xref: /linux/drivers/net/ethernet/ti/cpsw.c (revision fe8ecccc10b3adc071de05ca7af728ca1a4ac9aa)
1 /*
2  * Texas Instruments Ethernet Switch Driver
3  *
4  * Copyright (C) 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38 #include <linux/kmemleak.h>
39 #include <linux/sys_soc.h>
40 
41 #include <linux/pinctrl/consumer.h>
42 #include <net/pkt_cls.h>
43 
44 #include "cpsw.h"
45 #include "cpsw_ale.h"
46 #include "cpts.h"
47 #include "davinci_cpdma.h"
48 
49 #include <net/pkt_sched.h>
50 
51 #define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
52 			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
53 			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
54 			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
55 			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
56 			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
57 			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
58 			 NETIF_MSG_RX_STATUS)
59 
60 #define cpsw_info(priv, type, format, ...)		\
61 do {								\
62 	if (netif_msg_##type(priv) && net_ratelimit())		\
63 		dev_info(priv->dev, format, ## __VA_ARGS__);	\
64 } while (0)
65 
66 #define cpsw_err(priv, type, format, ...)		\
67 do {								\
68 	if (netif_msg_##type(priv) && net_ratelimit())		\
69 		dev_err(priv->dev, format, ## __VA_ARGS__);	\
70 } while (0)
71 
72 #define cpsw_dbg(priv, type, format, ...)		\
73 do {								\
74 	if (netif_msg_##type(priv) && net_ratelimit())		\
75 		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
76 } while (0)
77 
78 #define cpsw_notice(priv, type, format, ...)		\
79 do {								\
80 	if (netif_msg_##type(priv) && net_ratelimit())		\
81 		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
82 } while (0)
83 
84 #define ALE_ALL_PORTS		0x7
85 
86 #define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
87 #define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
88 #define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)
89 
90 #define CPSW_VERSION_1		0x19010a
91 #define CPSW_VERSION_2		0x19010c
92 #define CPSW_VERSION_3		0x19010f
93 #define CPSW_VERSION_4		0x190112
94 
95 #define HOST_PORT_NUM		0
96 #define CPSW_ALE_PORTS_NUM	3
97 #define SLIVER_SIZE		0x40
98 
99 #define CPSW1_HOST_PORT_OFFSET	0x028
100 #define CPSW1_SLAVE_OFFSET	0x050
101 #define CPSW1_SLAVE_SIZE	0x040
102 #define CPSW1_CPDMA_OFFSET	0x100
103 #define CPSW1_STATERAM_OFFSET	0x200
104 #define CPSW1_HW_STATS		0x400
105 #define CPSW1_CPTS_OFFSET	0x500
106 #define CPSW1_ALE_OFFSET	0x600
107 #define CPSW1_SLIVER_OFFSET	0x700
108 
109 #define CPSW2_HOST_PORT_OFFSET	0x108
110 #define CPSW2_SLAVE_OFFSET	0x200
111 #define CPSW2_SLAVE_SIZE	0x100
112 #define CPSW2_CPDMA_OFFSET	0x800
113 #define CPSW2_HW_STATS		0x900
114 #define CPSW2_STATERAM_OFFSET	0xa00
115 #define CPSW2_CPTS_OFFSET	0xc00
116 #define CPSW2_ALE_OFFSET	0xd00
117 #define CPSW2_SLIVER_OFFSET	0xd80
118 #define CPSW2_BD_OFFSET		0x2000
119 
120 #define CPDMA_RXTHRESH		0x0c0
121 #define CPDMA_RXFREE		0x0e0
122 #define CPDMA_TXHDP		0x00
123 #define CPDMA_RXHDP		0x20
124 #define CPDMA_TXCP		0x40
125 #define CPDMA_RXCP		0x60
126 
127 #define CPSW_POLL_WEIGHT	64
128 #define CPSW_RX_VLAN_ENCAP_HDR_SIZE		4
129 #define CPSW_MIN_PACKET_SIZE	(VLAN_ETH_ZLEN)
130 #define CPSW_MAX_PACKET_SIZE	(VLAN_ETH_FRAME_LEN +\
131 				 ETH_FCS_LEN +\
132 				 CPSW_RX_VLAN_ENCAP_HDR_SIZE)
133 
134 #define RX_PRIORITY_MAPPING	0x76543210
135 #define TX_PRIORITY_MAPPING	0x33221100
136 #define CPDMA_TX_PRIORITY_MAP	0x76543210
137 
138 #define CPSW_VLAN_AWARE		BIT(1)
139 #define CPSW_RX_VLAN_ENCAP	BIT(2)
140 #define CPSW_ALE_VLAN_AWARE	1
141 
142 #define CPSW_FIFO_NORMAL_MODE		(0 << 16)
143 #define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
144 #define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
145 
146 #define CPSW_INTPACEEN		(0x3f << 16)
147 #define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
148 #define CPSW_CMINTMAX_CNT	63
149 #define CPSW_CMINTMIN_CNT	2
150 #define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
151 #define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)
152 
153 #define cpsw_slave_index(cpsw, priv)				\
154 		((cpsw->data.dual_emac) ? priv->emac_port :	\
155 		cpsw->data.active_slave)
156 #define IRQ_NUM			2
157 #define CPSW_MAX_QUEUES		8
158 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
159 #define CPSW_FIFO_QUEUE_TYPE_SHIFT	16
160 #define CPSW_FIFO_SHAPE_EN_SHIFT	16
161 #define CPSW_FIFO_RATE_EN_SHIFT		20
162 #define CPSW_TC_NUM			4
163 #define CPSW_FIFO_SHAPERS_NUM		(CPSW_TC_NUM - 1)
164 #define CPSW_PCT_MASK			0x7f
165 
166 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT	29
167 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK		GENMASK(2, 0)
168 #define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT	16
169 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT	8
170 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK	GENMASK(1, 0)
171 enum {
172 	CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0,
173 	CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV,
174 	CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG,
175 	CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG,
176 };
177 
178 static int debug_level;
179 module_param(debug_level, int, 0);
180 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
181 
182 static int ale_ageout = 10;
183 module_param(ale_ageout, int, 0);
184 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
185 
186 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
187 module_param(rx_packet_max, int, 0);
188 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
189 
190 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
191 module_param(descs_pool_size, int, 0444);
192 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
193 
194 struct cpsw_wr_regs {
195 	u32	id_ver;
196 	u32	soft_reset;
197 	u32	control;
198 	u32	int_control;
199 	u32	rx_thresh_en;
200 	u32	rx_en;
201 	u32	tx_en;
202 	u32	misc_en;
203 	u32	mem_allign1[8];
204 	u32	rx_thresh_stat;
205 	u32	rx_stat;
206 	u32	tx_stat;
207 	u32	misc_stat;
208 	u32	mem_allign2[8];
209 	u32	rx_imax;
210 	u32	tx_imax;
211 
212 };
213 
214 struct cpsw_ss_regs {
215 	u32	id_ver;
216 	u32	control;
217 	u32	soft_reset;
218 	u32	stat_port_en;
219 	u32	ptype;
220 	u32	soft_idle;
221 	u32	thru_rate;
222 	u32	gap_thresh;
223 	u32	tx_start_wds;
224 	u32	flow_control;
225 	u32	vlan_ltype;
226 	u32	ts_ltype;
227 	u32	dlr_ltype;
228 };
229 
230 /* CPSW_PORT_V1 */
231 #define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
232 #define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
233 #define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
234 #define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
235 #define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
236 #define CPSW1_TS_CTL        0x14 /* Time Sync Control */
237 #define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
238 #define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */
239 
240 /* CPSW_PORT_V2 */
241 #define CPSW2_CONTROL       0x00 /* Control Register */
242 #define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
243 #define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
244 #define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
245 #define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
246 #define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
247 #define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */
248 
249 /* CPSW_PORT_V1 and V2 */
250 #define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
251 #define SA_HI               0x24 /* CPGMAC_SL Source Address High */
252 #define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */
253 
254 /* CPSW_PORT_V2 only */
255 #define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
256 #define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
257 #define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
258 #define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
259 #define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
260 #define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
261 #define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
262 #define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */
263 
264 /* Bit definitions for the CPSW2_CONTROL register */
265 #define PASS_PRI_TAGGED     BIT(24) /* Pass Priority Tagged */
266 #define VLAN_LTYPE2_EN      BIT(21) /* VLAN LTYPE 2 enable */
267 #define VLAN_LTYPE1_EN      BIT(20) /* VLAN LTYPE 1 enable */
268 #define DSCP_PRI_EN         BIT(16) /* DSCP Priority Enable */
269 #define TS_107              BIT(15) /* Tyme Sync Dest IP Address 107 */
270 #define TS_320              BIT(14) /* Time Sync Dest Port 320 enable */
271 #define TS_319              BIT(13) /* Time Sync Dest Port 319 enable */
272 #define TS_132              BIT(12) /* Time Sync Dest IP Addr 132 enable */
273 #define TS_131              BIT(11) /* Time Sync Dest IP Addr 131 enable */
274 #define TS_130              BIT(10) /* Time Sync Dest IP Addr 130 enable */
275 #define TS_129              BIT(9)  /* Time Sync Dest IP Addr 129 enable */
276 #define TS_TTL_NONZERO      BIT(8)  /* Time Sync Time To Live Non-zero enable */
277 #define TS_ANNEX_F_EN       BIT(6)  /* Time Sync Annex F enable */
278 #define TS_ANNEX_D_EN       BIT(4)  /* Time Sync Annex D enable */
279 #define TS_LTYPE2_EN        BIT(3)  /* Time Sync LTYPE 2 enable */
280 #define TS_LTYPE1_EN        BIT(2)  /* Time Sync LTYPE 1 enable */
281 #define TS_TX_EN            BIT(1)  /* Time Sync Transmit Enable */
282 #define TS_RX_EN            BIT(0)  /* Time Sync Receive Enable */
283 
284 #define CTRL_V2_TS_BITS \
285 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
286 	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
287 
288 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
289 #define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
290 #define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)
291 
292 
293 #define CTRL_V3_TS_BITS \
294 	(TS_107 | TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
295 	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
296 	 TS_LTYPE1_EN)
297 
298 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
299 #define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
300 #define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
301 
302 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
303 #define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
304 #define TS_SEQ_ID_OFFSET_MASK    (0x3f)
305 #define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
306 #define TS_MSG_TYPE_EN_MASK      (0xffff)
307 
308 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
309 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
310 
311 /* Bit definitions for the CPSW1_TS_CTL register */
312 #define CPSW_V1_TS_RX_EN		BIT(0)
313 #define CPSW_V1_TS_TX_EN		BIT(4)
314 #define CPSW_V1_MSG_TYPE_OFS		16
315 
316 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
317 #define CPSW_V1_SEQ_ID_OFS_SHIFT	16
318 
319 #define CPSW_MAX_BLKS_TX		15
320 #define CPSW_MAX_BLKS_TX_SHIFT		4
321 #define CPSW_MAX_BLKS_RX		5
322 
323 struct cpsw_host_regs {
324 	u32	max_blks;
325 	u32	blk_cnt;
326 	u32	tx_in_ctl;
327 	u32	port_vlan;
328 	u32	tx_pri_map;
329 	u32	cpdma_tx_pri_map;
330 	u32	cpdma_rx_chan_map;
331 };
332 
333 struct cpsw_sliver_regs {
334 	u32	id_ver;
335 	u32	mac_control;
336 	u32	mac_status;
337 	u32	soft_reset;
338 	u32	rx_maxlen;
339 	u32	__reserved_0;
340 	u32	rx_pause;
341 	u32	tx_pause;
342 	u32	__reserved_1;
343 	u32	rx_pri_map;
344 };
345 
346 struct cpsw_hw_stats {
347 	u32	rxgoodframes;
348 	u32	rxbroadcastframes;
349 	u32	rxmulticastframes;
350 	u32	rxpauseframes;
351 	u32	rxcrcerrors;
352 	u32	rxaligncodeerrors;
353 	u32	rxoversizedframes;
354 	u32	rxjabberframes;
355 	u32	rxundersizedframes;
356 	u32	rxfragments;
357 	u32	__pad_0[2];
358 	u32	rxoctets;
359 	u32	txgoodframes;
360 	u32	txbroadcastframes;
361 	u32	txmulticastframes;
362 	u32	txpauseframes;
363 	u32	txdeferredframes;
364 	u32	txcollisionframes;
365 	u32	txsinglecollframes;
366 	u32	txmultcollframes;
367 	u32	txexcessivecollisions;
368 	u32	txlatecollisions;
369 	u32	txunderrun;
370 	u32	txcarriersenseerrors;
371 	u32	txoctets;
372 	u32	octetframes64;
373 	u32	octetframes65t127;
374 	u32	octetframes128t255;
375 	u32	octetframes256t511;
376 	u32	octetframes512t1023;
377 	u32	octetframes1024tup;
378 	u32	netoctets;
379 	u32	rxsofoverruns;
380 	u32	rxmofoverruns;
381 	u32	rxdmaoverruns;
382 };
383 
384 struct cpsw_slave_data {
385 	struct device_node *phy_node;
386 	char		phy_id[MII_BUS_ID_SIZE];
387 	int		phy_if;
388 	u8		mac_addr[ETH_ALEN];
389 	u16		dual_emac_res_vlan;	/* Reserved VLAN for DualEMAC */
390 };
391 
392 struct cpsw_platform_data {
393 	struct cpsw_slave_data	*slave_data;
394 	u32	ss_reg_ofs;	/* Subsystem control register offset */
395 	u32	channels;	/* number of cpdma channels (symmetric) */
396 	u32	slaves;		/* number of slave cpgmac ports */
397 	u32	active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */
398 	u32	ale_entries;	/* ale table size */
399 	u32	bd_ram_size;  /*buffer descriptor ram size */
400 	u32	mac_control;	/* Mac control register */
401 	u16	default_vlan;	/* Def VLAN for ALE lookup in VLAN aware mode*/
402 	bool	dual_emac;	/* Enable Dual EMAC mode */
403 };
404 
405 struct cpsw_slave {
406 	void __iomem			*regs;
407 	struct cpsw_sliver_regs __iomem	*sliver;
408 	int				slave_num;
409 	u32				mac_control;
410 	struct cpsw_slave_data		*data;
411 	struct phy_device		*phy;
412 	struct net_device		*ndev;
413 	u32				port_vlan;
414 };
415 
416 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
417 {
418 	return readl_relaxed(slave->regs + offset);
419 }
420 
421 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
422 {
423 	writel_relaxed(val, slave->regs + offset);
424 }
425 
426 struct cpsw_vector {
427 	struct cpdma_chan *ch;
428 	int budget;
429 };
430 
431 struct cpsw_common {
432 	struct device			*dev;
433 	struct cpsw_platform_data	data;
434 	struct napi_struct		napi_rx;
435 	struct napi_struct		napi_tx;
436 	struct cpsw_ss_regs __iomem	*regs;
437 	struct cpsw_wr_regs __iomem	*wr_regs;
438 	u8 __iomem			*hw_stats;
439 	struct cpsw_host_regs __iomem	*host_port_regs;
440 	u32				version;
441 	u32				coal_intvl;
442 	u32				bus_freq_mhz;
443 	int				rx_packet_max;
444 	struct cpsw_slave		*slaves;
445 	struct cpdma_ctlr		*dma;
446 	struct cpsw_vector		txv[CPSW_MAX_QUEUES];
447 	struct cpsw_vector		rxv[CPSW_MAX_QUEUES];
448 	struct cpsw_ale			*ale;
449 	bool				quirk_irq;
450 	bool				rx_irq_disabled;
451 	bool				tx_irq_disabled;
452 	u32 irqs_table[IRQ_NUM];
453 	struct cpts			*cpts;
454 	int				rx_ch_num, tx_ch_num;
455 	int				speed;
456 	int				usage_count;
457 };
458 
459 struct cpsw_priv {
460 	struct net_device		*ndev;
461 	struct device			*dev;
462 	u32				msg_enable;
463 	u8				mac_addr[ETH_ALEN];
464 	bool				rx_pause;
465 	bool				tx_pause;
466 	bool				mqprio_hw;
467 	int				fifo_bw[CPSW_TC_NUM];
468 	int				shp_cfg_speed;
469 	u32 emac_port;
470 	struct cpsw_common *cpsw;
471 };
472 
473 struct cpsw_stats {
474 	char stat_string[ETH_GSTRING_LEN];
475 	int type;
476 	int sizeof_stat;
477 	int stat_offset;
478 };
479 
480 enum {
481 	CPSW_STATS,
482 	CPDMA_RX_STATS,
483 	CPDMA_TX_STATS,
484 };
485 
486 #define CPSW_STAT(m)		CPSW_STATS,				\
487 				FIELD_SIZEOF(struct cpsw_hw_stats, m), \
488 				offsetof(struct cpsw_hw_stats, m)
489 #define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
490 				FIELD_SIZEOF(struct cpdma_chan_stats, m), \
491 				offsetof(struct cpdma_chan_stats, m)
492 #define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
493 				FIELD_SIZEOF(struct cpdma_chan_stats, m), \
494 				offsetof(struct cpdma_chan_stats, m)
495 
496 static const struct cpsw_stats cpsw_gstrings_stats[] = {
497 	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
498 	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
499 	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
500 	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
501 	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
502 	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
503 	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
504 	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
505 	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
506 	{ "Rx Fragments", CPSW_STAT(rxfragments) },
507 	{ "Rx Octets", CPSW_STAT(rxoctets) },
508 	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
509 	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
510 	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
511 	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
512 	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
513 	{ "Collisions", CPSW_STAT(txcollisionframes) },
514 	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
515 	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
516 	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
517 	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
518 	{ "Tx Underrun", CPSW_STAT(txunderrun) },
519 	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
520 	{ "Tx Octets", CPSW_STAT(txoctets) },
521 	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
522 	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
523 	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
524 	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
525 	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
526 	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
527 	{ "Net Octets", CPSW_STAT(netoctets) },
528 	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
529 	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
530 	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
531 };
532 
533 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
534 	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
535 	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
536 	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
537 	{ "misqueued", CPDMA_RX_STAT(misqueued) },
538 	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
539 	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
540 	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
541 	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
542 	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
543 	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
544 	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
545 	{ "requeue", CPDMA_RX_STAT(requeue) },
546 	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
547 };
548 
549 #define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
550 #define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
551 
552 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
553 #define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
554 #define for_each_slave(priv, func, arg...)				\
555 	do {								\
556 		struct cpsw_slave *slave;				\
557 		struct cpsw_common *cpsw = (priv)->cpsw;		\
558 		int n;							\
559 		if (cpsw->data.dual_emac)				\
560 			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
561 		else							\
562 			for (n = cpsw->data.slaves,			\
563 					slave = cpsw->slaves;		\
564 					n; n--)				\
565 				(func)(slave++, ##arg);			\
566 	} while (0)
567 
568 static inline int cpsw_get_slave_port(u32 slave_num)
569 {
570 	return slave_num + 1;
571 }
572 
573 static void cpsw_add_mcast(struct cpsw_priv *priv, const u8 *addr)
574 {
575 	struct cpsw_common *cpsw = priv->cpsw;
576 
577 	if (cpsw->data.dual_emac) {
578 		struct cpsw_slave *slave = cpsw->slaves + priv->emac_port;
579 
580 		cpsw_ale_add_mcast(cpsw->ale, addr, ALE_PORT_HOST,
581 				   ALE_VLAN, slave->port_vlan, 0);
582 		return;
583 	}
584 
585 	cpsw_ale_add_mcast(cpsw->ale, addr, ALE_ALL_PORTS, 0, 0, 0);
586 }
587 
588 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
589 {
590 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
591 	struct cpsw_ale *ale = cpsw->ale;
592 	int i;
593 
594 	if (cpsw->data.dual_emac) {
595 		bool flag = false;
596 
597 		/* Enabling promiscuous mode for one interface will be
598 		 * common for both the interface as the interface shares
599 		 * the same hardware resource.
600 		 */
601 		for (i = 0; i < cpsw->data.slaves; i++)
602 			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
603 				flag = true;
604 
605 		if (!enable && flag) {
606 			enable = true;
607 			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
608 		}
609 
610 		if (enable) {
611 			/* Enable Bypass */
612 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
613 
614 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
615 		} else {
616 			/* Disable Bypass */
617 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
618 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
619 		}
620 	} else {
621 		if (enable) {
622 			unsigned long timeout = jiffies + HZ;
623 
624 			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
625 			for (i = 0; i <= cpsw->data.slaves; i++) {
626 				cpsw_ale_control_set(ale, i,
627 						     ALE_PORT_NOLEARN, 1);
628 				cpsw_ale_control_set(ale, i,
629 						     ALE_PORT_NO_SA_UPDATE, 1);
630 			}
631 
632 			/* Clear All Untouched entries */
633 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
634 			do {
635 				cpu_relax();
636 				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
637 					break;
638 			} while (time_after(timeout, jiffies));
639 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
640 
641 			/* Clear all mcast from ALE */
642 			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
643 
644 			/* Flood All Unicast Packets to Host port */
645 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
646 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
647 		} else {
648 			/* Don't Flood All Unicast Packets to Host port */
649 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
650 
651 			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
652 			for (i = 0; i <= cpsw->data.slaves; i++) {
653 				cpsw_ale_control_set(ale, i,
654 						     ALE_PORT_NOLEARN, 0);
655 				cpsw_ale_control_set(ale, i,
656 						     ALE_PORT_NO_SA_UPDATE, 0);
657 			}
658 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
659 		}
660 	}
661 }
662 
663 static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr)
664 {
665 	struct cpsw_priv *priv = netdev_priv(ndev);
666 
667 	cpsw_add_mcast(priv, addr);
668 	return 0;
669 }
670 
671 static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr)
672 {
673 	struct cpsw_priv *priv = netdev_priv(ndev);
674 	struct cpsw_common *cpsw = priv->cpsw;
675 	int vid, flags;
676 
677 	if (cpsw->data.dual_emac) {
678 		vid = cpsw->slaves[priv->emac_port].port_vlan;
679 		flags = ALE_VLAN;
680 	} else {
681 		vid = 0;
682 		flags = 0;
683 	}
684 
685 	cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid);
686 	return 0;
687 }
688 
689 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
690 {
691 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
692 
693 	if (ndev->flags & IFF_PROMISC) {
694 		/* Enable promiscuous mode */
695 		cpsw_set_promiscious(ndev, true);
696 		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
697 		return;
698 	} else {
699 		/* Disable promiscuous mode */
700 		cpsw_set_promiscious(ndev, false);
701 	}
702 
703 	/* Restore allmulti on vlans if necessary */
704 	cpsw_ale_set_allmulti(cpsw->ale, ndev->flags & IFF_ALLMULTI);
705 
706 	__dev_mc_sync(ndev, cpsw_add_mc_addr, cpsw_del_mc_addr);
707 }
708 
709 static void cpsw_intr_enable(struct cpsw_common *cpsw)
710 {
711 	writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
712 	writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
713 
714 	cpdma_ctlr_int_ctrl(cpsw->dma, true);
715 	return;
716 }
717 
718 static void cpsw_intr_disable(struct cpsw_common *cpsw)
719 {
720 	writel_relaxed(0, &cpsw->wr_regs->tx_en);
721 	writel_relaxed(0, &cpsw->wr_regs->rx_en);
722 
723 	cpdma_ctlr_int_ctrl(cpsw->dma, false);
724 	return;
725 }
726 
727 static void cpsw_tx_handler(void *token, int len, int status)
728 {
729 	struct netdev_queue	*txq;
730 	struct sk_buff		*skb = token;
731 	struct net_device	*ndev = skb->dev;
732 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
733 
734 	/* Check whether the queue is stopped due to stalled tx dma, if the
735 	 * queue is stopped then start the queue as we have free desc for tx
736 	 */
737 	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
738 	if (unlikely(netif_tx_queue_stopped(txq)))
739 		netif_tx_wake_queue(txq);
740 
741 	cpts_tx_timestamp(cpsw->cpts, skb);
742 	ndev->stats.tx_packets++;
743 	ndev->stats.tx_bytes += len;
744 	dev_kfree_skb_any(skb);
745 }
746 
747 static void cpsw_rx_vlan_encap(struct sk_buff *skb)
748 {
749 	struct cpsw_priv *priv = netdev_priv(skb->dev);
750 	struct cpsw_common *cpsw = priv->cpsw;
751 	u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
752 	u16 vtag, vid, prio, pkt_type;
753 
754 	/* Remove VLAN header encapsulation word */
755 	skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);
756 
757 	pkt_type = (rx_vlan_encap_hdr >>
758 		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
759 		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
760 	/* Ignore unknown & Priority-tagged packets*/
761 	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
762 	    pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
763 		return;
764 
765 	vid = (rx_vlan_encap_hdr >>
766 	       CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
767 	       VLAN_VID_MASK;
768 	/* Ignore vid 0 and pass packet as is */
769 	if (!vid)
770 		return;
771 	/* Ignore default vlans in dual mac mode */
772 	if (cpsw->data.dual_emac &&
773 	    vid == cpsw->slaves[priv->emac_port].port_vlan)
774 		return;
775 
776 	prio = (rx_vlan_encap_hdr >>
777 		CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
778 		CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;
779 
780 	vtag = (prio << VLAN_PRIO_SHIFT) | vid;
781 	__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
782 
783 	/* strip vlan tag for VLAN-tagged packet */
784 	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
785 		memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
786 		skb_pull(skb, VLAN_HLEN);
787 	}
788 }
789 
790 static void cpsw_rx_handler(void *token, int len, int status)
791 {
792 	struct cpdma_chan	*ch;
793 	struct sk_buff		*skb = token;
794 	struct sk_buff		*new_skb;
795 	struct net_device	*ndev = skb->dev;
796 	int			ret = 0, port;
797 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
798 
799 	if (cpsw->data.dual_emac) {
800 		port = CPDMA_RX_SOURCE_PORT(status);
801 		if (port) {
802 			ndev = cpsw->slaves[--port].ndev;
803 			skb->dev = ndev;
804 		}
805 	}
806 
807 	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
808 		/* In dual emac mode check for all interfaces */
809 		if (cpsw->data.dual_emac && cpsw->usage_count &&
810 		    (status >= 0)) {
811 			/* The packet received is for the interface which
812 			 * is already down and the other interface is up
813 			 * and running, instead of freeing which results
814 			 * in reducing of the number of rx descriptor in
815 			 * DMA engine, requeue skb back to cpdma.
816 			 */
817 			new_skb = skb;
818 			goto requeue;
819 		}
820 
821 		/* the interface is going down, skbs are purged */
822 		dev_kfree_skb_any(skb);
823 		return;
824 	}
825 
826 	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
827 	if (new_skb) {
828 		skb_copy_queue_mapping(new_skb, skb);
829 		skb_put(skb, len);
830 		if (status & CPDMA_RX_VLAN_ENCAP)
831 			cpsw_rx_vlan_encap(skb);
832 		cpts_rx_timestamp(cpsw->cpts, skb);
833 		skb->protocol = eth_type_trans(skb, ndev);
834 		netif_receive_skb(skb);
835 		ndev->stats.rx_bytes += len;
836 		ndev->stats.rx_packets++;
837 		kmemleak_not_leak(new_skb);
838 	} else {
839 		ndev->stats.rx_dropped++;
840 		new_skb = skb;
841 	}
842 
843 requeue:
844 	if (netif_dormant(ndev)) {
845 		dev_kfree_skb_any(new_skb);
846 		return;
847 	}
848 
849 	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
850 	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
851 				skb_tailroom(new_skb), 0);
852 	if (WARN_ON(ret < 0))
853 		dev_kfree_skb_any(new_skb);
854 }
855 
856 static void cpsw_split_res(struct net_device *ndev)
857 {
858 	struct cpsw_priv *priv = netdev_priv(ndev);
859 	u32 consumed_rate = 0, bigest_rate = 0;
860 	struct cpsw_common *cpsw = priv->cpsw;
861 	struct cpsw_vector *txv = cpsw->txv;
862 	int i, ch_weight, rlim_ch_num = 0;
863 	int budget, bigest_rate_ch = 0;
864 	u32 ch_rate, max_rate;
865 	int ch_budget = 0;
866 
867 	for (i = 0; i < cpsw->tx_ch_num; i++) {
868 		ch_rate = cpdma_chan_get_rate(txv[i].ch);
869 		if (!ch_rate)
870 			continue;
871 
872 		rlim_ch_num++;
873 		consumed_rate += ch_rate;
874 	}
875 
876 	if (cpsw->tx_ch_num == rlim_ch_num) {
877 		max_rate = consumed_rate;
878 	} else if (!rlim_ch_num) {
879 		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
880 		bigest_rate = 0;
881 		max_rate = consumed_rate;
882 	} else {
883 		max_rate = cpsw->speed * 1000;
884 
885 		/* if max_rate is less then expected due to reduced link speed,
886 		 * split proportionally according next potential max speed
887 		 */
888 		if (max_rate < consumed_rate)
889 			max_rate *= 10;
890 
891 		if (max_rate < consumed_rate)
892 			max_rate *= 10;
893 
894 		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
895 		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
896 			    (cpsw->tx_ch_num - rlim_ch_num);
897 		bigest_rate = (max_rate - consumed_rate) /
898 			      (cpsw->tx_ch_num - rlim_ch_num);
899 	}
900 
901 	/* split tx weight/budget */
902 	budget = CPSW_POLL_WEIGHT;
903 	for (i = 0; i < cpsw->tx_ch_num; i++) {
904 		ch_rate = cpdma_chan_get_rate(txv[i].ch);
905 		if (ch_rate) {
906 			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
907 			if (!txv[i].budget)
908 				txv[i].budget++;
909 			if (ch_rate > bigest_rate) {
910 				bigest_rate_ch = i;
911 				bigest_rate = ch_rate;
912 			}
913 
914 			ch_weight = (ch_rate * 100) / max_rate;
915 			if (!ch_weight)
916 				ch_weight++;
917 			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
918 		} else {
919 			txv[i].budget = ch_budget;
920 			if (!bigest_rate_ch)
921 				bigest_rate_ch = i;
922 			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
923 		}
924 
925 		budget -= txv[i].budget;
926 	}
927 
928 	if (budget)
929 		txv[bigest_rate_ch].budget += budget;
930 
931 	/* split rx budget */
932 	budget = CPSW_POLL_WEIGHT;
933 	ch_budget = budget / cpsw->rx_ch_num;
934 	for (i = 0; i < cpsw->rx_ch_num; i++) {
935 		cpsw->rxv[i].budget = ch_budget;
936 		budget -= ch_budget;
937 	}
938 
939 	if (budget)
940 		cpsw->rxv[0].budget += budget;
941 }
942 
943 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
944 {
945 	struct cpsw_common *cpsw = dev_id;
946 
947 	writel(0, &cpsw->wr_regs->tx_en);
948 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
949 
950 	if (cpsw->quirk_irq) {
951 		disable_irq_nosync(cpsw->irqs_table[1]);
952 		cpsw->tx_irq_disabled = true;
953 	}
954 
955 	napi_schedule(&cpsw->napi_tx);
956 	return IRQ_HANDLED;
957 }
958 
959 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
960 {
961 	struct cpsw_common *cpsw = dev_id;
962 
963 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
964 	writel(0, &cpsw->wr_regs->rx_en);
965 
966 	if (cpsw->quirk_irq) {
967 		disable_irq_nosync(cpsw->irqs_table[0]);
968 		cpsw->rx_irq_disabled = true;
969 	}
970 
971 	napi_schedule(&cpsw->napi_rx);
972 	return IRQ_HANDLED;
973 }
974 
975 static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget)
976 {
977 	u32			ch_map;
978 	int			num_tx, cur_budget, ch;
979 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
980 	struct cpsw_vector	*txv;
981 
982 	/* process every unprocessed channel */
983 	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
984 	for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) {
985 		if (!(ch_map & 0x80))
986 			continue;
987 
988 		txv = &cpsw->txv[ch];
989 		if (unlikely(txv->budget > budget - num_tx))
990 			cur_budget = budget - num_tx;
991 		else
992 			cur_budget = txv->budget;
993 
994 		num_tx += cpdma_chan_process(txv->ch, cur_budget);
995 		if (num_tx >= budget)
996 			break;
997 	}
998 
999 	if (num_tx < budget) {
1000 		napi_complete(napi_tx);
1001 		writel(0xff, &cpsw->wr_regs->tx_en);
1002 	}
1003 
1004 	return num_tx;
1005 }
1006 
1007 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
1008 {
1009 	struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
1010 	int num_tx;
1011 
1012 	num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget);
1013 	if (num_tx < budget) {
1014 		napi_complete(napi_tx);
1015 		writel(0xff, &cpsw->wr_regs->tx_en);
1016 		if (cpsw->tx_irq_disabled) {
1017 			cpsw->tx_irq_disabled = false;
1018 			enable_irq(cpsw->irqs_table[1]);
1019 		}
1020 	}
1021 
1022 	return num_tx;
1023 }
1024 
1025 static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget)
1026 {
1027 	u32			ch_map;
1028 	int			num_rx, cur_budget, ch;
1029 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
1030 	struct cpsw_vector	*rxv;
1031 
1032 	/* process every unprocessed channel */
1033 	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
1034 	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
1035 		if (!(ch_map & 0x01))
1036 			continue;
1037 
1038 		rxv = &cpsw->rxv[ch];
1039 		if (unlikely(rxv->budget > budget - num_rx))
1040 			cur_budget = budget - num_rx;
1041 		else
1042 			cur_budget = rxv->budget;
1043 
1044 		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
1045 		if (num_rx >= budget)
1046 			break;
1047 	}
1048 
1049 	if (num_rx < budget) {
1050 		napi_complete_done(napi_rx, num_rx);
1051 		writel(0xff, &cpsw->wr_regs->rx_en);
1052 	}
1053 
1054 	return num_rx;
1055 }
1056 
1057 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
1058 {
1059 	struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
1060 	int num_rx;
1061 
1062 	num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget);
1063 	if (num_rx < budget) {
1064 		napi_complete_done(napi_rx, num_rx);
1065 		writel(0xff, &cpsw->wr_regs->rx_en);
1066 		if (cpsw->rx_irq_disabled) {
1067 			cpsw->rx_irq_disabled = false;
1068 			enable_irq(cpsw->irqs_table[0]);
1069 		}
1070 	}
1071 
1072 	return num_rx;
1073 }
1074 
1075 static inline void soft_reset(const char *module, void __iomem *reg)
1076 {
1077 	unsigned long timeout = jiffies + HZ;
1078 
1079 	writel_relaxed(1, reg);
1080 	do {
1081 		cpu_relax();
1082 	} while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
1083 
1084 	WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
1085 }
1086 
1087 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
1088 			       struct cpsw_priv *priv)
1089 {
1090 	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
1091 	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
1092 }
1093 
1094 static bool cpsw_shp_is_off(struct cpsw_priv *priv)
1095 {
1096 	struct cpsw_common *cpsw = priv->cpsw;
1097 	struct cpsw_slave *slave;
1098 	u32 shift, mask, val;
1099 
1100 	val = readl_relaxed(&cpsw->regs->ptype);
1101 
1102 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1103 	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
1104 	mask = 7 << shift;
1105 	val = val & mask;
1106 
1107 	return !val;
1108 }
1109 
1110 static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on)
1111 {
1112 	struct cpsw_common *cpsw = priv->cpsw;
1113 	struct cpsw_slave *slave;
1114 	u32 shift, mask, val;
1115 
1116 	val = readl_relaxed(&cpsw->regs->ptype);
1117 
1118 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1119 	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
1120 	mask = (1 << --fifo) << shift;
1121 	val = on ? val | mask : val & ~mask;
1122 
1123 	writel_relaxed(val, &cpsw->regs->ptype);
1124 }
1125 
1126 static void _cpsw_adjust_link(struct cpsw_slave *slave,
1127 			      struct cpsw_priv *priv, bool *link)
1128 {
1129 	struct phy_device	*phy = slave->phy;
1130 	u32			mac_control = 0;
1131 	u32			slave_port;
1132 	struct cpsw_common *cpsw = priv->cpsw;
1133 
1134 	if (!phy)
1135 		return;
1136 
1137 	slave_port = cpsw_get_slave_port(slave->slave_num);
1138 
1139 	if (phy->link) {
1140 		mac_control = cpsw->data.mac_control;
1141 
1142 		/* enable forwarding */
1143 		cpsw_ale_control_set(cpsw->ale, slave_port,
1144 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1145 
1146 		if (phy->speed == 1000)
1147 			mac_control |= BIT(7);	/* GIGABITEN	*/
1148 		if (phy->duplex)
1149 			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
1150 
1151 		/* set speed_in input in case RMII mode is used in 100Mbps */
1152 		if (phy->speed == 100)
1153 			mac_control |= BIT(15);
1154 		/* in band mode only works in 10Mbps RGMII mode */
1155 		else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
1156 			mac_control |= BIT(18); /* In Band mode */
1157 
1158 		if (priv->rx_pause)
1159 			mac_control |= BIT(3);
1160 
1161 		if (priv->tx_pause)
1162 			mac_control |= BIT(4);
1163 
1164 		*link = true;
1165 
1166 		if (priv->shp_cfg_speed &&
1167 		    priv->shp_cfg_speed != slave->phy->speed &&
1168 		    !cpsw_shp_is_off(priv))
1169 			dev_warn(priv->dev,
1170 				 "Speed was changed, CBS shaper speeds are changed!");
1171 	} else {
1172 		mac_control = 0;
1173 		/* disable forwarding */
1174 		cpsw_ale_control_set(cpsw->ale, slave_port,
1175 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1176 	}
1177 
1178 	if (mac_control != slave->mac_control) {
1179 		phy_print_status(phy);
1180 		writel_relaxed(mac_control, &slave->sliver->mac_control);
1181 	}
1182 
1183 	slave->mac_control = mac_control;
1184 }
1185 
1186 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
1187 {
1188 	int i, speed;
1189 
1190 	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
1191 		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
1192 			speed += cpsw->slaves[i].phy->speed;
1193 
1194 	return speed;
1195 }
1196 
1197 static int cpsw_need_resplit(struct cpsw_common *cpsw)
1198 {
1199 	int i, rlim_ch_num;
1200 	int speed, ch_rate;
1201 
1202 	/* re-split resources only in case speed was changed */
1203 	speed = cpsw_get_common_speed(cpsw);
1204 	if (speed == cpsw->speed || !speed)
1205 		return 0;
1206 
1207 	cpsw->speed = speed;
1208 
1209 	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
1210 		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
1211 		if (!ch_rate)
1212 			break;
1213 
1214 		rlim_ch_num++;
1215 	}
1216 
1217 	/* cases not dependent on speed */
1218 	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
1219 		return 0;
1220 
1221 	return 1;
1222 }
1223 
1224 static void cpsw_adjust_link(struct net_device *ndev)
1225 {
1226 	struct cpsw_priv	*priv = netdev_priv(ndev);
1227 	struct cpsw_common	*cpsw = priv->cpsw;
1228 	bool			link = false;
1229 
1230 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1231 
1232 	if (link) {
1233 		if (cpsw_need_resplit(cpsw))
1234 			cpsw_split_res(ndev);
1235 
1236 		netif_carrier_on(ndev);
1237 		if (netif_running(ndev))
1238 			netif_tx_wake_all_queues(ndev);
1239 	} else {
1240 		netif_carrier_off(ndev);
1241 		netif_tx_stop_all_queues(ndev);
1242 	}
1243 }
1244 
1245 static int cpsw_get_coalesce(struct net_device *ndev,
1246 				struct ethtool_coalesce *coal)
1247 {
1248 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1249 
1250 	coal->rx_coalesce_usecs = cpsw->coal_intvl;
1251 	return 0;
1252 }
1253 
1254 static int cpsw_set_coalesce(struct net_device *ndev,
1255 				struct ethtool_coalesce *coal)
1256 {
1257 	struct cpsw_priv *priv = netdev_priv(ndev);
1258 	u32 int_ctrl;
1259 	u32 num_interrupts = 0;
1260 	u32 prescale = 0;
1261 	u32 addnl_dvdr = 1;
1262 	u32 coal_intvl = 0;
1263 	struct cpsw_common *cpsw = priv->cpsw;
1264 
1265 	coal_intvl = coal->rx_coalesce_usecs;
1266 
1267 	int_ctrl =  readl(&cpsw->wr_regs->int_control);
1268 	prescale = cpsw->bus_freq_mhz * 4;
1269 
1270 	if (!coal->rx_coalesce_usecs) {
1271 		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
1272 		goto update_return;
1273 	}
1274 
1275 	if (coal_intvl < CPSW_CMINTMIN_INTVL)
1276 		coal_intvl = CPSW_CMINTMIN_INTVL;
1277 
1278 	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
1279 		/* Interrupt pacer works with 4us Pulse, we can
1280 		 * throttle further by dilating the 4us pulse.
1281 		 */
1282 		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
1283 
1284 		if (addnl_dvdr > 1) {
1285 			prescale *= addnl_dvdr;
1286 			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
1287 				coal_intvl = (CPSW_CMINTMAX_INTVL
1288 						* addnl_dvdr);
1289 		} else {
1290 			addnl_dvdr = 1;
1291 			coal_intvl = CPSW_CMINTMAX_INTVL;
1292 		}
1293 	}
1294 
1295 	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1296 	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
1297 	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1298 
1299 	int_ctrl |= CPSW_INTPACEEN;
1300 	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1301 	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1302 
1303 update_return:
1304 	writel(int_ctrl, &cpsw->wr_regs->int_control);
1305 
1306 	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1307 	cpsw->coal_intvl = coal_intvl;
1308 
1309 	return 0;
1310 }
1311 
1312 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1313 {
1314 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1315 
1316 	switch (sset) {
1317 	case ETH_SS_STATS:
1318 		return (CPSW_STATS_COMMON_LEN +
1319 		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1320 		       CPSW_STATS_CH_LEN);
1321 	default:
1322 		return -EOPNOTSUPP;
1323 	}
1324 }
1325 
1326 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1327 {
1328 	int ch_stats_len;
1329 	int line;
1330 	int i;
1331 
1332 	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1333 	for (i = 0; i < ch_stats_len; i++) {
1334 		line = i % CPSW_STATS_CH_LEN;
1335 		snprintf(*p, ETH_GSTRING_LEN,
1336 			 "%s DMA chan %ld: %s", rx_dir ? "Rx" : "Tx",
1337 			 (long)(i / CPSW_STATS_CH_LEN),
1338 			 cpsw_gstrings_ch_stats[line].stat_string);
1339 		*p += ETH_GSTRING_LEN;
1340 	}
1341 }
1342 
1343 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1344 {
1345 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1346 	u8 *p = data;
1347 	int i;
1348 
1349 	switch (stringset) {
1350 	case ETH_SS_STATS:
1351 		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1352 			memcpy(p, cpsw_gstrings_stats[i].stat_string,
1353 			       ETH_GSTRING_LEN);
1354 			p += ETH_GSTRING_LEN;
1355 		}
1356 
1357 		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1358 		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1359 		break;
1360 	}
1361 }
1362 
1363 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1364 				    struct ethtool_stats *stats, u64 *data)
1365 {
1366 	u8 *p;
1367 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1368 	struct cpdma_chan_stats ch_stats;
1369 	int i, l, ch;
1370 
1371 	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1372 	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1373 		data[l] = readl(cpsw->hw_stats +
1374 				cpsw_gstrings_stats[l].stat_offset);
1375 
1376 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1377 		cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1378 		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1379 			p = (u8 *)&ch_stats +
1380 				cpsw_gstrings_ch_stats[i].stat_offset;
1381 			data[l] = *(u32 *)p;
1382 		}
1383 	}
1384 
1385 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1386 		cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1387 		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1388 			p = (u8 *)&ch_stats +
1389 				cpsw_gstrings_ch_stats[i].stat_offset;
1390 			data[l] = *(u32 *)p;
1391 		}
1392 	}
1393 }
1394 
1395 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1396 					struct sk_buff *skb,
1397 					struct cpdma_chan *txch)
1398 {
1399 	struct cpsw_common *cpsw = priv->cpsw;
1400 
1401 	skb_tx_timestamp(skb);
1402 	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1403 				 priv->emac_port + cpsw->data.dual_emac);
1404 }
1405 
1406 static inline void cpsw_add_dual_emac_def_ale_entries(
1407 		struct cpsw_priv *priv, struct cpsw_slave *slave,
1408 		u32 slave_port)
1409 {
1410 	struct cpsw_common *cpsw = priv->cpsw;
1411 	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1412 
1413 	if (cpsw->version == CPSW_VERSION_1)
1414 		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1415 	else
1416 		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1417 	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1418 			  port_mask, port_mask, 0);
1419 	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1420 			   ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0);
1421 	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1422 			   HOST_PORT_NUM, ALE_VLAN |
1423 			   ALE_SECURE, slave->port_vlan);
1424 	cpsw_ale_control_set(cpsw->ale, slave_port,
1425 			     ALE_PORT_DROP_UNKNOWN_VLAN, 1);
1426 }
1427 
1428 static void soft_reset_slave(struct cpsw_slave *slave)
1429 {
1430 	char name[32];
1431 
1432 	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1433 	soft_reset(name, &slave->sliver->soft_reset);
1434 }
1435 
1436 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1437 {
1438 	u32 slave_port;
1439 	struct phy_device *phy;
1440 	struct cpsw_common *cpsw = priv->cpsw;
1441 
1442 	soft_reset_slave(slave);
1443 
1444 	/* setup priority mapping */
1445 	writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1446 
1447 	switch (cpsw->version) {
1448 	case CPSW_VERSION_1:
1449 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1450 		/* Increase RX FIFO size to 5 for supporting fullduplex
1451 		 * flow control mode
1452 		 */
1453 		slave_write(slave,
1454 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1455 			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1456 		break;
1457 	case CPSW_VERSION_2:
1458 	case CPSW_VERSION_3:
1459 	case CPSW_VERSION_4:
1460 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1461 		/* Increase RX FIFO size to 5 for supporting fullduplex
1462 		 * flow control mode
1463 		 */
1464 		slave_write(slave,
1465 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1466 			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1467 		break;
1468 	}
1469 
1470 	/* setup max packet size, and mac address */
1471 	writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1472 	cpsw_set_slave_mac(slave, priv);
1473 
1474 	slave->mac_control = 0;	/* no link yet */
1475 
1476 	slave_port = cpsw_get_slave_port(slave->slave_num);
1477 
1478 	if (cpsw->data.dual_emac)
1479 		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1480 	else
1481 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1482 				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1483 
1484 	if (slave->data->phy_node) {
1485 		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1486 				 &cpsw_adjust_link, 0, slave->data->phy_if);
1487 		if (!phy) {
1488 			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
1489 				slave->data->phy_node,
1490 				slave->slave_num);
1491 			return;
1492 		}
1493 	} else {
1494 		phy = phy_connect(priv->ndev, slave->data->phy_id,
1495 				 &cpsw_adjust_link, slave->data->phy_if);
1496 		if (IS_ERR(phy)) {
1497 			dev_err(priv->dev,
1498 				"phy \"%s\" not found on slave %d, err %ld\n",
1499 				slave->data->phy_id, slave->slave_num,
1500 				PTR_ERR(phy));
1501 			return;
1502 		}
1503 	}
1504 
1505 	slave->phy = phy;
1506 
1507 	phy_attached_info(slave->phy);
1508 
1509 	phy_start(slave->phy);
1510 
1511 	/* Configure GMII_SEL register */
1512 	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1513 }
1514 
1515 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1516 {
1517 	struct cpsw_common *cpsw = priv->cpsw;
1518 	const int vlan = cpsw->data.default_vlan;
1519 	u32 reg;
1520 	int i;
1521 	int unreg_mcast_mask;
1522 
1523 	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1524 	       CPSW2_PORT_VLAN;
1525 
1526 	writel(vlan, &cpsw->host_port_regs->port_vlan);
1527 
1528 	for (i = 0; i < cpsw->data.slaves; i++)
1529 		slave_write(cpsw->slaves + i, vlan, reg);
1530 
1531 	if (priv->ndev->flags & IFF_ALLMULTI)
1532 		unreg_mcast_mask = ALE_ALL_PORTS;
1533 	else
1534 		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1535 
1536 	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1537 			  ALE_ALL_PORTS, ALE_ALL_PORTS,
1538 			  unreg_mcast_mask);
1539 }
1540 
1541 static void cpsw_init_host_port(struct cpsw_priv *priv)
1542 {
1543 	u32 fifo_mode;
1544 	u32 control_reg;
1545 	struct cpsw_common *cpsw = priv->cpsw;
1546 
1547 	/* soft reset the controller and initialize ale */
1548 	soft_reset("cpsw", &cpsw->regs->soft_reset);
1549 	cpsw_ale_start(cpsw->ale);
1550 
1551 	/* switch to vlan unaware mode */
1552 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1553 			     CPSW_ALE_VLAN_AWARE);
1554 	control_reg = readl(&cpsw->regs->control);
1555 	control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
1556 	writel(control_reg, &cpsw->regs->control);
1557 	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1558 		     CPSW_FIFO_NORMAL_MODE;
1559 	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1560 
1561 	/* setup host port priority mapping */
1562 	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
1563 		       &cpsw->host_port_regs->cpdma_tx_pri_map);
1564 	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1565 
1566 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1567 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1568 
1569 	if (!cpsw->data.dual_emac) {
1570 		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1571 				   0, 0);
1572 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1573 				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1574 	}
1575 }
1576 
1577 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1578 {
1579 	struct cpsw_common *cpsw = priv->cpsw;
1580 	struct sk_buff *skb;
1581 	int ch_buf_num;
1582 	int ch, i, ret;
1583 
1584 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1585 		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1586 		for (i = 0; i < ch_buf_num; i++) {
1587 			skb = __netdev_alloc_skb_ip_align(priv->ndev,
1588 							  cpsw->rx_packet_max,
1589 							  GFP_KERNEL);
1590 			if (!skb) {
1591 				cpsw_err(priv, ifup, "cannot allocate skb\n");
1592 				return -ENOMEM;
1593 			}
1594 
1595 			skb_set_queue_mapping(skb, ch);
1596 			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
1597 						skb->data, skb_tailroom(skb),
1598 						0);
1599 			if (ret < 0) {
1600 				cpsw_err(priv, ifup,
1601 					 "cannot submit skb to channel %d rx, error %d\n",
1602 					 ch, ret);
1603 				kfree_skb(skb);
1604 				return ret;
1605 			}
1606 			kmemleak_not_leak(skb);
1607 		}
1608 
1609 		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1610 			  ch, ch_buf_num);
1611 	}
1612 
1613 	return 0;
1614 }
1615 
1616 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1617 {
1618 	u32 slave_port;
1619 
1620 	slave_port = cpsw_get_slave_port(slave->slave_num);
1621 
1622 	if (!slave->phy)
1623 		return;
1624 	phy_stop(slave->phy);
1625 	phy_disconnect(slave->phy);
1626 	slave->phy = NULL;
1627 	cpsw_ale_control_set(cpsw->ale, slave_port,
1628 			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1629 	soft_reset_slave(slave);
1630 }
1631 
1632 static int cpsw_tc_to_fifo(int tc, int num_tc)
1633 {
1634 	if (tc == num_tc - 1)
1635 		return 0;
1636 
1637 	return CPSW_FIFO_SHAPERS_NUM - tc;
1638 }
1639 
1640 static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw)
1641 {
1642 	struct cpsw_common *cpsw = priv->cpsw;
1643 	u32 val = 0, send_pct, shift;
1644 	struct cpsw_slave *slave;
1645 	int pct = 0, i;
1646 
1647 	if (bw > priv->shp_cfg_speed * 1000)
1648 		goto err;
1649 
1650 	/* shaping has to stay enabled for highest fifos linearly
1651 	 * and fifo bw no more then interface can allow
1652 	 */
1653 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1654 	send_pct = slave_read(slave, SEND_PERCENT);
1655 	for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) {
1656 		if (!bw) {
1657 			if (i >= fifo || !priv->fifo_bw[i])
1658 				continue;
1659 
1660 			dev_warn(priv->dev, "Prev FIFO%d is shaped", i);
1661 			continue;
1662 		}
1663 
1664 		if (!priv->fifo_bw[i] && i > fifo) {
1665 			dev_err(priv->dev, "Upper FIFO%d is not shaped", i);
1666 			return -EINVAL;
1667 		}
1668 
1669 		shift = (i - 1) * 8;
1670 		if (i == fifo) {
1671 			send_pct &= ~(CPSW_PCT_MASK << shift);
1672 			val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10);
1673 			if (!val)
1674 				val = 1;
1675 
1676 			send_pct |= val << shift;
1677 			pct += val;
1678 			continue;
1679 		}
1680 
1681 		if (priv->fifo_bw[i])
1682 			pct += (send_pct >> shift) & CPSW_PCT_MASK;
1683 	}
1684 
1685 	if (pct >= 100)
1686 		goto err;
1687 
1688 	slave_write(slave, send_pct, SEND_PERCENT);
1689 	priv->fifo_bw[fifo] = bw;
1690 
1691 	dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo,
1692 		 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100));
1693 
1694 	return 0;
1695 err:
1696 	dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration");
1697 	return -EINVAL;
1698 }
1699 
1700 static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw)
1701 {
1702 	struct cpsw_common *cpsw = priv->cpsw;
1703 	struct cpsw_slave *slave;
1704 	u32 tx_in_ctl_rg, val;
1705 	int ret;
1706 
1707 	ret = cpsw_set_fifo_bw(priv, fifo, bw);
1708 	if (ret)
1709 		return ret;
1710 
1711 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1712 	tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ?
1713 		       CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL;
1714 
1715 	if (!bw)
1716 		cpsw_fifo_shp_on(priv, fifo, bw);
1717 
1718 	val = slave_read(slave, tx_in_ctl_rg);
1719 	if (cpsw_shp_is_off(priv)) {
1720 		/* disable FIFOs rate limited queues */
1721 		val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT);
1722 
1723 		/* set type of FIFO queues to normal priority mode */
1724 		val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT);
1725 
1726 		/* set type of FIFO queues to be rate limited */
1727 		if (bw)
1728 			val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT;
1729 		else
1730 			priv->shp_cfg_speed = 0;
1731 	}
1732 
1733 	/* toggle a FIFO rate limited queue */
1734 	if (bw)
1735 		val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
1736 	else
1737 		val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
1738 	slave_write(slave, val, tx_in_ctl_rg);
1739 
1740 	/* FIFO transmit shape enable */
1741 	cpsw_fifo_shp_on(priv, fifo, bw);
1742 	return 0;
1743 }
1744 
1745 /* Defaults:
1746  * class A - prio 3
1747  * class B - prio 2
1748  * shaping for class A should be set first
1749  */
1750 static int cpsw_set_cbs(struct net_device *ndev,
1751 			struct tc_cbs_qopt_offload *qopt)
1752 {
1753 	struct cpsw_priv *priv = netdev_priv(ndev);
1754 	struct cpsw_common *cpsw = priv->cpsw;
1755 	struct cpsw_slave *slave;
1756 	int prev_speed = 0;
1757 	int tc, ret, fifo;
1758 	u32 bw = 0;
1759 
1760 	tc = netdev_txq_to_tc(priv->ndev, qopt->queue);
1761 
1762 	/* enable channels in backward order, as highest FIFOs must be rate
1763 	 * limited first and for compliance with CPDMA rate limited channels
1764 	 * that also used in bacward order. FIFO0 cannot be rate limited.
1765 	 */
1766 	fifo = cpsw_tc_to_fifo(tc, ndev->num_tc);
1767 	if (!fifo) {
1768 		dev_err(priv->dev, "Last tc%d can't be rate limited", tc);
1769 		return -EINVAL;
1770 	}
1771 
1772 	/* do nothing, it's disabled anyway */
1773 	if (!qopt->enable && !priv->fifo_bw[fifo])
1774 		return 0;
1775 
1776 	/* shapers can be set if link speed is known */
1777 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1778 	if (slave->phy && slave->phy->link) {
1779 		if (priv->shp_cfg_speed &&
1780 		    priv->shp_cfg_speed != slave->phy->speed)
1781 			prev_speed = priv->shp_cfg_speed;
1782 
1783 		priv->shp_cfg_speed = slave->phy->speed;
1784 	}
1785 
1786 	if (!priv->shp_cfg_speed) {
1787 		dev_err(priv->dev, "Link speed is not known");
1788 		return -1;
1789 	}
1790 
1791 	ret = pm_runtime_get_sync(cpsw->dev);
1792 	if (ret < 0) {
1793 		pm_runtime_put_noidle(cpsw->dev);
1794 		return ret;
1795 	}
1796 
1797 	bw = qopt->enable ? qopt->idleslope : 0;
1798 	ret = cpsw_set_fifo_rlimit(priv, fifo, bw);
1799 	if (ret) {
1800 		priv->shp_cfg_speed = prev_speed;
1801 		prev_speed = 0;
1802 	}
1803 
1804 	if (bw && prev_speed)
1805 		dev_warn(priv->dev,
1806 			 "Speed was changed, CBS shaper speeds are changed!");
1807 
1808 	pm_runtime_put_sync(cpsw->dev);
1809 	return ret;
1810 }
1811 
1812 static void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
1813 {
1814 	int fifo, bw;
1815 
1816 	for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) {
1817 		bw = priv->fifo_bw[fifo];
1818 		if (!bw)
1819 			continue;
1820 
1821 		cpsw_set_fifo_rlimit(priv, fifo, bw);
1822 	}
1823 }
1824 
1825 static void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
1826 {
1827 	struct cpsw_common *cpsw = priv->cpsw;
1828 	u32 tx_prio_map = 0;
1829 	int i, tc, fifo;
1830 	u32 tx_prio_rg;
1831 
1832 	if (!priv->mqprio_hw)
1833 		return;
1834 
1835 	for (i = 0; i < 8; i++) {
1836 		tc = netdev_get_prio_tc_map(priv->ndev, i);
1837 		fifo = CPSW_FIFO_SHAPERS_NUM - tc;
1838 		tx_prio_map |= fifo << (4 * i);
1839 	}
1840 
1841 	tx_prio_rg = cpsw->version == CPSW_VERSION_1 ?
1842 		     CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;
1843 
1844 	slave_write(slave, tx_prio_map, tx_prio_rg);
1845 }
1846 
1847 /* restore resources after port reset */
1848 static void cpsw_restore(struct cpsw_priv *priv)
1849 {
1850 	/* restore MQPRIO offload */
1851 	for_each_slave(priv, cpsw_mqprio_resume, priv);
1852 
1853 	/* restore CBS offload */
1854 	for_each_slave(priv, cpsw_cbs_resume, priv);
1855 }
1856 
1857 static int cpsw_ndo_open(struct net_device *ndev)
1858 {
1859 	struct cpsw_priv *priv = netdev_priv(ndev);
1860 	struct cpsw_common *cpsw = priv->cpsw;
1861 	int ret;
1862 	u32 reg;
1863 
1864 	ret = pm_runtime_get_sync(cpsw->dev);
1865 	if (ret < 0) {
1866 		pm_runtime_put_noidle(cpsw->dev);
1867 		return ret;
1868 	}
1869 
1870 	netif_carrier_off(ndev);
1871 
1872 	/* Notify the stack of the actual queue counts. */
1873 	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1874 	if (ret) {
1875 		dev_err(priv->dev, "cannot set real number of tx queues\n");
1876 		goto err_cleanup;
1877 	}
1878 
1879 	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1880 	if (ret) {
1881 		dev_err(priv->dev, "cannot set real number of rx queues\n");
1882 		goto err_cleanup;
1883 	}
1884 
1885 	reg = cpsw->version;
1886 
1887 	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1888 		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1889 		 CPSW_RTL_VERSION(reg));
1890 
1891 	/* Initialize host and slave ports */
1892 	if (!cpsw->usage_count)
1893 		cpsw_init_host_port(priv);
1894 	for_each_slave(priv, cpsw_slave_open, priv);
1895 
1896 	/* Add default VLAN */
1897 	if (!cpsw->data.dual_emac)
1898 		cpsw_add_default_vlan(priv);
1899 	else
1900 		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1901 				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1902 
1903 	/* initialize shared resources for every ndev */
1904 	if (!cpsw->usage_count) {
1905 		/* disable priority elevation */
1906 		writel_relaxed(0, &cpsw->regs->ptype);
1907 
1908 		/* enable statistics collection only on all ports */
1909 		writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1910 
1911 		/* Enable internal fifo flow control */
1912 		writel(0x7, &cpsw->regs->flow_control);
1913 
1914 		napi_enable(&cpsw->napi_rx);
1915 		napi_enable(&cpsw->napi_tx);
1916 
1917 		if (cpsw->tx_irq_disabled) {
1918 			cpsw->tx_irq_disabled = false;
1919 			enable_irq(cpsw->irqs_table[1]);
1920 		}
1921 
1922 		if (cpsw->rx_irq_disabled) {
1923 			cpsw->rx_irq_disabled = false;
1924 			enable_irq(cpsw->irqs_table[0]);
1925 		}
1926 
1927 		ret = cpsw_fill_rx_channels(priv);
1928 		if (ret < 0)
1929 			goto err_cleanup;
1930 
1931 		if (cpts_register(cpsw->cpts))
1932 			dev_err(priv->dev, "error registering cpts device\n");
1933 
1934 	}
1935 
1936 	cpsw_restore(priv);
1937 
1938 	/* Enable Interrupt pacing if configured */
1939 	if (cpsw->coal_intvl != 0) {
1940 		struct ethtool_coalesce coal;
1941 
1942 		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1943 		cpsw_set_coalesce(ndev, &coal);
1944 	}
1945 
1946 	cpdma_ctlr_start(cpsw->dma);
1947 	cpsw_intr_enable(cpsw);
1948 	cpsw->usage_count++;
1949 
1950 	return 0;
1951 
1952 err_cleanup:
1953 	cpdma_ctlr_stop(cpsw->dma);
1954 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1955 	pm_runtime_put_sync(cpsw->dev);
1956 	netif_carrier_off(priv->ndev);
1957 	return ret;
1958 }
1959 
1960 static int cpsw_ndo_stop(struct net_device *ndev)
1961 {
1962 	struct cpsw_priv *priv = netdev_priv(ndev);
1963 	struct cpsw_common *cpsw = priv->cpsw;
1964 
1965 	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1966 	__dev_mc_unsync(priv->ndev, cpsw_del_mc_addr);
1967 	netif_tx_stop_all_queues(priv->ndev);
1968 	netif_carrier_off(priv->ndev);
1969 
1970 	if (cpsw->usage_count <= 1) {
1971 		napi_disable(&cpsw->napi_rx);
1972 		napi_disable(&cpsw->napi_tx);
1973 		cpts_unregister(cpsw->cpts);
1974 		cpsw_intr_disable(cpsw);
1975 		cpdma_ctlr_stop(cpsw->dma);
1976 		cpsw_ale_stop(cpsw->ale);
1977 	}
1978 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1979 
1980 	if (cpsw_need_resplit(cpsw))
1981 		cpsw_split_res(ndev);
1982 
1983 	cpsw->usage_count--;
1984 	pm_runtime_put_sync(cpsw->dev);
1985 	return 0;
1986 }
1987 
1988 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1989 				       struct net_device *ndev)
1990 {
1991 	struct cpsw_priv *priv = netdev_priv(ndev);
1992 	struct cpsw_common *cpsw = priv->cpsw;
1993 	struct cpts *cpts = cpsw->cpts;
1994 	struct netdev_queue *txq;
1995 	struct cpdma_chan *txch;
1996 	int ret, q_idx;
1997 
1998 	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1999 		cpsw_err(priv, tx_err, "packet pad failed\n");
2000 		ndev->stats.tx_dropped++;
2001 		return NET_XMIT_DROP;
2002 	}
2003 
2004 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2005 	    cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb))
2006 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2007 
2008 	q_idx = skb_get_queue_mapping(skb);
2009 	if (q_idx >= cpsw->tx_ch_num)
2010 		q_idx = q_idx % cpsw->tx_ch_num;
2011 
2012 	txch = cpsw->txv[q_idx].ch;
2013 	txq = netdev_get_tx_queue(ndev, q_idx);
2014 	ret = cpsw_tx_packet_submit(priv, skb, txch);
2015 	if (unlikely(ret != 0)) {
2016 		cpsw_err(priv, tx_err, "desc submit failed\n");
2017 		goto fail;
2018 	}
2019 
2020 	/* If there is no more tx desc left free then we need to
2021 	 * tell the kernel to stop sending us tx frames.
2022 	 */
2023 	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
2024 		netif_tx_stop_queue(txq);
2025 
2026 		/* Barrier, so that stop_queue visible to other cpus */
2027 		smp_mb__after_atomic();
2028 
2029 		if (cpdma_check_free_tx_desc(txch))
2030 			netif_tx_wake_queue(txq);
2031 	}
2032 
2033 	return NETDEV_TX_OK;
2034 fail:
2035 	ndev->stats.tx_dropped++;
2036 	netif_tx_stop_queue(txq);
2037 
2038 	/* Barrier, so that stop_queue visible to other cpus */
2039 	smp_mb__after_atomic();
2040 
2041 	if (cpdma_check_free_tx_desc(txch))
2042 		netif_tx_wake_queue(txq);
2043 
2044 	return NETDEV_TX_BUSY;
2045 }
2046 
2047 #if IS_ENABLED(CONFIG_TI_CPTS)
2048 
2049 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
2050 {
2051 	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
2052 	u32 ts_en, seq_id;
2053 
2054 	if (!cpts_is_tx_enabled(cpsw->cpts) &&
2055 	    !cpts_is_rx_enabled(cpsw->cpts)) {
2056 		slave_write(slave, 0, CPSW1_TS_CTL);
2057 		return;
2058 	}
2059 
2060 	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
2061 	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
2062 
2063 	if (cpts_is_tx_enabled(cpsw->cpts))
2064 		ts_en |= CPSW_V1_TS_TX_EN;
2065 
2066 	if (cpts_is_rx_enabled(cpsw->cpts))
2067 		ts_en |= CPSW_V1_TS_RX_EN;
2068 
2069 	slave_write(slave, ts_en, CPSW1_TS_CTL);
2070 	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
2071 }
2072 
2073 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
2074 {
2075 	struct cpsw_slave *slave;
2076 	struct cpsw_common *cpsw = priv->cpsw;
2077 	u32 ctrl, mtype;
2078 
2079 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
2080 
2081 	ctrl = slave_read(slave, CPSW2_CONTROL);
2082 	switch (cpsw->version) {
2083 	case CPSW_VERSION_2:
2084 		ctrl &= ~CTRL_V2_ALL_TS_MASK;
2085 
2086 		if (cpts_is_tx_enabled(cpsw->cpts))
2087 			ctrl |= CTRL_V2_TX_TS_BITS;
2088 
2089 		if (cpts_is_rx_enabled(cpsw->cpts))
2090 			ctrl |= CTRL_V2_RX_TS_BITS;
2091 		break;
2092 	case CPSW_VERSION_3:
2093 	default:
2094 		ctrl &= ~CTRL_V3_ALL_TS_MASK;
2095 
2096 		if (cpts_is_tx_enabled(cpsw->cpts))
2097 			ctrl |= CTRL_V3_TX_TS_BITS;
2098 
2099 		if (cpts_is_rx_enabled(cpsw->cpts))
2100 			ctrl |= CTRL_V3_RX_TS_BITS;
2101 		break;
2102 	}
2103 
2104 	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
2105 
2106 	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
2107 	slave_write(slave, ctrl, CPSW2_CONTROL);
2108 	writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
2109 }
2110 
2111 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
2112 {
2113 	struct cpsw_priv *priv = netdev_priv(dev);
2114 	struct hwtstamp_config cfg;
2115 	struct cpsw_common *cpsw = priv->cpsw;
2116 	struct cpts *cpts = cpsw->cpts;
2117 
2118 	if (cpsw->version != CPSW_VERSION_1 &&
2119 	    cpsw->version != CPSW_VERSION_2 &&
2120 	    cpsw->version != CPSW_VERSION_3)
2121 		return -EOPNOTSUPP;
2122 
2123 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
2124 		return -EFAULT;
2125 
2126 	/* reserved for future extensions */
2127 	if (cfg.flags)
2128 		return -EINVAL;
2129 
2130 	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
2131 		return -ERANGE;
2132 
2133 	switch (cfg.rx_filter) {
2134 	case HWTSTAMP_FILTER_NONE:
2135 		cpts_rx_enable(cpts, 0);
2136 		break;
2137 	case HWTSTAMP_FILTER_ALL:
2138 	case HWTSTAMP_FILTER_NTP_ALL:
2139 		return -ERANGE;
2140 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2141 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2142 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2143 		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT);
2144 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
2145 		break;
2146 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2147 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2148 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2149 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2150 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2151 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2152 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2153 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2154 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2155 		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT);
2156 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
2157 		break;
2158 	default:
2159 		return -ERANGE;
2160 	}
2161 
2162 	cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
2163 
2164 	switch (cpsw->version) {
2165 	case CPSW_VERSION_1:
2166 		cpsw_hwtstamp_v1(cpsw);
2167 		break;
2168 	case CPSW_VERSION_2:
2169 	case CPSW_VERSION_3:
2170 		cpsw_hwtstamp_v2(priv);
2171 		break;
2172 	default:
2173 		WARN_ON(1);
2174 	}
2175 
2176 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
2177 }
2178 
2179 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
2180 {
2181 	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
2182 	struct cpts *cpts = cpsw->cpts;
2183 	struct hwtstamp_config cfg;
2184 
2185 	if (cpsw->version != CPSW_VERSION_1 &&
2186 	    cpsw->version != CPSW_VERSION_2 &&
2187 	    cpsw->version != CPSW_VERSION_3)
2188 		return -EOPNOTSUPP;
2189 
2190 	cfg.flags = 0;
2191 	cfg.tx_type = cpts_is_tx_enabled(cpts) ?
2192 		      HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2193 	cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
2194 			 cpts->rx_enable : HWTSTAMP_FILTER_NONE);
2195 
2196 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
2197 }
2198 #else
2199 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
2200 {
2201 	return -EOPNOTSUPP;
2202 }
2203 
2204 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
2205 {
2206 	return -EOPNOTSUPP;
2207 }
2208 #endif /*CONFIG_TI_CPTS*/
2209 
2210 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2211 {
2212 	struct cpsw_priv *priv = netdev_priv(dev);
2213 	struct cpsw_common *cpsw = priv->cpsw;
2214 	int slave_no = cpsw_slave_index(cpsw, priv);
2215 
2216 	if (!netif_running(dev))
2217 		return -EINVAL;
2218 
2219 	switch (cmd) {
2220 	case SIOCSHWTSTAMP:
2221 		return cpsw_hwtstamp_set(dev, req);
2222 	case SIOCGHWTSTAMP:
2223 		return cpsw_hwtstamp_get(dev, req);
2224 	}
2225 
2226 	if (!cpsw->slaves[slave_no].phy)
2227 		return -EOPNOTSUPP;
2228 	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
2229 }
2230 
2231 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
2232 {
2233 	struct cpsw_priv *priv = netdev_priv(ndev);
2234 	struct cpsw_common *cpsw = priv->cpsw;
2235 	int ch;
2236 
2237 	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
2238 	ndev->stats.tx_errors++;
2239 	cpsw_intr_disable(cpsw);
2240 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
2241 		cpdma_chan_stop(cpsw->txv[ch].ch);
2242 		cpdma_chan_start(cpsw->txv[ch].ch);
2243 	}
2244 
2245 	cpsw_intr_enable(cpsw);
2246 	netif_trans_update(ndev);
2247 	netif_tx_wake_all_queues(ndev);
2248 }
2249 
2250 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
2251 {
2252 	struct cpsw_priv *priv = netdev_priv(ndev);
2253 	struct sockaddr *addr = (struct sockaddr *)p;
2254 	struct cpsw_common *cpsw = priv->cpsw;
2255 	int flags = 0;
2256 	u16 vid = 0;
2257 	int ret;
2258 
2259 	if (!is_valid_ether_addr(addr->sa_data))
2260 		return -EADDRNOTAVAIL;
2261 
2262 	ret = pm_runtime_get_sync(cpsw->dev);
2263 	if (ret < 0) {
2264 		pm_runtime_put_noidle(cpsw->dev);
2265 		return ret;
2266 	}
2267 
2268 	if (cpsw->data.dual_emac) {
2269 		vid = cpsw->slaves[priv->emac_port].port_vlan;
2270 		flags = ALE_VLAN;
2271 	}
2272 
2273 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
2274 			   flags, vid);
2275 	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
2276 			   flags, vid);
2277 
2278 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
2279 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2280 	for_each_slave(priv, cpsw_set_slave_mac, priv);
2281 
2282 	pm_runtime_put(cpsw->dev);
2283 
2284 	return 0;
2285 }
2286 
2287 #ifdef CONFIG_NET_POLL_CONTROLLER
2288 static void cpsw_ndo_poll_controller(struct net_device *ndev)
2289 {
2290 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2291 
2292 	cpsw_intr_disable(cpsw);
2293 	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
2294 	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
2295 	cpsw_intr_enable(cpsw);
2296 }
2297 #endif
2298 
2299 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
2300 				unsigned short vid)
2301 {
2302 	int ret;
2303 	int unreg_mcast_mask = 0;
2304 	int mcast_mask;
2305 	u32 port_mask;
2306 	struct cpsw_common *cpsw = priv->cpsw;
2307 
2308 	if (cpsw->data.dual_emac) {
2309 		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
2310 
2311 		mcast_mask = ALE_PORT_HOST;
2312 		if (priv->ndev->flags & IFF_ALLMULTI)
2313 			unreg_mcast_mask = mcast_mask;
2314 	} else {
2315 		port_mask = ALE_ALL_PORTS;
2316 		mcast_mask = port_mask;
2317 
2318 		if (priv->ndev->flags & IFF_ALLMULTI)
2319 			unreg_mcast_mask = ALE_ALL_PORTS;
2320 		else
2321 			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
2322 	}
2323 
2324 	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
2325 				unreg_mcast_mask);
2326 	if (ret != 0)
2327 		return ret;
2328 
2329 	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
2330 				 HOST_PORT_NUM, ALE_VLAN, vid);
2331 	if (ret != 0)
2332 		goto clean_vid;
2333 
2334 	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
2335 				 mcast_mask, ALE_VLAN, vid, 0);
2336 	if (ret != 0)
2337 		goto clean_vlan_ucast;
2338 	return 0;
2339 
2340 clean_vlan_ucast:
2341 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2342 			   HOST_PORT_NUM, ALE_VLAN, vid);
2343 clean_vid:
2344 	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2345 	return ret;
2346 }
2347 
2348 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
2349 				    __be16 proto, u16 vid)
2350 {
2351 	struct cpsw_priv *priv = netdev_priv(ndev);
2352 	struct cpsw_common *cpsw = priv->cpsw;
2353 	int ret;
2354 
2355 	if (vid == cpsw->data.default_vlan)
2356 		return 0;
2357 
2358 	ret = pm_runtime_get_sync(cpsw->dev);
2359 	if (ret < 0) {
2360 		pm_runtime_put_noidle(cpsw->dev);
2361 		return ret;
2362 	}
2363 
2364 	if (cpsw->data.dual_emac) {
2365 		/* In dual EMAC, reserved VLAN id should not be used for
2366 		 * creating VLAN interfaces as this can break the dual
2367 		 * EMAC port separation
2368 		 */
2369 		int i;
2370 
2371 		for (i = 0; i < cpsw->data.slaves; i++) {
2372 			if (vid == cpsw->slaves[i].port_vlan) {
2373 				ret = -EINVAL;
2374 				goto err;
2375 			}
2376 		}
2377 	}
2378 
2379 	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
2380 	ret = cpsw_add_vlan_ale_entry(priv, vid);
2381 err:
2382 	pm_runtime_put(cpsw->dev);
2383 	return ret;
2384 }
2385 
2386 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
2387 				     __be16 proto, u16 vid)
2388 {
2389 	struct cpsw_priv *priv = netdev_priv(ndev);
2390 	struct cpsw_common *cpsw = priv->cpsw;
2391 	int ret;
2392 
2393 	if (vid == cpsw->data.default_vlan)
2394 		return 0;
2395 
2396 	ret = pm_runtime_get_sync(cpsw->dev);
2397 	if (ret < 0) {
2398 		pm_runtime_put_noidle(cpsw->dev);
2399 		return ret;
2400 	}
2401 
2402 	if (cpsw->data.dual_emac) {
2403 		int i;
2404 
2405 		for (i = 0; i < cpsw->data.slaves; i++) {
2406 			if (vid == cpsw->slaves[i].port_vlan)
2407 				goto err;
2408 		}
2409 	}
2410 
2411 	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2412 	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2413 	ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2414 				  HOST_PORT_NUM, ALE_VLAN, vid);
2415 	ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2416 				  0, ALE_VLAN, vid);
2417 err:
2418 	pm_runtime_put(cpsw->dev);
2419 	return ret;
2420 }
2421 
2422 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
2423 {
2424 	struct cpsw_priv *priv = netdev_priv(ndev);
2425 	struct cpsw_common *cpsw = priv->cpsw;
2426 	struct cpsw_slave *slave;
2427 	u32 min_rate;
2428 	u32 ch_rate;
2429 	int i, ret;
2430 
2431 	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
2432 	if (ch_rate == rate)
2433 		return 0;
2434 
2435 	ch_rate = rate * 1000;
2436 	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
2437 	if ((ch_rate < min_rate && ch_rate)) {
2438 		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
2439 			min_rate);
2440 		return -EINVAL;
2441 	}
2442 
2443 	if (rate > cpsw->speed) {
2444 		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2445 		return -EINVAL;
2446 	}
2447 
2448 	ret = pm_runtime_get_sync(cpsw->dev);
2449 	if (ret < 0) {
2450 		pm_runtime_put_noidle(cpsw->dev);
2451 		return ret;
2452 	}
2453 
2454 	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
2455 	pm_runtime_put(cpsw->dev);
2456 
2457 	if (ret)
2458 		return ret;
2459 
2460 	/* update rates for slaves tx queues */
2461 	for (i = 0; i < cpsw->data.slaves; i++) {
2462 		slave = &cpsw->slaves[i];
2463 		if (!slave->ndev)
2464 			continue;
2465 
2466 		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
2467 	}
2468 
2469 	cpsw_split_res(ndev);
2470 	return ret;
2471 }
2472 
2473 static int cpsw_set_mqprio(struct net_device *ndev, void *type_data)
2474 {
2475 	struct tc_mqprio_qopt_offload *mqprio = type_data;
2476 	struct cpsw_priv *priv = netdev_priv(ndev);
2477 	struct cpsw_common *cpsw = priv->cpsw;
2478 	int fifo, num_tc, count, offset;
2479 	struct cpsw_slave *slave;
2480 	u32 tx_prio_map = 0;
2481 	int i, tc, ret;
2482 
2483 	num_tc = mqprio->qopt.num_tc;
2484 	if (num_tc > CPSW_TC_NUM)
2485 		return -EINVAL;
2486 
2487 	if (mqprio->mode != TC_MQPRIO_MODE_DCB)
2488 		return -EINVAL;
2489 
2490 	ret = pm_runtime_get_sync(cpsw->dev);
2491 	if (ret < 0) {
2492 		pm_runtime_put_noidle(cpsw->dev);
2493 		return ret;
2494 	}
2495 
2496 	if (num_tc) {
2497 		for (i = 0; i < 8; i++) {
2498 			tc = mqprio->qopt.prio_tc_map[i];
2499 			fifo = cpsw_tc_to_fifo(tc, num_tc);
2500 			tx_prio_map |= fifo << (4 * i);
2501 		}
2502 
2503 		netdev_set_num_tc(ndev, num_tc);
2504 		for (i = 0; i < num_tc; i++) {
2505 			count = mqprio->qopt.count[i];
2506 			offset = mqprio->qopt.offset[i];
2507 			netdev_set_tc_queue(ndev, i, count, offset);
2508 		}
2509 	}
2510 
2511 	if (!mqprio->qopt.hw) {
2512 		/* restore default configuration */
2513 		netdev_reset_tc(ndev);
2514 		tx_prio_map = TX_PRIORITY_MAPPING;
2515 	}
2516 
2517 	priv->mqprio_hw = mqprio->qopt.hw;
2518 
2519 	offset = cpsw->version == CPSW_VERSION_1 ?
2520 		 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;
2521 
2522 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
2523 	slave_write(slave, tx_prio_map, offset);
2524 
2525 	pm_runtime_put_sync(cpsw->dev);
2526 
2527 	return 0;
2528 }
2529 
2530 static int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type,
2531 			     void *type_data)
2532 {
2533 	switch (type) {
2534 	case TC_SETUP_QDISC_CBS:
2535 		return cpsw_set_cbs(ndev, type_data);
2536 
2537 	case TC_SETUP_QDISC_MQPRIO:
2538 		return cpsw_set_mqprio(ndev, type_data);
2539 
2540 	default:
2541 		return -EOPNOTSUPP;
2542 	}
2543 }
2544 
2545 static const struct net_device_ops cpsw_netdev_ops = {
2546 	.ndo_open		= cpsw_ndo_open,
2547 	.ndo_stop		= cpsw_ndo_stop,
2548 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2549 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2550 	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2551 	.ndo_validate_addr	= eth_validate_addr,
2552 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2553 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2554 	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2555 #ifdef CONFIG_NET_POLL_CONTROLLER
2556 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
2557 #endif
2558 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
2559 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2560 	.ndo_setup_tc           = cpsw_ndo_setup_tc,
2561 };
2562 
2563 static int cpsw_get_regs_len(struct net_device *ndev)
2564 {
2565 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2566 
2567 	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2568 }
2569 
2570 static void cpsw_get_regs(struct net_device *ndev,
2571 			  struct ethtool_regs *regs, void *p)
2572 {
2573 	u32 *reg = p;
2574 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2575 
2576 	/* update CPSW IP version */
2577 	regs->version = cpsw->version;
2578 
2579 	cpsw_ale_dump(cpsw->ale, reg);
2580 }
2581 
2582 static void cpsw_get_drvinfo(struct net_device *ndev,
2583 			     struct ethtool_drvinfo *info)
2584 {
2585 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2586 	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2587 
2588 	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2589 	strlcpy(info->version, "1.0", sizeof(info->version));
2590 	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2591 }
2592 
2593 static u32 cpsw_get_msglevel(struct net_device *ndev)
2594 {
2595 	struct cpsw_priv *priv = netdev_priv(ndev);
2596 	return priv->msg_enable;
2597 }
2598 
2599 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
2600 {
2601 	struct cpsw_priv *priv = netdev_priv(ndev);
2602 	priv->msg_enable = value;
2603 }
2604 
2605 #if IS_ENABLED(CONFIG_TI_CPTS)
2606 static int cpsw_get_ts_info(struct net_device *ndev,
2607 			    struct ethtool_ts_info *info)
2608 {
2609 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2610 
2611 	info->so_timestamping =
2612 		SOF_TIMESTAMPING_TX_HARDWARE |
2613 		SOF_TIMESTAMPING_TX_SOFTWARE |
2614 		SOF_TIMESTAMPING_RX_HARDWARE |
2615 		SOF_TIMESTAMPING_RX_SOFTWARE |
2616 		SOF_TIMESTAMPING_SOFTWARE |
2617 		SOF_TIMESTAMPING_RAW_HARDWARE;
2618 	info->phc_index = cpsw->cpts->phc_index;
2619 	info->tx_types =
2620 		(1 << HWTSTAMP_TX_OFF) |
2621 		(1 << HWTSTAMP_TX_ON);
2622 	info->rx_filters =
2623 		(1 << HWTSTAMP_FILTER_NONE) |
2624 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2625 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2626 	return 0;
2627 }
2628 #else
2629 static int cpsw_get_ts_info(struct net_device *ndev,
2630 			    struct ethtool_ts_info *info)
2631 {
2632 	info->so_timestamping =
2633 		SOF_TIMESTAMPING_TX_SOFTWARE |
2634 		SOF_TIMESTAMPING_RX_SOFTWARE |
2635 		SOF_TIMESTAMPING_SOFTWARE;
2636 	info->phc_index = -1;
2637 	info->tx_types = 0;
2638 	info->rx_filters = 0;
2639 	return 0;
2640 }
2641 #endif
2642 
2643 static int cpsw_get_link_ksettings(struct net_device *ndev,
2644 				   struct ethtool_link_ksettings *ecmd)
2645 {
2646 	struct cpsw_priv *priv = netdev_priv(ndev);
2647 	struct cpsw_common *cpsw = priv->cpsw;
2648 	int slave_no = cpsw_slave_index(cpsw, priv);
2649 
2650 	if (!cpsw->slaves[slave_no].phy)
2651 		return -EOPNOTSUPP;
2652 
2653 	phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
2654 	return 0;
2655 }
2656 
2657 static int cpsw_set_link_ksettings(struct net_device *ndev,
2658 				   const struct ethtool_link_ksettings *ecmd)
2659 {
2660 	struct cpsw_priv *priv = netdev_priv(ndev);
2661 	struct cpsw_common *cpsw = priv->cpsw;
2662 	int slave_no = cpsw_slave_index(cpsw, priv);
2663 
2664 	if (cpsw->slaves[slave_no].phy)
2665 		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
2666 						 ecmd);
2667 	else
2668 		return -EOPNOTSUPP;
2669 }
2670 
2671 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2672 {
2673 	struct cpsw_priv *priv = netdev_priv(ndev);
2674 	struct cpsw_common *cpsw = priv->cpsw;
2675 	int slave_no = cpsw_slave_index(cpsw, priv);
2676 
2677 	wol->supported = 0;
2678 	wol->wolopts = 0;
2679 
2680 	if (cpsw->slaves[slave_no].phy)
2681 		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2682 }
2683 
2684 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2685 {
2686 	struct cpsw_priv *priv = netdev_priv(ndev);
2687 	struct cpsw_common *cpsw = priv->cpsw;
2688 	int slave_no = cpsw_slave_index(cpsw, priv);
2689 
2690 	if (cpsw->slaves[slave_no].phy)
2691 		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2692 	else
2693 		return -EOPNOTSUPP;
2694 }
2695 
2696 static void cpsw_get_pauseparam(struct net_device *ndev,
2697 				struct ethtool_pauseparam *pause)
2698 {
2699 	struct cpsw_priv *priv = netdev_priv(ndev);
2700 
2701 	pause->autoneg = AUTONEG_DISABLE;
2702 	pause->rx_pause = priv->rx_pause ? true : false;
2703 	pause->tx_pause = priv->tx_pause ? true : false;
2704 }
2705 
2706 static int cpsw_set_pauseparam(struct net_device *ndev,
2707 			       struct ethtool_pauseparam *pause)
2708 {
2709 	struct cpsw_priv *priv = netdev_priv(ndev);
2710 	bool link;
2711 
2712 	priv->rx_pause = pause->rx_pause ? true : false;
2713 	priv->tx_pause = pause->tx_pause ? true : false;
2714 
2715 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2716 	return 0;
2717 }
2718 
2719 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2720 {
2721 	struct cpsw_priv *priv = netdev_priv(ndev);
2722 	struct cpsw_common *cpsw = priv->cpsw;
2723 	int ret;
2724 
2725 	ret = pm_runtime_get_sync(cpsw->dev);
2726 	if (ret < 0) {
2727 		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2728 		pm_runtime_put_noidle(cpsw->dev);
2729 	}
2730 
2731 	return ret;
2732 }
2733 
2734 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2735 {
2736 	struct cpsw_priv *priv = netdev_priv(ndev);
2737 	int ret;
2738 
2739 	ret = pm_runtime_put(priv->cpsw->dev);
2740 	if (ret < 0)
2741 		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2742 }
2743 
2744 static void cpsw_get_channels(struct net_device *ndev,
2745 			      struct ethtool_channels *ch)
2746 {
2747 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2748 
2749 	ch->max_rx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
2750 	ch->max_tx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
2751 	ch->max_combined = 0;
2752 	ch->max_other = 0;
2753 	ch->other_count = 0;
2754 	ch->rx_count = cpsw->rx_ch_num;
2755 	ch->tx_count = cpsw->tx_ch_num;
2756 	ch->combined_count = 0;
2757 }
2758 
2759 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2760 				  struct ethtool_channels *ch)
2761 {
2762 	if (cpsw->quirk_irq) {
2763 		dev_err(cpsw->dev, "Maximum one tx/rx queue is allowed");
2764 		return -EOPNOTSUPP;
2765 	}
2766 
2767 	if (ch->combined_count)
2768 		return -EINVAL;
2769 
2770 	/* verify we have at least one channel in each direction */
2771 	if (!ch->rx_count || !ch->tx_count)
2772 		return -EINVAL;
2773 
2774 	if (ch->rx_count > cpsw->data.channels ||
2775 	    ch->tx_count > cpsw->data.channels)
2776 		return -EINVAL;
2777 
2778 	return 0;
2779 }
2780 
2781 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2782 {
2783 	struct cpsw_common *cpsw = priv->cpsw;
2784 	void (*handler)(void *, int, int);
2785 	struct netdev_queue *queue;
2786 	struct cpsw_vector *vec;
2787 	int ret, *ch, vch;
2788 
2789 	if (rx) {
2790 		ch = &cpsw->rx_ch_num;
2791 		vec = cpsw->rxv;
2792 		handler = cpsw_rx_handler;
2793 	} else {
2794 		ch = &cpsw->tx_ch_num;
2795 		vec = cpsw->txv;
2796 		handler = cpsw_tx_handler;
2797 	}
2798 
2799 	while (*ch < ch_num) {
2800 		vch = rx ? *ch : 7 - *ch;
2801 		vec[*ch].ch = cpdma_chan_create(cpsw->dma, vch, handler, rx);
2802 		queue = netdev_get_tx_queue(priv->ndev, *ch);
2803 		queue->tx_maxrate = 0;
2804 
2805 		if (IS_ERR(vec[*ch].ch))
2806 			return PTR_ERR(vec[*ch].ch);
2807 
2808 		if (!vec[*ch].ch)
2809 			return -EINVAL;
2810 
2811 		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2812 			  (rx ? "rx" : "tx"));
2813 		(*ch)++;
2814 	}
2815 
2816 	while (*ch > ch_num) {
2817 		(*ch)--;
2818 
2819 		ret = cpdma_chan_destroy(vec[*ch].ch);
2820 		if (ret)
2821 			return ret;
2822 
2823 		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2824 			  (rx ? "rx" : "tx"));
2825 	}
2826 
2827 	return 0;
2828 }
2829 
2830 static int cpsw_update_channels(struct cpsw_priv *priv,
2831 				struct ethtool_channels *ch)
2832 {
2833 	int ret;
2834 
2835 	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2836 	if (ret)
2837 		return ret;
2838 
2839 	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2840 	if (ret)
2841 		return ret;
2842 
2843 	return 0;
2844 }
2845 
2846 static void cpsw_suspend_data_pass(struct net_device *ndev)
2847 {
2848 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2849 	struct cpsw_slave *slave;
2850 	int i;
2851 
2852 	/* Disable NAPI scheduling */
2853 	cpsw_intr_disable(cpsw);
2854 
2855 	/* Stop all transmit queues for every network device.
2856 	 * Disable re-using rx descriptors with dormant_on.
2857 	 */
2858 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2859 		if (!(slave->ndev && netif_running(slave->ndev)))
2860 			continue;
2861 
2862 		netif_tx_stop_all_queues(slave->ndev);
2863 		netif_dormant_on(slave->ndev);
2864 	}
2865 
2866 	/* Handle rest of tx packets and stop cpdma channels */
2867 	cpdma_ctlr_stop(cpsw->dma);
2868 }
2869 
2870 static int cpsw_resume_data_pass(struct net_device *ndev)
2871 {
2872 	struct cpsw_priv *priv = netdev_priv(ndev);
2873 	struct cpsw_common *cpsw = priv->cpsw;
2874 	struct cpsw_slave *slave;
2875 	int i, ret;
2876 
2877 	/* Allow rx packets handling */
2878 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2879 		if (slave->ndev && netif_running(slave->ndev))
2880 			netif_dormant_off(slave->ndev);
2881 
2882 	/* After this receive is started */
2883 	if (cpsw->usage_count) {
2884 		ret = cpsw_fill_rx_channels(priv);
2885 		if (ret)
2886 			return ret;
2887 
2888 		cpdma_ctlr_start(cpsw->dma);
2889 		cpsw_intr_enable(cpsw);
2890 	}
2891 
2892 	/* Resume transmit for every affected interface */
2893 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2894 		if (slave->ndev && netif_running(slave->ndev))
2895 			netif_tx_start_all_queues(slave->ndev);
2896 
2897 	return 0;
2898 }
2899 
2900 static int cpsw_set_channels(struct net_device *ndev,
2901 			     struct ethtool_channels *chs)
2902 {
2903 	struct cpsw_priv *priv = netdev_priv(ndev);
2904 	struct cpsw_common *cpsw = priv->cpsw;
2905 	struct cpsw_slave *slave;
2906 	int i, ret;
2907 
2908 	ret = cpsw_check_ch_settings(cpsw, chs);
2909 	if (ret < 0)
2910 		return ret;
2911 
2912 	cpsw_suspend_data_pass(ndev);
2913 	ret = cpsw_update_channels(priv, chs);
2914 	if (ret)
2915 		goto err;
2916 
2917 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2918 		if (!(slave->ndev && netif_running(slave->ndev)))
2919 			continue;
2920 
2921 		/* Inform stack about new count of queues */
2922 		ret = netif_set_real_num_tx_queues(slave->ndev,
2923 						   cpsw->tx_ch_num);
2924 		if (ret) {
2925 			dev_err(priv->dev, "cannot set real number of tx queues\n");
2926 			goto err;
2927 		}
2928 
2929 		ret = netif_set_real_num_rx_queues(slave->ndev,
2930 						   cpsw->rx_ch_num);
2931 		if (ret) {
2932 			dev_err(priv->dev, "cannot set real number of rx queues\n");
2933 			goto err;
2934 		}
2935 	}
2936 
2937 	if (cpsw->usage_count)
2938 		cpsw_split_res(ndev);
2939 
2940 	ret = cpsw_resume_data_pass(ndev);
2941 	if (!ret)
2942 		return 0;
2943 err:
2944 	dev_err(priv->dev, "cannot update channels number, closing device\n");
2945 	dev_close(ndev);
2946 	return ret;
2947 }
2948 
2949 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2950 {
2951 	struct cpsw_priv *priv = netdev_priv(ndev);
2952 	struct cpsw_common *cpsw = priv->cpsw;
2953 	int slave_no = cpsw_slave_index(cpsw, priv);
2954 
2955 	if (cpsw->slaves[slave_no].phy)
2956 		return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
2957 	else
2958 		return -EOPNOTSUPP;
2959 }
2960 
2961 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2962 {
2963 	struct cpsw_priv *priv = netdev_priv(ndev);
2964 	struct cpsw_common *cpsw = priv->cpsw;
2965 	int slave_no = cpsw_slave_index(cpsw, priv);
2966 
2967 	if (cpsw->slaves[slave_no].phy)
2968 		return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
2969 	else
2970 		return -EOPNOTSUPP;
2971 }
2972 
2973 static int cpsw_nway_reset(struct net_device *ndev)
2974 {
2975 	struct cpsw_priv *priv = netdev_priv(ndev);
2976 	struct cpsw_common *cpsw = priv->cpsw;
2977 	int slave_no = cpsw_slave_index(cpsw, priv);
2978 
2979 	if (cpsw->slaves[slave_no].phy)
2980 		return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
2981 	else
2982 		return -EOPNOTSUPP;
2983 }
2984 
2985 static void cpsw_get_ringparam(struct net_device *ndev,
2986 			       struct ethtool_ringparam *ering)
2987 {
2988 	struct cpsw_priv *priv = netdev_priv(ndev);
2989 	struct cpsw_common *cpsw = priv->cpsw;
2990 
2991 	/* not supported */
2992 	ering->tx_max_pending = 0;
2993 	ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2994 	ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2995 	ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
2996 }
2997 
2998 static int cpsw_set_ringparam(struct net_device *ndev,
2999 			      struct ethtool_ringparam *ering)
3000 {
3001 	struct cpsw_priv *priv = netdev_priv(ndev);
3002 	struct cpsw_common *cpsw = priv->cpsw;
3003 	int ret;
3004 
3005 	/* ignore ering->tx_pending - only rx_pending adjustment is supported */
3006 
3007 	if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
3008 	    ering->rx_pending < CPSW_MAX_QUEUES ||
3009 	    ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
3010 		return -EINVAL;
3011 
3012 	if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
3013 		return 0;
3014 
3015 	cpsw_suspend_data_pass(ndev);
3016 
3017 	cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);
3018 
3019 	if (cpsw->usage_count)
3020 		cpdma_chan_split_pool(cpsw->dma);
3021 
3022 	ret = cpsw_resume_data_pass(ndev);
3023 	if (!ret)
3024 		return 0;
3025 
3026 	dev_err(&ndev->dev, "cannot set ring params, closing device\n");
3027 	dev_close(ndev);
3028 	return ret;
3029 }
3030 
3031 static const struct ethtool_ops cpsw_ethtool_ops = {
3032 	.get_drvinfo	= cpsw_get_drvinfo,
3033 	.get_msglevel	= cpsw_get_msglevel,
3034 	.set_msglevel	= cpsw_set_msglevel,
3035 	.get_link	= ethtool_op_get_link,
3036 	.get_ts_info	= cpsw_get_ts_info,
3037 	.get_coalesce	= cpsw_get_coalesce,
3038 	.set_coalesce	= cpsw_set_coalesce,
3039 	.get_sset_count		= cpsw_get_sset_count,
3040 	.get_strings		= cpsw_get_strings,
3041 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
3042 	.get_pauseparam		= cpsw_get_pauseparam,
3043 	.set_pauseparam		= cpsw_set_pauseparam,
3044 	.get_wol	= cpsw_get_wol,
3045 	.set_wol	= cpsw_set_wol,
3046 	.get_regs_len	= cpsw_get_regs_len,
3047 	.get_regs	= cpsw_get_regs,
3048 	.begin		= cpsw_ethtool_op_begin,
3049 	.complete	= cpsw_ethtool_op_complete,
3050 	.get_channels	= cpsw_get_channels,
3051 	.set_channels	= cpsw_set_channels,
3052 	.get_link_ksettings	= cpsw_get_link_ksettings,
3053 	.set_link_ksettings	= cpsw_set_link_ksettings,
3054 	.get_eee	= cpsw_get_eee,
3055 	.set_eee	= cpsw_set_eee,
3056 	.nway_reset	= cpsw_nway_reset,
3057 	.get_ringparam = cpsw_get_ringparam,
3058 	.set_ringparam = cpsw_set_ringparam,
3059 };
3060 
3061 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
3062 			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
3063 {
3064 	void __iomem		*regs = cpsw->regs;
3065 	int			slave_num = slave->slave_num;
3066 	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
3067 
3068 	slave->data	= data;
3069 	slave->regs	= regs + slave_reg_ofs;
3070 	slave->sliver	= regs + sliver_reg_ofs;
3071 	slave->port_vlan = data->dual_emac_res_vlan;
3072 }
3073 
3074 static int cpsw_probe_dt(struct cpsw_platform_data *data,
3075 			 struct platform_device *pdev)
3076 {
3077 	struct device_node *node = pdev->dev.of_node;
3078 	struct device_node *slave_node;
3079 	int i = 0, ret;
3080 	u32 prop;
3081 
3082 	if (!node)
3083 		return -EINVAL;
3084 
3085 	if (of_property_read_u32(node, "slaves", &prop)) {
3086 		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
3087 		return -EINVAL;
3088 	}
3089 	data->slaves = prop;
3090 
3091 	if (of_property_read_u32(node, "active_slave", &prop)) {
3092 		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
3093 		return -EINVAL;
3094 	}
3095 	data->active_slave = prop;
3096 
3097 	data->slave_data = devm_kcalloc(&pdev->dev,
3098 					data->slaves,
3099 					sizeof(struct cpsw_slave_data),
3100 					GFP_KERNEL);
3101 	if (!data->slave_data)
3102 		return -ENOMEM;
3103 
3104 	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
3105 		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
3106 		return -EINVAL;
3107 	}
3108 	data->channels = prop;
3109 
3110 	if (of_property_read_u32(node, "ale_entries", &prop)) {
3111 		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
3112 		return -EINVAL;
3113 	}
3114 	data->ale_entries = prop;
3115 
3116 	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
3117 		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
3118 		return -EINVAL;
3119 	}
3120 	data->bd_ram_size = prop;
3121 
3122 	if (of_property_read_u32(node, "mac_control", &prop)) {
3123 		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
3124 		return -EINVAL;
3125 	}
3126 	data->mac_control = prop;
3127 
3128 	if (of_property_read_bool(node, "dual_emac"))
3129 		data->dual_emac = 1;
3130 
3131 	/*
3132 	 * Populate all the child nodes here...
3133 	 */
3134 	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
3135 	/* We do not want to force this, as in some cases may not have child */
3136 	if (ret)
3137 		dev_warn(&pdev->dev, "Doesn't have any child node\n");
3138 
3139 	for_each_available_child_of_node(node, slave_node) {
3140 		struct cpsw_slave_data *slave_data = data->slave_data + i;
3141 		const void *mac_addr = NULL;
3142 		int lenp;
3143 		const __be32 *parp;
3144 
3145 		/* This is no slave child node, continue */
3146 		if (strcmp(slave_node->name, "slave"))
3147 			continue;
3148 
3149 		slave_data->phy_node = of_parse_phandle(slave_node,
3150 							"phy-handle", 0);
3151 		parp = of_get_property(slave_node, "phy_id", &lenp);
3152 		if (slave_data->phy_node) {
3153 			dev_dbg(&pdev->dev,
3154 				"slave[%d] using phy-handle=\"%pOF\"\n",
3155 				i, slave_data->phy_node);
3156 		} else if (of_phy_is_fixed_link(slave_node)) {
3157 			/* In the case of a fixed PHY, the DT node associated
3158 			 * to the PHY is the Ethernet MAC DT node.
3159 			 */
3160 			ret = of_phy_register_fixed_link(slave_node);
3161 			if (ret) {
3162 				if (ret != -EPROBE_DEFER)
3163 					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
3164 				return ret;
3165 			}
3166 			slave_data->phy_node = of_node_get(slave_node);
3167 		} else if (parp) {
3168 			u32 phyid;
3169 			struct device_node *mdio_node;
3170 			struct platform_device *mdio;
3171 
3172 			if (lenp != (sizeof(__be32) * 2)) {
3173 				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
3174 				goto no_phy_slave;
3175 			}
3176 			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
3177 			phyid = be32_to_cpup(parp+1);
3178 			mdio = of_find_device_by_node(mdio_node);
3179 			of_node_put(mdio_node);
3180 			if (!mdio) {
3181 				dev_err(&pdev->dev, "Missing mdio platform device\n");
3182 				return -EINVAL;
3183 			}
3184 			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
3185 				 PHY_ID_FMT, mdio->name, phyid);
3186 			put_device(&mdio->dev);
3187 		} else {
3188 			dev_err(&pdev->dev,
3189 				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
3190 				i);
3191 			goto no_phy_slave;
3192 		}
3193 		slave_data->phy_if = of_get_phy_mode(slave_node);
3194 		if (slave_data->phy_if < 0) {
3195 			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
3196 				i);
3197 			return slave_data->phy_if;
3198 		}
3199 
3200 no_phy_slave:
3201 		mac_addr = of_get_mac_address(slave_node);
3202 		if (mac_addr) {
3203 			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
3204 		} else {
3205 			ret = ti_cm_get_macid(&pdev->dev, i,
3206 					      slave_data->mac_addr);
3207 			if (ret)
3208 				return ret;
3209 		}
3210 		if (data->dual_emac) {
3211 			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
3212 						 &prop)) {
3213 				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
3214 				slave_data->dual_emac_res_vlan = i+1;
3215 				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
3216 					slave_data->dual_emac_res_vlan, i);
3217 			} else {
3218 				slave_data->dual_emac_res_vlan = prop;
3219 			}
3220 		}
3221 
3222 		i++;
3223 		if (i == data->slaves)
3224 			break;
3225 	}
3226 
3227 	return 0;
3228 }
3229 
3230 static void cpsw_remove_dt(struct platform_device *pdev)
3231 {
3232 	struct net_device *ndev = platform_get_drvdata(pdev);
3233 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3234 	struct cpsw_platform_data *data = &cpsw->data;
3235 	struct device_node *node = pdev->dev.of_node;
3236 	struct device_node *slave_node;
3237 	int i = 0;
3238 
3239 	for_each_available_child_of_node(node, slave_node) {
3240 		struct cpsw_slave_data *slave_data = &data->slave_data[i];
3241 
3242 		if (strcmp(slave_node->name, "slave"))
3243 			continue;
3244 
3245 		if (of_phy_is_fixed_link(slave_node))
3246 			of_phy_deregister_fixed_link(slave_node);
3247 
3248 		of_node_put(slave_data->phy_node);
3249 
3250 		i++;
3251 		if (i == data->slaves)
3252 			break;
3253 	}
3254 
3255 	of_platform_depopulate(&pdev->dev);
3256 }
3257 
3258 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
3259 {
3260 	struct cpsw_common		*cpsw = priv->cpsw;
3261 	struct cpsw_platform_data	*data = &cpsw->data;
3262 	struct net_device		*ndev;
3263 	struct cpsw_priv		*priv_sl2;
3264 	int ret = 0;
3265 
3266 	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
3267 	if (!ndev) {
3268 		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
3269 		return -ENOMEM;
3270 	}
3271 
3272 	priv_sl2 = netdev_priv(ndev);
3273 	priv_sl2->cpsw = cpsw;
3274 	priv_sl2->ndev = ndev;
3275 	priv_sl2->dev  = &ndev->dev;
3276 	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
3277 
3278 	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
3279 		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
3280 			ETH_ALEN);
3281 		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
3282 			 priv_sl2->mac_addr);
3283 	} else {
3284 		eth_random_addr(priv_sl2->mac_addr);
3285 		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
3286 			 priv_sl2->mac_addr);
3287 	}
3288 	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
3289 
3290 	priv_sl2->emac_port = 1;
3291 	cpsw->slaves[1].ndev = ndev;
3292 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3293 
3294 	ndev->netdev_ops = &cpsw_netdev_ops;
3295 	ndev->ethtool_ops = &cpsw_ethtool_ops;
3296 
3297 	/* register the network device */
3298 	SET_NETDEV_DEV(ndev, cpsw->dev);
3299 	ret = register_netdev(ndev);
3300 	if (ret) {
3301 		dev_err(cpsw->dev, "cpsw: error registering net device\n");
3302 		free_netdev(ndev);
3303 		ret = -ENODEV;
3304 	}
3305 
3306 	return ret;
3307 }
3308 
3309 static const struct of_device_id cpsw_of_mtable[] = {
3310 	{ .compatible = "ti,cpsw"},
3311 	{ .compatible = "ti,am335x-cpsw"},
3312 	{ .compatible = "ti,am4372-cpsw"},
3313 	{ .compatible = "ti,dra7-cpsw"},
3314 	{ /* sentinel */ },
3315 };
3316 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
3317 
3318 static const struct soc_device_attribute cpsw_soc_devices[] = {
3319 	{ .family = "AM33xx", .revision = "ES1.0"},
3320 	{ /* sentinel */ }
3321 };
3322 
3323 static int cpsw_probe(struct platform_device *pdev)
3324 {
3325 	struct clk			*clk;
3326 	struct cpsw_platform_data	*data;
3327 	struct net_device		*ndev;
3328 	struct cpsw_priv		*priv;
3329 	struct cpdma_params		dma_params;
3330 	struct cpsw_ale_params		ale_params;
3331 	void __iomem			*ss_regs;
3332 	void __iomem			*cpts_regs;
3333 	struct resource			*res, *ss_res;
3334 	struct gpio_descs		*mode;
3335 	u32 slave_offset, sliver_offset, slave_size;
3336 	const struct soc_device_attribute *soc;
3337 	struct cpsw_common		*cpsw;
3338 	int ret = 0, i, ch;
3339 	int irq;
3340 
3341 	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
3342 	if (!cpsw)
3343 		return -ENOMEM;
3344 
3345 	cpsw->dev = &pdev->dev;
3346 
3347 	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
3348 	if (!ndev) {
3349 		dev_err(&pdev->dev, "error allocating net_device\n");
3350 		return -ENOMEM;
3351 	}
3352 
3353 	platform_set_drvdata(pdev, ndev);
3354 	priv = netdev_priv(ndev);
3355 	priv->cpsw = cpsw;
3356 	priv->ndev = ndev;
3357 	priv->dev  = &ndev->dev;
3358 	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
3359 	cpsw->rx_packet_max = max(rx_packet_max, 128);
3360 
3361 	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
3362 	if (IS_ERR(mode)) {
3363 		ret = PTR_ERR(mode);
3364 		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
3365 		goto clean_ndev_ret;
3366 	}
3367 
3368 	/*
3369 	 * This may be required here for child devices.
3370 	 */
3371 	pm_runtime_enable(&pdev->dev);
3372 
3373 	/* Select default pin state */
3374 	pinctrl_pm_select_default_state(&pdev->dev);
3375 
3376 	/* Need to enable clocks with runtime PM api to access module
3377 	 * registers
3378 	 */
3379 	ret = pm_runtime_get_sync(&pdev->dev);
3380 	if (ret < 0) {
3381 		pm_runtime_put_noidle(&pdev->dev);
3382 		goto clean_runtime_disable_ret;
3383 	}
3384 
3385 	ret = cpsw_probe_dt(&cpsw->data, pdev);
3386 	if (ret)
3387 		goto clean_dt_ret;
3388 
3389 	data = &cpsw->data;
3390 	cpsw->rx_ch_num = 1;
3391 	cpsw->tx_ch_num = 1;
3392 
3393 	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
3394 		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
3395 		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
3396 	} else {
3397 		eth_random_addr(priv->mac_addr);
3398 		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
3399 	}
3400 
3401 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
3402 
3403 	cpsw->slaves = devm_kcalloc(&pdev->dev,
3404 				    data->slaves, sizeof(struct cpsw_slave),
3405 				    GFP_KERNEL);
3406 	if (!cpsw->slaves) {
3407 		ret = -ENOMEM;
3408 		goto clean_dt_ret;
3409 	}
3410 	for (i = 0; i < data->slaves; i++)
3411 		cpsw->slaves[i].slave_num = i;
3412 
3413 	cpsw->slaves[0].ndev = ndev;
3414 	priv->emac_port = 0;
3415 
3416 	clk = devm_clk_get(&pdev->dev, "fck");
3417 	if (IS_ERR(clk)) {
3418 		dev_err(priv->dev, "fck is not found\n");
3419 		ret = -ENODEV;
3420 		goto clean_dt_ret;
3421 	}
3422 	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
3423 
3424 	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3425 	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
3426 	if (IS_ERR(ss_regs)) {
3427 		ret = PTR_ERR(ss_regs);
3428 		goto clean_dt_ret;
3429 	}
3430 	cpsw->regs = ss_regs;
3431 
3432 	cpsw->version = readl(&cpsw->regs->id_ver);
3433 
3434 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3435 	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
3436 	if (IS_ERR(cpsw->wr_regs)) {
3437 		ret = PTR_ERR(cpsw->wr_regs);
3438 		goto clean_dt_ret;
3439 	}
3440 
3441 	memset(&dma_params, 0, sizeof(dma_params));
3442 	memset(&ale_params, 0, sizeof(ale_params));
3443 
3444 	switch (cpsw->version) {
3445 	case CPSW_VERSION_1:
3446 		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3447 		cpts_regs		= ss_regs + CPSW1_CPTS_OFFSET;
3448 		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
3449 		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
3450 		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
3451 		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
3452 		slave_offset         = CPSW1_SLAVE_OFFSET;
3453 		slave_size           = CPSW1_SLAVE_SIZE;
3454 		sliver_offset        = CPSW1_SLIVER_OFFSET;
3455 		dma_params.desc_mem_phys = 0;
3456 		break;
3457 	case CPSW_VERSION_2:
3458 	case CPSW_VERSION_3:
3459 	case CPSW_VERSION_4:
3460 		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3461 		cpts_regs		= ss_regs + CPSW2_CPTS_OFFSET;
3462 		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
3463 		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
3464 		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
3465 		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
3466 		slave_offset         = CPSW2_SLAVE_OFFSET;
3467 		slave_size           = CPSW2_SLAVE_SIZE;
3468 		sliver_offset        = CPSW2_SLIVER_OFFSET;
3469 		dma_params.desc_mem_phys =
3470 			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3471 		break;
3472 	default:
3473 		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3474 		ret = -ENODEV;
3475 		goto clean_dt_ret;
3476 	}
3477 	for (i = 0; i < cpsw->data.slaves; i++) {
3478 		struct cpsw_slave *slave = &cpsw->slaves[i];
3479 
3480 		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3481 		slave_offset  += slave_size;
3482 		sliver_offset += SLIVER_SIZE;
3483 	}
3484 
3485 	dma_params.dev		= &pdev->dev;
3486 	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
3487 	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
3488 	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
3489 	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
3490 	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
3491 
3492 	dma_params.num_chan		= data->channels;
3493 	dma_params.has_soft_reset	= true;
3494 	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
3495 	dma_params.desc_mem_size	= data->bd_ram_size;
3496 	dma_params.desc_align		= 16;
3497 	dma_params.has_ext_regs		= true;
3498 	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3499 	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
3500 	dma_params.descs_pool_size	= descs_pool_size;
3501 
3502 	cpsw->dma = cpdma_ctlr_create(&dma_params);
3503 	if (!cpsw->dma) {
3504 		dev_err(priv->dev, "error initializing dma\n");
3505 		ret = -ENOMEM;
3506 		goto clean_dt_ret;
3507 	}
3508 
3509 	soc = soc_device_match(cpsw_soc_devices);
3510 	if (soc)
3511 		cpsw->quirk_irq = 1;
3512 
3513 	ch = cpsw->quirk_irq ? 0 : 7;
3514 	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0);
3515 	if (IS_ERR(cpsw->txv[0].ch)) {
3516 		dev_err(priv->dev, "error initializing tx dma channel\n");
3517 		ret = PTR_ERR(cpsw->txv[0].ch);
3518 		goto clean_dma_ret;
3519 	}
3520 
3521 	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3522 	if (IS_ERR(cpsw->rxv[0].ch)) {
3523 		dev_err(priv->dev, "error initializing rx dma channel\n");
3524 		ret = PTR_ERR(cpsw->rxv[0].ch);
3525 		goto clean_dma_ret;
3526 	}
3527 
3528 	ale_params.dev			= &pdev->dev;
3529 	ale_params.ale_ageout		= ale_ageout;
3530 	ale_params.ale_entries		= data->ale_entries;
3531 	ale_params.ale_ports		= CPSW_ALE_PORTS_NUM;
3532 
3533 	cpsw->ale = cpsw_ale_create(&ale_params);
3534 	if (!cpsw->ale) {
3535 		dev_err(priv->dev, "error initializing ale engine\n");
3536 		ret = -ENODEV;
3537 		goto clean_dma_ret;
3538 	}
3539 
3540 	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3541 	if (IS_ERR(cpsw->cpts)) {
3542 		ret = PTR_ERR(cpsw->cpts);
3543 		goto clean_dma_ret;
3544 	}
3545 
3546 	ndev->irq = platform_get_irq(pdev, 1);
3547 	if (ndev->irq < 0) {
3548 		dev_err(priv->dev, "error getting irq resource\n");
3549 		ret = ndev->irq;
3550 		goto clean_dma_ret;
3551 	}
3552 
3553 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3554 
3555 	ndev->netdev_ops = &cpsw_netdev_ops;
3556 	ndev->ethtool_ops = &cpsw_ethtool_ops;
3557 	netif_napi_add(ndev, &cpsw->napi_rx,
3558 		       cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll,
3559 		       CPSW_POLL_WEIGHT);
3560 	netif_tx_napi_add(ndev, &cpsw->napi_tx,
3561 			  cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll,
3562 			  CPSW_POLL_WEIGHT);
3563 	cpsw_split_res(ndev);
3564 
3565 	/* register the network device */
3566 	SET_NETDEV_DEV(ndev, &pdev->dev);
3567 	ret = register_netdev(ndev);
3568 	if (ret) {
3569 		dev_err(priv->dev, "error registering net device\n");
3570 		ret = -ENODEV;
3571 		goto clean_dma_ret;
3572 	}
3573 
3574 	if (cpsw->data.dual_emac) {
3575 		ret = cpsw_probe_dual_emac(priv);
3576 		if (ret) {
3577 			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3578 			goto clean_unregister_netdev_ret;
3579 		}
3580 	}
3581 
3582 	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
3583 	 * MISC IRQs which are always kept disabled with this driver so
3584 	 * we will not request them.
3585 	 *
3586 	 * If anyone wants to implement support for those, make sure to
3587 	 * first request and append them to irqs_table array.
3588 	 */
3589 
3590 	/* RX IRQ */
3591 	irq = platform_get_irq(pdev, 1);
3592 	if (irq < 0) {
3593 		ret = irq;
3594 		goto clean_dma_ret;
3595 	}
3596 
3597 	cpsw->irqs_table[0] = irq;
3598 	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3599 			       0, dev_name(&pdev->dev), cpsw);
3600 	if (ret < 0) {
3601 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3602 		goto clean_dma_ret;
3603 	}
3604 
3605 	/* TX IRQ */
3606 	irq = platform_get_irq(pdev, 2);
3607 	if (irq < 0) {
3608 		ret = irq;
3609 		goto clean_dma_ret;
3610 	}
3611 
3612 	cpsw->irqs_table[1] = irq;
3613 	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3614 			       0, dev_name(&pdev->dev), cpsw);
3615 	if (ret < 0) {
3616 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3617 		goto clean_dma_ret;
3618 	}
3619 
3620 	cpsw_notice(priv, probe,
3621 		    "initialized device (regs %pa, irq %d, pool size %d)\n",
3622 		    &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3623 
3624 	pm_runtime_put(&pdev->dev);
3625 
3626 	return 0;
3627 
3628 clean_unregister_netdev_ret:
3629 	unregister_netdev(ndev);
3630 clean_dma_ret:
3631 	cpdma_ctlr_destroy(cpsw->dma);
3632 clean_dt_ret:
3633 	cpsw_remove_dt(pdev);
3634 	pm_runtime_put_sync(&pdev->dev);
3635 clean_runtime_disable_ret:
3636 	pm_runtime_disable(&pdev->dev);
3637 clean_ndev_ret:
3638 	free_netdev(priv->ndev);
3639 	return ret;
3640 }
3641 
3642 static int cpsw_remove(struct platform_device *pdev)
3643 {
3644 	struct net_device *ndev = platform_get_drvdata(pdev);
3645 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3646 	int ret;
3647 
3648 	ret = pm_runtime_get_sync(&pdev->dev);
3649 	if (ret < 0) {
3650 		pm_runtime_put_noidle(&pdev->dev);
3651 		return ret;
3652 	}
3653 
3654 	if (cpsw->data.dual_emac)
3655 		unregister_netdev(cpsw->slaves[1].ndev);
3656 	unregister_netdev(ndev);
3657 
3658 	cpts_release(cpsw->cpts);
3659 	cpdma_ctlr_destroy(cpsw->dma);
3660 	cpsw_remove_dt(pdev);
3661 	pm_runtime_put_sync(&pdev->dev);
3662 	pm_runtime_disable(&pdev->dev);
3663 	if (cpsw->data.dual_emac)
3664 		free_netdev(cpsw->slaves[1].ndev);
3665 	free_netdev(ndev);
3666 	return 0;
3667 }
3668 
3669 #ifdef CONFIG_PM_SLEEP
3670 static int cpsw_suspend(struct device *dev)
3671 {
3672 	struct platform_device	*pdev = to_platform_device(dev);
3673 	struct net_device	*ndev = platform_get_drvdata(pdev);
3674 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3675 
3676 	if (cpsw->data.dual_emac) {
3677 		int i;
3678 
3679 		for (i = 0; i < cpsw->data.slaves; i++) {
3680 			if (netif_running(cpsw->slaves[i].ndev))
3681 				cpsw_ndo_stop(cpsw->slaves[i].ndev);
3682 		}
3683 	} else {
3684 		if (netif_running(ndev))
3685 			cpsw_ndo_stop(ndev);
3686 	}
3687 
3688 	/* Select sleep pin state */
3689 	pinctrl_pm_select_sleep_state(dev);
3690 
3691 	return 0;
3692 }
3693 
3694 static int cpsw_resume(struct device *dev)
3695 {
3696 	struct platform_device	*pdev = to_platform_device(dev);
3697 	struct net_device	*ndev = platform_get_drvdata(pdev);
3698 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3699 
3700 	/* Select default pin state */
3701 	pinctrl_pm_select_default_state(dev);
3702 
3703 	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3704 	rtnl_lock();
3705 	if (cpsw->data.dual_emac) {
3706 		int i;
3707 
3708 		for (i = 0; i < cpsw->data.slaves; i++) {
3709 			if (netif_running(cpsw->slaves[i].ndev))
3710 				cpsw_ndo_open(cpsw->slaves[i].ndev);
3711 		}
3712 	} else {
3713 		if (netif_running(ndev))
3714 			cpsw_ndo_open(ndev);
3715 	}
3716 	rtnl_unlock();
3717 
3718 	return 0;
3719 }
3720 #endif
3721 
3722 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3723 
3724 static struct platform_driver cpsw_driver = {
3725 	.driver = {
3726 		.name	 = "cpsw",
3727 		.pm	 = &cpsw_pm_ops,
3728 		.of_match_table = cpsw_of_mtable,
3729 	},
3730 	.probe = cpsw_probe,
3731 	.remove = cpsw_remove,
3732 };
3733 
3734 module_platform_driver(cpsw_driver);
3735 
3736 MODULE_LICENSE("GPL");
3737 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3738 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3739 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
3740