xref: /linux/drivers/net/ethernet/ti/cpsw.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Texas Instruments Ethernet Switch Driver
4  *
5  * Copyright (C) 2012 Texas Instruments
6  *
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/io.h>
11 #include <linux/clk.h>
12 #include <linux/timer.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/irqreturn.h>
16 #include <linux/interrupt.h>
17 #include <linux/if_ether.h>
18 #include <linux/etherdevice.h>
19 #include <linux/netdevice.h>
20 #include <linux/net_tstamp.h>
21 #include <linux/phy.h>
22 #include <linux/phy/phy.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/gpio/consumer.h>
27 #include <linux/of.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/of_platform.h>
31 #include <linux/if_vlan.h>
32 #include <linux/kmemleak.h>
33 #include <linux/sys_soc.h>
34 #include <net/page_pool/helpers.h>
35 #include <linux/bpf.h>
36 #include <linux/bpf_trace.h>
37 
38 #include <linux/pinctrl/consumer.h>
39 #include <net/pkt_cls.h>
40 
41 #include "cpsw.h"
42 #include "cpsw_ale.h"
43 #include "cpsw_priv.h"
44 #include "cpsw_sl.h"
45 #include "cpts.h"
46 #include "davinci_cpdma.h"
47 
48 #include <net/pkt_sched.h>
49 
50 static int debug_level;
51 module_param(debug_level, int, 0);
52 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
53 
54 static int ale_ageout = 10;
55 module_param(ale_ageout, int, 0);
56 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
57 
58 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
59 module_param(rx_packet_max, int, 0);
60 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
61 
62 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
63 module_param(descs_pool_size, int, 0444);
64 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
65 
66 #define for_each_slave(priv, func, arg...)				\
67 	do {								\
68 		struct cpsw_slave *slave;				\
69 		struct cpsw_common *cpsw = (priv)->cpsw;		\
70 		int n;							\
71 		if (cpsw->data.dual_emac)				\
72 			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
73 		else							\
74 			for (n = cpsw->data.slaves,			\
75 					slave = cpsw->slaves;		\
76 					n; n--)				\
77 				(func)(slave++, ##arg);			\
78 	} while (0)
79 
80 static int cpsw_slave_index_priv(struct cpsw_common *cpsw,
81 				 struct cpsw_priv *priv)
82 {
83 	return cpsw->data.dual_emac ? priv->emac_port : cpsw->data.active_slave;
84 }
85 
86 static int cpsw_get_slave_port(u32 slave_num)
87 {
88 	return slave_num + 1;
89 }
90 
91 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
92 				    __be16 proto, u16 vid);
93 
94 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
95 {
96 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
97 	struct cpsw_ale *ale = cpsw->ale;
98 	int i;
99 
100 	if (cpsw->data.dual_emac) {
101 		bool flag = false;
102 
103 		/* Enabling promiscuous mode for one interface will be
104 		 * common for both the interface as the interface shares
105 		 * the same hardware resource.
106 		 */
107 		for (i = 0; i < cpsw->data.slaves; i++)
108 			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
109 				flag = true;
110 
111 		if (!enable && flag) {
112 			enable = true;
113 			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
114 		}
115 
116 		if (enable) {
117 			/* Enable Bypass */
118 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
119 
120 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
121 		} else {
122 			/* Disable Bypass */
123 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
124 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
125 		}
126 	} else {
127 		if (enable) {
128 			unsigned long timeout = jiffies + HZ;
129 
130 			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
131 			for (i = 0; i <= cpsw->data.slaves; i++) {
132 				cpsw_ale_control_set(ale, i,
133 						     ALE_PORT_NOLEARN, 1);
134 				cpsw_ale_control_set(ale, i,
135 						     ALE_PORT_NO_SA_UPDATE, 1);
136 			}
137 
138 			/* Clear All Untouched entries */
139 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
140 			do {
141 				cpu_relax();
142 				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
143 					break;
144 			} while (time_after(timeout, jiffies));
145 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
146 
147 			/* Clear all mcast from ALE */
148 			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
149 			__hw_addr_ref_unsync_dev(&ndev->mc, ndev, NULL);
150 
151 			/* Flood All Unicast Packets to Host port */
152 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
153 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
154 		} else {
155 			/* Don't Flood All Unicast Packets to Host port */
156 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
157 
158 			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
159 			for (i = 0; i <= cpsw->data.slaves; i++) {
160 				cpsw_ale_control_set(ale, i,
161 						     ALE_PORT_NOLEARN, 0);
162 				cpsw_ale_control_set(ale, i,
163 						     ALE_PORT_NO_SA_UPDATE, 0);
164 			}
165 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
166 		}
167 	}
168 }
169 
170 /**
171  * cpsw_set_mc - adds multicast entry to the table if it's not added or deletes
172  * if it's not deleted
173  * @ndev: device to sync
174  * @addr: address to be added or deleted
175  * @vid: vlan id, if vid < 0 set/unset address for real device
176  * @add: add address if the flag is set or remove otherwise
177  */
178 static int cpsw_set_mc(struct net_device *ndev, const u8 *addr,
179 		       int vid, int add)
180 {
181 	struct cpsw_priv *priv = netdev_priv(ndev);
182 	struct cpsw_common *cpsw = priv->cpsw;
183 	int mask, flags, ret;
184 
185 	if (vid < 0) {
186 		if (cpsw->data.dual_emac)
187 			vid = cpsw->slaves[priv->emac_port].port_vlan;
188 		else
189 			vid = 0;
190 	}
191 
192 	mask = cpsw->data.dual_emac ? ALE_PORT_HOST : ALE_ALL_PORTS;
193 	flags = vid ? ALE_VLAN : 0;
194 
195 	if (add)
196 		ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0);
197 	else
198 		ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid);
199 
200 	return ret;
201 }
202 
203 static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx)
204 {
205 	struct addr_sync_ctx *sync_ctx = ctx;
206 	struct netdev_hw_addr *ha;
207 	int found = 0, ret = 0;
208 
209 	if (!vdev || !(vdev->flags & IFF_UP))
210 		return 0;
211 
212 	/* vlan address is relevant if its sync_cnt != 0 */
213 	netdev_for_each_mc_addr(ha, vdev) {
214 		if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
215 			found = ha->sync_cnt;
216 			break;
217 		}
218 	}
219 
220 	if (found)
221 		sync_ctx->consumed++;
222 
223 	if (sync_ctx->flush) {
224 		if (!found)
225 			cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
226 		return 0;
227 	}
228 
229 	if (found)
230 		ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1);
231 
232 	return ret;
233 }
234 
235 static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num)
236 {
237 	struct addr_sync_ctx sync_ctx;
238 	int ret;
239 
240 	sync_ctx.consumed = 0;
241 	sync_ctx.addr = addr;
242 	sync_ctx.ndev = ndev;
243 	sync_ctx.flush = 0;
244 
245 	ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
246 	if (sync_ctx.consumed < num && !ret)
247 		ret = cpsw_set_mc(ndev, addr, -1, 1);
248 
249 	return ret;
250 }
251 
252 static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num)
253 {
254 	struct addr_sync_ctx sync_ctx;
255 
256 	sync_ctx.consumed = 0;
257 	sync_ctx.addr = addr;
258 	sync_ctx.ndev = ndev;
259 	sync_ctx.flush = 1;
260 
261 	vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
262 	if (sync_ctx.consumed == num)
263 		cpsw_set_mc(ndev, addr, -1, 0);
264 
265 	return 0;
266 }
267 
268 static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx)
269 {
270 	struct addr_sync_ctx *sync_ctx = ctx;
271 	struct netdev_hw_addr *ha;
272 	int found = 0;
273 
274 	if (!vdev || !(vdev->flags & IFF_UP))
275 		return 0;
276 
277 	/* vlan address is relevant if its sync_cnt != 0 */
278 	netdev_for_each_mc_addr(ha, vdev) {
279 		if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
280 			found = ha->sync_cnt;
281 			break;
282 		}
283 	}
284 
285 	if (!found)
286 		return 0;
287 
288 	sync_ctx->consumed++;
289 	cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
290 	return 0;
291 }
292 
293 static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num)
294 {
295 	struct addr_sync_ctx sync_ctx;
296 
297 	sync_ctx.addr = addr;
298 	sync_ctx.ndev = ndev;
299 	sync_ctx.consumed = 0;
300 
301 	vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx);
302 	if (sync_ctx.consumed < num)
303 		cpsw_set_mc(ndev, addr, -1, 0);
304 
305 	return 0;
306 }
307 
308 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
309 {
310 	struct cpsw_priv *priv = netdev_priv(ndev);
311 	struct cpsw_common *cpsw = priv->cpsw;
312 	int slave_port = -1;
313 
314 	if (cpsw->data.dual_emac)
315 		slave_port = priv->emac_port + 1;
316 
317 	if (ndev->flags & IFF_PROMISC) {
318 		/* Enable promiscuous mode */
319 		cpsw_set_promiscious(ndev, true);
320 		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI, slave_port);
321 		return;
322 	} else {
323 		/* Disable promiscuous mode */
324 		cpsw_set_promiscious(ndev, false);
325 	}
326 
327 	/* Restore allmulti on vlans if necessary */
328 	cpsw_ale_set_allmulti(cpsw->ale,
329 			      ndev->flags & IFF_ALLMULTI, slave_port);
330 
331 	/* add/remove mcast address either for real netdev or for vlan */
332 	__hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr,
333 			       cpsw_del_mc_addr);
334 }
335 
336 static unsigned int cpsw_rxbuf_total_len(unsigned int len)
337 {
338 	len += CPSW_HEADROOM_NA;
339 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
340 
341 	return SKB_DATA_ALIGN(len);
342 }
343 
344 static void cpsw_rx_handler(void *token, int len, int status)
345 {
346 	struct page		*new_page, *page = token;
347 	void			*pa = page_address(page);
348 	struct cpsw_meta_xdp	*xmeta = pa + CPSW_XMETA_OFFSET;
349 	struct cpsw_common	*cpsw = ndev_to_cpsw(xmeta->ndev);
350 	int			pkt_size = cpsw->rx_packet_max;
351 	int			ret = 0, port, ch = xmeta->ch;
352 	int			headroom = CPSW_HEADROOM_NA;
353 	struct net_device	*ndev = xmeta->ndev;
354 	struct cpsw_priv	*priv;
355 	struct page_pool	*pool;
356 	struct sk_buff		*skb;
357 	struct xdp_buff		xdp;
358 	dma_addr_t		dma;
359 
360 	if (cpsw->data.dual_emac && status >= 0) {
361 		port = CPDMA_RX_SOURCE_PORT(status);
362 		if (port)
363 			ndev = cpsw->slaves[--port].ndev;
364 	}
365 
366 	priv = netdev_priv(ndev);
367 	pool = cpsw->page_pool[ch];
368 	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
369 		/* In dual emac mode check for all interfaces */
370 		if (cpsw->data.dual_emac && cpsw->usage_count &&
371 		    (status >= 0)) {
372 			/* The packet received is for the interface which
373 			 * is already down and the other interface is up
374 			 * and running, instead of freeing which results
375 			 * in reducing of the number of rx descriptor in
376 			 * DMA engine, requeue page back to cpdma.
377 			 */
378 			new_page = page;
379 			goto requeue;
380 		}
381 
382 		/* the interface is going down, pages are purged */
383 		page_pool_recycle_direct(pool, page);
384 		return;
385 	}
386 
387 	new_page = page_pool_dev_alloc_pages(pool);
388 	if (unlikely(!new_page)) {
389 		new_page = page;
390 		ndev->stats.rx_dropped++;
391 		goto requeue;
392 	}
393 
394 	if (priv->xdp_prog) {
395 		int size = len;
396 
397 		xdp_init_buff(&xdp, PAGE_SIZE, &priv->xdp_rxq[ch]);
398 		if (status & CPDMA_RX_VLAN_ENCAP) {
399 			headroom += CPSW_RX_VLAN_ENCAP_HDR_SIZE;
400 			size -= CPSW_RX_VLAN_ENCAP_HDR_SIZE;
401 		}
402 
403 		xdp_prepare_buff(&xdp, pa, headroom, size, false);
404 
405 		port = priv->emac_port + cpsw->data.dual_emac;
406 		ret = cpsw_run_xdp(priv, ch, &xdp, page, port, &len);
407 		if (ret != CPSW_XDP_PASS)
408 			goto requeue;
409 
410 		headroom = xdp.data - xdp.data_hard_start;
411 
412 		/* XDP prog can modify vlan tag, so can't use encap header */
413 		status &= ~CPDMA_RX_VLAN_ENCAP;
414 	}
415 
416 	/* pass skb to netstack if no XDP prog or returned XDP_PASS */
417 	skb = build_skb(pa, cpsw_rxbuf_total_len(pkt_size));
418 	if (!skb) {
419 		ndev->stats.rx_dropped++;
420 		page_pool_recycle_direct(pool, page);
421 		goto requeue;
422 	}
423 
424 	skb_reserve(skb, headroom);
425 	skb_put(skb, len);
426 	skb->dev = ndev;
427 	if (status & CPDMA_RX_VLAN_ENCAP)
428 		cpsw_rx_vlan_encap(skb);
429 	if (priv->rx_ts_enabled)
430 		cpts_rx_timestamp(cpsw->cpts, skb);
431 	skb->protocol = eth_type_trans(skb, ndev);
432 
433 	/* mark skb for recycling */
434 	skb_mark_for_recycle(skb);
435 	netif_receive_skb(skb);
436 
437 	ndev->stats.rx_bytes += len;
438 	ndev->stats.rx_packets++;
439 
440 requeue:
441 	xmeta = page_address(new_page) + CPSW_XMETA_OFFSET;
442 	xmeta->ndev = ndev;
443 	xmeta->ch = ch;
444 
445 	dma = page_pool_get_dma_addr(new_page) + CPSW_HEADROOM_NA;
446 	ret = cpdma_chan_submit_mapped(cpsw->rxv[ch].ch, new_page, dma,
447 				       pkt_size, 0);
448 	if (ret < 0) {
449 		WARN_ON(ret == -ENOMEM);
450 		page_pool_recycle_direct(pool, new_page);
451 	}
452 }
453 
454 static void _cpsw_adjust_link(struct cpsw_slave *slave,
455 			      struct cpsw_priv *priv, bool *link)
456 {
457 	struct phy_device	*phy = slave->phy;
458 	u32			mac_control = 0;
459 	u32			slave_port;
460 	struct cpsw_common *cpsw = priv->cpsw;
461 
462 	if (!phy)
463 		return;
464 
465 	slave_port = cpsw_get_slave_port(slave->slave_num);
466 
467 	if (phy->link) {
468 		mac_control = CPSW_SL_CTL_GMII_EN;
469 
470 		if (phy->speed == 1000)
471 			mac_control |= CPSW_SL_CTL_GIG;
472 		if (phy->duplex)
473 			mac_control |= CPSW_SL_CTL_FULLDUPLEX;
474 
475 		/* set speed_in input in case RMII mode is used in 100Mbps */
476 		if (phy->speed == 100)
477 			mac_control |= CPSW_SL_CTL_IFCTL_A;
478 		/* in band mode only works in 10Mbps RGMII mode */
479 		else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
480 			mac_control |= CPSW_SL_CTL_EXT_EN; /* In Band mode */
481 
482 		if (priv->rx_pause)
483 			mac_control |= CPSW_SL_CTL_RX_FLOW_EN;
484 
485 		if (priv->tx_pause)
486 			mac_control |= CPSW_SL_CTL_TX_FLOW_EN;
487 
488 		if (mac_control != slave->mac_control)
489 			cpsw_sl_ctl_set(slave->mac_sl, mac_control);
490 
491 		/* enable forwarding */
492 		cpsw_ale_control_set(cpsw->ale, slave_port,
493 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
494 
495 		*link = true;
496 
497 		if (priv->shp_cfg_speed &&
498 		    priv->shp_cfg_speed != slave->phy->speed &&
499 		    !cpsw_shp_is_off(priv))
500 			dev_warn(priv->dev,
501 				 "Speed was changed, CBS shaper speeds are changed!");
502 	} else {
503 		mac_control = 0;
504 		/* disable forwarding */
505 		cpsw_ale_control_set(cpsw->ale, slave_port,
506 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
507 
508 		cpsw_sl_wait_for_idle(slave->mac_sl, 100);
509 
510 		cpsw_sl_ctl_reset(slave->mac_sl);
511 	}
512 
513 	if (mac_control != slave->mac_control)
514 		phy_print_status(phy);
515 
516 	slave->mac_control = mac_control;
517 }
518 
519 static void cpsw_adjust_link(struct net_device *ndev)
520 {
521 	struct cpsw_priv	*priv = netdev_priv(ndev);
522 	struct cpsw_common	*cpsw = priv->cpsw;
523 	bool			link = false;
524 
525 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
526 
527 	if (link) {
528 		if (cpsw_need_resplit(cpsw))
529 			cpsw_split_res(cpsw);
530 
531 		netif_carrier_on(ndev);
532 		if (netif_running(ndev))
533 			netif_tx_wake_all_queues(ndev);
534 	} else {
535 		netif_carrier_off(ndev);
536 		netif_tx_stop_all_queues(ndev);
537 	}
538 }
539 
540 static inline void cpsw_add_dual_emac_def_ale_entries(
541 		struct cpsw_priv *priv, struct cpsw_slave *slave,
542 		u32 slave_port)
543 {
544 	struct cpsw_common *cpsw = priv->cpsw;
545 	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
546 
547 	if (cpsw->version == CPSW_VERSION_1)
548 		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
549 	else
550 		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
551 	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
552 			  port_mask, port_mask, 0);
553 	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
554 			   ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0);
555 	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
556 			   HOST_PORT_NUM, ALE_VLAN |
557 			   ALE_SECURE, slave->port_vlan);
558 	cpsw_ale_control_set(cpsw->ale, slave_port,
559 			     ALE_PORT_DROP_UNKNOWN_VLAN, 1);
560 }
561 
562 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
563 {
564 	u32 slave_port;
565 	struct phy_device *phy;
566 	struct cpsw_common *cpsw = priv->cpsw;
567 
568 	cpsw_sl_reset(slave->mac_sl, 100);
569 	cpsw_sl_ctl_reset(slave->mac_sl);
570 
571 	/* setup priority mapping */
572 	cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_PRI_MAP,
573 			  RX_PRIORITY_MAPPING);
574 
575 	switch (cpsw->version) {
576 	case CPSW_VERSION_1:
577 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
578 		/* Increase RX FIFO size to 5 for supporting fullduplex
579 		 * flow control mode
580 		 */
581 		slave_write(slave,
582 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
583 			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
584 		break;
585 	case CPSW_VERSION_2:
586 	case CPSW_VERSION_3:
587 	case CPSW_VERSION_4:
588 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
589 		/* Increase RX FIFO size to 5 for supporting fullduplex
590 		 * flow control mode
591 		 */
592 		slave_write(slave,
593 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
594 			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
595 		break;
596 	}
597 
598 	/* setup max packet size, and mac address */
599 	cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_MAXLEN,
600 			  cpsw->rx_packet_max);
601 	cpsw_set_slave_mac(slave, priv);
602 
603 	slave->mac_control = 0;	/* no link yet */
604 
605 	slave_port = cpsw_get_slave_port(slave->slave_num);
606 
607 	if (cpsw->data.dual_emac)
608 		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
609 	else
610 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
611 				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
612 
613 	if (slave->data->phy_node) {
614 		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
615 				 &cpsw_adjust_link, 0, slave->data->phy_if);
616 		if (!phy) {
617 			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
618 				slave->data->phy_node,
619 				slave->slave_num);
620 			return;
621 		}
622 	} else {
623 		phy = phy_connect(priv->ndev, slave->data->phy_id,
624 				 &cpsw_adjust_link, slave->data->phy_if);
625 		if (IS_ERR(phy)) {
626 			dev_err(priv->dev,
627 				"phy \"%s\" not found on slave %d, err %ld\n",
628 				slave->data->phy_id, slave->slave_num,
629 				PTR_ERR(phy));
630 			return;
631 		}
632 	}
633 
634 	phy->mac_managed_pm = true;
635 
636 	slave->phy = phy;
637 
638 	phy_attached_info(slave->phy);
639 
640 	phy_start(slave->phy);
641 
642 	/* Configure GMII_SEL register */
643 	if (!IS_ERR(slave->data->ifphy))
644 		phy_set_mode_ext(slave->data->ifphy, PHY_MODE_ETHERNET,
645 				 slave->data->phy_if);
646 	else
647 		cpsw_phy_sel(cpsw->dev, slave->phy->interface,
648 			     slave->slave_num);
649 }
650 
651 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
652 {
653 	struct cpsw_common *cpsw = priv->cpsw;
654 	const int vlan = cpsw->data.default_vlan;
655 	u32 reg;
656 	int i;
657 	int unreg_mcast_mask;
658 
659 	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
660 	       CPSW2_PORT_VLAN;
661 
662 	writel(vlan, &cpsw->host_port_regs->port_vlan);
663 
664 	for (i = 0; i < cpsw->data.slaves; i++)
665 		slave_write(cpsw->slaves + i, vlan, reg);
666 
667 	if (priv->ndev->flags & IFF_ALLMULTI)
668 		unreg_mcast_mask = ALE_ALL_PORTS;
669 	else
670 		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
671 
672 	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
673 			  ALE_ALL_PORTS, ALE_ALL_PORTS,
674 			  unreg_mcast_mask);
675 }
676 
677 static void cpsw_init_host_port(struct cpsw_priv *priv)
678 {
679 	u32 fifo_mode;
680 	u32 control_reg;
681 	struct cpsw_common *cpsw = priv->cpsw;
682 
683 	/* soft reset the controller and initialize ale */
684 	soft_reset("cpsw", &cpsw->regs->soft_reset);
685 	cpsw_ale_start(cpsw->ale);
686 
687 	/* switch to vlan unaware mode */
688 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
689 			     CPSW_ALE_VLAN_AWARE);
690 	control_reg = readl(&cpsw->regs->control);
691 	control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
692 	writel(control_reg, &cpsw->regs->control);
693 	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
694 		     CPSW_FIFO_NORMAL_MODE;
695 	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
696 
697 	/* setup host port priority mapping */
698 	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
699 		       &cpsw->host_port_regs->cpdma_tx_pri_map);
700 	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
701 
702 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
703 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
704 
705 	if (!cpsw->data.dual_emac) {
706 		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
707 				   0, 0);
708 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
709 				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
710 	}
711 }
712 
713 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
714 {
715 	u32 slave_port;
716 
717 	slave_port = cpsw_get_slave_port(slave->slave_num);
718 
719 	if (!slave->phy)
720 		return;
721 	phy_stop(slave->phy);
722 	phy_disconnect(slave->phy);
723 	slave->phy = NULL;
724 	cpsw_ale_control_set(cpsw->ale, slave_port,
725 			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
726 	cpsw_sl_reset(slave->mac_sl, 100);
727 	cpsw_sl_ctl_reset(slave->mac_sl);
728 }
729 
730 static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg)
731 {
732 	struct cpsw_priv *priv = arg;
733 
734 	if (!vdev)
735 		return 0;
736 
737 	cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid);
738 	return 0;
739 }
740 
741 /* restore resources after port reset */
742 static void cpsw_restore(struct cpsw_priv *priv)
743 {
744 	/* restore vlan configurations */
745 	vlan_for_each(priv->ndev, cpsw_restore_vlans, priv);
746 
747 	/* restore MQPRIO offload */
748 	for_each_slave(priv, cpsw_mqprio_resume, priv);
749 
750 	/* restore CBS offload */
751 	for_each_slave(priv, cpsw_cbs_resume, priv);
752 }
753 
754 static int cpsw_ndo_open(struct net_device *ndev)
755 {
756 	struct cpsw_priv *priv = netdev_priv(ndev);
757 	struct cpsw_common *cpsw = priv->cpsw;
758 	int ret;
759 	u32 reg;
760 
761 	ret = pm_runtime_resume_and_get(cpsw->dev);
762 	if (ret < 0)
763 		return ret;
764 
765 	netif_carrier_off(ndev);
766 
767 	/* Notify the stack of the actual queue counts. */
768 	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
769 	if (ret) {
770 		dev_err(priv->dev, "cannot set real number of tx queues\n");
771 		goto err_cleanup;
772 	}
773 
774 	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
775 	if (ret) {
776 		dev_err(priv->dev, "cannot set real number of rx queues\n");
777 		goto err_cleanup;
778 	}
779 
780 	reg = cpsw->version;
781 
782 	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
783 		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
784 		 CPSW_RTL_VERSION(reg));
785 
786 	/* Initialize host and slave ports */
787 	if (!cpsw->usage_count)
788 		cpsw_init_host_port(priv);
789 	for_each_slave(priv, cpsw_slave_open, priv);
790 
791 	/* Add default VLAN */
792 	if (!cpsw->data.dual_emac)
793 		cpsw_add_default_vlan(priv);
794 	else
795 		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
796 				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
797 
798 	/* initialize shared resources for every ndev */
799 	if (!cpsw->usage_count) {
800 		/* disable priority elevation */
801 		writel_relaxed(0, &cpsw->regs->ptype);
802 
803 		/* enable statistics collection only on all ports */
804 		writel_relaxed(0x7, &cpsw->regs->stat_port_en);
805 
806 		/* Enable internal fifo flow control */
807 		writel(0x7, &cpsw->regs->flow_control);
808 
809 		napi_enable(&cpsw->napi_rx);
810 		napi_enable(&cpsw->napi_tx);
811 
812 		if (cpsw->tx_irq_disabled) {
813 			cpsw->tx_irq_disabled = false;
814 			enable_irq(cpsw->irqs_table[1]);
815 		}
816 
817 		if (cpsw->rx_irq_disabled) {
818 			cpsw->rx_irq_disabled = false;
819 			enable_irq(cpsw->irqs_table[0]);
820 		}
821 
822 		/* create rxqs for both infs in dual mac as they use same pool
823 		 * and must be destroyed together when no users.
824 		 */
825 		ret = cpsw_create_xdp_rxqs(cpsw);
826 		if (ret < 0)
827 			goto err_cleanup;
828 
829 		ret = cpsw_fill_rx_channels(priv);
830 		if (ret < 0)
831 			goto err_cleanup;
832 
833 		if (cpsw->cpts) {
834 			if (cpts_register(cpsw->cpts))
835 				dev_err(priv->dev, "error registering cpts device\n");
836 			else
837 				writel(0x10, &cpsw->wr_regs->misc_en);
838 		}
839 	}
840 
841 	cpsw_restore(priv);
842 
843 	/* Enable Interrupt pacing if configured */
844 	if (cpsw->coal_intvl != 0) {
845 		struct ethtool_coalesce coal;
846 
847 		coal.rx_coalesce_usecs = cpsw->coal_intvl;
848 		cpsw_set_coalesce(ndev, &coal, NULL, NULL);
849 	}
850 
851 	cpdma_ctlr_start(cpsw->dma);
852 	cpsw_intr_enable(cpsw);
853 	cpsw->usage_count++;
854 
855 	return 0;
856 
857 err_cleanup:
858 	if (!cpsw->usage_count) {
859 		napi_disable(&cpsw->napi_rx);
860 		napi_disable(&cpsw->napi_tx);
861 		cpdma_ctlr_stop(cpsw->dma);
862 		cpsw_destroy_xdp_rxqs(cpsw);
863 	}
864 
865 	for_each_slave(priv, cpsw_slave_stop, cpsw);
866 	pm_runtime_put_sync(cpsw->dev);
867 	netif_carrier_off(priv->ndev);
868 	return ret;
869 }
870 
871 static int cpsw_ndo_stop(struct net_device *ndev)
872 {
873 	struct cpsw_priv *priv = netdev_priv(ndev);
874 	struct cpsw_common *cpsw = priv->cpsw;
875 
876 	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
877 	__hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc);
878 	netif_tx_stop_all_queues(priv->ndev);
879 	netif_carrier_off(priv->ndev);
880 
881 	if (cpsw->usage_count <= 1) {
882 		napi_disable(&cpsw->napi_rx);
883 		napi_disable(&cpsw->napi_tx);
884 		cpts_unregister(cpsw->cpts);
885 		cpsw_intr_disable(cpsw);
886 		cpdma_ctlr_stop(cpsw->dma);
887 		cpsw_ale_stop(cpsw->ale);
888 		cpsw_destroy_xdp_rxqs(cpsw);
889 	}
890 	for_each_slave(priv, cpsw_slave_stop, cpsw);
891 
892 	if (cpsw_need_resplit(cpsw))
893 		cpsw_split_res(cpsw);
894 
895 	cpsw->usage_count--;
896 	pm_runtime_put_sync(cpsw->dev);
897 	return 0;
898 }
899 
900 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
901 				       struct net_device *ndev)
902 {
903 	struct cpsw_priv *priv = netdev_priv(ndev);
904 	struct cpsw_common *cpsw = priv->cpsw;
905 	struct cpts *cpts = cpsw->cpts;
906 	struct netdev_queue *txq;
907 	struct cpdma_chan *txch;
908 	int ret, q_idx;
909 
910 	if (skb_put_padto(skb, CPSW_MIN_PACKET_SIZE)) {
911 		cpsw_err(priv, tx_err, "packet pad failed\n");
912 		ndev->stats.tx_dropped++;
913 		return NET_XMIT_DROP;
914 	}
915 
916 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
917 	    priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb))
918 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
919 
920 	q_idx = skb_get_queue_mapping(skb);
921 	if (q_idx >= cpsw->tx_ch_num)
922 		q_idx = q_idx % cpsw->tx_ch_num;
923 
924 	txch = cpsw->txv[q_idx].ch;
925 	txq = netdev_get_tx_queue(ndev, q_idx);
926 	skb_tx_timestamp(skb);
927 	ret = cpdma_chan_submit(txch, skb, skb->data, skb->len,
928 				priv->emac_port + cpsw->data.dual_emac);
929 	if (unlikely(ret != 0)) {
930 		cpsw_err(priv, tx_err, "desc submit failed\n");
931 		goto fail;
932 	}
933 
934 	/* If there is no more tx desc left free then we need to
935 	 * tell the kernel to stop sending us tx frames.
936 	 */
937 	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
938 		netif_tx_stop_queue(txq);
939 
940 		/* Barrier, so that stop_queue visible to other cpus */
941 		smp_mb__after_atomic();
942 
943 		if (cpdma_check_free_tx_desc(txch))
944 			netif_tx_wake_queue(txq);
945 	}
946 
947 	return NETDEV_TX_OK;
948 fail:
949 	ndev->stats.tx_dropped++;
950 	netif_tx_stop_queue(txq);
951 
952 	/* Barrier, so that stop_queue visible to other cpus */
953 	smp_mb__after_atomic();
954 
955 	if (cpdma_check_free_tx_desc(txch))
956 		netif_tx_wake_queue(txq);
957 
958 	return NETDEV_TX_BUSY;
959 }
960 
961 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
962 {
963 	struct cpsw_priv *priv = netdev_priv(ndev);
964 	struct sockaddr *addr = (struct sockaddr *)p;
965 	struct cpsw_common *cpsw = priv->cpsw;
966 	int flags = 0;
967 	u16 vid = 0;
968 	int ret;
969 
970 	if (!is_valid_ether_addr(addr->sa_data))
971 		return -EADDRNOTAVAIL;
972 
973 	ret = pm_runtime_resume_and_get(cpsw->dev);
974 	if (ret < 0)
975 		return ret;
976 
977 	if (cpsw->data.dual_emac) {
978 		vid = cpsw->slaves[priv->emac_port].port_vlan;
979 		flags = ALE_VLAN;
980 	}
981 
982 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
983 			   flags, vid);
984 	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
985 			   flags, vid);
986 
987 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
988 	eth_hw_addr_set(ndev, priv->mac_addr);
989 	for_each_slave(priv, cpsw_set_slave_mac, priv);
990 
991 	pm_runtime_put(cpsw->dev);
992 
993 	return 0;
994 }
995 
996 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
997 				unsigned short vid)
998 {
999 	int ret;
1000 	int unreg_mcast_mask = 0;
1001 	int mcast_mask;
1002 	u32 port_mask;
1003 	struct cpsw_common *cpsw = priv->cpsw;
1004 
1005 	if (cpsw->data.dual_emac) {
1006 		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1007 
1008 		mcast_mask = ALE_PORT_HOST;
1009 		if (priv->ndev->flags & IFF_ALLMULTI)
1010 			unreg_mcast_mask = mcast_mask;
1011 	} else {
1012 		port_mask = ALE_ALL_PORTS;
1013 		mcast_mask = port_mask;
1014 
1015 		if (priv->ndev->flags & IFF_ALLMULTI)
1016 			unreg_mcast_mask = ALE_ALL_PORTS;
1017 		else
1018 			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1019 	}
1020 
1021 	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1022 				unreg_mcast_mask);
1023 	if (ret != 0)
1024 		return ret;
1025 
1026 	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1027 				 HOST_PORT_NUM, ALE_VLAN, vid);
1028 	if (ret != 0)
1029 		goto clean_vid;
1030 
1031 	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1032 				 mcast_mask, ALE_VLAN, vid, 0);
1033 	if (ret != 0)
1034 		goto clean_vlan_ucast;
1035 	return 0;
1036 
1037 clean_vlan_ucast:
1038 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1039 			   HOST_PORT_NUM, ALE_VLAN, vid);
1040 clean_vid:
1041 	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1042 	return ret;
1043 }
1044 
1045 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1046 				    __be16 proto, u16 vid)
1047 {
1048 	struct cpsw_priv *priv = netdev_priv(ndev);
1049 	struct cpsw_common *cpsw = priv->cpsw;
1050 	int ret;
1051 
1052 	if (vid == cpsw->data.default_vlan)
1053 		return 0;
1054 
1055 	ret = pm_runtime_resume_and_get(cpsw->dev);
1056 	if (ret < 0)
1057 		return ret;
1058 
1059 	if (cpsw->data.dual_emac) {
1060 		/* In dual EMAC, reserved VLAN id should not be used for
1061 		 * creating VLAN interfaces as this can break the dual
1062 		 * EMAC port separation
1063 		 */
1064 		int i;
1065 
1066 		for (i = 0; i < cpsw->data.slaves; i++) {
1067 			if (vid == cpsw->slaves[i].port_vlan) {
1068 				ret = -EINVAL;
1069 				goto err;
1070 			}
1071 		}
1072 	}
1073 
1074 	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1075 	ret = cpsw_add_vlan_ale_entry(priv, vid);
1076 err:
1077 	pm_runtime_put(cpsw->dev);
1078 	return ret;
1079 }
1080 
1081 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1082 				     __be16 proto, u16 vid)
1083 {
1084 	struct cpsw_priv *priv = netdev_priv(ndev);
1085 	struct cpsw_common *cpsw = priv->cpsw;
1086 	int ret;
1087 
1088 	if (vid == cpsw->data.default_vlan)
1089 		return 0;
1090 
1091 	ret = pm_runtime_resume_and_get(cpsw->dev);
1092 	if (ret < 0)
1093 		return ret;
1094 
1095 	if (cpsw->data.dual_emac) {
1096 		int i;
1097 
1098 		for (i = 0; i < cpsw->data.slaves; i++) {
1099 			if (vid == cpsw->slaves[i].port_vlan)
1100 				goto err;
1101 		}
1102 	}
1103 
1104 	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1105 	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1106 	ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1107 				  HOST_PORT_NUM, ALE_VLAN, vid);
1108 	ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
1109 				  0, ALE_VLAN, vid);
1110 	ret |= cpsw_ale_flush_multicast(cpsw->ale, ALE_PORT_HOST, vid);
1111 err:
1112 	pm_runtime_put(cpsw->dev);
1113 	return ret;
1114 }
1115 
1116 static int cpsw_ndo_xdp_xmit(struct net_device *ndev, int n,
1117 			     struct xdp_frame **frames, u32 flags)
1118 {
1119 	struct cpsw_priv *priv = netdev_priv(ndev);
1120 	struct cpsw_common *cpsw = priv->cpsw;
1121 	struct xdp_frame *xdpf;
1122 	int i, nxmit = 0, port;
1123 
1124 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
1125 		return -EINVAL;
1126 
1127 	for (i = 0; i < n; i++) {
1128 		xdpf = frames[i];
1129 		if (xdpf->len < CPSW_MIN_PACKET_SIZE)
1130 			break;
1131 
1132 		port = priv->emac_port + cpsw->data.dual_emac;
1133 		if (cpsw_xdp_tx_frame(priv, xdpf, NULL, port))
1134 			break;
1135 		nxmit++;
1136 	}
1137 
1138 	return nxmit;
1139 }
1140 
1141 #ifdef CONFIG_NET_POLL_CONTROLLER
1142 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1143 {
1144 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1145 
1146 	cpsw_intr_disable(cpsw);
1147 	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
1148 	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
1149 	cpsw_intr_enable(cpsw);
1150 }
1151 #endif
1152 
1153 static const struct net_device_ops cpsw_netdev_ops = {
1154 	.ndo_open		= cpsw_ndo_open,
1155 	.ndo_stop		= cpsw_ndo_stop,
1156 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
1157 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
1158 	.ndo_eth_ioctl		= cpsw_ndo_ioctl,
1159 	.ndo_validate_addr	= eth_validate_addr,
1160 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
1161 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
1162 	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
1163 #ifdef CONFIG_NET_POLL_CONTROLLER
1164 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
1165 #endif
1166 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
1167 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
1168 	.ndo_setup_tc           = cpsw_ndo_setup_tc,
1169 	.ndo_bpf		= cpsw_ndo_bpf,
1170 	.ndo_xdp_xmit		= cpsw_ndo_xdp_xmit,
1171 };
1172 
1173 static void cpsw_get_drvinfo(struct net_device *ndev,
1174 			     struct ethtool_drvinfo *info)
1175 {
1176 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1177 	struct platform_device	*pdev = to_platform_device(cpsw->dev);
1178 
1179 	strscpy(info->driver, "cpsw", sizeof(info->driver));
1180 	strscpy(info->version, "1.0", sizeof(info->version));
1181 	strscpy(info->bus_info, pdev->name, sizeof(info->bus_info));
1182 }
1183 
1184 static int cpsw_set_pauseparam(struct net_device *ndev,
1185 			       struct ethtool_pauseparam *pause)
1186 {
1187 	struct cpsw_priv *priv = netdev_priv(ndev);
1188 	bool link;
1189 
1190 	priv->rx_pause = pause->rx_pause ? true : false;
1191 	priv->tx_pause = pause->tx_pause ? true : false;
1192 
1193 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1194 	return 0;
1195 }
1196 
1197 static int cpsw_set_channels(struct net_device *ndev,
1198 			     struct ethtool_channels *chs)
1199 {
1200 	return cpsw_set_channels_common(ndev, chs, cpsw_rx_handler);
1201 }
1202 
1203 static const struct ethtool_ops cpsw_ethtool_ops = {
1204 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
1205 	.get_drvinfo	= cpsw_get_drvinfo,
1206 	.get_msglevel	= cpsw_get_msglevel,
1207 	.set_msglevel	= cpsw_set_msglevel,
1208 	.get_link	= ethtool_op_get_link,
1209 	.get_ts_info	= cpsw_get_ts_info,
1210 	.get_coalesce	= cpsw_get_coalesce,
1211 	.set_coalesce	= cpsw_set_coalesce,
1212 	.get_sset_count		= cpsw_get_sset_count,
1213 	.get_strings		= cpsw_get_strings,
1214 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
1215 	.get_pauseparam		= cpsw_get_pauseparam,
1216 	.set_pauseparam		= cpsw_set_pauseparam,
1217 	.get_wol	= cpsw_get_wol,
1218 	.set_wol	= cpsw_set_wol,
1219 	.get_regs_len	= cpsw_get_regs_len,
1220 	.get_regs	= cpsw_get_regs,
1221 	.begin		= cpsw_ethtool_op_begin,
1222 	.complete	= cpsw_ethtool_op_complete,
1223 	.get_channels	= cpsw_get_channels,
1224 	.set_channels	= cpsw_set_channels,
1225 	.get_link_ksettings	= cpsw_get_link_ksettings,
1226 	.set_link_ksettings	= cpsw_set_link_ksettings,
1227 	.get_eee	= cpsw_get_eee,
1228 	.set_eee	= cpsw_set_eee,
1229 	.nway_reset	= cpsw_nway_reset,
1230 	.get_ringparam = cpsw_get_ringparam,
1231 	.set_ringparam = cpsw_set_ringparam,
1232 };
1233 
1234 static int cpsw_probe_dt(struct cpsw_platform_data *data,
1235 			 struct platform_device *pdev)
1236 {
1237 	struct device_node *node = pdev->dev.of_node;
1238 	struct device_node *slave_node;
1239 	int i = 0, ret;
1240 	u32 prop;
1241 
1242 	if (!node)
1243 		return -EINVAL;
1244 
1245 	if (of_property_read_u32(node, "slaves", &prop)) {
1246 		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
1247 		return -EINVAL;
1248 	}
1249 	data->slaves = prop;
1250 
1251 	if (of_property_read_u32(node, "active_slave", &prop)) {
1252 		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
1253 		return -EINVAL;
1254 	}
1255 	data->active_slave = prop;
1256 
1257 	data->slave_data = devm_kcalloc(&pdev->dev,
1258 					data->slaves,
1259 					sizeof(struct cpsw_slave_data),
1260 					GFP_KERNEL);
1261 	if (!data->slave_data)
1262 		return -ENOMEM;
1263 
1264 	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
1265 		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
1266 		return -EINVAL;
1267 	}
1268 	data->channels = prop;
1269 
1270 	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
1271 		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
1272 		return -EINVAL;
1273 	}
1274 	data->bd_ram_size = prop;
1275 
1276 	if (of_property_read_u32(node, "mac_control", &prop)) {
1277 		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
1278 		return -EINVAL;
1279 	}
1280 	data->mac_control = prop;
1281 
1282 	if (of_property_read_bool(node, "dual_emac"))
1283 		data->dual_emac = true;
1284 
1285 	/*
1286 	 * Populate all the child nodes here...
1287 	 */
1288 	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
1289 	/* We do not want to force this, as in some cases may not have child */
1290 	if (ret)
1291 		dev_warn(&pdev->dev, "Doesn't have any child node\n");
1292 
1293 	for_each_available_child_of_node(node, slave_node) {
1294 		struct cpsw_slave_data *slave_data = data->slave_data + i;
1295 		int lenp;
1296 		const __be32 *parp;
1297 
1298 		/* This is no slave child node, continue */
1299 		if (!of_node_name_eq(slave_node, "slave"))
1300 			continue;
1301 
1302 		slave_data->ifphy = devm_of_phy_get(&pdev->dev, slave_node,
1303 						    NULL);
1304 		if (!IS_ENABLED(CONFIG_TI_CPSW_PHY_SEL) &&
1305 		    IS_ERR(slave_data->ifphy)) {
1306 			ret = PTR_ERR(slave_data->ifphy);
1307 			dev_err(&pdev->dev,
1308 				"%d: Error retrieving port phy: %d\n", i, ret);
1309 			goto err_node_put;
1310 		}
1311 
1312 		slave_data->slave_node = slave_node;
1313 		slave_data->phy_node = of_parse_phandle(slave_node,
1314 							"phy-handle", 0);
1315 		parp = of_get_property(slave_node, "phy_id", &lenp);
1316 		if (slave_data->phy_node) {
1317 			dev_dbg(&pdev->dev,
1318 				"slave[%d] using phy-handle=\"%pOF\"\n",
1319 				i, slave_data->phy_node);
1320 		} else if (of_phy_is_fixed_link(slave_node)) {
1321 			/* In the case of a fixed PHY, the DT node associated
1322 			 * to the PHY is the Ethernet MAC DT node.
1323 			 */
1324 			ret = of_phy_register_fixed_link(slave_node);
1325 			if (ret) {
1326 				dev_err_probe(&pdev->dev, ret, "failed to register fixed-link phy\n");
1327 				goto err_node_put;
1328 			}
1329 			slave_data->phy_node = of_node_get(slave_node);
1330 		} else if (parp) {
1331 			u32 phyid;
1332 			struct device_node *mdio_node;
1333 			struct platform_device *mdio;
1334 
1335 			if (lenp != (sizeof(__be32) * 2)) {
1336 				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
1337 				goto no_phy_slave;
1338 			}
1339 			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
1340 			phyid = be32_to_cpup(parp+1);
1341 			mdio = of_find_device_by_node(mdio_node);
1342 			of_node_put(mdio_node);
1343 			if (!mdio) {
1344 				dev_err(&pdev->dev, "Missing mdio platform device\n");
1345 				ret = -EINVAL;
1346 				goto err_node_put;
1347 			}
1348 			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
1349 				 PHY_ID_FMT, mdio->name, phyid);
1350 			put_device(&mdio->dev);
1351 		} else {
1352 			dev_err(&pdev->dev,
1353 				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
1354 				i);
1355 			goto no_phy_slave;
1356 		}
1357 		ret = of_get_phy_mode(slave_node, &slave_data->phy_if);
1358 		if (ret) {
1359 			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
1360 				i);
1361 			goto err_node_put;
1362 		}
1363 
1364 no_phy_slave:
1365 		ret = of_get_mac_address(slave_node, slave_data->mac_addr);
1366 		if (ret) {
1367 			ret = ti_cm_get_macid(&pdev->dev, i,
1368 					      slave_data->mac_addr);
1369 			if (ret)
1370 				goto err_node_put;
1371 		}
1372 		if (data->dual_emac) {
1373 			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
1374 						 &prop)) {
1375 				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
1376 				slave_data->dual_emac_res_vlan = i+1;
1377 				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
1378 					slave_data->dual_emac_res_vlan, i);
1379 			} else {
1380 				slave_data->dual_emac_res_vlan = prop;
1381 			}
1382 		}
1383 
1384 		i++;
1385 		if (i == data->slaves) {
1386 			ret = 0;
1387 			goto err_node_put;
1388 		}
1389 	}
1390 
1391 	return 0;
1392 
1393 err_node_put:
1394 	of_node_put(slave_node);
1395 	return ret;
1396 }
1397 
1398 static void cpsw_remove_dt(struct platform_device *pdev)
1399 {
1400 	struct cpsw_common *cpsw = platform_get_drvdata(pdev);
1401 	struct cpsw_platform_data *data = &cpsw->data;
1402 	struct device_node *node = pdev->dev.of_node;
1403 	struct device_node *slave_node;
1404 	int i = 0;
1405 
1406 	for_each_available_child_of_node(node, slave_node) {
1407 		struct cpsw_slave_data *slave_data = &data->slave_data[i];
1408 
1409 		if (!of_node_name_eq(slave_node, "slave"))
1410 			continue;
1411 
1412 		if (of_phy_is_fixed_link(slave_node))
1413 			of_phy_deregister_fixed_link(slave_node);
1414 
1415 		of_node_put(slave_data->phy_node);
1416 
1417 		i++;
1418 		if (i == data->slaves) {
1419 			of_node_put(slave_node);
1420 			break;
1421 		}
1422 	}
1423 
1424 	of_platform_depopulate(&pdev->dev);
1425 }
1426 
1427 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
1428 {
1429 	struct cpsw_common		*cpsw = priv->cpsw;
1430 	struct cpsw_platform_data	*data = &cpsw->data;
1431 	struct net_device		*ndev;
1432 	struct cpsw_priv		*priv_sl2;
1433 	int ret = 0;
1434 
1435 	ndev = devm_alloc_etherdev_mqs(cpsw->dev, sizeof(struct cpsw_priv),
1436 				       CPSW_MAX_QUEUES, CPSW_MAX_QUEUES);
1437 	if (!ndev) {
1438 		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
1439 		return -ENOMEM;
1440 	}
1441 
1442 	priv_sl2 = netdev_priv(ndev);
1443 	priv_sl2->cpsw = cpsw;
1444 	priv_sl2->ndev = ndev;
1445 	priv_sl2->dev  = &ndev->dev;
1446 	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
1447 
1448 	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
1449 		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
1450 			ETH_ALEN);
1451 		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
1452 			 priv_sl2->mac_addr);
1453 	} else {
1454 		eth_random_addr(priv_sl2->mac_addr);
1455 		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
1456 			 priv_sl2->mac_addr);
1457 	}
1458 	eth_hw_addr_set(ndev, priv_sl2->mac_addr);
1459 
1460 	priv_sl2->emac_port = 1;
1461 	cpsw->slaves[1].ndev = ndev;
1462 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
1463 	ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
1464 			     NETDEV_XDP_ACT_NDO_XMIT;
1465 
1466 	ndev->netdev_ops = &cpsw_netdev_ops;
1467 	ndev->ethtool_ops = &cpsw_ethtool_ops;
1468 
1469 	/* register the network device */
1470 	SET_NETDEV_DEV(ndev, cpsw->dev);
1471 	ndev->dev.of_node = cpsw->slaves[1].data->slave_node;
1472 	ret = register_netdev(ndev);
1473 	if (ret)
1474 		dev_err(cpsw->dev, "cpsw: error registering net device\n");
1475 
1476 	return ret;
1477 }
1478 
1479 static const struct of_device_id cpsw_of_mtable[] = {
1480 	{ .compatible = "ti,cpsw"},
1481 	{ .compatible = "ti,am335x-cpsw"},
1482 	{ .compatible = "ti,am4372-cpsw"},
1483 	{ .compatible = "ti,dra7-cpsw"},
1484 	{ /* sentinel */ },
1485 };
1486 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
1487 
1488 static const struct soc_device_attribute cpsw_soc_devices[] = {
1489 	{ .family = "AM33xx", .revision = "ES1.0"},
1490 	{ /* sentinel */ }
1491 };
1492 
1493 static int cpsw_probe(struct platform_device *pdev)
1494 {
1495 	struct device			*dev = &pdev->dev;
1496 	struct clk			*clk;
1497 	struct cpsw_platform_data	*data;
1498 	struct net_device		*ndev;
1499 	struct cpsw_priv		*priv;
1500 	void __iomem			*ss_regs;
1501 	struct resource			*ss_res;
1502 	struct gpio_descs		*mode;
1503 	const struct soc_device_attribute *soc;
1504 	struct cpsw_common		*cpsw;
1505 	int ret = 0, ch;
1506 	int irq;
1507 
1508 	cpsw = devm_kzalloc(dev, sizeof(struct cpsw_common), GFP_KERNEL);
1509 	if (!cpsw)
1510 		return -ENOMEM;
1511 
1512 	platform_set_drvdata(pdev, cpsw);
1513 	cpsw_slave_index = cpsw_slave_index_priv;
1514 
1515 	cpsw->dev = dev;
1516 
1517 	mode = devm_gpiod_get_array_optional(dev, "mode", GPIOD_OUT_LOW);
1518 	if (IS_ERR(mode)) {
1519 		ret = PTR_ERR(mode);
1520 		dev_err(dev, "gpio request failed, ret %d\n", ret);
1521 		return ret;
1522 	}
1523 
1524 	clk = devm_clk_get(dev, "fck");
1525 	if (IS_ERR(clk)) {
1526 		ret = PTR_ERR(clk);
1527 		dev_err(dev, "fck is not found %d\n", ret);
1528 		return ret;
1529 	}
1530 	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
1531 
1532 	ss_regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ss_res);
1533 	if (IS_ERR(ss_regs))
1534 		return PTR_ERR(ss_regs);
1535 	cpsw->regs = ss_regs;
1536 
1537 	cpsw->wr_regs = devm_platform_ioremap_resource(pdev, 1);
1538 	if (IS_ERR(cpsw->wr_regs))
1539 		return PTR_ERR(cpsw->wr_regs);
1540 
1541 	/* RX IRQ */
1542 	irq = platform_get_irq(pdev, 1);
1543 	if (irq < 0)
1544 		return irq;
1545 	cpsw->irqs_table[0] = irq;
1546 
1547 	/* TX IRQ */
1548 	irq = platform_get_irq(pdev, 2);
1549 	if (irq < 0)
1550 		return irq;
1551 	cpsw->irqs_table[1] = irq;
1552 
1553 	/* get misc irq*/
1554 	irq = platform_get_irq(pdev, 3);
1555 	if (irq <= 0)
1556 		return irq;
1557 	cpsw->misc_irq = irq;
1558 
1559 	/*
1560 	 * This may be required here for child devices.
1561 	 */
1562 	pm_runtime_enable(dev);
1563 
1564 	/* Need to enable clocks with runtime PM api to access module
1565 	 * registers
1566 	 */
1567 	ret = pm_runtime_resume_and_get(dev);
1568 	if (ret < 0)
1569 		goto clean_runtime_disable_ret;
1570 
1571 	ret = cpsw_probe_dt(&cpsw->data, pdev);
1572 	if (ret)
1573 		goto clean_dt_ret;
1574 
1575 	soc = soc_device_match(cpsw_soc_devices);
1576 	if (soc)
1577 		cpsw->quirk_irq = true;
1578 
1579 	data = &cpsw->data;
1580 	cpsw->slaves = devm_kcalloc(dev,
1581 				    data->slaves, sizeof(struct cpsw_slave),
1582 				    GFP_KERNEL);
1583 	if (!cpsw->slaves) {
1584 		ret = -ENOMEM;
1585 		goto clean_dt_ret;
1586 	}
1587 
1588 	cpsw->rx_packet_max = max(rx_packet_max, CPSW_MAX_PACKET_SIZE);
1589 	cpsw->descs_pool_size = descs_pool_size;
1590 
1591 	ret = cpsw_init_common(cpsw, ss_regs, ale_ageout,
1592 			       ss_res->start + CPSW2_BD_OFFSET,
1593 			       descs_pool_size);
1594 	if (ret)
1595 		goto clean_dt_ret;
1596 
1597 	ch = cpsw->quirk_irq ? 0 : 7;
1598 	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0);
1599 	if (IS_ERR(cpsw->txv[0].ch)) {
1600 		dev_err(dev, "error initializing tx dma channel\n");
1601 		ret = PTR_ERR(cpsw->txv[0].ch);
1602 		goto clean_cpts;
1603 	}
1604 
1605 	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
1606 	if (IS_ERR(cpsw->rxv[0].ch)) {
1607 		dev_err(dev, "error initializing rx dma channel\n");
1608 		ret = PTR_ERR(cpsw->rxv[0].ch);
1609 		goto clean_cpts;
1610 	}
1611 	cpsw_split_res(cpsw);
1612 
1613 	/* setup netdev */
1614 	ndev = devm_alloc_etherdev_mqs(dev, sizeof(struct cpsw_priv),
1615 				       CPSW_MAX_QUEUES, CPSW_MAX_QUEUES);
1616 	if (!ndev) {
1617 		dev_err(dev, "error allocating net_device\n");
1618 		ret = -ENOMEM;
1619 		goto clean_cpts;
1620 	}
1621 
1622 	priv = netdev_priv(ndev);
1623 	priv->cpsw = cpsw;
1624 	priv->ndev = ndev;
1625 	priv->dev  = dev;
1626 	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
1627 	priv->emac_port = 0;
1628 
1629 	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
1630 		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
1631 		dev_info(dev, "Detected MACID = %pM\n", priv->mac_addr);
1632 	} else {
1633 		eth_random_addr(priv->mac_addr);
1634 		dev_info(dev, "Random MACID = %pM\n", priv->mac_addr);
1635 	}
1636 
1637 	eth_hw_addr_set(ndev, priv->mac_addr);
1638 
1639 	cpsw->slaves[0].ndev = ndev;
1640 
1641 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
1642 	ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
1643 			     NETDEV_XDP_ACT_NDO_XMIT;
1644 
1645 	ndev->netdev_ops = &cpsw_netdev_ops;
1646 	ndev->ethtool_ops = &cpsw_ethtool_ops;
1647 	netif_napi_add(ndev, &cpsw->napi_rx,
1648 		       cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll);
1649 	netif_napi_add_tx(ndev, &cpsw->napi_tx,
1650 			  cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll);
1651 
1652 	/* register the network device */
1653 	SET_NETDEV_DEV(ndev, dev);
1654 	ndev->dev.of_node = cpsw->slaves[0].data->slave_node;
1655 	ret = register_netdev(ndev);
1656 	if (ret) {
1657 		dev_err(dev, "error registering net device\n");
1658 		ret = -ENODEV;
1659 		goto clean_cpts;
1660 	}
1661 
1662 	if (cpsw->data.dual_emac) {
1663 		ret = cpsw_probe_dual_emac(priv);
1664 		if (ret) {
1665 			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
1666 			goto clean_unregister_netdev_ret;
1667 		}
1668 	}
1669 
1670 	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
1671 	 * MISC IRQs which are always kept disabled with this driver so
1672 	 * we will not request them.
1673 	 *
1674 	 * If anyone wants to implement support for those, make sure to
1675 	 * first request and append them to irqs_table array.
1676 	 */
1677 	ret = devm_request_irq(dev, cpsw->irqs_table[0], cpsw_rx_interrupt,
1678 			       0, dev_name(dev), cpsw);
1679 	if (ret < 0) {
1680 		dev_err(dev, "error attaching irq (%d)\n", ret);
1681 		goto clean_unregister_netdev_ret;
1682 	}
1683 
1684 
1685 	ret = devm_request_irq(dev, cpsw->irqs_table[1], cpsw_tx_interrupt,
1686 			       0, dev_name(&pdev->dev), cpsw);
1687 	if (ret < 0) {
1688 		dev_err(dev, "error attaching irq (%d)\n", ret);
1689 		goto clean_unregister_netdev_ret;
1690 	}
1691 
1692 	if (!cpsw->cpts)
1693 		goto skip_cpts;
1694 
1695 	ret = devm_request_irq(&pdev->dev, cpsw->misc_irq, cpsw_misc_interrupt,
1696 			       0, dev_name(&pdev->dev), cpsw);
1697 	if (ret < 0) {
1698 		dev_err(dev, "error attaching misc irq (%d)\n", ret);
1699 		goto clean_unregister_netdev_ret;
1700 	}
1701 
1702 	/* Enable misc CPTS evnt_pend IRQ */
1703 	cpts_set_irqpoll(cpsw->cpts, false);
1704 
1705 skip_cpts:
1706 	cpsw_notice(priv, probe,
1707 		    "initialized device (regs %pa, irq %d, pool size %d)\n",
1708 		    &ss_res->start, cpsw->irqs_table[0], descs_pool_size);
1709 
1710 	pm_runtime_put(&pdev->dev);
1711 
1712 	return 0;
1713 
1714 clean_unregister_netdev_ret:
1715 	unregister_netdev(ndev);
1716 clean_cpts:
1717 	cpts_release(cpsw->cpts);
1718 	cpdma_ctlr_destroy(cpsw->dma);
1719 clean_dt_ret:
1720 	cpsw_remove_dt(pdev);
1721 	pm_runtime_put_sync(&pdev->dev);
1722 clean_runtime_disable_ret:
1723 	pm_runtime_disable(&pdev->dev);
1724 	return ret;
1725 }
1726 
1727 static void cpsw_remove(struct platform_device *pdev)
1728 {
1729 	struct cpsw_common *cpsw = platform_get_drvdata(pdev);
1730 	int i, ret;
1731 
1732 	ret = pm_runtime_resume_and_get(&pdev->dev);
1733 	if (ret < 0) {
1734 		/* Note, if this error path is taken, we're leaking some
1735 		 * resources.
1736 		 */
1737 		dev_err(&pdev->dev, "Failed to resume device (%pe)\n",
1738 			ERR_PTR(ret));
1739 		return;
1740 	}
1741 
1742 	for (i = 0; i < cpsw->data.slaves; i++)
1743 		if (cpsw->slaves[i].ndev)
1744 			unregister_netdev(cpsw->slaves[i].ndev);
1745 
1746 	cpts_release(cpsw->cpts);
1747 	cpdma_ctlr_destroy(cpsw->dma);
1748 	cpsw_remove_dt(pdev);
1749 	pm_runtime_put_sync(&pdev->dev);
1750 	pm_runtime_disable(&pdev->dev);
1751 }
1752 
1753 #ifdef CONFIG_PM_SLEEP
1754 static int cpsw_suspend(struct device *dev)
1755 {
1756 	struct cpsw_common *cpsw = dev_get_drvdata(dev);
1757 	int i;
1758 
1759 	rtnl_lock();
1760 
1761 	for (i = 0; i < cpsw->data.slaves; i++)
1762 		if (cpsw->slaves[i].ndev)
1763 			if (netif_running(cpsw->slaves[i].ndev))
1764 				cpsw_ndo_stop(cpsw->slaves[i].ndev);
1765 
1766 	rtnl_unlock();
1767 
1768 	/* Select sleep pin state */
1769 	pinctrl_pm_select_sleep_state(dev);
1770 
1771 	return 0;
1772 }
1773 
1774 static int cpsw_resume(struct device *dev)
1775 {
1776 	struct cpsw_common *cpsw = dev_get_drvdata(dev);
1777 	int i;
1778 
1779 	/* Select default pin state */
1780 	pinctrl_pm_select_default_state(dev);
1781 
1782 	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
1783 	rtnl_lock();
1784 
1785 	for (i = 0; i < cpsw->data.slaves; i++)
1786 		if (cpsw->slaves[i].ndev)
1787 			if (netif_running(cpsw->slaves[i].ndev))
1788 				cpsw_ndo_open(cpsw->slaves[i].ndev);
1789 
1790 	rtnl_unlock();
1791 
1792 	return 0;
1793 }
1794 #endif
1795 
1796 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
1797 
1798 static struct platform_driver cpsw_driver = {
1799 	.driver = {
1800 		.name	 = "cpsw",
1801 		.pm	 = &cpsw_pm_ops,
1802 		.of_match_table = cpsw_of_mtable,
1803 	},
1804 	.probe = cpsw_probe,
1805 	.remove_new = cpsw_remove,
1806 };
1807 
1808 module_platform_driver(cpsw_driver);
1809 
1810 MODULE_LICENSE("GPL");
1811 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
1812 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
1813 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
1814