desc->hdr, 0, (emac->port_id | (q_idx << 8)));
750 	k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &buf_dma);
751 	cppi5_hdesc_attach_buf(first_desc, buf_dma, pkt_len, buf_dma, pkt_len);
752 	swdata = cppi5_hdesc_get_swdata(first_desc);
753 	*swdata = skb;
754 
755 	/* Handle the case where skb is fragmented in pages */
756 	cur_desc = first_desc;
757 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
758 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
759 		u32 frag_size = skb_frag_size(frag);
760 
761 		next_desc = k3_cppi_desc_pool_alloc(tx_chn->desc_pool);
762 		if (!next_desc) {
763 			netdev_err(ndev,
764 				   "tx: failed to allocate frag. descriptor\n");
765 			goto free_desc_stop_q_busy_cleanup_tx_ts;
766 		}
767 
768 		buf_dma = skb_frag_dma_map(tx_chn->dma_dev, frag, 0, frag_size,
769 					   DMA_TO_DEVICE);
770 		if (dma_mapping_error(tx_chn->dma_dev, buf_dma)) {
771 			netdev_err(ndev, "tx: Failed to map skb page\n");
772 			k3_cppi_desc_pool_free(tx_chn->desc_pool, next_desc);
773 			ret = NETDEV_TX_OK;
774 			goto cleanup_tx_ts;
775 		}
776 
777 		cppi5_hdesc_reset_hbdesc(next_desc);
778 		k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &buf_dma);
779 		cppi5_hdesc_attach_buf(next_desc,
780 				       buf_dma, frag_size, buf_dma, frag_size);
781 
782 		desc_dma = k3_cppi_desc_pool_virt2dma(tx_chn->desc_pool,
783 						      next_desc);
784 		k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &desc_dma);
785 		cppi5_hdesc_link_hbdesc(cur_desc, desc_dma);
786 
787 		pkt_len += frag_size;
788 		cur_desc = next_desc;
789 	}
790 	WARN_ON_ONCE(pkt_len != skb->len);
791 
792 	/* report bql before sending packet */
793 	netdev_tx_sent_queue(netif_txq, pkt_len);
794 
795 	cppi5_hdesc_set_pktlen(first_desc, pkt_len);
796 	desc_dma = k3_cppi_desc_pool_virt2dma(tx_chn->desc_pool, first_desc);
797 	/* cppi5_desc_dump(first_desc, 64); */
798 
799 	skb_tx_timestamp(skb);  /* SW timestamp if SKBTX_IN_PROGRESS not set */
800 	ret = k3_udma_glue_push_tx_chn(tx_chn->tx_chn, first_desc, desc_dma);
801 	if (ret) {
802 		netdev_err(ndev, "tx: push failed: %d\n", ret);
803 		goto drop_free_descs;
804 	}
805 
806 	if (in_tx_ts)
807 		atomic_inc(&emac->tx_ts_pending);
808 
809 	if (k3_cppi_desc_pool_avail(tx_chn->desc_pool) < MAX_SKB_FRAGS) {
810 		netif_tx_stop_queue(netif_txq);
811 		/* Barrier, so that stop_queue visible to other cpus */
812 		smp_mb__after_atomic();
813 
814 		if (k3_cppi_desc_pool_avail(tx_chn->desc_pool) >=
815 		    MAX_SKB_FRAGS)
816 			netif_tx_wake_queue(netif_txq);
817 	}
818 
819 	return NETDEV_TX_OK;
820 
821 cleanup_tx_ts:
822 	if (in_tx_ts) {
823 		dev_kfree_skb_any(emac->tx_ts_skb[tx_ts_cookie]);
824 		emac->tx_ts_skb[tx_ts_cookie] = NULL;
825 	}
826 
827 drop_free_descs:
828 	prueth_xmit_free(tx_chn, first_desc);
829 
830 drop_free_skb:
831 	dev_kfree_skb_any(skb);
832 
833 	/* error */
834 	ndev->stats.tx_dropped++;
835 	netdev_err(ndev, "tx: error: %d\n", ret);
836 
837 	return ret;
838 
839 free_desc_stop_q_busy_cleanup_tx_ts:
840 	if (in_tx_ts) {
841 		dev_kfree_skb_any(emac->tx_ts_skb[tx_ts_cookie]);
842 		emac->tx_ts_skb[tx_ts_cookie] = NULL;
843 	}
844 	prueth_xmit_free(tx_chn, first_desc);
845 
846 drop_stop_q_busy:
847 	netif_tx_stop_queue(netif_txq);
848 	return NETDEV_TX_BUSY;
849 }
850 
851 static void prueth_tx_cleanup(void *data, dma_addr_t desc_dma)
852 {
853 	struct prueth_tx_chn *tx_chn = data;
854 	struct cppi5_host_desc_t *desc_tx;
855 	struct sk_buff *skb;
856 	void **swdata;
857 
858 	desc_tx = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool, desc_dma);
859 	swdata = cppi5_hdesc_get_swdata(desc_tx);
860 	skb = *(swdata);
861 	prueth_xmit_free(tx_chn, desc_tx);
862 
863 	dev_kfree_skb_any(skb);
864 }
865 
866 static irqreturn_t prueth_tx_ts_irq(int irq, void *dev_id)
867 {
868 	struct prueth_emac *emac = dev_id;
869 
870 	/* currently only TX timestamp is being returned */
871 	tx_ts_work(emac);
872 
873 	return IRQ_HANDLED;
874 }
875 
876 static irqreturn_t prueth_rx_irq(int irq, void *dev_id)
877 {
878 	struct prueth_emac *emac = dev_id;
879 
880 	disable_irq_nosync(irq);
881 	napi_schedule(&emac->napi_rx);
882 
883 	return IRQ_HANDLED;
884 }
885 
886 struct icssg_firmwares {
887 	char *pru;
888 	char *rtu;
889 	char *txpru;
890 };
891 
892 static struct icssg_firmwares icssg_emac_firmwares[] = {
893 	{
894 		.pru = "ti-pruss/am65x-sr2-pru0-prueth-fw.elf",
895 		.rtu = "ti-pruss/am65x-sr2-rtu0-prueth-fw.elf",
896 		.txpru = "ti-pruss/am65x-sr2-txpru0-prueth-fw.elf",
897 	},
898 	{
899 		.pru = "ti-pruss/am65x-sr2-pru1-prueth-fw.elf",
900 		.rtu = "ti-pruss/am65x-sr2-rtu1-prueth-fw.elf",
901 		.txpru = "ti-pruss/am65x-sr2-txpru1-prueth-fw.elf",
902 	}
903 };
904 
905 static int prueth_emac_start(struct prueth *prueth, struct prueth_emac *emac)
906 {
907 	struct icssg_firmwares *firmwares;
908 	struct device *dev = prueth->dev;
909 	int slice, ret;
910 
911 	firmwares = icssg_emac_firmwares;
912 
913 	slice = prueth_emac_slice(emac);
914 	if (slice < 0) {
915 		netdev_err(emac->ndev, "invalid port\n");
916 		return -EINVAL;
917 	}
918 
919 	ret = icssg_config(prueth, emac, slice);
920 	if (ret)
921 		return ret;
922 
923 	ret = rproc_set_firmware(prueth->pru[slice], firmwares[slice].pru);
924 	ret = rproc_boot(prueth->pru[slice]);
925 	if (ret) {
926 		dev_err(dev, "failed to boot PRU%d: %d\n", slice, ret);
927 		return -EINVAL;
928 	}
929 
930 	ret = rproc_set_firmware(prueth->rtu[slice], firmwares[slice].rtu);
931 	ret = rproc_boot(prueth->rtu[slice]);
932 	if (ret) {
933 		dev_err(dev, "failed to boot RTU%d: %d\n", slice, ret);
934 		goto halt_pru;
935 	}
936 
937 	ret = rproc_set_firmware(prueth->txpru[slice], firmwares[slice].txpru);
938 	ret = rproc_boot(prueth->txpru[slice]);
939 	if (ret) {
940 		dev_err(dev, "failed to boot TX_PRU%d: %d\n", slice, ret);
941 		goto halt_rtu;
942 	}
943 
944 	emac->fw_running = 1;
945 	return 0;
946 
947 halt_rtu:
948 	rproc_shutdown(prueth->rtu[slice]);
949 
950 halt_pru:
951 	rproc_shutdown(prueth->pru[slice]);
952 
953 	return ret;
954 }
955 
956 static void prueth_emac_stop(struct prueth_emac *emac)
957 {
958 	struct prueth *prueth = emac->prueth;
959 	int slice;
960 
961 	switch (emac->port_id) {
962 	case PRUETH_PORT_MII0:
963 		slice = ICSS_SLICE0;
964 		break;
965 	case PRUETH_PORT_MII1:
966 		slice = ICSS_SLICE1;
967 		break;
968 	default:
969 		netdev_err(emac->ndev, "invalid port\n");
970 		return;
971 	}
972 
973 	emac->fw_running = 0;
974 	rproc_shutdown(prueth->txpru[slice]);
975 	rproc_shutdown(prueth->rtu[slice]);
976 	rproc_shutdown(prueth->pru[slice]);
977 }
978 
979 static void prueth_cleanup_tx_ts(struct prueth_emac *emac)
980 {
981 	int i;
982 
983 	for (i = 0; i < PRUETH_MAX_TX_TS_REQUESTS; i++) {
984 		if (emac->tx_ts_skb[i]) {
985 			dev_kfree_skb_any(emac->tx_ts_skb[i]);
986 			emac->tx_ts_skb[i] = NULL;
987 		}
988 	}
989 }
990 
991 /* called back by PHY layer if there is change in link state of hw port*/
992 static void emac_adjust_link(struct net_device *ndev)
993 {
994 	struct prueth_emac *emac = netdev_priv(ndev);
995 	struct phy_device *phydev = ndev->phydev;
996 	struct prueth *prueth = emac->prueth;
997 	bool new_state = false;
998 	unsigned long flags;
999 
1000 	if (phydev->link) {
1001 		/* check the mode of operation - full/half duplex */
1002 		if (phydev->duplex != emac->duplex) {
1003 			new_state = true;
1004 			emac->duplex = phydev->duplex;
1005 		}
1006 		if (phydev->speed != emac->speed) {
1007 			new_state = true;
1008 			emac->speed = phydev->speed;
1009 		}
1010 		if (!emac->link) {
1011 			new_state = true;
1012 			emac->link = 1;
1013 		}
1014 	} else if (emac->link) {
1015 		new_state = true;
1016 		emac->link = 0;
1017 
1018 		/* f/w should support 100 & 1000 */
1019 		emac->speed = SPEED_1000;
1020 
1021 		/* half duplex may not be supported by f/w */
1022 		emac->duplex = DUPLEX_FULL;
1023 	}
1024 
1025 	if (new_state) {
1026 		phy_print_status(phydev);
1027 
1028 		/* update RGMII and MII configuration based on PHY negotiated
1029 		 * values
1030 		 */
1031 		if (emac->link) {
1032 			/* Set the RGMII cfg for gig en and full duplex */
1033 			icssg_update_rgmii_cfg(prueth->miig_rt, emac);
1034 
1035 			/* update the Tx IPG based on 100M/1G speed */
1036 			spin_lock_irqsave(&emac->lock, flags);
1037 			icssg_config_ipg(emac);
1038 			spin_unlock_irqrestore(&emac->lock, flags);
1039 			icssg_config_set_speed(emac);
1040 			emac_set_port_state(emac, ICSSG_EMAC_PORT_FORWARD);
1041 
1042 		} else {
1043 			emac_set_port_state(emac, ICSSG_EMAC_PORT_DISABLE);
1044 		}
1045 	}
1046 
1047 	if (emac->link) {
1048 		/* reactivate the transmit queue */
1049 		netif_tx_wake_all_queues(ndev);
1050 	} else {
1051 		netif_tx_stop_all_queues(ndev);
1052 		prueth_cleanup_tx_ts(emac);
1053 	}
1054 }
1055 
1056 static int emac_napi_rx_poll(struct napi_struct *napi_rx, int budget)
1057 {
1058 	struct prueth_emac *emac = prueth_napi_to_emac(napi_rx);
1059 	int rx_flow = PRUETH_RX_FLOW_DATA;
1060 	int flow = PRUETH_MAX_RX_FLOWS;
1061 	int num_rx = 0;
1062 	int cur_budget;
1063 	int ret;
1064 
1065 	while (flow--) {
1066 		cur_budget = budget - num_rx;
1067 
1068 		while (cur_budget--) {
1069 			ret = emac_rx_packet(emac, flow);
1070 			if (ret)
1071 				break;
1072 			num_rx++;
1073 		}
1074 
1075 		if (num_rx >= budget)
1076 			break;
1077 	}
1078 
1079 	if (num_rx < budget && napi_complete_done(napi_rx, num_rx))
1080 		enable_irq(emac->rx_chns.irq[rx_flow]);
1081 
1082 	return num_rx;
1083 }
1084 
1085 static int prueth_prepare_rx_chan(struct prueth_emac *emac,
1086 				  struct prueth_rx_chn *chn,
1087 				  int buf_size)
1088 {
1089 	struct sk_buff *skb;
1090 	int i, ret;
1091 
1092 	for (i = 0; i < chn->descs_num; i++) {
1093 		skb = __netdev_alloc_skb_ip_align(NULL, buf_size, GFP_KERNEL);
1094 		if (!skb)
1095 			return -ENOMEM;
1096 
1097 		ret = prueth_dma_rx_push(emac, skb, chn);
1098 		if (ret < 0) {
1099 			netdev_err(emac->ndev,
1100 				   "cannot submit skb for rx chan %s ret %d\n",
1101 				   chn->name, ret);
1102 			kfree_skb(skb);
1103 			return ret;
1104 		}
1105 	}
1106 
1107 	return 0;
1108 }
1109 
1110 static void prueth_reset_tx_chan(struct prueth_emac *emac, int ch_num,
1111 				 bool free_skb)
1112 {
1113 	int i;
1114 
1115 	for (i = 0; i < ch_num; i++) {
1116 		if (free_skb)
1117 			k3_udma_glue_reset_tx_chn(emac->tx_chns[i].tx_chn,
1118 						  &emac->tx_chns[i],
1119 						  prueth_tx_cleanup);
1120 		k3_udma_glue_disable_tx_chn(emac->tx_chns[i].tx_chn);
1121 	}
1122 }
1123 
1124 static void prueth_reset_rx_chan(struct prueth_rx_chn *chn,
1125 				 int num_flows, bool disable)
1126 {
1127 	int i;
1128 
1129 	for (i = 0; i < num_flows; i++)
1130 		k3_udma_glue_reset_rx_chn(chn->rx_chn, i, chn,
1131 					  prueth_rx_cleanup, !!i);
1132 	if (disable)
1133 		k3_udma_glue_disable_rx_chn(chn->rx_chn);
1134 }
1135 
1136 static int emac_phy_connect(struct prueth_emac *emac)
1137 {
1138 	struct prueth *prueth = emac->prueth;
1139 	struct net_device *ndev = emac->ndev;
1140 	/* connect PHY */
1141 	ndev->phydev = of_phy_connect(emac->ndev, emac->phy_node,
1142 				      &emac_adjust_link, 0,
1143 				      emac->phy_if);
1144 	if (!ndev->phydev) {
1145 		dev_err(prueth->dev, "couldn't connect to phy %s\n",
1146 			emac->phy_node->full_name);
1147 		return -ENODEV;
1148 	}
1149 
1150 	/* remove unsupported modes */
1151 	phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1152 	phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1153 	phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1154 	phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1155 	phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1156 
1157 	if (emac->phy_if == PHY_INTERFACE_MODE_MII)
1158 		phy_set_max_speed(ndev->phydev, SPEED_100);
1159 
1160 	return 0;
1161 }
1162 
1163 static u64 prueth_iep_gettime(void *clockops_data, struct ptp_system_timestamp *sts)
1164 {
1165 	u32 hi_rollover_count, hi_rollover_count_r;
1166 	struct prueth_emac *emac = clockops_data;
1167 	struct prueth *prueth = emac->prueth;
1168 	void __iomem *fw_hi_r_count_addr;
1169 	void __iomem *fw_count_hi_addr;
1170 	u32 iepcount_hi, iepcount_hi_r;
1171 	unsigned long flags;
1172 	u32 iepcount_lo;
1173 	u64 ts = 0;
1174 
1175 	fw_count_hi_addr = prueth->shram.va + TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET;
1176 	fw_hi_r_count_addr = prueth->shram.va + TIMESYNC_FW_WC_HI_ROLLOVER_COUNT_OFFSET;
1177 
1178 	local_irq_save(flags);
1179 	do {
1180 		iepcount_hi = icss_iep_get_count_hi(emac->iep);
1181 		iepcount_hi += readl(fw_count_hi_addr);
1182 		hi_rollover_count = readl(fw_hi_r_count_addr);
1183 		ptp_read_system_prets(sts);
1184 		iepcount_lo = icss_iep_get_count_low(emac->iep);
1185 		ptp_read_system_postts(sts);
1186 
1187 		iepcount_hi_r = icss_iep_get_count_hi(emac->iep);
1188 		iepcount_hi_r += readl(fw_count_hi_addr);
1189 		hi_rollover_count_r = readl(fw_hi_r_count_addr);
1190 	} while ((iepcount_hi_r != iepcount_hi) ||
1191 		 (hi_rollover_count != hi_rollover_count_r));
1192 	local_irq_restore(flags);
1193 
1194 	ts = ((u64)hi_rollover_count) << 23 | iepcount_hi;
1195 	ts = ts * (u64)IEP_DEFAULT_CYCLE_TIME_NS + iepcount_lo;
1196 
1197 	return ts;
1198 }
1199 
1200 static void prueth_iep_settime(void *clockops_data, u64 ns)
1201 {
1202 	struct icssg_setclock_desc __iomem *sc_descp;
1203 	struct prueth_emac *emac = clockops_data;
1204 	struct icssg_setclock_desc sc_desc;
1205 	u64 cyclecount;
1206 	u32 cycletime;
1207 	int timeout;
1208 
1209 	if (!emac->fw_running)
1210 		return;
1211 
1212 	sc_descp = emac->prueth->shram.va + TIMESYNC_FW_WC_SETCLOCK_DESC_OFFSET;
1213 
1214 	cycletime = IEP_DEFAULT_CYCLE_TIME_NS;
1215 	cyclecount = ns / cycletime;
1216 
1217 	memset(&sc_desc, 0, sizeof(sc_desc));
1218 	sc_desc.margin = cycletime - 1000;
1219 	sc_desc.cyclecounter0_set = cyclecount & GENMASK(31, 0);
1220 	sc_desc.cyclecounter1_set = (cyclecount & GENMASK(63, 32)) >> 32;
1221 	sc_desc.iepcount_set = ns % cycletime;
1222 	sc_desc.CMP0_current = cycletime - 4; //Count from 0 to (cycle time)-4
1223 
1224 	memcpy_toio(sc_descp, &sc_desc, sizeof(sc_desc));
1225 
1226 	writeb(1, &sc_descp->request);
1227 
1228 	timeout = 5;	/* fw should take 2-3 ms */
1229 	while (timeout--) {
1230 		if (readb(&sc_descp->acknowledgment))
1231 			return;
1232 
1233 		usleep_range(500, 1000);
1234 	}
1235 
1236 	dev_err(emac->prueth->dev, "settime timeout\n");
1237 }
1238 
1239 static int prueth_perout_enable(void *clockops_data,
1240 				struct ptp_perout_request *req, int on,
1241 				u64 *cmp)
1242 {
1243 	struct prueth_emac *emac = clockops_data;
1244 	u32 reduction_factor = 0, offset = 0;
1245 	struct timespec64 ts;
1246 	u64 ns_period;
1247 
1248 	if (!on)
1249 		return 0;
1250 
1251 	/* Any firmware specific stuff for PPS/PEROUT handling */
1252 	ts.tv_sec = req->period.sec;
1253 	ts.tv_nsec = req->period.nsec;
1254 	ns_period = timespec64_to_ns(&ts);
1255 
1256 	/* f/w doesn't support period less than cycle time */
1257 	if (ns_period < IEP_DEFAULT_CYCLE_TIME_NS)
1258 		return -ENXIO;
1259 
1260 	reduction_factor = ns_period / IEP_DEFAULT_CYCLE_TIME_NS;
1261 	offset = ns_period % IEP_DEFAULT_CYCLE_TIME_NS;
1262 
1263 	/* f/w requires at least 1uS within a cycle so CMP
1264 	 * can trigger after SYNC is enabled
1265 	 */
1266 	if (offset < 5 * NSEC_PER_USEC)
1267 		offset = 5 * NSEC_PER_USEC;
1268 
1269 	/* if offset is close to cycle time then we will miss
1270 	 * the CMP event for last tick when IEP rolls over.
1271 	 * In normal mode, IEP tick is 4ns.
1272 	 * In slow compensation it could be 0ns or 8ns at
1273 	 * every slow compensation cycle.
1274 	 */
1275 	if (offset > IEP_DEFAULT_CYCLE_TIME_NS - 8)
1276 		offset = IEP_DEFAULT_CYCLE_TIME_NS - 8;
1277 
1278 	/* we're in shadow mode so need to set upper 32-bits */
1279 	*cmp = (u64)offset << 32;
1280 
1281 	writel(reduction_factor, emac->prueth->shram.va +
1282 		TIMESYNC_FW_WC_SYNCOUT_REDUCTION_FACTOR_OFFSET);
1283 
1284 	writel(0, emac->prueth->shram.va +
1285 		TIMESYNC_FW_WC_SYNCOUT_START_TIME_CYCLECOUNT_OFFSET);
1286 
1287 	return 0;
1288 }
1289 
1290 const struct icss_iep_clockops prueth_iep_clockops = {
1291 	.settime = prueth_iep_settime,
1292 	.gettime = prueth_iep_gettime,
1293 	.perout_enable = prueth_perout_enable,
1294 };
1295 
1296 /**
1297  * emac_ndo_open - EMAC device open
1298  * @ndev: network adapter device
1299  *
1300  * Called when system wants to start the interface.
1301  *
1302  * Return: 0 for a successful open, or appropriate error code
1303  */
1304 static int emac_ndo_open(struct net_device *ndev)
1305 {
1306 	struct prueth_emac *emac = netdev_priv(ndev);
1307 	int ret, i, num_data_chn = emac->tx_ch_num;
1308 	struct prueth *prueth = emac->prueth;
1309 	int slice = prueth_emac_slice(emac);
1310 	struct device *dev = prueth->dev;
1311 	int max_rx_flows;
1312 	int rx_flow;
1313 
1314 	/* clear SMEM and MSMC settings for all slices */
1315 	if (!prueth->emacs_initialized) {
1316 		memset_io(prueth->msmcram.va, 0, prueth->msmcram.size);
1317 		memset_io(prueth->shram.va, 0, ICSSG_CONFIG_OFFSET_SLICE1 * PRUETH_NUM_MACS);
1318 	}
1319 
1320 	/* set h/w MAC as user might have re-configured */
1321 	ether_addr_copy(emac->mac_addr, ndev->dev_addr);
1322 
1323 	icssg_class_set_mac_addr(prueth->miig_rt, slice, emac->mac_addr);
1324 	icssg_ft1_set_mac_addr(prueth->miig_rt, slice, emac->mac_addr);
1325 
1326 	icssg_class_default(prueth->miig_rt, slice, 0);
1327 
1328 	/* Notify the stack of the actual queue counts. */
1329 	ret = netif_set_real_num_tx_queues(ndev, num_data_chn);
1330 	if (ret) {
1331 		dev_err(dev, "cannot set real number of tx queues\n");
1332 		return ret;
1333 	}
1334 
1335 	init_completion(&emac->cmd_complete);
1336 	ret = prueth_init_tx_chns(emac);
1337 	if (ret) {
1338 		dev_err(dev, "failed to init tx channel: %d\n", ret);
1339 		return ret;
1340 	}
1341 
1342 	max_rx_flows = PRUETH_MAX_RX_FLOWS;
1343 	ret = prueth_init_rx_chns(emac, &emac->rx_chns, "rx",
1344 				  max_rx_flows, PRUETH_MAX_RX_DESC);
1345 	if (ret) {
1346 		dev_err(dev, "failed to init rx channel: %d\n", ret);
1347 		goto cleanup_tx;
1348 	}
1349 
1350 	ret = prueth_ndev_add_tx_napi(emac);
1351 	if (ret)
1352 		goto cleanup_rx;
1353 
1354 	/* we use only the highest priority flow for now i.e. @irq[3] */
1355 	rx_flow = PRUETH_RX_FLOW_DATA;
1356 	ret = request_irq(emac->rx_chns.irq[rx_flow], prueth_rx_irq,
1357 			  IRQF_TRIGGER_HIGH, dev_name(dev), emac);
1358 	if (ret) {
1359 		dev_err(dev, "unable to request RX IRQ\n");
1360 		goto cleanup_napi;
1361 	}
1362 
1363 	/* reset and start PRU firmware */
1364 	ret = prueth_emac_start(prueth, emac);
1365 	if (ret)
1366 		goto free_rx_irq;
1367 
1368 	icssg_mii_update_mtu(prueth->mii_rt, slice, ndev->max_mtu);
1369 
1370 	if (!prueth->emacs_initialized) {
1371 		ret = icss_iep_init(emac->iep, &prueth_iep_clockops,
1372 				    emac, IEP_DEFAULT_CYCLE_TIME_NS);
1373 	}
1374 
1375 	ret = request_threaded_irq(emac->tx_ts_irq, NULL, prueth_tx_ts_irq,
1376 				   IRQF_ONESHOT, dev_name(dev), emac);
1377 	if (ret)
1378 		goto stop;
1379 
1380 	/* Prepare RX */
1381 	ret = prueth_prepare_rx_chan(emac, &emac->rx_chns, PRUETH_MAX_PKT_SIZE);
1382 	if (ret)
1383 		goto free_tx_ts_irq;
1384 
1385 	ret = k3_udma_glue_enable_rx_chn(emac->rx_chns.rx_chn);
1386 	if (ret)
1387 		goto reset_rx_chn;
1388 
1389 	for (i = 0; i < emac->tx_ch_num; i++) {
1390 		ret = k3_udma_glue_enable_tx_chn(emac->tx_chns[i].tx_chn);
1391 		if (ret)
1392 			goto reset_tx_chan;
1393 	}
1394 
1395 	/* Enable NAPI in Tx and Rx direction */
1396 	for (i = 0; i < emac->tx_ch_num; i++)
1397 		napi_enable(&emac->tx_chns[i].napi_tx);
1398 	napi_enable(&emac->napi_rx);
1399 
1400 	/* start PHY */
1401 	phy_start(ndev->phydev);
1402 
1403 	prueth->emacs_initialized++;
1404 
1405 	queue_work(system_long_wq, &emac->stats_work.work);
1406 
1407 	return 0;
1408 
1409 reset_tx_chan:
1410 	/* Since interface is not yet up, there is wouldn't be
1411 	 * any SKB for completion. So set false to free_skb
1412 	 */
1413 	prueth_reset_tx_chan(emac, i, false);
1414 reset_rx_chn:
1415 	prueth_reset_rx_chan(&emac->rx_chns, max_rx_flows, false);
1416 free_tx_ts_irq:
1417 	free_irq(emac->tx_ts_irq, emac);
1418 stop:
1419 	prueth_emac_stop(emac);
1420 free_rx_irq:
1421 	free_irq(emac->rx_chns.irq[rx_flow], emac);
1422 cleanup_napi:
1423 	prueth_ndev_del_tx_napi(emac, emac->tx_ch_num);
1424 cleanup_rx:
1425 	prueth_cleanup_rx_chns(emac, &emac->rx_chns, max_rx_flows);
1426 cleanup_tx:
1427 	prueth_cleanup_tx_chns(emac);
1428 
1429 	return ret;
1430 }
1431 
1432 /**
1433  * emac_ndo_stop - EMAC device stop
1434  * @ndev: network adapter device
1435  *
1436  * Called when system wants to stop or down the interface.
1437  *
1438  * Return: Always 0 (Success)
1439  */
1440 static int emac_ndo_stop(struct net_device *ndev)
1441 {
1442 	struct prueth_emac *emac = netdev_priv(ndev);
1443 	struct prueth *prueth = emac->prueth;
1444 	int rx_flow = PRUETH_RX_FLOW_DATA;
1445 	int max_rx_flows;
1446 	int ret, i;
1447 
1448 	/* inform the upper layers. */
1449 	netif_tx_stop_all_queues(ndev);
1450 
1451 	/* block packets from wire */
1452 	if (ndev->phydev)
1453 		phy_stop(ndev->phydev);
1454 
1455 	icssg_class_disable(prueth->miig_rt, prueth_emac_slice(emac));
1456 
1457 	atomic_set(&emac->tdown_cnt, emac->tx_ch_num);
1458 	/* ensure new tdown_cnt value is visible */
1459 	smp_mb__after_atomic();
1460 	/* tear down and disable UDMA channels */
1461 	reinit_completion(&emac->tdown_complete);
1462 	for (i = 0; i < emac->tx_ch_num; i++)
1463 		k3_udma_glue_tdown_tx_chn(emac->tx_chns[i].tx_chn, false);
1464 
1465 	ret = wait_for_completion_timeout(&emac->tdown_complete,
1466 					  msecs_to_jiffies(1000));
1467 	if (!ret)
1468 		netdev_err(ndev, "tx teardown timeout\n");
1469 
1470 	prueth_reset_tx_chan(emac, emac->tx_ch_num, true);
1471 	for (i = 0; i < emac->tx_ch_num; i++)
1472 		napi_disable(&emac->tx_chns[i].napi_tx);
1473 
1474 	max_rx_flows = PRUETH_MAX_RX_FLOWS;
1475 	k3_udma_glue_tdown_rx_chn(emac->rx_chns.rx_chn, true);
1476 
1477 	prueth_reset_rx_chan(&emac->rx_chns, max_rx_flows, true);
1478 
1479 	napi_disable(&emac->napi_rx);
1480 
1481 	cancel_work_sync(&emac->rx_mode_work);
1482 
1483 	/* Destroying the queued work in ndo_stop() */
1484 	cancel_delayed_work_sync(&emac->stats_work);
1485 
1486 	/* stop PRUs */
1487 	prueth_emac_stop(emac);
1488 
1489 	if (prueth->emacs_initialized == 1)
1490 		icss_iep_exit(emac->iep);
1491 
1492 	/* stop PRUs */
1493 	prueth_emac_stop(emac);
1494 
1495 	free_irq(emac->tx_ts_irq, emac);
1496 
1497 	free_irq(emac->rx_chns.irq[rx_flow], emac);
1498 	prueth_ndev_del_tx_napi(emac, emac->tx_ch_num);
1499 	prueth_cleanup_tx_chns(emac);
1500 
1501 	prueth_cleanup_rx_chns(emac, &emac->rx_chns, max_rx_flows);
1502 	prueth_cleanup_tx_chns(emac);
1503 
1504 	prueth->emacs_initialized--;
1505 
1506 	return 0;
1507 }
1508 
1509 static void emac_ndo_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1510 {
1511 	ndev->stats.tx_errors++;
1512 }
1513 
1514 static void emac_ndo_set_rx_mode_work(struct work_struct *work)
1515 {
1516 	struct prueth_emac *emac = container_of(work, struct prueth_emac, rx_mode_work);
1517 	struct net_device *ndev = emac->ndev;
1518 	bool promisc, allmulti;
1519 
1520 	if (!netif_running(ndev))
1521 		return;
1522 
1523 	promisc = ndev->flags & IFF_PROMISC;
1524 	allmulti = ndev->flags & IFF_ALLMULTI;
1525 	emac_set_port_state(emac, ICSSG_EMAC_PORT_UC_FLOODING_DISABLE);
1526 	emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_DISABLE);
1527 
1528 	if (promisc) {
1529 		emac_set_port_state(emac, ICSSG_EMAC_PORT_UC_FLOODING_ENABLE);
1530 		emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE);
1531 		return;
1532 	}
1533 
1534 	if (allmulti) {
1535 		emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE);
1536 		return;
1537 	}
1538 
1539 	if (!netdev_mc_empty(ndev)) {
1540 		emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE);
1541 		return;
1542 	}
1543 }
1544 
1545 /**
1546  * emac_ndo_set_rx_mode - EMAC set receive mode function
1547  * @ndev: The EMAC network adapter
1548  *
1549  * Called when system wants to set the receive mode of the device.
1550  *
1551  */
1552 static void emac_ndo_set_rx_mode(struct net_device *ndev)
1553 {
1554 	struct prueth_emac *emac = netdev_priv(ndev);
1555 
1556 	queue_work(emac->cmd_wq, &emac->rx_mode_work);
1557 }
1558 
1559 static int emac_set_ts_config(struct net_device *ndev, struct ifreq *ifr)
1560 {
1561 	struct prueth_emac *emac = netdev_priv(ndev);
1562 	struct hwtstamp_config config;
1563 
1564 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1565 		return -EFAULT;
1566 
1567 	switch (config.tx_type) {
1568 	case HWTSTAMP_TX_OFF:
1569 		emac->tx_ts_enabled = 0;
1570 		break;
1571 	case HWTSTAMP_TX_ON:
1572 		emac->tx_ts_enabled = 1;
1573 		break;
1574 	default:
1575 		return -ERANGE;
1576 	}
1577 
1578 	switch (config.rx_filter) {
1579 	case HWTSTAMP_FILTER_NONE:
1580 		emac->rx_ts_enabled = 0;
1581 		break;
1582 	case HWTSTAMP_FILTER_ALL:
1583 	case HWTSTAMP_FILTER_SOME:
1584 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1585 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1586 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1587 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1588 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1589 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1590 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1591 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1592 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1593 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1594 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1595 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1596 	case HWTSTAMP_FILTER_NTP_ALL:
1597 		emac->rx_ts_enabled = 1;
1598 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1599 		break;
1600 	default:
1601 		return -ERANGE;
1602 	}
1603 
1604 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1605 		-EFAULT : 0;
1606 }
1607 
1608 static int emac_get_ts_config(struct net_device *ndev, struct ifreq *ifr)
1609 {
1610 	struct prueth_emac *emac = netdev_priv(ndev);
1611 	struct hwtstamp_config config;
1612 
1613 	config.flags = 0;
1614 	config.tx_type = emac->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1615 	config.rx_filter = emac->rx_ts_enabled ? HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;
1616 
1617 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1618 			    -EFAULT : 0;
1619 }
1620 
1621 static int emac_ndo_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
1622 {
1623 	switch (cmd) {
1624 	case SIOCGHWTSTAMP:
1625 		return emac_get_ts_config(ndev, ifr);
1626 	case SIOCSHWTSTAMP:
1627 		return emac_set_ts_config(ndev, ifr);
1628 	default:
1629 		break;
1630 	}
1631 
1632 	return phy_do_ioctl(ndev, ifr, cmd);
1633 }
1634 
1635 static void emac_ndo_get_stats64(struct net_device *ndev,
1636 				 struct rtnl_link_stats64 *stats)
1637 {
1638 	struct prueth_emac *emac = netdev_priv(ndev);
1639 
1640 	emac_update_hardware_stats(emac);
1641 
1642 	stats->rx_packets     = emac_get_stat_by_name(emac, "rx_packets");
1643 	stats->rx_bytes       = emac_get_stat_by_name(emac, "rx_bytes");
1644 	stats->tx_packets     = emac_get_stat_by_name(emac, "tx_packets");
1645 	stats->tx_bytes       = emac_get_stat_by_name(emac, "tx_bytes");
1646 	stats->rx_crc_errors  = emac_get_stat_by_name(emac, "rx_crc_errors");
1647 	stats->rx_over_errors = emac_get_stat_by_name(emac, "rx_over_errors");
1648 	stats->multicast      = emac_get_stat_by_name(emac, "rx_multicast_frames");
1649 
1650 	stats->rx_errors  = ndev->stats.rx_errors;
1651 	stats->rx_dropped = ndev->stats.rx_dropped;
1652 	stats->tx_errors  = ndev->stats.tx_errors;
1653 	stats->tx_dropped = ndev->stats.tx_dropped;
1654 }
1655 
1656 static const struct net_device_ops emac_netdev_ops = {
1657 	.ndo_open = emac_ndo_open,
1658 	.ndo_stop = emac_ndo_stop,
1659 	.ndo_start_xmit = emac_ndo_start_xmit,
1660 	.ndo_set_mac_address = eth_mac_addr,
1661 	.ndo_validate_addr = eth_validate_addr,
1662 	.ndo_tx_timeout = emac_ndo_tx_timeout,
1663 	.ndo_set_rx_mode = emac_ndo_set_rx_mode,
1664 	.ndo_eth_ioctl = emac_ndo_ioctl,
1665 	.ndo_get_stats64 = emac_ndo_get_stats64,
1666 };
1667 
1668 /* get emac_port corresponding to eth_node name */
1669 static int prueth_node_port(struct device_node *eth_node)
1670 {
1671 	u32 port_id;
1672 	int ret;
1673 
1674 	ret = of_property_read_u32(eth_node, "reg", &port_id);
1675 	if (ret)
1676 		return ret;
1677 
1678 	if (port_id == 0)
1679 		return PRUETH_PORT_MII0;
1680 	else if (port_id == 1)
1681 		return PRUETH_PORT_MII1;
1682 	else
1683 		return PRUETH_PORT_INVALID;
1684 }
1685 
1686 /* get MAC instance corresponding to eth_node name */
1687 static int prueth_node_mac(struct device_node *eth_node)
1688 {
1689 	u32 port_id;
1690 	int ret;
1691 
1692 	ret = of_property_read_u32(eth_node, "reg", &port_id);
1693 	if (ret)
1694 		return ret;
1695 
1696 	if (port_id == 0)
1697 		return PRUETH_MAC0;
1698 	else if (port_id == 1)
1699 		return PRUETH_MAC1;
1700 	else
1701 		return PRUETH_MAC_INVALID;
1702 }
1703 
1704 static int prueth_netdev_init(struct prueth *prueth,
1705 			      struct device_node *eth_node)
1706 {
1707 	int ret, num_tx_chn = PRUETH_MAX_TX_QUEUES;
1708 	struct prueth_emac *emac;
1709 	struct net_device *ndev;
1710 	enum prueth_port port;
1711 	const char *irq_name;
1712 	enum prueth_mac mac;
1713 
1714 	port = prueth_node_port(eth_node);
1715 	if (port == PRUETH_PORT_INVALID)
1716 		return -EINVAL;
1717 
1718 	mac = prueth_node_mac(eth_node);
1719 	if (mac == PRUETH_MAC_INVALID)
1720 		return -EINVAL;
1721 
1722 	ndev = alloc_etherdev_mq(sizeof(*emac), num_tx_chn);
1723 	if (!ndev)
1724 		return -ENOMEM;
1725 
1726 	emac = netdev_priv(ndev);
1727 	emac->prueth = prueth;
1728 	emac->ndev = ndev;
1729 	emac->port_id = port;
1730 	emac->cmd_wq = create_singlethread_workqueue("icssg_cmd_wq");
1731 	if (!emac->cmd_wq) {
1732 		ret = -ENOMEM;
1733 		goto free_ndev;
1734 	}
1735 	INIT_WORK(&emac->rx_mode_work, emac_ndo_set_rx_mode_work);
1736 
1737 	INIT_DELAYED_WORK(&emac->stats_work, emac_stats_work_handler);
1738 
1739 	ret = pruss_request_mem_region(prueth->pruss,
1740 				       port == PRUETH_PORT_MII0 ?
1741 				       PRUSS_MEM_DRAM0 : PRUSS_MEM_DRAM1,
1742 				       &emac->dram);
1743 	if (ret) {
1744 		dev_err(prueth->dev, "unable to get DRAM: %d\n", ret);
1745 		ret = -ENOMEM;
1746 		goto free_wq;
1747 	}
1748 
1749 	emac->tx_ch_num = 1;
1750 
1751 	irq_name = "tx_ts0";
1752 	if (emac->port_id == PRUETH_PORT_MII1)
1753 		irq_name = "tx_ts1";
1754 	emac->tx_ts_irq = platform_get_irq_byname_optional(prueth->pdev, irq_name);
1755 	if (emac->tx_ts_irq < 0) {
1756 		ret = dev_err_probe(prueth->dev, emac->tx_ts_irq, "could not get tx_ts_irq\n");
1757 		goto free;
1758 	}
1759 
1760 	SET_NETDEV_DEV(ndev, prueth->dev);
1761 	spin_lock_init(&emac->lock);
1762 	mutex_init(&emac->cmd_lock);
1763 
1764 	emac->phy_node = of_parse_phandle(eth_node, "phy-handle", 0);
1765 	if (!emac->phy_node && !of_phy_is_fixed_link(eth_node)) {
1766 		dev_err(prueth->dev, "couldn't find phy-handle\n");
1767 		ret = -ENODEV;
1768 		goto free;
1769 	} else if (of_phy_is_fixed_link(eth_node)) {
1770 		ret = of_phy_register_fixed_link(eth_node);
1771 		if (ret) {
1772 			ret = dev_err_probe(prueth->dev, ret,
1773 					    "failed to register fixed-link phy\n");
1774 			goto free;
1775 		}
1776 
1777 		emac->phy_node = eth_node;
1778 	}
1779 
1780 	ret = of_get_phy_mode(eth_node, &emac->phy_if);
1781 	if (ret) {
1782 		dev_err(prueth->dev, "could not get phy-mode property\n");
1783 		goto free;
1784 	}
1785 
1786 	if (emac->phy_if != PHY_INTERFACE_MODE_MII &&
1787 	    !phy_interface_mode_is_rgmii(emac->phy_if)) {
1788 		dev_err(prueth->dev, "PHY mode unsupported %s\n", phy_modes(emac->phy_if));
1789 		ret = -EINVAL;
1790 		goto free;
1791 	}
1792 
1793 	/* AM65 SR2.0 has TX Internal delay always enabled by hardware
1794 	 * and it is not possible to disable TX Internal delay. The below
1795 	 * switch case block describes how we handle different phy modes
1796 	 * based on hardware restriction.
1797 	 */
1798 	switch (emac->phy_if) {
1799 	case PHY_INTERFACE_MODE_RGMII_ID:
1800 		emac->phy_if = PHY_INTERFACE_MODE_RGMII_RXID;
1801 		break;
1802 	case PHY_INTERFACE_MODE_RGMII_TXID:
1803 		emac->phy_if = PHY_INTERFACE_MODE_RGMII;
1804 		break;
1805 	case PHY_INTERFACE_MODE_RGMII:
1806 	case PHY_INTERFACE_MODE_RGMII_RXID:
1807 		dev_err(prueth->dev, "RGMII mode without TX delay is not supported");
1808 		ret = -EINVAL;
1809 		goto free;
1810 	default:
1811 		break;
1812 	}
1813 
1814 	/* get mac address from DT and set private and netdev addr */
1815 	ret = of_get_ethdev_address(eth_node, ndev);
1816 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1817 		eth_hw_addr_random(ndev);
1818 		dev_warn(prueth->dev, "port %d: using random MAC addr: %pM\n",
1819 			 port, ndev->dev_addr);
1820 	}
1821 	ether_addr_copy(emac->mac_addr, ndev->dev_addr);
1822 
1823 	ndev->min_mtu = PRUETH_MIN_PKT_SIZE;
1824 	ndev->max_mtu = PRUETH_MAX_MTU;
1825 	ndev->netdev_ops = &emac_netdev_ops;
1826 	ndev->ethtool_ops = &icssg_ethtool_ops;
1827 	ndev->hw_features = NETIF_F_SG;
1828 	ndev->features = ndev->hw_features;
1829 
1830 	netif_napi_add(ndev, &emac->napi_rx, emac_napi_rx_poll);
1831 	prueth->emac[mac] = emac;
1832 
1833 	return 0;
1834 
1835 free:
1836 	pruss_release_mem_region(prueth->pruss, &emac->dram);
1837 free_wq:
1838 	destroy_workqueue(emac->cmd_wq);
1839 free_ndev:
1840 	emac->ndev = NULL;
1841 	prueth->emac[mac] = NULL;
1842 	free_netdev(ndev);
1843 
1844 	return ret;
1845 }
1846 
1847 static void prueth_netdev_exit(struct prueth *prueth,
1848 			       struct device_node *eth_node)
1849 {
1850 	struct prueth_emac *emac;
1851 	enum prueth_mac mac;
1852 
1853 	mac = prueth_node_mac(eth_node);
1854 	if (mac == PRUETH_MAC_INVALID)
1855 		return;
1856 
1857 	emac = prueth->emac[mac];
1858 	if (!emac)
1859 		return;
1860 
1861 	if (of_phy_is_fixed_link(emac->phy_node))
1862 		of_phy_deregister_fixed_link(emac->phy_node);
1863 
1864 	netif_napi_del(&emac->napi_rx);
1865 
1866 	pruss_release_mem_region(prueth->pruss, &emac->dram);
1867 	destroy_workqueue(emac->cmd_wq);
1868 	free_netdev(emac->ndev);
1869 	prueth->emac[mac] = NULL;
1870 }
1871 
1872 static int prueth_get_cores(struct prueth *prueth, int slice)
1873 {
1874 	struct device *dev = prueth->dev;
1875 	enum pruss_pru_id pruss_id;
1876 	struct device_node *np;
1877 	int idx = -1, ret;
1878 
1879 	np = dev->of_node;
1880 
1881 	switch (slice) {
1882 	case ICSS_SLICE0:
1883 		idx = 0;
1884 		break;
1885 	case ICSS_SLICE1:
1886 		idx = 3;
1887 		break;
1888 	default:
1889 		return -EINVAL;
1890 	}
1891 
1892 	prueth->pru[slice] = pru_rproc_get(np, idx, &pruss_id);
1893 	if (IS_ERR(prueth->pru[slice])) {
1894 		ret = PTR_ERR(prueth->pru[slice]);
1895 		prueth->pru[slice] = NULL;
1896 		return dev_err_probe(dev, ret, "unable to get PRU%d\n", slice);
1897 	}
1898 	prueth->pru_id[slice] = pruss_id;
1899 
1900 	idx++;
1901 	prueth->rtu[slice] = pru_rproc_get(np, idx, NULL);
1902 	if (IS_ERR(prueth->rtu[slice])) {
1903 		ret = PTR_ERR(prueth->rtu[slice]);
1904 		prueth->rtu[slice] = NULL;
1905 		return dev_err_probe(dev, ret, "unable to get RTU%d\n", slice);
1906 	}
1907 
1908 	idx++;
1909 	prueth->txpru[slice] = pru_rproc_get(np, idx, NULL);
1910 	if (IS_ERR(prueth->txpru[slice])) {
1911 		ret = PTR_ERR(prueth->txpru[slice]);
1912 		prueth->txpru[slice] = NULL;
1913 		return dev_err_probe(dev, ret, "unable to get TX_PRU%d\n", slice);
1914 	}
1915 
1916 	return 0;
1917 }
1918 
1919 static void prueth_put_cores(struct prueth *prueth, int slice)
1920 {
1921 	if (prueth->txpru[slice])
1922 		pru_rproc_put(prueth->txpru[slice]);
1923 
1924 	if (prueth->rtu[slice])
1925 		pru_rproc_put(prueth->rtu[slice]);
1926 
1927 	if (prueth->pru[slice])
1928 		pru_rproc_put(prueth->pru[slice]);
1929 }
1930 
1931 static const struct of_device_id prueth_dt_match[];
1932 
1933 static int prueth_probe(struct platform_device *pdev)
1934 {
1935 	struct device_node *eth_node, *eth_ports_node;
1936 	struct device_node  *eth0_node = NULL;
1937 	struct device_node  *eth1_node = NULL;
1938 	struct genpool_data_align gp_data = {
1939 		.align = SZ_64K,
1940 	};
1941 	const struct of_device_id *match;
1942 	struct device *dev = &pdev->dev;
1943 	struct device_node *np;
1944 	struct prueth *prueth;
1945 	struct pruss *pruss;
1946 	u32 msmc_ram_size;
1947 	int i, ret;
1948 
1949 	np = dev->of_node;
1950 
1951 	match = of_match_device(prueth_dt_match, dev);
1952 	if (!match)
1953 		return -ENODEV;
1954 
1955 	prueth = devm_kzalloc(dev, sizeof(*prueth), GFP_KERNEL);
1956 	if (!prueth)
1957 		return -ENOMEM;
1958 
1959 	dev_set_drvdata(dev, prueth);
1960 	prueth->pdev = pdev;
1961 	prueth->pdata = *(const struct prueth_pdata *)match->data;
1962 
1963 	prueth->dev = dev;
1964 	eth_ports_node = of_get_child_by_name(np, "ethernet-ports");
1965 	if (!eth_ports_node)
1966 		return -ENOENT;
1967 
1968 	for_each_child_of_node(eth_ports_node, eth_node) {
1969 		u32 reg;
1970 
1971 		if (strcmp(eth_node->name, "port"))
1972 			continue;
1973 		ret = of_property_read_u32(eth_node, "reg", &reg);
1974 		if (ret < 0) {
1975 			dev_err(dev, "%pOF error reading port_id %d\n",
1976 				eth_node, ret);
1977 		}
1978 
1979 		of_node_get(eth_node);
1980 
1981 		if (reg == 0) {
1982 			eth0_node = eth_node;
1983 			if (!of_device_is_available(eth0_node)) {
1984 				of_node_put(eth0_node);
1985 				eth0_node = NULL;
1986 			}
1987 		} else if (reg == 1) {
1988 			eth1_node = eth_node;
1989 			if (!of_device_is_available(eth1_node)) {
1990 				of_node_put(eth1_node);
1991 				eth1_node = NULL;
1992 			}
1993 		} else {
1994 			dev_err(dev, "port reg should be 0 or 1\n");
1995 		}
1996 	}
1997 
1998 	of_node_put(eth_ports_node);
1999 
2000 	/* At least one node must be present and available else we fail */
2001 	if (!eth0_node && !eth1_node) {
2002 		dev_err(dev, "neither port0 nor port1 node available\n");
2003 		return -ENODEV;
2004 	}
2005 
2006 	if (eth0_node == eth1_node) {
2007 		dev_err(dev, "port0 and port1 can't have same reg\n");
2008 		of_node_put(eth0_node);
2009 		return -ENODEV;
2010 	}
2011 
2012 	prueth->eth_node[PRUETH_MAC0] = eth0_node;
2013 	prueth->eth_node[PRUETH_MAC1] = eth1_node;
2014 
2015 	prueth->miig_rt = syscon_regmap_lookup_by_phandle(np, "ti,mii-g-rt");
2016 	if (IS_ERR(prueth->miig_rt)) {
2017 		dev_err(dev, "couldn't get ti,mii-g-rt syscon regmap\n");
2018 		return -ENODEV;
2019 	}
2020 
2021 	prueth->mii_rt = syscon_regmap_lookup_by_phandle(np, "ti,mii-rt");
2022 	if (IS_ERR(prueth->mii_rt)) {
2023 		dev_err(dev, "couldn't get ti,mii-rt syscon regmap\n");
2024 		return -ENODEV;
2025 	}
2026 
2027 	if (eth0_node) {
2028 		ret = prueth_get_cores(prueth, ICSS_SLICE0);
2029 		if (ret)
2030 			goto put_cores;
2031 	}
2032 
2033 	if (eth1_node) {
2034 		ret = prueth_get_cores(prueth, ICSS_SLICE1);
2035 		if (ret)
2036 			goto put_cores;
2037 	}
2038 
2039 	pruss = pruss_get(eth0_node ?
2040 			  prueth->pru[ICSS_SLICE0] : prueth->pru[ICSS_SLICE1]);
2041 	if (IS_ERR(pruss)) {
2042 		ret = PTR_ERR(pruss);
2043 		dev_err(dev, "unable to get pruss handle\n");
2044 		goto put_cores;
2045 	}
2046 
2047 	prueth->pruss = pruss;
2048 
2049 	ret = pruss_request_mem_region(pruss, PRUSS_MEM_SHRD_RAM2,
2050 				       &prueth->shram);
2051 	if (ret) {
2052 		dev_err(dev, "unable to get PRUSS SHRD RAM2: %d\n", ret);
2053 		pruss_put(prueth->pruss);
2054 	}
2055 
2056 	prueth->sram_pool = of_gen_pool_get(np, "sram", 0);
2057 	if (!prueth->sram_pool) {
2058 		dev_err(dev, "unable to get SRAM pool\n");
2059 		ret = -ENODEV;
2060 
2061 		goto put_mem;
2062 	}
2063 
2064 	msmc_ram_size = MSMC_RAM_SIZE;
2065 
2066 	/* NOTE: FW bug needs buffer base to be 64KB aligned */
2067 	prueth->msmcram.va =
2068 		(void __iomem *)gen_pool_alloc_algo(prueth->sram_pool,
2069 						    msmc_ram_size,
2070 						    gen_pool_first_fit_align,
2071 						    &gp_data);
2072 
2073 	if (!prueth->msmcram.va) {
2074 		ret = -ENOMEM;
2075 		dev_err(dev, "unable to allocate MSMC resource\n");
2076 		goto put_mem;
2077 	}
2078 	prueth->msmcram.pa = gen_pool_virt_to_phys(prueth->sram_pool,
2079 						   (unsigned long)prueth->msmcram.va);
2080 	prueth->msmcram.size = msmc_ram_size;
2081 	memset_io(prueth->msmcram.va, 0, msmc_ram_size);
2082 	dev_dbg(dev, "sram: pa %llx va %p size %zx\n", prueth->msmcram.pa,
2083 		prueth->msmcram.va, prueth->msmcram.size);
2084 
2085 	prueth->iep0 = icss_iep_get_idx(np, 0);
2086 	if (IS_ERR(prueth->iep0)) {
2087 		ret = dev_err_probe(dev, PTR_ERR(prueth->iep0), "iep0 get failed\n");
2088 		prueth->iep0 = NULL;
2089 		goto free_pool;
2090 	}
2091 
2092 	prueth->iep1 = icss_iep_get_idx(np, 1);
2093 	if (IS_ERR(prueth->iep1)) {
2094 		ret = dev_err_probe(dev, PTR_ERR(prueth->iep1), "iep1 get failed\n");
2095 		icss_iep_put(prueth->iep0);
2096 		prueth->iep0 = NULL;
2097 		prueth->iep1 = NULL;
2098 		goto free_pool;
2099 	}
2100 
2101 	if (prueth->pdata.quirk_10m_link_issue) {
2102 		/* Enable IEP1 for FW in 64bit mode as W/A for 10M FD link detect issue under TX
2103 		 * traffic.
2104 		 */
2105 		icss_iep_init_fw(prueth->iep1);
2106 	}
2107 
2108 	/* setup netdev interfaces */
2109 	if (eth0_node) {
2110 		ret = prueth_netdev_init(prueth, eth0_node);
2111 		if (ret) {
2112 			dev_err_probe(dev, ret, "netdev init %s failed\n",
2113 				      eth0_node->name);
2114 			goto exit_iep;
2115 		}
2116 		prueth->emac[PRUETH_MAC0]->iep = prueth->iep0;
2117 	}
2118 
2119 	if (eth1_node) {
2120 		ret = prueth_netdev_init(prueth, eth1_node);
2121 		if (ret) {
2122 			dev_err_probe(dev, ret, "netdev init %s failed\n",
2123 				      eth1_node->name);
2124 			goto netdev_exit;
2125 		}
2126 
2127 		prueth->emac[PRUETH_MAC1]->iep = prueth->iep0;
2128 	}
2129 
2130 	/* register the network devices */
2131 	if (eth0_node) {
2132 		ret = register_netdev(prueth->emac[PRUETH_MAC0]->ndev);
2133 		if (ret) {
2134 			dev_err(dev, "can't register netdev for port MII0");
2135 			goto netdev_exit;
2136 		}
2137 
2138 		prueth->registered_netdevs[PRUETH_MAC0] = prueth->emac[PRUETH_MAC0]->ndev;
2139 
2140 		emac_phy_connect(prueth->emac[PRUETH_MAC0]);
2141 		phy_attached_info(prueth->emac[PRUETH_MAC0]->ndev->phydev);
2142 	}
2143 
2144 	if (eth1_node) {
2145 		ret = register_netdev(prueth->emac[PRUETH_MAC1]->ndev);
2146 		if (ret) {
2147 			dev_err(dev, "can't register netdev for port MII1");
2148 			goto netdev_unregister;
2149 		}
2150 
2151 		prueth->registered_netdevs[PRUETH_MAC1] = prueth->emac[PRUETH_MAC1]->ndev;
2152 		emac_phy_connect(prueth->emac[PRUETH_MAC1]);
2153 		phy_attached_info(prueth->emac[PRUETH_MAC1]->ndev->phydev);
2154 	}
2155 
2156 	dev_info(dev, "TI PRU ethernet driver initialized: %s EMAC mode\n",
2157 		 (!eth0_node || !eth1_node) ? "single" : "dual");
2158 
2159 	if (eth1_node)
2160 		of_node_put(eth1_node);
2161 	if (eth0_node)
2162 		of_node_put(eth0_node);
2163 	return 0;
2164 
2165 netdev_unregister:
2166 	for (i = 0; i < PRUETH_NUM_MACS; i++) {
2167 		if (!prueth->registered_netdevs[i])
2168 			continue;
2169 		if (prueth->emac[i]->ndev->phydev) {
2170 			phy_disconnect(prueth->emac[i]->ndev->phydev);
2171 			prueth->emac[i]->ndev->phydev = NULL;
2172 		}
2173 		unregister_netdev(prueth->registered_netdevs[i]);
2174 	}
2175 
2176 netdev_exit:
2177 	for (i = 0; i < PRUETH_NUM_MACS; i++) {
2178 		eth_node = prueth->eth_node[i];
2179 		if (!eth_node)
2180 			continue;
2181 
2182 		prueth_netdev_exit(prueth, eth_node);
2183 	}
2184 
2185 exit_iep:
2186 	if (prueth->pdata.quirk_10m_link_issue)
2187 		icss_iep_exit_fw(prueth->iep1);
2188 
2189 free_pool:
2190 	gen_pool_free(prueth->sram_pool,
2191 		      (unsigned long)prueth->msmcram.va, msmc_ram_size);
2192 
2193 put_mem:
2194 	pruss_release_mem_region(prueth->pruss, &prueth->shram);
2195 	pruss_put(prueth->pruss);
2196 
2197 put_cores:
2198 	if (eth1_node) {
2199 		prueth_put_cores(prueth, ICSS_SLICE1);
2200 		of_node_put(eth1_node);
2201 	}
2202 
2203 	if (eth0_node) {
2204 		prueth_put_cores(prueth, ICSS_SLICE0);
2205 		of_node_put(eth0_node);
2206 	}
2207 
2208 	return ret;
2209 }
2210 
2211 static void prueth_remove(struct platform_device *pdev)
2212 {
2213 	struct prueth *prueth = platform_get_drvdata(pdev);
2214 	struct device_node *eth_node;
2215 	int i;
2216 
2217 	for (i = 0; i < PRUETH_NUM_MACS; i++) {
2218 		if (!prueth->registered_netdevs[i])
2219 			continue;
2220 		phy_stop(prueth->emac[i]->ndev->phydev);
2221 		phy_disconnect(prueth->emac[i]->ndev->phydev);
2222 		prueth->emac[i]->ndev->phydev = NULL;
2223 		unregister_netdev(prueth->registered_netdevs[i]);
2224 	}
2225 
2226 	for (i = 0; i < PRUETH_NUM_MACS; i++) {
2227 		eth_node = prueth->eth_node[i];
2228 		if (!eth_node)
2229 			continue;
2230 
2231 		prueth_netdev_exit(prueth, eth_node);
2232 	}
2233 
2234 	if (prueth->pdata.quirk_10m_link_issue)
2235 		icss_iep_exit_fw(prueth->iep1);
2236 
2237 	icss_iep_put(prueth->iep1);
2238 	icss_iep_put(prueth->iep0);
2239 
2240 	gen_pool_free(prueth->sram_pool,
2241 		      (unsigned long)prueth->msmcram.va,
2242 		      MSMC_RAM_SIZE);
2243 
2244 	pruss_release_mem_region(prueth->pruss, &prueth->shram);
2245 
2246 	pruss_put(prueth->pruss);
2247 
2248 	if (prueth->eth_node[PRUETH_MAC1])
2249 		prueth_put_cores(prueth, ICSS_SLICE1);
2250 
2251 	if (prueth->eth_node[PRUETH_MAC0])
2252 		prueth_put_cores(prueth, ICSS_SLICE0);
2253 }
2254 
2255 #ifdef CONFIG_PM_SLEEP
2256 static int prueth_suspend(struct device *dev)
2257 {
2258 	struct prueth *prueth = dev_get_drvdata(dev);
2259 	struct net_device *ndev;
2260 	int i, ret;
2261 
2262 	for (i = 0; i < PRUETH_NUM_MACS; i++) {
2263 		ndev = prueth->registered_netdevs[i];
2264 
2265 		if (!ndev)
2266 			continue;
2267 
2268 		if (netif_running(ndev)) {
2269 			netif_device_detach(ndev);
2270 			ret = emac_ndo_stop(ndev);
2271 			if (ret < 0) {
2272 				netdev_err(ndev, "failed to stop: %d", ret);
2273 				return ret;
2274 			}
2275 		}
2276 	}
2277 
2278 	return 0;
2279 }
2280 
2281 static int prueth_resume(struct device *dev)
2282 {
2283 	struct prueth *prueth = dev_get_drvdata(dev);
2284 	struct net_device *ndev;
2285 	int i, ret;
2286 
2287 	for (i = 0; i < PRUETH_NUM_MACS; i++) {
2288 		ndev = prueth->registered_netdevs[i];
2289 
2290 		if (!ndev)
2291 			continue;
2292 
2293 		if (netif_running(ndev)) {
2294 			ret = emac_ndo_open(ndev);
2295 			if (ret < 0) {
2296 				netdev_err(ndev, "failed to start: %d", ret);
2297 				return ret;
2298 			}
2299 			netif_device_attach(ndev);
2300 		}
2301 	}
2302 
2303 	return 0;
2304 }
2305 #endif /* CONFIG_PM_SLEEP */
2306 
2307 static const struct dev_pm_ops prueth_dev_pm_ops = {
2308 	SET_SYSTEM_SLEEP_PM_OPS(prueth_suspend, prueth_resume)
2309 };
2310 
2311 static const struct prueth_pdata am654_icssg_pdata = {
2312 	.fdqring_mode = K3_RINGACC_RING_MODE_MESSAGE,
2313 	.quirk_10m_link_issue = 1,
2314 };
2315 
2316 static const struct of_device_id prueth_dt_match[] = {
2317 	{ .compatible = "ti,am654-icssg-prueth", .data = &am654_icssg_pdata },
2318 	{ /* sentinel */ }
2319 };
2320 MODULE_DEVICE_TABLE(of, prueth_dt_match);
2321 
2322 static struct platform_driver prueth_driver = {
2323 	.probe = prueth_probe,
2324 	.remove_new = prueth_remove,
2325 	.driver = {
2326 		.name = "icssg-prueth",
2327 		.of_match_table = prueth_dt_match,
2328 		.pm = &prueth_dev_pm_ops,
2329 	},
2330 };
2331 module_platform_driver(prueth_driver);
2332 
2333 MODULE_AUTHOR("Roger Quadros <rogerq@ti.com>");
2334 MODULE_AUTHOR("Md Danish Anwar <danishanwar@ti.com>");
2335 MODULE_DESCRIPTION("PRUSS ICSSG Ethernet Driver");
2336 MODULE_LICENSE("GPL");
2337