1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Texas Instruments Ethernet Switch Driver 4 * 5 * Copyright (C) 2019 Texas Instruments 6 */ 7 8 #include <linux/io.h> 9 #include <linux/clk.h> 10 #include <linux/platform_device.h> 11 #include <linux/timer.h> 12 #include <linux/module.h> 13 #include <linux/irqreturn.h> 14 #include <linux/interrupt.h> 15 #include <linux/if_ether.h> 16 #include <linux/etherdevice.h> 17 #include <linux/net_tstamp.h> 18 #include <linux/phy.h> 19 #include <linux/phy/phy.h> 20 #include <linux/delay.h> 21 #include <linux/pinctrl/consumer.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/gpio/consumer.h> 24 #include <linux/of.h> 25 #include <linux/of_mdio.h> 26 #include <linux/of_net.h> 27 #include <linux/of_platform.h> 28 #include <linux/if_vlan.h> 29 #include <linux/kmemleak.h> 30 #include <linux/sys_soc.h> 31 32 #include <net/switchdev.h> 33 #include <net/page_pool/helpers.h> 34 #include <net/pkt_cls.h> 35 #include <net/devlink.h> 36 37 #include "cpsw.h" 38 #include "cpsw_ale.h" 39 #include "cpsw_priv.h" 40 #include "cpsw_sl.h" 41 #include "cpsw_switchdev.h" 42 #include "cpts.h" 43 #include "davinci_cpdma.h" 44 45 #include <net/pkt_sched.h> 46 47 static int debug_level; 48 static int ale_ageout = CPSW_ALE_AGEOUT_DEFAULT; 49 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 50 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT; 51 52 struct cpsw_devlink { 53 struct cpsw_common *cpsw; 54 }; 55 56 enum cpsw_devlink_param_id { 57 CPSW_DEVLINK_PARAM_ID_BASE = DEVLINK_PARAM_GENERIC_ID_MAX, 58 CPSW_DL_PARAM_SWITCH_MODE, 59 CPSW_DL_PARAM_ALE_BYPASS, 60 }; 61 62 /* struct cpsw_common is not needed, kept here for compatibility 63 * reasons witrh the old driver 64 */ 65 static int cpsw_slave_index_priv(struct cpsw_common *cpsw, 66 struct cpsw_priv *priv) 67 { 68 if (priv->emac_port == HOST_PORT_NUM) 69 return -1; 70 71 return priv->emac_port - 1; 72 } 73 74 static bool cpsw_is_switch_en(struct cpsw_common *cpsw) 75 { 76 return !cpsw->data.dual_emac; 77 } 78 79 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 80 { 81 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 82 bool enable_uni = false; 83 int i; 84 85 if (cpsw_is_switch_en(cpsw)) 86 return; 87 88 /* Enabling promiscuous mode for one interface will be 89 * common for both the interface as the interface shares 90 * the same hardware resource. 91 */ 92 for (i = 0; i < cpsw->data.slaves; i++) 93 if (cpsw->slaves[i].ndev && 94 (cpsw->slaves[i].ndev->flags & IFF_PROMISC)) 95 enable_uni = true; 96 97 if (!enable && enable_uni) { 98 enable = enable_uni; 99 dev_dbg(cpsw->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 100 } 101 102 if (enable) { 103 /* Enable unknown unicast, reg/unreg mcast */ 104 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 105 ALE_P0_UNI_FLOOD, 1); 106 107 dev_dbg(cpsw->dev, "promiscuity enabled\n"); 108 } else { 109 /* Disable unknown unicast */ 110 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 111 ALE_P0_UNI_FLOOD, 0); 112 dev_dbg(cpsw->dev, "promiscuity disabled\n"); 113 } 114 } 115 116 /** 117 * cpsw_set_mc - adds multicast entry to the table if it's not added or deletes 118 * if it's not deleted 119 * @ndev: device to sync 120 * @addr: address to be added or deleted 121 * @vid: vlan id, if vid < 0 set/unset address for real device 122 * @add: add address if the flag is set or remove otherwise 123 */ 124 static int cpsw_set_mc(struct net_device *ndev, const u8 *addr, 125 int vid, int add) 126 { 127 struct cpsw_priv *priv = netdev_priv(ndev); 128 struct cpsw_common *cpsw = priv->cpsw; 129 int mask, flags, ret, slave_no; 130 131 slave_no = cpsw_slave_index(cpsw, priv); 132 if (vid < 0) 133 vid = cpsw->slaves[slave_no].port_vlan; 134 135 mask = ALE_PORT_HOST; 136 flags = vid ? ALE_VLAN : 0; 137 138 if (add) 139 ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0); 140 else 141 ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid); 142 143 return ret; 144 } 145 146 static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx) 147 { 148 struct addr_sync_ctx *sync_ctx = ctx; 149 struct netdev_hw_addr *ha; 150 int found = 0, ret = 0; 151 152 if (!vdev || !(vdev->flags & IFF_UP)) 153 return 0; 154 155 /* vlan address is relevant if its sync_cnt != 0 */ 156 netdev_for_each_mc_addr(ha, vdev) { 157 if (ether_addr_equal(ha->addr, sync_ctx->addr)) { 158 found = ha->sync_cnt; 159 break; 160 } 161 } 162 163 if (found) 164 sync_ctx->consumed++; 165 166 if (sync_ctx->flush) { 167 if (!found) 168 cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0); 169 return 0; 170 } 171 172 if (found) 173 ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1); 174 175 return ret; 176 } 177 178 static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num) 179 { 180 struct addr_sync_ctx sync_ctx; 181 int ret; 182 183 sync_ctx.consumed = 0; 184 sync_ctx.addr = addr; 185 sync_ctx.ndev = ndev; 186 sync_ctx.flush = 0; 187 188 ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx); 189 if (sync_ctx.consumed < num && !ret) 190 ret = cpsw_set_mc(ndev, addr, -1, 1); 191 192 return ret; 193 } 194 195 static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num) 196 { 197 struct addr_sync_ctx sync_ctx; 198 199 sync_ctx.consumed = 0; 200 sync_ctx.addr = addr; 201 sync_ctx.ndev = ndev; 202 sync_ctx.flush = 1; 203 204 vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx); 205 if (sync_ctx.consumed == num) 206 cpsw_set_mc(ndev, addr, -1, 0); 207 208 return 0; 209 } 210 211 static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx) 212 { 213 struct addr_sync_ctx *sync_ctx = ctx; 214 struct netdev_hw_addr *ha; 215 int found = 0; 216 217 if (!vdev || !(vdev->flags & IFF_UP)) 218 return 0; 219 220 /* vlan address is relevant if its sync_cnt != 0 */ 221 netdev_for_each_mc_addr(ha, vdev) { 222 if (ether_addr_equal(ha->addr, sync_ctx->addr)) { 223 found = ha->sync_cnt; 224 break; 225 } 226 } 227 228 if (!found) 229 return 0; 230 231 sync_ctx->consumed++; 232 cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0); 233 return 0; 234 } 235 236 static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num) 237 { 238 struct addr_sync_ctx sync_ctx; 239 240 sync_ctx.addr = addr; 241 sync_ctx.ndev = ndev; 242 sync_ctx.consumed = 0; 243 244 vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx); 245 if (sync_ctx.consumed < num) 246 cpsw_set_mc(ndev, addr, -1, 0); 247 248 return 0; 249 } 250 251 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 252 { 253 struct cpsw_priv *priv = netdev_priv(ndev); 254 struct cpsw_common *cpsw = priv->cpsw; 255 256 if (ndev->flags & IFF_PROMISC) { 257 /* Enable promiscuous mode */ 258 cpsw_set_promiscious(ndev, true); 259 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI, priv->emac_port); 260 return; 261 } 262 263 /* Disable promiscuous mode */ 264 cpsw_set_promiscious(ndev, false); 265 266 /* Restore allmulti on vlans if necessary */ 267 cpsw_ale_set_allmulti(cpsw->ale, 268 ndev->flags & IFF_ALLMULTI, priv->emac_port); 269 270 /* add/remove mcast address either for real netdev or for vlan */ 271 __hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr, 272 cpsw_del_mc_addr); 273 } 274 275 static unsigned int cpsw_rxbuf_total_len(unsigned int len) 276 { 277 len += CPSW_HEADROOM_NA; 278 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 279 280 return SKB_DATA_ALIGN(len); 281 } 282 283 static void cpsw_rx_handler(void *token, int len, int status) 284 { 285 struct page *new_page, *page = token; 286 void *pa = page_address(page); 287 int headroom = CPSW_HEADROOM_NA; 288 struct cpsw_meta_xdp *xmeta; 289 struct cpsw_common *cpsw; 290 struct net_device *ndev; 291 int port, ch, pkt_size; 292 struct cpsw_priv *priv; 293 struct page_pool *pool; 294 struct sk_buff *skb; 295 struct xdp_buff xdp; 296 int ret = 0; 297 dma_addr_t dma; 298 299 xmeta = pa + CPSW_XMETA_OFFSET; 300 cpsw = ndev_to_cpsw(xmeta->ndev); 301 ndev = xmeta->ndev; 302 pkt_size = cpsw->rx_packet_max; 303 ch = xmeta->ch; 304 305 if (status >= 0) { 306 port = CPDMA_RX_SOURCE_PORT(status); 307 if (port) 308 ndev = cpsw->slaves[--port].ndev; 309 } 310 311 priv = netdev_priv(ndev); 312 pool = cpsw->page_pool[ch]; 313 314 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 315 /* In dual emac mode check for all interfaces */ 316 if (cpsw->usage_count && status >= 0) { 317 /* The packet received is for the interface which 318 * is already down and the other interface is up 319 * and running, instead of freeing which results 320 * in reducing of the number of rx descriptor in 321 * DMA engine, requeue page back to cpdma. 322 */ 323 new_page = page; 324 goto requeue; 325 } 326 327 /* the interface is going down, pages are purged */ 328 page_pool_recycle_direct(pool, page); 329 return; 330 } 331 332 new_page = page_pool_dev_alloc_pages(pool); 333 if (unlikely(!new_page)) { 334 new_page = page; 335 ndev->stats.rx_dropped++; 336 goto requeue; 337 } 338 339 if (priv->xdp_prog) { 340 int size = len; 341 342 xdp_init_buff(&xdp, PAGE_SIZE, &priv->xdp_rxq[ch]); 343 if (status & CPDMA_RX_VLAN_ENCAP) { 344 headroom += CPSW_RX_VLAN_ENCAP_HDR_SIZE; 345 size -= CPSW_RX_VLAN_ENCAP_HDR_SIZE; 346 } 347 348 xdp_prepare_buff(&xdp, pa, headroom, size, false); 349 350 ret = cpsw_run_xdp(priv, ch, &xdp, page, priv->emac_port, &len); 351 if (ret != CPSW_XDP_PASS) 352 goto requeue; 353 354 headroom = xdp.data - xdp.data_hard_start; 355 356 /* XDP prog can modify vlan tag, so can't use encap header */ 357 status &= ~CPDMA_RX_VLAN_ENCAP; 358 } 359 360 /* pass skb to netstack if no XDP prog or returned XDP_PASS */ 361 skb = build_skb(pa, cpsw_rxbuf_total_len(pkt_size)); 362 if (!skb) { 363 ndev->stats.rx_dropped++; 364 page_pool_recycle_direct(pool, page); 365 goto requeue; 366 } 367 368 skb->offload_fwd_mark = priv->offload_fwd_mark; 369 skb_reserve(skb, headroom); 370 skb_put(skb, len); 371 skb->dev = ndev; 372 if (status & CPDMA_RX_VLAN_ENCAP) 373 cpsw_rx_vlan_encap(skb); 374 if (priv->rx_ts_enabled) 375 cpts_rx_timestamp(cpsw->cpts, skb); 376 skb->protocol = eth_type_trans(skb, ndev); 377 378 /* mark skb for recycling */ 379 skb_mark_for_recycle(skb); 380 netif_receive_skb(skb); 381 382 ndev->stats.rx_bytes += len; 383 ndev->stats.rx_packets++; 384 385 requeue: 386 xmeta = page_address(new_page) + CPSW_XMETA_OFFSET; 387 xmeta->ndev = ndev; 388 xmeta->ch = ch; 389 390 dma = page_pool_get_dma_addr(new_page) + CPSW_HEADROOM_NA; 391 ret = cpdma_chan_submit_mapped(cpsw->rxv[ch].ch, new_page, dma, 392 pkt_size, 0); 393 if (ret < 0) { 394 WARN_ON(ret == -ENOMEM); 395 page_pool_recycle_direct(pool, new_page); 396 } 397 } 398 399 static int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 400 unsigned short vid) 401 { 402 struct cpsw_common *cpsw = priv->cpsw; 403 int unreg_mcast_mask = 0; 404 int mcast_mask; 405 u32 port_mask; 406 int ret; 407 408 port_mask = (1 << priv->emac_port) | ALE_PORT_HOST; 409 410 mcast_mask = ALE_PORT_HOST; 411 if (priv->ndev->flags & IFF_ALLMULTI) 412 unreg_mcast_mask = mcast_mask; 413 414 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask, 415 unreg_mcast_mask); 416 if (ret != 0) 417 return ret; 418 419 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 420 HOST_PORT_NUM, ALE_VLAN, vid); 421 if (ret != 0) 422 goto clean_vid; 423 424 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 425 mcast_mask, ALE_VLAN, vid, 0); 426 if (ret != 0) 427 goto clean_vlan_ucast; 428 return 0; 429 430 clean_vlan_ucast: 431 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 432 HOST_PORT_NUM, ALE_VLAN, vid); 433 clean_vid: 434 cpsw_ale_del_vlan(cpsw->ale, vid, 0); 435 return ret; 436 } 437 438 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 439 __be16 proto, u16 vid) 440 { 441 struct cpsw_priv *priv = netdev_priv(ndev); 442 struct cpsw_common *cpsw = priv->cpsw; 443 int ret, i; 444 445 if (cpsw_is_switch_en(cpsw)) { 446 dev_dbg(cpsw->dev, ".ndo_vlan_rx_add_vid called in switch mode\n"); 447 return 0; 448 } 449 450 if (vid == cpsw->data.default_vlan) 451 return 0; 452 453 ret = pm_runtime_resume_and_get(cpsw->dev); 454 if (ret < 0) 455 return ret; 456 457 /* In dual EMAC, reserved VLAN id should not be used for 458 * creating VLAN interfaces as this can break the dual 459 * EMAC port separation 460 */ 461 for (i = 0; i < cpsw->data.slaves; i++) { 462 if (cpsw->slaves[i].ndev && 463 vid == cpsw->slaves[i].port_vlan) { 464 ret = -EINVAL; 465 goto err; 466 } 467 } 468 469 dev_dbg(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 470 ret = cpsw_add_vlan_ale_entry(priv, vid); 471 err: 472 pm_runtime_put(cpsw->dev); 473 return ret; 474 } 475 476 static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg) 477 { 478 struct cpsw_priv *priv = arg; 479 480 if (!vdev || !vid) 481 return 0; 482 483 cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid); 484 return 0; 485 } 486 487 /* restore resources after port reset */ 488 static void cpsw_restore(struct cpsw_priv *priv) 489 { 490 struct cpsw_common *cpsw = priv->cpsw; 491 492 /* restore vlan configurations */ 493 vlan_for_each(priv->ndev, cpsw_restore_vlans, priv); 494 495 /* restore MQPRIO offload */ 496 cpsw_mqprio_resume(&cpsw->slaves[priv->emac_port - 1], priv); 497 498 /* restore CBS offload */ 499 cpsw_cbs_resume(&cpsw->slaves[priv->emac_port - 1], priv); 500 501 cpsw_qos_clsflower_resume(priv); 502 } 503 504 static void cpsw_init_stp_ale_entry(struct cpsw_common *cpsw) 505 { 506 static const char stpa[] = {0x01, 0x80, 0xc2, 0x0, 0x0, 0x0}; 507 508 cpsw_ale_add_mcast(cpsw->ale, stpa, 509 ALE_PORT_HOST, ALE_SUPER, 0, 510 ALE_MCAST_BLOCK_LEARN_FWD); 511 } 512 513 static void cpsw_init_host_port_switch(struct cpsw_common *cpsw) 514 { 515 int vlan = cpsw->data.default_vlan; 516 517 writel(CPSW_FIFO_NORMAL_MODE, &cpsw->host_port_regs->tx_in_ctl); 518 519 writel(vlan, &cpsw->host_port_regs->port_vlan); 520 521 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, 522 ALE_ALL_PORTS, ALE_ALL_PORTS, 523 ALE_PORT_1 | ALE_PORT_2); 524 525 cpsw_init_stp_ale_entry(cpsw); 526 527 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_P0_UNI_FLOOD, 1); 528 dev_dbg(cpsw->dev, "Set P0_UNI_FLOOD\n"); 529 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_PORT_NOLEARN, 0); 530 } 531 532 static void cpsw_init_host_port_dual_mac(struct cpsw_common *cpsw) 533 { 534 int vlan = cpsw->data.default_vlan; 535 536 writel(CPSW_FIFO_DUAL_MAC_MODE, &cpsw->host_port_regs->tx_in_ctl); 537 538 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_P0_UNI_FLOOD, 0); 539 dev_dbg(cpsw->dev, "unset P0_UNI_FLOOD\n"); 540 541 writel(vlan, &cpsw->host_port_regs->port_vlan); 542 543 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0); 544 /* learning make no sense in dual_mac mode */ 545 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_PORT_NOLEARN, 1); 546 } 547 548 static void cpsw_init_host_port(struct cpsw_priv *priv) 549 { 550 struct cpsw_common *cpsw = priv->cpsw; 551 u32 control_reg; 552 553 /* soft reset the controller and initialize ale */ 554 soft_reset("cpsw", &cpsw->regs->soft_reset); 555 cpsw_ale_start(cpsw->ale); 556 557 /* switch to vlan unaware mode */ 558 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE, 559 CPSW_ALE_VLAN_AWARE); 560 control_reg = readl(&cpsw->regs->control); 561 control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP; 562 writel(control_reg, &cpsw->regs->control); 563 564 /* setup host port priority mapping */ 565 writel_relaxed(CPDMA_TX_PRIORITY_MAP, 566 &cpsw->host_port_regs->cpdma_tx_pri_map); 567 writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map); 568 569 /* disable priority elevation */ 570 writel_relaxed(0, &cpsw->regs->ptype); 571 572 /* enable statistics collection only on all ports */ 573 writel_relaxed(0x7, &cpsw->regs->stat_port_en); 574 575 /* Enable internal fifo flow control */ 576 writel(0x7, &cpsw->regs->flow_control); 577 578 if (cpsw_is_switch_en(cpsw)) 579 cpsw_init_host_port_switch(cpsw); 580 else 581 cpsw_init_host_port_dual_mac(cpsw); 582 583 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 584 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 585 } 586 587 static void cpsw_port_add_dual_emac_def_ale_entries(struct cpsw_priv *priv, 588 struct cpsw_slave *slave) 589 { 590 u32 port_mask = 1 << priv->emac_port | ALE_PORT_HOST; 591 struct cpsw_common *cpsw = priv->cpsw; 592 u32 reg; 593 594 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 595 CPSW2_PORT_VLAN; 596 slave_write(slave, slave->port_vlan, reg); 597 598 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask, 599 port_mask, port_mask, 0); 600 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 601 ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 602 ALE_MCAST_FWD); 603 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 604 HOST_PORT_NUM, ALE_VLAN | 605 ALE_SECURE, slave->port_vlan); 606 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 607 ALE_PORT_DROP_UNKNOWN_VLAN, 1); 608 /* learning make no sense in dual_mac mode */ 609 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 610 ALE_PORT_NOLEARN, 1); 611 } 612 613 static void cpsw_port_add_switch_def_ale_entries(struct cpsw_priv *priv, 614 struct cpsw_slave *slave) 615 { 616 u32 port_mask = 1 << priv->emac_port | ALE_PORT_HOST; 617 struct cpsw_common *cpsw = priv->cpsw; 618 u32 reg; 619 620 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 621 ALE_PORT_DROP_UNKNOWN_VLAN, 0); 622 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 623 ALE_PORT_NOLEARN, 0); 624 /* disabling SA_UPDATE required to make stp work, without this setting 625 * Host MAC addresses will jump between ports. 626 * As per TRM MAC address can be defined as unicast supervisory (super) 627 * by setting both (ALE_BLOCKED | ALE_SECURE) which should prevent 628 * SA_UPDATE, but HW seems works incorrectly and setting ALE_SECURE 629 * causes STP packets to be dropped due to ingress filter 630 * if (source address found) and (secure) and 631 * (receive port number != port_number)) 632 * then discard the packet 633 */ 634 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 635 ALE_PORT_NO_SA_UPDATE, 1); 636 637 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 638 port_mask, ALE_VLAN, slave->port_vlan, 639 ALE_MCAST_FWD_2); 640 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 641 HOST_PORT_NUM, ALE_VLAN, slave->port_vlan); 642 643 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 644 CPSW2_PORT_VLAN; 645 slave_write(slave, slave->port_vlan, reg); 646 } 647 648 static void cpsw_adjust_link(struct net_device *ndev) 649 { 650 struct cpsw_priv *priv = netdev_priv(ndev); 651 struct cpsw_common *cpsw = priv->cpsw; 652 struct cpsw_slave *slave; 653 struct phy_device *phy; 654 u32 mac_control = 0; 655 656 slave = &cpsw->slaves[priv->emac_port - 1]; 657 phy = slave->phy; 658 659 if (!phy) 660 return; 661 662 if (phy->link) { 663 mac_control = CPSW_SL_CTL_GMII_EN; 664 665 if (phy->speed == 1000) 666 mac_control |= CPSW_SL_CTL_GIG; 667 if (phy->duplex) 668 mac_control |= CPSW_SL_CTL_FULLDUPLEX; 669 670 /* set speed_in input in case RMII mode is used in 100Mbps */ 671 if (phy->speed == 100) 672 mac_control |= CPSW_SL_CTL_IFCTL_A; 673 /* in band mode only works in 10Mbps RGMII mode */ 674 else if ((phy->speed == 10) && phy_interface_is_rgmii(phy)) 675 mac_control |= CPSW_SL_CTL_EXT_EN; /* In Band mode */ 676 677 if (priv->rx_pause) 678 mac_control |= CPSW_SL_CTL_RX_FLOW_EN; 679 680 if (priv->tx_pause) 681 mac_control |= CPSW_SL_CTL_TX_FLOW_EN; 682 683 if (mac_control != slave->mac_control) 684 cpsw_sl_ctl_set(slave->mac_sl, mac_control); 685 686 /* enable forwarding */ 687 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 688 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 689 690 netif_tx_wake_all_queues(ndev); 691 692 if (priv->shp_cfg_speed && 693 priv->shp_cfg_speed != slave->phy->speed && 694 !cpsw_shp_is_off(priv)) 695 dev_warn(priv->dev, "Speed was changed, CBS shaper speeds are changed!"); 696 } else { 697 netif_tx_stop_all_queues(ndev); 698 699 mac_control = 0; 700 /* disable forwarding */ 701 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 702 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 703 704 cpsw_sl_wait_for_idle(slave->mac_sl, 100); 705 706 cpsw_sl_ctl_reset(slave->mac_sl); 707 } 708 709 if (mac_control != slave->mac_control) 710 phy_print_status(phy); 711 712 slave->mac_control = mac_control; 713 714 if (phy->link && cpsw_need_resplit(cpsw)) 715 cpsw_split_res(cpsw); 716 } 717 718 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 719 { 720 struct cpsw_common *cpsw = priv->cpsw; 721 struct phy_device *phy; 722 723 cpsw_sl_reset(slave->mac_sl, 100); 724 cpsw_sl_ctl_reset(slave->mac_sl); 725 726 /* setup priority mapping */ 727 cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_PRI_MAP, 728 RX_PRIORITY_MAPPING); 729 730 switch (cpsw->version) { 731 case CPSW_VERSION_1: 732 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 733 /* Increase RX FIFO size to 5 for supporting fullduplex 734 * flow control mode 735 */ 736 slave_write(slave, 737 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 738 CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS); 739 break; 740 case CPSW_VERSION_2: 741 case CPSW_VERSION_3: 742 case CPSW_VERSION_4: 743 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 744 /* Increase RX FIFO size to 5 for supporting fullduplex 745 * flow control mode 746 */ 747 slave_write(slave, 748 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 749 CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS); 750 break; 751 } 752 753 /* setup max packet size, and mac address */ 754 cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_MAXLEN, 755 cpsw->rx_packet_max); 756 cpsw_set_slave_mac(slave, priv); 757 758 slave->mac_control = 0; /* no link yet */ 759 760 if (cpsw_is_switch_en(cpsw)) 761 cpsw_port_add_switch_def_ale_entries(priv, slave); 762 else 763 cpsw_port_add_dual_emac_def_ale_entries(priv, slave); 764 765 if (!slave->data->phy_node) 766 dev_err(priv->dev, "no phy found on slave %d\n", 767 slave->slave_num); 768 phy = of_phy_connect(priv->ndev, slave->data->phy_node, 769 &cpsw_adjust_link, 0, slave->data->phy_if); 770 if (!phy) { 771 dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n", 772 slave->data->phy_node, 773 slave->slave_num); 774 return; 775 } 776 777 phy->mac_managed_pm = true; 778 779 slave->phy = phy; 780 781 phy_attached_info(slave->phy); 782 783 phy_start(slave->phy); 784 785 /* Configure GMII_SEL register */ 786 phy_set_mode_ext(slave->data->ifphy, PHY_MODE_ETHERNET, 787 slave->data->phy_if); 788 } 789 790 static int cpsw_ndo_stop(struct net_device *ndev) 791 { 792 struct cpsw_priv *priv = netdev_priv(ndev); 793 struct cpsw_common *cpsw = priv->cpsw; 794 struct cpsw_slave *slave; 795 796 cpsw_info(priv, ifdown, "shutting down ndev\n"); 797 slave = &cpsw->slaves[priv->emac_port - 1]; 798 if (slave->phy) 799 phy_stop(slave->phy); 800 801 netif_tx_stop_all_queues(priv->ndev); 802 803 if (slave->phy) { 804 phy_disconnect(slave->phy); 805 slave->phy = NULL; 806 } 807 808 __hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc); 809 810 if (cpsw->usage_count <= 1) { 811 napi_disable(&cpsw->napi_rx); 812 napi_disable(&cpsw->napi_tx); 813 cpts_unregister(cpsw->cpts); 814 cpsw_intr_disable(cpsw); 815 cpdma_ctlr_stop(cpsw->dma); 816 cpsw_ale_stop(cpsw->ale); 817 cpsw_destroy_xdp_rxqs(cpsw); 818 } 819 820 if (cpsw_need_resplit(cpsw)) 821 cpsw_split_res(cpsw); 822 823 cpsw->usage_count--; 824 pm_runtime_put_sync(cpsw->dev); 825 return 0; 826 } 827 828 static int cpsw_ndo_open(struct net_device *ndev) 829 { 830 struct cpsw_priv *priv = netdev_priv(ndev); 831 struct cpsw_common *cpsw = priv->cpsw; 832 int ret; 833 834 dev_info(priv->dev, "starting ndev. mode: %s\n", 835 cpsw_is_switch_en(cpsw) ? "switch" : "dual_mac"); 836 ret = pm_runtime_resume_and_get(cpsw->dev); 837 if (ret < 0) 838 return ret; 839 840 /* Notify the stack of the actual queue counts. */ 841 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num); 842 if (ret) { 843 dev_err(priv->dev, "cannot set real number of tx queues\n"); 844 goto pm_cleanup; 845 } 846 847 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num); 848 if (ret) { 849 dev_err(priv->dev, "cannot set real number of rx queues\n"); 850 goto pm_cleanup; 851 } 852 853 /* Initialize host and slave ports */ 854 if (!cpsw->usage_count) 855 cpsw_init_host_port(priv); 856 cpsw_slave_open(&cpsw->slaves[priv->emac_port - 1], priv); 857 858 /* initialize shared resources for every ndev */ 859 if (!cpsw->usage_count) { 860 /* create rxqs for both infs in dual mac as they use same pool 861 * and must be destroyed together when no users. 862 */ 863 ret = cpsw_create_xdp_rxqs(cpsw); 864 if (ret < 0) 865 goto err_cleanup; 866 867 ret = cpsw_fill_rx_channels(priv); 868 if (ret < 0) 869 goto err_cleanup; 870 871 if (cpsw->cpts) { 872 if (cpts_register(cpsw->cpts)) 873 dev_err(priv->dev, "error registering cpts device\n"); 874 else 875 writel(0x10, &cpsw->wr_regs->misc_en); 876 } 877 878 napi_enable(&cpsw->napi_rx); 879 napi_enable(&cpsw->napi_tx); 880 881 if (cpsw->tx_irq_disabled) { 882 cpsw->tx_irq_disabled = false; 883 enable_irq(cpsw->irqs_table[1]); 884 } 885 886 if (cpsw->rx_irq_disabled) { 887 cpsw->rx_irq_disabled = false; 888 enable_irq(cpsw->irqs_table[0]); 889 } 890 } 891 892 cpsw_restore(priv); 893 894 /* Enable Interrupt pacing if configured */ 895 if (cpsw->coal_intvl != 0) { 896 struct ethtool_coalesce coal; 897 898 coal.rx_coalesce_usecs = cpsw->coal_intvl; 899 cpsw_set_coalesce(ndev, &coal, NULL, NULL); 900 } 901 902 cpdma_ctlr_start(cpsw->dma); 903 cpsw_intr_enable(cpsw); 904 cpsw->usage_count++; 905 906 return 0; 907 908 err_cleanup: 909 cpsw_ndo_stop(ndev); 910 911 pm_cleanup: 912 pm_runtime_put_sync(cpsw->dev); 913 return ret; 914 } 915 916 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 917 struct net_device *ndev) 918 { 919 struct cpsw_priv *priv = netdev_priv(ndev); 920 struct cpsw_common *cpsw = priv->cpsw; 921 struct cpts *cpts = cpsw->cpts; 922 struct netdev_queue *txq; 923 struct cpdma_chan *txch; 924 int ret, q_idx; 925 926 if (skb_put_padto(skb, READ_ONCE(priv->tx_packet_min))) { 927 cpsw_err(priv, tx_err, "packet pad failed\n"); 928 ndev->stats.tx_dropped++; 929 return NET_XMIT_DROP; 930 } 931 932 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 933 priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb)) 934 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 935 936 q_idx = skb_get_queue_mapping(skb); 937 if (q_idx >= cpsw->tx_ch_num) 938 q_idx = q_idx % cpsw->tx_ch_num; 939 940 txch = cpsw->txv[q_idx].ch; 941 txq = netdev_get_tx_queue(ndev, q_idx); 942 skb_tx_timestamp(skb); 943 ret = cpdma_chan_submit(txch, skb, skb->data, skb->len, 944 priv->emac_port); 945 if (unlikely(ret != 0)) { 946 cpsw_err(priv, tx_err, "desc submit failed\n"); 947 goto fail; 948 } 949 950 /* If there is no more tx desc left free then we need to 951 * tell the kernel to stop sending us tx frames. 952 */ 953 if (unlikely(!cpdma_check_free_tx_desc(txch))) { 954 netif_tx_stop_queue(txq); 955 956 /* Barrier, so that stop_queue visible to other cpus */ 957 smp_mb__after_atomic(); 958 959 if (cpdma_check_free_tx_desc(txch)) 960 netif_tx_wake_queue(txq); 961 } 962 963 return NETDEV_TX_OK; 964 fail: 965 ndev->stats.tx_dropped++; 966 netif_tx_stop_queue(txq); 967 968 /* Barrier, so that stop_queue visible to other cpus */ 969 smp_mb__after_atomic(); 970 971 if (cpdma_check_free_tx_desc(txch)) 972 netif_tx_wake_queue(txq); 973 974 return NETDEV_TX_BUSY; 975 } 976 977 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 978 { 979 struct sockaddr *addr = (struct sockaddr *)p; 980 struct cpsw_priv *priv = netdev_priv(ndev); 981 struct cpsw_common *cpsw = priv->cpsw; 982 int ret, slave_no; 983 int flags = 0; 984 u16 vid = 0; 985 986 slave_no = cpsw_slave_index(cpsw, priv); 987 if (!is_valid_ether_addr(addr->sa_data)) 988 return -EADDRNOTAVAIL; 989 990 ret = pm_runtime_resume_and_get(cpsw->dev); 991 if (ret < 0) 992 return ret; 993 994 vid = cpsw->slaves[slave_no].port_vlan; 995 flags = ALE_VLAN | ALE_SECURE; 996 997 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 998 flags, vid); 999 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM, 1000 flags, vid); 1001 1002 ether_addr_copy(priv->mac_addr, addr->sa_data); 1003 eth_hw_addr_set(ndev, priv->mac_addr); 1004 cpsw_set_slave_mac(&cpsw->slaves[slave_no], priv); 1005 1006 pm_runtime_put(cpsw->dev); 1007 1008 return 0; 1009 } 1010 1011 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 1012 __be16 proto, u16 vid) 1013 { 1014 struct cpsw_priv *priv = netdev_priv(ndev); 1015 struct cpsw_common *cpsw = priv->cpsw; 1016 int ret; 1017 int i; 1018 1019 if (cpsw_is_switch_en(cpsw)) { 1020 dev_dbg(cpsw->dev, "ndo del vlan is called in switch mode\n"); 1021 return 0; 1022 } 1023 1024 if (vid == cpsw->data.default_vlan) 1025 return 0; 1026 1027 ret = pm_runtime_resume_and_get(cpsw->dev); 1028 if (ret < 0) 1029 return ret; 1030 1031 /* reset the return code as pm_runtime_get_sync() can return 1032 * non zero values as well. 1033 */ 1034 ret = 0; 1035 for (i = 0; i < cpsw->data.slaves; i++) { 1036 if (cpsw->slaves[i].ndev && 1037 vid == cpsw->slaves[i].port_vlan) { 1038 ret = -EINVAL; 1039 goto err; 1040 } 1041 } 1042 1043 dev_dbg(priv->dev, "removing vlanid %d from vlan filter\n", vid); 1044 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0); 1045 if (ret) 1046 dev_err(priv->dev, "cpsw_ale_del_vlan() failed: ret %d\n", ret); 1047 ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 1048 HOST_PORT_NUM, ALE_VLAN, vid); 1049 if (ret) 1050 dev_err(priv->dev, "cpsw_ale_del_ucast() failed: ret %d\n", 1051 ret); 1052 ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast, 1053 0, ALE_VLAN, vid); 1054 if (ret) 1055 dev_err(priv->dev, "cpsw_ale_del_mcast failed. ret %d\n", 1056 ret); 1057 cpsw_ale_flush_multicast(cpsw->ale, ALE_PORT_HOST, vid); 1058 ret = 0; 1059 err: 1060 pm_runtime_put(cpsw->dev); 1061 return ret; 1062 } 1063 1064 static int cpsw_ndo_get_phys_port_name(struct net_device *ndev, char *name, 1065 size_t len) 1066 { 1067 struct cpsw_priv *priv = netdev_priv(ndev); 1068 int err; 1069 1070 err = snprintf(name, len, "p%d", priv->emac_port); 1071 1072 if (err >= len) 1073 return -EINVAL; 1074 1075 return 0; 1076 } 1077 1078 #ifdef CONFIG_NET_POLL_CONTROLLER 1079 static void cpsw_ndo_poll_controller(struct net_device *ndev) 1080 { 1081 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1082 1083 cpsw_intr_disable(cpsw); 1084 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw); 1085 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw); 1086 cpsw_intr_enable(cpsw); 1087 } 1088 #endif 1089 1090 static int cpsw_ndo_xdp_xmit(struct net_device *ndev, int n, 1091 struct xdp_frame **frames, u32 flags) 1092 { 1093 struct cpsw_priv *priv = netdev_priv(ndev); 1094 struct xdp_frame *xdpf; 1095 int i, nxmit = 0; 1096 1097 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 1098 return -EINVAL; 1099 1100 for (i = 0; i < n; i++) { 1101 xdpf = frames[i]; 1102 if (xdpf->len < READ_ONCE(priv->tx_packet_min)) 1103 break; 1104 1105 if (cpsw_xdp_tx_frame(priv, xdpf, NULL, priv->emac_port)) 1106 break; 1107 nxmit++; 1108 } 1109 1110 return nxmit; 1111 } 1112 1113 static int cpsw_get_port_parent_id(struct net_device *ndev, 1114 struct netdev_phys_item_id *ppid) 1115 { 1116 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1117 1118 ppid->id_len = sizeof(cpsw->base_mac); 1119 memcpy(&ppid->id, &cpsw->base_mac, ppid->id_len); 1120 1121 return 0; 1122 } 1123 1124 static const struct net_device_ops cpsw_netdev_ops = { 1125 .ndo_open = cpsw_ndo_open, 1126 .ndo_stop = cpsw_ndo_stop, 1127 .ndo_start_xmit = cpsw_ndo_start_xmit, 1128 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 1129 .ndo_eth_ioctl = cpsw_ndo_ioctl, 1130 .ndo_validate_addr = eth_validate_addr, 1131 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 1132 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 1133 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate, 1134 #ifdef CONFIG_NET_POLL_CONTROLLER 1135 .ndo_poll_controller = cpsw_ndo_poll_controller, 1136 #endif 1137 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 1138 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 1139 .ndo_setup_tc = cpsw_ndo_setup_tc, 1140 .ndo_get_phys_port_name = cpsw_ndo_get_phys_port_name, 1141 .ndo_bpf = cpsw_ndo_bpf, 1142 .ndo_xdp_xmit = cpsw_ndo_xdp_xmit, 1143 .ndo_get_port_parent_id = cpsw_get_port_parent_id, 1144 }; 1145 1146 static void cpsw_get_drvinfo(struct net_device *ndev, 1147 struct ethtool_drvinfo *info) 1148 { 1149 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1150 struct platform_device *pdev; 1151 1152 pdev = to_platform_device(cpsw->dev); 1153 strscpy(info->driver, "cpsw-switch", sizeof(info->driver)); 1154 strscpy(info->version, "2.0", sizeof(info->version)); 1155 strscpy(info->bus_info, pdev->name, sizeof(info->bus_info)); 1156 } 1157 1158 static int cpsw_set_pauseparam(struct net_device *ndev, 1159 struct ethtool_pauseparam *pause) 1160 { 1161 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1162 struct cpsw_priv *priv = netdev_priv(ndev); 1163 int slave_no; 1164 1165 slave_no = cpsw_slave_index(cpsw, priv); 1166 if (!cpsw->slaves[slave_no].phy) 1167 return -EINVAL; 1168 1169 if (!phy_validate_pause(cpsw->slaves[slave_no].phy, pause)) 1170 return -EINVAL; 1171 1172 priv->rx_pause = pause->rx_pause ? true : false; 1173 priv->tx_pause = pause->tx_pause ? true : false; 1174 1175 phy_set_asym_pause(cpsw->slaves[slave_no].phy, 1176 priv->rx_pause, priv->tx_pause); 1177 1178 return 0; 1179 } 1180 1181 static int cpsw_set_channels(struct net_device *ndev, 1182 struct ethtool_channels *chs) 1183 { 1184 return cpsw_set_channels_common(ndev, chs, cpsw_rx_handler); 1185 } 1186 1187 static const struct ethtool_ops cpsw_ethtool_ops = { 1188 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS, 1189 .get_drvinfo = cpsw_get_drvinfo, 1190 .get_msglevel = cpsw_get_msglevel, 1191 .set_msglevel = cpsw_set_msglevel, 1192 .get_link = ethtool_op_get_link, 1193 .get_ts_info = cpsw_get_ts_info, 1194 .get_coalesce = cpsw_get_coalesce, 1195 .set_coalesce = cpsw_set_coalesce, 1196 .get_sset_count = cpsw_get_sset_count, 1197 .get_strings = cpsw_get_strings, 1198 .get_ethtool_stats = cpsw_get_ethtool_stats, 1199 .get_pauseparam = cpsw_get_pauseparam, 1200 .set_pauseparam = cpsw_set_pauseparam, 1201 .get_wol = cpsw_get_wol, 1202 .set_wol = cpsw_set_wol, 1203 .get_regs_len = cpsw_get_regs_len, 1204 .get_regs = cpsw_get_regs, 1205 .begin = cpsw_ethtool_op_begin, 1206 .complete = cpsw_ethtool_op_complete, 1207 .get_channels = cpsw_get_channels, 1208 .set_channels = cpsw_set_channels, 1209 .get_link_ksettings = cpsw_get_link_ksettings, 1210 .set_link_ksettings = cpsw_set_link_ksettings, 1211 .get_eee = cpsw_get_eee, 1212 .set_eee = cpsw_set_eee, 1213 .nway_reset = cpsw_nway_reset, 1214 .get_ringparam = cpsw_get_ringparam, 1215 .set_ringparam = cpsw_set_ringparam, 1216 }; 1217 1218 static int cpsw_probe_dt(struct cpsw_common *cpsw) 1219 { 1220 struct device_node *node = cpsw->dev->of_node, *tmp_node, *port_np; 1221 struct cpsw_platform_data *data = &cpsw->data; 1222 struct device *dev = cpsw->dev; 1223 int ret; 1224 u32 prop; 1225 1226 if (!node) 1227 return -EINVAL; 1228 1229 tmp_node = of_get_child_by_name(node, "ethernet-ports"); 1230 if (!tmp_node) 1231 return -ENOENT; 1232 data->slaves = of_get_child_count(tmp_node); 1233 if (data->slaves != CPSW_SLAVE_PORTS_NUM) { 1234 of_node_put(tmp_node); 1235 return -ENOENT; 1236 } 1237 1238 data->active_slave = 0; 1239 data->channels = CPSW_MAX_QUEUES; 1240 data->dual_emac = true; 1241 data->bd_ram_size = CPSW_BD_RAM_SIZE; 1242 data->mac_control = 0; 1243 1244 data->slave_data = devm_kcalloc(dev, CPSW_SLAVE_PORTS_NUM, 1245 sizeof(struct cpsw_slave_data), 1246 GFP_KERNEL); 1247 if (!data->slave_data) { 1248 of_node_put(tmp_node); 1249 return -ENOMEM; 1250 } 1251 1252 /* Populate all the child nodes here... 1253 */ 1254 ret = devm_of_platform_populate(dev); 1255 /* We do not want to force this, as in some cases may not have child */ 1256 if (ret) 1257 dev_warn(dev, "Doesn't have any child node\n"); 1258 1259 for_each_child_of_node(tmp_node, port_np) { 1260 struct cpsw_slave_data *slave_data; 1261 u32 port_id; 1262 1263 ret = of_property_read_u32(port_np, "reg", &port_id); 1264 if (ret < 0) { 1265 dev_err(dev, "%pOF error reading port_id %d\n", 1266 port_np, ret); 1267 goto err_node_put; 1268 } 1269 1270 if (!port_id || port_id > CPSW_SLAVE_PORTS_NUM) { 1271 dev_err(dev, "%pOF has invalid port_id %u\n", 1272 port_np, port_id); 1273 ret = -EINVAL; 1274 goto err_node_put; 1275 } 1276 1277 slave_data = &data->slave_data[port_id - 1]; 1278 1279 slave_data->disabled = !of_device_is_available(port_np); 1280 if (slave_data->disabled) 1281 continue; 1282 1283 slave_data->slave_node = port_np; 1284 slave_data->ifphy = devm_of_phy_get(dev, port_np, NULL); 1285 if (IS_ERR(slave_data->ifphy)) { 1286 ret = PTR_ERR(slave_data->ifphy); 1287 dev_err(dev, "%pOF: Error retrieving port phy: %d\n", 1288 port_np, ret); 1289 goto err_node_put; 1290 } 1291 1292 if (of_phy_is_fixed_link(port_np)) { 1293 ret = of_phy_register_fixed_link(port_np); 1294 if (ret) { 1295 dev_err_probe(dev, ret, "%pOF failed to register fixed-link phy\n", 1296 port_np); 1297 goto err_node_put; 1298 } 1299 slave_data->phy_node = of_node_get(port_np); 1300 } else { 1301 slave_data->phy_node = 1302 of_parse_phandle(port_np, "phy-handle", 0); 1303 } 1304 1305 if (!slave_data->phy_node) { 1306 dev_err(dev, "%pOF no phy found\n", port_np); 1307 ret = -ENODEV; 1308 goto err_node_put; 1309 } 1310 1311 ret = of_get_phy_mode(port_np, &slave_data->phy_if); 1312 if (ret) { 1313 dev_err(dev, "%pOF read phy-mode err %d\n", 1314 port_np, ret); 1315 goto err_node_put; 1316 } 1317 1318 ret = of_get_mac_address(port_np, slave_data->mac_addr); 1319 if (ret) { 1320 ret = ti_cm_get_macid(dev, port_id - 1, 1321 slave_data->mac_addr); 1322 if (ret) 1323 goto err_node_put; 1324 } 1325 1326 if (of_property_read_u32(port_np, "ti,dual-emac-pvid", 1327 &prop)) { 1328 dev_err(dev, "%pOF Missing dual_emac_res_vlan in DT.\n", 1329 port_np); 1330 slave_data->dual_emac_res_vlan = port_id; 1331 dev_err(dev, "%pOF Using %d as Reserved VLAN\n", 1332 port_np, slave_data->dual_emac_res_vlan); 1333 } else { 1334 slave_data->dual_emac_res_vlan = prop; 1335 } 1336 } 1337 1338 of_node_put(tmp_node); 1339 return 0; 1340 1341 err_node_put: 1342 of_node_put(port_np); 1343 of_node_put(tmp_node); 1344 return ret; 1345 } 1346 1347 static void cpsw_remove_dt(struct cpsw_common *cpsw) 1348 { 1349 struct cpsw_platform_data *data = &cpsw->data; 1350 int i = 0; 1351 1352 for (i = 0; i < cpsw->data.slaves; i++) { 1353 struct cpsw_slave_data *slave_data = &data->slave_data[i]; 1354 struct device_node *port_np = slave_data->phy_node; 1355 1356 if (port_np) { 1357 if (of_phy_is_fixed_link(port_np)) 1358 of_phy_deregister_fixed_link(port_np); 1359 1360 of_node_put(port_np); 1361 } 1362 } 1363 } 1364 1365 static int cpsw_create_ports(struct cpsw_common *cpsw) 1366 { 1367 struct cpsw_platform_data *data = &cpsw->data; 1368 struct net_device *ndev, *napi_ndev = NULL; 1369 struct device *dev = cpsw->dev; 1370 struct cpsw_priv *priv; 1371 int ret = 0, i = 0; 1372 1373 for (i = 0; i < cpsw->data.slaves; i++) { 1374 struct cpsw_slave_data *slave_data = &data->slave_data[i]; 1375 1376 if (slave_data->disabled) 1377 continue; 1378 1379 ndev = devm_alloc_etherdev_mqs(dev, sizeof(struct cpsw_priv), 1380 CPSW_MAX_QUEUES, 1381 CPSW_MAX_QUEUES); 1382 if (!ndev) { 1383 dev_err(dev, "error allocating net_device\n"); 1384 return -ENOMEM; 1385 } 1386 1387 priv = netdev_priv(ndev); 1388 priv->cpsw = cpsw; 1389 priv->ndev = ndev; 1390 priv->dev = dev; 1391 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 1392 priv->emac_port = i + 1; 1393 priv->tx_packet_min = CPSW_MIN_PACKET_SIZE; 1394 1395 if (is_valid_ether_addr(slave_data->mac_addr)) { 1396 ether_addr_copy(priv->mac_addr, slave_data->mac_addr); 1397 dev_info(cpsw->dev, "Detected MACID = %pM\n", 1398 priv->mac_addr); 1399 } else { 1400 eth_random_addr(slave_data->mac_addr); 1401 dev_info(cpsw->dev, "Random MACID = %pM\n", 1402 priv->mac_addr); 1403 } 1404 eth_hw_addr_set(ndev, slave_data->mac_addr); 1405 ether_addr_copy(priv->mac_addr, slave_data->mac_addr); 1406 1407 cpsw->slaves[i].ndev = ndev; 1408 1409 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 1410 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_TC; 1411 ndev->netns_local = true; 1412 1413 ndev->xdp_features = NETDEV_XDP_ACT_BASIC | 1414 NETDEV_XDP_ACT_REDIRECT | 1415 NETDEV_XDP_ACT_NDO_XMIT; 1416 1417 ndev->netdev_ops = &cpsw_netdev_ops; 1418 ndev->ethtool_ops = &cpsw_ethtool_ops; 1419 SET_NETDEV_DEV(ndev, dev); 1420 1421 if (!napi_ndev) { 1422 /* CPSW Host port CPDMA interface is shared between 1423 * ports and there is only one TX and one RX IRQs 1424 * available for all possible TX and RX channels 1425 * accordingly. 1426 */ 1427 netif_napi_add(ndev, &cpsw->napi_rx, 1428 cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll); 1429 netif_napi_add_tx(ndev, &cpsw->napi_tx, 1430 cpsw->quirk_irq ? 1431 cpsw_tx_poll : cpsw_tx_mq_poll); 1432 } 1433 1434 napi_ndev = ndev; 1435 } 1436 1437 return ret; 1438 } 1439 1440 static void cpsw_unregister_ports(struct cpsw_common *cpsw) 1441 { 1442 int i = 0; 1443 1444 for (i = 0; i < cpsw->data.slaves; i++) { 1445 if (!cpsw->slaves[i].ndev) 1446 continue; 1447 1448 unregister_netdev(cpsw->slaves[i].ndev); 1449 } 1450 } 1451 1452 static int cpsw_register_ports(struct cpsw_common *cpsw) 1453 { 1454 int ret = 0, i = 0; 1455 1456 for (i = 0; i < cpsw->data.slaves; i++) { 1457 if (!cpsw->slaves[i].ndev) 1458 continue; 1459 1460 /* register the network device */ 1461 ret = register_netdev(cpsw->slaves[i].ndev); 1462 if (ret) { 1463 dev_err(cpsw->dev, 1464 "cpsw: err registering net device%d\n", i); 1465 cpsw->slaves[i].ndev = NULL; 1466 break; 1467 } 1468 } 1469 1470 if (ret) 1471 cpsw_unregister_ports(cpsw); 1472 return ret; 1473 } 1474 1475 bool cpsw_port_dev_check(const struct net_device *ndev) 1476 { 1477 if (ndev->netdev_ops == &cpsw_netdev_ops) { 1478 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1479 1480 return !cpsw->data.dual_emac; 1481 } 1482 1483 return false; 1484 } 1485 1486 static void cpsw_port_offload_fwd_mark_update(struct cpsw_common *cpsw) 1487 { 1488 int set_val = 0; 1489 int i; 1490 1491 if (!cpsw->ale_bypass && 1492 (cpsw->br_members == (ALE_PORT_1 | ALE_PORT_2))) 1493 set_val = 1; 1494 1495 dev_dbg(cpsw->dev, "set offload_fwd_mark %d\n", set_val); 1496 1497 for (i = 0; i < cpsw->data.slaves; i++) { 1498 struct net_device *sl_ndev = cpsw->slaves[i].ndev; 1499 struct cpsw_priv *priv = netdev_priv(sl_ndev); 1500 1501 priv->offload_fwd_mark = set_val; 1502 } 1503 } 1504 1505 static int cpsw_netdevice_port_link(struct net_device *ndev, 1506 struct net_device *br_ndev, 1507 struct netlink_ext_ack *extack) 1508 { 1509 struct cpsw_priv *priv = netdev_priv(ndev); 1510 struct cpsw_common *cpsw = priv->cpsw; 1511 int err; 1512 1513 if (!cpsw->br_members) { 1514 cpsw->hw_bridge_dev = br_ndev; 1515 } else { 1516 /* This is adding the port to a second bridge, this is 1517 * unsupported 1518 */ 1519 if (cpsw->hw_bridge_dev != br_ndev) 1520 return -EOPNOTSUPP; 1521 } 1522 1523 err = switchdev_bridge_port_offload(ndev, ndev, NULL, NULL, NULL, 1524 false, extack); 1525 if (err) 1526 return err; 1527 1528 cpsw->br_members |= BIT(priv->emac_port); 1529 1530 cpsw_port_offload_fwd_mark_update(cpsw); 1531 1532 return NOTIFY_DONE; 1533 } 1534 1535 static void cpsw_netdevice_port_unlink(struct net_device *ndev) 1536 { 1537 struct cpsw_priv *priv = netdev_priv(ndev); 1538 struct cpsw_common *cpsw = priv->cpsw; 1539 1540 switchdev_bridge_port_unoffload(ndev, NULL, NULL, NULL); 1541 1542 cpsw->br_members &= ~BIT(priv->emac_port); 1543 1544 cpsw_port_offload_fwd_mark_update(cpsw); 1545 1546 if (!cpsw->br_members) 1547 cpsw->hw_bridge_dev = NULL; 1548 } 1549 1550 /* netdev notifier */ 1551 static int cpsw_netdevice_event(struct notifier_block *unused, 1552 unsigned long event, void *ptr) 1553 { 1554 struct netlink_ext_ack *extack = netdev_notifier_info_to_extack(ptr); 1555 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 1556 struct netdev_notifier_changeupper_info *info; 1557 int ret = NOTIFY_DONE; 1558 1559 if (!cpsw_port_dev_check(ndev)) 1560 return NOTIFY_DONE; 1561 1562 switch (event) { 1563 case NETDEV_CHANGEUPPER: 1564 info = ptr; 1565 1566 if (netif_is_bridge_master(info->upper_dev)) { 1567 if (info->linking) 1568 ret = cpsw_netdevice_port_link(ndev, 1569 info->upper_dev, 1570 extack); 1571 else 1572 cpsw_netdevice_port_unlink(ndev); 1573 } 1574 break; 1575 default: 1576 return NOTIFY_DONE; 1577 } 1578 1579 return notifier_from_errno(ret); 1580 } 1581 1582 static struct notifier_block cpsw_netdevice_nb __read_mostly = { 1583 .notifier_call = cpsw_netdevice_event, 1584 }; 1585 1586 static int cpsw_register_notifiers(struct cpsw_common *cpsw) 1587 { 1588 int ret = 0; 1589 1590 ret = register_netdevice_notifier(&cpsw_netdevice_nb); 1591 if (ret) { 1592 dev_err(cpsw->dev, "can't register netdevice notifier\n"); 1593 return ret; 1594 } 1595 1596 ret = cpsw_switchdev_register_notifiers(cpsw); 1597 if (ret) 1598 unregister_netdevice_notifier(&cpsw_netdevice_nb); 1599 1600 return ret; 1601 } 1602 1603 static void cpsw_unregister_notifiers(struct cpsw_common *cpsw) 1604 { 1605 cpsw_switchdev_unregister_notifiers(cpsw); 1606 unregister_netdevice_notifier(&cpsw_netdevice_nb); 1607 } 1608 1609 static const struct devlink_ops cpsw_devlink_ops = { 1610 }; 1611 1612 static int cpsw_dl_switch_mode_get(struct devlink *dl, u32 id, 1613 struct devlink_param_gset_ctx *ctx) 1614 { 1615 struct cpsw_devlink *dl_priv = devlink_priv(dl); 1616 struct cpsw_common *cpsw = dl_priv->cpsw; 1617 1618 dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id); 1619 1620 if (id != CPSW_DL_PARAM_SWITCH_MODE) 1621 return -EOPNOTSUPP; 1622 1623 ctx->val.vbool = !cpsw->data.dual_emac; 1624 1625 return 0; 1626 } 1627 1628 static int cpsw_dl_switch_mode_set(struct devlink *dl, u32 id, 1629 struct devlink_param_gset_ctx *ctx, 1630 struct netlink_ext_ack *extack) 1631 { 1632 struct cpsw_devlink *dl_priv = devlink_priv(dl); 1633 struct cpsw_common *cpsw = dl_priv->cpsw; 1634 int vlan = cpsw->data.default_vlan; 1635 bool switch_en = ctx->val.vbool; 1636 bool if_running = false; 1637 int i; 1638 1639 dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id); 1640 1641 if (id != CPSW_DL_PARAM_SWITCH_MODE) 1642 return -EOPNOTSUPP; 1643 1644 if (switch_en == !cpsw->data.dual_emac) 1645 return 0; 1646 1647 if (!switch_en && cpsw->br_members) { 1648 dev_err(cpsw->dev, "Remove ports from BR before disabling switch mode\n"); 1649 return -EINVAL; 1650 } 1651 1652 rtnl_lock(); 1653 1654 for (i = 0; i < cpsw->data.slaves; i++) { 1655 struct cpsw_slave *slave = &cpsw->slaves[i]; 1656 struct net_device *sl_ndev = slave->ndev; 1657 1658 if (!sl_ndev || !netif_running(sl_ndev)) 1659 continue; 1660 1661 if_running = true; 1662 } 1663 1664 if (!if_running) { 1665 /* all ndevs are down */ 1666 cpsw->data.dual_emac = !switch_en; 1667 for (i = 0; i < cpsw->data.slaves; i++) { 1668 struct cpsw_slave *slave = &cpsw->slaves[i]; 1669 struct net_device *sl_ndev = slave->ndev; 1670 1671 if (!sl_ndev) 1672 continue; 1673 1674 if (switch_en) 1675 vlan = cpsw->data.default_vlan; 1676 else 1677 vlan = slave->data->dual_emac_res_vlan; 1678 slave->port_vlan = vlan; 1679 } 1680 goto exit; 1681 } 1682 1683 if (switch_en) { 1684 dev_info(cpsw->dev, "Enable switch mode\n"); 1685 1686 /* enable bypass - no forwarding; all traffic goes to Host */ 1687 cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 1); 1688 1689 /* clean up ALE table */ 1690 cpsw_ale_control_set(cpsw->ale, 0, ALE_CLEAR, 1); 1691 cpsw_ale_control_get(cpsw->ale, 0, ALE_AGEOUT); 1692 1693 cpsw_init_host_port_switch(cpsw); 1694 1695 for (i = 0; i < cpsw->data.slaves; i++) { 1696 struct cpsw_slave *slave = &cpsw->slaves[i]; 1697 struct net_device *sl_ndev = slave->ndev; 1698 struct cpsw_priv *priv; 1699 1700 if (!sl_ndev) 1701 continue; 1702 1703 priv = netdev_priv(sl_ndev); 1704 slave->port_vlan = vlan; 1705 WRITE_ONCE(priv->tx_packet_min, CPSW_MIN_PACKET_SIZE_VLAN); 1706 if (netif_running(sl_ndev)) 1707 cpsw_port_add_switch_def_ale_entries(priv, 1708 slave); 1709 } 1710 1711 cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 0); 1712 cpsw->data.dual_emac = false; 1713 } else { 1714 dev_info(cpsw->dev, "Disable switch mode\n"); 1715 1716 /* enable bypass - no forwarding; all traffic goes to Host */ 1717 cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 1); 1718 1719 cpsw_ale_control_set(cpsw->ale, 0, ALE_CLEAR, 1); 1720 cpsw_ale_control_get(cpsw->ale, 0, ALE_AGEOUT); 1721 1722 cpsw_init_host_port_dual_mac(cpsw); 1723 1724 for (i = 0; i < cpsw->data.slaves; i++) { 1725 struct cpsw_slave *slave = &cpsw->slaves[i]; 1726 struct net_device *sl_ndev = slave->ndev; 1727 struct cpsw_priv *priv; 1728 1729 if (!sl_ndev) 1730 continue; 1731 1732 priv = netdev_priv(slave->ndev); 1733 slave->port_vlan = slave->data->dual_emac_res_vlan; 1734 WRITE_ONCE(priv->tx_packet_min, CPSW_MIN_PACKET_SIZE); 1735 cpsw_port_add_dual_emac_def_ale_entries(priv, slave); 1736 } 1737 1738 cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 0); 1739 cpsw->data.dual_emac = true; 1740 } 1741 exit: 1742 rtnl_unlock(); 1743 1744 return 0; 1745 } 1746 1747 static int cpsw_dl_ale_ctrl_get(struct devlink *dl, u32 id, 1748 struct devlink_param_gset_ctx *ctx) 1749 { 1750 struct cpsw_devlink *dl_priv = devlink_priv(dl); 1751 struct cpsw_common *cpsw = dl_priv->cpsw; 1752 1753 dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id); 1754 1755 switch (id) { 1756 case CPSW_DL_PARAM_ALE_BYPASS: 1757 ctx->val.vbool = cpsw_ale_control_get(cpsw->ale, 0, ALE_BYPASS); 1758 break; 1759 default: 1760 return -EOPNOTSUPP; 1761 } 1762 1763 return 0; 1764 } 1765 1766 static int cpsw_dl_ale_ctrl_set(struct devlink *dl, u32 id, 1767 struct devlink_param_gset_ctx *ctx, 1768 struct netlink_ext_ack *extack) 1769 { 1770 struct cpsw_devlink *dl_priv = devlink_priv(dl); 1771 struct cpsw_common *cpsw = dl_priv->cpsw; 1772 int ret = -EOPNOTSUPP; 1773 1774 dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id); 1775 1776 switch (id) { 1777 case CPSW_DL_PARAM_ALE_BYPASS: 1778 ret = cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 1779 ctx->val.vbool); 1780 if (!ret) { 1781 cpsw->ale_bypass = ctx->val.vbool; 1782 cpsw_port_offload_fwd_mark_update(cpsw); 1783 } 1784 break; 1785 default: 1786 return -EOPNOTSUPP; 1787 } 1788 1789 return 0; 1790 } 1791 1792 static const struct devlink_param cpsw_devlink_params[] = { 1793 DEVLINK_PARAM_DRIVER(CPSW_DL_PARAM_SWITCH_MODE, 1794 "switch_mode", DEVLINK_PARAM_TYPE_BOOL, 1795 BIT(DEVLINK_PARAM_CMODE_RUNTIME), 1796 cpsw_dl_switch_mode_get, cpsw_dl_switch_mode_set, 1797 NULL), 1798 DEVLINK_PARAM_DRIVER(CPSW_DL_PARAM_ALE_BYPASS, 1799 "ale_bypass", DEVLINK_PARAM_TYPE_BOOL, 1800 BIT(DEVLINK_PARAM_CMODE_RUNTIME), 1801 cpsw_dl_ale_ctrl_get, cpsw_dl_ale_ctrl_set, NULL), 1802 }; 1803 1804 static int cpsw_register_devlink(struct cpsw_common *cpsw) 1805 { 1806 struct device *dev = cpsw->dev; 1807 struct cpsw_devlink *dl_priv; 1808 int ret = 0; 1809 1810 cpsw->devlink = devlink_alloc(&cpsw_devlink_ops, sizeof(*dl_priv), dev); 1811 if (!cpsw->devlink) 1812 return -ENOMEM; 1813 1814 dl_priv = devlink_priv(cpsw->devlink); 1815 dl_priv->cpsw = cpsw; 1816 1817 ret = devlink_params_register(cpsw->devlink, cpsw_devlink_params, 1818 ARRAY_SIZE(cpsw_devlink_params)); 1819 if (ret) { 1820 dev_err(dev, "DL params reg fail ret:%d\n", ret); 1821 goto dl_unreg; 1822 } 1823 1824 devlink_register(cpsw->devlink); 1825 return ret; 1826 1827 dl_unreg: 1828 devlink_free(cpsw->devlink); 1829 return ret; 1830 } 1831 1832 static void cpsw_unregister_devlink(struct cpsw_common *cpsw) 1833 { 1834 devlink_unregister(cpsw->devlink); 1835 devlink_params_unregister(cpsw->devlink, cpsw_devlink_params, 1836 ARRAY_SIZE(cpsw_devlink_params)); 1837 devlink_free(cpsw->devlink); 1838 } 1839 1840 static const struct of_device_id cpsw_of_mtable[] = { 1841 { .compatible = "ti,cpsw-switch"}, 1842 { .compatible = "ti,am335x-cpsw-switch"}, 1843 { .compatible = "ti,am4372-cpsw-switch"}, 1844 { .compatible = "ti,dra7-cpsw-switch"}, 1845 { /* sentinel */ }, 1846 }; 1847 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 1848 1849 static const struct soc_device_attribute cpsw_soc_devices[] = { 1850 { .family = "AM33xx", .revision = "ES1.0"}, 1851 { /* sentinel */ } 1852 }; 1853 1854 static int cpsw_probe(struct platform_device *pdev) 1855 { 1856 const struct soc_device_attribute *soc; 1857 struct device *dev = &pdev->dev; 1858 struct cpsw_common *cpsw; 1859 struct resource *ss_res; 1860 struct gpio_descs *mode; 1861 void __iomem *ss_regs; 1862 int ret = 0, ch; 1863 struct clk *clk; 1864 int irq; 1865 1866 cpsw = devm_kzalloc(dev, sizeof(struct cpsw_common), GFP_KERNEL); 1867 if (!cpsw) 1868 return -ENOMEM; 1869 1870 cpsw_slave_index = cpsw_slave_index_priv; 1871 1872 cpsw->dev = dev; 1873 1874 cpsw->slaves = devm_kcalloc(dev, 1875 CPSW_SLAVE_PORTS_NUM, 1876 sizeof(struct cpsw_slave), 1877 GFP_KERNEL); 1878 if (!cpsw->slaves) 1879 return -ENOMEM; 1880 1881 mode = devm_gpiod_get_array_optional(dev, "mode", GPIOD_OUT_LOW); 1882 if (IS_ERR(mode)) { 1883 ret = PTR_ERR(mode); 1884 dev_err(dev, "gpio request failed, ret %d\n", ret); 1885 return ret; 1886 } 1887 1888 clk = devm_clk_get(dev, "fck"); 1889 if (IS_ERR(clk)) { 1890 ret = PTR_ERR(clk); 1891 dev_err(dev, "fck is not found %d\n", ret); 1892 return ret; 1893 } 1894 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000; 1895 1896 ss_regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ss_res); 1897 if (IS_ERR(ss_regs)) { 1898 ret = PTR_ERR(ss_regs); 1899 return ret; 1900 } 1901 cpsw->regs = ss_regs; 1902 1903 irq = platform_get_irq_byname(pdev, "rx"); 1904 if (irq < 0) 1905 return irq; 1906 cpsw->irqs_table[0] = irq; 1907 1908 irq = platform_get_irq_byname(pdev, "tx"); 1909 if (irq < 0) 1910 return irq; 1911 cpsw->irqs_table[1] = irq; 1912 1913 irq = platform_get_irq_byname(pdev, "misc"); 1914 if (irq <= 0) 1915 return irq; 1916 cpsw->misc_irq = irq; 1917 1918 platform_set_drvdata(pdev, cpsw); 1919 /* This may be required here for child devices. */ 1920 pm_runtime_enable(dev); 1921 1922 /* Need to enable clocks with runtime PM api to access module 1923 * registers 1924 */ 1925 ret = pm_runtime_resume_and_get(dev); 1926 if (ret < 0) { 1927 pm_runtime_disable(dev); 1928 return ret; 1929 } 1930 1931 ret = cpsw_probe_dt(cpsw); 1932 if (ret) 1933 goto clean_dt_ret; 1934 1935 soc = soc_device_match(cpsw_soc_devices); 1936 if (soc) 1937 cpsw->quirk_irq = true; 1938 1939 cpsw->rx_packet_max = rx_packet_max; 1940 cpsw->descs_pool_size = descs_pool_size; 1941 eth_random_addr(cpsw->base_mac); 1942 1943 ret = cpsw_init_common(cpsw, ss_regs, ale_ageout, 1944 (u32 __force)ss_res->start + CPSW2_BD_OFFSET, 1945 descs_pool_size); 1946 if (ret) 1947 goto clean_dt_ret; 1948 1949 cpsw->wr_regs = cpsw->version == CPSW_VERSION_1 ? 1950 ss_regs + CPSW1_WR_OFFSET : 1951 ss_regs + CPSW2_WR_OFFSET; 1952 1953 ch = cpsw->quirk_irq ? 0 : 7; 1954 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0); 1955 if (IS_ERR(cpsw->txv[0].ch)) { 1956 dev_err(dev, "error initializing tx dma channel\n"); 1957 ret = PTR_ERR(cpsw->txv[0].ch); 1958 goto clean_cpts; 1959 } 1960 1961 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1); 1962 if (IS_ERR(cpsw->rxv[0].ch)) { 1963 dev_err(dev, "error initializing rx dma channel\n"); 1964 ret = PTR_ERR(cpsw->rxv[0].ch); 1965 goto clean_cpts; 1966 } 1967 cpsw_split_res(cpsw); 1968 1969 /* setup netdevs */ 1970 ret = cpsw_create_ports(cpsw); 1971 if (ret) 1972 goto clean_unregister_netdev; 1973 1974 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 1975 * MISC IRQs which are always kept disabled with this driver so 1976 * we will not request them. 1977 * 1978 * If anyone wants to implement support for those, make sure to 1979 * first request and append them to irqs_table array. 1980 */ 1981 1982 ret = devm_request_irq(dev, cpsw->irqs_table[0], cpsw_rx_interrupt, 1983 0, dev_name(dev), cpsw); 1984 if (ret < 0) { 1985 dev_err(dev, "error attaching irq (%d)\n", ret); 1986 goto clean_unregister_netdev; 1987 } 1988 1989 ret = devm_request_irq(dev, cpsw->irqs_table[1], cpsw_tx_interrupt, 1990 0, dev_name(dev), cpsw); 1991 if (ret < 0) { 1992 dev_err(dev, "error attaching irq (%d)\n", ret); 1993 goto clean_unregister_netdev; 1994 } 1995 1996 if (!cpsw->cpts) 1997 goto skip_cpts; 1998 1999 ret = devm_request_irq(dev, cpsw->misc_irq, cpsw_misc_interrupt, 2000 0, dev_name(&pdev->dev), cpsw); 2001 if (ret < 0) { 2002 dev_err(dev, "error attaching misc irq (%d)\n", ret); 2003 goto clean_unregister_netdev; 2004 } 2005 2006 /* Enable misc CPTS evnt_pend IRQ */ 2007 cpts_set_irqpoll(cpsw->cpts, false); 2008 2009 skip_cpts: 2010 ret = cpsw_register_notifiers(cpsw); 2011 if (ret) 2012 goto clean_unregister_netdev; 2013 2014 ret = cpsw_register_devlink(cpsw); 2015 if (ret) 2016 goto clean_unregister_notifiers; 2017 2018 ret = cpsw_register_ports(cpsw); 2019 if (ret) 2020 goto clean_unregister_notifiers; 2021 2022 dev_notice(dev, "initialized (regs %pa, pool size %d) hw_ver:%08X %d.%d (%d)\n", 2023 &ss_res->start, descs_pool_size, 2024 cpsw->version, CPSW_MAJOR_VERSION(cpsw->version), 2025 CPSW_MINOR_VERSION(cpsw->version), 2026 CPSW_RTL_VERSION(cpsw->version)); 2027 2028 pm_runtime_put(dev); 2029 2030 return 0; 2031 2032 clean_unregister_notifiers: 2033 cpsw_unregister_notifiers(cpsw); 2034 clean_unregister_netdev: 2035 cpsw_unregister_ports(cpsw); 2036 clean_cpts: 2037 cpts_release(cpsw->cpts); 2038 cpdma_ctlr_destroy(cpsw->dma); 2039 clean_dt_ret: 2040 cpsw_remove_dt(cpsw); 2041 pm_runtime_put_sync(dev); 2042 pm_runtime_disable(dev); 2043 return ret; 2044 } 2045 2046 static void cpsw_remove(struct platform_device *pdev) 2047 { 2048 struct cpsw_common *cpsw = platform_get_drvdata(pdev); 2049 int ret; 2050 2051 ret = pm_runtime_resume_and_get(&pdev->dev); 2052 if (ret < 0) { 2053 /* Note, if this error path is taken, we're leaking some 2054 * resources. 2055 */ 2056 dev_err(&pdev->dev, "Failed to resume device (%pe)\n", 2057 ERR_PTR(ret)); 2058 return; 2059 } 2060 2061 cpsw_unregister_notifiers(cpsw); 2062 cpsw_unregister_devlink(cpsw); 2063 cpsw_unregister_ports(cpsw); 2064 2065 cpts_release(cpsw->cpts); 2066 cpdma_ctlr_destroy(cpsw->dma); 2067 cpsw_remove_dt(cpsw); 2068 pm_runtime_put_sync(&pdev->dev); 2069 pm_runtime_disable(&pdev->dev); 2070 } 2071 2072 static int __maybe_unused cpsw_suspend(struct device *dev) 2073 { 2074 struct cpsw_common *cpsw = dev_get_drvdata(dev); 2075 int i; 2076 2077 rtnl_lock(); 2078 2079 for (i = 0; i < cpsw->data.slaves; i++) { 2080 struct net_device *ndev = cpsw->slaves[i].ndev; 2081 2082 if (!(ndev && netif_running(ndev))) 2083 continue; 2084 2085 cpsw_ndo_stop(ndev); 2086 } 2087 2088 rtnl_unlock(); 2089 2090 /* Select sleep pin state */ 2091 pinctrl_pm_select_sleep_state(dev); 2092 2093 return 0; 2094 } 2095 2096 static int __maybe_unused cpsw_resume(struct device *dev) 2097 { 2098 struct cpsw_common *cpsw = dev_get_drvdata(dev); 2099 int i; 2100 2101 /* Select default pin state */ 2102 pinctrl_pm_select_default_state(dev); 2103 2104 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */ 2105 rtnl_lock(); 2106 2107 for (i = 0; i < cpsw->data.slaves; i++) { 2108 struct net_device *ndev = cpsw->slaves[i].ndev; 2109 2110 if (!(ndev && netif_running(ndev))) 2111 continue; 2112 2113 cpsw_ndo_open(ndev); 2114 } 2115 2116 rtnl_unlock(); 2117 2118 return 0; 2119 } 2120 2121 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 2122 2123 static struct platform_driver cpsw_driver = { 2124 .driver = { 2125 .name = "cpsw-switch", 2126 .pm = &cpsw_pm_ops, 2127 .of_match_table = cpsw_of_mtable, 2128 }, 2129 .probe = cpsw_probe, 2130 .remove_new = cpsw_remove, 2131 }; 2132 2133 module_platform_driver(cpsw_driver); 2134 2135 MODULE_LICENSE("GPL"); 2136 MODULE_DESCRIPTION("TI CPSW switchdev Ethernet driver"); 2137