xref: /linux/drivers/net/ethernet/ti/cpsw_ale.c (revision a69dc41a4211b0da311ae3a3b79dd4497c9dfb60)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Texas Instruments N-Port Ethernet Switch Address Lookup Engine
4  *
5  * Copyright (C) 2012 Texas Instruments
6  *
7  */
8 #include <linux/bitmap.h>
9 #include <linux/if_vlan.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/platform_device.h>
13 #include <linux/regmap.h>
14 #include <linux/seq_file.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/io.h>
18 #include <linux/stat.h>
19 #include <linux/sysfs.h>
20 #include <linux/etherdevice.h>
21 
22 #include "cpsw_ale.h"
23 
24 #define BITMASK(bits)		(BIT(bits) - 1)
25 
26 #define ALE_VERSION_MAJOR(rev, mask) (((rev) >> 8) & (mask))
27 #define ALE_VERSION_MINOR(rev)	(rev & 0xff)
28 #define ALE_VERSION_1R3		0x0103
29 #define ALE_VERSION_1R4		0x0104
30 
31 /* ALE Registers */
32 #define ALE_IDVER		0x00
33 #define ALE_STATUS		0x04
34 #define ALE_CONTROL		0x08
35 #define ALE_PRESCALE		0x10
36 #define ALE_AGING_TIMER		0x14
37 #define ALE_UNKNOWNVLAN		0x18
38 #define ALE_TABLE_CONTROL	0x20
39 #define ALE_TABLE		0x34
40 #define ALE_PORTCTL		0x40
41 
42 /* ALE NetCP NU switch specific Registers */
43 #define ALE_UNKNOWNVLAN_MEMBER			0x90
44 #define ALE_UNKNOWNVLAN_UNREG_MCAST_FLOOD	0x94
45 #define ALE_UNKNOWNVLAN_REG_MCAST_FLOOD		0x98
46 #define ALE_UNKNOWNVLAN_FORCE_UNTAG_EGRESS	0x9C
47 #define ALE_VLAN_MASK_MUX(reg)			(0xc0 + (0x4 * (reg)))
48 
49 #define ALE_POLICER_PORT_OUI		0x100
50 #define ALE_POLICER_DA_SA		0x104
51 #define ALE_POLICER_VLAN		0x108
52 #define ALE_POLICER_ETHERTYPE_IPSA	0x10c
53 #define ALE_POLICER_IPDA		0x110
54 #define ALE_POLICER_PIR			0x118
55 #define ALE_POLICER_CIR			0x11c
56 #define ALE_POLICER_TBL_CTL		0x120
57 #define ALE_POLICER_CTL			0x124
58 #define ALE_POLICER_TEST_CTL		0x128
59 #define ALE_POLICER_HIT_STATUS		0x12c
60 #define ALE_THREAD_DEF			0x134
61 #define ALE_THREAD_CTL			0x138
62 #define ALE_THREAD_VAL			0x13c
63 
64 #define ALE_POLICER_TBL_WRITE_ENABLE	BIT(31)
65 #define ALE_POLICER_TBL_INDEX_MASK	GENMASK(4, 0)
66 
67 #define AM65_CPSW_ALE_THREAD_DEF_REG 0x134
68 
69 /* ALE_AGING_TIMER */
70 #define ALE_AGING_TIMER_MASK	GENMASK(23, 0)
71 
72 #define ALE_RATE_LIMIT_MIN_PPS 1000
73 
74 /**
75  * struct ale_entry_fld - The ALE tbl entry field description
76  * @start_bit: field start bit
77  * @num_bits: field bit length
78  * @flags: field flags
79  */
80 struct ale_entry_fld {
81 	u8 start_bit;
82 	u8 num_bits;
83 	u8 flags;
84 };
85 
86 enum {
87 	CPSW_ALE_F_STATUS_REG = BIT(0), /* Status register present */
88 	CPSW_ALE_F_HW_AUTOAGING = BIT(1), /* HW auto aging */
89 
90 	CPSW_ALE_F_COUNT
91 };
92 
93 /**
94  * struct cpsw_ale_dev_id - The ALE version/SoC specific configuration
95  * @dev_id: ALE version/SoC id
96  * @features: features supported by ALE
97  * @tbl_entries: number of ALE entries
98  * @reg_fields: pointer to array of register field configuration
99  * @num_fields: number of fields in the reg_fields array
100  * @nu_switch_ale: NU Switch ALE
101  * @vlan_entry_tbl: ALE vlan entry fields description tbl
102  */
103 struct cpsw_ale_dev_id {
104 	const char *dev_id;
105 	u32 features;
106 	u32 tbl_entries;
107 	const struct reg_field *reg_fields;
108 	int num_fields;
109 	bool nu_switch_ale;
110 	const struct ale_entry_fld *vlan_entry_tbl;
111 };
112 
113 #define ALE_TABLE_WRITE		BIT(31)
114 
115 #define ALE_TYPE_FREE			0
116 #define ALE_TYPE_ADDR			1
117 #define ALE_TYPE_VLAN			2
118 #define ALE_TYPE_VLAN_ADDR		3
119 
120 #define ALE_UCAST_PERSISTANT		0
121 #define ALE_UCAST_UNTOUCHED		1
122 #define ALE_UCAST_OUI			2
123 #define ALE_UCAST_TOUCHED		3
124 
125 #define ALE_TABLE_SIZE_MULTIPLIER	1024
126 #define ALE_POLICER_SIZE_MULTIPLIER	8
127 
128 static inline int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits)
129 {
130 	int idx, idx2;
131 	u32 hi_val = 0;
132 
133 	idx    = start / 32;
134 	idx2 = (start + bits - 1) / 32;
135 	/* Check if bits to be fetched exceed a word */
136 	if (idx != idx2) {
137 		idx2 = 2 - idx2; /* flip */
138 		hi_val = ale_entry[idx2] << ((idx2 * 32) - start);
139 	}
140 	start -= idx * 32;
141 	idx    = 2 - idx; /* flip */
142 	return (hi_val + (ale_entry[idx] >> start)) & BITMASK(bits);
143 }
144 
145 static inline void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits,
146 				      u32 value)
147 {
148 	int idx, idx2;
149 
150 	value &= BITMASK(bits);
151 	idx = start / 32;
152 	idx2 = (start + bits - 1) / 32;
153 	/* Check if bits to be set exceed a word */
154 	if (idx != idx2) {
155 		idx2 = 2 - idx2; /* flip */
156 		ale_entry[idx2] &= ~(BITMASK(bits + start - (idx2 * 32)));
157 		ale_entry[idx2] |= (value >> ((idx2 * 32) - start));
158 	}
159 	start -= idx * 32;
160 	idx = 2 - idx; /* flip */
161 	ale_entry[idx] &= ~(BITMASK(bits) << start);
162 	ale_entry[idx] |=  (value << start);
163 }
164 
165 #define DEFINE_ALE_FIELD(name, start, bits)				\
166 static inline int cpsw_ale_get_##name(u32 *ale_entry)			\
167 {									\
168 	return cpsw_ale_get_field(ale_entry, start, bits);		\
169 }									\
170 static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value)	\
171 {									\
172 	cpsw_ale_set_field(ale_entry, start, bits, value);		\
173 }
174 
175 #define DEFINE_ALE_FIELD1(name, start)					\
176 static inline int cpsw_ale_get_##name(u32 *ale_entry, u32 bits)		\
177 {									\
178 	return cpsw_ale_get_field(ale_entry, start, bits);		\
179 }									\
180 static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value,	\
181 		u32 bits)						\
182 {									\
183 	cpsw_ale_set_field(ale_entry, start, bits, value);		\
184 }
185 
186 enum {
187 	ALE_ENT_VID_MEMBER_LIST = 0,
188 	ALE_ENT_VID_UNREG_MCAST_MSK,
189 	ALE_ENT_VID_REG_MCAST_MSK,
190 	ALE_ENT_VID_FORCE_UNTAGGED_MSK,
191 	ALE_ENT_VID_UNREG_MCAST_IDX,
192 	ALE_ENT_VID_REG_MCAST_IDX,
193 	ALE_ENT_VID_LAST,
194 };
195 
196 #define ALE_FLD_ALLOWED			BIT(0)
197 #define ALE_FLD_SIZE_PORT_MASK_BITS	BIT(1)
198 #define ALE_FLD_SIZE_PORT_NUM_BITS	BIT(2)
199 
200 #define ALE_ENTRY_FLD(id, start, bits)	\
201 [id] = {				\
202 	.start_bit = start,		\
203 	.num_bits = bits,		\
204 	.flags = ALE_FLD_ALLOWED,	\
205 }
206 
207 #define ALE_ENTRY_FLD_DYN_MSK_SIZE(id, start)	\
208 [id] = {					\
209 	.start_bit = start,			\
210 	.num_bits = 0,				\
211 	.flags = ALE_FLD_ALLOWED |		\
212 		 ALE_FLD_SIZE_PORT_MASK_BITS,	\
213 }
214 
215 /* dm814x, am3/am4/am5, k2hk */
216 static const struct ale_entry_fld vlan_entry_cpsw[ALE_ENT_VID_LAST] = {
217 	ALE_ENTRY_FLD(ALE_ENT_VID_MEMBER_LIST, 0, 3),
218 	ALE_ENTRY_FLD(ALE_ENT_VID_UNREG_MCAST_MSK, 8, 3),
219 	ALE_ENTRY_FLD(ALE_ENT_VID_REG_MCAST_MSK, 16, 3),
220 	ALE_ENTRY_FLD(ALE_ENT_VID_FORCE_UNTAGGED_MSK, 24, 3),
221 };
222 
223 /* k2e/k2l, k3 am65/j721e cpsw2g  */
224 static const struct ale_entry_fld vlan_entry_nu[ALE_ENT_VID_LAST] = {
225 	ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_MEMBER_LIST, 0),
226 	ALE_ENTRY_FLD(ALE_ENT_VID_UNREG_MCAST_IDX, 20, 3),
227 	ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_FORCE_UNTAGGED_MSK, 24),
228 	ALE_ENTRY_FLD(ALE_ENT_VID_REG_MCAST_IDX, 44, 3),
229 };
230 
231 /* K3 j721e/j7200 cpsw9g/5g, am64x cpsw3g  */
232 static const struct ale_entry_fld vlan_entry_k3_cpswxg[] = {
233 	ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_MEMBER_LIST, 0),
234 	ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_UNREG_MCAST_MSK, 12),
235 	ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_FORCE_UNTAGGED_MSK, 24),
236 	ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_REG_MCAST_MSK, 36),
237 };
238 
239 DEFINE_ALE_FIELD(entry_type,		60,	2)
240 DEFINE_ALE_FIELD(vlan_id,		48,	12)
241 DEFINE_ALE_FIELD(mcast_state,		62,	2)
242 DEFINE_ALE_FIELD1(port_mask,		66)
243 DEFINE_ALE_FIELD(super,			65,	1)
244 DEFINE_ALE_FIELD(ucast_type,		62,     2)
245 DEFINE_ALE_FIELD1(port_num,		66)
246 DEFINE_ALE_FIELD(blocked,		65,     1)
247 DEFINE_ALE_FIELD(secure,		64,     1)
248 DEFINE_ALE_FIELD(mcast,			40,	1)
249 
250 #define NU_VLAN_UNREG_MCAST_IDX	1
251 
252 static int cpsw_ale_entry_get_fld(struct cpsw_ale *ale,
253 				  u32 *ale_entry,
254 				  const struct ale_entry_fld *entry_tbl,
255 				  int fld_id)
256 {
257 	const struct ale_entry_fld *entry_fld;
258 	u32 bits;
259 
260 	if (!ale || !ale_entry)
261 		return -EINVAL;
262 
263 	entry_fld = &entry_tbl[fld_id];
264 	if (!(entry_fld->flags & ALE_FLD_ALLOWED)) {
265 		dev_err(ale->params.dev, "get: wrong ale fld id %d\n", fld_id);
266 		return -ENOENT;
267 	}
268 
269 	bits = entry_fld->num_bits;
270 	if (entry_fld->flags & ALE_FLD_SIZE_PORT_MASK_BITS)
271 		bits = ale->port_mask_bits;
272 
273 	return cpsw_ale_get_field(ale_entry, entry_fld->start_bit, bits);
274 }
275 
276 static void cpsw_ale_entry_set_fld(struct cpsw_ale *ale,
277 				   u32 *ale_entry,
278 				   const struct ale_entry_fld *entry_tbl,
279 				   int fld_id,
280 				   u32 value)
281 {
282 	const struct ale_entry_fld *entry_fld;
283 	u32 bits;
284 
285 	if (!ale || !ale_entry)
286 		return;
287 
288 	entry_fld = &entry_tbl[fld_id];
289 	if (!(entry_fld->flags & ALE_FLD_ALLOWED)) {
290 		dev_err(ale->params.dev, "set: wrong ale fld id %d\n", fld_id);
291 		return;
292 	}
293 
294 	bits = entry_fld->num_bits;
295 	if (entry_fld->flags & ALE_FLD_SIZE_PORT_MASK_BITS)
296 		bits = ale->port_mask_bits;
297 
298 	cpsw_ale_set_field(ale_entry, entry_fld->start_bit, bits, value);
299 }
300 
301 static int cpsw_ale_vlan_get_fld(struct cpsw_ale *ale,
302 				 u32 *ale_entry,
303 				 int fld_id)
304 {
305 	return cpsw_ale_entry_get_fld(ale, ale_entry,
306 				      ale->vlan_entry_tbl, fld_id);
307 }
308 
309 static void cpsw_ale_vlan_set_fld(struct cpsw_ale *ale,
310 				  u32 *ale_entry,
311 				  int fld_id,
312 				  u32 value)
313 {
314 	cpsw_ale_entry_set_fld(ale, ale_entry,
315 			       ale->vlan_entry_tbl, fld_id, value);
316 }
317 
318 /* The MAC address field in the ALE entry cannot be macroized as above */
319 static inline void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr)
320 {
321 	int i;
322 
323 	for (i = 0; i < 6; i++)
324 		addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8);
325 }
326 
327 static inline void cpsw_ale_set_addr(u32 *ale_entry, const u8 *addr)
328 {
329 	int i;
330 
331 	for (i = 0; i < 6; i++)
332 		cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]);
333 }
334 
335 static int cpsw_ale_read(struct cpsw_ale *ale, int idx, u32 *ale_entry)
336 {
337 	int i;
338 
339 	WARN_ON(idx > ale->params.ale_entries);
340 
341 	writel_relaxed(idx, ale->params.ale_regs + ALE_TABLE_CONTROL);
342 
343 	for (i = 0; i < ALE_ENTRY_WORDS; i++)
344 		ale_entry[i] = readl_relaxed(ale->params.ale_regs +
345 					     ALE_TABLE + 4 * i);
346 
347 	return idx;
348 }
349 
350 static int cpsw_ale_write(struct cpsw_ale *ale, int idx, u32 *ale_entry)
351 {
352 	int i;
353 
354 	WARN_ON(idx > ale->params.ale_entries);
355 
356 	for (i = 0; i < ALE_ENTRY_WORDS; i++)
357 		writel_relaxed(ale_entry[i], ale->params.ale_regs +
358 			       ALE_TABLE + 4 * i);
359 
360 	writel_relaxed(idx | ALE_TABLE_WRITE, ale->params.ale_regs +
361 		       ALE_TABLE_CONTROL);
362 
363 	return idx;
364 }
365 
366 static int cpsw_ale_match_addr(struct cpsw_ale *ale, const u8 *addr, u16 vid)
367 {
368 	u32 ale_entry[ALE_ENTRY_WORDS];
369 	int type, idx;
370 
371 	for (idx = 0; idx < ale->params.ale_entries; idx++) {
372 		u8 entry_addr[6];
373 
374 		cpsw_ale_read(ale, idx, ale_entry);
375 		type = cpsw_ale_get_entry_type(ale_entry);
376 		if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
377 			continue;
378 		if (cpsw_ale_get_vlan_id(ale_entry) != vid)
379 			continue;
380 		cpsw_ale_get_addr(ale_entry, entry_addr);
381 		if (ether_addr_equal(entry_addr, addr))
382 			return idx;
383 	}
384 	return -ENOENT;
385 }
386 
387 static int cpsw_ale_match_vlan(struct cpsw_ale *ale, u16 vid)
388 {
389 	u32 ale_entry[ALE_ENTRY_WORDS];
390 	int type, idx;
391 
392 	for (idx = 0; idx < ale->params.ale_entries; idx++) {
393 		cpsw_ale_read(ale, idx, ale_entry);
394 		type = cpsw_ale_get_entry_type(ale_entry);
395 		if (type != ALE_TYPE_VLAN)
396 			continue;
397 		if (cpsw_ale_get_vlan_id(ale_entry) == vid)
398 			return idx;
399 	}
400 	return -ENOENT;
401 }
402 
403 static int cpsw_ale_match_free(struct cpsw_ale *ale)
404 {
405 	u32 ale_entry[ALE_ENTRY_WORDS];
406 	int type, idx;
407 
408 	for (idx = 0; idx < ale->params.ale_entries; idx++) {
409 		cpsw_ale_read(ale, idx, ale_entry);
410 		type = cpsw_ale_get_entry_type(ale_entry);
411 		if (type == ALE_TYPE_FREE)
412 			return idx;
413 	}
414 	return -ENOENT;
415 }
416 
417 static int cpsw_ale_find_ageable(struct cpsw_ale *ale)
418 {
419 	u32 ale_entry[ALE_ENTRY_WORDS];
420 	int type, idx;
421 
422 	for (idx = 0; idx < ale->params.ale_entries; idx++) {
423 		cpsw_ale_read(ale, idx, ale_entry);
424 		type = cpsw_ale_get_entry_type(ale_entry);
425 		if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
426 			continue;
427 		if (cpsw_ale_get_mcast(ale_entry))
428 			continue;
429 		type = cpsw_ale_get_ucast_type(ale_entry);
430 		if (type != ALE_UCAST_PERSISTANT &&
431 		    type != ALE_UCAST_OUI)
432 			return idx;
433 	}
434 	return -ENOENT;
435 }
436 
437 static void cpsw_ale_flush_mcast(struct cpsw_ale *ale, u32 *ale_entry,
438 				 int port_mask)
439 {
440 	int mask;
441 
442 	mask = cpsw_ale_get_port_mask(ale_entry,
443 				      ale->port_mask_bits);
444 	if ((mask & port_mask) == 0)
445 		return; /* ports dont intersect, not interested */
446 	mask &= ~port_mask;
447 
448 	/* free if only remaining port is host port */
449 	if (mask)
450 		cpsw_ale_set_port_mask(ale_entry, mask,
451 				       ale->port_mask_bits);
452 	else
453 		cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
454 }
455 
456 int cpsw_ale_flush_multicast(struct cpsw_ale *ale, int port_mask, int vid)
457 {
458 	u32 ale_entry[ALE_ENTRY_WORDS];
459 	int ret, idx;
460 
461 	for (idx = 0; idx < ale->params.ale_entries; idx++) {
462 		cpsw_ale_read(ale, idx, ale_entry);
463 		ret = cpsw_ale_get_entry_type(ale_entry);
464 		if (ret != ALE_TYPE_ADDR && ret != ALE_TYPE_VLAN_ADDR)
465 			continue;
466 
467 		/* if vid passed is -1 then remove all multicast entry from
468 		 * the table irrespective of vlan id, if a valid vlan id is
469 		 * passed then remove only multicast added to that vlan id.
470 		 * if vlan id doesn't match then move on to next entry.
471 		 */
472 		if (vid != -1 && cpsw_ale_get_vlan_id(ale_entry) != vid)
473 			continue;
474 
475 		if (cpsw_ale_get_mcast(ale_entry)) {
476 			u8 addr[6];
477 
478 			if (cpsw_ale_get_super(ale_entry))
479 				continue;
480 
481 			cpsw_ale_get_addr(ale_entry, addr);
482 			if (!is_broadcast_ether_addr(addr))
483 				cpsw_ale_flush_mcast(ale, ale_entry, port_mask);
484 		}
485 
486 		cpsw_ale_write(ale, idx, ale_entry);
487 	}
488 	return 0;
489 }
490 
491 static inline void cpsw_ale_set_vlan_entry_type(u32 *ale_entry,
492 						int flags, u16 vid)
493 {
494 	if (flags & ALE_VLAN) {
495 		cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_VLAN_ADDR);
496 		cpsw_ale_set_vlan_id(ale_entry, vid);
497 	} else {
498 		cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
499 	}
500 }
501 
502 int cpsw_ale_add_ucast(struct cpsw_ale *ale, const u8 *addr, int port,
503 		       int flags, u16 vid)
504 {
505 	u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
506 	int idx;
507 
508 	cpsw_ale_set_vlan_entry_type(ale_entry, flags, vid);
509 
510 	cpsw_ale_set_addr(ale_entry, addr);
511 	cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT);
512 	cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0);
513 	cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0);
514 	cpsw_ale_set_port_num(ale_entry, port, ale->port_num_bits);
515 
516 	idx = cpsw_ale_match_addr(ale, addr, (flags & ALE_VLAN) ? vid : 0);
517 	if (idx < 0)
518 		idx = cpsw_ale_match_free(ale);
519 	if (idx < 0)
520 		idx = cpsw_ale_find_ageable(ale);
521 	if (idx < 0)
522 		return -ENOMEM;
523 
524 	cpsw_ale_write(ale, idx, ale_entry);
525 	return 0;
526 }
527 
528 int cpsw_ale_del_ucast(struct cpsw_ale *ale, const u8 *addr, int port,
529 		       int flags, u16 vid)
530 {
531 	u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
532 	int idx;
533 
534 	idx = cpsw_ale_match_addr(ale, addr, (flags & ALE_VLAN) ? vid : 0);
535 	if (idx < 0)
536 		return -ENOENT;
537 
538 	cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
539 	cpsw_ale_write(ale, idx, ale_entry);
540 	return 0;
541 }
542 
543 int cpsw_ale_add_mcast(struct cpsw_ale *ale, const u8 *addr, int port_mask,
544 		       int flags, u16 vid, int mcast_state)
545 {
546 	u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
547 	int idx, mask;
548 
549 	idx = cpsw_ale_match_addr(ale, addr, (flags & ALE_VLAN) ? vid : 0);
550 	if (idx >= 0)
551 		cpsw_ale_read(ale, idx, ale_entry);
552 
553 	cpsw_ale_set_vlan_entry_type(ale_entry, flags, vid);
554 
555 	cpsw_ale_set_addr(ale_entry, addr);
556 	cpsw_ale_set_super(ale_entry, (flags & ALE_SUPER) ? 1 : 0);
557 	cpsw_ale_set_mcast_state(ale_entry, mcast_state);
558 
559 	mask = cpsw_ale_get_port_mask(ale_entry,
560 				      ale->port_mask_bits);
561 	port_mask |= mask;
562 	cpsw_ale_set_port_mask(ale_entry, port_mask,
563 			       ale->port_mask_bits);
564 
565 	if (idx < 0)
566 		idx = cpsw_ale_match_free(ale);
567 	if (idx < 0)
568 		idx = cpsw_ale_find_ageable(ale);
569 	if (idx < 0)
570 		return -ENOMEM;
571 
572 	cpsw_ale_write(ale, idx, ale_entry);
573 	return 0;
574 }
575 
576 int cpsw_ale_del_mcast(struct cpsw_ale *ale, const u8 *addr, int port_mask,
577 		       int flags, u16 vid)
578 {
579 	u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
580 	int mcast_members = 0;
581 	int idx;
582 
583 	idx = cpsw_ale_match_addr(ale, addr, (flags & ALE_VLAN) ? vid : 0);
584 	if (idx < 0)
585 		return -ENOENT;
586 
587 	cpsw_ale_read(ale, idx, ale_entry);
588 
589 	if (port_mask) {
590 		mcast_members = cpsw_ale_get_port_mask(ale_entry,
591 						       ale->port_mask_bits);
592 		mcast_members &= ~port_mask;
593 	}
594 
595 	if (mcast_members)
596 		cpsw_ale_set_port_mask(ale_entry, mcast_members,
597 				       ale->port_mask_bits);
598 	else
599 		cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
600 
601 	cpsw_ale_write(ale, idx, ale_entry);
602 	return 0;
603 }
604 
605 /* ALE NetCP NU switch specific vlan functions */
606 static void cpsw_ale_set_vlan_mcast(struct cpsw_ale *ale, u32 *ale_entry,
607 				    int reg_mcast, int unreg_mcast)
608 {
609 	int idx;
610 
611 	/* Set VLAN registered multicast flood mask */
612 	idx = cpsw_ale_vlan_get_fld(ale, ale_entry,
613 				    ALE_ENT_VID_REG_MCAST_IDX);
614 	writel(reg_mcast, ale->params.ale_regs + ALE_VLAN_MASK_MUX(idx));
615 
616 	/* Set VLAN unregistered multicast flood mask */
617 	idx = cpsw_ale_vlan_get_fld(ale, ale_entry,
618 				    ALE_ENT_VID_UNREG_MCAST_IDX);
619 	writel(unreg_mcast, ale->params.ale_regs + ALE_VLAN_MASK_MUX(idx));
620 }
621 
622 static void cpsw_ale_set_vlan_untag(struct cpsw_ale *ale, u32 *ale_entry,
623 				    u16 vid, int untag_mask)
624 {
625 	cpsw_ale_vlan_set_fld(ale, ale_entry,
626 			      ALE_ENT_VID_FORCE_UNTAGGED_MSK,
627 			      untag_mask);
628 	if (untag_mask & ALE_PORT_HOST)
629 		bitmap_set(ale->p0_untag_vid_mask, vid, 1);
630 	else
631 		bitmap_clear(ale->p0_untag_vid_mask, vid, 1);
632 }
633 
634 int cpsw_ale_add_vlan(struct cpsw_ale *ale, u16 vid, int port_mask, int untag,
635 		      int reg_mcast, int unreg_mcast)
636 {
637 	u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
638 	int idx;
639 
640 	idx = cpsw_ale_match_vlan(ale, vid);
641 	if (idx >= 0)
642 		cpsw_ale_read(ale, idx, ale_entry);
643 
644 	cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_VLAN);
645 	cpsw_ale_set_vlan_id(ale_entry, vid);
646 	cpsw_ale_set_vlan_untag(ale, ale_entry, vid, untag);
647 
648 	if (!ale->params.nu_switch_ale) {
649 		cpsw_ale_vlan_set_fld(ale, ale_entry,
650 				      ALE_ENT_VID_REG_MCAST_MSK, reg_mcast);
651 		cpsw_ale_vlan_set_fld(ale, ale_entry,
652 				      ALE_ENT_VID_UNREG_MCAST_MSK, unreg_mcast);
653 	} else {
654 		cpsw_ale_vlan_set_fld(ale, ale_entry,
655 				      ALE_ENT_VID_UNREG_MCAST_IDX,
656 				      NU_VLAN_UNREG_MCAST_IDX);
657 		cpsw_ale_set_vlan_mcast(ale, ale_entry, reg_mcast, unreg_mcast);
658 	}
659 
660 	cpsw_ale_vlan_set_fld(ale, ale_entry,
661 			      ALE_ENT_VID_MEMBER_LIST, port_mask);
662 
663 	if (idx < 0)
664 		idx = cpsw_ale_match_free(ale);
665 	if (idx < 0)
666 		idx = cpsw_ale_find_ageable(ale);
667 	if (idx < 0)
668 		return -ENOMEM;
669 
670 	cpsw_ale_write(ale, idx, ale_entry);
671 	return 0;
672 }
673 
674 static void cpsw_ale_vlan_del_modify_int(struct cpsw_ale *ale,  u32 *ale_entry,
675 					 u16 vid, int port_mask)
676 {
677 	int reg_mcast, unreg_mcast;
678 	int members, untag;
679 
680 	members = cpsw_ale_vlan_get_fld(ale, ale_entry,
681 					ALE_ENT_VID_MEMBER_LIST);
682 	members &= ~port_mask;
683 	if (!members) {
684 		cpsw_ale_set_vlan_untag(ale, ale_entry, vid, 0);
685 		cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
686 		return;
687 	}
688 
689 	untag = cpsw_ale_vlan_get_fld(ale, ale_entry,
690 				      ALE_ENT_VID_FORCE_UNTAGGED_MSK);
691 	reg_mcast = cpsw_ale_vlan_get_fld(ale, ale_entry,
692 					  ALE_ENT_VID_REG_MCAST_MSK);
693 	unreg_mcast = cpsw_ale_vlan_get_fld(ale, ale_entry,
694 					    ALE_ENT_VID_UNREG_MCAST_MSK);
695 	untag &= members;
696 	reg_mcast &= members;
697 	unreg_mcast &= members;
698 
699 	cpsw_ale_set_vlan_untag(ale, ale_entry, vid, untag);
700 
701 	if (!ale->params.nu_switch_ale) {
702 		cpsw_ale_vlan_set_fld(ale, ale_entry,
703 				      ALE_ENT_VID_REG_MCAST_MSK, reg_mcast);
704 		cpsw_ale_vlan_set_fld(ale, ale_entry,
705 				      ALE_ENT_VID_UNREG_MCAST_MSK, unreg_mcast);
706 	} else {
707 		cpsw_ale_set_vlan_mcast(ale, ale_entry, reg_mcast,
708 					unreg_mcast);
709 	}
710 	cpsw_ale_vlan_set_fld(ale, ale_entry,
711 			      ALE_ENT_VID_MEMBER_LIST, members);
712 }
713 
714 int cpsw_ale_vlan_del_modify(struct cpsw_ale *ale, u16 vid, int port_mask)
715 {
716 	u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
717 	int idx;
718 
719 	idx = cpsw_ale_match_vlan(ale, vid);
720 	if (idx < 0)
721 		return -ENOENT;
722 
723 	cpsw_ale_read(ale, idx, ale_entry);
724 
725 	cpsw_ale_vlan_del_modify_int(ale, ale_entry, vid, port_mask);
726 	cpsw_ale_write(ale, idx, ale_entry);
727 
728 	return 0;
729 }
730 
731 int cpsw_ale_del_vlan(struct cpsw_ale *ale, u16 vid, int port_mask)
732 {
733 	u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
734 	int members, idx;
735 
736 	idx = cpsw_ale_match_vlan(ale, vid);
737 	if (idx < 0)
738 		return -ENOENT;
739 
740 	cpsw_ale_read(ale, idx, ale_entry);
741 
742 	/* if !port_mask - force remove VLAN (legacy).
743 	 * Check if there are other VLAN members ports
744 	 * if no - remove VLAN.
745 	 * if yes it means same VLAN was added to >1 port in multi port mode, so
746 	 * remove port_mask ports from VLAN ALE entry excluding Host port.
747 	 */
748 	members = cpsw_ale_vlan_get_fld(ale, ale_entry, ALE_ENT_VID_MEMBER_LIST);
749 	members &= ~port_mask;
750 
751 	if (!port_mask || !members) {
752 		/* last port or force remove - remove VLAN */
753 		cpsw_ale_set_vlan_untag(ale, ale_entry, vid, 0);
754 		cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
755 	} else {
756 		port_mask &= ~ALE_PORT_HOST;
757 		cpsw_ale_vlan_del_modify_int(ale, ale_entry, vid, port_mask);
758 	}
759 
760 	cpsw_ale_write(ale, idx, ale_entry);
761 
762 	return 0;
763 }
764 
765 int cpsw_ale_vlan_add_modify(struct cpsw_ale *ale, u16 vid, int port_mask,
766 			     int untag_mask, int reg_mask, int unreg_mask)
767 {
768 	u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
769 	int reg_mcast_members, unreg_mcast_members;
770 	int vlan_members, untag_members;
771 	int idx, ret = 0;
772 
773 	idx = cpsw_ale_match_vlan(ale, vid);
774 	if (idx >= 0)
775 		cpsw_ale_read(ale, idx, ale_entry);
776 
777 	vlan_members = cpsw_ale_vlan_get_fld(ale, ale_entry,
778 					     ALE_ENT_VID_MEMBER_LIST);
779 	reg_mcast_members = cpsw_ale_vlan_get_fld(ale, ale_entry,
780 						  ALE_ENT_VID_REG_MCAST_MSK);
781 	unreg_mcast_members =
782 		cpsw_ale_vlan_get_fld(ale, ale_entry,
783 				      ALE_ENT_VID_UNREG_MCAST_MSK);
784 	untag_members = cpsw_ale_vlan_get_fld(ale, ale_entry,
785 					      ALE_ENT_VID_FORCE_UNTAGGED_MSK);
786 
787 	vlan_members |= port_mask;
788 	untag_members = (untag_members & ~port_mask) | untag_mask;
789 	reg_mcast_members = (reg_mcast_members & ~port_mask) | reg_mask;
790 	unreg_mcast_members = (unreg_mcast_members & ~port_mask) | unreg_mask;
791 
792 	ret = cpsw_ale_add_vlan(ale, vid, vlan_members, untag_members,
793 				reg_mcast_members, unreg_mcast_members);
794 	if (ret) {
795 		dev_err(ale->params.dev, "Unable to add vlan\n");
796 		return ret;
797 	}
798 	dev_dbg(ale->params.dev, "port mask 0x%x untag 0x%x\n", vlan_members,
799 		untag_mask);
800 
801 	return ret;
802 }
803 
804 void cpsw_ale_set_unreg_mcast(struct cpsw_ale *ale, int unreg_mcast_mask,
805 			      bool add)
806 {
807 	u32 ale_entry[ALE_ENTRY_WORDS];
808 	int unreg_members = 0;
809 	int type, idx;
810 
811 	for (idx = 0; idx < ale->params.ale_entries; idx++) {
812 		cpsw_ale_read(ale, idx, ale_entry);
813 		type = cpsw_ale_get_entry_type(ale_entry);
814 		if (type != ALE_TYPE_VLAN)
815 			continue;
816 
817 		unreg_members =
818 			cpsw_ale_vlan_get_fld(ale, ale_entry,
819 					      ALE_ENT_VID_UNREG_MCAST_MSK);
820 		if (add)
821 			unreg_members |= unreg_mcast_mask;
822 		else
823 			unreg_members &= ~unreg_mcast_mask;
824 		cpsw_ale_vlan_set_fld(ale, ale_entry,
825 				      ALE_ENT_VID_UNREG_MCAST_MSK,
826 				      unreg_members);
827 		cpsw_ale_write(ale, idx, ale_entry);
828 	}
829 }
830 
831 static void cpsw_ale_vlan_set_unreg_mcast(struct cpsw_ale *ale, u32 *ale_entry,
832 					  int allmulti)
833 {
834 	int unreg_mcast;
835 
836 	unreg_mcast = cpsw_ale_vlan_get_fld(ale, ale_entry,
837 					    ALE_ENT_VID_UNREG_MCAST_MSK);
838 	if (allmulti)
839 		unreg_mcast |= ALE_PORT_HOST;
840 	else
841 		unreg_mcast &= ~ALE_PORT_HOST;
842 
843 	cpsw_ale_vlan_set_fld(ale, ale_entry,
844 			      ALE_ENT_VID_UNREG_MCAST_MSK, unreg_mcast);
845 }
846 
847 static void
848 cpsw_ale_vlan_set_unreg_mcast_idx(struct cpsw_ale *ale, u32 *ale_entry,
849 				  int allmulti)
850 {
851 	int unreg_mcast;
852 	int idx;
853 
854 	idx = cpsw_ale_vlan_get_fld(ale, ale_entry,
855 				    ALE_ENT_VID_UNREG_MCAST_IDX);
856 
857 	unreg_mcast = readl(ale->params.ale_regs + ALE_VLAN_MASK_MUX(idx));
858 
859 	if (allmulti)
860 		unreg_mcast |= ALE_PORT_HOST;
861 	else
862 		unreg_mcast &= ~ALE_PORT_HOST;
863 
864 	writel(unreg_mcast, ale->params.ale_regs + ALE_VLAN_MASK_MUX(idx));
865 }
866 
867 void cpsw_ale_set_allmulti(struct cpsw_ale *ale, int allmulti, int port)
868 {
869 	u32 ale_entry[ALE_ENTRY_WORDS];
870 	int type, idx;
871 
872 	for (idx = 0; idx < ale->params.ale_entries; idx++) {
873 		int vlan_members;
874 
875 		cpsw_ale_read(ale, idx, ale_entry);
876 		type = cpsw_ale_get_entry_type(ale_entry);
877 		if (type != ALE_TYPE_VLAN)
878 			continue;
879 
880 		vlan_members = cpsw_ale_vlan_get_fld(ale, ale_entry,
881 						     ALE_ENT_VID_MEMBER_LIST);
882 
883 		if (port != -1 && !(vlan_members & BIT(port)))
884 			continue;
885 
886 		if (!ale->params.nu_switch_ale)
887 			cpsw_ale_vlan_set_unreg_mcast(ale, ale_entry, allmulti);
888 		else
889 			cpsw_ale_vlan_set_unreg_mcast_idx(ale, ale_entry,
890 							  allmulti);
891 
892 		cpsw_ale_write(ale, idx, ale_entry);
893 	}
894 }
895 
896 struct ale_control_info {
897 	const char	*name;
898 	int		offset, port_offset;
899 	int		shift, port_shift;
900 	int		bits;
901 };
902 
903 static struct ale_control_info ale_controls[ALE_NUM_CONTROLS] = {
904 	[ALE_ENABLE]		= {
905 		.name		= "enable",
906 		.offset		= ALE_CONTROL,
907 		.port_offset	= 0,
908 		.shift		= 31,
909 		.port_shift	= 0,
910 		.bits		= 1,
911 	},
912 	[ALE_CLEAR]		= {
913 		.name		= "clear",
914 		.offset		= ALE_CONTROL,
915 		.port_offset	= 0,
916 		.shift		= 30,
917 		.port_shift	= 0,
918 		.bits		= 1,
919 	},
920 	[ALE_AGEOUT]		= {
921 		.name		= "ageout",
922 		.offset		= ALE_CONTROL,
923 		.port_offset	= 0,
924 		.shift		= 29,
925 		.port_shift	= 0,
926 		.bits		= 1,
927 	},
928 	[ALE_P0_UNI_FLOOD]	= {
929 		.name		= "port0_unicast_flood",
930 		.offset		= ALE_CONTROL,
931 		.port_offset	= 0,
932 		.shift		= 8,
933 		.port_shift	= 0,
934 		.bits		= 1,
935 	},
936 	[ALE_VLAN_NOLEARN]	= {
937 		.name		= "vlan_nolearn",
938 		.offset		= ALE_CONTROL,
939 		.port_offset	= 0,
940 		.shift		= 7,
941 		.port_shift	= 0,
942 		.bits		= 1,
943 	},
944 	[ALE_NO_PORT_VLAN]	= {
945 		.name		= "no_port_vlan",
946 		.offset		= ALE_CONTROL,
947 		.port_offset	= 0,
948 		.shift		= 6,
949 		.port_shift	= 0,
950 		.bits		= 1,
951 	},
952 	[ALE_OUI_DENY]		= {
953 		.name		= "oui_deny",
954 		.offset		= ALE_CONTROL,
955 		.port_offset	= 0,
956 		.shift		= 5,
957 		.port_shift	= 0,
958 		.bits		= 1,
959 	},
960 	[ALE_BYPASS]		= {
961 		.name		= "bypass",
962 		.offset		= ALE_CONTROL,
963 		.port_offset	= 0,
964 		.shift		= 4,
965 		.port_shift	= 0,
966 		.bits		= 1,
967 	},
968 	[ALE_RATE_LIMIT_TX]	= {
969 		.name		= "rate_limit_tx",
970 		.offset		= ALE_CONTROL,
971 		.port_offset	= 0,
972 		.shift		= 3,
973 		.port_shift	= 0,
974 		.bits		= 1,
975 	},
976 	[ALE_VLAN_AWARE]	= {
977 		.name		= "vlan_aware",
978 		.offset		= ALE_CONTROL,
979 		.port_offset	= 0,
980 		.shift		= 2,
981 		.port_shift	= 0,
982 		.bits		= 1,
983 	},
984 	[ALE_AUTH_ENABLE]	= {
985 		.name		= "auth_enable",
986 		.offset		= ALE_CONTROL,
987 		.port_offset	= 0,
988 		.shift		= 1,
989 		.port_shift	= 0,
990 		.bits		= 1,
991 	},
992 	[ALE_RATE_LIMIT]	= {
993 		.name		= "rate_limit",
994 		.offset		= ALE_CONTROL,
995 		.port_offset	= 0,
996 		.shift		= 0,
997 		.port_shift	= 0,
998 		.bits		= 1,
999 	},
1000 	[ALE_PORT_STATE]	= {
1001 		.name		= "port_state",
1002 		.offset		= ALE_PORTCTL,
1003 		.port_offset	= 4,
1004 		.shift		= 0,
1005 		.port_shift	= 0,
1006 		.bits		= 2,
1007 	},
1008 	[ALE_PORT_DROP_UNTAGGED] = {
1009 		.name		= "drop_untagged",
1010 		.offset		= ALE_PORTCTL,
1011 		.port_offset	= 4,
1012 		.shift		= 2,
1013 		.port_shift	= 0,
1014 		.bits		= 1,
1015 	},
1016 	[ALE_PORT_DROP_UNKNOWN_VLAN] = {
1017 		.name		= "drop_unknown",
1018 		.offset		= ALE_PORTCTL,
1019 		.port_offset	= 4,
1020 		.shift		= 3,
1021 		.port_shift	= 0,
1022 		.bits		= 1,
1023 	},
1024 	[ALE_PORT_NOLEARN]	= {
1025 		.name		= "nolearn",
1026 		.offset		= ALE_PORTCTL,
1027 		.port_offset	= 4,
1028 		.shift		= 4,
1029 		.port_shift	= 0,
1030 		.bits		= 1,
1031 	},
1032 	[ALE_PORT_NO_SA_UPDATE]	= {
1033 		.name		= "no_source_update",
1034 		.offset		= ALE_PORTCTL,
1035 		.port_offset	= 4,
1036 		.shift		= 5,
1037 		.port_shift	= 0,
1038 		.bits		= 1,
1039 	},
1040 	[ALE_PORT_MACONLY]	= {
1041 		.name		= "mac_only_port_mode",
1042 		.offset		= ALE_PORTCTL,
1043 		.port_offset	= 4,
1044 		.shift		= 11,
1045 		.port_shift	= 0,
1046 		.bits		= 1,
1047 	},
1048 	[ALE_PORT_MACONLY_CAF]	= {
1049 		.name		= "mac_only_port_caf",
1050 		.offset		= ALE_PORTCTL,
1051 		.port_offset	= 4,
1052 		.shift		= 13,
1053 		.port_shift	= 0,
1054 		.bits		= 1,
1055 	},
1056 	[ALE_PORT_MCAST_LIMIT]	= {
1057 		.name		= "mcast_limit",
1058 		.offset		= ALE_PORTCTL,
1059 		.port_offset	= 4,
1060 		.shift		= 16,
1061 		.port_shift	= 0,
1062 		.bits		= 8,
1063 	},
1064 	[ALE_PORT_BCAST_LIMIT]	= {
1065 		.name		= "bcast_limit",
1066 		.offset		= ALE_PORTCTL,
1067 		.port_offset	= 4,
1068 		.shift		= 24,
1069 		.port_shift	= 0,
1070 		.bits		= 8,
1071 	},
1072 	[ALE_PORT_UNKNOWN_VLAN_MEMBER] = {
1073 		.name		= "unknown_vlan_member",
1074 		.offset		= ALE_UNKNOWNVLAN,
1075 		.port_offset	= 0,
1076 		.shift		= 0,
1077 		.port_shift	= 0,
1078 		.bits		= 6,
1079 	},
1080 	[ALE_PORT_UNKNOWN_MCAST_FLOOD] = {
1081 		.name		= "unknown_mcast_flood",
1082 		.offset		= ALE_UNKNOWNVLAN,
1083 		.port_offset	= 0,
1084 		.shift		= 8,
1085 		.port_shift	= 0,
1086 		.bits		= 6,
1087 	},
1088 	[ALE_PORT_UNKNOWN_REG_MCAST_FLOOD] = {
1089 		.name		= "unknown_reg_flood",
1090 		.offset		= ALE_UNKNOWNVLAN,
1091 		.port_offset	= 0,
1092 		.shift		= 16,
1093 		.port_shift	= 0,
1094 		.bits		= 6,
1095 	},
1096 	[ALE_PORT_UNTAGGED_EGRESS] = {
1097 		.name		= "untagged_egress",
1098 		.offset		= ALE_UNKNOWNVLAN,
1099 		.port_offset	= 0,
1100 		.shift		= 24,
1101 		.port_shift	= 0,
1102 		.bits		= 6,
1103 	},
1104 	[ALE_DEFAULT_THREAD_ID] = {
1105 		.name		= "default_thread_id",
1106 		.offset		= AM65_CPSW_ALE_THREAD_DEF_REG,
1107 		.port_offset	= 0,
1108 		.shift		= 0,
1109 		.port_shift	= 0,
1110 		.bits		= 6,
1111 	},
1112 	[ALE_DEFAULT_THREAD_ENABLE] = {
1113 		.name		= "default_thread_id_enable",
1114 		.offset		= AM65_CPSW_ALE_THREAD_DEF_REG,
1115 		.port_offset	= 0,
1116 		.shift		= 15,
1117 		.port_shift	= 0,
1118 		.bits		= 1,
1119 	},
1120 };
1121 
1122 int cpsw_ale_control_set(struct cpsw_ale *ale, int port, int control,
1123 			 int value)
1124 {
1125 	const struct ale_control_info *info;
1126 	int offset, shift;
1127 	u32 tmp, mask;
1128 
1129 	if (control < 0 || control >= ARRAY_SIZE(ale_controls))
1130 		return -EINVAL;
1131 
1132 	info = &ale_controls[control];
1133 	if (info->port_offset == 0 && info->port_shift == 0)
1134 		port = 0; /* global, port is a dont care */
1135 
1136 	if (port < 0 || port >= ale->params.ale_ports)
1137 		return -EINVAL;
1138 
1139 	mask = BITMASK(info->bits);
1140 	if (value & ~mask)
1141 		return -EINVAL;
1142 
1143 	offset = info->offset + (port * info->port_offset);
1144 	shift  = info->shift  + (port * info->port_shift);
1145 
1146 	tmp = readl_relaxed(ale->params.ale_regs + offset);
1147 	tmp = (tmp & ~(mask << shift)) | (value << shift);
1148 	writel_relaxed(tmp, ale->params.ale_regs + offset);
1149 
1150 	return 0;
1151 }
1152 
1153 int cpsw_ale_control_get(struct cpsw_ale *ale, int port, int control)
1154 {
1155 	const struct ale_control_info *info;
1156 	int offset, shift;
1157 	u32 tmp;
1158 
1159 	if (control < 0 || control >= ARRAY_SIZE(ale_controls))
1160 		return -EINVAL;
1161 
1162 	info = &ale_controls[control];
1163 	if (info->port_offset == 0 && info->port_shift == 0)
1164 		port = 0; /* global, port is a dont care */
1165 
1166 	if (port < 0 || port >= ale->params.ale_ports)
1167 		return -EINVAL;
1168 
1169 	offset = info->offset + (port * info->port_offset);
1170 	shift  = info->shift  + (port * info->port_shift);
1171 
1172 	tmp = readl_relaxed(ale->params.ale_regs + offset) >> shift;
1173 	return tmp & BITMASK(info->bits);
1174 }
1175 
1176 int cpsw_ale_rx_ratelimit_mc(struct cpsw_ale *ale, int port, unsigned int ratelimit_pps)
1177 
1178 {
1179 	int val = ratelimit_pps / ALE_RATE_LIMIT_MIN_PPS;
1180 	u32 remainder = ratelimit_pps % ALE_RATE_LIMIT_MIN_PPS;
1181 
1182 	if (ratelimit_pps && !val) {
1183 		dev_err(ale->params.dev, "ALE MC port:%d ratelimit min value 1000pps\n", port);
1184 		return -EINVAL;
1185 	}
1186 
1187 	if (remainder)
1188 		dev_info(ale->params.dev, "ALE port:%d MC ratelimit set to %dpps (requested %d)\n",
1189 			 port, ratelimit_pps - remainder, ratelimit_pps);
1190 
1191 	cpsw_ale_control_set(ale, port, ALE_PORT_MCAST_LIMIT, val);
1192 
1193 	dev_dbg(ale->params.dev, "ALE port:%d MC ratelimit set %d\n",
1194 		port, val * ALE_RATE_LIMIT_MIN_PPS);
1195 	return 0;
1196 }
1197 
1198 int cpsw_ale_rx_ratelimit_bc(struct cpsw_ale *ale, int port, unsigned int ratelimit_pps)
1199 
1200 {
1201 	int val = ratelimit_pps / ALE_RATE_LIMIT_MIN_PPS;
1202 	u32 remainder = ratelimit_pps % ALE_RATE_LIMIT_MIN_PPS;
1203 
1204 	if (ratelimit_pps && !val) {
1205 		dev_err(ale->params.dev, "ALE port:%d BC ratelimit min value 1000pps\n", port);
1206 		return -EINVAL;
1207 	}
1208 
1209 	if (remainder)
1210 		dev_info(ale->params.dev, "ALE port:%d BC ratelimit set to %dpps (requested %d)\n",
1211 			 port, ratelimit_pps - remainder, ratelimit_pps);
1212 
1213 	cpsw_ale_control_set(ale, port, ALE_PORT_BCAST_LIMIT, val);
1214 
1215 	dev_dbg(ale->params.dev, "ALE port:%d BC ratelimit set %d\n",
1216 		port, val * ALE_RATE_LIMIT_MIN_PPS);
1217 	return 0;
1218 }
1219 
1220 static void cpsw_ale_timer(struct timer_list *t)
1221 {
1222 	struct cpsw_ale *ale = from_timer(ale, t, timer);
1223 
1224 	cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
1225 
1226 	if (ale->ageout) {
1227 		ale->timer.expires = jiffies + ale->ageout;
1228 		add_timer(&ale->timer);
1229 	}
1230 }
1231 
1232 static void cpsw_ale_hw_aging_timer_start(struct cpsw_ale *ale)
1233 {
1234 	u32 aging_timer;
1235 
1236 	aging_timer = ale->params.bus_freq / 1000000;
1237 	aging_timer *= ale->params.ale_ageout;
1238 
1239 	if (aging_timer & ~ALE_AGING_TIMER_MASK) {
1240 		aging_timer = ALE_AGING_TIMER_MASK;
1241 		dev_warn(ale->params.dev,
1242 			 "ALE aging timer overflow, set to max\n");
1243 	}
1244 
1245 	writel(aging_timer, ale->params.ale_regs + ALE_AGING_TIMER);
1246 }
1247 
1248 static void cpsw_ale_hw_aging_timer_stop(struct cpsw_ale *ale)
1249 {
1250 	writel(0, ale->params.ale_regs + ALE_AGING_TIMER);
1251 }
1252 
1253 static void cpsw_ale_aging_start(struct cpsw_ale *ale)
1254 {
1255 	if (!ale->params.ale_ageout)
1256 		return;
1257 
1258 	if (ale->features & CPSW_ALE_F_HW_AUTOAGING) {
1259 		cpsw_ale_hw_aging_timer_start(ale);
1260 		return;
1261 	}
1262 
1263 	timer_setup(&ale->timer, cpsw_ale_timer, 0);
1264 	ale->timer.expires = jiffies + ale->ageout;
1265 	add_timer(&ale->timer);
1266 }
1267 
1268 static void cpsw_ale_aging_stop(struct cpsw_ale *ale)
1269 {
1270 	if (!ale->params.ale_ageout)
1271 		return;
1272 
1273 	if (ale->features & CPSW_ALE_F_HW_AUTOAGING) {
1274 		cpsw_ale_hw_aging_timer_stop(ale);
1275 		return;
1276 	}
1277 
1278 	del_timer_sync(&ale->timer);
1279 }
1280 
1281 void cpsw_ale_start(struct cpsw_ale *ale)
1282 {
1283 	unsigned long ale_prescale;
1284 
1285 	/* configure Broadcast and Multicast Rate Limit
1286 	 * number_of_packets = (Fclk / ALE_PRESCALE) * port.BCAST/MCAST_LIMIT
1287 	 * ALE_PRESCALE width is 19bit and min value 0x10
1288 	 * port.BCAST/MCAST_LIMIT is 8bit
1289 	 *
1290 	 * For multi port configuration support the ALE_PRESCALE is configured to 1ms interval,
1291 	 * which allows to configure port.BCAST/MCAST_LIMIT per port and achieve:
1292 	 * min number_of_packets = 1000 when port.BCAST/MCAST_LIMIT = 1
1293 	 * max number_of_packets = 1000 * 255 = 255000 when port.BCAST/MCAST_LIMIT = 0xFF
1294 	 */
1295 	ale_prescale = ale->params.bus_freq / ALE_RATE_LIMIT_MIN_PPS;
1296 	writel((u32)ale_prescale, ale->params.ale_regs + ALE_PRESCALE);
1297 
1298 	/* Allow MC/BC rate limiting globally.
1299 	 * The actual Rate Limit cfg enabled per-port by port.BCAST/MCAST_LIMIT
1300 	 */
1301 	cpsw_ale_control_set(ale, 0, ALE_RATE_LIMIT, 1);
1302 
1303 	cpsw_ale_control_set(ale, 0, ALE_ENABLE, 1);
1304 	cpsw_ale_control_set(ale, 0, ALE_CLEAR, 1);
1305 
1306 	cpsw_ale_aging_start(ale);
1307 }
1308 
1309 void cpsw_ale_stop(struct cpsw_ale *ale)
1310 {
1311 	cpsw_ale_aging_stop(ale);
1312 	cpsw_ale_control_set(ale, 0, ALE_CLEAR, 1);
1313 	cpsw_ale_control_set(ale, 0, ALE_ENABLE, 0);
1314 }
1315 
1316 static const struct reg_field ale_fields_cpsw[] = {
1317 	/* CPSW_ALE_IDVER_REG */
1318 	[MINOR_VER]	= REG_FIELD(ALE_IDVER, 0, 7),
1319 	[MAJOR_VER]	= REG_FIELD(ALE_IDVER, 8, 15),
1320 };
1321 
1322 static const struct reg_field ale_fields_cpsw_nu[] = {
1323 	/* CPSW_ALE_IDVER_REG */
1324 	[MINOR_VER]	= REG_FIELD(ALE_IDVER, 0, 7),
1325 	[MAJOR_VER]	= REG_FIELD(ALE_IDVER, 8, 10),
1326 	/* CPSW_ALE_STATUS_REG */
1327 	[ALE_ENTRIES]	= REG_FIELD(ALE_STATUS, 0, 7),
1328 	[ALE_POLICERS]	= REG_FIELD(ALE_STATUS, 8, 15),
1329 	/* CPSW_ALE_POLICER_PORT_OUI_REG */
1330 	[POL_PORT_MEN]	= REG_FIELD(ALE_POLICER_PORT_OUI, 31, 31),
1331 	[POL_TRUNK_ID]	= REG_FIELD(ALE_POLICER_PORT_OUI, 30, 30),
1332 	[POL_PORT_NUM]	= REG_FIELD(ALE_POLICER_PORT_OUI, 25, 25),
1333 	[POL_PRI_MEN]	= REG_FIELD(ALE_POLICER_PORT_OUI, 19, 19),
1334 	[POL_PRI_VAL]	= REG_FIELD(ALE_POLICER_PORT_OUI, 16, 18),
1335 	[POL_OUI_MEN]	= REG_FIELD(ALE_POLICER_PORT_OUI, 15, 15),
1336 	[POL_OUI_INDEX]	= REG_FIELD(ALE_POLICER_PORT_OUI, 0, 5),
1337 
1338 	/* CPSW_ALE_POLICER_DA_SA_REG */
1339 	[POL_DST_MEN]	= REG_FIELD(ALE_POLICER_DA_SA, 31, 31),
1340 	[POL_DST_INDEX]	= REG_FIELD(ALE_POLICER_DA_SA, 16, 21),
1341 	[POL_SRC_MEN]	= REG_FIELD(ALE_POLICER_DA_SA, 15, 15),
1342 	[POL_SRC_INDEX]	= REG_FIELD(ALE_POLICER_DA_SA, 0, 5),
1343 
1344 	/* CPSW_ALE_POLICER_VLAN_REG */
1345 	[POL_OVLAN_MEN]		= REG_FIELD(ALE_POLICER_VLAN, 31, 31),
1346 	[POL_OVLAN_INDEX]	= REG_FIELD(ALE_POLICER_VLAN, 16, 21),
1347 	[POL_IVLAN_MEN]		= REG_FIELD(ALE_POLICER_VLAN, 15, 15),
1348 	[POL_IVLAN_INDEX]	= REG_FIELD(ALE_POLICER_VLAN, 0, 5),
1349 
1350 	/* CPSW_ALE_POLICER_ETHERTYPE_IPSA_REG */
1351 	[POL_ETHERTYPE_MEN]	= REG_FIELD(ALE_POLICER_ETHERTYPE_IPSA, 31, 31),
1352 	[POL_ETHERTYPE_INDEX]	= REG_FIELD(ALE_POLICER_ETHERTYPE_IPSA, 16, 21),
1353 	[POL_IPSRC_MEN]		= REG_FIELD(ALE_POLICER_ETHERTYPE_IPSA, 15, 15),
1354 	[POL_IPSRC_INDEX]	= REG_FIELD(ALE_POLICER_ETHERTYPE_IPSA, 0, 5),
1355 
1356 	/* CPSW_ALE_POLICER_IPDA_REG */
1357 	[POL_IPDST_MEN]		= REG_FIELD(ALE_POLICER_IPDA, 31, 31),
1358 	[POL_IPDST_INDEX]	= REG_FIELD(ALE_POLICER_IPDA, 16, 21),
1359 
1360 	/* CPSW_ALE_POLICER_TBL_CTL_REG */
1361 	/**
1362 	 * REG_FIELDS not defined for this as fields cannot be correctly
1363 	 * used independently
1364 	 */
1365 
1366 	/* CPSW_ALE_POLICER_CTL_REG */
1367 	[POL_EN]		= REG_FIELD(ALE_POLICER_CTL, 31, 31),
1368 	[POL_RED_DROP_EN]	= REG_FIELD(ALE_POLICER_CTL, 29, 29),
1369 	[POL_YELLOW_DROP_EN]	= REG_FIELD(ALE_POLICER_CTL, 28, 28),
1370 	[POL_YELLOW_THRESH]	= REG_FIELD(ALE_POLICER_CTL, 24, 26),
1371 	[POL_POL_MATCH_MODE]	= REG_FIELD(ALE_POLICER_CTL, 22, 23),
1372 	[POL_PRIORITY_THREAD_EN] = REG_FIELD(ALE_POLICER_CTL, 21, 21),
1373 	[POL_MAC_ONLY_DEF_DIS]	= REG_FIELD(ALE_POLICER_CTL, 20, 20),
1374 
1375 	/* CPSW_ALE_POLICER_TEST_CTL_REG */
1376 	[POL_TEST_CLR]		= REG_FIELD(ALE_POLICER_TEST_CTL, 31, 31),
1377 	[POL_TEST_CLR_RED]	= REG_FIELD(ALE_POLICER_TEST_CTL, 30, 30),
1378 	[POL_TEST_CLR_YELLOW]	= REG_FIELD(ALE_POLICER_TEST_CTL, 29, 29),
1379 	[POL_TEST_CLR_SELECTED]	= REG_FIELD(ALE_POLICER_TEST_CTL, 28, 28),
1380 	[POL_TEST_ENTRY]	= REG_FIELD(ALE_POLICER_TEST_CTL, 0, 4),
1381 
1382 	/* CPSW_ALE_POLICER_HIT_STATUS_REG */
1383 	[POL_STATUS_HIT]	= REG_FIELD(ALE_POLICER_HIT_STATUS, 31, 31),
1384 	[POL_STATUS_HIT_RED]	= REG_FIELD(ALE_POLICER_HIT_STATUS, 30, 30),
1385 	[POL_STATUS_HIT_YELLOW]	= REG_FIELD(ALE_POLICER_HIT_STATUS, 29, 29),
1386 
1387 	/* CPSW_ALE_THREAD_DEF_REG */
1388 	[ALE_DEFAULT_THREAD_EN]		= REG_FIELD(ALE_THREAD_DEF, 15, 15),
1389 	[ALE_DEFAULT_THREAD_VAL]	= REG_FIELD(ALE_THREAD_DEF, 0, 5),
1390 
1391 	/* CPSW_ALE_THREAD_CTL_REG */
1392 	[ALE_THREAD_CLASS_INDEX] = REG_FIELD(ALE_THREAD_CTL, 0, 4),
1393 
1394 	/* CPSW_ALE_THREAD_VAL_REG */
1395 	[ALE_THREAD_ENABLE]	= REG_FIELD(ALE_THREAD_VAL, 15, 15),
1396 	[ALE_THREAD_VALUE]	= REG_FIELD(ALE_THREAD_VAL, 0, 5),
1397 };
1398 
1399 static const struct cpsw_ale_dev_id cpsw_ale_id_match[] = {
1400 	{
1401 		/* am3/4/5, dra7. dm814x, 66ak2hk-gbe */
1402 		.dev_id = "cpsw",
1403 		.tbl_entries = 1024,
1404 		.reg_fields = ale_fields_cpsw,
1405 		.num_fields = ARRAY_SIZE(ale_fields_cpsw),
1406 		.vlan_entry_tbl = vlan_entry_cpsw,
1407 	},
1408 	{
1409 		/* 66ak2h_xgbe */
1410 		.dev_id = "66ak2h-xgbe",
1411 		.tbl_entries = 2048,
1412 		.reg_fields = ale_fields_cpsw,
1413 		.num_fields = ARRAY_SIZE(ale_fields_cpsw),
1414 		.vlan_entry_tbl = vlan_entry_cpsw,
1415 	},
1416 	{
1417 		.dev_id = "66ak2el",
1418 		.features = CPSW_ALE_F_STATUS_REG,
1419 		.reg_fields = ale_fields_cpsw_nu,
1420 		.num_fields = ARRAY_SIZE(ale_fields_cpsw_nu),
1421 		.nu_switch_ale = true,
1422 		.vlan_entry_tbl = vlan_entry_nu,
1423 	},
1424 	{
1425 		.dev_id = "66ak2g",
1426 		.features = CPSW_ALE_F_STATUS_REG,
1427 		.tbl_entries = 64,
1428 		.reg_fields = ale_fields_cpsw_nu,
1429 		.num_fields = ARRAY_SIZE(ale_fields_cpsw_nu),
1430 		.nu_switch_ale = true,
1431 		.vlan_entry_tbl = vlan_entry_nu,
1432 	},
1433 	{
1434 		.dev_id = "am65x-cpsw2g",
1435 		.features = CPSW_ALE_F_STATUS_REG | CPSW_ALE_F_HW_AUTOAGING,
1436 		.tbl_entries = 64,
1437 		.reg_fields = ale_fields_cpsw_nu,
1438 		.num_fields = ARRAY_SIZE(ale_fields_cpsw_nu),
1439 		.nu_switch_ale = true,
1440 		.vlan_entry_tbl = vlan_entry_nu,
1441 	},
1442 	{
1443 		.dev_id = "j721e-cpswxg",
1444 		.features = CPSW_ALE_F_STATUS_REG | CPSW_ALE_F_HW_AUTOAGING,
1445 		.reg_fields = ale_fields_cpsw_nu,
1446 		.num_fields = ARRAY_SIZE(ale_fields_cpsw_nu),
1447 		.vlan_entry_tbl = vlan_entry_k3_cpswxg,
1448 	},
1449 	{
1450 		.dev_id = "am64-cpswxg",
1451 		.features = CPSW_ALE_F_STATUS_REG | CPSW_ALE_F_HW_AUTOAGING,
1452 		.reg_fields = ale_fields_cpsw_nu,
1453 		.num_fields = ARRAY_SIZE(ale_fields_cpsw_nu),
1454 		.vlan_entry_tbl = vlan_entry_k3_cpswxg,
1455 		.tbl_entries = 512,
1456 	},
1457 	{ },
1458 };
1459 
1460 static const struct
1461 cpsw_ale_dev_id *cpsw_ale_match_id(const struct cpsw_ale_dev_id *id,
1462 				   const char *dev_id)
1463 {
1464 	if (!dev_id)
1465 		return NULL;
1466 
1467 	while (id->dev_id) {
1468 		if (strcmp(dev_id, id->dev_id) == 0)
1469 			return id;
1470 		id++;
1471 	}
1472 	return NULL;
1473 }
1474 
1475 static const struct regmap_config ale_regmap_cfg = {
1476 	.reg_bits = 32,
1477 	.val_bits = 32,
1478 	.reg_stride = 4,
1479 	.name = "cpsw-ale",
1480 };
1481 
1482 static int cpsw_ale_regfield_init(struct cpsw_ale *ale)
1483 {
1484 	const struct reg_field *reg_fields = ale->params.reg_fields;
1485 	struct device *dev = ale->params.dev;
1486 	struct regmap *regmap = ale->regmap;
1487 	int i;
1488 
1489 	for (i = 0; i < ale->params.num_fields; i++) {
1490 		ale->fields[i] = devm_regmap_field_alloc(dev, regmap,
1491 							 reg_fields[i]);
1492 		if (IS_ERR(ale->fields[i])) {
1493 			dev_err(dev, "Unable to allocate regmap field %d\n", i);
1494 			return PTR_ERR(ale->fields[i]);
1495 		}
1496 	}
1497 
1498 	return 0;
1499 }
1500 
1501 struct cpsw_ale *cpsw_ale_create(struct cpsw_ale_params *params)
1502 {
1503 	u32 ale_entries, rev_major, rev_minor, policers;
1504 	const struct cpsw_ale_dev_id *ale_dev_id;
1505 	struct cpsw_ale *ale;
1506 	int ret;
1507 
1508 	ale_dev_id = cpsw_ale_match_id(cpsw_ale_id_match, params->dev_id);
1509 	if (!ale_dev_id)
1510 		return ERR_PTR(-EINVAL);
1511 
1512 	params->ale_entries = ale_dev_id->tbl_entries;
1513 	params->nu_switch_ale = ale_dev_id->nu_switch_ale;
1514 	params->reg_fields = ale_dev_id->reg_fields;
1515 	params->num_fields = ale_dev_id->num_fields;
1516 
1517 	ale = devm_kzalloc(params->dev, sizeof(*ale), GFP_KERNEL);
1518 	if (!ale)
1519 		return ERR_PTR(-ENOMEM);
1520 	ale->regmap = devm_regmap_init_mmio(params->dev, params->ale_regs,
1521 					    &ale_regmap_cfg);
1522 	if (IS_ERR(ale->regmap)) {
1523 		dev_err(params->dev, "Couldn't create CPSW ALE regmap\n");
1524 		return ERR_PTR(-ENOMEM);
1525 	}
1526 
1527 	ale->params = *params;
1528 	ret = cpsw_ale_regfield_init(ale);
1529 	if (ret)
1530 		return ERR_PTR(ret);
1531 
1532 	ale->p0_untag_vid_mask = devm_bitmap_zalloc(params->dev, VLAN_N_VID,
1533 						    GFP_KERNEL);
1534 	if (!ale->p0_untag_vid_mask)
1535 		return ERR_PTR(-ENOMEM);
1536 
1537 	ale->ageout = ale->params.ale_ageout * HZ;
1538 	ale->features = ale_dev_id->features;
1539 	ale->vlan_entry_tbl = ale_dev_id->vlan_entry_tbl;
1540 
1541 	regmap_field_read(ale->fields[MINOR_VER], &rev_minor);
1542 	regmap_field_read(ale->fields[MAJOR_VER], &rev_major);
1543 	ale->version = rev_major << 8 | rev_minor;
1544 	dev_info(ale->params.dev, "initialized cpsw ale version %d.%d\n",
1545 		 rev_major, rev_minor);
1546 
1547 	if (ale->features & CPSW_ALE_F_STATUS_REG &&
1548 	    !ale->params.ale_entries) {
1549 		regmap_field_read(ale->fields[ALE_ENTRIES], &ale_entries);
1550 		/* ALE available on newer NetCP switches has introduced
1551 		 * a register, ALE_STATUS, to indicate the size of ALE
1552 		 * table which shows the size as a multiple of 1024 entries.
1553 		 * For these, params.ale_entries will be set to zero. So
1554 		 * read the register and update the value of ale_entries.
1555 		 * return error if ale_entries is zero in ALE_STATUS.
1556 		 */
1557 		if (!ale_entries)
1558 			return ERR_PTR(-EINVAL);
1559 
1560 		ale_entries *= ALE_TABLE_SIZE_MULTIPLIER;
1561 		ale->params.ale_entries = ale_entries;
1562 	}
1563 
1564 	if (ale->features & CPSW_ALE_F_STATUS_REG &&
1565 	    !ale->params.num_policers) {
1566 		regmap_field_read(ale->fields[ALE_POLICERS], &policers);
1567 		if (!policers)
1568 			return ERR_PTR(-EINVAL);
1569 
1570 		policers *= ALE_POLICER_SIZE_MULTIPLIER;
1571 		ale->params.num_policers = policers;
1572 	}
1573 
1574 	dev_info(ale->params.dev,
1575 		 "ALE Table size %ld, Policers %ld\n", ale->params.ale_entries,
1576 		 ale->params.num_policers);
1577 
1578 	/* set default bits for existing h/w */
1579 	ale->port_mask_bits = ale->params.ale_ports;
1580 	ale->port_num_bits = order_base_2(ale->params.ale_ports);
1581 	ale->vlan_field_bits = ale->params.ale_ports;
1582 
1583 	/* Set defaults override for ALE on NetCP NU switch and for version
1584 	 * 1R3
1585 	 */
1586 	if (ale->params.nu_switch_ale) {
1587 		/* Separate registers for unknown vlan configuration.
1588 		 * Also there are N bits, where N is number of ale
1589 		 * ports and shift value should be 0
1590 		 */
1591 		ale_controls[ALE_PORT_UNKNOWN_VLAN_MEMBER].bits =
1592 					ale->params.ale_ports;
1593 		ale_controls[ALE_PORT_UNKNOWN_VLAN_MEMBER].offset =
1594 					ALE_UNKNOWNVLAN_MEMBER;
1595 		ale_controls[ALE_PORT_UNKNOWN_MCAST_FLOOD].bits =
1596 					ale->params.ale_ports;
1597 		ale_controls[ALE_PORT_UNKNOWN_MCAST_FLOOD].shift = 0;
1598 		ale_controls[ALE_PORT_UNKNOWN_MCAST_FLOOD].offset =
1599 					ALE_UNKNOWNVLAN_UNREG_MCAST_FLOOD;
1600 		ale_controls[ALE_PORT_UNKNOWN_REG_MCAST_FLOOD].bits =
1601 					ale->params.ale_ports;
1602 		ale_controls[ALE_PORT_UNKNOWN_REG_MCAST_FLOOD].shift = 0;
1603 		ale_controls[ALE_PORT_UNKNOWN_REG_MCAST_FLOOD].offset =
1604 					ALE_UNKNOWNVLAN_REG_MCAST_FLOOD;
1605 		ale_controls[ALE_PORT_UNTAGGED_EGRESS].bits =
1606 					ale->params.ale_ports;
1607 		ale_controls[ALE_PORT_UNTAGGED_EGRESS].shift = 0;
1608 		ale_controls[ALE_PORT_UNTAGGED_EGRESS].offset =
1609 					ALE_UNKNOWNVLAN_FORCE_UNTAG_EGRESS;
1610 	}
1611 
1612 	cpsw_ale_control_set(ale, 0, ALE_CLEAR, 1);
1613 	return ale;
1614 }
1615 
1616 void cpsw_ale_dump(struct cpsw_ale *ale, u32 *data)
1617 {
1618 	int i;
1619 
1620 	for (i = 0; i < ale->params.ale_entries; i++) {
1621 		cpsw_ale_read(ale, i, data);
1622 		data += ALE_ENTRY_WORDS;
1623 	}
1624 }
1625 
1626 void cpsw_ale_restore(struct cpsw_ale *ale, u32 *data)
1627 {
1628 	int i;
1629 
1630 	for (i = 0; i < ale->params.ale_entries; i++) {
1631 		cpsw_ale_write(ale, i, data);
1632 		data += ALE_ENTRY_WORDS;
1633 	}
1634 }
1635 
1636 u32 cpsw_ale_get_num_entries(struct cpsw_ale *ale)
1637 {
1638 	return ale ? ale->params.ale_entries : 0;
1639 }
1640 
1641 /* Reads the specified policer index into ALE POLICER registers */
1642 static void cpsw_ale_policer_read_idx(struct cpsw_ale *ale, u32 idx)
1643 {
1644 	idx &= ALE_POLICER_TBL_INDEX_MASK;
1645 	writel_relaxed(idx, ale->params.ale_regs + ALE_POLICER_TBL_CTL);
1646 }
1647 
1648 /* Writes the ALE POLICER registers into the specified policer index */
1649 static void cpsw_ale_policer_write_idx(struct cpsw_ale *ale, u32 idx)
1650 {
1651 	idx &= ALE_POLICER_TBL_INDEX_MASK;
1652 	idx |= ALE_POLICER_TBL_WRITE_ENABLE;
1653 	writel_relaxed(idx, ale->params.ale_regs + ALE_POLICER_TBL_CTL);
1654 }
1655 
1656 /* enables/disables the custom thread value for the specified policer index */
1657 static void cpsw_ale_policer_thread_idx_enable(struct cpsw_ale *ale, u32 idx,
1658 					       u32 thread_id, bool enable)
1659 {
1660 	regmap_field_write(ale->fields[ALE_THREAD_CLASS_INDEX], idx);
1661 	regmap_field_write(ale->fields[ALE_THREAD_VALUE], thread_id);
1662 	regmap_field_write(ale->fields[ALE_THREAD_ENABLE], enable ? 1 : 0);
1663 }
1664 
1665 /* Disable all policer entries and thread mappings */
1666 static void cpsw_ale_policer_reset(struct cpsw_ale *ale)
1667 {
1668 	int i;
1669 
1670 	for (i = 0; i < ale->params.num_policers ; i++) {
1671 		cpsw_ale_policer_read_idx(ale, i);
1672 		regmap_field_write(ale->fields[POL_PORT_MEN], 0);
1673 		regmap_field_write(ale->fields[POL_PRI_MEN], 0);
1674 		regmap_field_write(ale->fields[POL_OUI_MEN], 0);
1675 		regmap_field_write(ale->fields[POL_DST_MEN], 0);
1676 		regmap_field_write(ale->fields[POL_SRC_MEN], 0);
1677 		regmap_field_write(ale->fields[POL_OVLAN_MEN], 0);
1678 		regmap_field_write(ale->fields[POL_IVLAN_MEN], 0);
1679 		regmap_field_write(ale->fields[POL_ETHERTYPE_MEN], 0);
1680 		regmap_field_write(ale->fields[POL_IPSRC_MEN], 0);
1681 		regmap_field_write(ale->fields[POL_IPDST_MEN], 0);
1682 		regmap_field_write(ale->fields[POL_EN], 0);
1683 		regmap_field_write(ale->fields[POL_RED_DROP_EN], 0);
1684 		regmap_field_write(ale->fields[POL_YELLOW_DROP_EN], 0);
1685 		regmap_field_write(ale->fields[POL_PRIORITY_THREAD_EN], 0);
1686 
1687 		cpsw_ale_policer_thread_idx_enable(ale, i, 0, 0);
1688 	}
1689 }
1690 
1691 /* Default classifier is to map 8 user priorities to N receive channels */
1692 void cpsw_ale_classifier_setup_default(struct cpsw_ale *ale, int num_rx_ch)
1693 {
1694 	int pri, idx;
1695 	/* IEEE802.1D-2004, Standard for Local and metropolitan area networks
1696 	 *    Table G-2 - Traffic type acronyms
1697 	 *    Table G-3 - Defining traffic types
1698 	 * User priority values 1 and 2 effectively communicate a lower
1699 	 * priority than 0. In the below table 0 is assigned to higher priority
1700 	 * thread than 1 and 2 wherever possible.
1701 	 * The below table maps which thread the user priority needs to be
1702 	 * sent to for a given number of threads (RX channels). Upper threads
1703 	 * have higher priority.
1704 	 * e.g. if number of threads is 8 then user priority 0 will map to
1705 	 * pri_thread_map[8-1][0] i.e. thread 2
1706 	 */
1707 	int pri_thread_map[8][8] = {	{ 0, 0, 0, 0, 0, 0, 0, 0, },
1708 					{ 0, 0, 0, 0, 1, 1, 1, 1, },
1709 					{ 0, 0, 0, 0, 1, 1, 2, 2, },
1710 					{ 1, 0, 0, 1, 2, 2, 3, 3, },
1711 					{ 1, 0, 0, 1, 2, 3, 4, 4, },
1712 					{ 1, 0, 0, 2, 3, 4, 5, 5, },
1713 					{ 1, 0, 0, 2, 3, 4, 5, 6, },
1714 					{ 2, 0, 1, 3, 4, 5, 6, 7, } };
1715 
1716 	cpsw_ale_policer_reset(ale);
1717 
1718 	/* use first 8 classifiers to map 8 (DSCP/PCP) priorities to channels */
1719 	for (pri = 0; pri < 8; pri++) {
1720 		idx = pri;
1721 
1722 		/* Classifier 'idx' match on priority 'pri' */
1723 		cpsw_ale_policer_read_idx(ale, idx);
1724 		regmap_field_write(ale->fields[POL_PRI_VAL], pri);
1725 		regmap_field_write(ale->fields[POL_PRI_MEN], 1);
1726 		cpsw_ale_policer_write_idx(ale, idx);
1727 
1728 		/* Map Classifier 'idx' to thread provided by the map */
1729 		cpsw_ale_policer_thread_idx_enable(ale, idx,
1730 						   pri_thread_map[num_rx_ch - 1][pri],
1731 						   1);
1732 	}
1733 }
1734