1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Texas Instruments Ethernet Switch Driver 4 * 5 * Copyright (C) 2019 Texas Instruments 6 */ 7 8 #include <linux/io.h> 9 #include <linux/clk.h> 10 #include <linux/platform_device.h> 11 #include <linux/timer.h> 12 #include <linux/module.h> 13 #include <linux/irqreturn.h> 14 #include <linux/interrupt.h> 15 #include <linux/if_ether.h> 16 #include <linux/etherdevice.h> 17 #include <linux/net_tstamp.h> 18 #include <linux/phy.h> 19 #include <linux/phy/phy.h> 20 #include <linux/delay.h> 21 #include <linux/pinctrl/consumer.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/gpio/consumer.h> 24 #include <linux/of.h> 25 #include <linux/of_mdio.h> 26 #include <linux/of_net.h> 27 #include <linux/of_platform.h> 28 #include <linux/if_vlan.h> 29 #include <linux/kmemleak.h> 30 #include <linux/sys_soc.h> 31 32 #include <net/switchdev.h> 33 #include <net/page_pool/helpers.h> 34 #include <net/pkt_cls.h> 35 #include <net/devlink.h> 36 37 #include "cpsw.h" 38 #include "cpsw_ale.h" 39 #include "cpsw_priv.h" 40 #include "cpsw_sl.h" 41 #include "cpsw_switchdev.h" 42 #include "cpts.h" 43 #include "davinci_cpdma.h" 44 45 #include <net/pkt_sched.h> 46 47 static int debug_level; 48 static int ale_ageout = CPSW_ALE_AGEOUT_DEFAULT; 49 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 50 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT; 51 52 struct cpsw_devlink { 53 struct cpsw_common *cpsw; 54 }; 55 56 enum cpsw_devlink_param_id { 57 CPSW_DEVLINK_PARAM_ID_BASE = DEVLINK_PARAM_GENERIC_ID_MAX, 58 CPSW_DL_PARAM_SWITCH_MODE, 59 CPSW_DL_PARAM_ALE_BYPASS, 60 }; 61 62 /* struct cpsw_common is not needed, kept here for compatibility 63 * reasons witrh the old driver 64 */ 65 static int cpsw_slave_index_priv(struct cpsw_common *cpsw, 66 struct cpsw_priv *priv) 67 { 68 if (priv->emac_port == HOST_PORT_NUM) 69 return -1; 70 71 return priv->emac_port - 1; 72 } 73 74 static bool cpsw_is_switch_en(struct cpsw_common *cpsw) 75 { 76 return !cpsw->data.dual_emac; 77 } 78 79 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 80 { 81 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 82 bool enable_uni = false; 83 int i; 84 85 if (cpsw_is_switch_en(cpsw)) 86 return; 87 88 /* Enabling promiscuous mode for one interface will be 89 * common for both the interface as the interface shares 90 * the same hardware resource. 91 */ 92 for (i = 0; i < cpsw->data.slaves; i++) 93 if (cpsw->slaves[i].ndev && 94 (cpsw->slaves[i].ndev->flags & IFF_PROMISC)) 95 enable_uni = true; 96 97 if (!enable && enable_uni) { 98 enable = enable_uni; 99 dev_dbg(cpsw->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 100 } 101 102 if (enable) { 103 /* Enable unknown unicast, reg/unreg mcast */ 104 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 105 ALE_P0_UNI_FLOOD, 1); 106 107 dev_dbg(cpsw->dev, "promiscuity enabled\n"); 108 } else { 109 /* Disable unknown unicast */ 110 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 111 ALE_P0_UNI_FLOOD, 0); 112 dev_dbg(cpsw->dev, "promiscuity disabled\n"); 113 } 114 } 115 116 /** 117 * cpsw_set_mc - adds multicast entry to the table if it's not added or deletes 118 * if it's not deleted 119 * @ndev: device to sync 120 * @addr: address to be added or deleted 121 * @vid: vlan id, if vid < 0 set/unset address for real device 122 * @add: add address if the flag is set or remove otherwise 123 */ 124 static int cpsw_set_mc(struct net_device *ndev, const u8 *addr, 125 int vid, int add) 126 { 127 struct cpsw_priv *priv = netdev_priv(ndev); 128 struct cpsw_common *cpsw = priv->cpsw; 129 int mask, flags, ret, slave_no; 130 131 slave_no = cpsw_slave_index(cpsw, priv); 132 if (vid < 0) 133 vid = cpsw->slaves[slave_no].port_vlan; 134 135 mask = ALE_PORT_HOST; 136 flags = vid ? ALE_VLAN : 0; 137 138 if (add) 139 ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0); 140 else 141 ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid); 142 143 return ret; 144 } 145 146 static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx) 147 { 148 struct addr_sync_ctx *sync_ctx = ctx; 149 struct netdev_hw_addr *ha; 150 int found = 0, ret = 0; 151 152 if (!vdev || !(vdev->flags & IFF_UP)) 153 return 0; 154 155 /* vlan address is relevant if its sync_cnt != 0 */ 156 netdev_for_each_mc_addr(ha, vdev) { 157 if (ether_addr_equal(ha->addr, sync_ctx->addr)) { 158 found = ha->sync_cnt; 159 break; 160 } 161 } 162 163 if (found) 164 sync_ctx->consumed++; 165 166 if (sync_ctx->flush) { 167 if (!found) 168 cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0); 169 return 0; 170 } 171 172 if (found) 173 ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1); 174 175 return ret; 176 } 177 178 static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num) 179 { 180 struct addr_sync_ctx sync_ctx; 181 int ret; 182 183 sync_ctx.consumed = 0; 184 sync_ctx.addr = addr; 185 sync_ctx.ndev = ndev; 186 sync_ctx.flush = 0; 187 188 ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx); 189 if (sync_ctx.consumed < num && !ret) 190 ret = cpsw_set_mc(ndev, addr, -1, 1); 191 192 return ret; 193 } 194 195 static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num) 196 { 197 struct addr_sync_ctx sync_ctx; 198 199 sync_ctx.consumed = 0; 200 sync_ctx.addr = addr; 201 sync_ctx.ndev = ndev; 202 sync_ctx.flush = 1; 203 204 vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx); 205 if (sync_ctx.consumed == num) 206 cpsw_set_mc(ndev, addr, -1, 0); 207 208 return 0; 209 } 210 211 static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx) 212 { 213 struct addr_sync_ctx *sync_ctx = ctx; 214 struct netdev_hw_addr *ha; 215 int found = 0; 216 217 if (!vdev || !(vdev->flags & IFF_UP)) 218 return 0; 219 220 /* vlan address is relevant if its sync_cnt != 0 */ 221 netdev_for_each_mc_addr(ha, vdev) { 222 if (ether_addr_equal(ha->addr, sync_ctx->addr)) { 223 found = ha->sync_cnt; 224 break; 225 } 226 } 227 228 if (!found) 229 return 0; 230 231 sync_ctx->consumed++; 232 cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0); 233 return 0; 234 } 235 236 static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num) 237 { 238 struct addr_sync_ctx sync_ctx; 239 240 sync_ctx.addr = addr; 241 sync_ctx.ndev = ndev; 242 sync_ctx.consumed = 0; 243 244 vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx); 245 if (sync_ctx.consumed < num) 246 cpsw_set_mc(ndev, addr, -1, 0); 247 248 return 0; 249 } 250 251 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 252 { 253 struct cpsw_priv *priv = netdev_priv(ndev); 254 struct cpsw_common *cpsw = priv->cpsw; 255 256 if (ndev->flags & IFF_PROMISC) { 257 /* Enable promiscuous mode */ 258 cpsw_set_promiscious(ndev, true); 259 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI, priv->emac_port); 260 return; 261 } 262 263 /* Disable promiscuous mode */ 264 cpsw_set_promiscious(ndev, false); 265 266 /* Restore allmulti on vlans if necessary */ 267 cpsw_ale_set_allmulti(cpsw->ale, 268 ndev->flags & IFF_ALLMULTI, priv->emac_port); 269 270 /* add/remove mcast address either for real netdev or for vlan */ 271 __hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr, 272 cpsw_del_mc_addr); 273 } 274 275 static unsigned int cpsw_rxbuf_total_len(unsigned int len) 276 { 277 len += CPSW_HEADROOM_NA; 278 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 279 280 return SKB_DATA_ALIGN(len); 281 } 282 283 static void cpsw_rx_handler(void *token, int len, int status) 284 { 285 struct page *new_page, *page = token; 286 void *pa = page_address(page); 287 int headroom = CPSW_HEADROOM_NA; 288 struct cpsw_meta_xdp *xmeta; 289 struct cpsw_common *cpsw; 290 struct net_device *ndev; 291 int port, ch, pkt_size; 292 struct cpsw_priv *priv; 293 struct page_pool *pool; 294 struct sk_buff *skb; 295 struct xdp_buff xdp; 296 int ret = 0; 297 dma_addr_t dma; 298 299 xmeta = pa + CPSW_XMETA_OFFSET; 300 cpsw = ndev_to_cpsw(xmeta->ndev); 301 ndev = xmeta->ndev; 302 pkt_size = cpsw->rx_packet_max; 303 ch = xmeta->ch; 304 305 if (status >= 0) { 306 port = CPDMA_RX_SOURCE_PORT(status); 307 if (port) 308 ndev = cpsw->slaves[--port].ndev; 309 } 310 311 priv = netdev_priv(ndev); 312 pool = cpsw->page_pool[ch]; 313 314 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 315 /* In dual emac mode check for all interfaces */ 316 if (cpsw->usage_count && status >= 0) { 317 /* The packet received is for the interface which 318 * is already down and the other interface is up 319 * and running, instead of freeing which results 320 * in reducing of the number of rx descriptor in 321 * DMA engine, requeue page back to cpdma. 322 */ 323 new_page = page; 324 goto requeue; 325 } 326 327 /* the interface is going down, pages are purged */ 328 page_pool_recycle_direct(pool, page); 329 return; 330 } 331 332 new_page = page_pool_dev_alloc_pages(pool); 333 if (unlikely(!new_page)) { 334 new_page = page; 335 ndev->stats.rx_dropped++; 336 goto requeue; 337 } 338 339 if (priv->xdp_prog) { 340 int size = len; 341 342 xdp_init_buff(&xdp, PAGE_SIZE, &priv->xdp_rxq[ch]); 343 if (status & CPDMA_RX_VLAN_ENCAP) { 344 headroom += CPSW_RX_VLAN_ENCAP_HDR_SIZE; 345 size -= CPSW_RX_VLAN_ENCAP_HDR_SIZE; 346 } 347 348 xdp_prepare_buff(&xdp, pa, headroom, size, false); 349 350 ret = cpsw_run_xdp(priv, ch, &xdp, page, priv->emac_port, &len); 351 if (ret != CPSW_XDP_PASS) 352 goto requeue; 353 354 headroom = xdp.data - xdp.data_hard_start; 355 356 /* XDP prog can modify vlan tag, so can't use encap header */ 357 status &= ~CPDMA_RX_VLAN_ENCAP; 358 } 359 360 /* pass skb to netstack if no XDP prog or returned XDP_PASS */ 361 skb = build_skb(pa, cpsw_rxbuf_total_len(pkt_size)); 362 if (!skb) { 363 ndev->stats.rx_dropped++; 364 page_pool_recycle_direct(pool, page); 365 goto requeue; 366 } 367 368 skb->offload_fwd_mark = priv->offload_fwd_mark; 369 skb_reserve(skb, headroom); 370 skb_put(skb, len); 371 skb->dev = ndev; 372 if (status & CPDMA_RX_VLAN_ENCAP) 373 cpsw_rx_vlan_encap(skb); 374 if (priv->rx_ts_enabled) 375 cpts_rx_timestamp(cpsw->cpts, skb); 376 skb->protocol = eth_type_trans(skb, ndev); 377 378 /* mark skb for recycling */ 379 skb_mark_for_recycle(skb); 380 netif_receive_skb(skb); 381 382 ndev->stats.rx_bytes += len; 383 ndev->stats.rx_packets++; 384 385 requeue: 386 xmeta = page_address(new_page) + CPSW_XMETA_OFFSET; 387 xmeta->ndev = ndev; 388 xmeta->ch = ch; 389 390 dma = page_pool_get_dma_addr(new_page) + CPSW_HEADROOM_NA; 391 ret = cpdma_chan_submit_mapped(cpsw->rxv[ch].ch, new_page, dma, 392 pkt_size, 0); 393 if (ret < 0) { 394 WARN_ON(ret == -ENOMEM); 395 page_pool_recycle_direct(pool, new_page); 396 } 397 } 398 399 static int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 400 unsigned short vid) 401 { 402 struct cpsw_common *cpsw = priv->cpsw; 403 int unreg_mcast_mask = 0; 404 int mcast_mask; 405 u32 port_mask; 406 int ret; 407 408 port_mask = (1 << priv->emac_port) | ALE_PORT_HOST; 409 410 mcast_mask = ALE_PORT_HOST; 411 if (priv->ndev->flags & IFF_ALLMULTI) 412 unreg_mcast_mask = mcast_mask; 413 414 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask, 415 unreg_mcast_mask); 416 if (ret != 0) 417 return ret; 418 419 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 420 HOST_PORT_NUM, ALE_VLAN, vid); 421 if (ret != 0) 422 goto clean_vid; 423 424 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 425 mcast_mask, ALE_VLAN, vid, 0); 426 if (ret != 0) 427 goto clean_vlan_ucast; 428 return 0; 429 430 clean_vlan_ucast: 431 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 432 HOST_PORT_NUM, ALE_VLAN, vid); 433 clean_vid: 434 cpsw_ale_del_vlan(cpsw->ale, vid, 0); 435 return ret; 436 } 437 438 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 439 __be16 proto, u16 vid) 440 { 441 struct cpsw_priv *priv = netdev_priv(ndev); 442 struct cpsw_common *cpsw = priv->cpsw; 443 int ret, i; 444 445 if (cpsw_is_switch_en(cpsw)) { 446 dev_dbg(cpsw->dev, ".ndo_vlan_rx_add_vid called in switch mode\n"); 447 return 0; 448 } 449 450 if (vid == cpsw->data.default_vlan) 451 return 0; 452 453 ret = pm_runtime_resume_and_get(cpsw->dev); 454 if (ret < 0) 455 return ret; 456 457 /* In dual EMAC, reserved VLAN id should not be used for 458 * creating VLAN interfaces as this can break the dual 459 * EMAC port separation 460 */ 461 for (i = 0; i < cpsw->data.slaves; i++) { 462 if (cpsw->slaves[i].ndev && 463 vid == cpsw->slaves[i].port_vlan) { 464 ret = -EINVAL; 465 goto err; 466 } 467 } 468 469 dev_dbg(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 470 ret = cpsw_add_vlan_ale_entry(priv, vid); 471 err: 472 pm_runtime_put(cpsw->dev); 473 return ret; 474 } 475 476 static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg) 477 { 478 struct cpsw_priv *priv = arg; 479 480 if (!vdev || !vid) 481 return 0; 482 483 cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid); 484 return 0; 485 } 486 487 /* restore resources after port reset */ 488 static void cpsw_restore(struct cpsw_priv *priv) 489 { 490 struct cpsw_common *cpsw = priv->cpsw; 491 492 /* restore vlan configurations */ 493 vlan_for_each(priv->ndev, cpsw_restore_vlans, priv); 494 495 /* restore MQPRIO offload */ 496 cpsw_mqprio_resume(&cpsw->slaves[priv->emac_port - 1], priv); 497 498 /* restore CBS offload */ 499 cpsw_cbs_resume(&cpsw->slaves[priv->emac_port - 1], priv); 500 501 cpsw_qos_clsflower_resume(priv); 502 } 503 504 static void cpsw_init_stp_ale_entry(struct cpsw_common *cpsw) 505 { 506 static const char stpa[] = {0x01, 0x80, 0xc2, 0x0, 0x0, 0x0}; 507 508 cpsw_ale_add_mcast(cpsw->ale, stpa, 509 ALE_PORT_HOST, ALE_SUPER, 0, 510 ALE_MCAST_BLOCK_LEARN_FWD); 511 } 512 513 static void cpsw_init_host_port_switch(struct cpsw_common *cpsw) 514 { 515 int vlan = cpsw->data.default_vlan; 516 517 writel(CPSW_FIFO_NORMAL_MODE, &cpsw->host_port_regs->tx_in_ctl); 518 519 writel(vlan, &cpsw->host_port_regs->port_vlan); 520 521 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, 522 ALE_ALL_PORTS, ALE_ALL_PORTS, 523 ALE_PORT_1 | ALE_PORT_2); 524 525 cpsw_init_stp_ale_entry(cpsw); 526 527 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_P0_UNI_FLOOD, 1); 528 dev_dbg(cpsw->dev, "Set P0_UNI_FLOOD\n"); 529 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_PORT_NOLEARN, 0); 530 } 531 532 static void cpsw_init_host_port_dual_mac(struct cpsw_common *cpsw) 533 { 534 int vlan = cpsw->data.default_vlan; 535 536 writel(CPSW_FIFO_DUAL_MAC_MODE, &cpsw->host_port_regs->tx_in_ctl); 537 538 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_P0_UNI_FLOOD, 0); 539 dev_dbg(cpsw->dev, "unset P0_UNI_FLOOD\n"); 540 541 writel(vlan, &cpsw->host_port_regs->port_vlan); 542 543 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0); 544 /* learning make no sense in dual_mac mode */ 545 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_PORT_NOLEARN, 1); 546 } 547 548 static void cpsw_init_host_port(struct cpsw_priv *priv) 549 { 550 struct cpsw_common *cpsw = priv->cpsw; 551 u32 control_reg; 552 553 /* soft reset the controller and initialize ale */ 554 soft_reset("cpsw", &cpsw->regs->soft_reset); 555 cpsw_ale_start(cpsw->ale); 556 557 /* switch to vlan unaware mode */ 558 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE, 559 CPSW_ALE_VLAN_AWARE); 560 control_reg = readl(&cpsw->regs->control); 561 control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP; 562 writel(control_reg, &cpsw->regs->control); 563 564 /* setup host port priority mapping */ 565 writel_relaxed(CPDMA_TX_PRIORITY_MAP, 566 &cpsw->host_port_regs->cpdma_tx_pri_map); 567 writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map); 568 569 /* disable priority elevation */ 570 writel_relaxed(0, &cpsw->regs->ptype); 571 572 /* enable statistics collection only on all ports */ 573 writel_relaxed(0x7, &cpsw->regs->stat_port_en); 574 575 /* Enable internal fifo flow control */ 576 writel(0x7, &cpsw->regs->flow_control); 577 578 if (cpsw_is_switch_en(cpsw)) 579 cpsw_init_host_port_switch(cpsw); 580 else 581 cpsw_init_host_port_dual_mac(cpsw); 582 583 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 584 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 585 } 586 587 static void cpsw_port_add_dual_emac_def_ale_entries(struct cpsw_priv *priv, 588 struct cpsw_slave *slave) 589 { 590 u32 port_mask = 1 << priv->emac_port | ALE_PORT_HOST; 591 struct cpsw_common *cpsw = priv->cpsw; 592 u32 reg; 593 594 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 595 CPSW2_PORT_VLAN; 596 slave_write(slave, slave->port_vlan, reg); 597 598 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask, 599 port_mask, port_mask, 0); 600 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 601 ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 602 ALE_MCAST_FWD); 603 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 604 HOST_PORT_NUM, ALE_VLAN | 605 ALE_SECURE, slave->port_vlan); 606 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 607 ALE_PORT_DROP_UNKNOWN_VLAN, 1); 608 /* learning make no sense in dual_mac mode */ 609 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 610 ALE_PORT_NOLEARN, 1); 611 } 612 613 static void cpsw_port_add_switch_def_ale_entries(struct cpsw_priv *priv, 614 struct cpsw_slave *slave) 615 { 616 u32 port_mask = 1 << priv->emac_port | ALE_PORT_HOST; 617 struct cpsw_common *cpsw = priv->cpsw; 618 u32 reg; 619 620 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 621 ALE_PORT_DROP_UNKNOWN_VLAN, 0); 622 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 623 ALE_PORT_NOLEARN, 0); 624 /* disabling SA_UPDATE required to make stp work, without this setting 625 * Host MAC addresses will jump between ports. 626 * As per TRM MAC address can be defined as unicast supervisory (super) 627 * by setting both (ALE_BLOCKED | ALE_SECURE) which should prevent 628 * SA_UPDATE, but HW seems works incorrectly and setting ALE_SECURE 629 * causes STP packets to be dropped due to ingress filter 630 * if (source address found) and (secure) and 631 * (receive port number != port_number)) 632 * then discard the packet 633 */ 634 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 635 ALE_PORT_NO_SA_UPDATE, 1); 636 637 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 638 port_mask, ALE_VLAN, slave->port_vlan, 639 ALE_MCAST_FWD_2); 640 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 641 HOST_PORT_NUM, ALE_VLAN, slave->port_vlan); 642 643 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 644 CPSW2_PORT_VLAN; 645 slave_write(slave, slave->port_vlan, reg); 646 } 647 648 static void cpsw_adjust_link(struct net_device *ndev) 649 { 650 struct cpsw_priv *priv = netdev_priv(ndev); 651 struct cpsw_common *cpsw = priv->cpsw; 652 struct cpsw_slave *slave; 653 struct phy_device *phy; 654 u32 mac_control = 0; 655 656 slave = &cpsw->slaves[priv->emac_port - 1]; 657 phy = slave->phy; 658 659 if (!phy) 660 return; 661 662 if (phy->link) { 663 mac_control = CPSW_SL_CTL_GMII_EN; 664 665 if (phy->speed == 1000) 666 mac_control |= CPSW_SL_CTL_GIG; 667 if (phy->duplex) 668 mac_control |= CPSW_SL_CTL_FULLDUPLEX; 669 670 /* set speed_in input in case RMII mode is used in 100Mbps */ 671 if (phy->speed == 100) 672 mac_control |= CPSW_SL_CTL_IFCTL_A; 673 /* in band mode only works in 10Mbps RGMII mode */ 674 else if ((phy->speed == 10) && phy_interface_is_rgmii(phy)) 675 mac_control |= CPSW_SL_CTL_EXT_EN; /* In Band mode */ 676 677 if (priv->rx_pause) 678 mac_control |= CPSW_SL_CTL_RX_FLOW_EN; 679 680 if (priv->tx_pause) 681 mac_control |= CPSW_SL_CTL_TX_FLOW_EN; 682 683 if (mac_control != slave->mac_control) 684 cpsw_sl_ctl_set(slave->mac_sl, mac_control); 685 686 /* enable forwarding */ 687 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 688 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 689 690 netif_tx_wake_all_queues(ndev); 691 692 if (priv->shp_cfg_speed && 693 priv->shp_cfg_speed != slave->phy->speed && 694 !cpsw_shp_is_off(priv)) 695 dev_warn(priv->dev, "Speed was changed, CBS shaper speeds are changed!"); 696 } else { 697 netif_tx_stop_all_queues(ndev); 698 699 mac_control = 0; 700 /* disable forwarding */ 701 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 702 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 703 704 cpsw_sl_wait_for_idle(slave->mac_sl, 100); 705 706 cpsw_sl_ctl_reset(slave->mac_sl); 707 } 708 709 if (mac_control != slave->mac_control) 710 phy_print_status(phy); 711 712 slave->mac_control = mac_control; 713 714 if (phy->link && cpsw_need_resplit(cpsw)) 715 cpsw_split_res(cpsw); 716 } 717 718 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 719 { 720 struct cpsw_common *cpsw = priv->cpsw; 721 struct phy_device *phy; 722 723 cpsw_sl_reset(slave->mac_sl, 100); 724 cpsw_sl_ctl_reset(slave->mac_sl); 725 726 /* setup priority mapping */ 727 cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_PRI_MAP, 728 RX_PRIORITY_MAPPING); 729 730 switch (cpsw->version) { 731 case CPSW_VERSION_1: 732 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 733 /* Increase RX FIFO size to 5 for supporting fullduplex 734 * flow control mode 735 */ 736 slave_write(slave, 737 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 738 CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS); 739 break; 740 case CPSW_VERSION_2: 741 case CPSW_VERSION_3: 742 case CPSW_VERSION_4: 743 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 744 /* Increase RX FIFO size to 5 for supporting fullduplex 745 * flow control mode 746 */ 747 slave_write(slave, 748 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 749 CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS); 750 break; 751 } 752 753 /* setup max packet size, and mac address */ 754 cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_MAXLEN, 755 cpsw->rx_packet_max); 756 cpsw_set_slave_mac(slave, priv); 757 758 slave->mac_control = 0; /* no link yet */ 759 760 if (cpsw_is_switch_en(cpsw)) 761 cpsw_port_add_switch_def_ale_entries(priv, slave); 762 else 763 cpsw_port_add_dual_emac_def_ale_entries(priv, slave); 764 765 if (!slave->data->phy_node) 766 dev_err(priv->dev, "no phy found on slave %d\n", 767 slave->slave_num); 768 phy = of_phy_connect(priv->ndev, slave->data->phy_node, 769 &cpsw_adjust_link, 0, slave->data->phy_if); 770 if (!phy) { 771 dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n", 772 slave->data->phy_node, 773 slave->slave_num); 774 return; 775 } 776 777 phy->mac_managed_pm = true; 778 779 slave->phy = phy; 780 781 phy_disable_eee(slave->phy); 782 783 phy_attached_info(slave->phy); 784 785 phy_start(slave->phy); 786 787 /* Configure GMII_SEL register */ 788 phy_set_mode_ext(slave->data->ifphy, PHY_MODE_ETHERNET, 789 slave->data->phy_if); 790 } 791 792 static int cpsw_ndo_stop(struct net_device *ndev) 793 { 794 struct cpsw_priv *priv = netdev_priv(ndev); 795 struct cpsw_common *cpsw = priv->cpsw; 796 struct cpsw_slave *slave; 797 798 cpsw_info(priv, ifdown, "shutting down ndev\n"); 799 slave = &cpsw->slaves[priv->emac_port - 1]; 800 if (slave->phy) 801 phy_stop(slave->phy); 802 803 netif_tx_stop_all_queues(priv->ndev); 804 805 if (slave->phy) { 806 phy_disconnect(slave->phy); 807 slave->phy = NULL; 808 } 809 810 __hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc); 811 812 if (cpsw->usage_count <= 1) { 813 napi_disable(&cpsw->napi_rx); 814 napi_disable(&cpsw->napi_tx); 815 cpts_unregister(cpsw->cpts); 816 cpsw_intr_disable(cpsw); 817 cpdma_ctlr_stop(cpsw->dma); 818 cpsw_ale_stop(cpsw->ale); 819 cpsw_destroy_xdp_rxqs(cpsw); 820 } 821 822 if (cpsw_need_resplit(cpsw)) 823 cpsw_split_res(cpsw); 824 825 cpsw->usage_count--; 826 pm_runtime_put_sync(cpsw->dev); 827 return 0; 828 } 829 830 static int cpsw_ndo_open(struct net_device *ndev) 831 { 832 struct cpsw_priv *priv = netdev_priv(ndev); 833 struct cpsw_common *cpsw = priv->cpsw; 834 int ret; 835 836 dev_info(priv->dev, "starting ndev. mode: %s\n", 837 cpsw_is_switch_en(cpsw) ? "switch" : "dual_mac"); 838 ret = pm_runtime_resume_and_get(cpsw->dev); 839 if (ret < 0) 840 return ret; 841 842 /* Notify the stack of the actual queue counts. */ 843 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num); 844 if (ret) { 845 dev_err(priv->dev, "cannot set real number of tx queues\n"); 846 goto pm_cleanup; 847 } 848 849 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num); 850 if (ret) { 851 dev_err(priv->dev, "cannot set real number of rx queues\n"); 852 goto pm_cleanup; 853 } 854 855 /* Initialize host and slave ports */ 856 if (!cpsw->usage_count) 857 cpsw_init_host_port(priv); 858 cpsw_slave_open(&cpsw->slaves[priv->emac_port - 1], priv); 859 860 /* initialize shared resources for every ndev */ 861 if (!cpsw->usage_count) { 862 /* create rxqs for both infs in dual mac as they use same pool 863 * and must be destroyed together when no users. 864 */ 865 ret = cpsw_create_xdp_rxqs(cpsw); 866 if (ret < 0) 867 goto err_cleanup; 868 869 ret = cpsw_fill_rx_channels(priv); 870 if (ret < 0) 871 goto err_cleanup; 872 873 if (cpsw->cpts) { 874 if (cpts_register(cpsw->cpts)) 875 dev_err(priv->dev, "error registering cpts device\n"); 876 else 877 writel(0x10, &cpsw->wr_regs->misc_en); 878 } 879 880 napi_enable(&cpsw->napi_rx); 881 napi_enable(&cpsw->napi_tx); 882 883 if (cpsw->tx_irq_disabled) { 884 cpsw->tx_irq_disabled = false; 885 enable_irq(cpsw->irqs_table[1]); 886 } 887 888 if (cpsw->rx_irq_disabled) { 889 cpsw->rx_irq_disabled = false; 890 enable_irq(cpsw->irqs_table[0]); 891 } 892 } 893 894 cpsw_restore(priv); 895 896 /* Enable Interrupt pacing if configured */ 897 if (cpsw->coal_intvl != 0) { 898 struct ethtool_coalesce coal; 899 900 coal.rx_coalesce_usecs = cpsw->coal_intvl; 901 cpsw_set_coalesce(ndev, &coal, NULL, NULL); 902 } 903 904 cpdma_ctlr_start(cpsw->dma); 905 cpsw_intr_enable(cpsw); 906 cpsw->usage_count++; 907 908 return 0; 909 910 err_cleanup: 911 cpsw_ndo_stop(ndev); 912 913 pm_cleanup: 914 pm_runtime_put_sync(cpsw->dev); 915 return ret; 916 } 917 918 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 919 struct net_device *ndev) 920 { 921 struct cpsw_priv *priv = netdev_priv(ndev); 922 struct cpsw_common *cpsw = priv->cpsw; 923 struct cpts *cpts = cpsw->cpts; 924 struct netdev_queue *txq; 925 struct cpdma_chan *txch; 926 int ret, q_idx; 927 928 if (skb_put_padto(skb, READ_ONCE(priv->tx_packet_min))) { 929 cpsw_err(priv, tx_err, "packet pad failed\n"); 930 ndev->stats.tx_dropped++; 931 return NET_XMIT_DROP; 932 } 933 934 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 935 priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb)) 936 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 937 938 q_idx = skb_get_queue_mapping(skb); 939 if (q_idx >= cpsw->tx_ch_num) 940 q_idx = q_idx % cpsw->tx_ch_num; 941 942 txch = cpsw->txv[q_idx].ch; 943 txq = netdev_get_tx_queue(ndev, q_idx); 944 skb_tx_timestamp(skb); 945 ret = cpdma_chan_submit(txch, skb, skb->data, skb->len, 946 priv->emac_port); 947 if (unlikely(ret != 0)) { 948 cpsw_err(priv, tx_err, "desc submit failed\n"); 949 goto fail; 950 } 951 952 /* If there is no more tx desc left free then we need to 953 * tell the kernel to stop sending us tx frames. 954 */ 955 if (unlikely(!cpdma_check_free_tx_desc(txch))) { 956 netif_tx_stop_queue(txq); 957 958 /* Barrier, so that stop_queue visible to other cpus */ 959 smp_mb__after_atomic(); 960 961 if (cpdma_check_free_tx_desc(txch)) 962 netif_tx_wake_queue(txq); 963 } 964 965 return NETDEV_TX_OK; 966 fail: 967 ndev->stats.tx_dropped++; 968 netif_tx_stop_queue(txq); 969 970 /* Barrier, so that stop_queue visible to other cpus */ 971 smp_mb__after_atomic(); 972 973 if (cpdma_check_free_tx_desc(txch)) 974 netif_tx_wake_queue(txq); 975 976 return NETDEV_TX_BUSY; 977 } 978 979 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 980 { 981 struct sockaddr *addr = (struct sockaddr *)p; 982 struct cpsw_priv *priv = netdev_priv(ndev); 983 struct cpsw_common *cpsw = priv->cpsw; 984 int ret, slave_no; 985 int flags = 0; 986 u16 vid = 0; 987 988 slave_no = cpsw_slave_index(cpsw, priv); 989 if (!is_valid_ether_addr(addr->sa_data)) 990 return -EADDRNOTAVAIL; 991 992 ret = pm_runtime_resume_and_get(cpsw->dev); 993 if (ret < 0) 994 return ret; 995 996 vid = cpsw->slaves[slave_no].port_vlan; 997 flags = ALE_VLAN | ALE_SECURE; 998 999 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 1000 flags, vid); 1001 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM, 1002 flags, vid); 1003 1004 ether_addr_copy(priv->mac_addr, addr->sa_data); 1005 eth_hw_addr_set(ndev, priv->mac_addr); 1006 cpsw_set_slave_mac(&cpsw->slaves[slave_no], priv); 1007 1008 pm_runtime_put(cpsw->dev); 1009 1010 return 0; 1011 } 1012 1013 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 1014 __be16 proto, u16 vid) 1015 { 1016 struct cpsw_priv *priv = netdev_priv(ndev); 1017 struct cpsw_common *cpsw = priv->cpsw; 1018 int ret; 1019 int i; 1020 1021 if (cpsw_is_switch_en(cpsw)) { 1022 dev_dbg(cpsw->dev, "ndo del vlan is called in switch mode\n"); 1023 return 0; 1024 } 1025 1026 if (vid == cpsw->data.default_vlan) 1027 return 0; 1028 1029 ret = pm_runtime_resume_and_get(cpsw->dev); 1030 if (ret < 0) 1031 return ret; 1032 1033 /* reset the return code as pm_runtime_get_sync() can return 1034 * non zero values as well. 1035 */ 1036 ret = 0; 1037 for (i = 0; i < cpsw->data.slaves; i++) { 1038 if (cpsw->slaves[i].ndev && 1039 vid == cpsw->slaves[i].port_vlan) { 1040 ret = -EINVAL; 1041 goto err; 1042 } 1043 } 1044 1045 dev_dbg(priv->dev, "removing vlanid %d from vlan filter\n", vid); 1046 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0); 1047 if (ret) 1048 dev_err(priv->dev, "cpsw_ale_del_vlan() failed: ret %d\n", ret); 1049 ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 1050 HOST_PORT_NUM, ALE_VLAN, vid); 1051 if (ret) 1052 dev_err(priv->dev, "cpsw_ale_del_ucast() failed: ret %d\n", 1053 ret); 1054 ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast, 1055 0, ALE_VLAN, vid); 1056 if (ret) 1057 dev_err(priv->dev, "cpsw_ale_del_mcast failed. ret %d\n", 1058 ret); 1059 cpsw_ale_flush_multicast(cpsw->ale, ALE_PORT_HOST, vid); 1060 ret = 0; 1061 err: 1062 pm_runtime_put(cpsw->dev); 1063 return ret; 1064 } 1065 1066 static int cpsw_ndo_get_phys_port_name(struct net_device *ndev, char *name, 1067 size_t len) 1068 { 1069 struct cpsw_priv *priv = netdev_priv(ndev); 1070 int err; 1071 1072 err = snprintf(name, len, "p%d", priv->emac_port); 1073 1074 if (err >= len) 1075 return -EINVAL; 1076 1077 return 0; 1078 } 1079 1080 #ifdef CONFIG_NET_POLL_CONTROLLER 1081 static void cpsw_ndo_poll_controller(struct net_device *ndev) 1082 { 1083 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1084 1085 cpsw_intr_disable(cpsw); 1086 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw); 1087 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw); 1088 cpsw_intr_enable(cpsw); 1089 } 1090 #endif 1091 1092 static int cpsw_ndo_xdp_xmit(struct net_device *ndev, int n, 1093 struct xdp_frame **frames, u32 flags) 1094 { 1095 struct cpsw_priv *priv = netdev_priv(ndev); 1096 struct xdp_frame *xdpf; 1097 int i, nxmit = 0; 1098 1099 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 1100 return -EINVAL; 1101 1102 for (i = 0; i < n; i++) { 1103 xdpf = frames[i]; 1104 if (xdpf->len < READ_ONCE(priv->tx_packet_min)) 1105 break; 1106 1107 if (cpsw_xdp_tx_frame(priv, xdpf, NULL, priv->emac_port)) 1108 break; 1109 nxmit++; 1110 } 1111 1112 return nxmit; 1113 } 1114 1115 static int cpsw_get_port_parent_id(struct net_device *ndev, 1116 struct netdev_phys_item_id *ppid) 1117 { 1118 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1119 1120 ppid->id_len = sizeof(cpsw->base_mac); 1121 memcpy(&ppid->id, &cpsw->base_mac, ppid->id_len); 1122 1123 return 0; 1124 } 1125 1126 static const struct net_device_ops cpsw_netdev_ops = { 1127 .ndo_open = cpsw_ndo_open, 1128 .ndo_stop = cpsw_ndo_stop, 1129 .ndo_start_xmit = cpsw_ndo_start_xmit, 1130 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 1131 .ndo_eth_ioctl = cpsw_ndo_ioctl, 1132 .ndo_validate_addr = eth_validate_addr, 1133 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 1134 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 1135 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate, 1136 #ifdef CONFIG_NET_POLL_CONTROLLER 1137 .ndo_poll_controller = cpsw_ndo_poll_controller, 1138 #endif 1139 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 1140 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 1141 .ndo_setup_tc = cpsw_ndo_setup_tc, 1142 .ndo_get_phys_port_name = cpsw_ndo_get_phys_port_name, 1143 .ndo_bpf = cpsw_ndo_bpf, 1144 .ndo_xdp_xmit = cpsw_ndo_xdp_xmit, 1145 .ndo_get_port_parent_id = cpsw_get_port_parent_id, 1146 }; 1147 1148 static void cpsw_get_drvinfo(struct net_device *ndev, 1149 struct ethtool_drvinfo *info) 1150 { 1151 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1152 struct platform_device *pdev; 1153 1154 pdev = to_platform_device(cpsw->dev); 1155 strscpy(info->driver, "cpsw-switch", sizeof(info->driver)); 1156 strscpy(info->version, "2.0", sizeof(info->version)); 1157 strscpy(info->bus_info, pdev->name, sizeof(info->bus_info)); 1158 } 1159 1160 static int cpsw_set_pauseparam(struct net_device *ndev, 1161 struct ethtool_pauseparam *pause) 1162 { 1163 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1164 struct cpsw_priv *priv = netdev_priv(ndev); 1165 int slave_no; 1166 1167 slave_no = cpsw_slave_index(cpsw, priv); 1168 if (!cpsw->slaves[slave_no].phy) 1169 return -EINVAL; 1170 1171 if (!phy_validate_pause(cpsw->slaves[slave_no].phy, pause)) 1172 return -EINVAL; 1173 1174 priv->rx_pause = pause->rx_pause ? true : false; 1175 priv->tx_pause = pause->tx_pause ? true : false; 1176 1177 phy_set_asym_pause(cpsw->slaves[slave_no].phy, 1178 priv->rx_pause, priv->tx_pause); 1179 1180 return 0; 1181 } 1182 1183 static int cpsw_set_channels(struct net_device *ndev, 1184 struct ethtool_channels *chs) 1185 { 1186 return cpsw_set_channels_common(ndev, chs, cpsw_rx_handler); 1187 } 1188 1189 static const struct ethtool_ops cpsw_ethtool_ops = { 1190 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS, 1191 .get_drvinfo = cpsw_get_drvinfo, 1192 .get_msglevel = cpsw_get_msglevel, 1193 .set_msglevel = cpsw_set_msglevel, 1194 .get_link = ethtool_op_get_link, 1195 .get_ts_info = cpsw_get_ts_info, 1196 .get_coalesce = cpsw_get_coalesce, 1197 .set_coalesce = cpsw_set_coalesce, 1198 .get_sset_count = cpsw_get_sset_count, 1199 .get_strings = cpsw_get_strings, 1200 .get_ethtool_stats = cpsw_get_ethtool_stats, 1201 .get_pauseparam = cpsw_get_pauseparam, 1202 .set_pauseparam = cpsw_set_pauseparam, 1203 .get_wol = cpsw_get_wol, 1204 .set_wol = cpsw_set_wol, 1205 .get_regs_len = cpsw_get_regs_len, 1206 .get_regs = cpsw_get_regs, 1207 .begin = cpsw_ethtool_op_begin, 1208 .complete = cpsw_ethtool_op_complete, 1209 .get_channels = cpsw_get_channels, 1210 .set_channels = cpsw_set_channels, 1211 .get_link_ksettings = cpsw_get_link_ksettings, 1212 .set_link_ksettings = cpsw_set_link_ksettings, 1213 .get_eee = cpsw_get_eee, 1214 .nway_reset = cpsw_nway_reset, 1215 .get_ringparam = cpsw_get_ringparam, 1216 .set_ringparam = cpsw_set_ringparam, 1217 }; 1218 1219 static int cpsw_probe_dt(struct cpsw_common *cpsw) 1220 { 1221 struct device_node *node = cpsw->dev->of_node, *tmp_node, *port_np; 1222 struct cpsw_platform_data *data = &cpsw->data; 1223 struct device *dev = cpsw->dev; 1224 int ret; 1225 u32 prop; 1226 1227 if (!node) 1228 return -EINVAL; 1229 1230 tmp_node = of_get_child_by_name(node, "ethernet-ports"); 1231 if (!tmp_node) 1232 return -ENOENT; 1233 data->slaves = of_get_child_count(tmp_node); 1234 if (data->slaves != CPSW_SLAVE_PORTS_NUM) { 1235 of_node_put(tmp_node); 1236 return -ENOENT; 1237 } 1238 1239 data->active_slave = 0; 1240 data->channels = CPSW_MAX_QUEUES; 1241 data->dual_emac = true; 1242 data->bd_ram_size = CPSW_BD_RAM_SIZE; 1243 data->mac_control = 0; 1244 1245 data->slave_data = devm_kcalloc(dev, CPSW_SLAVE_PORTS_NUM, 1246 sizeof(struct cpsw_slave_data), 1247 GFP_KERNEL); 1248 if (!data->slave_data) { 1249 of_node_put(tmp_node); 1250 return -ENOMEM; 1251 } 1252 1253 /* Populate all the child nodes here... 1254 */ 1255 ret = devm_of_platform_populate(dev); 1256 /* We do not want to force this, as in some cases may not have child */ 1257 if (ret) 1258 dev_warn(dev, "Doesn't have any child node\n"); 1259 1260 for_each_child_of_node(tmp_node, port_np) { 1261 struct cpsw_slave_data *slave_data; 1262 u32 port_id; 1263 1264 ret = of_property_read_u32(port_np, "reg", &port_id); 1265 if (ret < 0) { 1266 dev_err(dev, "%pOF error reading port_id %d\n", 1267 port_np, ret); 1268 goto err_node_put; 1269 } 1270 1271 if (!port_id || port_id > CPSW_SLAVE_PORTS_NUM) { 1272 dev_err(dev, "%pOF has invalid port_id %u\n", 1273 port_np, port_id); 1274 ret = -EINVAL; 1275 goto err_node_put; 1276 } 1277 1278 slave_data = &data->slave_data[port_id - 1]; 1279 1280 slave_data->disabled = !of_device_is_available(port_np); 1281 if (slave_data->disabled) 1282 continue; 1283 1284 slave_data->slave_node = port_np; 1285 slave_data->ifphy = devm_of_phy_get(dev, port_np, NULL); 1286 if (IS_ERR(slave_data->ifphy)) { 1287 ret = PTR_ERR(slave_data->ifphy); 1288 dev_err(dev, "%pOF: Error retrieving port phy: %d\n", 1289 port_np, ret); 1290 goto err_node_put; 1291 } 1292 1293 if (of_phy_is_fixed_link(port_np)) { 1294 ret = of_phy_register_fixed_link(port_np); 1295 if (ret) { 1296 dev_err_probe(dev, ret, "%pOF failed to register fixed-link phy\n", 1297 port_np); 1298 goto err_node_put; 1299 } 1300 slave_data->phy_node = of_node_get(port_np); 1301 } else { 1302 slave_data->phy_node = 1303 of_parse_phandle(port_np, "phy-handle", 0); 1304 } 1305 1306 if (!slave_data->phy_node) { 1307 dev_err(dev, "%pOF no phy found\n", port_np); 1308 ret = -ENODEV; 1309 goto err_node_put; 1310 } 1311 1312 ret = of_get_phy_mode(port_np, &slave_data->phy_if); 1313 if (ret) { 1314 dev_err(dev, "%pOF read phy-mode err %d\n", 1315 port_np, ret); 1316 goto err_node_put; 1317 } 1318 1319 ret = of_get_mac_address(port_np, slave_data->mac_addr); 1320 if (ret) { 1321 ret = ti_cm_get_macid(dev, port_id - 1, 1322 slave_data->mac_addr); 1323 if (ret) 1324 goto err_node_put; 1325 } 1326 1327 if (of_property_read_u32(port_np, "ti,dual-emac-pvid", 1328 &prop)) { 1329 dev_err(dev, "%pOF Missing dual_emac_res_vlan in DT.\n", 1330 port_np); 1331 slave_data->dual_emac_res_vlan = port_id; 1332 dev_err(dev, "%pOF Using %d as Reserved VLAN\n", 1333 port_np, slave_data->dual_emac_res_vlan); 1334 } else { 1335 slave_data->dual_emac_res_vlan = prop; 1336 } 1337 } 1338 1339 of_node_put(tmp_node); 1340 return 0; 1341 1342 err_node_put: 1343 of_node_put(port_np); 1344 of_node_put(tmp_node); 1345 return ret; 1346 } 1347 1348 static void cpsw_remove_dt(struct cpsw_common *cpsw) 1349 { 1350 struct cpsw_platform_data *data = &cpsw->data; 1351 int i = 0; 1352 1353 for (i = 0; i < cpsw->data.slaves; i++) { 1354 struct cpsw_slave_data *slave_data = &data->slave_data[i]; 1355 struct device_node *port_np = slave_data->phy_node; 1356 1357 if (port_np) { 1358 if (of_phy_is_fixed_link(port_np)) 1359 of_phy_deregister_fixed_link(port_np); 1360 1361 of_node_put(port_np); 1362 } 1363 } 1364 } 1365 1366 static int cpsw_create_ports(struct cpsw_common *cpsw) 1367 { 1368 struct cpsw_platform_data *data = &cpsw->data; 1369 struct net_device *ndev, *napi_ndev = NULL; 1370 struct device *dev = cpsw->dev; 1371 struct cpsw_priv *priv; 1372 int ret = 0, i = 0; 1373 1374 for (i = 0; i < cpsw->data.slaves; i++) { 1375 struct cpsw_slave_data *slave_data = &data->slave_data[i]; 1376 1377 if (slave_data->disabled) 1378 continue; 1379 1380 ndev = devm_alloc_etherdev_mqs(dev, sizeof(struct cpsw_priv), 1381 CPSW_MAX_QUEUES, 1382 CPSW_MAX_QUEUES); 1383 if (!ndev) { 1384 dev_err(dev, "error allocating net_device\n"); 1385 return -ENOMEM; 1386 } 1387 1388 priv = netdev_priv(ndev); 1389 priv->cpsw = cpsw; 1390 priv->ndev = ndev; 1391 priv->dev = dev; 1392 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 1393 priv->emac_port = i + 1; 1394 priv->tx_packet_min = CPSW_MIN_PACKET_SIZE; 1395 1396 if (is_valid_ether_addr(slave_data->mac_addr)) { 1397 ether_addr_copy(priv->mac_addr, slave_data->mac_addr); 1398 dev_info(cpsw->dev, "Detected MACID = %pM\n", 1399 priv->mac_addr); 1400 } else { 1401 eth_random_addr(slave_data->mac_addr); 1402 dev_info(cpsw->dev, "Random MACID = %pM\n", 1403 priv->mac_addr); 1404 } 1405 eth_hw_addr_set(ndev, slave_data->mac_addr); 1406 ether_addr_copy(priv->mac_addr, slave_data->mac_addr); 1407 1408 cpsw->slaves[i].ndev = ndev; 1409 1410 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 1411 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_TC; 1412 ndev->netns_local = true; 1413 1414 ndev->xdp_features = NETDEV_XDP_ACT_BASIC | 1415 NETDEV_XDP_ACT_REDIRECT | 1416 NETDEV_XDP_ACT_NDO_XMIT; 1417 1418 ndev->netdev_ops = &cpsw_netdev_ops; 1419 ndev->ethtool_ops = &cpsw_ethtool_ops; 1420 SET_NETDEV_DEV(ndev, dev); 1421 1422 if (!napi_ndev) { 1423 /* CPSW Host port CPDMA interface is shared between 1424 * ports and there is only one TX and one RX IRQs 1425 * available for all possible TX and RX channels 1426 * accordingly. 1427 */ 1428 netif_napi_add(ndev, &cpsw->napi_rx, 1429 cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll); 1430 netif_napi_add_tx(ndev, &cpsw->napi_tx, 1431 cpsw->quirk_irq ? 1432 cpsw_tx_poll : cpsw_tx_mq_poll); 1433 } 1434 1435 napi_ndev = ndev; 1436 } 1437 1438 return ret; 1439 } 1440 1441 static void cpsw_unregister_ports(struct cpsw_common *cpsw) 1442 { 1443 int i = 0; 1444 1445 for (i = 0; i < cpsw->data.slaves; i++) { 1446 if (!cpsw->slaves[i].ndev) 1447 continue; 1448 1449 unregister_netdev(cpsw->slaves[i].ndev); 1450 } 1451 } 1452 1453 static int cpsw_register_ports(struct cpsw_common *cpsw) 1454 { 1455 int ret = 0, i = 0; 1456 1457 for (i = 0; i < cpsw->data.slaves; i++) { 1458 if (!cpsw->slaves[i].ndev) 1459 continue; 1460 1461 /* register the network device */ 1462 ret = register_netdev(cpsw->slaves[i].ndev); 1463 if (ret) { 1464 dev_err(cpsw->dev, 1465 "cpsw: err registering net device%d\n", i); 1466 cpsw->slaves[i].ndev = NULL; 1467 break; 1468 } 1469 } 1470 1471 if (ret) 1472 cpsw_unregister_ports(cpsw); 1473 return ret; 1474 } 1475 1476 bool cpsw_port_dev_check(const struct net_device *ndev) 1477 { 1478 if (ndev->netdev_ops == &cpsw_netdev_ops) { 1479 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1480 1481 return !cpsw->data.dual_emac; 1482 } 1483 1484 return false; 1485 } 1486 1487 static void cpsw_port_offload_fwd_mark_update(struct cpsw_common *cpsw) 1488 { 1489 int set_val = 0; 1490 int i; 1491 1492 if (!cpsw->ale_bypass && 1493 (cpsw->br_members == (ALE_PORT_1 | ALE_PORT_2))) 1494 set_val = 1; 1495 1496 dev_dbg(cpsw->dev, "set offload_fwd_mark %d\n", set_val); 1497 1498 for (i = 0; i < cpsw->data.slaves; i++) { 1499 struct net_device *sl_ndev = cpsw->slaves[i].ndev; 1500 struct cpsw_priv *priv = netdev_priv(sl_ndev); 1501 1502 priv->offload_fwd_mark = set_val; 1503 } 1504 } 1505 1506 static int cpsw_netdevice_port_link(struct net_device *ndev, 1507 struct net_device *br_ndev, 1508 struct netlink_ext_ack *extack) 1509 { 1510 struct cpsw_priv *priv = netdev_priv(ndev); 1511 struct cpsw_common *cpsw = priv->cpsw; 1512 int err; 1513 1514 if (!cpsw->br_members) { 1515 cpsw->hw_bridge_dev = br_ndev; 1516 } else { 1517 /* This is adding the port to a second bridge, this is 1518 * unsupported 1519 */ 1520 if (cpsw->hw_bridge_dev != br_ndev) 1521 return -EOPNOTSUPP; 1522 } 1523 1524 err = switchdev_bridge_port_offload(ndev, ndev, NULL, NULL, NULL, 1525 false, extack); 1526 if (err) 1527 return err; 1528 1529 cpsw->br_members |= BIT(priv->emac_port); 1530 1531 cpsw_port_offload_fwd_mark_update(cpsw); 1532 1533 return NOTIFY_DONE; 1534 } 1535 1536 static void cpsw_netdevice_port_unlink(struct net_device *ndev) 1537 { 1538 struct cpsw_priv *priv = netdev_priv(ndev); 1539 struct cpsw_common *cpsw = priv->cpsw; 1540 1541 switchdev_bridge_port_unoffload(ndev, NULL, NULL, NULL); 1542 1543 cpsw->br_members &= ~BIT(priv->emac_port); 1544 1545 cpsw_port_offload_fwd_mark_update(cpsw); 1546 1547 if (!cpsw->br_members) 1548 cpsw->hw_bridge_dev = NULL; 1549 } 1550 1551 /* netdev notifier */ 1552 static int cpsw_netdevice_event(struct notifier_block *unused, 1553 unsigned long event, void *ptr) 1554 { 1555 struct netlink_ext_ack *extack = netdev_notifier_info_to_extack(ptr); 1556 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 1557 struct netdev_notifier_changeupper_info *info; 1558 int ret = NOTIFY_DONE; 1559 1560 if (!cpsw_port_dev_check(ndev)) 1561 return NOTIFY_DONE; 1562 1563 switch (event) { 1564 case NETDEV_CHANGEUPPER: 1565 info = ptr; 1566 1567 if (netif_is_bridge_master(info->upper_dev)) { 1568 if (info->linking) 1569 ret = cpsw_netdevice_port_link(ndev, 1570 info->upper_dev, 1571 extack); 1572 else 1573 cpsw_netdevice_port_unlink(ndev); 1574 } 1575 break; 1576 default: 1577 return NOTIFY_DONE; 1578 } 1579 1580 return notifier_from_errno(ret); 1581 } 1582 1583 static struct notifier_block cpsw_netdevice_nb __read_mostly = { 1584 .notifier_call = cpsw_netdevice_event, 1585 }; 1586 1587 static int cpsw_register_notifiers(struct cpsw_common *cpsw) 1588 { 1589 int ret = 0; 1590 1591 ret = register_netdevice_notifier(&cpsw_netdevice_nb); 1592 if (ret) { 1593 dev_err(cpsw->dev, "can't register netdevice notifier\n"); 1594 return ret; 1595 } 1596 1597 ret = cpsw_switchdev_register_notifiers(cpsw); 1598 if (ret) 1599 unregister_netdevice_notifier(&cpsw_netdevice_nb); 1600 1601 return ret; 1602 } 1603 1604 static void cpsw_unregister_notifiers(struct cpsw_common *cpsw) 1605 { 1606 cpsw_switchdev_unregister_notifiers(cpsw); 1607 unregister_netdevice_notifier(&cpsw_netdevice_nb); 1608 } 1609 1610 static const struct devlink_ops cpsw_devlink_ops = { 1611 }; 1612 1613 static int cpsw_dl_switch_mode_get(struct devlink *dl, u32 id, 1614 struct devlink_param_gset_ctx *ctx) 1615 { 1616 struct cpsw_devlink *dl_priv = devlink_priv(dl); 1617 struct cpsw_common *cpsw = dl_priv->cpsw; 1618 1619 dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id); 1620 1621 if (id != CPSW_DL_PARAM_SWITCH_MODE) 1622 return -EOPNOTSUPP; 1623 1624 ctx->val.vbool = !cpsw->data.dual_emac; 1625 1626 return 0; 1627 } 1628 1629 static int cpsw_dl_switch_mode_set(struct devlink *dl, u32 id, 1630 struct devlink_param_gset_ctx *ctx, 1631 struct netlink_ext_ack *extack) 1632 { 1633 struct cpsw_devlink *dl_priv = devlink_priv(dl); 1634 struct cpsw_common *cpsw = dl_priv->cpsw; 1635 int vlan = cpsw->data.default_vlan; 1636 bool switch_en = ctx->val.vbool; 1637 bool if_running = false; 1638 int i; 1639 1640 dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id); 1641 1642 if (id != CPSW_DL_PARAM_SWITCH_MODE) 1643 return -EOPNOTSUPP; 1644 1645 if (switch_en == !cpsw->data.dual_emac) 1646 return 0; 1647 1648 if (!switch_en && cpsw->br_members) { 1649 dev_err(cpsw->dev, "Remove ports from BR before disabling switch mode\n"); 1650 return -EINVAL; 1651 } 1652 1653 rtnl_lock(); 1654 1655 for (i = 0; i < cpsw->data.slaves; i++) { 1656 struct cpsw_slave *slave = &cpsw->slaves[i]; 1657 struct net_device *sl_ndev = slave->ndev; 1658 1659 if (!sl_ndev || !netif_running(sl_ndev)) 1660 continue; 1661 1662 if_running = true; 1663 } 1664 1665 if (!if_running) { 1666 /* all ndevs are down */ 1667 cpsw->data.dual_emac = !switch_en; 1668 for (i = 0; i < cpsw->data.slaves; i++) { 1669 struct cpsw_slave *slave = &cpsw->slaves[i]; 1670 struct net_device *sl_ndev = slave->ndev; 1671 1672 if (!sl_ndev) 1673 continue; 1674 1675 if (switch_en) 1676 vlan = cpsw->data.default_vlan; 1677 else 1678 vlan = slave->data->dual_emac_res_vlan; 1679 slave->port_vlan = vlan; 1680 } 1681 goto exit; 1682 } 1683 1684 if (switch_en) { 1685 dev_info(cpsw->dev, "Enable switch mode\n"); 1686 1687 /* enable bypass - no forwarding; all traffic goes to Host */ 1688 cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 1); 1689 1690 /* clean up ALE table */ 1691 cpsw_ale_control_set(cpsw->ale, 0, ALE_CLEAR, 1); 1692 cpsw_ale_control_get(cpsw->ale, 0, ALE_AGEOUT); 1693 1694 cpsw_init_host_port_switch(cpsw); 1695 1696 for (i = 0; i < cpsw->data.slaves; i++) { 1697 struct cpsw_slave *slave = &cpsw->slaves[i]; 1698 struct net_device *sl_ndev = slave->ndev; 1699 struct cpsw_priv *priv; 1700 1701 if (!sl_ndev) 1702 continue; 1703 1704 priv = netdev_priv(sl_ndev); 1705 slave->port_vlan = vlan; 1706 WRITE_ONCE(priv->tx_packet_min, CPSW_MIN_PACKET_SIZE_VLAN); 1707 if (netif_running(sl_ndev)) 1708 cpsw_port_add_switch_def_ale_entries(priv, 1709 slave); 1710 } 1711 1712 cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 0); 1713 cpsw->data.dual_emac = false; 1714 } else { 1715 dev_info(cpsw->dev, "Disable switch mode\n"); 1716 1717 /* enable bypass - no forwarding; all traffic goes to Host */ 1718 cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 1); 1719 1720 cpsw_ale_control_set(cpsw->ale, 0, ALE_CLEAR, 1); 1721 cpsw_ale_control_get(cpsw->ale, 0, ALE_AGEOUT); 1722 1723 cpsw_init_host_port_dual_mac(cpsw); 1724 1725 for (i = 0; i < cpsw->data.slaves; i++) { 1726 struct cpsw_slave *slave = &cpsw->slaves[i]; 1727 struct net_device *sl_ndev = slave->ndev; 1728 struct cpsw_priv *priv; 1729 1730 if (!sl_ndev) 1731 continue; 1732 1733 priv = netdev_priv(slave->ndev); 1734 slave->port_vlan = slave->data->dual_emac_res_vlan; 1735 WRITE_ONCE(priv->tx_packet_min, CPSW_MIN_PACKET_SIZE); 1736 cpsw_port_add_dual_emac_def_ale_entries(priv, slave); 1737 } 1738 1739 cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 0); 1740 cpsw->data.dual_emac = true; 1741 } 1742 exit: 1743 rtnl_unlock(); 1744 1745 return 0; 1746 } 1747 1748 static int cpsw_dl_ale_ctrl_get(struct devlink *dl, u32 id, 1749 struct devlink_param_gset_ctx *ctx) 1750 { 1751 struct cpsw_devlink *dl_priv = devlink_priv(dl); 1752 struct cpsw_common *cpsw = dl_priv->cpsw; 1753 1754 dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id); 1755 1756 switch (id) { 1757 case CPSW_DL_PARAM_ALE_BYPASS: 1758 ctx->val.vbool = cpsw_ale_control_get(cpsw->ale, 0, ALE_BYPASS); 1759 break; 1760 default: 1761 return -EOPNOTSUPP; 1762 } 1763 1764 return 0; 1765 } 1766 1767 static int cpsw_dl_ale_ctrl_set(struct devlink *dl, u32 id, 1768 struct devlink_param_gset_ctx *ctx, 1769 struct netlink_ext_ack *extack) 1770 { 1771 struct cpsw_devlink *dl_priv = devlink_priv(dl); 1772 struct cpsw_common *cpsw = dl_priv->cpsw; 1773 int ret = -EOPNOTSUPP; 1774 1775 dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id); 1776 1777 switch (id) { 1778 case CPSW_DL_PARAM_ALE_BYPASS: 1779 ret = cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 1780 ctx->val.vbool); 1781 if (!ret) { 1782 cpsw->ale_bypass = ctx->val.vbool; 1783 cpsw_port_offload_fwd_mark_update(cpsw); 1784 } 1785 break; 1786 default: 1787 return -EOPNOTSUPP; 1788 } 1789 1790 return 0; 1791 } 1792 1793 static const struct devlink_param cpsw_devlink_params[] = { 1794 DEVLINK_PARAM_DRIVER(CPSW_DL_PARAM_SWITCH_MODE, 1795 "switch_mode", DEVLINK_PARAM_TYPE_BOOL, 1796 BIT(DEVLINK_PARAM_CMODE_RUNTIME), 1797 cpsw_dl_switch_mode_get, cpsw_dl_switch_mode_set, 1798 NULL), 1799 DEVLINK_PARAM_DRIVER(CPSW_DL_PARAM_ALE_BYPASS, 1800 "ale_bypass", DEVLINK_PARAM_TYPE_BOOL, 1801 BIT(DEVLINK_PARAM_CMODE_RUNTIME), 1802 cpsw_dl_ale_ctrl_get, cpsw_dl_ale_ctrl_set, NULL), 1803 }; 1804 1805 static int cpsw_register_devlink(struct cpsw_common *cpsw) 1806 { 1807 struct device *dev = cpsw->dev; 1808 struct cpsw_devlink *dl_priv; 1809 int ret = 0; 1810 1811 cpsw->devlink = devlink_alloc(&cpsw_devlink_ops, sizeof(*dl_priv), dev); 1812 if (!cpsw->devlink) 1813 return -ENOMEM; 1814 1815 dl_priv = devlink_priv(cpsw->devlink); 1816 dl_priv->cpsw = cpsw; 1817 1818 ret = devlink_params_register(cpsw->devlink, cpsw_devlink_params, 1819 ARRAY_SIZE(cpsw_devlink_params)); 1820 if (ret) { 1821 dev_err(dev, "DL params reg fail ret:%d\n", ret); 1822 goto dl_unreg; 1823 } 1824 1825 devlink_register(cpsw->devlink); 1826 return ret; 1827 1828 dl_unreg: 1829 devlink_free(cpsw->devlink); 1830 return ret; 1831 } 1832 1833 static void cpsw_unregister_devlink(struct cpsw_common *cpsw) 1834 { 1835 devlink_unregister(cpsw->devlink); 1836 devlink_params_unregister(cpsw->devlink, cpsw_devlink_params, 1837 ARRAY_SIZE(cpsw_devlink_params)); 1838 devlink_free(cpsw->devlink); 1839 } 1840 1841 static const struct of_device_id cpsw_of_mtable[] = { 1842 { .compatible = "ti,cpsw-switch"}, 1843 { .compatible = "ti,am335x-cpsw-switch"}, 1844 { .compatible = "ti,am4372-cpsw-switch"}, 1845 { .compatible = "ti,dra7-cpsw-switch"}, 1846 { /* sentinel */ }, 1847 }; 1848 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 1849 1850 static const struct soc_device_attribute cpsw_soc_devices[] = { 1851 { .family = "AM33xx", .revision = "ES1.0"}, 1852 { /* sentinel */ } 1853 }; 1854 1855 static int cpsw_probe(struct platform_device *pdev) 1856 { 1857 const struct soc_device_attribute *soc; 1858 struct device *dev = &pdev->dev; 1859 struct cpsw_common *cpsw; 1860 struct resource *ss_res; 1861 struct gpio_descs *mode; 1862 void __iomem *ss_regs; 1863 int ret = 0, ch; 1864 struct clk *clk; 1865 int irq; 1866 1867 cpsw = devm_kzalloc(dev, sizeof(struct cpsw_common), GFP_KERNEL); 1868 if (!cpsw) 1869 return -ENOMEM; 1870 1871 cpsw_slave_index = cpsw_slave_index_priv; 1872 1873 cpsw->dev = dev; 1874 1875 cpsw->slaves = devm_kcalloc(dev, 1876 CPSW_SLAVE_PORTS_NUM, 1877 sizeof(struct cpsw_slave), 1878 GFP_KERNEL); 1879 if (!cpsw->slaves) 1880 return -ENOMEM; 1881 1882 mode = devm_gpiod_get_array_optional(dev, "mode", GPIOD_OUT_LOW); 1883 if (IS_ERR(mode)) { 1884 ret = PTR_ERR(mode); 1885 dev_err(dev, "gpio request failed, ret %d\n", ret); 1886 return ret; 1887 } 1888 1889 clk = devm_clk_get(dev, "fck"); 1890 if (IS_ERR(clk)) { 1891 ret = PTR_ERR(clk); 1892 dev_err(dev, "fck is not found %d\n", ret); 1893 return ret; 1894 } 1895 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000; 1896 1897 ss_regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ss_res); 1898 if (IS_ERR(ss_regs)) { 1899 ret = PTR_ERR(ss_regs); 1900 return ret; 1901 } 1902 cpsw->regs = ss_regs; 1903 1904 irq = platform_get_irq_byname(pdev, "rx"); 1905 if (irq < 0) 1906 return irq; 1907 cpsw->irqs_table[0] = irq; 1908 1909 irq = platform_get_irq_byname(pdev, "tx"); 1910 if (irq < 0) 1911 return irq; 1912 cpsw->irqs_table[1] = irq; 1913 1914 irq = platform_get_irq_byname(pdev, "misc"); 1915 if (irq <= 0) 1916 return irq; 1917 cpsw->misc_irq = irq; 1918 1919 platform_set_drvdata(pdev, cpsw); 1920 /* This may be required here for child devices. */ 1921 pm_runtime_enable(dev); 1922 1923 /* Need to enable clocks with runtime PM api to access module 1924 * registers 1925 */ 1926 ret = pm_runtime_resume_and_get(dev); 1927 if (ret < 0) { 1928 pm_runtime_disable(dev); 1929 return ret; 1930 } 1931 1932 ret = cpsw_probe_dt(cpsw); 1933 if (ret) 1934 goto clean_dt_ret; 1935 1936 soc = soc_device_match(cpsw_soc_devices); 1937 if (soc) 1938 cpsw->quirk_irq = true; 1939 1940 cpsw->rx_packet_max = rx_packet_max; 1941 cpsw->descs_pool_size = descs_pool_size; 1942 eth_random_addr(cpsw->base_mac); 1943 1944 ret = cpsw_init_common(cpsw, ss_regs, ale_ageout, 1945 (u32 __force)ss_res->start + CPSW2_BD_OFFSET, 1946 descs_pool_size); 1947 if (ret) 1948 goto clean_dt_ret; 1949 1950 cpsw->wr_regs = cpsw->version == CPSW_VERSION_1 ? 1951 ss_regs + CPSW1_WR_OFFSET : 1952 ss_regs + CPSW2_WR_OFFSET; 1953 1954 ch = cpsw->quirk_irq ? 0 : 7; 1955 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0); 1956 if (IS_ERR(cpsw->txv[0].ch)) { 1957 dev_err(dev, "error initializing tx dma channel\n"); 1958 ret = PTR_ERR(cpsw->txv[0].ch); 1959 goto clean_cpts; 1960 } 1961 1962 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1); 1963 if (IS_ERR(cpsw->rxv[0].ch)) { 1964 dev_err(dev, "error initializing rx dma channel\n"); 1965 ret = PTR_ERR(cpsw->rxv[0].ch); 1966 goto clean_cpts; 1967 } 1968 cpsw_split_res(cpsw); 1969 1970 /* setup netdevs */ 1971 ret = cpsw_create_ports(cpsw); 1972 if (ret) 1973 goto clean_unregister_netdev; 1974 1975 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 1976 * MISC IRQs which are always kept disabled with this driver so 1977 * we will not request them. 1978 * 1979 * If anyone wants to implement support for those, make sure to 1980 * first request and append them to irqs_table array. 1981 */ 1982 1983 ret = devm_request_irq(dev, cpsw->irqs_table[0], cpsw_rx_interrupt, 1984 0, dev_name(dev), cpsw); 1985 if (ret < 0) { 1986 dev_err(dev, "error attaching irq (%d)\n", ret); 1987 goto clean_unregister_netdev; 1988 } 1989 1990 ret = devm_request_irq(dev, cpsw->irqs_table[1], cpsw_tx_interrupt, 1991 0, dev_name(dev), cpsw); 1992 if (ret < 0) { 1993 dev_err(dev, "error attaching irq (%d)\n", ret); 1994 goto clean_unregister_netdev; 1995 } 1996 1997 if (!cpsw->cpts) 1998 goto skip_cpts; 1999 2000 ret = devm_request_irq(dev, cpsw->misc_irq, cpsw_misc_interrupt, 2001 0, dev_name(&pdev->dev), cpsw); 2002 if (ret < 0) { 2003 dev_err(dev, "error attaching misc irq (%d)\n", ret); 2004 goto clean_unregister_netdev; 2005 } 2006 2007 /* Enable misc CPTS evnt_pend IRQ */ 2008 cpts_set_irqpoll(cpsw->cpts, false); 2009 2010 skip_cpts: 2011 ret = cpsw_register_notifiers(cpsw); 2012 if (ret) 2013 goto clean_unregister_netdev; 2014 2015 ret = cpsw_register_devlink(cpsw); 2016 if (ret) 2017 goto clean_unregister_notifiers; 2018 2019 ret = cpsw_register_ports(cpsw); 2020 if (ret) 2021 goto clean_unregister_notifiers; 2022 2023 dev_notice(dev, "initialized (regs %pa, pool size %d) hw_ver:%08X %d.%d (%d)\n", 2024 &ss_res->start, descs_pool_size, 2025 cpsw->version, CPSW_MAJOR_VERSION(cpsw->version), 2026 CPSW_MINOR_VERSION(cpsw->version), 2027 CPSW_RTL_VERSION(cpsw->version)); 2028 2029 pm_runtime_put(dev); 2030 2031 return 0; 2032 2033 clean_unregister_notifiers: 2034 cpsw_unregister_notifiers(cpsw); 2035 clean_unregister_netdev: 2036 cpsw_unregister_ports(cpsw); 2037 clean_cpts: 2038 cpts_release(cpsw->cpts); 2039 cpdma_ctlr_destroy(cpsw->dma); 2040 clean_dt_ret: 2041 cpsw_remove_dt(cpsw); 2042 pm_runtime_put_sync(dev); 2043 pm_runtime_disable(dev); 2044 return ret; 2045 } 2046 2047 static void cpsw_remove(struct platform_device *pdev) 2048 { 2049 struct cpsw_common *cpsw = platform_get_drvdata(pdev); 2050 int ret; 2051 2052 ret = pm_runtime_resume_and_get(&pdev->dev); 2053 if (ret < 0) { 2054 /* Note, if this error path is taken, we're leaking some 2055 * resources. 2056 */ 2057 dev_err(&pdev->dev, "Failed to resume device (%pe)\n", 2058 ERR_PTR(ret)); 2059 return; 2060 } 2061 2062 cpsw_unregister_notifiers(cpsw); 2063 cpsw_unregister_devlink(cpsw); 2064 cpsw_unregister_ports(cpsw); 2065 2066 cpts_release(cpsw->cpts); 2067 cpdma_ctlr_destroy(cpsw->dma); 2068 cpsw_remove_dt(cpsw); 2069 pm_runtime_put_sync(&pdev->dev); 2070 pm_runtime_disable(&pdev->dev); 2071 } 2072 2073 static int __maybe_unused cpsw_suspend(struct device *dev) 2074 { 2075 struct cpsw_common *cpsw = dev_get_drvdata(dev); 2076 int i; 2077 2078 rtnl_lock(); 2079 2080 for (i = 0; i < cpsw->data.slaves; i++) { 2081 struct net_device *ndev = cpsw->slaves[i].ndev; 2082 2083 if (!(ndev && netif_running(ndev))) 2084 continue; 2085 2086 cpsw_ndo_stop(ndev); 2087 } 2088 2089 rtnl_unlock(); 2090 2091 /* Select sleep pin state */ 2092 pinctrl_pm_select_sleep_state(dev); 2093 2094 return 0; 2095 } 2096 2097 static int __maybe_unused cpsw_resume(struct device *dev) 2098 { 2099 struct cpsw_common *cpsw = dev_get_drvdata(dev); 2100 int i; 2101 2102 /* Select default pin state */ 2103 pinctrl_pm_select_default_state(dev); 2104 2105 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */ 2106 rtnl_lock(); 2107 2108 for (i = 0; i < cpsw->data.slaves; i++) { 2109 struct net_device *ndev = cpsw->slaves[i].ndev; 2110 2111 if (!(ndev && netif_running(ndev))) 2112 continue; 2113 2114 cpsw_ndo_open(ndev); 2115 } 2116 2117 rtnl_unlock(); 2118 2119 return 0; 2120 } 2121 2122 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 2123 2124 static struct platform_driver cpsw_driver = { 2125 .driver = { 2126 .name = "cpsw-switch", 2127 .pm = &cpsw_pm_ops, 2128 .of_match_table = cpsw_of_mtable, 2129 }, 2130 .probe = cpsw_probe, 2131 .remove = cpsw_remove, 2132 }; 2133 2134 module_platform_driver(cpsw_driver); 2135 2136 MODULE_LICENSE("GPL"); 2137 MODULE_DESCRIPTION("TI CPSW switchdev Ethernet driver"); 2138