1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Texas Instruments ICSSG Ethernet Driver 4 * 5 * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/ 6 * 7 */ 8 9 #include <linux/bitops.h> 10 #include <linux/clk.h> 11 #include <linux/delay.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/dma/ti-cppi5.h> 14 #include <linux/etherdevice.h> 15 #include <linux/genalloc.h> 16 #include <linux/if_vlan.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel.h> 19 #include <linux/mfd/syscon.h> 20 #include <linux/module.h> 21 #include <linux/of.h> 22 #include <linux/of_mdio.h> 23 #include <linux/of_net.h> 24 #include <linux/platform_device.h> 25 #include <linux/phy.h> 26 #include <linux/property.h> 27 #include <linux/remoteproc/pruss.h> 28 #include <linux/regmap.h> 29 #include <linux/remoteproc.h> 30 31 #include "icssg_prueth.h" 32 #include "icssg_mii_rt.h" 33 #include "../k3-cppi-desc-pool.h" 34 35 #define PRUETH_MODULE_DESCRIPTION "PRUSS ICSSG Ethernet driver" 36 37 /* Netif debug messages possible */ 38 #define PRUETH_EMAC_DEBUG (NETIF_MSG_DRV | \ 39 NETIF_MSG_PROBE | \ 40 NETIF_MSG_LINK | \ 41 NETIF_MSG_TIMER | \ 42 NETIF_MSG_IFDOWN | \ 43 NETIF_MSG_IFUP | \ 44 NETIF_MSG_RX_ERR | \ 45 NETIF_MSG_TX_ERR | \ 46 NETIF_MSG_TX_QUEUED | \ 47 NETIF_MSG_INTR | \ 48 NETIF_MSG_TX_DONE | \ 49 NETIF_MSG_RX_STATUS | \ 50 NETIF_MSG_PKTDATA | \ 51 NETIF_MSG_HW | \ 52 NETIF_MSG_WOL) 53 54 #define prueth_napi_to_emac(napi) container_of(napi, struct prueth_emac, napi_rx) 55 56 /* CTRLMMR_ICSSG_RGMII_CTRL register bits */ 57 #define ICSSG_CTRL_RGMII_ID_MODE BIT(24) 58 59 #define IEP_DEFAULT_CYCLE_TIME_NS 1000000 /* 1 ms */ 60 61 static void prueth_cleanup_rx_chns(struct prueth_emac *emac, 62 struct prueth_rx_chn *rx_chn, 63 int max_rflows) 64 { 65 if (rx_chn->desc_pool) 66 k3_cppi_desc_pool_destroy(rx_chn->desc_pool); 67 68 if (rx_chn->rx_chn) 69 k3_udma_glue_release_rx_chn(rx_chn->rx_chn); 70 } 71 72 static void prueth_cleanup_tx_chns(struct prueth_emac *emac) 73 { 74 int i; 75 76 for (i = 0; i < emac->tx_ch_num; i++) { 77 struct prueth_tx_chn *tx_chn = &emac->tx_chns[i]; 78 79 if (tx_chn->desc_pool) 80 k3_cppi_desc_pool_destroy(tx_chn->desc_pool); 81 82 if (tx_chn->tx_chn) 83 k3_udma_glue_release_tx_chn(tx_chn->tx_chn); 84 85 /* Assume prueth_cleanup_tx_chns() is called at the 86 * end after all channel resources are freed 87 */ 88 memset(tx_chn, 0, sizeof(*tx_chn)); 89 } 90 } 91 92 static void prueth_ndev_del_tx_napi(struct prueth_emac *emac, int num) 93 { 94 int i; 95 96 for (i = 0; i < num; i++) { 97 struct prueth_tx_chn *tx_chn = &emac->tx_chns[i]; 98 99 if (tx_chn->irq) 100 free_irq(tx_chn->irq, tx_chn); 101 netif_napi_del(&tx_chn->napi_tx); 102 } 103 } 104 105 static void prueth_xmit_free(struct prueth_tx_chn *tx_chn, 106 struct cppi5_host_desc_t *desc) 107 { 108 struct cppi5_host_desc_t *first_desc, *next_desc; 109 dma_addr_t buf_dma, next_desc_dma; 110 u32 buf_dma_len; 111 112 first_desc = desc; 113 next_desc = first_desc; 114 115 cppi5_hdesc_get_obuf(first_desc, &buf_dma, &buf_dma_len); 116 k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &buf_dma); 117 118 dma_unmap_single(tx_chn->dma_dev, buf_dma, buf_dma_len, 119 DMA_TO_DEVICE); 120 121 next_desc_dma = cppi5_hdesc_get_next_hbdesc(first_desc); 122 k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &next_desc_dma); 123 while (next_desc_dma) { 124 next_desc = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool, 125 next_desc_dma); 126 cppi5_hdesc_get_obuf(next_desc, &buf_dma, &buf_dma_len); 127 k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &buf_dma); 128 129 dma_unmap_page(tx_chn->dma_dev, buf_dma, buf_dma_len, 130 DMA_TO_DEVICE); 131 132 next_desc_dma = cppi5_hdesc_get_next_hbdesc(next_desc); 133 k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &next_desc_dma); 134 135 k3_cppi_desc_pool_free(tx_chn->desc_pool, next_desc); 136 } 137 138 k3_cppi_desc_pool_free(tx_chn->desc_pool, first_desc); 139 } 140 141 static int emac_tx_complete_packets(struct prueth_emac *emac, int chn, 142 int budget) 143 { 144 struct net_device *ndev = emac->ndev; 145 struct cppi5_host_desc_t *desc_tx; 146 struct netdev_queue *netif_txq; 147 struct prueth_tx_chn *tx_chn; 148 unsigned int total_bytes = 0; 149 struct sk_buff *skb; 150 dma_addr_t desc_dma; 151 int res, num_tx = 0; 152 void **swdata; 153 154 tx_chn = &emac->tx_chns[chn]; 155 156 while (true) { 157 res = k3_udma_glue_pop_tx_chn(tx_chn->tx_chn, &desc_dma); 158 if (res == -ENODATA) 159 break; 160 161 /* teardown completion */ 162 if (cppi5_desc_is_tdcm(desc_dma)) { 163 if (atomic_dec_and_test(&emac->tdown_cnt)) 164 complete(&emac->tdown_complete); 165 break; 166 } 167 168 desc_tx = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool, 169 desc_dma); 170 swdata = cppi5_hdesc_get_swdata(desc_tx); 171 172 skb = *(swdata); 173 prueth_xmit_free(tx_chn, desc_tx); 174 175 ndev = skb->dev; 176 ndev->stats.tx_packets++; 177 ndev->stats.tx_bytes += skb->len; 178 total_bytes += skb->len; 179 napi_consume_skb(skb, budget); 180 num_tx++; 181 } 182 183 if (!num_tx) 184 return 0; 185 186 netif_txq = netdev_get_tx_queue(ndev, chn); 187 netdev_tx_completed_queue(netif_txq, num_tx, total_bytes); 188 189 if (netif_tx_queue_stopped(netif_txq)) { 190 /* If the TX queue was stopped, wake it now 191 * if we have enough room. 192 */ 193 __netif_tx_lock(netif_txq, smp_processor_id()); 194 if (netif_running(ndev) && 195 (k3_cppi_desc_pool_avail(tx_chn->desc_pool) >= 196 MAX_SKB_FRAGS)) 197 netif_tx_wake_queue(netif_txq); 198 __netif_tx_unlock(netif_txq); 199 } 200 201 return num_tx; 202 } 203 204 static int emac_napi_tx_poll(struct napi_struct *napi_tx, int budget) 205 { 206 struct prueth_tx_chn *tx_chn = prueth_napi_to_tx_chn(napi_tx); 207 struct prueth_emac *emac = tx_chn->emac; 208 int num_tx_packets; 209 210 num_tx_packets = emac_tx_complete_packets(emac, tx_chn->id, budget); 211 212 if (num_tx_packets >= budget) 213 return budget; 214 215 if (napi_complete_done(napi_tx, num_tx_packets)) 216 enable_irq(tx_chn->irq); 217 218 return num_tx_packets; 219 } 220 221 static irqreturn_t prueth_tx_irq(int irq, void *dev_id) 222 { 223 struct prueth_tx_chn *tx_chn = dev_id; 224 225 disable_irq_nosync(irq); 226 napi_schedule(&tx_chn->napi_tx); 227 228 return IRQ_HANDLED; 229 } 230 231 static int prueth_ndev_add_tx_napi(struct prueth_emac *emac) 232 { 233 struct prueth *prueth = emac->prueth; 234 int i, ret; 235 236 for (i = 0; i < emac->tx_ch_num; i++) { 237 struct prueth_tx_chn *tx_chn = &emac->tx_chns[i]; 238 239 netif_napi_add_tx(emac->ndev, &tx_chn->napi_tx, emac_napi_tx_poll); 240 ret = request_irq(tx_chn->irq, prueth_tx_irq, 241 IRQF_TRIGGER_HIGH, tx_chn->name, 242 tx_chn); 243 if (ret) { 244 netif_napi_del(&tx_chn->napi_tx); 245 dev_err(prueth->dev, "unable to request TX IRQ %d\n", 246 tx_chn->irq); 247 goto fail; 248 } 249 } 250 251 return 0; 252 fail: 253 prueth_ndev_del_tx_napi(emac, i); 254 return ret; 255 } 256 257 static int prueth_init_tx_chns(struct prueth_emac *emac) 258 { 259 static const struct k3_ring_cfg ring_cfg = { 260 .elm_size = K3_RINGACC_RING_ELSIZE_8, 261 .mode = K3_RINGACC_RING_MODE_RING, 262 .flags = 0, 263 .size = PRUETH_MAX_TX_DESC, 264 }; 265 struct k3_udma_glue_tx_channel_cfg tx_cfg; 266 struct device *dev = emac->prueth->dev; 267 struct net_device *ndev = emac->ndev; 268 int ret, slice, i; 269 u32 hdesc_size; 270 271 slice = prueth_emac_slice(emac); 272 if (slice < 0) 273 return slice; 274 275 init_completion(&emac->tdown_complete); 276 277 hdesc_size = cppi5_hdesc_calc_size(true, PRUETH_NAV_PS_DATA_SIZE, 278 PRUETH_NAV_SW_DATA_SIZE); 279 memset(&tx_cfg, 0, sizeof(tx_cfg)); 280 tx_cfg.swdata_size = PRUETH_NAV_SW_DATA_SIZE; 281 tx_cfg.tx_cfg = ring_cfg; 282 tx_cfg.txcq_cfg = ring_cfg; 283 284 for (i = 0; i < emac->tx_ch_num; i++) { 285 struct prueth_tx_chn *tx_chn = &emac->tx_chns[i]; 286 287 /* To differentiate channels for SLICE0 vs SLICE1 */ 288 snprintf(tx_chn->name, sizeof(tx_chn->name), 289 "tx%d-%d", slice, i); 290 291 tx_chn->emac = emac; 292 tx_chn->id = i; 293 tx_chn->descs_num = PRUETH_MAX_TX_DESC; 294 295 tx_chn->tx_chn = 296 k3_udma_glue_request_tx_chn(dev, tx_chn->name, 297 &tx_cfg); 298 if (IS_ERR(tx_chn->tx_chn)) { 299 ret = PTR_ERR(tx_chn->tx_chn); 300 tx_chn->tx_chn = NULL; 301 netdev_err(ndev, 302 "Failed to request tx dma ch: %d\n", ret); 303 goto fail; 304 } 305 306 tx_chn->dma_dev = k3_udma_glue_tx_get_dma_device(tx_chn->tx_chn); 307 tx_chn->desc_pool = 308 k3_cppi_desc_pool_create_name(tx_chn->dma_dev, 309 tx_chn->descs_num, 310 hdesc_size, 311 tx_chn->name); 312 if (IS_ERR(tx_chn->desc_pool)) { 313 ret = PTR_ERR(tx_chn->desc_pool); 314 tx_chn->desc_pool = NULL; 315 netdev_err(ndev, "Failed to create tx pool: %d\n", ret); 316 goto fail; 317 } 318 319 ret = k3_udma_glue_tx_get_irq(tx_chn->tx_chn); 320 if (ret < 0) { 321 netdev_err(ndev, "failed to get tx irq\n"); 322 goto fail; 323 } 324 tx_chn->irq = ret; 325 326 snprintf(tx_chn->name, sizeof(tx_chn->name), "%s-tx%d", 327 dev_name(dev), tx_chn->id); 328 } 329 330 return 0; 331 332 fail: 333 prueth_cleanup_tx_chns(emac); 334 return ret; 335 } 336 337 static int prueth_init_rx_chns(struct prueth_emac *emac, 338 struct prueth_rx_chn *rx_chn, 339 char *name, u32 max_rflows, 340 u32 max_desc_num) 341 { 342 struct k3_udma_glue_rx_channel_cfg rx_cfg; 343 struct device *dev = emac->prueth->dev; 344 struct net_device *ndev = emac->ndev; 345 u32 fdqring_id, hdesc_size; 346 int i, ret = 0, slice; 347 348 slice = prueth_emac_slice(emac); 349 if (slice < 0) 350 return slice; 351 352 /* To differentiate channels for SLICE0 vs SLICE1 */ 353 snprintf(rx_chn->name, sizeof(rx_chn->name), "%s%d", name, slice); 354 355 hdesc_size = cppi5_hdesc_calc_size(true, PRUETH_NAV_PS_DATA_SIZE, 356 PRUETH_NAV_SW_DATA_SIZE); 357 memset(&rx_cfg, 0, sizeof(rx_cfg)); 358 rx_cfg.swdata_size = PRUETH_NAV_SW_DATA_SIZE; 359 rx_cfg.flow_id_num = max_rflows; 360 rx_cfg.flow_id_base = -1; /* udmax will auto select flow id base */ 361 362 /* init all flows */ 363 rx_chn->dev = dev; 364 rx_chn->descs_num = max_desc_num; 365 366 rx_chn->rx_chn = k3_udma_glue_request_rx_chn(dev, rx_chn->name, 367 &rx_cfg); 368 if (IS_ERR(rx_chn->rx_chn)) { 369 ret = PTR_ERR(rx_chn->rx_chn); 370 rx_chn->rx_chn = NULL; 371 netdev_err(ndev, "Failed to request rx dma ch: %d\n", ret); 372 goto fail; 373 } 374 375 rx_chn->dma_dev = k3_udma_glue_rx_get_dma_device(rx_chn->rx_chn); 376 rx_chn->desc_pool = k3_cppi_desc_pool_create_name(rx_chn->dma_dev, 377 rx_chn->descs_num, 378 hdesc_size, 379 rx_chn->name); 380 if (IS_ERR(rx_chn->desc_pool)) { 381 ret = PTR_ERR(rx_chn->desc_pool); 382 rx_chn->desc_pool = NULL; 383 netdev_err(ndev, "Failed to create rx pool: %d\n", ret); 384 goto fail; 385 } 386 387 emac->rx_flow_id_base = k3_udma_glue_rx_get_flow_id_base(rx_chn->rx_chn); 388 netdev_dbg(ndev, "flow id base = %d\n", emac->rx_flow_id_base); 389 390 fdqring_id = K3_RINGACC_RING_ID_ANY; 391 for (i = 0; i < rx_cfg.flow_id_num; i++) { 392 struct k3_ring_cfg rxring_cfg = { 393 .elm_size = K3_RINGACC_RING_ELSIZE_8, 394 .mode = K3_RINGACC_RING_MODE_RING, 395 .flags = 0, 396 }; 397 struct k3_ring_cfg fdqring_cfg = { 398 .elm_size = K3_RINGACC_RING_ELSIZE_8, 399 .flags = K3_RINGACC_RING_SHARED, 400 }; 401 struct k3_udma_glue_rx_flow_cfg rx_flow_cfg = { 402 .rx_cfg = rxring_cfg, 403 .rxfdq_cfg = fdqring_cfg, 404 .ring_rxq_id = K3_RINGACC_RING_ID_ANY, 405 .src_tag_lo_sel = 406 K3_UDMA_GLUE_SRC_TAG_LO_USE_REMOTE_SRC_TAG, 407 }; 408 409 rx_flow_cfg.ring_rxfdq0_id = fdqring_id; 410 rx_flow_cfg.rx_cfg.size = max_desc_num; 411 rx_flow_cfg.rxfdq_cfg.size = max_desc_num; 412 rx_flow_cfg.rxfdq_cfg.mode = emac->prueth->pdata.fdqring_mode; 413 414 ret = k3_udma_glue_rx_flow_init(rx_chn->rx_chn, 415 i, &rx_flow_cfg); 416 if (ret) { 417 netdev_err(ndev, "Failed to init rx flow%d %d\n", 418 i, ret); 419 goto fail; 420 } 421 if (!i) 422 fdqring_id = k3_udma_glue_rx_flow_get_fdq_id(rx_chn->rx_chn, 423 i); 424 ret = k3_udma_glue_rx_get_irq(rx_chn->rx_chn, i); 425 if (ret <= 0) { 426 if (!ret) 427 ret = -ENXIO; 428 netdev_err(ndev, "Failed to get rx dma irq"); 429 goto fail; 430 } 431 rx_chn->irq[i] = ret; 432 } 433 434 return 0; 435 436 fail: 437 prueth_cleanup_rx_chns(emac, rx_chn, max_rflows); 438 return ret; 439 } 440 441 static int prueth_dma_rx_push(struct prueth_emac *emac, 442 struct sk_buff *skb, 443 struct prueth_rx_chn *rx_chn) 444 { 445 struct net_device *ndev = emac->ndev; 446 struct cppi5_host_desc_t *desc_rx; 447 u32 pkt_len = skb_tailroom(skb); 448 dma_addr_t desc_dma; 449 dma_addr_t buf_dma; 450 void **swdata; 451 452 desc_rx = k3_cppi_desc_pool_alloc(rx_chn->desc_pool); 453 if (!desc_rx) { 454 netdev_err(ndev, "rx push: failed to allocate descriptor\n"); 455 return -ENOMEM; 456 } 457 desc_dma = k3_cppi_desc_pool_virt2dma(rx_chn->desc_pool, desc_rx); 458 459 buf_dma = dma_map_single(rx_chn->dma_dev, skb->data, pkt_len, DMA_FROM_DEVICE); 460 if (unlikely(dma_mapping_error(rx_chn->dma_dev, buf_dma))) { 461 k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx); 462 netdev_err(ndev, "rx push: failed to map rx pkt buffer\n"); 463 return -EINVAL; 464 } 465 466 cppi5_hdesc_init(desc_rx, CPPI5_INFO0_HDESC_EPIB_PRESENT, 467 PRUETH_NAV_PS_DATA_SIZE); 468 k3_udma_glue_rx_dma_to_cppi5_addr(rx_chn->rx_chn, &buf_dma); 469 cppi5_hdesc_attach_buf(desc_rx, buf_dma, skb_tailroom(skb), buf_dma, skb_tailroom(skb)); 470 471 swdata = cppi5_hdesc_get_swdata(desc_rx); 472 *swdata = skb; 473 474 return k3_udma_glue_push_rx_chn(rx_chn->rx_chn, 0, 475 desc_rx, desc_dma); 476 } 477 478 static u64 icssg_ts_to_ns(u32 hi_sw, u32 hi, u32 lo, u32 cycle_time_ns) 479 { 480 u32 iepcount_lo, iepcount_hi, hi_rollover_count; 481 u64 ns; 482 483 iepcount_lo = lo & GENMASK(19, 0); 484 iepcount_hi = (hi & GENMASK(11, 0)) << 12 | lo >> 20; 485 hi_rollover_count = hi >> 11; 486 487 ns = ((u64)hi_rollover_count) << 23 | (iepcount_hi + hi_sw); 488 ns = ns * cycle_time_ns + iepcount_lo; 489 490 return ns; 491 } 492 493 static void emac_rx_timestamp(struct prueth_emac *emac, 494 struct sk_buff *skb, u32 *psdata) 495 { 496 struct skb_shared_hwtstamps *ssh; 497 u64 ns; 498 499 u32 hi_sw = readl(emac->prueth->shram.va + 500 TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET); 501 ns = icssg_ts_to_ns(hi_sw, psdata[1], psdata[0], 502 IEP_DEFAULT_CYCLE_TIME_NS); 503 504 ssh = skb_hwtstamps(skb); 505 memset(ssh, 0, sizeof(*ssh)); 506 ssh->hwtstamp = ns_to_ktime(ns); 507 } 508 509 static int emac_rx_packet(struct prueth_emac *emac, u32 flow_id) 510 { 511 struct prueth_rx_chn *rx_chn = &emac->rx_chns; 512 u32 buf_dma_len, pkt_len, port_id = 0; 513 struct net_device *ndev = emac->ndev; 514 struct cppi5_host_desc_t *desc_rx; 515 struct sk_buff *skb, *new_skb; 516 dma_addr_t desc_dma, buf_dma; 517 void **swdata; 518 u32 *psdata; 519 int ret; 520 521 ret = k3_udma_glue_pop_rx_chn(rx_chn->rx_chn, flow_id, &desc_dma); 522 if (ret) { 523 if (ret != -ENODATA) 524 netdev_err(ndev, "rx pop: failed: %d\n", ret); 525 return ret; 526 } 527 528 if (cppi5_desc_is_tdcm(desc_dma)) /* Teardown ? */ 529 return 0; 530 531 desc_rx = k3_cppi_desc_pool_dma2virt(rx_chn->desc_pool, desc_dma); 532 533 swdata = cppi5_hdesc_get_swdata(desc_rx); 534 skb = *swdata; 535 536 psdata = cppi5_hdesc_get_psdata(desc_rx); 537 /* RX HW timestamp */ 538 if (emac->rx_ts_enabled) 539 emac_rx_timestamp(emac, skb, psdata); 540 541 cppi5_hdesc_get_obuf(desc_rx, &buf_dma, &buf_dma_len); 542 k3_udma_glue_rx_cppi5_to_dma_addr(rx_chn->rx_chn, &buf_dma); 543 pkt_len = cppi5_hdesc_get_pktlen(desc_rx); 544 /* firmware adds 4 CRC bytes, strip them */ 545 pkt_len -= 4; 546 cppi5_desc_get_tags_ids(&desc_rx->hdr, &port_id, NULL); 547 548 dma_unmap_single(rx_chn->dma_dev, buf_dma, buf_dma_len, DMA_FROM_DEVICE); 549 k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx); 550 551 skb->dev = ndev; 552 new_skb = netdev_alloc_skb_ip_align(ndev, PRUETH_MAX_PKT_SIZE); 553 /* if allocation fails we drop the packet but push the 554 * descriptor back to the ring with old skb to prevent a stall 555 */ 556 if (!new_skb) { 557 ndev->stats.rx_dropped++; 558 new_skb = skb; 559 } else { 560 /* send the filled skb up the n/w stack */ 561 skb_put(skb, pkt_len); 562 skb->protocol = eth_type_trans(skb, ndev); 563 napi_gro_receive(&emac->napi_rx, skb); 564 ndev->stats.rx_bytes += pkt_len; 565 ndev->stats.rx_packets++; 566 } 567 568 /* queue another RX DMA */ 569 ret = prueth_dma_rx_push(emac, new_skb, &emac->rx_chns); 570 if (WARN_ON(ret < 0)) { 571 dev_kfree_skb_any(new_skb); 572 ndev->stats.rx_errors++; 573 ndev->stats.rx_dropped++; 574 } 575 576 return ret; 577 } 578 579 static void prueth_rx_cleanup(void *data, dma_addr_t desc_dma) 580 { 581 struct prueth_rx_chn *rx_chn = data; 582 struct cppi5_host_desc_t *desc_rx; 583 struct sk_buff *skb; 584 dma_addr_t buf_dma; 585 u32 buf_dma_len; 586 void **swdata; 587 588 desc_rx = k3_cppi_desc_pool_dma2virt(rx_chn->desc_pool, desc_dma); 589 swdata = cppi5_hdesc_get_swdata(desc_rx); 590 skb = *swdata; 591 cppi5_hdesc_get_obuf(desc_rx, &buf_dma, &buf_dma_len); 592 k3_udma_glue_rx_cppi5_to_dma_addr(rx_chn->rx_chn, &buf_dma); 593 594 dma_unmap_single(rx_chn->dma_dev, buf_dma, buf_dma_len, 595 DMA_FROM_DEVICE); 596 k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx); 597 598 dev_kfree_skb_any(skb); 599 } 600 601 static int emac_get_tx_ts(struct prueth_emac *emac, 602 struct emac_tx_ts_response *rsp) 603 { 604 struct prueth *prueth = emac->prueth; 605 int slice = prueth_emac_slice(emac); 606 int addr; 607 608 addr = icssg_queue_pop(prueth, slice == 0 ? 609 ICSSG_TS_POP_SLICE0 : ICSSG_TS_POP_SLICE1); 610 if (addr < 0) 611 return addr; 612 613 memcpy_fromio(rsp, prueth->shram.va + addr, sizeof(*rsp)); 614 /* return buffer back for to pool */ 615 icssg_queue_push(prueth, slice == 0 ? 616 ICSSG_TS_PUSH_SLICE0 : ICSSG_TS_PUSH_SLICE1, addr); 617 618 return 0; 619 } 620 621 static void tx_ts_work(struct prueth_emac *emac) 622 { 623 struct skb_shared_hwtstamps ssh; 624 struct emac_tx_ts_response tsr; 625 struct sk_buff *skb; 626 int ret = 0; 627 u32 hi_sw; 628 u64 ns; 629 630 /* There may be more than one pending requests */ 631 while (1) { 632 ret = emac_get_tx_ts(emac, &tsr); 633 if (ret) /* nothing more */ 634 break; 635 636 if (tsr.cookie >= PRUETH_MAX_TX_TS_REQUESTS || 637 !emac->tx_ts_skb[tsr.cookie]) { 638 netdev_err(emac->ndev, "Invalid TX TS cookie 0x%x\n", 639 tsr.cookie); 640 break; 641 } 642 643 skb = emac->tx_ts_skb[tsr.cookie]; 644 emac->tx_ts_skb[tsr.cookie] = NULL; /* free slot */ 645 if (!skb) { 646 netdev_err(emac->ndev, "Driver Bug! got NULL skb\n"); 647 break; 648 } 649 650 hi_sw = readl(emac->prueth->shram.va + 651 TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET); 652 ns = icssg_ts_to_ns(hi_sw, tsr.hi_ts, tsr.lo_ts, 653 IEP_DEFAULT_CYCLE_TIME_NS); 654 655 memset(&ssh, 0, sizeof(ssh)); 656 ssh.hwtstamp = ns_to_ktime(ns); 657 658 skb_tstamp_tx(skb, &ssh); 659 dev_consume_skb_any(skb); 660 661 if (atomic_dec_and_test(&emac->tx_ts_pending)) /* no more? */ 662 break; 663 } 664 } 665 666 static int prueth_tx_ts_cookie_get(struct prueth_emac *emac) 667 { 668 int i; 669 670 /* search and get the next free slot */ 671 for (i = 0; i < PRUETH_MAX_TX_TS_REQUESTS; i++) { 672 if (!emac->tx_ts_skb[i]) { 673 emac->tx_ts_skb[i] = ERR_PTR(-EBUSY); /* reserve slot */ 674 return i; 675 } 676 } 677 678 return -EBUSY; 679 } 680 681 /** 682 * emac_ndo_start_xmit - EMAC Transmit function 683 * @skb: SKB pointer 684 * @ndev: EMAC network adapter 685 * 686 * Called by the system to transmit a packet - we queue the packet in 687 * EMAC hardware transmit queue 688 * Doesn't wait for completion we'll check for TX completion in 689 * emac_tx_complete_packets(). 690 * 691 * Return: enum netdev_tx 692 */ 693 static enum netdev_tx emac_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev) 694 { 695 struct cppi5_host_desc_t *first_desc, *next_desc, *cur_desc; 696 struct prueth_emac *emac = netdev_priv(ndev); 697 struct netdev_queue *netif_txq; 698 struct prueth_tx_chn *tx_chn; 699 dma_addr_t desc_dma, buf_dma; 700 int i, ret = 0, q_idx; 701 bool in_tx_ts = 0; 702 int tx_ts_cookie; 703 void **swdata; 704 u32 pkt_len; 705 u32 *epib; 706 707 pkt_len = skb_headlen(skb); 708 q_idx = skb_get_queue_mapping(skb); 709 710 tx_chn = &emac->tx_chns[q_idx]; 711 netif_txq = netdev_get_tx_queue(ndev, q_idx); 712 713 /* Map the linear buffer */ 714 buf_dma = dma_map_single(tx_chn->dma_dev, skb->data, pkt_len, DMA_TO_DEVICE); 715 if (dma_mapping_error(tx_chn->dma_dev, buf_dma)) { 716 netdev_err(ndev, "tx: failed to map skb buffer\n"); 717 ret = NETDEV_TX_OK; 718 goto drop_free_skb; 719 } 720 721 first_desc = k3_cppi_desc_pool_alloc(tx_chn->desc_pool); 722 if (!first_desc) { 723 netdev_dbg(ndev, "tx: failed to allocate descriptor\n"); 724 dma_unmap_single(tx_chn->dma_dev, buf_dma, pkt_len, DMA_TO_DEVICE); 725 goto drop_stop_q_busy; 726 } 727 728 cppi5_hdesc_init(first_desc, CPPI5_INFO0_HDESC_EPIB_PRESENT, 729 PRUETH_NAV_PS_DATA_SIZE); 730 cppi5_hdesc_set_pkttype(first_desc, 0); 731 epib = first_desc->epib; 732 epib[0] = 0; 733 epib[1] = 0; 734 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 735 emac->tx_ts_enabled) { 736 tx_ts_cookie = prueth_tx_ts_cookie_get(emac); 737 if (tx_ts_cookie >= 0) { 738 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 739 /* Request TX timestamp */ 740 epib[0] = (u32)tx_ts_cookie; 741 epib[1] = 0x80000000; /* TX TS request */ 742 emac->tx_ts_skb[tx_ts_cookie] = skb_get(skb); 743 in_tx_ts = 1; 744 } 745 } 746 747 /* set dst tag to indicate internal qid at the firmware which is at 748 * bit8..bit15. bit0..bit7 indicates port num for directed 749 * packets in case of switch mode operation 750 */ 751 cppi5_desc_set_tags_ids(&first_desc->hdr, 0, (emac->port_id | (q_idx << 8))); 752 k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &buf_dma); 753 cppi5_hdesc_attach_buf(first_desc, buf_dma, pkt_len, buf_dma, pkt_len); 754 swdata = cppi5_hdesc_get_swdata(first_desc); 755 *swdata = skb; 756 757 /* Handle the case where skb is fragmented in pages */ 758 cur_desc = first_desc; 759 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 760 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 761 u32 frag_size = skb_frag_size(frag); 762 763 next_desc = k3_cppi_desc_pool_alloc(tx_chn->desc_pool); 764 if (!next_desc) { 765 netdev_err(ndev, 766 "tx: failed to allocate frag. descriptor\n"); 767 goto free_desc_stop_q_busy_cleanup_tx_ts; 768 } 769 770 buf_dma = skb_frag_dma_map(tx_chn->dma_dev, frag, 0, frag_size, 771 DMA_TO_DEVICE); 772 if (dma_mapping_error(tx_chn->dma_dev, buf_dma)) { 773 netdev_err(ndev, "tx: Failed to map skb page\n"); 774 k3_cppi_desc_pool_free(tx_chn->desc_pool, next_desc); 775 ret = NETDEV_TX_OK; 776 goto cleanup_tx_ts; 777 } 778 779 cppi5_hdesc_reset_hbdesc(next_desc); 780 k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &buf_dma); 781 cppi5_hdesc_attach_buf(next_desc, 782 buf_dma, frag_size, buf_dma, frag_size); 783 784 desc_dma = k3_cppi_desc_pool_virt2dma(tx_chn->desc_pool, 785 next_desc); 786 k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &desc_dma); 787 cppi5_hdesc_link_hbdesc(cur_desc, desc_dma); 788 789 pkt_len += frag_size; 790 cur_desc = next_desc; 791 } 792 WARN_ON_ONCE(pkt_len != skb->len); 793 794 /* report bql before sending packet */ 795 netdev_tx_sent_queue(netif_txq, pkt_len); 796 797 cppi5_hdesc_set_pktlen(first_desc, pkt_len); 798 desc_dma = k3_cppi_desc_pool_virt2dma(tx_chn->desc_pool, first_desc); 799 /* cppi5_desc_dump(first_desc, 64); */ 800 801 skb_tx_timestamp(skb); /* SW timestamp if SKBTX_IN_PROGRESS not set */ 802 ret = k3_udma_glue_push_tx_chn(tx_chn->tx_chn, first_desc, desc_dma); 803 if (ret) { 804 netdev_err(ndev, "tx: push failed: %d\n", ret); 805 goto drop_free_descs; 806 } 807 808 if (in_tx_ts) 809 atomic_inc(&emac->tx_ts_pending); 810 811 if (k3_cppi_desc_pool_avail(tx_chn->desc_pool) < MAX_SKB_FRAGS) { 812 netif_tx_stop_queue(netif_txq); 813 /* Barrier, so that stop_queue visible to other cpus */ 814 smp_mb__after_atomic(); 815 816 if (k3_cppi_desc_pool_avail(tx_chn->desc_pool) >= 817 MAX_SKB_FRAGS) 818 netif_tx_wake_queue(netif_txq); 819 } 820 821 return NETDEV_TX_OK; 822 823 cleanup_tx_ts: 824 if (in_tx_ts) { 825 dev_kfree_skb_any(emac->tx_ts_skb[tx_ts_cookie]); 826 emac->tx_ts_skb[tx_ts_cookie] = NULL; 827 } 828 829 drop_free_descs: 830 prueth_xmit_free(tx_chn, first_desc); 831 832 drop_free_skb: 833 dev_kfree_skb_any(skb); 834 835 /* error */ 836 ndev->stats.tx_dropped++; 837 netdev_err(ndev, "tx: error: %d\n", ret); 838 839 return ret; 840 841 free_desc_stop_q_busy_cleanup_tx_ts: 842 if (in_tx_ts) { 843 dev_kfree_skb_any(emac->tx_ts_skb[tx_ts_cookie]); 844 emac->tx_ts_skb[tx_ts_cookie] = NULL; 845 } 846 prueth_xmit_free(tx_chn, first_desc); 847 848 drop_stop_q_busy: 849 netif_tx_stop_queue(netif_txq); 850 return NETDEV_TX_BUSY; 851 } 852 853 static void prueth_tx_cleanup(void *data, dma_addr_t desc_dma) 854 { 855 struct prueth_tx_chn *tx_chn = data; 856 struct cppi5_host_desc_t *desc_tx; 857 struct sk_buff *skb; 858 void **swdata; 859 860 desc_tx = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool, desc_dma); 861 swdata = cppi5_hdesc_get_swdata(desc_tx); 862 skb = *(swdata); 863 prueth_xmit_free(tx_chn, desc_tx); 864 865 dev_kfree_skb_any(skb); 866 } 867 868 static irqreturn_t prueth_tx_ts_irq(int irq, void *dev_id) 869 { 870 struct prueth_emac *emac = dev_id; 871 872 /* currently only TX timestamp is being returned */ 873 tx_ts_work(emac); 874 875 return IRQ_HANDLED; 876 } 877 878 static irqreturn_t prueth_rx_irq(int irq, void *dev_id) 879 { 880 struct prueth_emac *emac = dev_id; 881 882 disable_irq_nosync(irq); 883 napi_schedule(&emac->napi_rx); 884 885 return IRQ_HANDLED; 886 } 887 888 struct icssg_firmwares { 889 char *pru; 890 char *rtu; 891 char *txpru; 892 }; 893 894 static struct icssg_firmwares icssg_emac_firmwares[] = { 895 { 896 .pru = "ti-pruss/am65x-sr2-pru0-prueth-fw.elf", 897 .rtu = "ti-pruss/am65x-sr2-rtu0-prueth-fw.elf", 898 .txpru = "ti-pruss/am65x-sr2-txpru0-prueth-fw.elf", 899 }, 900 { 901 .pru = "ti-pruss/am65x-sr2-pru1-prueth-fw.elf", 902 .rtu = "ti-pruss/am65x-sr2-rtu1-prueth-fw.elf", 903 .txpru = "ti-pruss/am65x-sr2-txpru1-prueth-fw.elf", 904 } 905 }; 906 907 static int prueth_emac_start(struct prueth *prueth, struct prueth_emac *emac) 908 { 909 struct icssg_firmwares *firmwares; 910 struct device *dev = prueth->dev; 911 int slice, ret; 912 913 firmwares = icssg_emac_firmwares; 914 915 slice = prueth_emac_slice(emac); 916 if (slice < 0) { 917 netdev_err(emac->ndev, "invalid port\n"); 918 return -EINVAL; 919 } 920 921 ret = icssg_config(prueth, emac, slice); 922 if (ret) 923 return ret; 924 925 ret = rproc_set_firmware(prueth->pru[slice], firmwares[slice].pru); 926 ret = rproc_boot(prueth->pru[slice]); 927 if (ret) { 928 dev_err(dev, "failed to boot PRU%d: %d\n", slice, ret); 929 return -EINVAL; 930 } 931 932 ret = rproc_set_firmware(prueth->rtu[slice], firmwares[slice].rtu); 933 ret = rproc_boot(prueth->rtu[slice]); 934 if (ret) { 935 dev_err(dev, "failed to boot RTU%d: %d\n", slice, ret); 936 goto halt_pru; 937 } 938 939 ret = rproc_set_firmware(prueth->txpru[slice], firmwares[slice].txpru); 940 ret = rproc_boot(prueth->txpru[slice]); 941 if (ret) { 942 dev_err(dev, "failed to boot TX_PRU%d: %d\n", slice, ret); 943 goto halt_rtu; 944 } 945 946 emac->fw_running = 1; 947 return 0; 948 949 halt_rtu: 950 rproc_shutdown(prueth->rtu[slice]); 951 952 halt_pru: 953 rproc_shutdown(prueth->pru[slice]); 954 955 return ret; 956 } 957 958 static void prueth_emac_stop(struct prueth_emac *emac) 959 { 960 struct prueth *prueth = emac->prueth; 961 int slice; 962 963 switch (emac->port_id) { 964 case PRUETH_PORT_MII0: 965 slice = ICSS_SLICE0; 966 break; 967 case PRUETH_PORT_MII1: 968 slice = ICSS_SLICE1; 969 break; 970 default: 971 netdev_err(emac->ndev, "invalid port\n"); 972 return; 973 } 974 975 emac->fw_running = 0; 976 rproc_shutdown(prueth->txpru[slice]); 977 rproc_shutdown(prueth->rtu[slice]); 978 rproc_shutdown(prueth->pru[slice]); 979 } 980 981 static void prueth_cleanup_tx_ts(struct prueth_emac *emac) 982 { 983 int i; 984 985 for (i = 0; i < PRUETH_MAX_TX_TS_REQUESTS; i++) { 986 if (emac->tx_ts_skb[i]) { 987 dev_kfree_skb_any(emac->tx_ts_skb[i]); 988 emac->tx_ts_skb[i] = NULL; 989 } 990 } 991 } 992 993 /* called back by PHY layer if there is change in link state of hw port*/ 994 static void emac_adjust_link(struct net_device *ndev) 995 { 996 struct prueth_emac *emac = netdev_priv(ndev); 997 struct phy_device *phydev = ndev->phydev; 998 struct prueth *prueth = emac->prueth; 999 bool new_state = false; 1000 unsigned long flags; 1001 1002 if (phydev->link) { 1003 /* check the mode of operation - full/half duplex */ 1004 if (phydev->duplex != emac->duplex) { 1005 new_state = true; 1006 emac->duplex = phydev->duplex; 1007 } 1008 if (phydev->speed != emac->speed) { 1009 new_state = true; 1010 emac->speed = phydev->speed; 1011 } 1012 if (!emac->link) { 1013 new_state = true; 1014 emac->link = 1; 1015 } 1016 } else if (emac->link) { 1017 new_state = true; 1018 emac->link = 0; 1019 1020 /* f/w should support 100 & 1000 */ 1021 emac->speed = SPEED_1000; 1022 1023 /* half duplex may not be supported by f/w */ 1024 emac->duplex = DUPLEX_FULL; 1025 } 1026 1027 if (new_state) { 1028 phy_print_status(phydev); 1029 1030 /* update RGMII and MII configuration based on PHY negotiated 1031 * values 1032 */ 1033 if (emac->link) { 1034 if (emac->duplex == DUPLEX_HALF) 1035 icssg_config_half_duplex(emac); 1036 /* Set the RGMII cfg for gig en and full duplex */ 1037 icssg_update_rgmii_cfg(prueth->miig_rt, emac); 1038 1039 /* update the Tx IPG based on 100M/1G speed */ 1040 spin_lock_irqsave(&emac->lock, flags); 1041 icssg_config_ipg(emac); 1042 spin_unlock_irqrestore(&emac->lock, flags); 1043 icssg_config_set_speed(emac); 1044 emac_set_port_state(emac, ICSSG_EMAC_PORT_FORWARD); 1045 1046 } else { 1047 emac_set_port_state(emac, ICSSG_EMAC_PORT_DISABLE); 1048 } 1049 } 1050 1051 if (emac->link) { 1052 /* reactivate the transmit queue */ 1053 netif_tx_wake_all_queues(ndev); 1054 } else { 1055 netif_tx_stop_all_queues(ndev); 1056 prueth_cleanup_tx_ts(emac); 1057 } 1058 } 1059 1060 static int emac_napi_rx_poll(struct napi_struct *napi_rx, int budget) 1061 { 1062 struct prueth_emac *emac = prueth_napi_to_emac(napi_rx); 1063 int rx_flow = PRUETH_RX_FLOW_DATA; 1064 int flow = PRUETH_MAX_RX_FLOWS; 1065 int num_rx = 0; 1066 int cur_budget; 1067 int ret; 1068 1069 while (flow--) { 1070 cur_budget = budget - num_rx; 1071 1072 while (cur_budget--) { 1073 ret = emac_rx_packet(emac, flow); 1074 if (ret) 1075 break; 1076 num_rx++; 1077 } 1078 1079 if (num_rx >= budget) 1080 break; 1081 } 1082 1083 if (num_rx < budget && napi_complete_done(napi_rx, num_rx)) 1084 enable_irq(emac->rx_chns.irq[rx_flow]); 1085 1086 return num_rx; 1087 } 1088 1089 static int prueth_prepare_rx_chan(struct prueth_emac *emac, 1090 struct prueth_rx_chn *chn, 1091 int buf_size) 1092 { 1093 struct sk_buff *skb; 1094 int i, ret; 1095 1096 for (i = 0; i < chn->descs_num; i++) { 1097 skb = __netdev_alloc_skb_ip_align(NULL, buf_size, GFP_KERNEL); 1098 if (!skb) 1099 return -ENOMEM; 1100 1101 ret = prueth_dma_rx_push(emac, skb, chn); 1102 if (ret < 0) { 1103 netdev_err(emac->ndev, 1104 "cannot submit skb for rx chan %s ret %d\n", 1105 chn->name, ret); 1106 kfree_skb(skb); 1107 return ret; 1108 } 1109 } 1110 1111 return 0; 1112 } 1113 1114 static void prueth_reset_tx_chan(struct prueth_emac *emac, int ch_num, 1115 bool free_skb) 1116 { 1117 int i; 1118 1119 for (i = 0; i < ch_num; i++) { 1120 if (free_skb) 1121 k3_udma_glue_reset_tx_chn(emac->tx_chns[i].tx_chn, 1122 &emac->tx_chns[i], 1123 prueth_tx_cleanup); 1124 k3_udma_glue_disable_tx_chn(emac->tx_chns[i].tx_chn); 1125 } 1126 } 1127 1128 static void prueth_reset_rx_chan(struct prueth_rx_chn *chn, 1129 int num_flows, bool disable) 1130 { 1131 int i; 1132 1133 for (i = 0; i < num_flows; i++) 1134 k3_udma_glue_reset_rx_chn(chn->rx_chn, i, chn, 1135 prueth_rx_cleanup, !!i); 1136 if (disable) 1137 k3_udma_glue_disable_rx_chn(chn->rx_chn); 1138 } 1139 1140 static int emac_phy_connect(struct prueth_emac *emac) 1141 { 1142 struct prueth *prueth = emac->prueth; 1143 struct net_device *ndev = emac->ndev; 1144 /* connect PHY */ 1145 ndev->phydev = of_phy_connect(emac->ndev, emac->phy_node, 1146 &emac_adjust_link, 0, 1147 emac->phy_if); 1148 if (!ndev->phydev) { 1149 dev_err(prueth->dev, "couldn't connect to phy %s\n", 1150 emac->phy_node->full_name); 1151 return -ENODEV; 1152 } 1153 1154 if (!emac->half_duplex) { 1155 dev_dbg(prueth->dev, "half duplex mode is not supported\n"); 1156 phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT); 1157 phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT); 1158 } 1159 1160 /* remove unsupported modes */ 1161 phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 1162 phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_Pause_BIT); 1163 phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT); 1164 1165 if (emac->phy_if == PHY_INTERFACE_MODE_MII) 1166 phy_set_max_speed(ndev->phydev, SPEED_100); 1167 1168 return 0; 1169 } 1170 1171 static u64 prueth_iep_gettime(void *clockops_data, struct ptp_system_timestamp *sts) 1172 { 1173 u32 hi_rollover_count, hi_rollover_count_r; 1174 struct prueth_emac *emac = clockops_data; 1175 struct prueth *prueth = emac->prueth; 1176 void __iomem *fw_hi_r_count_addr; 1177 void __iomem *fw_count_hi_addr; 1178 u32 iepcount_hi, iepcount_hi_r; 1179 unsigned long flags; 1180 u32 iepcount_lo; 1181 u64 ts = 0; 1182 1183 fw_count_hi_addr = prueth->shram.va + TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET; 1184 fw_hi_r_count_addr = prueth->shram.va + TIMESYNC_FW_WC_HI_ROLLOVER_COUNT_OFFSET; 1185 1186 local_irq_save(flags); 1187 do { 1188 iepcount_hi = icss_iep_get_count_hi(emac->iep); 1189 iepcount_hi += readl(fw_count_hi_addr); 1190 hi_rollover_count = readl(fw_hi_r_count_addr); 1191 ptp_read_system_prets(sts); 1192 iepcount_lo = icss_iep_get_count_low(emac->iep); 1193 ptp_read_system_postts(sts); 1194 1195 iepcount_hi_r = icss_iep_get_count_hi(emac->iep); 1196 iepcount_hi_r += readl(fw_count_hi_addr); 1197 hi_rollover_count_r = readl(fw_hi_r_count_addr); 1198 } while ((iepcount_hi_r != iepcount_hi) || 1199 (hi_rollover_count != hi_rollover_count_r)); 1200 local_irq_restore(flags); 1201 1202 ts = ((u64)hi_rollover_count) << 23 | iepcount_hi; 1203 ts = ts * (u64)IEP_DEFAULT_CYCLE_TIME_NS + iepcount_lo; 1204 1205 return ts; 1206 } 1207 1208 static void prueth_iep_settime(void *clockops_data, u64 ns) 1209 { 1210 struct icssg_setclock_desc __iomem *sc_descp; 1211 struct prueth_emac *emac = clockops_data; 1212 struct icssg_setclock_desc sc_desc; 1213 u64 cyclecount; 1214 u32 cycletime; 1215 int timeout; 1216 1217 if (!emac->fw_running) 1218 return; 1219 1220 sc_descp = emac->prueth->shram.va + TIMESYNC_FW_WC_SETCLOCK_DESC_OFFSET; 1221 1222 cycletime = IEP_DEFAULT_CYCLE_TIME_NS; 1223 cyclecount = ns / cycletime; 1224 1225 memset(&sc_desc, 0, sizeof(sc_desc)); 1226 sc_desc.margin = cycletime - 1000; 1227 sc_desc.cyclecounter0_set = cyclecount & GENMASK(31, 0); 1228 sc_desc.cyclecounter1_set = (cyclecount & GENMASK(63, 32)) >> 32; 1229 sc_desc.iepcount_set = ns % cycletime; 1230 sc_desc.CMP0_current = cycletime - 4; //Count from 0 to (cycle time)-4 1231 1232 memcpy_toio(sc_descp, &sc_desc, sizeof(sc_desc)); 1233 1234 writeb(1, &sc_descp->request); 1235 1236 timeout = 5; /* fw should take 2-3 ms */ 1237 while (timeout--) { 1238 if (readb(&sc_descp->acknowledgment)) 1239 return; 1240 1241 usleep_range(500, 1000); 1242 } 1243 1244 dev_err(emac->prueth->dev, "settime timeout\n"); 1245 } 1246 1247 static int prueth_perout_enable(void *clockops_data, 1248 struct ptp_perout_request *req, int on, 1249 u64 *cmp) 1250 { 1251 struct prueth_emac *emac = clockops_data; 1252 u32 reduction_factor = 0, offset = 0; 1253 struct timespec64 ts; 1254 u64 ns_period; 1255 1256 if (!on) 1257 return 0; 1258 1259 /* Any firmware specific stuff for PPS/PEROUT handling */ 1260 ts.tv_sec = req->period.sec; 1261 ts.tv_nsec = req->period.nsec; 1262 ns_period = timespec64_to_ns(&ts); 1263 1264 /* f/w doesn't support period less than cycle time */ 1265 if (ns_period < IEP_DEFAULT_CYCLE_TIME_NS) 1266 return -ENXIO; 1267 1268 reduction_factor = ns_period / IEP_DEFAULT_CYCLE_TIME_NS; 1269 offset = ns_period % IEP_DEFAULT_CYCLE_TIME_NS; 1270 1271 /* f/w requires at least 1uS within a cycle so CMP 1272 * can trigger after SYNC is enabled 1273 */ 1274 if (offset < 5 * NSEC_PER_USEC) 1275 offset = 5 * NSEC_PER_USEC; 1276 1277 /* if offset is close to cycle time then we will miss 1278 * the CMP event for last tick when IEP rolls over. 1279 * In normal mode, IEP tick is 4ns. 1280 * In slow compensation it could be 0ns or 8ns at 1281 * every slow compensation cycle. 1282 */ 1283 if (offset > IEP_DEFAULT_CYCLE_TIME_NS - 8) 1284 offset = IEP_DEFAULT_CYCLE_TIME_NS - 8; 1285 1286 /* we're in shadow mode so need to set upper 32-bits */ 1287 *cmp = (u64)offset << 32; 1288 1289 writel(reduction_factor, emac->prueth->shram.va + 1290 TIMESYNC_FW_WC_SYNCOUT_REDUCTION_FACTOR_OFFSET); 1291 1292 writel(0, emac->prueth->shram.va + 1293 TIMESYNC_FW_WC_SYNCOUT_START_TIME_CYCLECOUNT_OFFSET); 1294 1295 return 0; 1296 } 1297 1298 const struct icss_iep_clockops prueth_iep_clockops = { 1299 .settime = prueth_iep_settime, 1300 .gettime = prueth_iep_gettime, 1301 .perout_enable = prueth_perout_enable, 1302 }; 1303 1304 /** 1305 * emac_ndo_open - EMAC device open 1306 * @ndev: network adapter device 1307 * 1308 * Called when system wants to start the interface. 1309 * 1310 * Return: 0 for a successful open, or appropriate error code 1311 */ 1312 static int emac_ndo_open(struct net_device *ndev) 1313 { 1314 struct prueth_emac *emac = netdev_priv(ndev); 1315 int ret, i, num_data_chn = emac->tx_ch_num; 1316 struct prueth *prueth = emac->prueth; 1317 int slice = prueth_emac_slice(emac); 1318 struct device *dev = prueth->dev; 1319 int max_rx_flows; 1320 int rx_flow; 1321 1322 /* clear SMEM and MSMC settings for all slices */ 1323 if (!prueth->emacs_initialized) { 1324 memset_io(prueth->msmcram.va, 0, prueth->msmcram.size); 1325 memset_io(prueth->shram.va, 0, ICSSG_CONFIG_OFFSET_SLICE1 * PRUETH_NUM_MACS); 1326 } 1327 1328 /* set h/w MAC as user might have re-configured */ 1329 ether_addr_copy(emac->mac_addr, ndev->dev_addr); 1330 1331 icssg_class_set_mac_addr(prueth->miig_rt, slice, emac->mac_addr); 1332 icssg_ft1_set_mac_addr(prueth->miig_rt, slice, emac->mac_addr); 1333 1334 icssg_class_default(prueth->miig_rt, slice, 0); 1335 1336 /* Notify the stack of the actual queue counts. */ 1337 ret = netif_set_real_num_tx_queues(ndev, num_data_chn); 1338 if (ret) { 1339 dev_err(dev, "cannot set real number of tx queues\n"); 1340 return ret; 1341 } 1342 1343 init_completion(&emac->cmd_complete); 1344 ret = prueth_init_tx_chns(emac); 1345 if (ret) { 1346 dev_err(dev, "failed to init tx channel: %d\n", ret); 1347 return ret; 1348 } 1349 1350 max_rx_flows = PRUETH_MAX_RX_FLOWS; 1351 ret = prueth_init_rx_chns(emac, &emac->rx_chns, "rx", 1352 max_rx_flows, PRUETH_MAX_RX_DESC); 1353 if (ret) { 1354 dev_err(dev, "failed to init rx channel: %d\n", ret); 1355 goto cleanup_tx; 1356 } 1357 1358 ret = prueth_ndev_add_tx_napi(emac); 1359 if (ret) 1360 goto cleanup_rx; 1361 1362 /* we use only the highest priority flow for now i.e. @irq[3] */ 1363 rx_flow = PRUETH_RX_FLOW_DATA; 1364 ret = request_irq(emac->rx_chns.irq[rx_flow], prueth_rx_irq, 1365 IRQF_TRIGGER_HIGH, dev_name(dev), emac); 1366 if (ret) { 1367 dev_err(dev, "unable to request RX IRQ\n"); 1368 goto cleanup_napi; 1369 } 1370 1371 /* reset and start PRU firmware */ 1372 ret = prueth_emac_start(prueth, emac); 1373 if (ret) 1374 goto free_rx_irq; 1375 1376 icssg_mii_update_mtu(prueth->mii_rt, slice, ndev->max_mtu); 1377 1378 if (!prueth->emacs_initialized) { 1379 ret = icss_iep_init(emac->iep, &prueth_iep_clockops, 1380 emac, IEP_DEFAULT_CYCLE_TIME_NS); 1381 } 1382 1383 ret = request_threaded_irq(emac->tx_ts_irq, NULL, prueth_tx_ts_irq, 1384 IRQF_ONESHOT, dev_name(dev), emac); 1385 if (ret) 1386 goto stop; 1387 1388 /* Prepare RX */ 1389 ret = prueth_prepare_rx_chan(emac, &emac->rx_chns, PRUETH_MAX_PKT_SIZE); 1390 if (ret) 1391 goto free_tx_ts_irq; 1392 1393 ret = k3_udma_glue_enable_rx_chn(emac->rx_chns.rx_chn); 1394 if (ret) 1395 goto reset_rx_chn; 1396 1397 for (i = 0; i < emac->tx_ch_num; i++) { 1398 ret = k3_udma_glue_enable_tx_chn(emac->tx_chns[i].tx_chn); 1399 if (ret) 1400 goto reset_tx_chan; 1401 } 1402 1403 /* Enable NAPI in Tx and Rx direction */ 1404 for (i = 0; i < emac->tx_ch_num; i++) 1405 napi_enable(&emac->tx_chns[i].napi_tx); 1406 napi_enable(&emac->napi_rx); 1407 1408 /* start PHY */ 1409 phy_start(ndev->phydev); 1410 1411 prueth->emacs_initialized++; 1412 1413 queue_work(system_long_wq, &emac->stats_work.work); 1414 1415 return 0; 1416 1417 reset_tx_chan: 1418 /* Since interface is not yet up, there is wouldn't be 1419 * any SKB for completion. So set false to free_skb 1420 */ 1421 prueth_reset_tx_chan(emac, i, false); 1422 reset_rx_chn: 1423 prueth_reset_rx_chan(&emac->rx_chns, max_rx_flows, false); 1424 free_tx_ts_irq: 1425 free_irq(emac->tx_ts_irq, emac); 1426 stop: 1427 prueth_emac_stop(emac); 1428 free_rx_irq: 1429 free_irq(emac->rx_chns.irq[rx_flow], emac); 1430 cleanup_napi: 1431 prueth_ndev_del_tx_napi(emac, emac->tx_ch_num); 1432 cleanup_rx: 1433 prueth_cleanup_rx_chns(emac, &emac->rx_chns, max_rx_flows); 1434 cleanup_tx: 1435 prueth_cleanup_tx_chns(emac); 1436 1437 return ret; 1438 } 1439 1440 /** 1441 * emac_ndo_stop - EMAC device stop 1442 * @ndev: network adapter device 1443 * 1444 * Called when system wants to stop or down the interface. 1445 * 1446 * Return: Always 0 (Success) 1447 */ 1448 static int emac_ndo_stop(struct net_device *ndev) 1449 { 1450 struct prueth_emac *emac = netdev_priv(ndev); 1451 struct prueth *prueth = emac->prueth; 1452 int rx_flow = PRUETH_RX_FLOW_DATA; 1453 int max_rx_flows; 1454 int ret, i; 1455 1456 /* inform the upper layers. */ 1457 netif_tx_stop_all_queues(ndev); 1458 1459 /* block packets from wire */ 1460 if (ndev->phydev) 1461 phy_stop(ndev->phydev); 1462 1463 icssg_class_disable(prueth->miig_rt, prueth_emac_slice(emac)); 1464 1465 atomic_set(&emac->tdown_cnt, emac->tx_ch_num); 1466 /* ensure new tdown_cnt value is visible */ 1467 smp_mb__after_atomic(); 1468 /* tear down and disable UDMA channels */ 1469 reinit_completion(&emac->tdown_complete); 1470 for (i = 0; i < emac->tx_ch_num; i++) 1471 k3_udma_glue_tdown_tx_chn(emac->tx_chns[i].tx_chn, false); 1472 1473 ret = wait_for_completion_timeout(&emac->tdown_complete, 1474 msecs_to_jiffies(1000)); 1475 if (!ret) 1476 netdev_err(ndev, "tx teardown timeout\n"); 1477 1478 prueth_reset_tx_chan(emac, emac->tx_ch_num, true); 1479 for (i = 0; i < emac->tx_ch_num; i++) 1480 napi_disable(&emac->tx_chns[i].napi_tx); 1481 1482 max_rx_flows = PRUETH_MAX_RX_FLOWS; 1483 k3_udma_glue_tdown_rx_chn(emac->rx_chns.rx_chn, true); 1484 1485 prueth_reset_rx_chan(&emac->rx_chns, max_rx_flows, true); 1486 1487 napi_disable(&emac->napi_rx); 1488 1489 cancel_work_sync(&emac->rx_mode_work); 1490 1491 /* Destroying the queued work in ndo_stop() */ 1492 cancel_delayed_work_sync(&emac->stats_work); 1493 1494 if (prueth->emacs_initialized == 1) 1495 icss_iep_exit(emac->iep); 1496 1497 /* stop PRUs */ 1498 prueth_emac_stop(emac); 1499 1500 free_irq(emac->tx_ts_irq, emac); 1501 1502 free_irq(emac->rx_chns.irq[rx_flow], emac); 1503 prueth_ndev_del_tx_napi(emac, emac->tx_ch_num); 1504 1505 prueth_cleanup_rx_chns(emac, &emac->rx_chns, max_rx_flows); 1506 prueth_cleanup_tx_chns(emac); 1507 1508 prueth->emacs_initialized--; 1509 1510 return 0; 1511 } 1512 1513 static void emac_ndo_tx_timeout(struct net_device *ndev, unsigned int txqueue) 1514 { 1515 ndev->stats.tx_errors++; 1516 } 1517 1518 static void emac_ndo_set_rx_mode_work(struct work_struct *work) 1519 { 1520 struct prueth_emac *emac = container_of(work, struct prueth_emac, rx_mode_work); 1521 struct net_device *ndev = emac->ndev; 1522 bool promisc, allmulti; 1523 1524 if (!netif_running(ndev)) 1525 return; 1526 1527 promisc = ndev->flags & IFF_PROMISC; 1528 allmulti = ndev->flags & IFF_ALLMULTI; 1529 emac_set_port_state(emac, ICSSG_EMAC_PORT_UC_FLOODING_DISABLE); 1530 emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_DISABLE); 1531 1532 if (promisc) { 1533 emac_set_port_state(emac, ICSSG_EMAC_PORT_UC_FLOODING_ENABLE); 1534 emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE); 1535 return; 1536 } 1537 1538 if (allmulti) { 1539 emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE); 1540 return; 1541 } 1542 1543 if (!netdev_mc_empty(ndev)) { 1544 emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE); 1545 return; 1546 } 1547 } 1548 1549 /** 1550 * emac_ndo_set_rx_mode - EMAC set receive mode function 1551 * @ndev: The EMAC network adapter 1552 * 1553 * Called when system wants to set the receive mode of the device. 1554 * 1555 */ 1556 static void emac_ndo_set_rx_mode(struct net_device *ndev) 1557 { 1558 struct prueth_emac *emac = netdev_priv(ndev); 1559 1560 queue_work(emac->cmd_wq, &emac->rx_mode_work); 1561 } 1562 1563 static int emac_set_ts_config(struct net_device *ndev, struct ifreq *ifr) 1564 { 1565 struct prueth_emac *emac = netdev_priv(ndev); 1566 struct hwtstamp_config config; 1567 1568 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 1569 return -EFAULT; 1570 1571 switch (config.tx_type) { 1572 case HWTSTAMP_TX_OFF: 1573 emac->tx_ts_enabled = 0; 1574 break; 1575 case HWTSTAMP_TX_ON: 1576 emac->tx_ts_enabled = 1; 1577 break; 1578 default: 1579 return -ERANGE; 1580 } 1581 1582 switch (config.rx_filter) { 1583 case HWTSTAMP_FILTER_NONE: 1584 emac->rx_ts_enabled = 0; 1585 break; 1586 case HWTSTAMP_FILTER_ALL: 1587 case HWTSTAMP_FILTER_SOME: 1588 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1589 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1590 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1591 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1592 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1593 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1594 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1595 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1596 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1597 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1598 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1599 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1600 case HWTSTAMP_FILTER_NTP_ALL: 1601 emac->rx_ts_enabled = 1; 1602 config.rx_filter = HWTSTAMP_FILTER_ALL; 1603 break; 1604 default: 1605 return -ERANGE; 1606 } 1607 1608 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 1609 -EFAULT : 0; 1610 } 1611 1612 static int emac_get_ts_config(struct net_device *ndev, struct ifreq *ifr) 1613 { 1614 struct prueth_emac *emac = netdev_priv(ndev); 1615 struct hwtstamp_config config; 1616 1617 config.flags = 0; 1618 config.tx_type = emac->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 1619 config.rx_filter = emac->rx_ts_enabled ? HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE; 1620 1621 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 1622 -EFAULT : 0; 1623 } 1624 1625 static int emac_ndo_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd) 1626 { 1627 switch (cmd) { 1628 case SIOCGHWTSTAMP: 1629 return emac_get_ts_config(ndev, ifr); 1630 case SIOCSHWTSTAMP: 1631 return emac_set_ts_config(ndev, ifr); 1632 default: 1633 break; 1634 } 1635 1636 return phy_do_ioctl(ndev, ifr, cmd); 1637 } 1638 1639 static void emac_ndo_get_stats64(struct net_device *ndev, 1640 struct rtnl_link_stats64 *stats) 1641 { 1642 struct prueth_emac *emac = netdev_priv(ndev); 1643 1644 emac_update_hardware_stats(emac); 1645 1646 stats->rx_packets = emac_get_stat_by_name(emac, "rx_packets"); 1647 stats->rx_bytes = emac_get_stat_by_name(emac, "rx_bytes"); 1648 stats->tx_packets = emac_get_stat_by_name(emac, "tx_packets"); 1649 stats->tx_bytes = emac_get_stat_by_name(emac, "tx_bytes"); 1650 stats->rx_crc_errors = emac_get_stat_by_name(emac, "rx_crc_errors"); 1651 stats->rx_over_errors = emac_get_stat_by_name(emac, "rx_over_errors"); 1652 stats->multicast = emac_get_stat_by_name(emac, "rx_multicast_frames"); 1653 1654 stats->rx_errors = ndev->stats.rx_errors; 1655 stats->rx_dropped = ndev->stats.rx_dropped; 1656 stats->tx_errors = ndev->stats.tx_errors; 1657 stats->tx_dropped = ndev->stats.tx_dropped; 1658 } 1659 1660 static int emac_ndo_get_phys_port_name(struct net_device *ndev, char *name, 1661 size_t len) 1662 { 1663 struct prueth_emac *emac = netdev_priv(ndev); 1664 int ret; 1665 1666 ret = snprintf(name, len, "p%d", emac->port_id); 1667 if (ret >= len) 1668 return -EINVAL; 1669 1670 return 0; 1671 } 1672 1673 static const struct net_device_ops emac_netdev_ops = { 1674 .ndo_open = emac_ndo_open, 1675 .ndo_stop = emac_ndo_stop, 1676 .ndo_start_xmit = emac_ndo_start_xmit, 1677 .ndo_set_mac_address = eth_mac_addr, 1678 .ndo_validate_addr = eth_validate_addr, 1679 .ndo_tx_timeout = emac_ndo_tx_timeout, 1680 .ndo_set_rx_mode = emac_ndo_set_rx_mode, 1681 .ndo_eth_ioctl = emac_ndo_ioctl, 1682 .ndo_get_stats64 = emac_ndo_get_stats64, 1683 .ndo_get_phys_port_name = emac_ndo_get_phys_port_name, 1684 }; 1685 1686 /* get emac_port corresponding to eth_node name */ 1687 static int prueth_node_port(struct device_node *eth_node) 1688 { 1689 u32 port_id; 1690 int ret; 1691 1692 ret = of_property_read_u32(eth_node, "reg", &port_id); 1693 if (ret) 1694 return ret; 1695 1696 if (port_id == 0) 1697 return PRUETH_PORT_MII0; 1698 else if (port_id == 1) 1699 return PRUETH_PORT_MII1; 1700 else 1701 return PRUETH_PORT_INVALID; 1702 } 1703 1704 /* get MAC instance corresponding to eth_node name */ 1705 static int prueth_node_mac(struct device_node *eth_node) 1706 { 1707 u32 port_id; 1708 int ret; 1709 1710 ret = of_property_read_u32(eth_node, "reg", &port_id); 1711 if (ret) 1712 return ret; 1713 1714 if (port_id == 0) 1715 return PRUETH_MAC0; 1716 else if (port_id == 1) 1717 return PRUETH_MAC1; 1718 else 1719 return PRUETH_MAC_INVALID; 1720 } 1721 1722 static int prueth_netdev_init(struct prueth *prueth, 1723 struct device_node *eth_node) 1724 { 1725 int ret, num_tx_chn = PRUETH_MAX_TX_QUEUES; 1726 struct prueth_emac *emac; 1727 struct net_device *ndev; 1728 enum prueth_port port; 1729 const char *irq_name; 1730 enum prueth_mac mac; 1731 1732 port = prueth_node_port(eth_node); 1733 if (port == PRUETH_PORT_INVALID) 1734 return -EINVAL; 1735 1736 mac = prueth_node_mac(eth_node); 1737 if (mac == PRUETH_MAC_INVALID) 1738 return -EINVAL; 1739 1740 ndev = alloc_etherdev_mq(sizeof(*emac), num_tx_chn); 1741 if (!ndev) 1742 return -ENOMEM; 1743 1744 emac = netdev_priv(ndev); 1745 emac->prueth = prueth; 1746 emac->ndev = ndev; 1747 emac->port_id = port; 1748 emac->cmd_wq = create_singlethread_workqueue("icssg_cmd_wq"); 1749 if (!emac->cmd_wq) { 1750 ret = -ENOMEM; 1751 goto free_ndev; 1752 } 1753 INIT_WORK(&emac->rx_mode_work, emac_ndo_set_rx_mode_work); 1754 1755 INIT_DELAYED_WORK(&emac->stats_work, emac_stats_work_handler); 1756 1757 ret = pruss_request_mem_region(prueth->pruss, 1758 port == PRUETH_PORT_MII0 ? 1759 PRUSS_MEM_DRAM0 : PRUSS_MEM_DRAM1, 1760 &emac->dram); 1761 if (ret) { 1762 dev_err(prueth->dev, "unable to get DRAM: %d\n", ret); 1763 ret = -ENOMEM; 1764 goto free_wq; 1765 } 1766 1767 emac->tx_ch_num = 1; 1768 1769 irq_name = "tx_ts0"; 1770 if (emac->port_id == PRUETH_PORT_MII1) 1771 irq_name = "tx_ts1"; 1772 emac->tx_ts_irq = platform_get_irq_byname_optional(prueth->pdev, irq_name); 1773 if (emac->tx_ts_irq < 0) { 1774 ret = dev_err_probe(prueth->dev, emac->tx_ts_irq, "could not get tx_ts_irq\n"); 1775 goto free; 1776 } 1777 1778 SET_NETDEV_DEV(ndev, prueth->dev); 1779 spin_lock_init(&emac->lock); 1780 mutex_init(&emac->cmd_lock); 1781 1782 emac->phy_node = of_parse_phandle(eth_node, "phy-handle", 0); 1783 if (!emac->phy_node && !of_phy_is_fixed_link(eth_node)) { 1784 dev_err(prueth->dev, "couldn't find phy-handle\n"); 1785 ret = -ENODEV; 1786 goto free; 1787 } else if (of_phy_is_fixed_link(eth_node)) { 1788 ret = of_phy_register_fixed_link(eth_node); 1789 if (ret) { 1790 ret = dev_err_probe(prueth->dev, ret, 1791 "failed to register fixed-link phy\n"); 1792 goto free; 1793 } 1794 1795 emac->phy_node = eth_node; 1796 } 1797 1798 ret = of_get_phy_mode(eth_node, &emac->phy_if); 1799 if (ret) { 1800 dev_err(prueth->dev, "could not get phy-mode property\n"); 1801 goto free; 1802 } 1803 1804 if (emac->phy_if != PHY_INTERFACE_MODE_MII && 1805 !phy_interface_mode_is_rgmii(emac->phy_if)) { 1806 dev_err(prueth->dev, "PHY mode unsupported %s\n", phy_modes(emac->phy_if)); 1807 ret = -EINVAL; 1808 goto free; 1809 } 1810 1811 /* AM65 SR2.0 has TX Internal delay always enabled by hardware 1812 * and it is not possible to disable TX Internal delay. The below 1813 * switch case block describes how we handle different phy modes 1814 * based on hardware restriction. 1815 */ 1816 switch (emac->phy_if) { 1817 case PHY_INTERFACE_MODE_RGMII_ID: 1818 emac->phy_if = PHY_INTERFACE_MODE_RGMII_RXID; 1819 break; 1820 case PHY_INTERFACE_MODE_RGMII_TXID: 1821 emac->phy_if = PHY_INTERFACE_MODE_RGMII; 1822 break; 1823 case PHY_INTERFACE_MODE_RGMII: 1824 case PHY_INTERFACE_MODE_RGMII_RXID: 1825 dev_err(prueth->dev, "RGMII mode without TX delay is not supported"); 1826 ret = -EINVAL; 1827 goto free; 1828 default: 1829 break; 1830 } 1831 1832 /* get mac address from DT and set private and netdev addr */ 1833 ret = of_get_ethdev_address(eth_node, ndev); 1834 if (!is_valid_ether_addr(ndev->dev_addr)) { 1835 eth_hw_addr_random(ndev); 1836 dev_warn(prueth->dev, "port %d: using random MAC addr: %pM\n", 1837 port, ndev->dev_addr); 1838 } 1839 ether_addr_copy(emac->mac_addr, ndev->dev_addr); 1840 1841 ndev->min_mtu = PRUETH_MIN_PKT_SIZE; 1842 ndev->max_mtu = PRUETH_MAX_MTU; 1843 ndev->netdev_ops = &emac_netdev_ops; 1844 ndev->ethtool_ops = &icssg_ethtool_ops; 1845 ndev->hw_features = NETIF_F_SG; 1846 ndev->features = ndev->hw_features; 1847 1848 netif_napi_add(ndev, &emac->napi_rx, emac_napi_rx_poll); 1849 prueth->emac[mac] = emac; 1850 1851 return 0; 1852 1853 free: 1854 pruss_release_mem_region(prueth->pruss, &emac->dram); 1855 free_wq: 1856 destroy_workqueue(emac->cmd_wq); 1857 free_ndev: 1858 emac->ndev = NULL; 1859 prueth->emac[mac] = NULL; 1860 free_netdev(ndev); 1861 1862 return ret; 1863 } 1864 1865 static void prueth_netdev_exit(struct prueth *prueth, 1866 struct device_node *eth_node) 1867 { 1868 struct prueth_emac *emac; 1869 enum prueth_mac mac; 1870 1871 mac = prueth_node_mac(eth_node); 1872 if (mac == PRUETH_MAC_INVALID) 1873 return; 1874 1875 emac = prueth->emac[mac]; 1876 if (!emac) 1877 return; 1878 1879 if (of_phy_is_fixed_link(emac->phy_node)) 1880 of_phy_deregister_fixed_link(emac->phy_node); 1881 1882 netif_napi_del(&emac->napi_rx); 1883 1884 pruss_release_mem_region(prueth->pruss, &emac->dram); 1885 destroy_workqueue(emac->cmd_wq); 1886 free_netdev(emac->ndev); 1887 prueth->emac[mac] = NULL; 1888 } 1889 1890 static int prueth_get_cores(struct prueth *prueth, int slice) 1891 { 1892 struct device *dev = prueth->dev; 1893 enum pruss_pru_id pruss_id; 1894 struct device_node *np; 1895 int idx = -1, ret; 1896 1897 np = dev->of_node; 1898 1899 switch (slice) { 1900 case ICSS_SLICE0: 1901 idx = 0; 1902 break; 1903 case ICSS_SLICE1: 1904 idx = 3; 1905 break; 1906 default: 1907 return -EINVAL; 1908 } 1909 1910 prueth->pru[slice] = pru_rproc_get(np, idx, &pruss_id); 1911 if (IS_ERR(prueth->pru[slice])) { 1912 ret = PTR_ERR(prueth->pru[slice]); 1913 prueth->pru[slice] = NULL; 1914 return dev_err_probe(dev, ret, "unable to get PRU%d\n", slice); 1915 } 1916 prueth->pru_id[slice] = pruss_id; 1917 1918 idx++; 1919 prueth->rtu[slice] = pru_rproc_get(np, idx, NULL); 1920 if (IS_ERR(prueth->rtu[slice])) { 1921 ret = PTR_ERR(prueth->rtu[slice]); 1922 prueth->rtu[slice] = NULL; 1923 return dev_err_probe(dev, ret, "unable to get RTU%d\n", slice); 1924 } 1925 1926 idx++; 1927 prueth->txpru[slice] = pru_rproc_get(np, idx, NULL); 1928 if (IS_ERR(prueth->txpru[slice])) { 1929 ret = PTR_ERR(prueth->txpru[slice]); 1930 prueth->txpru[slice] = NULL; 1931 return dev_err_probe(dev, ret, "unable to get TX_PRU%d\n", slice); 1932 } 1933 1934 return 0; 1935 } 1936 1937 static void prueth_put_cores(struct prueth *prueth, int slice) 1938 { 1939 if (prueth->txpru[slice]) 1940 pru_rproc_put(prueth->txpru[slice]); 1941 1942 if (prueth->rtu[slice]) 1943 pru_rproc_put(prueth->rtu[slice]); 1944 1945 if (prueth->pru[slice]) 1946 pru_rproc_put(prueth->pru[slice]); 1947 } 1948 1949 static int prueth_probe(struct platform_device *pdev) 1950 { 1951 struct device_node *eth_node, *eth_ports_node; 1952 struct device_node *eth0_node = NULL; 1953 struct device_node *eth1_node = NULL; 1954 struct genpool_data_align gp_data = { 1955 .align = SZ_64K, 1956 }; 1957 struct device *dev = &pdev->dev; 1958 struct device_node *np; 1959 struct prueth *prueth; 1960 struct pruss *pruss; 1961 u32 msmc_ram_size; 1962 int i, ret; 1963 1964 np = dev->of_node; 1965 1966 prueth = devm_kzalloc(dev, sizeof(*prueth), GFP_KERNEL); 1967 if (!prueth) 1968 return -ENOMEM; 1969 1970 dev_set_drvdata(dev, prueth); 1971 prueth->pdev = pdev; 1972 prueth->pdata = *(const struct prueth_pdata *)device_get_match_data(dev); 1973 1974 prueth->dev = dev; 1975 eth_ports_node = of_get_child_by_name(np, "ethernet-ports"); 1976 if (!eth_ports_node) 1977 return -ENOENT; 1978 1979 for_each_child_of_node(eth_ports_node, eth_node) { 1980 u32 reg; 1981 1982 if (strcmp(eth_node->name, "port")) 1983 continue; 1984 ret = of_property_read_u32(eth_node, "reg", ®); 1985 if (ret < 0) { 1986 dev_err(dev, "%pOF error reading port_id %d\n", 1987 eth_node, ret); 1988 } 1989 1990 of_node_get(eth_node); 1991 1992 if (reg == 0) { 1993 eth0_node = eth_node; 1994 if (!of_device_is_available(eth0_node)) { 1995 of_node_put(eth0_node); 1996 eth0_node = NULL; 1997 } 1998 } else if (reg == 1) { 1999 eth1_node = eth_node; 2000 if (!of_device_is_available(eth1_node)) { 2001 of_node_put(eth1_node); 2002 eth1_node = NULL; 2003 } 2004 } else { 2005 dev_err(dev, "port reg should be 0 or 1\n"); 2006 } 2007 } 2008 2009 of_node_put(eth_ports_node); 2010 2011 /* At least one node must be present and available else we fail */ 2012 if (!eth0_node && !eth1_node) { 2013 dev_err(dev, "neither port0 nor port1 node available\n"); 2014 return -ENODEV; 2015 } 2016 2017 if (eth0_node == eth1_node) { 2018 dev_err(dev, "port0 and port1 can't have same reg\n"); 2019 of_node_put(eth0_node); 2020 return -ENODEV; 2021 } 2022 2023 prueth->eth_node[PRUETH_MAC0] = eth0_node; 2024 prueth->eth_node[PRUETH_MAC1] = eth1_node; 2025 2026 prueth->miig_rt = syscon_regmap_lookup_by_phandle(np, "ti,mii-g-rt"); 2027 if (IS_ERR(prueth->miig_rt)) { 2028 dev_err(dev, "couldn't get ti,mii-g-rt syscon regmap\n"); 2029 return -ENODEV; 2030 } 2031 2032 prueth->mii_rt = syscon_regmap_lookup_by_phandle(np, "ti,mii-rt"); 2033 if (IS_ERR(prueth->mii_rt)) { 2034 dev_err(dev, "couldn't get ti,mii-rt syscon regmap\n"); 2035 return -ENODEV; 2036 } 2037 2038 if (eth0_node) { 2039 ret = prueth_get_cores(prueth, ICSS_SLICE0); 2040 if (ret) 2041 goto put_cores; 2042 } 2043 2044 if (eth1_node) { 2045 ret = prueth_get_cores(prueth, ICSS_SLICE1); 2046 if (ret) 2047 goto put_cores; 2048 } 2049 2050 pruss = pruss_get(eth0_node ? 2051 prueth->pru[ICSS_SLICE0] : prueth->pru[ICSS_SLICE1]); 2052 if (IS_ERR(pruss)) { 2053 ret = PTR_ERR(pruss); 2054 dev_err(dev, "unable to get pruss handle\n"); 2055 goto put_cores; 2056 } 2057 2058 prueth->pruss = pruss; 2059 2060 ret = pruss_request_mem_region(pruss, PRUSS_MEM_SHRD_RAM2, 2061 &prueth->shram); 2062 if (ret) { 2063 dev_err(dev, "unable to get PRUSS SHRD RAM2: %d\n", ret); 2064 goto put_pruss; 2065 } 2066 2067 prueth->sram_pool = of_gen_pool_get(np, "sram", 0); 2068 if (!prueth->sram_pool) { 2069 dev_err(dev, "unable to get SRAM pool\n"); 2070 ret = -ENODEV; 2071 2072 goto put_mem; 2073 } 2074 2075 msmc_ram_size = MSMC_RAM_SIZE; 2076 2077 /* NOTE: FW bug needs buffer base to be 64KB aligned */ 2078 prueth->msmcram.va = 2079 (void __iomem *)gen_pool_alloc_algo(prueth->sram_pool, 2080 msmc_ram_size, 2081 gen_pool_first_fit_align, 2082 &gp_data); 2083 2084 if (!prueth->msmcram.va) { 2085 ret = -ENOMEM; 2086 dev_err(dev, "unable to allocate MSMC resource\n"); 2087 goto put_mem; 2088 } 2089 prueth->msmcram.pa = gen_pool_virt_to_phys(prueth->sram_pool, 2090 (unsigned long)prueth->msmcram.va); 2091 prueth->msmcram.size = msmc_ram_size; 2092 memset_io(prueth->msmcram.va, 0, msmc_ram_size); 2093 dev_dbg(dev, "sram: pa %llx va %p size %zx\n", prueth->msmcram.pa, 2094 prueth->msmcram.va, prueth->msmcram.size); 2095 2096 prueth->iep0 = icss_iep_get_idx(np, 0); 2097 if (IS_ERR(prueth->iep0)) { 2098 ret = dev_err_probe(dev, PTR_ERR(prueth->iep0), "iep0 get failed\n"); 2099 prueth->iep0 = NULL; 2100 goto free_pool; 2101 } 2102 2103 prueth->iep1 = icss_iep_get_idx(np, 1); 2104 if (IS_ERR(prueth->iep1)) { 2105 ret = dev_err_probe(dev, PTR_ERR(prueth->iep1), "iep1 get failed\n"); 2106 goto put_iep0; 2107 } 2108 2109 if (prueth->pdata.quirk_10m_link_issue) { 2110 /* Enable IEP1 for FW in 64bit mode as W/A for 10M FD link detect issue under TX 2111 * traffic. 2112 */ 2113 icss_iep_init_fw(prueth->iep1); 2114 } 2115 2116 /* setup netdev interfaces */ 2117 if (eth0_node) { 2118 ret = prueth_netdev_init(prueth, eth0_node); 2119 if (ret) { 2120 dev_err_probe(dev, ret, "netdev init %s failed\n", 2121 eth0_node->name); 2122 goto exit_iep; 2123 } 2124 2125 if (of_find_property(eth0_node, "ti,half-duplex-capable", NULL)) 2126 prueth->emac[PRUETH_MAC0]->half_duplex = 1; 2127 2128 prueth->emac[PRUETH_MAC0]->iep = prueth->iep0; 2129 } 2130 2131 if (eth1_node) { 2132 ret = prueth_netdev_init(prueth, eth1_node); 2133 if (ret) { 2134 dev_err_probe(dev, ret, "netdev init %s failed\n", 2135 eth1_node->name); 2136 goto netdev_exit; 2137 } 2138 2139 if (of_find_property(eth1_node, "ti,half-duplex-capable", NULL)) 2140 prueth->emac[PRUETH_MAC1]->half_duplex = 1; 2141 2142 prueth->emac[PRUETH_MAC1]->iep = prueth->iep0; 2143 } 2144 2145 /* register the network devices */ 2146 if (eth0_node) { 2147 ret = register_netdev(prueth->emac[PRUETH_MAC0]->ndev); 2148 if (ret) { 2149 dev_err(dev, "can't register netdev for port MII0"); 2150 goto netdev_exit; 2151 } 2152 2153 prueth->registered_netdevs[PRUETH_MAC0] = prueth->emac[PRUETH_MAC0]->ndev; 2154 2155 emac_phy_connect(prueth->emac[PRUETH_MAC0]); 2156 phy_attached_info(prueth->emac[PRUETH_MAC0]->ndev->phydev); 2157 } 2158 2159 if (eth1_node) { 2160 ret = register_netdev(prueth->emac[PRUETH_MAC1]->ndev); 2161 if (ret) { 2162 dev_err(dev, "can't register netdev for port MII1"); 2163 goto netdev_unregister; 2164 } 2165 2166 prueth->registered_netdevs[PRUETH_MAC1] = prueth->emac[PRUETH_MAC1]->ndev; 2167 emac_phy_connect(prueth->emac[PRUETH_MAC1]); 2168 phy_attached_info(prueth->emac[PRUETH_MAC1]->ndev->phydev); 2169 } 2170 2171 dev_info(dev, "TI PRU ethernet driver initialized: %s EMAC mode\n", 2172 (!eth0_node || !eth1_node) ? "single" : "dual"); 2173 2174 if (eth1_node) 2175 of_node_put(eth1_node); 2176 if (eth0_node) 2177 of_node_put(eth0_node); 2178 return 0; 2179 2180 netdev_unregister: 2181 for (i = 0; i < PRUETH_NUM_MACS; i++) { 2182 if (!prueth->registered_netdevs[i]) 2183 continue; 2184 if (prueth->emac[i]->ndev->phydev) { 2185 phy_disconnect(prueth->emac[i]->ndev->phydev); 2186 prueth->emac[i]->ndev->phydev = NULL; 2187 } 2188 unregister_netdev(prueth->registered_netdevs[i]); 2189 } 2190 2191 netdev_exit: 2192 for (i = 0; i < PRUETH_NUM_MACS; i++) { 2193 eth_node = prueth->eth_node[i]; 2194 if (!eth_node) 2195 continue; 2196 2197 prueth_netdev_exit(prueth, eth_node); 2198 } 2199 2200 exit_iep: 2201 if (prueth->pdata.quirk_10m_link_issue) 2202 icss_iep_exit_fw(prueth->iep1); 2203 icss_iep_put(prueth->iep1); 2204 2205 put_iep0: 2206 icss_iep_put(prueth->iep0); 2207 prueth->iep0 = NULL; 2208 prueth->iep1 = NULL; 2209 2210 free_pool: 2211 gen_pool_free(prueth->sram_pool, 2212 (unsigned long)prueth->msmcram.va, msmc_ram_size); 2213 2214 put_mem: 2215 pruss_release_mem_region(prueth->pruss, &prueth->shram); 2216 2217 put_pruss: 2218 pruss_put(prueth->pruss); 2219 2220 put_cores: 2221 if (eth1_node) { 2222 prueth_put_cores(prueth, ICSS_SLICE1); 2223 of_node_put(eth1_node); 2224 } 2225 2226 if (eth0_node) { 2227 prueth_put_cores(prueth, ICSS_SLICE0); 2228 of_node_put(eth0_node); 2229 } 2230 2231 return ret; 2232 } 2233 2234 static void prueth_remove(struct platform_device *pdev) 2235 { 2236 struct prueth *prueth = platform_get_drvdata(pdev); 2237 struct device_node *eth_node; 2238 int i; 2239 2240 for (i = 0; i < PRUETH_NUM_MACS; i++) { 2241 if (!prueth->registered_netdevs[i]) 2242 continue; 2243 phy_stop(prueth->emac[i]->ndev->phydev); 2244 phy_disconnect(prueth->emac[i]->ndev->phydev); 2245 prueth->emac[i]->ndev->phydev = NULL; 2246 unregister_netdev(prueth->registered_netdevs[i]); 2247 } 2248 2249 for (i = 0; i < PRUETH_NUM_MACS; i++) { 2250 eth_node = prueth->eth_node[i]; 2251 if (!eth_node) 2252 continue; 2253 2254 prueth_netdev_exit(prueth, eth_node); 2255 } 2256 2257 if (prueth->pdata.quirk_10m_link_issue) 2258 icss_iep_exit_fw(prueth->iep1); 2259 2260 icss_iep_put(prueth->iep1); 2261 icss_iep_put(prueth->iep0); 2262 2263 gen_pool_free(prueth->sram_pool, 2264 (unsigned long)prueth->msmcram.va, 2265 MSMC_RAM_SIZE); 2266 2267 pruss_release_mem_region(prueth->pruss, &prueth->shram); 2268 2269 pruss_put(prueth->pruss); 2270 2271 if (prueth->eth_node[PRUETH_MAC1]) 2272 prueth_put_cores(prueth, ICSS_SLICE1); 2273 2274 if (prueth->eth_node[PRUETH_MAC0]) 2275 prueth_put_cores(prueth, ICSS_SLICE0); 2276 } 2277 2278 #ifdef CONFIG_PM_SLEEP 2279 static int prueth_suspend(struct device *dev) 2280 { 2281 struct prueth *prueth = dev_get_drvdata(dev); 2282 struct net_device *ndev; 2283 int i, ret; 2284 2285 for (i = 0; i < PRUETH_NUM_MACS; i++) { 2286 ndev = prueth->registered_netdevs[i]; 2287 2288 if (!ndev) 2289 continue; 2290 2291 if (netif_running(ndev)) { 2292 netif_device_detach(ndev); 2293 ret = emac_ndo_stop(ndev); 2294 if (ret < 0) { 2295 netdev_err(ndev, "failed to stop: %d", ret); 2296 return ret; 2297 } 2298 } 2299 } 2300 2301 return 0; 2302 } 2303 2304 static int prueth_resume(struct device *dev) 2305 { 2306 struct prueth *prueth = dev_get_drvdata(dev); 2307 struct net_device *ndev; 2308 int i, ret; 2309 2310 for (i = 0; i < PRUETH_NUM_MACS; i++) { 2311 ndev = prueth->registered_netdevs[i]; 2312 2313 if (!ndev) 2314 continue; 2315 2316 if (netif_running(ndev)) { 2317 ret = emac_ndo_open(ndev); 2318 if (ret < 0) { 2319 netdev_err(ndev, "failed to start: %d", ret); 2320 return ret; 2321 } 2322 netif_device_attach(ndev); 2323 } 2324 } 2325 2326 return 0; 2327 } 2328 #endif /* CONFIG_PM_SLEEP */ 2329 2330 static const struct dev_pm_ops prueth_dev_pm_ops = { 2331 SET_SYSTEM_SLEEP_PM_OPS(prueth_suspend, prueth_resume) 2332 }; 2333 2334 static const struct prueth_pdata am654_icssg_pdata = { 2335 .fdqring_mode = K3_RINGACC_RING_MODE_MESSAGE, 2336 .quirk_10m_link_issue = 1, 2337 }; 2338 2339 static const struct prueth_pdata am64x_icssg_pdata = { 2340 .fdqring_mode = K3_RINGACC_RING_MODE_RING, 2341 }; 2342 2343 static const struct of_device_id prueth_dt_match[] = { 2344 { .compatible = "ti,am654-icssg-prueth", .data = &am654_icssg_pdata }, 2345 { .compatible = "ti,am642-icssg-prueth", .data = &am64x_icssg_pdata }, 2346 { /* sentinel */ } 2347 }; 2348 MODULE_DEVICE_TABLE(of, prueth_dt_match); 2349 2350 static struct platform_driver prueth_driver = { 2351 .probe = prueth_probe, 2352 .remove_new = prueth_remove, 2353 .driver = { 2354 .name = "icssg-prueth", 2355 .of_match_table = prueth_dt_match, 2356 .pm = &prueth_dev_pm_ops, 2357 }, 2358 }; 2359 module_platform_driver(prueth_driver); 2360 2361 MODULE_AUTHOR("Roger Quadros <rogerq@ti.com>"); 2362 MODULE_AUTHOR("Md Danish Anwar <danishanwar@ti.com>"); 2363 MODULE_DESCRIPTION("PRUSS ICSSG Ethernet Driver"); 2364 MODULE_LICENSE("GPL"); 2365