xref: /linux/drivers/net/ethernet/ti/cpsw_ale.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Texas Instruments N-Port Ethernet Switch Address Lookup Engine
4  *
5  * Copyright (C) 2012 Texas Instruments
6  *
7  */
8 #include <linux/bitmap.h>
9 #include <linux/if_vlan.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/platform_device.h>
13 #include <linux/regmap.h>
14 #include <linux/seq_file.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/io.h>
18 #include <linux/stat.h>
19 #include <linux/sysfs.h>
20 #include <linux/etherdevice.h>
21 
22 #include "cpsw_ale.h"
23 
24 #define BITMASK(bits)		(BIT(bits) - 1)
25 
26 #define ALE_VERSION_MAJOR(rev, mask) (((rev) >> 8) & (mask))
27 #define ALE_VERSION_MINOR(rev)	(rev & 0xff)
28 #define ALE_VERSION_1R3		0x0103
29 #define ALE_VERSION_1R4		0x0104
30 
31 /* ALE Registers */
32 #define ALE_IDVER		0x00
33 #define ALE_STATUS		0x04
34 #define ALE_CONTROL		0x08
35 #define ALE_PRESCALE		0x10
36 #define ALE_AGING_TIMER		0x14
37 #define ALE_UNKNOWNVLAN		0x18
38 #define ALE_TABLE_CONTROL	0x20
39 #define ALE_TABLE		0x34
40 #define ALE_PORTCTL		0x40
41 
42 /* ALE NetCP NU switch specific Registers */
43 #define ALE_UNKNOWNVLAN_MEMBER			0x90
44 #define ALE_UNKNOWNVLAN_UNREG_MCAST_FLOOD	0x94
45 #define ALE_UNKNOWNVLAN_REG_MCAST_FLOOD		0x98
46 #define ALE_UNKNOWNVLAN_FORCE_UNTAG_EGRESS	0x9C
47 #define ALE_VLAN_MASK_MUX(reg)			(0xc0 + (0x4 * (reg)))
48 
49 #define ALE_POLICER_PORT_OUI		0x100
50 #define ALE_POLICER_DA_SA		0x104
51 #define ALE_POLICER_VLAN		0x108
52 #define ALE_POLICER_ETHERTYPE_IPSA	0x10c
53 #define ALE_POLICER_IPDA		0x110
54 #define ALE_POLICER_PIR			0x118
55 #define ALE_POLICER_CIR			0x11c
56 #define ALE_POLICER_TBL_CTL		0x120
57 #define ALE_POLICER_CTL			0x124
58 #define ALE_POLICER_TEST_CTL		0x128
59 #define ALE_POLICER_HIT_STATUS		0x12c
60 #define ALE_THREAD_DEF			0x134
61 #define ALE_THREAD_CTL			0x138
62 #define ALE_THREAD_VAL			0x13c
63 
64 #define ALE_POLICER_TBL_WRITE_ENABLE	BIT(31)
65 #define ALE_POLICER_TBL_INDEX_MASK	GENMASK(4, 0)
66 
67 #define AM65_CPSW_ALE_THREAD_DEF_REG 0x134
68 
69 /* ALE_AGING_TIMER */
70 #define ALE_AGING_TIMER_MASK	GENMASK(23, 0)
71 
72 #define ALE_RATE_LIMIT_MIN_PPS 1000
73 
74 /**
75  * struct ale_entry_fld - The ALE tbl entry field description
76  * @start_bit: field start bit
77  * @num_bits: field bit length
78  * @flags: field flags
79  */
80 struct ale_entry_fld {
81 	u8 start_bit;
82 	u8 num_bits;
83 	u8 flags;
84 };
85 
86 enum {
87 	CPSW_ALE_F_STATUS_REG = BIT(0), /* Status register present */
88 	CPSW_ALE_F_HW_AUTOAGING = BIT(1), /* HW auto aging */
89 
90 	CPSW_ALE_F_COUNT
91 };
92 
93 /**
94  * struct cpsw_ale_dev_id - The ALE version/SoC specific configuration
95  * @dev_id: ALE version/SoC id
96  * @features: features supported by ALE
97  * @tbl_entries: number of ALE entries
98  * @reg_fields: pointer to array of register field configuration
99  * @nu_switch_ale: NU Switch ALE
100  * @vlan_entry_tbl: ALE vlan entry fields description tbl
101  */
102 struct cpsw_ale_dev_id {
103 	const char *dev_id;
104 	u32 features;
105 	u32 tbl_entries;
106 	const struct reg_field *reg_fields;
107 	bool nu_switch_ale;
108 	const struct ale_entry_fld *vlan_entry_tbl;
109 };
110 
111 #define ALE_TABLE_WRITE		BIT(31)
112 
113 #define ALE_TYPE_FREE			0
114 #define ALE_TYPE_ADDR			1
115 #define ALE_TYPE_VLAN			2
116 #define ALE_TYPE_VLAN_ADDR		3
117 
118 #define ALE_UCAST_PERSISTANT		0
119 #define ALE_UCAST_UNTOUCHED		1
120 #define ALE_UCAST_OUI			2
121 #define ALE_UCAST_TOUCHED		3
122 
123 #define ALE_TABLE_SIZE_MULTIPLIER	1024
124 #define ALE_POLICER_SIZE_MULTIPLIER	8
125 
126 static inline int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits)
127 {
128 	int idx, idx2;
129 	u32 hi_val = 0;
130 
131 	idx    = start / 32;
132 	idx2 = (start + bits - 1) / 32;
133 	/* Check if bits to be fetched exceed a word */
134 	if (idx != idx2) {
135 		idx2 = 2 - idx2; /* flip */
136 		hi_val = ale_entry[idx2] << ((idx2 * 32) - start);
137 	}
138 	start -= idx * 32;
139 	idx    = 2 - idx; /* flip */
140 	return (hi_val + (ale_entry[idx] >> start)) & BITMASK(bits);
141 }
142 
143 static inline void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits,
144 				      u32 value)
145 {
146 	int idx, idx2;
147 
148 	value &= BITMASK(bits);
149 	idx = start / 32;
150 	idx2 = (start + bits - 1) / 32;
151 	/* Check if bits to be set exceed a word */
152 	if (idx != idx2) {
153 		idx2 = 2 - idx2; /* flip */
154 		ale_entry[idx2] &= ~(BITMASK(bits + start - (idx2 * 32)));
155 		ale_entry[idx2] |= (value >> ((idx2 * 32) - start));
156 	}
157 	start -= idx * 32;
158 	idx = 2 - idx; /* flip */
159 	ale_entry[idx] &= ~(BITMASK(bits) << start);
160 	ale_entry[idx] |=  (value << start);
161 }
162 
163 #define DEFINE_ALE_FIELD(name, start, bits)				\
164 static inline int cpsw_ale_get_##name(u32 *ale_entry)			\
165 {									\
166 	return cpsw_ale_get_field(ale_entry, start, bits);		\
167 }									\
168 static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value)	\
169 {									\
170 	cpsw_ale_set_field(ale_entry, start, bits, value);		\
171 }
172 
173 #define DEFINE_ALE_FIELD1(name, start)					\
174 static inline int cpsw_ale_get_##name(u32 *ale_entry, u32 bits)		\
175 {									\
176 	return cpsw_ale_get_field(ale_entry, start, bits);		\
177 }									\
178 static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value,	\
179 		u32 bits)						\
180 {									\
181 	cpsw_ale_set_field(ale_entry, start, bits, value);		\
182 }
183 
184 enum {
185 	ALE_ENT_VID_MEMBER_LIST = 0,
186 	ALE_ENT_VID_UNREG_MCAST_MSK,
187 	ALE_ENT_VID_REG_MCAST_MSK,
188 	ALE_ENT_VID_FORCE_UNTAGGED_MSK,
189 	ALE_ENT_VID_UNREG_MCAST_IDX,
190 	ALE_ENT_VID_REG_MCAST_IDX,
191 	ALE_ENT_VID_LAST,
192 };
193 
194 #define ALE_FLD_ALLOWED			BIT(0)
195 #define ALE_FLD_SIZE_PORT_MASK_BITS	BIT(1)
196 #define ALE_FLD_SIZE_PORT_NUM_BITS	BIT(2)
197 
198 #define ALE_ENTRY_FLD(id, start, bits)	\
199 [id] = {				\
200 	.start_bit = start,		\
201 	.num_bits = bits,		\
202 	.flags = ALE_FLD_ALLOWED,	\
203 }
204 
205 #define ALE_ENTRY_FLD_DYN_MSK_SIZE(id, start)	\
206 [id] = {					\
207 	.start_bit = start,			\
208 	.num_bits = 0,				\
209 	.flags = ALE_FLD_ALLOWED |		\
210 		 ALE_FLD_SIZE_PORT_MASK_BITS,	\
211 }
212 
213 /* dm814x, am3/am4/am5, k2hk */
214 static const struct ale_entry_fld vlan_entry_cpsw[ALE_ENT_VID_LAST] = {
215 	ALE_ENTRY_FLD(ALE_ENT_VID_MEMBER_LIST, 0, 3),
216 	ALE_ENTRY_FLD(ALE_ENT_VID_UNREG_MCAST_MSK, 8, 3),
217 	ALE_ENTRY_FLD(ALE_ENT_VID_REG_MCAST_MSK, 16, 3),
218 	ALE_ENTRY_FLD(ALE_ENT_VID_FORCE_UNTAGGED_MSK, 24, 3),
219 };
220 
221 /* k2e/k2l, k3 am65/j721e cpsw2g  */
222 static const struct ale_entry_fld vlan_entry_nu[ALE_ENT_VID_LAST] = {
223 	ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_MEMBER_LIST, 0),
224 	ALE_ENTRY_FLD(ALE_ENT_VID_UNREG_MCAST_IDX, 20, 3),
225 	ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_FORCE_UNTAGGED_MSK, 24),
226 	ALE_ENTRY_FLD(ALE_ENT_VID_REG_MCAST_IDX, 44, 3),
227 };
228 
229 /* K3 j721e/j7200 cpsw9g/5g, am64x cpsw3g  */
230 static const struct ale_entry_fld vlan_entry_k3_cpswxg[] = {
231 	ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_MEMBER_LIST, 0),
232 	ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_UNREG_MCAST_MSK, 12),
233 	ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_FORCE_UNTAGGED_MSK, 24),
234 	ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_REG_MCAST_MSK, 36),
235 };
236 
237 DEFINE_ALE_FIELD(entry_type,		60,	2)
238 DEFINE_ALE_FIELD(vlan_id,		48,	12)
239 DEFINE_ALE_FIELD(mcast_state,		62,	2)
240 DEFINE_ALE_FIELD1(port_mask,		66)
241 DEFINE_ALE_FIELD(super,			65,	1)
242 DEFINE_ALE_FIELD(ucast_type,		62,     2)
243 DEFINE_ALE_FIELD1(port_num,		66)
244 DEFINE_ALE_FIELD(blocked,		65,     1)
245 DEFINE_ALE_FIELD(secure,		64,     1)
246 DEFINE_ALE_FIELD(mcast,			40,	1)
247 
248 #define NU_VLAN_UNREG_MCAST_IDX	1
249 
250 static int cpsw_ale_entry_get_fld(struct cpsw_ale *ale,
251 				  u32 *ale_entry,
252 				  const struct ale_entry_fld *entry_tbl,
253 				  int fld_id)
254 {
255 	const struct ale_entry_fld *entry_fld;
256 	u32 bits;
257 
258 	if (!ale || !ale_entry)
259 		return -EINVAL;
260 
261 	entry_fld = &entry_tbl[fld_id];
262 	if (!(entry_fld->flags & ALE_FLD_ALLOWED)) {
263 		dev_err(ale->params.dev, "get: wrong ale fld id %d\n", fld_id);
264 		return -ENOENT;
265 	}
266 
267 	bits = entry_fld->num_bits;
268 	if (entry_fld->flags & ALE_FLD_SIZE_PORT_MASK_BITS)
269 		bits = ale->port_mask_bits;
270 
271 	return cpsw_ale_get_field(ale_entry, entry_fld->start_bit, bits);
272 }
273 
274 static void cpsw_ale_entry_set_fld(struct cpsw_ale *ale,
275 				   u32 *ale_entry,
276 				   const struct ale_entry_fld *entry_tbl,
277 				   int fld_id,
278 				   u32 value)
279 {
280 	const struct ale_entry_fld *entry_fld;
281 	u32 bits;
282 
283 	if (!ale || !ale_entry)
284 		return;
285 
286 	entry_fld = &entry_tbl[fld_id];
287 	if (!(entry_fld->flags & ALE_FLD_ALLOWED)) {
288 		dev_err(ale->params.dev, "set: wrong ale fld id %d\n", fld_id);
289 		return;
290 	}
291 
292 	bits = entry_fld->num_bits;
293 	if (entry_fld->flags & ALE_FLD_SIZE_PORT_MASK_BITS)
294 		bits = ale->port_mask_bits;
295 
296 	cpsw_ale_set_field(ale_entry, entry_fld->start_bit, bits, value);
297 }
298 
299 static int cpsw_ale_vlan_get_fld(struct cpsw_ale *ale,
300 				 u32 *ale_entry,
301 				 int fld_id)
302 {
303 	return cpsw_ale_entry_get_fld(ale, ale_entry,
304 				      ale->vlan_entry_tbl, fld_id);
305 }
306 
307 static void cpsw_ale_vlan_set_fld(struct cpsw_ale *ale,
308 				  u32 *ale_entry,
309 				  int fld_id,
310 				  u32 value)
311 {
312 	cpsw_ale_entry_set_fld(ale, ale_entry,
313 			       ale->vlan_entry_tbl, fld_id, value);
314 }
315 
316 /* The MAC address field in the ALE entry cannot be macroized as above */
317 static inline void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr)
318 {
319 	int i;
320 
321 	for (i = 0; i < 6; i++)
322 		addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8);
323 }
324 
325 static inline void cpsw_ale_set_addr(u32 *ale_entry, const u8 *addr)
326 {
327 	int i;
328 
329 	for (i = 0; i < 6; i++)
330 		cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]);
331 }
332 
333 static int cpsw_ale_read(struct cpsw_ale *ale, int idx, u32 *ale_entry)
334 {
335 	int i;
336 
337 	WARN_ON(idx > ale->params.ale_entries);
338 
339 	writel_relaxed(idx, ale->params.ale_regs + ALE_TABLE_CONTROL);
340 
341 	for (i = 0; i < ALE_ENTRY_WORDS; i++)
342 		ale_entry[i] = readl_relaxed(ale->params.ale_regs +
343 					     ALE_TABLE + 4 * i);
344 
345 	return idx;
346 }
347 
348 static int cpsw_ale_write(struct cpsw_ale *ale, int idx, u32 *ale_entry)
349 {
350 	int i;
351 
352 	WARN_ON(idx > ale->params.ale_entries);
353 
354 	for (i = 0; i < ALE_ENTRY_WORDS; i++)
355 		writel_relaxed(ale_entry[i], ale->params.ale_regs +
356 			       ALE_TABLE + 4 * i);
357 
358 	writel_relaxed(idx | ALE_TABLE_WRITE, ale->params.ale_regs +
359 		       ALE_TABLE_CONTROL);
360 
361 	return idx;
362 }
363 
364 static int cpsw_ale_match_addr(struct cpsw_ale *ale, const u8 *addr, u16 vid)
365 {
366 	u32 ale_entry[ALE_ENTRY_WORDS];
367 	int type, idx;
368 
369 	for (idx = 0; idx < ale->params.ale_entries; idx++) {
370 		u8 entry_addr[6];
371 
372 		cpsw_ale_read(ale, idx, ale_entry);
373 		type = cpsw_ale_get_entry_type(ale_entry);
374 		if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
375 			continue;
376 		if (cpsw_ale_get_vlan_id(ale_entry) != vid)
377 			continue;
378 		cpsw_ale_get_addr(ale_entry, entry_addr);
379 		if (ether_addr_equal(entry_addr, addr))
380 			return idx;
381 	}
382 	return -ENOENT;
383 }
384 
385 static int cpsw_ale_match_vlan(struct cpsw_ale *ale, u16 vid)
386 {
387 	u32 ale_entry[ALE_ENTRY_WORDS];
388 	int type, idx;
389 
390 	for (idx = 0; idx < ale->params.ale_entries; idx++) {
391 		cpsw_ale_read(ale, idx, ale_entry);
392 		type = cpsw_ale_get_entry_type(ale_entry);
393 		if (type != ALE_TYPE_VLAN)
394 			continue;
395 		if (cpsw_ale_get_vlan_id(ale_entry) == vid)
396 			return idx;
397 	}
398 	return -ENOENT;
399 }
400 
401 static int cpsw_ale_match_free(struct cpsw_ale *ale)
402 {
403 	u32 ale_entry[ALE_ENTRY_WORDS];
404 	int type, idx;
405 
406 	for (idx = 0; idx < ale->params.ale_entries; idx++) {
407 		cpsw_ale_read(ale, idx, ale_entry);
408 		type = cpsw_ale_get_entry_type(ale_entry);
409 		if (type == ALE_TYPE_FREE)
410 			return idx;
411 	}
412 	return -ENOENT;
413 }
414 
415 static int cpsw_ale_find_ageable(struct cpsw_ale *ale)
416 {
417 	u32 ale_entry[ALE_ENTRY_WORDS];
418 	int type, idx;
419 
420 	for (idx = 0; idx < ale->params.ale_entries; idx++) {
421 		cpsw_ale_read(ale, idx, ale_entry);
422 		type = cpsw_ale_get_entry_type(ale_entry);
423 		if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
424 			continue;
425 		if (cpsw_ale_get_mcast(ale_entry))
426 			continue;
427 		type = cpsw_ale_get_ucast_type(ale_entry);
428 		if (type != ALE_UCAST_PERSISTANT &&
429 		    type != ALE_UCAST_OUI)
430 			return idx;
431 	}
432 	return -ENOENT;
433 }
434 
435 static void cpsw_ale_flush_mcast(struct cpsw_ale *ale, u32 *ale_entry,
436 				 int port_mask)
437 {
438 	int mask;
439 
440 	mask = cpsw_ale_get_port_mask(ale_entry,
441 				      ale->port_mask_bits);
442 	if ((mask & port_mask) == 0)
443 		return; /* ports dont intersect, not interested */
444 	mask &= ~port_mask;
445 
446 	/* free if only remaining port is host port */
447 	if (mask)
448 		cpsw_ale_set_port_mask(ale_entry, mask,
449 				       ale->port_mask_bits);
450 	else
451 		cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
452 }
453 
454 int cpsw_ale_flush_multicast(struct cpsw_ale *ale, int port_mask, int vid)
455 {
456 	u32 ale_entry[ALE_ENTRY_WORDS];
457 	int ret, idx;
458 
459 	for (idx = 0; idx < ale->params.ale_entries; idx++) {
460 		cpsw_ale_read(ale, idx, ale_entry);
461 		ret = cpsw_ale_get_entry_type(ale_entry);
462 		if (ret != ALE_TYPE_ADDR && ret != ALE_TYPE_VLAN_ADDR)
463 			continue;
464 
465 		/* if vid passed is -1 then remove all multicast entry from
466 		 * the table irrespective of vlan id, if a valid vlan id is
467 		 * passed then remove only multicast added to that vlan id.
468 		 * if vlan id doesn't match then move on to next entry.
469 		 */
470 		if (vid != -1 && cpsw_ale_get_vlan_id(ale_entry) != vid)
471 			continue;
472 
473 		if (cpsw_ale_get_mcast(ale_entry)) {
474 			u8 addr[6];
475 
476 			if (cpsw_ale_get_super(ale_entry))
477 				continue;
478 
479 			cpsw_ale_get_addr(ale_entry, addr);
480 			if (!is_broadcast_ether_addr(addr))
481 				cpsw_ale_flush_mcast(ale, ale_entry, port_mask);
482 		}
483 
484 		cpsw_ale_write(ale, idx, ale_entry);
485 	}
486 	return 0;
487 }
488 
489 static inline void cpsw_ale_set_vlan_entry_type(u32 *ale_entry,
490 						int flags, u16 vid)
491 {
492 	if (flags & ALE_VLAN) {
493 		cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_VLAN_ADDR);
494 		cpsw_ale_set_vlan_id(ale_entry, vid);
495 	} else {
496 		cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
497 	}
498 }
499 
500 int cpsw_ale_add_ucast(struct cpsw_ale *ale, const u8 *addr, int port,
501 		       int flags, u16 vid)
502 {
503 	u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
504 	int idx;
505 
506 	cpsw_ale_set_vlan_entry_type(ale_entry, flags, vid);
507 
508 	cpsw_ale_set_addr(ale_entry, addr);
509 	cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT);
510 	cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0);
511 	cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0);
512 	cpsw_ale_set_port_num(ale_entry, port, ale->port_num_bits);
513 
514 	idx = cpsw_ale_match_addr(ale, addr, (flags & ALE_VLAN) ? vid : 0);
515 	if (idx < 0)
516 		idx = cpsw_ale_match_free(ale);
517 	if (idx < 0)
518 		idx = cpsw_ale_find_ageable(ale);
519 	if (idx < 0)
520 		return -ENOMEM;
521 
522 	cpsw_ale_write(ale, idx, ale_entry);
523 	return 0;
524 }
525 
526 int cpsw_ale_del_ucast(struct cpsw_ale *ale, const u8 *addr, int port,
527 		       int flags, u16 vid)
528 {
529 	u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
530 	int idx;
531 
532 	idx = cpsw_ale_match_addr(ale, addr, (flags & ALE_VLAN) ? vid : 0);
533 	if (idx < 0)
534 		return -ENOENT;
535 
536 	cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
537 	cpsw_ale_write(ale, idx, ale_entry);
538 	return 0;
539 }
540 
541 int cpsw_ale_add_mcast(struct cpsw_ale *ale, const u8 *addr, int port_mask,
542 		       int flags, u16 vid, int mcast_state)
543 {
544 	u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
545 	int idx, mask;
546 
547 	idx = cpsw_ale_match_addr(ale, addr, (flags & ALE_VLAN) ? vid : 0);
548 	if (idx >= 0)
549 		cpsw_ale_read(ale, idx, ale_entry);
550 
551 	cpsw_ale_set_vlan_entry_type(ale_entry, flags, vid);
552 
553 	cpsw_ale_set_addr(ale_entry, addr);
554 	cpsw_ale_set_super(ale_entry, (flags & ALE_SUPER) ? 1 : 0);
555 	cpsw_ale_set_mcast_state(ale_entry, mcast_state);
556 
557 	mask = cpsw_ale_get_port_mask(ale_entry,
558 				      ale->port_mask_bits);
559 	port_mask |= mask;
560 	cpsw_ale_set_port_mask(ale_entry, port_mask,
561 			       ale->port_mask_bits);
562 
563 	if (idx < 0)
564 		idx = cpsw_ale_match_free(ale);
565 	if (idx < 0)
566 		idx = cpsw_ale_find_ageable(ale);
567 	if (idx < 0)
568 		return -ENOMEM;
569 
570 	cpsw_ale_write(ale, idx, ale_entry);
571 	return 0;
572 }
573 
574 int cpsw_ale_del_mcast(struct cpsw_ale *ale, const u8 *addr, int port_mask,
575 		       int flags, u16 vid)
576 {
577 	u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
578 	int mcast_members = 0;
579 	int idx;
580 
581 	idx = cpsw_ale_match_addr(ale, addr, (flags & ALE_VLAN) ? vid : 0);
582 	if (idx < 0)
583 		return -ENOENT;
584 
585 	cpsw_ale_read(ale, idx, ale_entry);
586 
587 	if (port_mask) {
588 		mcast_members = cpsw_ale_get_port_mask(ale_entry,
589 						       ale->port_mask_bits);
590 		mcast_members &= ~port_mask;
591 	}
592 
593 	if (mcast_members)
594 		cpsw_ale_set_port_mask(ale_entry, mcast_members,
595 				       ale->port_mask_bits);
596 	else
597 		cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
598 
599 	cpsw_ale_write(ale, idx, ale_entry);
600 	return 0;
601 }
602 
603 /* ALE NetCP NU switch specific vlan functions */
604 static void cpsw_ale_set_vlan_mcast(struct cpsw_ale *ale, u32 *ale_entry,
605 				    int reg_mcast, int unreg_mcast)
606 {
607 	int idx;
608 
609 	/* Set VLAN registered multicast flood mask */
610 	idx = cpsw_ale_vlan_get_fld(ale, ale_entry,
611 				    ALE_ENT_VID_REG_MCAST_IDX);
612 	writel(reg_mcast, ale->params.ale_regs + ALE_VLAN_MASK_MUX(idx));
613 
614 	/* Set VLAN unregistered multicast flood mask */
615 	idx = cpsw_ale_vlan_get_fld(ale, ale_entry,
616 				    ALE_ENT_VID_UNREG_MCAST_IDX);
617 	writel(unreg_mcast, ale->params.ale_regs + ALE_VLAN_MASK_MUX(idx));
618 }
619 
620 static void cpsw_ale_set_vlan_untag(struct cpsw_ale *ale, u32 *ale_entry,
621 				    u16 vid, int untag_mask)
622 {
623 	cpsw_ale_vlan_set_fld(ale, ale_entry,
624 			      ALE_ENT_VID_FORCE_UNTAGGED_MSK,
625 			      untag_mask);
626 	if (untag_mask & ALE_PORT_HOST)
627 		bitmap_set(ale->p0_untag_vid_mask, vid, 1);
628 	else
629 		bitmap_clear(ale->p0_untag_vid_mask, vid, 1);
630 }
631 
632 int cpsw_ale_add_vlan(struct cpsw_ale *ale, u16 vid, int port_mask, int untag,
633 		      int reg_mcast, int unreg_mcast)
634 {
635 	u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
636 	int idx;
637 
638 	idx = cpsw_ale_match_vlan(ale, vid);
639 	if (idx >= 0)
640 		cpsw_ale_read(ale, idx, ale_entry);
641 
642 	cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_VLAN);
643 	cpsw_ale_set_vlan_id(ale_entry, vid);
644 	cpsw_ale_set_vlan_untag(ale, ale_entry, vid, untag);
645 
646 	if (!ale->params.nu_switch_ale) {
647 		cpsw_ale_vlan_set_fld(ale, ale_entry,
648 				      ALE_ENT_VID_REG_MCAST_MSK, reg_mcast);
649 		cpsw_ale_vlan_set_fld(ale, ale_entry,
650 				      ALE_ENT_VID_UNREG_MCAST_MSK, unreg_mcast);
651 	} else {
652 		cpsw_ale_vlan_set_fld(ale, ale_entry,
653 				      ALE_ENT_VID_UNREG_MCAST_IDX,
654 				      NU_VLAN_UNREG_MCAST_IDX);
655 		cpsw_ale_set_vlan_mcast(ale, ale_entry, reg_mcast, unreg_mcast);
656 	}
657 
658 	cpsw_ale_vlan_set_fld(ale, ale_entry,
659 			      ALE_ENT_VID_MEMBER_LIST, port_mask);
660 
661 	if (idx < 0)
662 		idx = cpsw_ale_match_free(ale);
663 	if (idx < 0)
664 		idx = cpsw_ale_find_ageable(ale);
665 	if (idx < 0)
666 		return -ENOMEM;
667 
668 	cpsw_ale_write(ale, idx, ale_entry);
669 	return 0;
670 }
671 
672 static void cpsw_ale_vlan_del_modify_int(struct cpsw_ale *ale,  u32 *ale_entry,
673 					 u16 vid, int port_mask)
674 {
675 	int reg_mcast, unreg_mcast;
676 	int members, untag;
677 
678 	members = cpsw_ale_vlan_get_fld(ale, ale_entry,
679 					ALE_ENT_VID_MEMBER_LIST);
680 	members &= ~port_mask;
681 	if (!members) {
682 		cpsw_ale_set_vlan_untag(ale, ale_entry, vid, 0);
683 		cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
684 		return;
685 	}
686 
687 	untag = cpsw_ale_vlan_get_fld(ale, ale_entry,
688 				      ALE_ENT_VID_FORCE_UNTAGGED_MSK);
689 	reg_mcast = cpsw_ale_vlan_get_fld(ale, ale_entry,
690 					  ALE_ENT_VID_REG_MCAST_MSK);
691 	unreg_mcast = cpsw_ale_vlan_get_fld(ale, ale_entry,
692 					    ALE_ENT_VID_UNREG_MCAST_MSK);
693 	untag &= members;
694 	reg_mcast &= members;
695 	unreg_mcast &= members;
696 
697 	cpsw_ale_set_vlan_untag(ale, ale_entry, vid, untag);
698 
699 	if (!ale->params.nu_switch_ale) {
700 		cpsw_ale_vlan_set_fld(ale, ale_entry,
701 				      ALE_ENT_VID_REG_MCAST_MSK, reg_mcast);
702 		cpsw_ale_vlan_set_fld(ale, ale_entry,
703 				      ALE_ENT_VID_UNREG_MCAST_MSK, unreg_mcast);
704 	} else {
705 		cpsw_ale_set_vlan_mcast(ale, ale_entry, reg_mcast,
706 					unreg_mcast);
707 	}
708 	cpsw_ale_vlan_set_fld(ale, ale_entry,
709 			      ALE_ENT_VID_MEMBER_LIST, members);
710 }
711 
712 int cpsw_ale_vlan_del_modify(struct cpsw_ale *ale, u16 vid, int port_mask)
713 {
714 	u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
715 	int idx;
716 
717 	idx = cpsw_ale_match_vlan(ale, vid);
718 	if (idx < 0)
719 		return -ENOENT;
720 
721 	cpsw_ale_read(ale, idx, ale_entry);
722 
723 	cpsw_ale_vlan_del_modify_int(ale, ale_entry, vid, port_mask);
724 	cpsw_ale_write(ale, idx, ale_entry);
725 
726 	return 0;
727 }
728 
729 int cpsw_ale_del_vlan(struct cpsw_ale *ale, u16 vid, int port_mask)
730 {
731 	u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
732 	int members, idx;
733 
734 	idx = cpsw_ale_match_vlan(ale, vid);
735 	if (idx < 0)
736 		return -ENOENT;
737 
738 	cpsw_ale_read(ale, idx, ale_entry);
739 
740 	/* if !port_mask - force remove VLAN (legacy).
741 	 * Check if there are other VLAN members ports
742 	 * if no - remove VLAN.
743 	 * if yes it means same VLAN was added to >1 port in multi port mode, so
744 	 * remove port_mask ports from VLAN ALE entry excluding Host port.
745 	 */
746 	members = cpsw_ale_vlan_get_fld(ale, ale_entry, ALE_ENT_VID_MEMBER_LIST);
747 	members &= ~port_mask;
748 
749 	if (!port_mask || !members) {
750 		/* last port or force remove - remove VLAN */
751 		cpsw_ale_set_vlan_untag(ale, ale_entry, vid, 0);
752 		cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
753 	} else {
754 		port_mask &= ~ALE_PORT_HOST;
755 		cpsw_ale_vlan_del_modify_int(ale, ale_entry, vid, port_mask);
756 	}
757 
758 	cpsw_ale_write(ale, idx, ale_entry);
759 
760 	return 0;
761 }
762 
763 int cpsw_ale_vlan_add_modify(struct cpsw_ale *ale, u16 vid, int port_mask,
764 			     int untag_mask, int reg_mask, int unreg_mask)
765 {
766 	u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
767 	int reg_mcast_members, unreg_mcast_members;
768 	int vlan_members, untag_members;
769 	int idx, ret = 0;
770 
771 	idx = cpsw_ale_match_vlan(ale, vid);
772 	if (idx >= 0)
773 		cpsw_ale_read(ale, idx, ale_entry);
774 
775 	vlan_members = cpsw_ale_vlan_get_fld(ale, ale_entry,
776 					     ALE_ENT_VID_MEMBER_LIST);
777 	reg_mcast_members = cpsw_ale_vlan_get_fld(ale, ale_entry,
778 						  ALE_ENT_VID_REG_MCAST_MSK);
779 	unreg_mcast_members =
780 		cpsw_ale_vlan_get_fld(ale, ale_entry,
781 				      ALE_ENT_VID_UNREG_MCAST_MSK);
782 	untag_members = cpsw_ale_vlan_get_fld(ale, ale_entry,
783 					      ALE_ENT_VID_FORCE_UNTAGGED_MSK);
784 
785 	vlan_members |= port_mask;
786 	untag_members = (untag_members & ~port_mask) | untag_mask;
787 	reg_mcast_members = (reg_mcast_members & ~port_mask) | reg_mask;
788 	unreg_mcast_members = (unreg_mcast_members & ~port_mask) | unreg_mask;
789 
790 	ret = cpsw_ale_add_vlan(ale, vid, vlan_members, untag_members,
791 				reg_mcast_members, unreg_mcast_members);
792 	if (ret) {
793 		dev_err(ale->params.dev, "Unable to add vlan\n");
794 		return ret;
795 	}
796 	dev_dbg(ale->params.dev, "port mask 0x%x untag 0x%x\n", vlan_members,
797 		untag_mask);
798 
799 	return ret;
800 }
801 
802 void cpsw_ale_set_unreg_mcast(struct cpsw_ale *ale, int unreg_mcast_mask,
803 			      bool add)
804 {
805 	u32 ale_entry[ALE_ENTRY_WORDS];
806 	int unreg_members = 0;
807 	int type, idx;
808 
809 	for (idx = 0; idx < ale->params.ale_entries; idx++) {
810 		cpsw_ale_read(ale, idx, ale_entry);
811 		type = cpsw_ale_get_entry_type(ale_entry);
812 		if (type != ALE_TYPE_VLAN)
813 			continue;
814 
815 		unreg_members =
816 			cpsw_ale_vlan_get_fld(ale, ale_entry,
817 					      ALE_ENT_VID_UNREG_MCAST_MSK);
818 		if (add)
819 			unreg_members |= unreg_mcast_mask;
820 		else
821 			unreg_members &= ~unreg_mcast_mask;
822 		cpsw_ale_vlan_set_fld(ale, ale_entry,
823 				      ALE_ENT_VID_UNREG_MCAST_MSK,
824 				      unreg_members);
825 		cpsw_ale_write(ale, idx, ale_entry);
826 	}
827 }
828 
829 static void cpsw_ale_vlan_set_unreg_mcast(struct cpsw_ale *ale, u32 *ale_entry,
830 					  int allmulti)
831 {
832 	int unreg_mcast;
833 
834 	unreg_mcast = cpsw_ale_vlan_get_fld(ale, ale_entry,
835 					    ALE_ENT_VID_UNREG_MCAST_MSK);
836 	if (allmulti)
837 		unreg_mcast |= ALE_PORT_HOST;
838 	else
839 		unreg_mcast &= ~ALE_PORT_HOST;
840 
841 	cpsw_ale_vlan_set_fld(ale, ale_entry,
842 			      ALE_ENT_VID_UNREG_MCAST_MSK, unreg_mcast);
843 }
844 
845 static void
846 cpsw_ale_vlan_set_unreg_mcast_idx(struct cpsw_ale *ale, u32 *ale_entry,
847 				  int allmulti)
848 {
849 	int unreg_mcast;
850 	int idx;
851 
852 	idx = cpsw_ale_vlan_get_fld(ale, ale_entry,
853 				    ALE_ENT_VID_UNREG_MCAST_IDX);
854 
855 	unreg_mcast = readl(ale->params.ale_regs + ALE_VLAN_MASK_MUX(idx));
856 
857 	if (allmulti)
858 		unreg_mcast |= ALE_PORT_HOST;
859 	else
860 		unreg_mcast &= ~ALE_PORT_HOST;
861 
862 	writel(unreg_mcast, ale->params.ale_regs + ALE_VLAN_MASK_MUX(idx));
863 }
864 
865 void cpsw_ale_set_allmulti(struct cpsw_ale *ale, int allmulti, int port)
866 {
867 	u32 ale_entry[ALE_ENTRY_WORDS];
868 	int type, idx;
869 
870 	for (idx = 0; idx < ale->params.ale_entries; idx++) {
871 		int vlan_members;
872 
873 		cpsw_ale_read(ale, idx, ale_entry);
874 		type = cpsw_ale_get_entry_type(ale_entry);
875 		if (type != ALE_TYPE_VLAN)
876 			continue;
877 
878 		vlan_members = cpsw_ale_vlan_get_fld(ale, ale_entry,
879 						     ALE_ENT_VID_MEMBER_LIST);
880 
881 		if (port != -1 && !(vlan_members & BIT(port)))
882 			continue;
883 
884 		if (!ale->params.nu_switch_ale)
885 			cpsw_ale_vlan_set_unreg_mcast(ale, ale_entry, allmulti);
886 		else
887 			cpsw_ale_vlan_set_unreg_mcast_idx(ale, ale_entry,
888 							  allmulti);
889 
890 		cpsw_ale_write(ale, idx, ale_entry);
891 	}
892 }
893 
894 struct ale_control_info {
895 	const char	*name;
896 	int		offset, port_offset;
897 	int		shift, port_shift;
898 	int		bits;
899 };
900 
901 static struct ale_control_info ale_controls[ALE_NUM_CONTROLS] = {
902 	[ALE_ENABLE]		= {
903 		.name		= "enable",
904 		.offset		= ALE_CONTROL,
905 		.port_offset	= 0,
906 		.shift		= 31,
907 		.port_shift	= 0,
908 		.bits		= 1,
909 	},
910 	[ALE_CLEAR]		= {
911 		.name		= "clear",
912 		.offset		= ALE_CONTROL,
913 		.port_offset	= 0,
914 		.shift		= 30,
915 		.port_shift	= 0,
916 		.bits		= 1,
917 	},
918 	[ALE_AGEOUT]		= {
919 		.name		= "ageout",
920 		.offset		= ALE_CONTROL,
921 		.port_offset	= 0,
922 		.shift		= 29,
923 		.port_shift	= 0,
924 		.bits		= 1,
925 	},
926 	[ALE_P0_UNI_FLOOD]	= {
927 		.name		= "port0_unicast_flood",
928 		.offset		= ALE_CONTROL,
929 		.port_offset	= 0,
930 		.shift		= 8,
931 		.port_shift	= 0,
932 		.bits		= 1,
933 	},
934 	[ALE_VLAN_NOLEARN]	= {
935 		.name		= "vlan_nolearn",
936 		.offset		= ALE_CONTROL,
937 		.port_offset	= 0,
938 		.shift		= 7,
939 		.port_shift	= 0,
940 		.bits		= 1,
941 	},
942 	[ALE_NO_PORT_VLAN]	= {
943 		.name		= "no_port_vlan",
944 		.offset		= ALE_CONTROL,
945 		.port_offset	= 0,
946 		.shift		= 6,
947 		.port_shift	= 0,
948 		.bits		= 1,
949 	},
950 	[ALE_OUI_DENY]		= {
951 		.name		= "oui_deny",
952 		.offset		= ALE_CONTROL,
953 		.port_offset	= 0,
954 		.shift		= 5,
955 		.port_shift	= 0,
956 		.bits		= 1,
957 	},
958 	[ALE_BYPASS]		= {
959 		.name		= "bypass",
960 		.offset		= ALE_CONTROL,
961 		.port_offset	= 0,
962 		.shift		= 4,
963 		.port_shift	= 0,
964 		.bits		= 1,
965 	},
966 	[ALE_RATE_LIMIT_TX]	= {
967 		.name		= "rate_limit_tx",
968 		.offset		= ALE_CONTROL,
969 		.port_offset	= 0,
970 		.shift		= 3,
971 		.port_shift	= 0,
972 		.bits		= 1,
973 	},
974 	[ALE_VLAN_AWARE]	= {
975 		.name		= "vlan_aware",
976 		.offset		= ALE_CONTROL,
977 		.port_offset	= 0,
978 		.shift		= 2,
979 		.port_shift	= 0,
980 		.bits		= 1,
981 	},
982 	[ALE_AUTH_ENABLE]	= {
983 		.name		= "auth_enable",
984 		.offset		= ALE_CONTROL,
985 		.port_offset	= 0,
986 		.shift		= 1,
987 		.port_shift	= 0,
988 		.bits		= 1,
989 	},
990 	[ALE_RATE_LIMIT]	= {
991 		.name		= "rate_limit",
992 		.offset		= ALE_CONTROL,
993 		.port_offset	= 0,
994 		.shift		= 0,
995 		.port_shift	= 0,
996 		.bits		= 1,
997 	},
998 	[ALE_PORT_STATE]	= {
999 		.name		= "port_state",
1000 		.offset		= ALE_PORTCTL,
1001 		.port_offset	= 4,
1002 		.shift		= 0,
1003 		.port_shift	= 0,
1004 		.bits		= 2,
1005 	},
1006 	[ALE_PORT_DROP_UNTAGGED] = {
1007 		.name		= "drop_untagged",
1008 		.offset		= ALE_PORTCTL,
1009 		.port_offset	= 4,
1010 		.shift		= 2,
1011 		.port_shift	= 0,
1012 		.bits		= 1,
1013 	},
1014 	[ALE_PORT_DROP_UNKNOWN_VLAN] = {
1015 		.name		= "drop_unknown",
1016 		.offset		= ALE_PORTCTL,
1017 		.port_offset	= 4,
1018 		.shift		= 3,
1019 		.port_shift	= 0,
1020 		.bits		= 1,
1021 	},
1022 	[ALE_PORT_NOLEARN]	= {
1023 		.name		= "nolearn",
1024 		.offset		= ALE_PORTCTL,
1025 		.port_offset	= 4,
1026 		.shift		= 4,
1027 		.port_shift	= 0,
1028 		.bits		= 1,
1029 	},
1030 	[ALE_PORT_NO_SA_UPDATE]	= {
1031 		.name		= "no_source_update",
1032 		.offset		= ALE_PORTCTL,
1033 		.port_offset	= 4,
1034 		.shift		= 5,
1035 		.port_shift	= 0,
1036 		.bits		= 1,
1037 	},
1038 	[ALE_PORT_MACONLY]	= {
1039 		.name		= "mac_only_port_mode",
1040 		.offset		= ALE_PORTCTL,
1041 		.port_offset	= 4,
1042 		.shift		= 11,
1043 		.port_shift	= 0,
1044 		.bits		= 1,
1045 	},
1046 	[ALE_PORT_MACONLY_CAF]	= {
1047 		.name		= "mac_only_port_caf",
1048 		.offset		= ALE_PORTCTL,
1049 		.port_offset	= 4,
1050 		.shift		= 13,
1051 		.port_shift	= 0,
1052 		.bits		= 1,
1053 	},
1054 	[ALE_PORT_MCAST_LIMIT]	= {
1055 		.name		= "mcast_limit",
1056 		.offset		= ALE_PORTCTL,
1057 		.port_offset	= 4,
1058 		.shift		= 16,
1059 		.port_shift	= 0,
1060 		.bits		= 8,
1061 	},
1062 	[ALE_PORT_BCAST_LIMIT]	= {
1063 		.name		= "bcast_limit",
1064 		.offset		= ALE_PORTCTL,
1065 		.port_offset	= 4,
1066 		.shift		= 24,
1067 		.port_shift	= 0,
1068 		.bits		= 8,
1069 	},
1070 	[ALE_PORT_UNKNOWN_VLAN_MEMBER] = {
1071 		.name		= "unknown_vlan_member",
1072 		.offset		= ALE_UNKNOWNVLAN,
1073 		.port_offset	= 0,
1074 		.shift		= 0,
1075 		.port_shift	= 0,
1076 		.bits		= 6,
1077 	},
1078 	[ALE_PORT_UNKNOWN_MCAST_FLOOD] = {
1079 		.name		= "unknown_mcast_flood",
1080 		.offset		= ALE_UNKNOWNVLAN,
1081 		.port_offset	= 0,
1082 		.shift		= 8,
1083 		.port_shift	= 0,
1084 		.bits		= 6,
1085 	},
1086 	[ALE_PORT_UNKNOWN_REG_MCAST_FLOOD] = {
1087 		.name		= "unknown_reg_flood",
1088 		.offset		= ALE_UNKNOWNVLAN,
1089 		.port_offset	= 0,
1090 		.shift		= 16,
1091 		.port_shift	= 0,
1092 		.bits		= 6,
1093 	},
1094 	[ALE_PORT_UNTAGGED_EGRESS] = {
1095 		.name		= "untagged_egress",
1096 		.offset		= ALE_UNKNOWNVLAN,
1097 		.port_offset	= 0,
1098 		.shift		= 24,
1099 		.port_shift	= 0,
1100 		.bits		= 6,
1101 	},
1102 	[ALE_DEFAULT_THREAD_ID] = {
1103 		.name		= "default_thread_id",
1104 		.offset		= AM65_CPSW_ALE_THREAD_DEF_REG,
1105 		.port_offset	= 0,
1106 		.shift		= 0,
1107 		.port_shift	= 0,
1108 		.bits		= 6,
1109 	},
1110 	[ALE_DEFAULT_THREAD_ENABLE] = {
1111 		.name		= "default_thread_id_enable",
1112 		.offset		= AM65_CPSW_ALE_THREAD_DEF_REG,
1113 		.port_offset	= 0,
1114 		.shift		= 15,
1115 		.port_shift	= 0,
1116 		.bits		= 1,
1117 	},
1118 };
1119 
1120 int cpsw_ale_control_set(struct cpsw_ale *ale, int port, int control,
1121 			 int value)
1122 {
1123 	const struct ale_control_info *info;
1124 	int offset, shift;
1125 	u32 tmp, mask;
1126 
1127 	if (control < 0 || control >= ARRAY_SIZE(ale_controls))
1128 		return -EINVAL;
1129 
1130 	info = &ale_controls[control];
1131 	if (info->port_offset == 0 && info->port_shift == 0)
1132 		port = 0; /* global, port is a dont care */
1133 
1134 	if (port < 0 || port >= ale->params.ale_ports)
1135 		return -EINVAL;
1136 
1137 	mask = BITMASK(info->bits);
1138 	if (value & ~mask)
1139 		return -EINVAL;
1140 
1141 	offset = info->offset + (port * info->port_offset);
1142 	shift  = info->shift  + (port * info->port_shift);
1143 
1144 	tmp = readl_relaxed(ale->params.ale_regs + offset);
1145 	tmp = (tmp & ~(mask << shift)) | (value << shift);
1146 	writel_relaxed(tmp, ale->params.ale_regs + offset);
1147 
1148 	return 0;
1149 }
1150 
1151 int cpsw_ale_control_get(struct cpsw_ale *ale, int port, int control)
1152 {
1153 	const struct ale_control_info *info;
1154 	int offset, shift;
1155 	u32 tmp;
1156 
1157 	if (control < 0 || control >= ARRAY_SIZE(ale_controls))
1158 		return -EINVAL;
1159 
1160 	info = &ale_controls[control];
1161 	if (info->port_offset == 0 && info->port_shift == 0)
1162 		port = 0; /* global, port is a dont care */
1163 
1164 	if (port < 0 || port >= ale->params.ale_ports)
1165 		return -EINVAL;
1166 
1167 	offset = info->offset + (port * info->port_offset);
1168 	shift  = info->shift  + (port * info->port_shift);
1169 
1170 	tmp = readl_relaxed(ale->params.ale_regs + offset) >> shift;
1171 	return tmp & BITMASK(info->bits);
1172 }
1173 
1174 int cpsw_ale_rx_ratelimit_mc(struct cpsw_ale *ale, int port, unsigned int ratelimit_pps)
1175 
1176 {
1177 	int val = ratelimit_pps / ALE_RATE_LIMIT_MIN_PPS;
1178 	u32 remainder = ratelimit_pps % ALE_RATE_LIMIT_MIN_PPS;
1179 
1180 	if (ratelimit_pps && !val) {
1181 		dev_err(ale->params.dev, "ALE MC port:%d ratelimit min value 1000pps\n", port);
1182 		return -EINVAL;
1183 	}
1184 
1185 	if (remainder)
1186 		dev_info(ale->params.dev, "ALE port:%d MC ratelimit set to %dpps (requested %d)\n",
1187 			 port, ratelimit_pps - remainder, ratelimit_pps);
1188 
1189 	cpsw_ale_control_set(ale, port, ALE_PORT_MCAST_LIMIT, val);
1190 
1191 	dev_dbg(ale->params.dev, "ALE port:%d MC ratelimit set %d\n",
1192 		port, val * ALE_RATE_LIMIT_MIN_PPS);
1193 	return 0;
1194 }
1195 
1196 int cpsw_ale_rx_ratelimit_bc(struct cpsw_ale *ale, int port, unsigned int ratelimit_pps)
1197 
1198 {
1199 	int val = ratelimit_pps / ALE_RATE_LIMIT_MIN_PPS;
1200 	u32 remainder = ratelimit_pps % ALE_RATE_LIMIT_MIN_PPS;
1201 
1202 	if (ratelimit_pps && !val) {
1203 		dev_err(ale->params.dev, "ALE port:%d BC ratelimit min value 1000pps\n", port);
1204 		return -EINVAL;
1205 	}
1206 
1207 	if (remainder)
1208 		dev_info(ale->params.dev, "ALE port:%d BC ratelimit set to %dpps (requested %d)\n",
1209 			 port, ratelimit_pps - remainder, ratelimit_pps);
1210 
1211 	cpsw_ale_control_set(ale, port, ALE_PORT_BCAST_LIMIT, val);
1212 
1213 	dev_dbg(ale->params.dev, "ALE port:%d BC ratelimit set %d\n",
1214 		port, val * ALE_RATE_LIMIT_MIN_PPS);
1215 	return 0;
1216 }
1217 
1218 static void cpsw_ale_timer(struct timer_list *t)
1219 {
1220 	struct cpsw_ale *ale = from_timer(ale, t, timer);
1221 
1222 	cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
1223 
1224 	if (ale->ageout) {
1225 		ale->timer.expires = jiffies + ale->ageout;
1226 		add_timer(&ale->timer);
1227 	}
1228 }
1229 
1230 static void cpsw_ale_hw_aging_timer_start(struct cpsw_ale *ale)
1231 {
1232 	u32 aging_timer;
1233 
1234 	aging_timer = ale->params.bus_freq / 1000000;
1235 	aging_timer *= ale->params.ale_ageout;
1236 
1237 	if (aging_timer & ~ALE_AGING_TIMER_MASK) {
1238 		aging_timer = ALE_AGING_TIMER_MASK;
1239 		dev_warn(ale->params.dev,
1240 			 "ALE aging timer overflow, set to max\n");
1241 	}
1242 
1243 	writel(aging_timer, ale->params.ale_regs + ALE_AGING_TIMER);
1244 }
1245 
1246 static void cpsw_ale_hw_aging_timer_stop(struct cpsw_ale *ale)
1247 {
1248 	writel(0, ale->params.ale_regs + ALE_AGING_TIMER);
1249 }
1250 
1251 static void cpsw_ale_aging_start(struct cpsw_ale *ale)
1252 {
1253 	if (!ale->params.ale_ageout)
1254 		return;
1255 
1256 	if (ale->features & CPSW_ALE_F_HW_AUTOAGING) {
1257 		cpsw_ale_hw_aging_timer_start(ale);
1258 		return;
1259 	}
1260 
1261 	timer_setup(&ale->timer, cpsw_ale_timer, 0);
1262 	ale->timer.expires = jiffies + ale->ageout;
1263 	add_timer(&ale->timer);
1264 }
1265 
1266 static void cpsw_ale_aging_stop(struct cpsw_ale *ale)
1267 {
1268 	if (!ale->params.ale_ageout)
1269 		return;
1270 
1271 	if (ale->features & CPSW_ALE_F_HW_AUTOAGING) {
1272 		cpsw_ale_hw_aging_timer_stop(ale);
1273 		return;
1274 	}
1275 
1276 	del_timer_sync(&ale->timer);
1277 }
1278 
1279 void cpsw_ale_start(struct cpsw_ale *ale)
1280 {
1281 	unsigned long ale_prescale;
1282 
1283 	/* configure Broadcast and Multicast Rate Limit
1284 	 * number_of_packets = (Fclk / ALE_PRESCALE) * port.BCAST/MCAST_LIMIT
1285 	 * ALE_PRESCALE width is 19bit and min value 0x10
1286 	 * port.BCAST/MCAST_LIMIT is 8bit
1287 	 *
1288 	 * For multi port configuration support the ALE_PRESCALE is configured to 1ms interval,
1289 	 * which allows to configure port.BCAST/MCAST_LIMIT per port and achieve:
1290 	 * min number_of_packets = 1000 when port.BCAST/MCAST_LIMIT = 1
1291 	 * max number_of_packets = 1000 * 255 = 255000 when port.BCAST/MCAST_LIMIT = 0xFF
1292 	 */
1293 	ale_prescale = ale->params.bus_freq / ALE_RATE_LIMIT_MIN_PPS;
1294 	writel((u32)ale_prescale, ale->params.ale_regs + ALE_PRESCALE);
1295 
1296 	/* Allow MC/BC rate limiting globally.
1297 	 * The actual Rate Limit cfg enabled per-port by port.BCAST/MCAST_LIMIT
1298 	 */
1299 	cpsw_ale_control_set(ale, 0, ALE_RATE_LIMIT, 1);
1300 
1301 	cpsw_ale_control_set(ale, 0, ALE_ENABLE, 1);
1302 	cpsw_ale_control_set(ale, 0, ALE_CLEAR, 1);
1303 
1304 	cpsw_ale_aging_start(ale);
1305 }
1306 
1307 void cpsw_ale_stop(struct cpsw_ale *ale)
1308 {
1309 	cpsw_ale_aging_stop(ale);
1310 	cpsw_ale_control_set(ale, 0, ALE_CLEAR, 1);
1311 	cpsw_ale_control_set(ale, 0, ALE_ENABLE, 0);
1312 }
1313 
1314 static const struct reg_field ale_fields_cpsw[] = {
1315 	/* CPSW_ALE_IDVER_REG */
1316 	[MINOR_VER]	= REG_FIELD(ALE_IDVER, 0, 7),
1317 	[MAJOR_VER]	= REG_FIELD(ALE_IDVER, 8, 15),
1318 };
1319 
1320 static const struct reg_field ale_fields_cpsw_nu[] = {
1321 	/* CPSW_ALE_IDVER_REG */
1322 	[MINOR_VER]	= REG_FIELD(ALE_IDVER, 0, 7),
1323 	[MAJOR_VER]	= REG_FIELD(ALE_IDVER, 8, 10),
1324 	/* CPSW_ALE_STATUS_REG */
1325 	[ALE_ENTRIES]	= REG_FIELD(ALE_STATUS, 0, 7),
1326 	[ALE_POLICERS]	= REG_FIELD(ALE_STATUS, 8, 15),
1327 	/* CPSW_ALE_POLICER_PORT_OUI_REG */
1328 	[POL_PORT_MEN]	= REG_FIELD(ALE_POLICER_PORT_OUI, 31, 31),
1329 	[POL_TRUNK_ID]	= REG_FIELD(ALE_POLICER_PORT_OUI, 30, 30),
1330 	[POL_PORT_NUM]	= REG_FIELD(ALE_POLICER_PORT_OUI, 25, 25),
1331 	[POL_PRI_MEN]	= REG_FIELD(ALE_POLICER_PORT_OUI, 19, 19),
1332 	[POL_PRI_VAL]	= REG_FIELD(ALE_POLICER_PORT_OUI, 16, 18),
1333 	[POL_OUI_MEN]	= REG_FIELD(ALE_POLICER_PORT_OUI, 15, 15),
1334 	[POL_OUI_INDEX]	= REG_FIELD(ALE_POLICER_PORT_OUI, 0, 5),
1335 
1336 	/* CPSW_ALE_POLICER_DA_SA_REG */
1337 	[POL_DST_MEN]	= REG_FIELD(ALE_POLICER_DA_SA, 31, 31),
1338 	[POL_DST_INDEX]	= REG_FIELD(ALE_POLICER_DA_SA, 16, 21),
1339 	[POL_SRC_MEN]	= REG_FIELD(ALE_POLICER_DA_SA, 15, 15),
1340 	[POL_SRC_INDEX]	= REG_FIELD(ALE_POLICER_DA_SA, 0, 5),
1341 
1342 	/* CPSW_ALE_POLICER_VLAN_REG */
1343 	[POL_OVLAN_MEN]		= REG_FIELD(ALE_POLICER_VLAN, 31, 31),
1344 	[POL_OVLAN_INDEX]	= REG_FIELD(ALE_POLICER_VLAN, 16, 21),
1345 	[POL_IVLAN_MEN]		= REG_FIELD(ALE_POLICER_VLAN, 15, 15),
1346 	[POL_IVLAN_INDEX]	= REG_FIELD(ALE_POLICER_VLAN, 0, 5),
1347 
1348 	/* CPSW_ALE_POLICER_ETHERTYPE_IPSA_REG */
1349 	[POL_ETHERTYPE_MEN]	= REG_FIELD(ALE_POLICER_ETHERTYPE_IPSA, 31, 31),
1350 	[POL_ETHERTYPE_INDEX]	= REG_FIELD(ALE_POLICER_ETHERTYPE_IPSA, 16, 21),
1351 	[POL_IPSRC_MEN]		= REG_FIELD(ALE_POLICER_ETHERTYPE_IPSA, 15, 15),
1352 	[POL_IPSRC_INDEX]	= REG_FIELD(ALE_POLICER_ETHERTYPE_IPSA, 0, 5),
1353 
1354 	/* CPSW_ALE_POLICER_IPDA_REG */
1355 	[POL_IPDST_MEN]		= REG_FIELD(ALE_POLICER_IPDA, 31, 31),
1356 	[POL_IPDST_INDEX]	= REG_FIELD(ALE_POLICER_IPDA, 16, 21),
1357 
1358 	/* CPSW_ALE_POLICER_TBL_CTL_REG */
1359 	/**
1360 	 * REG_FIELDS not defined for this as fields cannot be correctly
1361 	 * used independently
1362 	 */
1363 
1364 	/* CPSW_ALE_POLICER_CTL_REG */
1365 	[POL_EN]		= REG_FIELD(ALE_POLICER_CTL, 31, 31),
1366 	[POL_RED_DROP_EN]	= REG_FIELD(ALE_POLICER_CTL, 29, 29),
1367 	[POL_YELLOW_DROP_EN]	= REG_FIELD(ALE_POLICER_CTL, 28, 28),
1368 	[POL_YELLOW_THRESH]	= REG_FIELD(ALE_POLICER_CTL, 24, 26),
1369 	[POL_POL_MATCH_MODE]	= REG_FIELD(ALE_POLICER_CTL, 22, 23),
1370 	[POL_PRIORITY_THREAD_EN] = REG_FIELD(ALE_POLICER_CTL, 21, 21),
1371 	[POL_MAC_ONLY_DEF_DIS]	= REG_FIELD(ALE_POLICER_CTL, 20, 20),
1372 
1373 	/* CPSW_ALE_POLICER_TEST_CTL_REG */
1374 	[POL_TEST_CLR]		= REG_FIELD(ALE_POLICER_TEST_CTL, 31, 31),
1375 	[POL_TEST_CLR_RED]	= REG_FIELD(ALE_POLICER_TEST_CTL, 30, 30),
1376 	[POL_TEST_CLR_YELLOW]	= REG_FIELD(ALE_POLICER_TEST_CTL, 29, 29),
1377 	[POL_TEST_CLR_SELECTED]	= REG_FIELD(ALE_POLICER_TEST_CTL, 28, 28),
1378 	[POL_TEST_ENTRY]	= REG_FIELD(ALE_POLICER_TEST_CTL, 0, 4),
1379 
1380 	/* CPSW_ALE_POLICER_HIT_STATUS_REG */
1381 	[POL_STATUS_HIT]	= REG_FIELD(ALE_POLICER_HIT_STATUS, 31, 31),
1382 	[POL_STATUS_HIT_RED]	= REG_FIELD(ALE_POLICER_HIT_STATUS, 30, 30),
1383 	[POL_STATUS_HIT_YELLOW]	= REG_FIELD(ALE_POLICER_HIT_STATUS, 29, 29),
1384 
1385 	/* CPSW_ALE_THREAD_DEF_REG */
1386 	[ALE_DEFAULT_THREAD_EN]		= REG_FIELD(ALE_THREAD_DEF, 15, 15),
1387 	[ALE_DEFAULT_THREAD_VAL]	= REG_FIELD(ALE_THREAD_DEF, 0, 5),
1388 
1389 	/* CPSW_ALE_THREAD_CTL_REG */
1390 	[ALE_THREAD_CLASS_INDEX] = REG_FIELD(ALE_THREAD_CTL, 0, 4),
1391 
1392 	/* CPSW_ALE_THREAD_VAL_REG */
1393 	[ALE_THREAD_ENABLE]	= REG_FIELD(ALE_THREAD_VAL, 15, 15),
1394 	[ALE_THREAD_VALUE]	= REG_FIELD(ALE_THREAD_VAL, 0, 5),
1395 };
1396 
1397 static const struct cpsw_ale_dev_id cpsw_ale_id_match[] = {
1398 	{
1399 		/* am3/4/5, dra7. dm814x, 66ak2hk-gbe */
1400 		.dev_id = "cpsw",
1401 		.tbl_entries = 1024,
1402 		.reg_fields = ale_fields_cpsw,
1403 		.vlan_entry_tbl = vlan_entry_cpsw,
1404 	},
1405 	{
1406 		/* 66ak2h_xgbe */
1407 		.dev_id = "66ak2h-xgbe",
1408 		.tbl_entries = 2048,
1409 		.reg_fields = ale_fields_cpsw,
1410 		.vlan_entry_tbl = vlan_entry_cpsw,
1411 	},
1412 	{
1413 		.dev_id = "66ak2el",
1414 		.features = CPSW_ALE_F_STATUS_REG,
1415 		.reg_fields = ale_fields_cpsw_nu,
1416 		.nu_switch_ale = true,
1417 		.vlan_entry_tbl = vlan_entry_nu,
1418 	},
1419 	{
1420 		.dev_id = "66ak2g",
1421 		.features = CPSW_ALE_F_STATUS_REG,
1422 		.tbl_entries = 64,
1423 		.reg_fields = ale_fields_cpsw_nu,
1424 		.nu_switch_ale = true,
1425 		.vlan_entry_tbl = vlan_entry_nu,
1426 	},
1427 	{
1428 		.dev_id = "am65x-cpsw2g",
1429 		.features = CPSW_ALE_F_STATUS_REG | CPSW_ALE_F_HW_AUTOAGING,
1430 		.tbl_entries = 64,
1431 		.reg_fields = ale_fields_cpsw_nu,
1432 		.nu_switch_ale = true,
1433 		.vlan_entry_tbl = vlan_entry_nu,
1434 	},
1435 	{
1436 		.dev_id = "j721e-cpswxg",
1437 		.features = CPSW_ALE_F_STATUS_REG | CPSW_ALE_F_HW_AUTOAGING,
1438 		.reg_fields = ale_fields_cpsw_nu,
1439 		.vlan_entry_tbl = vlan_entry_k3_cpswxg,
1440 	},
1441 	{
1442 		.dev_id = "am64-cpswxg",
1443 		.features = CPSW_ALE_F_STATUS_REG | CPSW_ALE_F_HW_AUTOAGING,
1444 		.reg_fields = ale_fields_cpsw_nu,
1445 		.vlan_entry_tbl = vlan_entry_k3_cpswxg,
1446 		.tbl_entries = 512,
1447 	},
1448 	{ },
1449 };
1450 
1451 static const struct
1452 cpsw_ale_dev_id *cpsw_ale_match_id(const struct cpsw_ale_dev_id *id,
1453 				   const char *dev_id)
1454 {
1455 	if (!dev_id)
1456 		return NULL;
1457 
1458 	while (id->dev_id) {
1459 		if (strcmp(dev_id, id->dev_id) == 0)
1460 			return id;
1461 		id++;
1462 	}
1463 	return NULL;
1464 }
1465 
1466 static const struct regmap_config ale_regmap_cfg = {
1467 	.reg_bits = 32,
1468 	.val_bits = 32,
1469 	.reg_stride = 4,
1470 	.name = "cpsw-ale",
1471 };
1472 
1473 static int cpsw_ale_regfield_init(struct cpsw_ale *ale)
1474 {
1475 	const struct reg_field *reg_fields = ale->params.reg_fields;
1476 	struct device *dev = ale->params.dev;
1477 	struct regmap *regmap = ale->regmap;
1478 	int i;
1479 
1480 	for (i = 0; i < ALE_FIELDS_MAX; i++) {
1481 		ale->fields[i] = devm_regmap_field_alloc(dev, regmap,
1482 							 reg_fields[i]);
1483 		if (IS_ERR(ale->fields[i])) {
1484 			dev_err(dev, "Unable to allocate regmap field %d\n", i);
1485 			return PTR_ERR(ale->fields[i]);
1486 		}
1487 	}
1488 
1489 	return 0;
1490 }
1491 
1492 struct cpsw_ale *cpsw_ale_create(struct cpsw_ale_params *params)
1493 {
1494 	u32 ale_entries, rev_major, rev_minor, policers;
1495 	const struct cpsw_ale_dev_id *ale_dev_id;
1496 	struct cpsw_ale *ale;
1497 	int ret;
1498 
1499 	ale_dev_id = cpsw_ale_match_id(cpsw_ale_id_match, params->dev_id);
1500 	if (!ale_dev_id)
1501 		return ERR_PTR(-EINVAL);
1502 
1503 	params->ale_entries = ale_dev_id->tbl_entries;
1504 	params->nu_switch_ale = ale_dev_id->nu_switch_ale;
1505 	params->reg_fields = ale_dev_id->reg_fields;
1506 
1507 	ale = devm_kzalloc(params->dev, sizeof(*ale), GFP_KERNEL);
1508 	if (!ale)
1509 		return ERR_PTR(-ENOMEM);
1510 	ale->regmap = devm_regmap_init_mmio(params->dev, params->ale_regs,
1511 					    &ale_regmap_cfg);
1512 	if (IS_ERR(ale->regmap)) {
1513 		dev_err(params->dev, "Couldn't create CPSW ALE regmap\n");
1514 		return ERR_PTR(-ENOMEM);
1515 	}
1516 
1517 	ale->params = *params;
1518 	ret = cpsw_ale_regfield_init(ale);
1519 	if (ret)
1520 		return ERR_PTR(ret);
1521 
1522 	ale->p0_untag_vid_mask = devm_bitmap_zalloc(params->dev, VLAN_N_VID,
1523 						    GFP_KERNEL);
1524 	if (!ale->p0_untag_vid_mask)
1525 		return ERR_PTR(-ENOMEM);
1526 
1527 	ale->ageout = ale->params.ale_ageout * HZ;
1528 	ale->features = ale_dev_id->features;
1529 	ale->vlan_entry_tbl = ale_dev_id->vlan_entry_tbl;
1530 
1531 	regmap_field_read(ale->fields[MINOR_VER], &rev_minor);
1532 	regmap_field_read(ale->fields[MAJOR_VER], &rev_major);
1533 	ale->version = rev_major << 8 | rev_minor;
1534 	dev_info(ale->params.dev, "initialized cpsw ale version %d.%d\n",
1535 		 rev_major, rev_minor);
1536 
1537 	if (ale->features & CPSW_ALE_F_STATUS_REG &&
1538 	    !ale->params.ale_entries) {
1539 		regmap_field_read(ale->fields[ALE_ENTRIES], &ale_entries);
1540 		/* ALE available on newer NetCP switches has introduced
1541 		 * a register, ALE_STATUS, to indicate the size of ALE
1542 		 * table which shows the size as a multiple of 1024 entries.
1543 		 * For these, params.ale_entries will be set to zero. So
1544 		 * read the register and update the value of ale_entries.
1545 		 * return error if ale_entries is zero in ALE_STATUS.
1546 		 */
1547 		if (!ale_entries)
1548 			return ERR_PTR(-EINVAL);
1549 
1550 		ale_entries *= ALE_TABLE_SIZE_MULTIPLIER;
1551 		ale->params.ale_entries = ale_entries;
1552 	}
1553 
1554 	if (ale->features & CPSW_ALE_F_STATUS_REG &&
1555 	    !ale->params.num_policers) {
1556 		regmap_field_read(ale->fields[ALE_POLICERS], &policers);
1557 		if (!policers)
1558 			return ERR_PTR(-EINVAL);
1559 
1560 		policers *= ALE_POLICER_SIZE_MULTIPLIER;
1561 		ale->params.num_policers = policers;
1562 	}
1563 
1564 	dev_info(ale->params.dev,
1565 		 "ALE Table size %ld, Policers %ld\n", ale->params.ale_entries,
1566 		 ale->params.num_policers);
1567 
1568 	/* set default bits for existing h/w */
1569 	ale->port_mask_bits = ale->params.ale_ports;
1570 	ale->port_num_bits = order_base_2(ale->params.ale_ports);
1571 	ale->vlan_field_bits = ale->params.ale_ports;
1572 
1573 	/* Set defaults override for ALE on NetCP NU switch and for version
1574 	 * 1R3
1575 	 */
1576 	if (ale->params.nu_switch_ale) {
1577 		/* Separate registers for unknown vlan configuration.
1578 		 * Also there are N bits, where N is number of ale
1579 		 * ports and shift value should be 0
1580 		 */
1581 		ale_controls[ALE_PORT_UNKNOWN_VLAN_MEMBER].bits =
1582 					ale->params.ale_ports;
1583 		ale_controls[ALE_PORT_UNKNOWN_VLAN_MEMBER].offset =
1584 					ALE_UNKNOWNVLAN_MEMBER;
1585 		ale_controls[ALE_PORT_UNKNOWN_MCAST_FLOOD].bits =
1586 					ale->params.ale_ports;
1587 		ale_controls[ALE_PORT_UNKNOWN_MCAST_FLOOD].shift = 0;
1588 		ale_controls[ALE_PORT_UNKNOWN_MCAST_FLOOD].offset =
1589 					ALE_UNKNOWNVLAN_UNREG_MCAST_FLOOD;
1590 		ale_controls[ALE_PORT_UNKNOWN_REG_MCAST_FLOOD].bits =
1591 					ale->params.ale_ports;
1592 		ale_controls[ALE_PORT_UNKNOWN_REG_MCAST_FLOOD].shift = 0;
1593 		ale_controls[ALE_PORT_UNKNOWN_REG_MCAST_FLOOD].offset =
1594 					ALE_UNKNOWNVLAN_REG_MCAST_FLOOD;
1595 		ale_controls[ALE_PORT_UNTAGGED_EGRESS].bits =
1596 					ale->params.ale_ports;
1597 		ale_controls[ALE_PORT_UNTAGGED_EGRESS].shift = 0;
1598 		ale_controls[ALE_PORT_UNTAGGED_EGRESS].offset =
1599 					ALE_UNKNOWNVLAN_FORCE_UNTAG_EGRESS;
1600 	}
1601 
1602 	cpsw_ale_control_set(ale, 0, ALE_CLEAR, 1);
1603 	return ale;
1604 }
1605 
1606 void cpsw_ale_dump(struct cpsw_ale *ale, u32 *data)
1607 {
1608 	int i;
1609 
1610 	for (i = 0; i < ale->params.ale_entries; i++) {
1611 		cpsw_ale_read(ale, i, data);
1612 		data += ALE_ENTRY_WORDS;
1613 	}
1614 }
1615 
1616 void cpsw_ale_restore(struct cpsw_ale *ale, u32 *data)
1617 {
1618 	int i;
1619 
1620 	for (i = 0; i < ale->params.ale_entries; i++) {
1621 		cpsw_ale_write(ale, i, data);
1622 		data += ALE_ENTRY_WORDS;
1623 	}
1624 }
1625 
1626 u32 cpsw_ale_get_num_entries(struct cpsw_ale *ale)
1627 {
1628 	return ale ? ale->params.ale_entries : 0;
1629 }
1630 
1631 /* Reads the specified policer index into ALE POLICER registers */
1632 static void cpsw_ale_policer_read_idx(struct cpsw_ale *ale, u32 idx)
1633 {
1634 	idx &= ALE_POLICER_TBL_INDEX_MASK;
1635 	writel_relaxed(idx, ale->params.ale_regs + ALE_POLICER_TBL_CTL);
1636 }
1637 
1638 /* Writes the ALE POLICER registers into the specified policer index */
1639 static void cpsw_ale_policer_write_idx(struct cpsw_ale *ale, u32 idx)
1640 {
1641 	idx &= ALE_POLICER_TBL_INDEX_MASK;
1642 	idx |= ALE_POLICER_TBL_WRITE_ENABLE;
1643 	writel_relaxed(idx, ale->params.ale_regs + ALE_POLICER_TBL_CTL);
1644 }
1645 
1646 /* enables/disables the custom thread value for the specified policer index */
1647 static void cpsw_ale_policer_thread_idx_enable(struct cpsw_ale *ale, u32 idx,
1648 					       u32 thread_id, bool enable)
1649 {
1650 	regmap_field_write(ale->fields[ALE_THREAD_CLASS_INDEX], idx);
1651 	regmap_field_write(ale->fields[ALE_THREAD_VALUE], thread_id);
1652 	regmap_field_write(ale->fields[ALE_THREAD_ENABLE], enable ? 1 : 0);
1653 }
1654 
1655 /* Disable all policer entries and thread mappings */
1656 static void cpsw_ale_policer_reset(struct cpsw_ale *ale)
1657 {
1658 	int i;
1659 
1660 	for (i = 0; i < ale->params.num_policers ; i++) {
1661 		cpsw_ale_policer_read_idx(ale, i);
1662 		regmap_field_write(ale->fields[POL_PORT_MEN], 0);
1663 		regmap_field_write(ale->fields[POL_PRI_MEN], 0);
1664 		regmap_field_write(ale->fields[POL_OUI_MEN], 0);
1665 		regmap_field_write(ale->fields[POL_DST_MEN], 0);
1666 		regmap_field_write(ale->fields[POL_SRC_MEN], 0);
1667 		regmap_field_write(ale->fields[POL_OVLAN_MEN], 0);
1668 		regmap_field_write(ale->fields[POL_IVLAN_MEN], 0);
1669 		regmap_field_write(ale->fields[POL_ETHERTYPE_MEN], 0);
1670 		regmap_field_write(ale->fields[POL_IPSRC_MEN], 0);
1671 		regmap_field_write(ale->fields[POL_IPDST_MEN], 0);
1672 		regmap_field_write(ale->fields[POL_EN], 0);
1673 		regmap_field_write(ale->fields[POL_RED_DROP_EN], 0);
1674 		regmap_field_write(ale->fields[POL_YELLOW_DROP_EN], 0);
1675 		regmap_field_write(ale->fields[POL_PRIORITY_THREAD_EN], 0);
1676 
1677 		cpsw_ale_policer_thread_idx_enable(ale, i, 0, 0);
1678 	}
1679 }
1680 
1681 /* Default classifier is to map 8 user priorities to N receive channels */
1682 void cpsw_ale_classifier_setup_default(struct cpsw_ale *ale, int num_rx_ch)
1683 {
1684 	int pri, idx;
1685 	/* IEEE802.1D-2004, Standard for Local and metropolitan area networks
1686 	 *    Table G-2 - Traffic type acronyms
1687 	 *    Table G-3 - Defining traffic types
1688 	 * User priority values 1 and 2 effectively communicate a lower
1689 	 * priority than 0. In the below table 0 is assigned to higher priority
1690 	 * thread than 1 and 2 wherever possible.
1691 	 * The below table maps which thread the user priority needs to be
1692 	 * sent to for a given number of threads (RX channels). Upper threads
1693 	 * have higher priority.
1694 	 * e.g. if number of threads is 8 then user priority 0 will map to
1695 	 * pri_thread_map[8-1][0] i.e. thread 2
1696 	 */
1697 	int pri_thread_map[8][8] = {	{ 0, 0, 0, 0, 0, 0, 0, 0, },
1698 					{ 0, 0, 0, 0, 1, 1, 1, 1, },
1699 					{ 0, 0, 0, 0, 1, 1, 2, 2, },
1700 					{ 1, 0, 0, 1, 2, 2, 3, 3, },
1701 					{ 1, 0, 0, 1, 2, 3, 4, 4, },
1702 					{ 1, 0, 0, 2, 3, 4, 5, 5, },
1703 					{ 1, 0, 0, 2, 3, 4, 5, 6, },
1704 					{ 2, 0, 1, 3, 4, 5, 6, 7, } };
1705 
1706 	cpsw_ale_policer_reset(ale);
1707 
1708 	/* use first 8 classifiers to map 8 (DSCP/PCP) priorities to channels */
1709 	for (pri = 0; pri < 8; pri++) {
1710 		idx = pri;
1711 
1712 		/* Classifier 'idx' match on priority 'pri' */
1713 		cpsw_ale_policer_read_idx(ale, idx);
1714 		regmap_field_write(ale->fields[POL_PRI_VAL], pri);
1715 		regmap_field_write(ale->fields[POL_PRI_MEN], 1);
1716 		cpsw_ale_policer_write_idx(ale, idx);
1717 
1718 		/* Map Classifier 'idx' to thread provided by the map */
1719 		cpsw_ale_policer_thread_idx_enable(ale, idx,
1720 						   pri_thread_map[num_rx_ch - 1][pri],
1721 						   1);
1722 	}
1723 }
1724