xref: /linux/drivers/net/ethernet/ti/cpsw_new.c (revision 086c6cbcc563c81d55257f9b27e14faf1d0963d3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Texas Instruments Ethernet Switch Driver
4  *
5  * Copyright (C) 2019 Texas Instruments
6  */
7 
8 #include <linux/io.h>
9 #include <linux/clk.h>
10 #include <linux/platform_device.h>
11 #include <linux/timer.h>
12 #include <linux/module.h>
13 #include <linux/irqreturn.h>
14 #include <linux/interrupt.h>
15 #include <linux/if_ether.h>
16 #include <linux/etherdevice.h>
17 #include <linux/net_tstamp.h>
18 #include <linux/phy.h>
19 #include <linux/phy/phy.h>
20 #include <linux/delay.h>
21 #include <linux/pinctrl/consumer.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/gpio/consumer.h>
24 #include <linux/of.h>
25 #include <linux/of_mdio.h>
26 #include <linux/of_net.h>
27 #include <linux/of_platform.h>
28 #include <linux/if_vlan.h>
29 #include <linux/kmemleak.h>
30 #include <linux/sys_soc.h>
31 
32 #include <net/switchdev.h>
33 #include <net/page_pool/helpers.h>
34 #include <net/pkt_cls.h>
35 #include <net/devlink.h>
36 
37 #include "cpsw.h"
38 #include "cpsw_ale.h"
39 #include "cpsw_priv.h"
40 #include "cpsw_sl.h"
41 #include "cpsw_switchdev.h"
42 #include "cpts.h"
43 #include "davinci_cpdma.h"
44 
45 #include <net/pkt_sched.h>
46 
47 static int debug_level;
48 static int ale_ageout = CPSW_ALE_AGEOUT_DEFAULT;
49 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
50 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
51 
52 struct cpsw_devlink {
53 	struct cpsw_common *cpsw;
54 };
55 
56 enum cpsw_devlink_param_id {
57 	CPSW_DEVLINK_PARAM_ID_BASE = DEVLINK_PARAM_GENERIC_ID_MAX,
58 	CPSW_DL_PARAM_SWITCH_MODE,
59 	CPSW_DL_PARAM_ALE_BYPASS,
60 };
61 
62 /* struct cpsw_common is not needed, kept here for compatibility
63  * reasons witrh the old driver
64  */
65 static int cpsw_slave_index_priv(struct cpsw_common *cpsw,
66 				 struct cpsw_priv *priv)
67 {
68 	if (priv->emac_port == HOST_PORT_NUM)
69 		return -1;
70 
71 	return priv->emac_port - 1;
72 }
73 
74 static bool cpsw_is_switch_en(struct cpsw_common *cpsw)
75 {
76 	return !cpsw->data.dual_emac;
77 }
78 
79 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
80 {
81 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
82 	bool enable_uni = false;
83 	int i;
84 
85 	if (cpsw_is_switch_en(cpsw))
86 		return;
87 
88 	/* Enabling promiscuous mode for one interface will be
89 	 * common for both the interface as the interface shares
90 	 * the same hardware resource.
91 	 */
92 	for (i = 0; i < cpsw->data.slaves; i++)
93 		if (cpsw->slaves[i].ndev &&
94 		    (cpsw->slaves[i].ndev->flags & IFF_PROMISC))
95 			enable_uni = true;
96 
97 	if (!enable && enable_uni) {
98 		enable = enable_uni;
99 		dev_dbg(cpsw->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
100 	}
101 
102 	if (enable) {
103 		/* Enable unknown unicast, reg/unreg mcast */
104 		cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
105 				     ALE_P0_UNI_FLOOD, 1);
106 
107 		dev_dbg(cpsw->dev, "promiscuity enabled\n");
108 	} else {
109 		/* Disable unknown unicast */
110 		cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
111 				     ALE_P0_UNI_FLOOD, 0);
112 		dev_dbg(cpsw->dev, "promiscuity disabled\n");
113 	}
114 }
115 
116 /**
117  * cpsw_set_mc - adds multicast entry to the table if it's not added or deletes
118  * if it's not deleted
119  * @ndev: device to sync
120  * @addr: address to be added or deleted
121  * @vid: vlan id, if vid < 0 set/unset address for real device
122  * @add: add address if the flag is set or remove otherwise
123  */
124 static int cpsw_set_mc(struct net_device *ndev, const u8 *addr,
125 		       int vid, int add)
126 {
127 	struct cpsw_priv *priv = netdev_priv(ndev);
128 	struct cpsw_common *cpsw = priv->cpsw;
129 	int mask, flags, ret, slave_no;
130 
131 	slave_no = cpsw_slave_index(cpsw, priv);
132 	if (vid < 0)
133 		vid = cpsw->slaves[slave_no].port_vlan;
134 
135 	mask =  ALE_PORT_HOST;
136 	flags = vid ? ALE_VLAN : 0;
137 
138 	if (add)
139 		ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0);
140 	else
141 		ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid);
142 
143 	return ret;
144 }
145 
146 static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx)
147 {
148 	struct addr_sync_ctx *sync_ctx = ctx;
149 	struct netdev_hw_addr *ha;
150 	int found = 0, ret = 0;
151 
152 	if (!vdev || !(vdev->flags & IFF_UP))
153 		return 0;
154 
155 	/* vlan address is relevant if its sync_cnt != 0 */
156 	netdev_for_each_mc_addr(ha, vdev) {
157 		if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
158 			found = ha->sync_cnt;
159 			break;
160 		}
161 	}
162 
163 	if (found)
164 		sync_ctx->consumed++;
165 
166 	if (sync_ctx->flush) {
167 		if (!found)
168 			cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
169 		return 0;
170 	}
171 
172 	if (found)
173 		ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1);
174 
175 	return ret;
176 }
177 
178 static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num)
179 {
180 	struct addr_sync_ctx sync_ctx;
181 	int ret;
182 
183 	sync_ctx.consumed = 0;
184 	sync_ctx.addr = addr;
185 	sync_ctx.ndev = ndev;
186 	sync_ctx.flush = 0;
187 
188 	ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
189 	if (sync_ctx.consumed < num && !ret)
190 		ret = cpsw_set_mc(ndev, addr, -1, 1);
191 
192 	return ret;
193 }
194 
195 static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num)
196 {
197 	struct addr_sync_ctx sync_ctx;
198 
199 	sync_ctx.consumed = 0;
200 	sync_ctx.addr = addr;
201 	sync_ctx.ndev = ndev;
202 	sync_ctx.flush = 1;
203 
204 	vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
205 	if (sync_ctx.consumed == num)
206 		cpsw_set_mc(ndev, addr, -1, 0);
207 
208 	return 0;
209 }
210 
211 static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx)
212 {
213 	struct addr_sync_ctx *sync_ctx = ctx;
214 	struct netdev_hw_addr *ha;
215 	int found = 0;
216 
217 	if (!vdev || !(vdev->flags & IFF_UP))
218 		return 0;
219 
220 	/* vlan address is relevant if its sync_cnt != 0 */
221 	netdev_for_each_mc_addr(ha, vdev) {
222 		if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
223 			found = ha->sync_cnt;
224 			break;
225 		}
226 	}
227 
228 	if (!found)
229 		return 0;
230 
231 	sync_ctx->consumed++;
232 	cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
233 	return 0;
234 }
235 
236 static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num)
237 {
238 	struct addr_sync_ctx sync_ctx;
239 
240 	sync_ctx.addr = addr;
241 	sync_ctx.ndev = ndev;
242 	sync_ctx.consumed = 0;
243 
244 	vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx);
245 	if (sync_ctx.consumed < num)
246 		cpsw_set_mc(ndev, addr, -1, 0);
247 
248 	return 0;
249 }
250 
251 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
252 {
253 	struct cpsw_priv *priv = netdev_priv(ndev);
254 	struct cpsw_common *cpsw = priv->cpsw;
255 
256 	if (ndev->flags & IFF_PROMISC) {
257 		/* Enable promiscuous mode */
258 		cpsw_set_promiscious(ndev, true);
259 		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI, priv->emac_port);
260 		return;
261 	}
262 
263 	/* Disable promiscuous mode */
264 	cpsw_set_promiscious(ndev, false);
265 
266 	/* Restore allmulti on vlans if necessary */
267 	cpsw_ale_set_allmulti(cpsw->ale,
268 			      ndev->flags & IFF_ALLMULTI, priv->emac_port);
269 
270 	/* add/remove mcast address either for real netdev or for vlan */
271 	__hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr,
272 			       cpsw_del_mc_addr);
273 }
274 
275 static unsigned int cpsw_rxbuf_total_len(unsigned int len)
276 {
277 	len += CPSW_HEADROOM_NA;
278 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
279 
280 	return SKB_DATA_ALIGN(len);
281 }
282 
283 static void cpsw_rx_handler(void *token, int len, int status)
284 {
285 	struct page *new_page, *page = token;
286 	void *pa = page_address(page);
287 	int headroom = CPSW_HEADROOM_NA;
288 	struct cpsw_meta_xdp *xmeta;
289 	struct cpsw_common *cpsw;
290 	struct net_device *ndev;
291 	int port, ch, pkt_size;
292 	struct cpsw_priv *priv;
293 	struct page_pool *pool;
294 	struct sk_buff *skb;
295 	struct xdp_buff xdp;
296 	int ret = 0;
297 	dma_addr_t dma;
298 
299 	xmeta = pa + CPSW_XMETA_OFFSET;
300 	cpsw = ndev_to_cpsw(xmeta->ndev);
301 	ndev = xmeta->ndev;
302 	pkt_size = cpsw->rx_packet_max;
303 	ch = xmeta->ch;
304 
305 	if (status >= 0) {
306 		port = CPDMA_RX_SOURCE_PORT(status);
307 		if (port)
308 			ndev = cpsw->slaves[--port].ndev;
309 	}
310 
311 	priv = netdev_priv(ndev);
312 	pool = cpsw->page_pool[ch];
313 
314 	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
315 		/* In dual emac mode check for all interfaces */
316 		if (cpsw->usage_count && status >= 0) {
317 			/* The packet received is for the interface which
318 			 * is already down and the other interface is up
319 			 * and running, instead of freeing which results
320 			 * in reducing of the number of rx descriptor in
321 			 * DMA engine, requeue page back to cpdma.
322 			 */
323 			new_page = page;
324 			goto requeue;
325 		}
326 
327 		/* the interface is going down, pages are purged */
328 		page_pool_recycle_direct(pool, page);
329 		return;
330 	}
331 
332 	new_page = page_pool_dev_alloc_pages(pool);
333 	if (unlikely(!new_page)) {
334 		new_page = page;
335 		ndev->stats.rx_dropped++;
336 		goto requeue;
337 	}
338 
339 	if (priv->xdp_prog) {
340 		int size = len;
341 
342 		xdp_init_buff(&xdp, PAGE_SIZE, &priv->xdp_rxq[ch]);
343 		if (status & CPDMA_RX_VLAN_ENCAP) {
344 			headroom += CPSW_RX_VLAN_ENCAP_HDR_SIZE;
345 			size -= CPSW_RX_VLAN_ENCAP_HDR_SIZE;
346 		}
347 
348 		xdp_prepare_buff(&xdp, pa, headroom, size, false);
349 
350 		ret = cpsw_run_xdp(priv, ch, &xdp, page, priv->emac_port, &len);
351 		if (ret != CPSW_XDP_PASS)
352 			goto requeue;
353 
354 		headroom = xdp.data - xdp.data_hard_start;
355 
356 		/* XDP prog can modify vlan tag, so can't use encap header */
357 		status &= ~CPDMA_RX_VLAN_ENCAP;
358 	}
359 
360 	/* pass skb to netstack if no XDP prog or returned XDP_PASS */
361 	skb = build_skb(pa, cpsw_rxbuf_total_len(pkt_size));
362 	if (!skb) {
363 		ndev->stats.rx_dropped++;
364 		page_pool_recycle_direct(pool, page);
365 		goto requeue;
366 	}
367 
368 	skb->offload_fwd_mark = priv->offload_fwd_mark;
369 	skb_reserve(skb, headroom);
370 	skb_put(skb, len);
371 	skb->dev = ndev;
372 	if (status & CPDMA_RX_VLAN_ENCAP)
373 		cpsw_rx_vlan_encap(skb);
374 	if (priv->rx_ts_enabled)
375 		cpts_rx_timestamp(cpsw->cpts, skb);
376 	skb->protocol = eth_type_trans(skb, ndev);
377 
378 	/* mark skb for recycling */
379 	skb_mark_for_recycle(skb);
380 	netif_receive_skb(skb);
381 
382 	ndev->stats.rx_bytes += len;
383 	ndev->stats.rx_packets++;
384 
385 requeue:
386 	xmeta = page_address(new_page) + CPSW_XMETA_OFFSET;
387 	xmeta->ndev = ndev;
388 	xmeta->ch = ch;
389 
390 	dma = page_pool_get_dma_addr(new_page) + CPSW_HEADROOM_NA;
391 	ret = cpdma_chan_submit_mapped(cpsw->rxv[ch].ch, new_page, dma,
392 				       pkt_size, 0);
393 	if (ret < 0) {
394 		WARN_ON(ret == -ENOMEM);
395 		page_pool_recycle_direct(pool, new_page);
396 	}
397 }
398 
399 static int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
400 				   unsigned short vid)
401 {
402 	struct cpsw_common *cpsw = priv->cpsw;
403 	int unreg_mcast_mask = 0;
404 	int mcast_mask;
405 	u32 port_mask;
406 	int ret;
407 
408 	port_mask = (1 << priv->emac_port) | ALE_PORT_HOST;
409 
410 	mcast_mask = ALE_PORT_HOST;
411 	if (priv->ndev->flags & IFF_ALLMULTI)
412 		unreg_mcast_mask = mcast_mask;
413 
414 	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
415 				unreg_mcast_mask);
416 	if (ret != 0)
417 		return ret;
418 
419 	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
420 				 HOST_PORT_NUM, ALE_VLAN, vid);
421 	if (ret != 0)
422 		goto clean_vid;
423 
424 	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
425 				 mcast_mask, ALE_VLAN, vid, 0);
426 	if (ret != 0)
427 		goto clean_vlan_ucast;
428 	return 0;
429 
430 clean_vlan_ucast:
431 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
432 			   HOST_PORT_NUM, ALE_VLAN, vid);
433 clean_vid:
434 	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
435 	return ret;
436 }
437 
438 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
439 				    __be16 proto, u16 vid)
440 {
441 	struct cpsw_priv *priv = netdev_priv(ndev);
442 	struct cpsw_common *cpsw = priv->cpsw;
443 	int ret, i;
444 
445 	if (cpsw_is_switch_en(cpsw)) {
446 		dev_dbg(cpsw->dev, ".ndo_vlan_rx_add_vid called in switch mode\n");
447 		return 0;
448 	}
449 
450 	if (vid == cpsw->data.default_vlan)
451 		return 0;
452 
453 	ret = pm_runtime_resume_and_get(cpsw->dev);
454 	if (ret < 0)
455 		return ret;
456 
457 	/* In dual EMAC, reserved VLAN id should not be used for
458 	 * creating VLAN interfaces as this can break the dual
459 	 * EMAC port separation
460 	 */
461 	for (i = 0; i < cpsw->data.slaves; i++) {
462 		if (cpsw->slaves[i].ndev &&
463 		    vid == cpsw->slaves[i].port_vlan) {
464 			ret = -EINVAL;
465 			goto err;
466 		}
467 	}
468 
469 	dev_dbg(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
470 	ret = cpsw_add_vlan_ale_entry(priv, vid);
471 err:
472 	pm_runtime_put(cpsw->dev);
473 	return ret;
474 }
475 
476 static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg)
477 {
478 	struct cpsw_priv *priv = arg;
479 
480 	if (!vdev || !vid)
481 		return 0;
482 
483 	cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid);
484 	return 0;
485 }
486 
487 /* restore resources after port reset */
488 static void cpsw_restore(struct cpsw_priv *priv)
489 {
490 	struct cpsw_common *cpsw = priv->cpsw;
491 
492 	/* restore vlan configurations */
493 	vlan_for_each(priv->ndev, cpsw_restore_vlans, priv);
494 
495 	/* restore MQPRIO offload */
496 	cpsw_mqprio_resume(&cpsw->slaves[priv->emac_port - 1], priv);
497 
498 	/* restore CBS offload */
499 	cpsw_cbs_resume(&cpsw->slaves[priv->emac_port - 1], priv);
500 
501 	cpsw_qos_clsflower_resume(priv);
502 }
503 
504 static void cpsw_init_stp_ale_entry(struct cpsw_common *cpsw)
505 {
506 	static const char stpa[] = {0x01, 0x80, 0xc2, 0x0, 0x0, 0x0};
507 
508 	cpsw_ale_add_mcast(cpsw->ale, stpa,
509 			   ALE_PORT_HOST, ALE_SUPER, 0,
510 			   ALE_MCAST_BLOCK_LEARN_FWD);
511 }
512 
513 static void cpsw_init_host_port_switch(struct cpsw_common *cpsw)
514 {
515 	int vlan = cpsw->data.default_vlan;
516 
517 	writel(CPSW_FIFO_NORMAL_MODE, &cpsw->host_port_regs->tx_in_ctl);
518 
519 	writel(vlan, &cpsw->host_port_regs->port_vlan);
520 
521 	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
522 			  ALE_ALL_PORTS, ALE_ALL_PORTS,
523 			  ALE_PORT_1 | ALE_PORT_2);
524 
525 	cpsw_init_stp_ale_entry(cpsw);
526 
527 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_P0_UNI_FLOOD, 1);
528 	dev_dbg(cpsw->dev, "Set P0_UNI_FLOOD\n");
529 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_PORT_NOLEARN, 0);
530 }
531 
532 static void cpsw_init_host_port_dual_mac(struct cpsw_common *cpsw)
533 {
534 	int vlan = cpsw->data.default_vlan;
535 
536 	writel(CPSW_FIFO_DUAL_MAC_MODE, &cpsw->host_port_regs->tx_in_ctl);
537 
538 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_P0_UNI_FLOOD, 0);
539 	dev_dbg(cpsw->dev, "unset P0_UNI_FLOOD\n");
540 
541 	writel(vlan, &cpsw->host_port_regs->port_vlan);
542 
543 	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
544 	/* learning make no sense in dual_mac mode */
545 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_PORT_NOLEARN, 1);
546 }
547 
548 static void cpsw_init_host_port(struct cpsw_priv *priv)
549 {
550 	struct cpsw_common *cpsw = priv->cpsw;
551 	u32 control_reg;
552 
553 	/* soft reset the controller and initialize ale */
554 	soft_reset("cpsw", &cpsw->regs->soft_reset);
555 	cpsw_ale_start(cpsw->ale);
556 
557 	/* switch to vlan unaware mode */
558 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
559 			     CPSW_ALE_VLAN_AWARE);
560 	control_reg = readl(&cpsw->regs->control);
561 	control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
562 	writel(control_reg, &cpsw->regs->control);
563 
564 	/* setup host port priority mapping */
565 	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
566 		       &cpsw->host_port_regs->cpdma_tx_pri_map);
567 	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
568 
569 	/* disable priority elevation */
570 	writel_relaxed(0, &cpsw->regs->ptype);
571 
572 	/* enable statistics collection only on all ports */
573 	writel_relaxed(0x7, &cpsw->regs->stat_port_en);
574 
575 	/* Enable internal fifo flow control */
576 	writel(0x7, &cpsw->regs->flow_control);
577 
578 	if (cpsw_is_switch_en(cpsw))
579 		cpsw_init_host_port_switch(cpsw);
580 	else
581 		cpsw_init_host_port_dual_mac(cpsw);
582 
583 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
584 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
585 }
586 
587 static void cpsw_port_add_dual_emac_def_ale_entries(struct cpsw_priv *priv,
588 						    struct cpsw_slave *slave)
589 {
590 	u32 port_mask = 1 << priv->emac_port | ALE_PORT_HOST;
591 	struct cpsw_common *cpsw = priv->cpsw;
592 	u32 reg;
593 
594 	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
595 	       CPSW2_PORT_VLAN;
596 	slave_write(slave, slave->port_vlan, reg);
597 
598 	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
599 			  port_mask, port_mask, 0);
600 	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
601 			   ALE_PORT_HOST, ALE_VLAN, slave->port_vlan,
602 			   ALE_MCAST_FWD);
603 	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
604 			   HOST_PORT_NUM, ALE_VLAN |
605 			   ALE_SECURE, slave->port_vlan);
606 	cpsw_ale_control_set(cpsw->ale, priv->emac_port,
607 			     ALE_PORT_DROP_UNKNOWN_VLAN, 1);
608 	/* learning make no sense in dual_mac mode */
609 	cpsw_ale_control_set(cpsw->ale, priv->emac_port,
610 			     ALE_PORT_NOLEARN, 1);
611 }
612 
613 static void cpsw_port_add_switch_def_ale_entries(struct cpsw_priv *priv,
614 						 struct cpsw_slave *slave)
615 {
616 	u32 port_mask = 1 << priv->emac_port | ALE_PORT_HOST;
617 	struct cpsw_common *cpsw = priv->cpsw;
618 	u32 reg;
619 
620 	cpsw_ale_control_set(cpsw->ale, priv->emac_port,
621 			     ALE_PORT_DROP_UNKNOWN_VLAN, 0);
622 	cpsw_ale_control_set(cpsw->ale, priv->emac_port,
623 			     ALE_PORT_NOLEARN, 0);
624 	/* disabling SA_UPDATE required to make stp work, without this setting
625 	 * Host MAC addresses will jump between ports.
626 	 * As per TRM MAC address can be defined as unicast supervisory (super)
627 	 * by setting both (ALE_BLOCKED | ALE_SECURE) which should prevent
628 	 * SA_UPDATE, but HW seems works incorrectly and setting ALE_SECURE
629 	 * causes STP packets to be dropped due to ingress filter
630 	 *	if (source address found) and (secure) and
631 	 *	   (receive port number != port_number))
632 	 *	   then discard the packet
633 	 */
634 	cpsw_ale_control_set(cpsw->ale, priv->emac_port,
635 			     ALE_PORT_NO_SA_UPDATE, 1);
636 
637 	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
638 			   port_mask, ALE_VLAN, slave->port_vlan,
639 			   ALE_MCAST_FWD_2);
640 	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
641 			   HOST_PORT_NUM, ALE_VLAN, slave->port_vlan);
642 
643 	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
644 	       CPSW2_PORT_VLAN;
645 	slave_write(slave, slave->port_vlan, reg);
646 }
647 
648 static void cpsw_adjust_link(struct net_device *ndev)
649 {
650 	struct cpsw_priv *priv = netdev_priv(ndev);
651 	struct cpsw_common *cpsw = priv->cpsw;
652 	struct cpsw_slave *slave;
653 	struct phy_device *phy;
654 	u32 mac_control = 0;
655 
656 	slave = &cpsw->slaves[priv->emac_port - 1];
657 	phy = slave->phy;
658 
659 	if (!phy)
660 		return;
661 
662 	if (phy->link) {
663 		mac_control = CPSW_SL_CTL_GMII_EN;
664 
665 		if (phy->speed == 1000)
666 			mac_control |= CPSW_SL_CTL_GIG;
667 		if (phy->duplex)
668 			mac_control |= CPSW_SL_CTL_FULLDUPLEX;
669 
670 		/* set speed_in input in case RMII mode is used in 100Mbps */
671 		if (phy->speed == 100)
672 			mac_control |= CPSW_SL_CTL_IFCTL_A;
673 		/* in band mode only works in 10Mbps RGMII mode */
674 		else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
675 			mac_control |= CPSW_SL_CTL_EXT_EN; /* In Band mode */
676 
677 		if (priv->rx_pause)
678 			mac_control |= CPSW_SL_CTL_RX_FLOW_EN;
679 
680 		if (priv->tx_pause)
681 			mac_control |= CPSW_SL_CTL_TX_FLOW_EN;
682 
683 		if (mac_control != slave->mac_control)
684 			cpsw_sl_ctl_set(slave->mac_sl, mac_control);
685 
686 		/* enable forwarding */
687 		cpsw_ale_control_set(cpsw->ale, priv->emac_port,
688 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
689 
690 		netif_tx_wake_all_queues(ndev);
691 
692 		if (priv->shp_cfg_speed &&
693 		    priv->shp_cfg_speed != slave->phy->speed &&
694 		    !cpsw_shp_is_off(priv))
695 			dev_warn(priv->dev, "Speed was changed, CBS shaper speeds are changed!");
696 	} else {
697 		netif_tx_stop_all_queues(ndev);
698 
699 		mac_control = 0;
700 		/* disable forwarding */
701 		cpsw_ale_control_set(cpsw->ale, priv->emac_port,
702 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
703 
704 		cpsw_sl_wait_for_idle(slave->mac_sl, 100);
705 
706 		cpsw_sl_ctl_reset(slave->mac_sl);
707 	}
708 
709 	if (mac_control != slave->mac_control)
710 		phy_print_status(phy);
711 
712 	slave->mac_control = mac_control;
713 
714 	if (phy->link && cpsw_need_resplit(cpsw))
715 		cpsw_split_res(cpsw);
716 }
717 
718 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
719 {
720 	struct cpsw_common *cpsw = priv->cpsw;
721 	struct phy_device *phy;
722 
723 	cpsw_sl_reset(slave->mac_sl, 100);
724 	cpsw_sl_ctl_reset(slave->mac_sl);
725 
726 	/* setup priority mapping */
727 	cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_PRI_MAP,
728 			  RX_PRIORITY_MAPPING);
729 
730 	switch (cpsw->version) {
731 	case CPSW_VERSION_1:
732 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
733 		/* Increase RX FIFO size to 5 for supporting fullduplex
734 		 * flow control mode
735 		 */
736 		slave_write(slave,
737 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
738 			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
739 		break;
740 	case CPSW_VERSION_2:
741 	case CPSW_VERSION_3:
742 	case CPSW_VERSION_4:
743 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
744 		/* Increase RX FIFO size to 5 for supporting fullduplex
745 		 * flow control mode
746 		 */
747 		slave_write(slave,
748 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
749 			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
750 		break;
751 	}
752 
753 	/* setup max packet size, and mac address */
754 	cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_MAXLEN,
755 			  cpsw->rx_packet_max);
756 	cpsw_set_slave_mac(slave, priv);
757 
758 	slave->mac_control = 0;	/* no link yet */
759 
760 	if (cpsw_is_switch_en(cpsw))
761 		cpsw_port_add_switch_def_ale_entries(priv, slave);
762 	else
763 		cpsw_port_add_dual_emac_def_ale_entries(priv, slave);
764 
765 	if (!slave->data->phy_node)
766 		dev_err(priv->dev, "no phy found on slave %d\n",
767 			slave->slave_num);
768 	phy = of_phy_connect(priv->ndev, slave->data->phy_node,
769 			     &cpsw_adjust_link, 0, slave->data->phy_if);
770 	if (!phy) {
771 		dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
772 			slave->data->phy_node,
773 			slave->slave_num);
774 		return;
775 	}
776 
777 	phy->mac_managed_pm = true;
778 
779 	slave->phy = phy;
780 
781 	phy_attached_info(slave->phy);
782 
783 	phy_start(slave->phy);
784 
785 	/* Configure GMII_SEL register */
786 	phy_set_mode_ext(slave->data->ifphy, PHY_MODE_ETHERNET,
787 			 slave->data->phy_if);
788 }
789 
790 static int cpsw_ndo_stop(struct net_device *ndev)
791 {
792 	struct cpsw_priv *priv = netdev_priv(ndev);
793 	struct cpsw_common *cpsw = priv->cpsw;
794 	struct cpsw_slave *slave;
795 
796 	cpsw_info(priv, ifdown, "shutting down ndev\n");
797 	slave = &cpsw->slaves[priv->emac_port - 1];
798 	if (slave->phy)
799 		phy_stop(slave->phy);
800 
801 	netif_tx_stop_all_queues(priv->ndev);
802 
803 	if (slave->phy) {
804 		phy_disconnect(slave->phy);
805 		slave->phy = NULL;
806 	}
807 
808 	__hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc);
809 
810 	if (cpsw->usage_count <= 1) {
811 		napi_disable(&cpsw->napi_rx);
812 		napi_disable(&cpsw->napi_tx);
813 		cpts_unregister(cpsw->cpts);
814 		cpsw_intr_disable(cpsw);
815 		cpdma_ctlr_stop(cpsw->dma);
816 		cpsw_ale_stop(cpsw->ale);
817 		cpsw_destroy_xdp_rxqs(cpsw);
818 	}
819 
820 	if (cpsw_need_resplit(cpsw))
821 		cpsw_split_res(cpsw);
822 
823 	cpsw->usage_count--;
824 	pm_runtime_put_sync(cpsw->dev);
825 	return 0;
826 }
827 
828 static int cpsw_ndo_open(struct net_device *ndev)
829 {
830 	struct cpsw_priv *priv = netdev_priv(ndev);
831 	struct cpsw_common *cpsw = priv->cpsw;
832 	int ret;
833 
834 	dev_info(priv->dev, "starting ndev. mode: %s\n",
835 		 cpsw_is_switch_en(cpsw) ? "switch" : "dual_mac");
836 	ret = pm_runtime_resume_and_get(cpsw->dev);
837 	if (ret < 0)
838 		return ret;
839 
840 	/* Notify the stack of the actual queue counts. */
841 	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
842 	if (ret) {
843 		dev_err(priv->dev, "cannot set real number of tx queues\n");
844 		goto pm_cleanup;
845 	}
846 
847 	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
848 	if (ret) {
849 		dev_err(priv->dev, "cannot set real number of rx queues\n");
850 		goto pm_cleanup;
851 	}
852 
853 	/* Initialize host and slave ports */
854 	if (!cpsw->usage_count)
855 		cpsw_init_host_port(priv);
856 	cpsw_slave_open(&cpsw->slaves[priv->emac_port - 1], priv);
857 
858 	/* initialize shared resources for every ndev */
859 	if (!cpsw->usage_count) {
860 		/* create rxqs for both infs in dual mac as they use same pool
861 		 * and must be destroyed together when no users.
862 		 */
863 		ret = cpsw_create_xdp_rxqs(cpsw);
864 		if (ret < 0)
865 			goto err_cleanup;
866 
867 		ret = cpsw_fill_rx_channels(priv);
868 		if (ret < 0)
869 			goto err_cleanup;
870 
871 		if (cpsw->cpts) {
872 			if (cpts_register(cpsw->cpts))
873 				dev_err(priv->dev, "error registering cpts device\n");
874 			else
875 				writel(0x10, &cpsw->wr_regs->misc_en);
876 		}
877 
878 		napi_enable(&cpsw->napi_rx);
879 		napi_enable(&cpsw->napi_tx);
880 
881 		if (cpsw->tx_irq_disabled) {
882 			cpsw->tx_irq_disabled = false;
883 			enable_irq(cpsw->irqs_table[1]);
884 		}
885 
886 		if (cpsw->rx_irq_disabled) {
887 			cpsw->rx_irq_disabled = false;
888 			enable_irq(cpsw->irqs_table[0]);
889 		}
890 	}
891 
892 	cpsw_restore(priv);
893 
894 	/* Enable Interrupt pacing if configured */
895 	if (cpsw->coal_intvl != 0) {
896 		struct ethtool_coalesce coal;
897 
898 		coal.rx_coalesce_usecs = cpsw->coal_intvl;
899 		cpsw_set_coalesce(ndev, &coal, NULL, NULL);
900 	}
901 
902 	cpdma_ctlr_start(cpsw->dma);
903 	cpsw_intr_enable(cpsw);
904 	cpsw->usage_count++;
905 
906 	return 0;
907 
908 err_cleanup:
909 	cpsw_ndo_stop(ndev);
910 
911 pm_cleanup:
912 	pm_runtime_put_sync(cpsw->dev);
913 	return ret;
914 }
915 
916 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
917 				       struct net_device *ndev)
918 {
919 	struct cpsw_priv *priv = netdev_priv(ndev);
920 	struct cpsw_common *cpsw = priv->cpsw;
921 	struct cpts *cpts = cpsw->cpts;
922 	struct netdev_queue *txq;
923 	struct cpdma_chan *txch;
924 	int ret, q_idx;
925 
926 	if (skb_put_padto(skb, READ_ONCE(priv->tx_packet_min))) {
927 		cpsw_err(priv, tx_err, "packet pad failed\n");
928 		ndev->stats.tx_dropped++;
929 		return NET_XMIT_DROP;
930 	}
931 
932 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
933 	    priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb))
934 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
935 
936 	q_idx = skb_get_queue_mapping(skb);
937 	if (q_idx >= cpsw->tx_ch_num)
938 		q_idx = q_idx % cpsw->tx_ch_num;
939 
940 	txch = cpsw->txv[q_idx].ch;
941 	txq = netdev_get_tx_queue(ndev, q_idx);
942 	skb_tx_timestamp(skb);
943 	ret = cpdma_chan_submit(txch, skb, skb->data, skb->len,
944 				priv->emac_port);
945 	if (unlikely(ret != 0)) {
946 		cpsw_err(priv, tx_err, "desc submit failed\n");
947 		goto fail;
948 	}
949 
950 	/* If there is no more tx desc left free then we need to
951 	 * tell the kernel to stop sending us tx frames.
952 	 */
953 	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
954 		netif_tx_stop_queue(txq);
955 
956 		/* Barrier, so that stop_queue visible to other cpus */
957 		smp_mb__after_atomic();
958 
959 		if (cpdma_check_free_tx_desc(txch))
960 			netif_tx_wake_queue(txq);
961 	}
962 
963 	return NETDEV_TX_OK;
964 fail:
965 	ndev->stats.tx_dropped++;
966 	netif_tx_stop_queue(txq);
967 
968 	/* Barrier, so that stop_queue visible to other cpus */
969 	smp_mb__after_atomic();
970 
971 	if (cpdma_check_free_tx_desc(txch))
972 		netif_tx_wake_queue(txq);
973 
974 	return NETDEV_TX_BUSY;
975 }
976 
977 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
978 {
979 	struct sockaddr *addr = (struct sockaddr *)p;
980 	struct cpsw_priv *priv = netdev_priv(ndev);
981 	struct cpsw_common *cpsw = priv->cpsw;
982 	int ret, slave_no;
983 	int flags = 0;
984 	u16 vid = 0;
985 
986 	slave_no = cpsw_slave_index(cpsw, priv);
987 	if (!is_valid_ether_addr(addr->sa_data))
988 		return -EADDRNOTAVAIL;
989 
990 	ret = pm_runtime_resume_and_get(cpsw->dev);
991 	if (ret < 0)
992 		return ret;
993 
994 	vid = cpsw->slaves[slave_no].port_vlan;
995 	flags = ALE_VLAN | ALE_SECURE;
996 
997 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
998 			   flags, vid);
999 	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1000 			   flags, vid);
1001 
1002 	ether_addr_copy(priv->mac_addr, addr->sa_data);
1003 	eth_hw_addr_set(ndev, priv->mac_addr);
1004 	cpsw_set_slave_mac(&cpsw->slaves[slave_no], priv);
1005 
1006 	pm_runtime_put(cpsw->dev);
1007 
1008 	return 0;
1009 }
1010 
1011 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1012 				     __be16 proto, u16 vid)
1013 {
1014 	struct cpsw_priv *priv = netdev_priv(ndev);
1015 	struct cpsw_common *cpsw = priv->cpsw;
1016 	int ret;
1017 	int i;
1018 
1019 	if (cpsw_is_switch_en(cpsw)) {
1020 		dev_dbg(cpsw->dev, "ndo del vlan is called in switch mode\n");
1021 		return 0;
1022 	}
1023 
1024 	if (vid == cpsw->data.default_vlan)
1025 		return 0;
1026 
1027 	ret = pm_runtime_resume_and_get(cpsw->dev);
1028 	if (ret < 0)
1029 		return ret;
1030 
1031 	/* reset the return code as pm_runtime_get_sync() can return
1032 	 * non zero values as well.
1033 	 */
1034 	ret = 0;
1035 	for (i = 0; i < cpsw->data.slaves; i++) {
1036 		if (cpsw->slaves[i].ndev &&
1037 		    vid == cpsw->slaves[i].port_vlan) {
1038 			ret = -EINVAL;
1039 			goto err;
1040 		}
1041 	}
1042 
1043 	dev_dbg(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1044 	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1045 	if (ret)
1046 		dev_err(priv->dev, "cpsw_ale_del_vlan() failed: ret %d\n", ret);
1047 	ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1048 				 HOST_PORT_NUM, ALE_VLAN, vid);
1049 	if (ret)
1050 		dev_err(priv->dev, "cpsw_ale_del_ucast() failed: ret %d\n",
1051 			ret);
1052 	ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
1053 				 0, ALE_VLAN, vid);
1054 	if (ret)
1055 		dev_err(priv->dev, "cpsw_ale_del_mcast failed. ret %d\n",
1056 			ret);
1057 	cpsw_ale_flush_multicast(cpsw->ale, ALE_PORT_HOST, vid);
1058 	ret = 0;
1059 err:
1060 	pm_runtime_put(cpsw->dev);
1061 	return ret;
1062 }
1063 
1064 static int cpsw_ndo_get_phys_port_name(struct net_device *ndev, char *name,
1065 				       size_t len)
1066 {
1067 	struct cpsw_priv *priv = netdev_priv(ndev);
1068 	int err;
1069 
1070 	err = snprintf(name, len, "p%d", priv->emac_port);
1071 
1072 	if (err >= len)
1073 		return -EINVAL;
1074 
1075 	return 0;
1076 }
1077 
1078 #ifdef CONFIG_NET_POLL_CONTROLLER
1079 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1080 {
1081 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1082 
1083 	cpsw_intr_disable(cpsw);
1084 	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
1085 	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
1086 	cpsw_intr_enable(cpsw);
1087 }
1088 #endif
1089 
1090 static int cpsw_ndo_xdp_xmit(struct net_device *ndev, int n,
1091 			     struct xdp_frame **frames, u32 flags)
1092 {
1093 	struct cpsw_priv *priv = netdev_priv(ndev);
1094 	struct xdp_frame *xdpf;
1095 	int i, nxmit = 0;
1096 
1097 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
1098 		return -EINVAL;
1099 
1100 	for (i = 0; i < n; i++) {
1101 		xdpf = frames[i];
1102 		if (xdpf->len < READ_ONCE(priv->tx_packet_min))
1103 			break;
1104 
1105 		if (cpsw_xdp_tx_frame(priv, xdpf, NULL, priv->emac_port))
1106 			break;
1107 		nxmit++;
1108 	}
1109 
1110 	return nxmit;
1111 }
1112 
1113 static int cpsw_get_port_parent_id(struct net_device *ndev,
1114 				   struct netdev_phys_item_id *ppid)
1115 {
1116 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1117 
1118 	ppid->id_len = sizeof(cpsw->base_mac);
1119 	memcpy(&ppid->id, &cpsw->base_mac, ppid->id_len);
1120 
1121 	return 0;
1122 }
1123 
1124 static const struct net_device_ops cpsw_netdev_ops = {
1125 	.ndo_open		= cpsw_ndo_open,
1126 	.ndo_stop		= cpsw_ndo_stop,
1127 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
1128 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
1129 	.ndo_eth_ioctl		= cpsw_ndo_ioctl,
1130 	.ndo_validate_addr	= eth_validate_addr,
1131 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
1132 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
1133 	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
1134 #ifdef CONFIG_NET_POLL_CONTROLLER
1135 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
1136 #endif
1137 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
1138 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
1139 	.ndo_setup_tc           = cpsw_ndo_setup_tc,
1140 	.ndo_get_phys_port_name = cpsw_ndo_get_phys_port_name,
1141 	.ndo_bpf		= cpsw_ndo_bpf,
1142 	.ndo_xdp_xmit		= cpsw_ndo_xdp_xmit,
1143 	.ndo_get_port_parent_id	= cpsw_get_port_parent_id,
1144 };
1145 
1146 static void cpsw_get_drvinfo(struct net_device *ndev,
1147 			     struct ethtool_drvinfo *info)
1148 {
1149 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1150 	struct platform_device *pdev;
1151 
1152 	pdev = to_platform_device(cpsw->dev);
1153 	strscpy(info->driver, "cpsw-switch", sizeof(info->driver));
1154 	strscpy(info->version, "2.0", sizeof(info->version));
1155 	strscpy(info->bus_info, pdev->name, sizeof(info->bus_info));
1156 }
1157 
1158 static int cpsw_set_pauseparam(struct net_device *ndev,
1159 			       struct ethtool_pauseparam *pause)
1160 {
1161 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1162 	struct cpsw_priv *priv = netdev_priv(ndev);
1163 	int slave_no;
1164 
1165 	slave_no = cpsw_slave_index(cpsw, priv);
1166 	if (!cpsw->slaves[slave_no].phy)
1167 		return -EINVAL;
1168 
1169 	if (!phy_validate_pause(cpsw->slaves[slave_no].phy, pause))
1170 		return -EINVAL;
1171 
1172 	priv->rx_pause = pause->rx_pause ? true : false;
1173 	priv->tx_pause = pause->tx_pause ? true : false;
1174 
1175 	phy_set_asym_pause(cpsw->slaves[slave_no].phy,
1176 			   priv->rx_pause, priv->tx_pause);
1177 
1178 	return 0;
1179 }
1180 
1181 static int cpsw_set_channels(struct net_device *ndev,
1182 			     struct ethtool_channels *chs)
1183 {
1184 	return cpsw_set_channels_common(ndev, chs, cpsw_rx_handler);
1185 }
1186 
1187 static const struct ethtool_ops cpsw_ethtool_ops = {
1188 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
1189 	.get_drvinfo		= cpsw_get_drvinfo,
1190 	.get_msglevel		= cpsw_get_msglevel,
1191 	.set_msglevel		= cpsw_set_msglevel,
1192 	.get_link		= ethtool_op_get_link,
1193 	.get_ts_info		= cpsw_get_ts_info,
1194 	.get_coalesce		= cpsw_get_coalesce,
1195 	.set_coalesce		= cpsw_set_coalesce,
1196 	.get_sset_count		= cpsw_get_sset_count,
1197 	.get_strings		= cpsw_get_strings,
1198 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
1199 	.get_pauseparam		= cpsw_get_pauseparam,
1200 	.set_pauseparam		= cpsw_set_pauseparam,
1201 	.get_wol		= cpsw_get_wol,
1202 	.set_wol		= cpsw_set_wol,
1203 	.get_regs_len		= cpsw_get_regs_len,
1204 	.get_regs		= cpsw_get_regs,
1205 	.begin			= cpsw_ethtool_op_begin,
1206 	.complete		= cpsw_ethtool_op_complete,
1207 	.get_channels		= cpsw_get_channels,
1208 	.set_channels		= cpsw_set_channels,
1209 	.get_link_ksettings	= cpsw_get_link_ksettings,
1210 	.set_link_ksettings	= cpsw_set_link_ksettings,
1211 	.get_eee		= cpsw_get_eee,
1212 	.set_eee		= cpsw_set_eee,
1213 	.nway_reset		= cpsw_nway_reset,
1214 	.get_ringparam		= cpsw_get_ringparam,
1215 	.set_ringparam		= cpsw_set_ringparam,
1216 };
1217 
1218 static int cpsw_probe_dt(struct cpsw_common *cpsw)
1219 {
1220 	struct device_node *node = cpsw->dev->of_node, *tmp_node, *port_np;
1221 	struct cpsw_platform_data *data = &cpsw->data;
1222 	struct device *dev = cpsw->dev;
1223 	int ret;
1224 	u32 prop;
1225 
1226 	if (!node)
1227 		return -EINVAL;
1228 
1229 	tmp_node = of_get_child_by_name(node, "ethernet-ports");
1230 	if (!tmp_node)
1231 		return -ENOENT;
1232 	data->slaves = of_get_child_count(tmp_node);
1233 	if (data->slaves != CPSW_SLAVE_PORTS_NUM) {
1234 		of_node_put(tmp_node);
1235 		return -ENOENT;
1236 	}
1237 
1238 	data->active_slave = 0;
1239 	data->channels = CPSW_MAX_QUEUES;
1240 	data->dual_emac = true;
1241 	data->bd_ram_size = CPSW_BD_RAM_SIZE;
1242 	data->mac_control = 0;
1243 
1244 	data->slave_data = devm_kcalloc(dev, CPSW_SLAVE_PORTS_NUM,
1245 					sizeof(struct cpsw_slave_data),
1246 					GFP_KERNEL);
1247 	if (!data->slave_data) {
1248 		of_node_put(tmp_node);
1249 		return -ENOMEM;
1250 	}
1251 
1252 	/* Populate all the child nodes here...
1253 	 */
1254 	ret = devm_of_platform_populate(dev);
1255 	/* We do not want to force this, as in some cases may not have child */
1256 	if (ret)
1257 		dev_warn(dev, "Doesn't have any child node\n");
1258 
1259 	for_each_child_of_node(tmp_node, port_np) {
1260 		struct cpsw_slave_data *slave_data;
1261 		u32 port_id;
1262 
1263 		ret = of_property_read_u32(port_np, "reg", &port_id);
1264 		if (ret < 0) {
1265 			dev_err(dev, "%pOF error reading port_id %d\n",
1266 				port_np, ret);
1267 			goto err_node_put;
1268 		}
1269 
1270 		if (!port_id || port_id > CPSW_SLAVE_PORTS_NUM) {
1271 			dev_err(dev, "%pOF has invalid port_id %u\n",
1272 				port_np, port_id);
1273 			ret = -EINVAL;
1274 			goto err_node_put;
1275 		}
1276 
1277 		slave_data = &data->slave_data[port_id - 1];
1278 
1279 		slave_data->disabled = !of_device_is_available(port_np);
1280 		if (slave_data->disabled)
1281 			continue;
1282 
1283 		slave_data->slave_node = port_np;
1284 		slave_data->ifphy = devm_of_phy_get(dev, port_np, NULL);
1285 		if (IS_ERR(slave_data->ifphy)) {
1286 			ret = PTR_ERR(slave_data->ifphy);
1287 			dev_err(dev, "%pOF: Error retrieving port phy: %d\n",
1288 				port_np, ret);
1289 			goto err_node_put;
1290 		}
1291 
1292 		if (of_phy_is_fixed_link(port_np)) {
1293 			ret = of_phy_register_fixed_link(port_np);
1294 			if (ret) {
1295 				dev_err_probe(dev, ret, "%pOF failed to register fixed-link phy\n",
1296 					      port_np);
1297 				goto err_node_put;
1298 			}
1299 			slave_data->phy_node = of_node_get(port_np);
1300 		} else {
1301 			slave_data->phy_node =
1302 				of_parse_phandle(port_np, "phy-handle", 0);
1303 		}
1304 
1305 		if (!slave_data->phy_node) {
1306 			dev_err(dev, "%pOF no phy found\n", port_np);
1307 			ret = -ENODEV;
1308 			goto err_node_put;
1309 		}
1310 
1311 		ret = of_get_phy_mode(port_np, &slave_data->phy_if);
1312 		if (ret) {
1313 			dev_err(dev, "%pOF read phy-mode err %d\n",
1314 				port_np, ret);
1315 			goto err_node_put;
1316 		}
1317 
1318 		ret = of_get_mac_address(port_np, slave_data->mac_addr);
1319 		if (ret) {
1320 			ret = ti_cm_get_macid(dev, port_id - 1,
1321 					      slave_data->mac_addr);
1322 			if (ret)
1323 				goto err_node_put;
1324 		}
1325 
1326 		if (of_property_read_u32(port_np, "ti,dual-emac-pvid",
1327 					 &prop)) {
1328 			dev_err(dev, "%pOF Missing dual_emac_res_vlan in DT.\n",
1329 				port_np);
1330 			slave_data->dual_emac_res_vlan = port_id;
1331 			dev_err(dev, "%pOF Using %d as Reserved VLAN\n",
1332 				port_np, slave_data->dual_emac_res_vlan);
1333 		} else {
1334 			slave_data->dual_emac_res_vlan = prop;
1335 		}
1336 	}
1337 
1338 	of_node_put(tmp_node);
1339 	return 0;
1340 
1341 err_node_put:
1342 	of_node_put(port_np);
1343 	of_node_put(tmp_node);
1344 	return ret;
1345 }
1346 
1347 static void cpsw_remove_dt(struct cpsw_common *cpsw)
1348 {
1349 	struct cpsw_platform_data *data = &cpsw->data;
1350 	int i = 0;
1351 
1352 	for (i = 0; i < cpsw->data.slaves; i++) {
1353 		struct cpsw_slave_data *slave_data = &data->slave_data[i];
1354 		struct device_node *port_np = slave_data->phy_node;
1355 
1356 		if (port_np) {
1357 			if (of_phy_is_fixed_link(port_np))
1358 				of_phy_deregister_fixed_link(port_np);
1359 
1360 			of_node_put(port_np);
1361 		}
1362 	}
1363 }
1364 
1365 static int cpsw_create_ports(struct cpsw_common *cpsw)
1366 {
1367 	struct cpsw_platform_data *data = &cpsw->data;
1368 	struct net_device *ndev, *napi_ndev = NULL;
1369 	struct device *dev = cpsw->dev;
1370 	struct cpsw_priv *priv;
1371 	int ret = 0, i = 0;
1372 
1373 	for (i = 0; i < cpsw->data.slaves; i++) {
1374 		struct cpsw_slave_data *slave_data = &data->slave_data[i];
1375 
1376 		if (slave_data->disabled)
1377 			continue;
1378 
1379 		ndev = devm_alloc_etherdev_mqs(dev, sizeof(struct cpsw_priv),
1380 					       CPSW_MAX_QUEUES,
1381 					       CPSW_MAX_QUEUES);
1382 		if (!ndev) {
1383 			dev_err(dev, "error allocating net_device\n");
1384 			return -ENOMEM;
1385 		}
1386 
1387 		priv = netdev_priv(ndev);
1388 		priv->cpsw = cpsw;
1389 		priv->ndev = ndev;
1390 		priv->dev  = dev;
1391 		priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
1392 		priv->emac_port = i + 1;
1393 		priv->tx_packet_min = CPSW_MIN_PACKET_SIZE;
1394 
1395 		if (is_valid_ether_addr(slave_data->mac_addr)) {
1396 			ether_addr_copy(priv->mac_addr, slave_data->mac_addr);
1397 			dev_info(cpsw->dev, "Detected MACID = %pM\n",
1398 				 priv->mac_addr);
1399 		} else {
1400 			eth_random_addr(slave_data->mac_addr);
1401 			dev_info(cpsw->dev, "Random MACID = %pM\n",
1402 				 priv->mac_addr);
1403 		}
1404 		eth_hw_addr_set(ndev, slave_data->mac_addr);
1405 		ether_addr_copy(priv->mac_addr, slave_data->mac_addr);
1406 
1407 		cpsw->slaves[i].ndev = ndev;
1408 
1409 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
1410 				  NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_NETNS_LOCAL | NETIF_F_HW_TC;
1411 
1412 		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
1413 				     NETDEV_XDP_ACT_REDIRECT |
1414 				     NETDEV_XDP_ACT_NDO_XMIT;
1415 
1416 		ndev->netdev_ops = &cpsw_netdev_ops;
1417 		ndev->ethtool_ops = &cpsw_ethtool_ops;
1418 		SET_NETDEV_DEV(ndev, dev);
1419 
1420 		if (!napi_ndev) {
1421 			/* CPSW Host port CPDMA interface is shared between
1422 			 * ports and there is only one TX and one RX IRQs
1423 			 * available for all possible TX and RX channels
1424 			 * accordingly.
1425 			 */
1426 			netif_napi_add(ndev, &cpsw->napi_rx,
1427 				       cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll);
1428 			netif_napi_add_tx(ndev, &cpsw->napi_tx,
1429 					  cpsw->quirk_irq ?
1430 					  cpsw_tx_poll : cpsw_tx_mq_poll);
1431 		}
1432 
1433 		napi_ndev = ndev;
1434 	}
1435 
1436 	return ret;
1437 }
1438 
1439 static void cpsw_unregister_ports(struct cpsw_common *cpsw)
1440 {
1441 	int i = 0;
1442 
1443 	for (i = 0; i < cpsw->data.slaves; i++) {
1444 		if (!cpsw->slaves[i].ndev)
1445 			continue;
1446 
1447 		unregister_netdev(cpsw->slaves[i].ndev);
1448 	}
1449 }
1450 
1451 static int cpsw_register_ports(struct cpsw_common *cpsw)
1452 {
1453 	int ret = 0, i = 0;
1454 
1455 	for (i = 0; i < cpsw->data.slaves; i++) {
1456 		if (!cpsw->slaves[i].ndev)
1457 			continue;
1458 
1459 		/* register the network device */
1460 		ret = register_netdev(cpsw->slaves[i].ndev);
1461 		if (ret) {
1462 			dev_err(cpsw->dev,
1463 				"cpsw: err registering net device%d\n", i);
1464 			cpsw->slaves[i].ndev = NULL;
1465 			break;
1466 		}
1467 	}
1468 
1469 	if (ret)
1470 		cpsw_unregister_ports(cpsw);
1471 	return ret;
1472 }
1473 
1474 bool cpsw_port_dev_check(const struct net_device *ndev)
1475 {
1476 	if (ndev->netdev_ops == &cpsw_netdev_ops) {
1477 		struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1478 
1479 		return !cpsw->data.dual_emac;
1480 	}
1481 
1482 	return false;
1483 }
1484 
1485 static void cpsw_port_offload_fwd_mark_update(struct cpsw_common *cpsw)
1486 {
1487 	int set_val = 0;
1488 	int i;
1489 
1490 	if (!cpsw->ale_bypass &&
1491 	    (cpsw->br_members == (ALE_PORT_1 | ALE_PORT_2)))
1492 		set_val = 1;
1493 
1494 	dev_dbg(cpsw->dev, "set offload_fwd_mark %d\n", set_val);
1495 
1496 	for (i = 0; i < cpsw->data.slaves; i++) {
1497 		struct net_device *sl_ndev = cpsw->slaves[i].ndev;
1498 		struct cpsw_priv *priv = netdev_priv(sl_ndev);
1499 
1500 		priv->offload_fwd_mark = set_val;
1501 	}
1502 }
1503 
1504 static int cpsw_netdevice_port_link(struct net_device *ndev,
1505 				    struct net_device *br_ndev,
1506 				    struct netlink_ext_ack *extack)
1507 {
1508 	struct cpsw_priv *priv = netdev_priv(ndev);
1509 	struct cpsw_common *cpsw = priv->cpsw;
1510 	int err;
1511 
1512 	if (!cpsw->br_members) {
1513 		cpsw->hw_bridge_dev = br_ndev;
1514 	} else {
1515 		/* This is adding the port to a second bridge, this is
1516 		 * unsupported
1517 		 */
1518 		if (cpsw->hw_bridge_dev != br_ndev)
1519 			return -EOPNOTSUPP;
1520 	}
1521 
1522 	err = switchdev_bridge_port_offload(ndev, ndev, NULL, NULL, NULL,
1523 					    false, extack);
1524 	if (err)
1525 		return err;
1526 
1527 	cpsw->br_members |= BIT(priv->emac_port);
1528 
1529 	cpsw_port_offload_fwd_mark_update(cpsw);
1530 
1531 	return NOTIFY_DONE;
1532 }
1533 
1534 static void cpsw_netdevice_port_unlink(struct net_device *ndev)
1535 {
1536 	struct cpsw_priv *priv = netdev_priv(ndev);
1537 	struct cpsw_common *cpsw = priv->cpsw;
1538 
1539 	switchdev_bridge_port_unoffload(ndev, NULL, NULL, NULL);
1540 
1541 	cpsw->br_members &= ~BIT(priv->emac_port);
1542 
1543 	cpsw_port_offload_fwd_mark_update(cpsw);
1544 
1545 	if (!cpsw->br_members)
1546 		cpsw->hw_bridge_dev = NULL;
1547 }
1548 
1549 /* netdev notifier */
1550 static int cpsw_netdevice_event(struct notifier_block *unused,
1551 				unsigned long event, void *ptr)
1552 {
1553 	struct netlink_ext_ack *extack = netdev_notifier_info_to_extack(ptr);
1554 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
1555 	struct netdev_notifier_changeupper_info *info;
1556 	int ret = NOTIFY_DONE;
1557 
1558 	if (!cpsw_port_dev_check(ndev))
1559 		return NOTIFY_DONE;
1560 
1561 	switch (event) {
1562 	case NETDEV_CHANGEUPPER:
1563 		info = ptr;
1564 
1565 		if (netif_is_bridge_master(info->upper_dev)) {
1566 			if (info->linking)
1567 				ret = cpsw_netdevice_port_link(ndev,
1568 							       info->upper_dev,
1569 							       extack);
1570 			else
1571 				cpsw_netdevice_port_unlink(ndev);
1572 		}
1573 		break;
1574 	default:
1575 		return NOTIFY_DONE;
1576 	}
1577 
1578 	return notifier_from_errno(ret);
1579 }
1580 
1581 static struct notifier_block cpsw_netdevice_nb __read_mostly = {
1582 	.notifier_call = cpsw_netdevice_event,
1583 };
1584 
1585 static int cpsw_register_notifiers(struct cpsw_common *cpsw)
1586 {
1587 	int ret = 0;
1588 
1589 	ret = register_netdevice_notifier(&cpsw_netdevice_nb);
1590 	if (ret) {
1591 		dev_err(cpsw->dev, "can't register netdevice notifier\n");
1592 		return ret;
1593 	}
1594 
1595 	ret = cpsw_switchdev_register_notifiers(cpsw);
1596 	if (ret)
1597 		unregister_netdevice_notifier(&cpsw_netdevice_nb);
1598 
1599 	return ret;
1600 }
1601 
1602 static void cpsw_unregister_notifiers(struct cpsw_common *cpsw)
1603 {
1604 	cpsw_switchdev_unregister_notifiers(cpsw);
1605 	unregister_netdevice_notifier(&cpsw_netdevice_nb);
1606 }
1607 
1608 static const struct devlink_ops cpsw_devlink_ops = {
1609 };
1610 
1611 static int cpsw_dl_switch_mode_get(struct devlink *dl, u32 id,
1612 				   struct devlink_param_gset_ctx *ctx)
1613 {
1614 	struct cpsw_devlink *dl_priv = devlink_priv(dl);
1615 	struct cpsw_common *cpsw = dl_priv->cpsw;
1616 
1617 	dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id);
1618 
1619 	if (id != CPSW_DL_PARAM_SWITCH_MODE)
1620 		return  -EOPNOTSUPP;
1621 
1622 	ctx->val.vbool = !cpsw->data.dual_emac;
1623 
1624 	return 0;
1625 }
1626 
1627 static int cpsw_dl_switch_mode_set(struct devlink *dl, u32 id,
1628 				   struct devlink_param_gset_ctx *ctx,
1629 				   struct netlink_ext_ack *extack)
1630 {
1631 	struct cpsw_devlink *dl_priv = devlink_priv(dl);
1632 	struct cpsw_common *cpsw = dl_priv->cpsw;
1633 	int vlan = cpsw->data.default_vlan;
1634 	bool switch_en = ctx->val.vbool;
1635 	bool if_running = false;
1636 	int i;
1637 
1638 	dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id);
1639 
1640 	if (id != CPSW_DL_PARAM_SWITCH_MODE)
1641 		return  -EOPNOTSUPP;
1642 
1643 	if (switch_en == !cpsw->data.dual_emac)
1644 		return 0;
1645 
1646 	if (!switch_en && cpsw->br_members) {
1647 		dev_err(cpsw->dev, "Remove ports from BR before disabling switch mode\n");
1648 		return -EINVAL;
1649 	}
1650 
1651 	rtnl_lock();
1652 
1653 	for (i = 0; i < cpsw->data.slaves; i++) {
1654 		struct cpsw_slave *slave = &cpsw->slaves[i];
1655 		struct net_device *sl_ndev = slave->ndev;
1656 
1657 		if (!sl_ndev || !netif_running(sl_ndev))
1658 			continue;
1659 
1660 		if_running = true;
1661 	}
1662 
1663 	if (!if_running) {
1664 		/* all ndevs are down */
1665 		cpsw->data.dual_emac = !switch_en;
1666 		for (i = 0; i < cpsw->data.slaves; i++) {
1667 			struct cpsw_slave *slave = &cpsw->slaves[i];
1668 			struct net_device *sl_ndev = slave->ndev;
1669 
1670 			if (!sl_ndev)
1671 				continue;
1672 
1673 			if (switch_en)
1674 				vlan = cpsw->data.default_vlan;
1675 			else
1676 				vlan = slave->data->dual_emac_res_vlan;
1677 			slave->port_vlan = vlan;
1678 		}
1679 		goto exit;
1680 	}
1681 
1682 	if (switch_en) {
1683 		dev_info(cpsw->dev, "Enable switch mode\n");
1684 
1685 		/* enable bypass - no forwarding; all traffic goes to Host */
1686 		cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 1);
1687 
1688 		/* clean up ALE table */
1689 		cpsw_ale_control_set(cpsw->ale, 0, ALE_CLEAR, 1);
1690 		cpsw_ale_control_get(cpsw->ale, 0, ALE_AGEOUT);
1691 
1692 		cpsw_init_host_port_switch(cpsw);
1693 
1694 		for (i = 0; i < cpsw->data.slaves; i++) {
1695 			struct cpsw_slave *slave = &cpsw->slaves[i];
1696 			struct net_device *sl_ndev = slave->ndev;
1697 			struct cpsw_priv *priv;
1698 
1699 			if (!sl_ndev)
1700 				continue;
1701 
1702 			priv = netdev_priv(sl_ndev);
1703 			slave->port_vlan = vlan;
1704 			WRITE_ONCE(priv->tx_packet_min, CPSW_MIN_PACKET_SIZE_VLAN);
1705 			if (netif_running(sl_ndev))
1706 				cpsw_port_add_switch_def_ale_entries(priv,
1707 								     slave);
1708 		}
1709 
1710 		cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 0);
1711 		cpsw->data.dual_emac = false;
1712 	} else {
1713 		dev_info(cpsw->dev, "Disable switch mode\n");
1714 
1715 		/* enable bypass - no forwarding; all traffic goes to Host */
1716 		cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 1);
1717 
1718 		cpsw_ale_control_set(cpsw->ale, 0, ALE_CLEAR, 1);
1719 		cpsw_ale_control_get(cpsw->ale, 0, ALE_AGEOUT);
1720 
1721 		cpsw_init_host_port_dual_mac(cpsw);
1722 
1723 		for (i = 0; i < cpsw->data.slaves; i++) {
1724 			struct cpsw_slave *slave = &cpsw->slaves[i];
1725 			struct net_device *sl_ndev = slave->ndev;
1726 			struct cpsw_priv *priv;
1727 
1728 			if (!sl_ndev)
1729 				continue;
1730 
1731 			priv = netdev_priv(slave->ndev);
1732 			slave->port_vlan = slave->data->dual_emac_res_vlan;
1733 			WRITE_ONCE(priv->tx_packet_min, CPSW_MIN_PACKET_SIZE);
1734 			cpsw_port_add_dual_emac_def_ale_entries(priv, slave);
1735 		}
1736 
1737 		cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 0);
1738 		cpsw->data.dual_emac = true;
1739 	}
1740 exit:
1741 	rtnl_unlock();
1742 
1743 	return 0;
1744 }
1745 
1746 static int cpsw_dl_ale_ctrl_get(struct devlink *dl, u32 id,
1747 				struct devlink_param_gset_ctx *ctx)
1748 {
1749 	struct cpsw_devlink *dl_priv = devlink_priv(dl);
1750 	struct cpsw_common *cpsw = dl_priv->cpsw;
1751 
1752 	dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id);
1753 
1754 	switch (id) {
1755 	case CPSW_DL_PARAM_ALE_BYPASS:
1756 		ctx->val.vbool = cpsw_ale_control_get(cpsw->ale, 0, ALE_BYPASS);
1757 		break;
1758 	default:
1759 		return -EOPNOTSUPP;
1760 	}
1761 
1762 	return 0;
1763 }
1764 
1765 static int cpsw_dl_ale_ctrl_set(struct devlink *dl, u32 id,
1766 				struct devlink_param_gset_ctx *ctx,
1767 				struct netlink_ext_ack *extack)
1768 {
1769 	struct cpsw_devlink *dl_priv = devlink_priv(dl);
1770 	struct cpsw_common *cpsw = dl_priv->cpsw;
1771 	int ret = -EOPNOTSUPP;
1772 
1773 	dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id);
1774 
1775 	switch (id) {
1776 	case CPSW_DL_PARAM_ALE_BYPASS:
1777 		ret = cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS,
1778 					   ctx->val.vbool);
1779 		if (!ret) {
1780 			cpsw->ale_bypass = ctx->val.vbool;
1781 			cpsw_port_offload_fwd_mark_update(cpsw);
1782 		}
1783 		break;
1784 	default:
1785 		return -EOPNOTSUPP;
1786 	}
1787 
1788 	return 0;
1789 }
1790 
1791 static const struct devlink_param cpsw_devlink_params[] = {
1792 	DEVLINK_PARAM_DRIVER(CPSW_DL_PARAM_SWITCH_MODE,
1793 			     "switch_mode", DEVLINK_PARAM_TYPE_BOOL,
1794 			     BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1795 			     cpsw_dl_switch_mode_get, cpsw_dl_switch_mode_set,
1796 			     NULL),
1797 	DEVLINK_PARAM_DRIVER(CPSW_DL_PARAM_ALE_BYPASS,
1798 			     "ale_bypass", DEVLINK_PARAM_TYPE_BOOL,
1799 			     BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1800 			     cpsw_dl_ale_ctrl_get, cpsw_dl_ale_ctrl_set, NULL),
1801 };
1802 
1803 static int cpsw_register_devlink(struct cpsw_common *cpsw)
1804 {
1805 	struct device *dev = cpsw->dev;
1806 	struct cpsw_devlink *dl_priv;
1807 	int ret = 0;
1808 
1809 	cpsw->devlink = devlink_alloc(&cpsw_devlink_ops, sizeof(*dl_priv), dev);
1810 	if (!cpsw->devlink)
1811 		return -ENOMEM;
1812 
1813 	dl_priv = devlink_priv(cpsw->devlink);
1814 	dl_priv->cpsw = cpsw;
1815 
1816 	ret = devlink_params_register(cpsw->devlink, cpsw_devlink_params,
1817 				      ARRAY_SIZE(cpsw_devlink_params));
1818 	if (ret) {
1819 		dev_err(dev, "DL params reg fail ret:%d\n", ret);
1820 		goto dl_unreg;
1821 	}
1822 
1823 	devlink_register(cpsw->devlink);
1824 	return ret;
1825 
1826 dl_unreg:
1827 	devlink_free(cpsw->devlink);
1828 	return ret;
1829 }
1830 
1831 static void cpsw_unregister_devlink(struct cpsw_common *cpsw)
1832 {
1833 	devlink_unregister(cpsw->devlink);
1834 	devlink_params_unregister(cpsw->devlink, cpsw_devlink_params,
1835 				  ARRAY_SIZE(cpsw_devlink_params));
1836 	devlink_free(cpsw->devlink);
1837 }
1838 
1839 static const struct of_device_id cpsw_of_mtable[] = {
1840 	{ .compatible = "ti,cpsw-switch"},
1841 	{ .compatible = "ti,am335x-cpsw-switch"},
1842 	{ .compatible = "ti,am4372-cpsw-switch"},
1843 	{ .compatible = "ti,dra7-cpsw-switch"},
1844 	{ /* sentinel */ },
1845 };
1846 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
1847 
1848 static const struct soc_device_attribute cpsw_soc_devices[] = {
1849 	{ .family = "AM33xx", .revision = "ES1.0"},
1850 	{ /* sentinel */ }
1851 };
1852 
1853 static int cpsw_probe(struct platform_device *pdev)
1854 {
1855 	const struct soc_device_attribute *soc;
1856 	struct device *dev = &pdev->dev;
1857 	struct cpsw_common *cpsw;
1858 	struct resource *ss_res;
1859 	struct gpio_descs *mode;
1860 	void __iomem *ss_regs;
1861 	int ret = 0, ch;
1862 	struct clk *clk;
1863 	int irq;
1864 
1865 	cpsw = devm_kzalloc(dev, sizeof(struct cpsw_common), GFP_KERNEL);
1866 	if (!cpsw)
1867 		return -ENOMEM;
1868 
1869 	cpsw_slave_index = cpsw_slave_index_priv;
1870 
1871 	cpsw->dev = dev;
1872 
1873 	cpsw->slaves = devm_kcalloc(dev,
1874 				    CPSW_SLAVE_PORTS_NUM,
1875 				    sizeof(struct cpsw_slave),
1876 				    GFP_KERNEL);
1877 	if (!cpsw->slaves)
1878 		return -ENOMEM;
1879 
1880 	mode = devm_gpiod_get_array_optional(dev, "mode", GPIOD_OUT_LOW);
1881 	if (IS_ERR(mode)) {
1882 		ret = PTR_ERR(mode);
1883 		dev_err(dev, "gpio request failed, ret %d\n", ret);
1884 		return ret;
1885 	}
1886 
1887 	clk = devm_clk_get(dev, "fck");
1888 	if (IS_ERR(clk)) {
1889 		ret = PTR_ERR(clk);
1890 		dev_err(dev, "fck is not found %d\n", ret);
1891 		return ret;
1892 	}
1893 	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
1894 
1895 	ss_regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ss_res);
1896 	if (IS_ERR(ss_regs)) {
1897 		ret = PTR_ERR(ss_regs);
1898 		return ret;
1899 	}
1900 	cpsw->regs = ss_regs;
1901 
1902 	irq = platform_get_irq_byname(pdev, "rx");
1903 	if (irq < 0)
1904 		return irq;
1905 	cpsw->irqs_table[0] = irq;
1906 
1907 	irq = platform_get_irq_byname(pdev, "tx");
1908 	if (irq < 0)
1909 		return irq;
1910 	cpsw->irqs_table[1] = irq;
1911 
1912 	irq = platform_get_irq_byname(pdev, "misc");
1913 	if (irq <= 0)
1914 		return irq;
1915 	cpsw->misc_irq = irq;
1916 
1917 	platform_set_drvdata(pdev, cpsw);
1918 	/* This may be required here for child devices. */
1919 	pm_runtime_enable(dev);
1920 
1921 	/* Need to enable clocks with runtime PM api to access module
1922 	 * registers
1923 	 */
1924 	ret = pm_runtime_resume_and_get(dev);
1925 	if (ret < 0) {
1926 		pm_runtime_disable(dev);
1927 		return ret;
1928 	}
1929 
1930 	ret = cpsw_probe_dt(cpsw);
1931 	if (ret)
1932 		goto clean_dt_ret;
1933 
1934 	soc = soc_device_match(cpsw_soc_devices);
1935 	if (soc)
1936 		cpsw->quirk_irq = true;
1937 
1938 	cpsw->rx_packet_max = rx_packet_max;
1939 	cpsw->descs_pool_size = descs_pool_size;
1940 	eth_random_addr(cpsw->base_mac);
1941 
1942 	ret = cpsw_init_common(cpsw, ss_regs, ale_ageout,
1943 			       (u32 __force)ss_res->start + CPSW2_BD_OFFSET,
1944 			       descs_pool_size);
1945 	if (ret)
1946 		goto clean_dt_ret;
1947 
1948 	cpsw->wr_regs = cpsw->version == CPSW_VERSION_1 ?
1949 			ss_regs + CPSW1_WR_OFFSET :
1950 			ss_regs + CPSW2_WR_OFFSET;
1951 
1952 	ch = cpsw->quirk_irq ? 0 : 7;
1953 	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0);
1954 	if (IS_ERR(cpsw->txv[0].ch)) {
1955 		dev_err(dev, "error initializing tx dma channel\n");
1956 		ret = PTR_ERR(cpsw->txv[0].ch);
1957 		goto clean_cpts;
1958 	}
1959 
1960 	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
1961 	if (IS_ERR(cpsw->rxv[0].ch)) {
1962 		dev_err(dev, "error initializing rx dma channel\n");
1963 		ret = PTR_ERR(cpsw->rxv[0].ch);
1964 		goto clean_cpts;
1965 	}
1966 	cpsw_split_res(cpsw);
1967 
1968 	/* setup netdevs */
1969 	ret = cpsw_create_ports(cpsw);
1970 	if (ret)
1971 		goto clean_unregister_netdev;
1972 
1973 	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
1974 	 * MISC IRQs which are always kept disabled with this driver so
1975 	 * we will not request them.
1976 	 *
1977 	 * If anyone wants to implement support for those, make sure to
1978 	 * first request and append them to irqs_table array.
1979 	 */
1980 
1981 	ret = devm_request_irq(dev, cpsw->irqs_table[0], cpsw_rx_interrupt,
1982 			       0, dev_name(dev), cpsw);
1983 	if (ret < 0) {
1984 		dev_err(dev, "error attaching irq (%d)\n", ret);
1985 		goto clean_unregister_netdev;
1986 	}
1987 
1988 	ret = devm_request_irq(dev, cpsw->irqs_table[1], cpsw_tx_interrupt,
1989 			       0, dev_name(dev), cpsw);
1990 	if (ret < 0) {
1991 		dev_err(dev, "error attaching irq (%d)\n", ret);
1992 		goto clean_unregister_netdev;
1993 	}
1994 
1995 	if (!cpsw->cpts)
1996 		goto skip_cpts;
1997 
1998 	ret = devm_request_irq(dev, cpsw->misc_irq, cpsw_misc_interrupt,
1999 			       0, dev_name(&pdev->dev), cpsw);
2000 	if (ret < 0) {
2001 		dev_err(dev, "error attaching misc irq (%d)\n", ret);
2002 		goto clean_unregister_netdev;
2003 	}
2004 
2005 	/* Enable misc CPTS evnt_pend IRQ */
2006 	cpts_set_irqpoll(cpsw->cpts, false);
2007 
2008 skip_cpts:
2009 	ret = cpsw_register_notifiers(cpsw);
2010 	if (ret)
2011 		goto clean_unregister_netdev;
2012 
2013 	ret = cpsw_register_devlink(cpsw);
2014 	if (ret)
2015 		goto clean_unregister_notifiers;
2016 
2017 	ret = cpsw_register_ports(cpsw);
2018 	if (ret)
2019 		goto clean_unregister_notifiers;
2020 
2021 	dev_notice(dev, "initialized (regs %pa, pool size %d) hw_ver:%08X %d.%d (%d)\n",
2022 		   &ss_res->start, descs_pool_size,
2023 		   cpsw->version, CPSW_MAJOR_VERSION(cpsw->version),
2024 		   CPSW_MINOR_VERSION(cpsw->version),
2025 		   CPSW_RTL_VERSION(cpsw->version));
2026 
2027 	pm_runtime_put(dev);
2028 
2029 	return 0;
2030 
2031 clean_unregister_notifiers:
2032 	cpsw_unregister_notifiers(cpsw);
2033 clean_unregister_netdev:
2034 	cpsw_unregister_ports(cpsw);
2035 clean_cpts:
2036 	cpts_release(cpsw->cpts);
2037 	cpdma_ctlr_destroy(cpsw->dma);
2038 clean_dt_ret:
2039 	cpsw_remove_dt(cpsw);
2040 	pm_runtime_put_sync(dev);
2041 	pm_runtime_disable(dev);
2042 	return ret;
2043 }
2044 
2045 static void cpsw_remove(struct platform_device *pdev)
2046 {
2047 	struct cpsw_common *cpsw = platform_get_drvdata(pdev);
2048 	int ret;
2049 
2050 	ret = pm_runtime_resume_and_get(&pdev->dev);
2051 	if (ret < 0) {
2052 		/* Note, if this error path is taken, we're leaking some
2053 		 * resources.
2054 		 */
2055 		dev_err(&pdev->dev, "Failed to resume device (%pe)\n",
2056 			ERR_PTR(ret));
2057 		return;
2058 	}
2059 
2060 	cpsw_unregister_notifiers(cpsw);
2061 	cpsw_unregister_devlink(cpsw);
2062 	cpsw_unregister_ports(cpsw);
2063 
2064 	cpts_release(cpsw->cpts);
2065 	cpdma_ctlr_destroy(cpsw->dma);
2066 	cpsw_remove_dt(cpsw);
2067 	pm_runtime_put_sync(&pdev->dev);
2068 	pm_runtime_disable(&pdev->dev);
2069 }
2070 
2071 static int __maybe_unused cpsw_suspend(struct device *dev)
2072 {
2073 	struct cpsw_common *cpsw = dev_get_drvdata(dev);
2074 	int i;
2075 
2076 	rtnl_lock();
2077 
2078 	for (i = 0; i < cpsw->data.slaves; i++) {
2079 		struct net_device *ndev = cpsw->slaves[i].ndev;
2080 
2081 		if (!(ndev && netif_running(ndev)))
2082 			continue;
2083 
2084 		cpsw_ndo_stop(ndev);
2085 	}
2086 
2087 	rtnl_unlock();
2088 
2089 	/* Select sleep pin state */
2090 	pinctrl_pm_select_sleep_state(dev);
2091 
2092 	return 0;
2093 }
2094 
2095 static int __maybe_unused cpsw_resume(struct device *dev)
2096 {
2097 	struct cpsw_common *cpsw = dev_get_drvdata(dev);
2098 	int i;
2099 
2100 	/* Select default pin state */
2101 	pinctrl_pm_select_default_state(dev);
2102 
2103 	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
2104 	rtnl_lock();
2105 
2106 	for (i = 0; i < cpsw->data.slaves; i++) {
2107 		struct net_device *ndev = cpsw->slaves[i].ndev;
2108 
2109 		if (!(ndev && netif_running(ndev)))
2110 			continue;
2111 
2112 		cpsw_ndo_open(ndev);
2113 	}
2114 
2115 	rtnl_unlock();
2116 
2117 	return 0;
2118 }
2119 
2120 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
2121 
2122 static struct platform_driver cpsw_driver = {
2123 	.driver = {
2124 		.name	 = "cpsw-switch",
2125 		.pm	 = &cpsw_pm_ops,
2126 		.of_match_table = cpsw_of_mtable,
2127 	},
2128 	.probe = cpsw_probe,
2129 	.remove_new = cpsw_remove,
2130 };
2131 
2132 module_platform_driver(cpsw_driver);
2133 
2134 MODULE_LICENSE("GPL");
2135 MODULE_DESCRIPTION("TI CPSW switchdev Ethernet driver");
2136