xref: /linux/drivers/net/ethernet/ti/cpsw.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  * Texas Instruments Ethernet Switch Driver
3  *
4  * Copyright (C) 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38 #include <linux/kmemleak.h>
39 #include <linux/sys_soc.h>
40 
41 #include <linux/pinctrl/consumer.h>
42 #include <net/pkt_cls.h>
43 
44 #include "cpsw.h"
45 #include "cpsw_ale.h"
46 #include "cpts.h"
47 #include "davinci_cpdma.h"
48 
49 #include <net/pkt_sched.h>
50 
51 #define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
52 			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
53 			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
54 			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
55 			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
56 			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
57 			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
58 			 NETIF_MSG_RX_STATUS)
59 
60 #define cpsw_info(priv, type, format, ...)		\
61 do {								\
62 	if (netif_msg_##type(priv) && net_ratelimit())		\
63 		dev_info(priv->dev, format, ## __VA_ARGS__);	\
64 } while (0)
65 
66 #define cpsw_err(priv, type, format, ...)		\
67 do {								\
68 	if (netif_msg_##type(priv) && net_ratelimit())		\
69 		dev_err(priv->dev, format, ## __VA_ARGS__);	\
70 } while (0)
71 
72 #define cpsw_dbg(priv, type, format, ...)		\
73 do {								\
74 	if (netif_msg_##type(priv) && net_ratelimit())		\
75 		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
76 } while (0)
77 
78 #define cpsw_notice(priv, type, format, ...)		\
79 do {								\
80 	if (netif_msg_##type(priv) && net_ratelimit())		\
81 		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
82 } while (0)
83 
84 #define ALE_ALL_PORTS		0x7
85 
86 #define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
87 #define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
88 #define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)
89 
90 #define CPSW_VERSION_1		0x19010a
91 #define CPSW_VERSION_2		0x19010c
92 #define CPSW_VERSION_3		0x19010f
93 #define CPSW_VERSION_4		0x190112
94 
95 #define HOST_PORT_NUM		0
96 #define CPSW_ALE_PORTS_NUM	3
97 #define SLIVER_SIZE		0x40
98 
99 #define CPSW1_HOST_PORT_OFFSET	0x028
100 #define CPSW1_SLAVE_OFFSET	0x050
101 #define CPSW1_SLAVE_SIZE	0x040
102 #define CPSW1_CPDMA_OFFSET	0x100
103 #define CPSW1_STATERAM_OFFSET	0x200
104 #define CPSW1_HW_STATS		0x400
105 #define CPSW1_CPTS_OFFSET	0x500
106 #define CPSW1_ALE_OFFSET	0x600
107 #define CPSW1_SLIVER_OFFSET	0x700
108 
109 #define CPSW2_HOST_PORT_OFFSET	0x108
110 #define CPSW2_SLAVE_OFFSET	0x200
111 #define CPSW2_SLAVE_SIZE	0x100
112 #define CPSW2_CPDMA_OFFSET	0x800
113 #define CPSW2_HW_STATS		0x900
114 #define CPSW2_STATERAM_OFFSET	0xa00
115 #define CPSW2_CPTS_OFFSET	0xc00
116 #define CPSW2_ALE_OFFSET	0xd00
117 #define CPSW2_SLIVER_OFFSET	0xd80
118 #define CPSW2_BD_OFFSET		0x2000
119 
120 #define CPDMA_RXTHRESH		0x0c0
121 #define CPDMA_RXFREE		0x0e0
122 #define CPDMA_TXHDP		0x00
123 #define CPDMA_RXHDP		0x20
124 #define CPDMA_TXCP		0x40
125 #define CPDMA_RXCP		0x60
126 
127 #define CPSW_POLL_WEIGHT	64
128 #define CPSW_RX_VLAN_ENCAP_HDR_SIZE		4
129 #define CPSW_MIN_PACKET_SIZE	(VLAN_ETH_ZLEN)
130 #define CPSW_MAX_PACKET_SIZE	(VLAN_ETH_FRAME_LEN +\
131 				 ETH_FCS_LEN +\
132 				 CPSW_RX_VLAN_ENCAP_HDR_SIZE)
133 
134 #define RX_PRIORITY_MAPPING	0x76543210
135 #define TX_PRIORITY_MAPPING	0x33221100
136 #define CPDMA_TX_PRIORITY_MAP	0x76543210
137 
138 #define CPSW_VLAN_AWARE		BIT(1)
139 #define CPSW_RX_VLAN_ENCAP	BIT(2)
140 #define CPSW_ALE_VLAN_AWARE	1
141 
142 #define CPSW_FIFO_NORMAL_MODE		(0 << 16)
143 #define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
144 #define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
145 
146 #define CPSW_INTPACEEN		(0x3f << 16)
147 #define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
148 #define CPSW_CMINTMAX_CNT	63
149 #define CPSW_CMINTMIN_CNT	2
150 #define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
151 #define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)
152 
153 #define cpsw_slave_index(cpsw, priv)				\
154 		((cpsw->data.dual_emac) ? priv->emac_port :	\
155 		cpsw->data.active_slave)
156 #define IRQ_NUM			2
157 #define CPSW_MAX_QUEUES		8
158 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
159 #define CPSW_FIFO_QUEUE_TYPE_SHIFT	16
160 #define CPSW_FIFO_SHAPE_EN_SHIFT	16
161 #define CPSW_FIFO_RATE_EN_SHIFT		20
162 #define CPSW_TC_NUM			4
163 #define CPSW_FIFO_SHAPERS_NUM		(CPSW_TC_NUM - 1)
164 #define CPSW_PCT_MASK			0x7f
165 
166 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT	29
167 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK		GENMASK(2, 0)
168 #define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT	16
169 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT	8
170 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK	GENMASK(1, 0)
171 enum {
172 	CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0,
173 	CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV,
174 	CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG,
175 	CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG,
176 };
177 
178 static int debug_level;
179 module_param(debug_level, int, 0);
180 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
181 
182 static int ale_ageout = 10;
183 module_param(ale_ageout, int, 0);
184 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
185 
186 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
187 module_param(rx_packet_max, int, 0);
188 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
189 
190 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
191 module_param(descs_pool_size, int, 0444);
192 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
193 
194 struct cpsw_wr_regs {
195 	u32	id_ver;
196 	u32	soft_reset;
197 	u32	control;
198 	u32	int_control;
199 	u32	rx_thresh_en;
200 	u32	rx_en;
201 	u32	tx_en;
202 	u32	misc_en;
203 	u32	mem_allign1[8];
204 	u32	rx_thresh_stat;
205 	u32	rx_stat;
206 	u32	tx_stat;
207 	u32	misc_stat;
208 	u32	mem_allign2[8];
209 	u32	rx_imax;
210 	u32	tx_imax;
211 
212 };
213 
214 struct cpsw_ss_regs {
215 	u32	id_ver;
216 	u32	control;
217 	u32	soft_reset;
218 	u32	stat_port_en;
219 	u32	ptype;
220 	u32	soft_idle;
221 	u32	thru_rate;
222 	u32	gap_thresh;
223 	u32	tx_start_wds;
224 	u32	flow_control;
225 	u32	vlan_ltype;
226 	u32	ts_ltype;
227 	u32	dlr_ltype;
228 };
229 
230 /* CPSW_PORT_V1 */
231 #define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
232 #define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
233 #define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
234 #define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
235 #define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
236 #define CPSW1_TS_CTL        0x14 /* Time Sync Control */
237 #define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
238 #define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */
239 
240 /* CPSW_PORT_V2 */
241 #define CPSW2_CONTROL       0x00 /* Control Register */
242 #define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
243 #define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
244 #define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
245 #define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
246 #define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
247 #define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */
248 
249 /* CPSW_PORT_V1 and V2 */
250 #define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
251 #define SA_HI               0x24 /* CPGMAC_SL Source Address High */
252 #define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */
253 
254 /* CPSW_PORT_V2 only */
255 #define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
256 #define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
257 #define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
258 #define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
259 #define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
260 #define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
261 #define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
262 #define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */
263 
264 /* Bit definitions for the CPSW2_CONTROL register */
265 #define PASS_PRI_TAGGED     BIT(24) /* Pass Priority Tagged */
266 #define VLAN_LTYPE2_EN      BIT(21) /* VLAN LTYPE 2 enable */
267 #define VLAN_LTYPE1_EN      BIT(20) /* VLAN LTYPE 1 enable */
268 #define DSCP_PRI_EN         BIT(16) /* DSCP Priority Enable */
269 #define TS_107              BIT(15) /* Tyme Sync Dest IP Address 107 */
270 #define TS_320              BIT(14) /* Time Sync Dest Port 320 enable */
271 #define TS_319              BIT(13) /* Time Sync Dest Port 319 enable */
272 #define TS_132              BIT(12) /* Time Sync Dest IP Addr 132 enable */
273 #define TS_131              BIT(11) /* Time Sync Dest IP Addr 131 enable */
274 #define TS_130              BIT(10) /* Time Sync Dest IP Addr 130 enable */
275 #define TS_129              BIT(9)  /* Time Sync Dest IP Addr 129 enable */
276 #define TS_TTL_NONZERO      BIT(8)  /* Time Sync Time To Live Non-zero enable */
277 #define TS_ANNEX_F_EN       BIT(6)  /* Time Sync Annex F enable */
278 #define TS_ANNEX_D_EN       BIT(4)  /* Time Sync Annex D enable */
279 #define TS_LTYPE2_EN        BIT(3)  /* Time Sync LTYPE 2 enable */
280 #define TS_LTYPE1_EN        BIT(2)  /* Time Sync LTYPE 1 enable */
281 #define TS_TX_EN            BIT(1)  /* Time Sync Transmit Enable */
282 #define TS_RX_EN            BIT(0)  /* Time Sync Receive Enable */
283 
284 #define CTRL_V2_TS_BITS \
285 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
286 	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
287 
288 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
289 #define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
290 #define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)
291 
292 
293 #define CTRL_V3_TS_BITS \
294 	(TS_107 | TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
295 	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
296 	 TS_LTYPE1_EN)
297 
298 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
299 #define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
300 #define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
301 
302 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
303 #define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
304 #define TS_SEQ_ID_OFFSET_MASK    (0x3f)
305 #define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
306 #define TS_MSG_TYPE_EN_MASK      (0xffff)
307 
308 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
309 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
310 
311 /* Bit definitions for the CPSW1_TS_CTL register */
312 #define CPSW_V1_TS_RX_EN		BIT(0)
313 #define CPSW_V1_TS_TX_EN		BIT(4)
314 #define CPSW_V1_MSG_TYPE_OFS		16
315 
316 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
317 #define CPSW_V1_SEQ_ID_OFS_SHIFT	16
318 
319 #define CPSW_MAX_BLKS_TX		15
320 #define CPSW_MAX_BLKS_TX_SHIFT		4
321 #define CPSW_MAX_BLKS_RX		5
322 
323 struct cpsw_host_regs {
324 	u32	max_blks;
325 	u32	blk_cnt;
326 	u32	tx_in_ctl;
327 	u32	port_vlan;
328 	u32	tx_pri_map;
329 	u32	cpdma_tx_pri_map;
330 	u32	cpdma_rx_chan_map;
331 };
332 
333 struct cpsw_sliver_regs {
334 	u32	id_ver;
335 	u32	mac_control;
336 	u32	mac_status;
337 	u32	soft_reset;
338 	u32	rx_maxlen;
339 	u32	__reserved_0;
340 	u32	rx_pause;
341 	u32	tx_pause;
342 	u32	__reserved_1;
343 	u32	rx_pri_map;
344 };
345 
346 struct cpsw_hw_stats {
347 	u32	rxgoodframes;
348 	u32	rxbroadcastframes;
349 	u32	rxmulticastframes;
350 	u32	rxpauseframes;
351 	u32	rxcrcerrors;
352 	u32	rxaligncodeerrors;
353 	u32	rxoversizedframes;
354 	u32	rxjabberframes;
355 	u32	rxundersizedframes;
356 	u32	rxfragments;
357 	u32	__pad_0[2];
358 	u32	rxoctets;
359 	u32	txgoodframes;
360 	u32	txbroadcastframes;
361 	u32	txmulticastframes;
362 	u32	txpauseframes;
363 	u32	txdeferredframes;
364 	u32	txcollisionframes;
365 	u32	txsinglecollframes;
366 	u32	txmultcollframes;
367 	u32	txexcessivecollisions;
368 	u32	txlatecollisions;
369 	u32	txunderrun;
370 	u32	txcarriersenseerrors;
371 	u32	txoctets;
372 	u32	octetframes64;
373 	u32	octetframes65t127;
374 	u32	octetframes128t255;
375 	u32	octetframes256t511;
376 	u32	octetframes512t1023;
377 	u32	octetframes1024tup;
378 	u32	netoctets;
379 	u32	rxsofoverruns;
380 	u32	rxmofoverruns;
381 	u32	rxdmaoverruns;
382 };
383 
384 struct cpsw_slave_data {
385 	struct device_node *phy_node;
386 	char		phy_id[MII_BUS_ID_SIZE];
387 	int		phy_if;
388 	u8		mac_addr[ETH_ALEN];
389 	u16		dual_emac_res_vlan;	/* Reserved VLAN for DualEMAC */
390 };
391 
392 struct cpsw_platform_data {
393 	struct cpsw_slave_data	*slave_data;
394 	u32	ss_reg_ofs;	/* Subsystem control register offset */
395 	u32	channels;	/* number of cpdma channels (symmetric) */
396 	u32	slaves;		/* number of slave cpgmac ports */
397 	u32	active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */
398 	u32	ale_entries;	/* ale table size */
399 	u32	bd_ram_size;  /*buffer descriptor ram size */
400 	u32	mac_control;	/* Mac control register */
401 	u16	default_vlan;	/* Def VLAN for ALE lookup in VLAN aware mode*/
402 	bool	dual_emac;	/* Enable Dual EMAC mode */
403 };
404 
405 struct cpsw_slave {
406 	void __iomem			*regs;
407 	struct cpsw_sliver_regs __iomem	*sliver;
408 	int				slave_num;
409 	u32				mac_control;
410 	struct cpsw_slave_data		*data;
411 	struct phy_device		*phy;
412 	struct net_device		*ndev;
413 	u32				port_vlan;
414 };
415 
416 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
417 {
418 	return readl_relaxed(slave->regs + offset);
419 }
420 
421 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
422 {
423 	writel_relaxed(val, slave->regs + offset);
424 }
425 
426 struct cpsw_vector {
427 	struct cpdma_chan *ch;
428 	int budget;
429 };
430 
431 struct cpsw_common {
432 	struct device			*dev;
433 	struct cpsw_platform_data	data;
434 	struct napi_struct		napi_rx;
435 	struct napi_struct		napi_tx;
436 	struct cpsw_ss_regs __iomem	*regs;
437 	struct cpsw_wr_regs __iomem	*wr_regs;
438 	u8 __iomem			*hw_stats;
439 	struct cpsw_host_regs __iomem	*host_port_regs;
440 	u32				version;
441 	u32				coal_intvl;
442 	u32				bus_freq_mhz;
443 	int				rx_packet_max;
444 	struct cpsw_slave		*slaves;
445 	struct cpdma_ctlr		*dma;
446 	struct cpsw_vector		txv[CPSW_MAX_QUEUES];
447 	struct cpsw_vector		rxv[CPSW_MAX_QUEUES];
448 	struct cpsw_ale			*ale;
449 	bool				quirk_irq;
450 	bool				rx_irq_disabled;
451 	bool				tx_irq_disabled;
452 	u32 irqs_table[IRQ_NUM];
453 	struct cpts			*cpts;
454 	int				rx_ch_num, tx_ch_num;
455 	int				speed;
456 	int				usage_count;
457 };
458 
459 struct cpsw_priv {
460 	struct net_device		*ndev;
461 	struct device			*dev;
462 	u32				msg_enable;
463 	u8				mac_addr[ETH_ALEN];
464 	bool				rx_pause;
465 	bool				tx_pause;
466 	bool				mqprio_hw;
467 	int				fifo_bw[CPSW_TC_NUM];
468 	int				shp_cfg_speed;
469 	u32 emac_port;
470 	struct cpsw_common *cpsw;
471 };
472 
473 struct cpsw_stats {
474 	char stat_string[ETH_GSTRING_LEN];
475 	int type;
476 	int sizeof_stat;
477 	int stat_offset;
478 };
479 
480 enum {
481 	CPSW_STATS,
482 	CPDMA_RX_STATS,
483 	CPDMA_TX_STATS,
484 };
485 
486 #define CPSW_STAT(m)		CPSW_STATS,				\
487 				sizeof(((struct cpsw_hw_stats *)0)->m), \
488 				offsetof(struct cpsw_hw_stats, m)
489 #define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
490 				sizeof(((struct cpdma_chan_stats *)0)->m), \
491 				offsetof(struct cpdma_chan_stats, m)
492 #define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
493 				sizeof(((struct cpdma_chan_stats *)0)->m), \
494 				offsetof(struct cpdma_chan_stats, m)
495 
496 static const struct cpsw_stats cpsw_gstrings_stats[] = {
497 	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
498 	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
499 	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
500 	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
501 	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
502 	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
503 	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
504 	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
505 	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
506 	{ "Rx Fragments", CPSW_STAT(rxfragments) },
507 	{ "Rx Octets", CPSW_STAT(rxoctets) },
508 	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
509 	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
510 	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
511 	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
512 	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
513 	{ "Collisions", CPSW_STAT(txcollisionframes) },
514 	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
515 	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
516 	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
517 	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
518 	{ "Tx Underrun", CPSW_STAT(txunderrun) },
519 	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
520 	{ "Tx Octets", CPSW_STAT(txoctets) },
521 	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
522 	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
523 	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
524 	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
525 	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
526 	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
527 	{ "Net Octets", CPSW_STAT(netoctets) },
528 	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
529 	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
530 	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
531 };
532 
533 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
534 	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
535 	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
536 	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
537 	{ "misqueued", CPDMA_RX_STAT(misqueued) },
538 	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
539 	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
540 	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
541 	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
542 	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
543 	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
544 	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
545 	{ "requeue", CPDMA_RX_STAT(requeue) },
546 	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
547 };
548 
549 #define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
550 #define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
551 
552 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
553 #define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
554 #define for_each_slave(priv, func, arg...)				\
555 	do {								\
556 		struct cpsw_slave *slave;				\
557 		struct cpsw_common *cpsw = (priv)->cpsw;		\
558 		int n;							\
559 		if (cpsw->data.dual_emac)				\
560 			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
561 		else							\
562 			for (n = cpsw->data.slaves,			\
563 					slave = cpsw->slaves;		\
564 					n; n--)				\
565 				(func)(slave++, ##arg);			\
566 	} while (0)
567 
568 static inline int cpsw_get_slave_port(u32 slave_num)
569 {
570 	return slave_num + 1;
571 }
572 
573 static void cpsw_add_mcast(struct cpsw_priv *priv, u8 *addr)
574 {
575 	struct cpsw_common *cpsw = priv->cpsw;
576 
577 	if (cpsw->data.dual_emac) {
578 		struct cpsw_slave *slave = cpsw->slaves + priv->emac_port;
579 		int slave_port = cpsw_get_slave_port(slave->slave_num);
580 
581 		cpsw_ale_add_mcast(cpsw->ale, addr,
582 				   1 << slave_port | ALE_PORT_HOST,
583 				   ALE_VLAN, slave->port_vlan, 0);
584 		return;
585 	}
586 
587 	cpsw_ale_add_mcast(cpsw->ale, addr, ALE_ALL_PORTS, 0, 0, 0);
588 }
589 
590 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
591 {
592 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
593 	struct cpsw_ale *ale = cpsw->ale;
594 	int i;
595 
596 	if (cpsw->data.dual_emac) {
597 		bool flag = false;
598 
599 		/* Enabling promiscuous mode for one interface will be
600 		 * common for both the interface as the interface shares
601 		 * the same hardware resource.
602 		 */
603 		for (i = 0; i < cpsw->data.slaves; i++)
604 			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
605 				flag = true;
606 
607 		if (!enable && flag) {
608 			enable = true;
609 			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
610 		}
611 
612 		if (enable) {
613 			/* Enable Bypass */
614 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
615 
616 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
617 		} else {
618 			/* Disable Bypass */
619 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
620 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
621 		}
622 	} else {
623 		if (enable) {
624 			unsigned long timeout = jiffies + HZ;
625 
626 			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
627 			for (i = 0; i <= cpsw->data.slaves; i++) {
628 				cpsw_ale_control_set(ale, i,
629 						     ALE_PORT_NOLEARN, 1);
630 				cpsw_ale_control_set(ale, i,
631 						     ALE_PORT_NO_SA_UPDATE, 1);
632 			}
633 
634 			/* Clear All Untouched entries */
635 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
636 			do {
637 				cpu_relax();
638 				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
639 					break;
640 			} while (time_after(timeout, jiffies));
641 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
642 
643 			/* Clear all mcast from ALE */
644 			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
645 
646 			/* Flood All Unicast Packets to Host port */
647 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
648 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
649 		} else {
650 			/* Don't Flood All Unicast Packets to Host port */
651 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
652 
653 			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
654 			for (i = 0; i <= cpsw->data.slaves; i++) {
655 				cpsw_ale_control_set(ale, i,
656 						     ALE_PORT_NOLEARN, 0);
657 				cpsw_ale_control_set(ale, i,
658 						     ALE_PORT_NO_SA_UPDATE, 0);
659 			}
660 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
661 		}
662 	}
663 }
664 
665 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
666 {
667 	struct cpsw_priv *priv = netdev_priv(ndev);
668 	struct cpsw_common *cpsw = priv->cpsw;
669 	int vid;
670 
671 	if (cpsw->data.dual_emac)
672 		vid = cpsw->slaves[priv->emac_port].port_vlan;
673 	else
674 		vid = cpsw->data.default_vlan;
675 
676 	if (ndev->flags & IFF_PROMISC) {
677 		/* Enable promiscuous mode */
678 		cpsw_set_promiscious(ndev, true);
679 		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
680 		return;
681 	} else {
682 		/* Disable promiscuous mode */
683 		cpsw_set_promiscious(ndev, false);
684 	}
685 
686 	/* Restore allmulti on vlans if necessary */
687 	cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
688 
689 	/* Clear all mcast from ALE */
690 	cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
691 
692 	if (!netdev_mc_empty(ndev)) {
693 		struct netdev_hw_addr *ha;
694 
695 		/* program multicast address list into ALE register */
696 		netdev_for_each_mc_addr(ha, ndev) {
697 			cpsw_add_mcast(priv, ha->addr);
698 		}
699 	}
700 }
701 
702 static void cpsw_intr_enable(struct cpsw_common *cpsw)
703 {
704 	writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
705 	writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
706 
707 	cpdma_ctlr_int_ctrl(cpsw->dma, true);
708 	return;
709 }
710 
711 static void cpsw_intr_disable(struct cpsw_common *cpsw)
712 {
713 	writel_relaxed(0, &cpsw->wr_regs->tx_en);
714 	writel_relaxed(0, &cpsw->wr_regs->rx_en);
715 
716 	cpdma_ctlr_int_ctrl(cpsw->dma, false);
717 	return;
718 }
719 
720 static void cpsw_tx_handler(void *token, int len, int status)
721 {
722 	struct netdev_queue	*txq;
723 	struct sk_buff		*skb = token;
724 	struct net_device	*ndev = skb->dev;
725 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
726 
727 	/* Check whether the queue is stopped due to stalled tx dma, if the
728 	 * queue is stopped then start the queue as we have free desc for tx
729 	 */
730 	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
731 	if (unlikely(netif_tx_queue_stopped(txq)))
732 		netif_tx_wake_queue(txq);
733 
734 	cpts_tx_timestamp(cpsw->cpts, skb);
735 	ndev->stats.tx_packets++;
736 	ndev->stats.tx_bytes += len;
737 	dev_kfree_skb_any(skb);
738 }
739 
740 static void cpsw_rx_vlan_encap(struct sk_buff *skb)
741 {
742 	struct cpsw_priv *priv = netdev_priv(skb->dev);
743 	struct cpsw_common *cpsw = priv->cpsw;
744 	u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
745 	u16 vtag, vid, prio, pkt_type;
746 
747 	/* Remove VLAN header encapsulation word */
748 	skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);
749 
750 	pkt_type = (rx_vlan_encap_hdr >>
751 		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
752 		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
753 	/* Ignore unknown & Priority-tagged packets*/
754 	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
755 	    pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
756 		return;
757 
758 	vid = (rx_vlan_encap_hdr >>
759 	       CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
760 	       VLAN_VID_MASK;
761 	/* Ignore vid 0 and pass packet as is */
762 	if (!vid)
763 		return;
764 	/* Ignore default vlans in dual mac mode */
765 	if (cpsw->data.dual_emac &&
766 	    vid == cpsw->slaves[priv->emac_port].port_vlan)
767 		return;
768 
769 	prio = (rx_vlan_encap_hdr >>
770 		CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
771 		CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;
772 
773 	vtag = (prio << VLAN_PRIO_SHIFT) | vid;
774 	__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
775 
776 	/* strip vlan tag for VLAN-tagged packet */
777 	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
778 		memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
779 		skb_pull(skb, VLAN_HLEN);
780 	}
781 }
782 
783 static void cpsw_rx_handler(void *token, int len, int status)
784 {
785 	struct cpdma_chan	*ch;
786 	struct sk_buff		*skb = token;
787 	struct sk_buff		*new_skb;
788 	struct net_device	*ndev = skb->dev;
789 	int			ret = 0, port;
790 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
791 
792 	if (cpsw->data.dual_emac) {
793 		port = CPDMA_RX_SOURCE_PORT(status);
794 		if (port) {
795 			ndev = cpsw->slaves[--port].ndev;
796 			skb->dev = ndev;
797 		}
798 	}
799 
800 	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
801 		/* In dual emac mode check for all interfaces */
802 		if (cpsw->data.dual_emac && cpsw->usage_count &&
803 		    (status >= 0)) {
804 			/* The packet received is for the interface which
805 			 * is already down and the other interface is up
806 			 * and running, instead of freeing which results
807 			 * in reducing of the number of rx descriptor in
808 			 * DMA engine, requeue skb back to cpdma.
809 			 */
810 			new_skb = skb;
811 			goto requeue;
812 		}
813 
814 		/* the interface is going down, skbs are purged */
815 		dev_kfree_skb_any(skb);
816 		return;
817 	}
818 
819 	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
820 	if (new_skb) {
821 		skb_copy_queue_mapping(new_skb, skb);
822 		skb_put(skb, len);
823 		if (status & CPDMA_RX_VLAN_ENCAP)
824 			cpsw_rx_vlan_encap(skb);
825 		cpts_rx_timestamp(cpsw->cpts, skb);
826 		skb->protocol = eth_type_trans(skb, ndev);
827 		netif_receive_skb(skb);
828 		ndev->stats.rx_bytes += len;
829 		ndev->stats.rx_packets++;
830 		kmemleak_not_leak(new_skb);
831 	} else {
832 		ndev->stats.rx_dropped++;
833 		new_skb = skb;
834 	}
835 
836 requeue:
837 	if (netif_dormant(ndev)) {
838 		dev_kfree_skb_any(new_skb);
839 		return;
840 	}
841 
842 	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
843 	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
844 				skb_tailroom(new_skb), 0);
845 	if (WARN_ON(ret < 0))
846 		dev_kfree_skb_any(new_skb);
847 }
848 
849 static void cpsw_split_res(struct net_device *ndev)
850 {
851 	struct cpsw_priv *priv = netdev_priv(ndev);
852 	u32 consumed_rate = 0, bigest_rate = 0;
853 	struct cpsw_common *cpsw = priv->cpsw;
854 	struct cpsw_vector *txv = cpsw->txv;
855 	int i, ch_weight, rlim_ch_num = 0;
856 	int budget, bigest_rate_ch = 0;
857 	u32 ch_rate, max_rate;
858 	int ch_budget = 0;
859 
860 	for (i = 0; i < cpsw->tx_ch_num; i++) {
861 		ch_rate = cpdma_chan_get_rate(txv[i].ch);
862 		if (!ch_rate)
863 			continue;
864 
865 		rlim_ch_num++;
866 		consumed_rate += ch_rate;
867 	}
868 
869 	if (cpsw->tx_ch_num == rlim_ch_num) {
870 		max_rate = consumed_rate;
871 	} else if (!rlim_ch_num) {
872 		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
873 		bigest_rate = 0;
874 		max_rate = consumed_rate;
875 	} else {
876 		max_rate = cpsw->speed * 1000;
877 
878 		/* if max_rate is less then expected due to reduced link speed,
879 		 * split proportionally according next potential max speed
880 		 */
881 		if (max_rate < consumed_rate)
882 			max_rate *= 10;
883 
884 		if (max_rate < consumed_rate)
885 			max_rate *= 10;
886 
887 		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
888 		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
889 			    (cpsw->tx_ch_num - rlim_ch_num);
890 		bigest_rate = (max_rate - consumed_rate) /
891 			      (cpsw->tx_ch_num - rlim_ch_num);
892 	}
893 
894 	/* split tx weight/budget */
895 	budget = CPSW_POLL_WEIGHT;
896 	for (i = 0; i < cpsw->tx_ch_num; i++) {
897 		ch_rate = cpdma_chan_get_rate(txv[i].ch);
898 		if (ch_rate) {
899 			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
900 			if (!txv[i].budget)
901 				txv[i].budget++;
902 			if (ch_rate > bigest_rate) {
903 				bigest_rate_ch = i;
904 				bigest_rate = ch_rate;
905 			}
906 
907 			ch_weight = (ch_rate * 100) / max_rate;
908 			if (!ch_weight)
909 				ch_weight++;
910 			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
911 		} else {
912 			txv[i].budget = ch_budget;
913 			if (!bigest_rate_ch)
914 				bigest_rate_ch = i;
915 			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
916 		}
917 
918 		budget -= txv[i].budget;
919 	}
920 
921 	if (budget)
922 		txv[bigest_rate_ch].budget += budget;
923 
924 	/* split rx budget */
925 	budget = CPSW_POLL_WEIGHT;
926 	ch_budget = budget / cpsw->rx_ch_num;
927 	for (i = 0; i < cpsw->rx_ch_num; i++) {
928 		cpsw->rxv[i].budget = ch_budget;
929 		budget -= ch_budget;
930 	}
931 
932 	if (budget)
933 		cpsw->rxv[0].budget += budget;
934 }
935 
936 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
937 {
938 	struct cpsw_common *cpsw = dev_id;
939 
940 	writel(0, &cpsw->wr_regs->tx_en);
941 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
942 
943 	if (cpsw->quirk_irq) {
944 		disable_irq_nosync(cpsw->irqs_table[1]);
945 		cpsw->tx_irq_disabled = true;
946 	}
947 
948 	napi_schedule(&cpsw->napi_tx);
949 	return IRQ_HANDLED;
950 }
951 
952 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
953 {
954 	struct cpsw_common *cpsw = dev_id;
955 
956 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
957 	writel(0, &cpsw->wr_regs->rx_en);
958 
959 	if (cpsw->quirk_irq) {
960 		disable_irq_nosync(cpsw->irqs_table[0]);
961 		cpsw->rx_irq_disabled = true;
962 	}
963 
964 	napi_schedule(&cpsw->napi_rx);
965 	return IRQ_HANDLED;
966 }
967 
968 static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget)
969 {
970 	u32			ch_map;
971 	int			num_tx, cur_budget, ch;
972 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
973 	struct cpsw_vector	*txv;
974 
975 	/* process every unprocessed channel */
976 	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
977 	for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) {
978 		if (!(ch_map & 0x80))
979 			continue;
980 
981 		txv = &cpsw->txv[ch];
982 		if (unlikely(txv->budget > budget - num_tx))
983 			cur_budget = budget - num_tx;
984 		else
985 			cur_budget = txv->budget;
986 
987 		num_tx += cpdma_chan_process(txv->ch, cur_budget);
988 		if (num_tx >= budget)
989 			break;
990 	}
991 
992 	if (num_tx < budget) {
993 		napi_complete(napi_tx);
994 		writel(0xff, &cpsw->wr_regs->tx_en);
995 	}
996 
997 	return num_tx;
998 }
999 
1000 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
1001 {
1002 	struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
1003 	int num_tx;
1004 
1005 	num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget);
1006 	if (num_tx < budget) {
1007 		napi_complete(napi_tx);
1008 		writel(0xff, &cpsw->wr_regs->tx_en);
1009 		if (cpsw->tx_irq_disabled) {
1010 			cpsw->tx_irq_disabled = false;
1011 			enable_irq(cpsw->irqs_table[1]);
1012 		}
1013 	}
1014 
1015 	return num_tx;
1016 }
1017 
1018 static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget)
1019 {
1020 	u32			ch_map;
1021 	int			num_rx, cur_budget, ch;
1022 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
1023 	struct cpsw_vector	*rxv;
1024 
1025 	/* process every unprocessed channel */
1026 	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
1027 	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
1028 		if (!(ch_map & 0x01))
1029 			continue;
1030 
1031 		rxv = &cpsw->rxv[ch];
1032 		if (unlikely(rxv->budget > budget - num_rx))
1033 			cur_budget = budget - num_rx;
1034 		else
1035 			cur_budget = rxv->budget;
1036 
1037 		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
1038 		if (num_rx >= budget)
1039 			break;
1040 	}
1041 
1042 	if (num_rx < budget) {
1043 		napi_complete_done(napi_rx, num_rx);
1044 		writel(0xff, &cpsw->wr_regs->rx_en);
1045 	}
1046 
1047 	return num_rx;
1048 }
1049 
1050 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
1051 {
1052 	struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
1053 	int num_rx;
1054 
1055 	num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget);
1056 	if (num_rx < budget) {
1057 		napi_complete_done(napi_rx, num_rx);
1058 		writel(0xff, &cpsw->wr_regs->rx_en);
1059 		if (cpsw->rx_irq_disabled) {
1060 			cpsw->rx_irq_disabled = false;
1061 			enable_irq(cpsw->irqs_table[0]);
1062 		}
1063 	}
1064 
1065 	return num_rx;
1066 }
1067 
1068 static inline void soft_reset(const char *module, void __iomem *reg)
1069 {
1070 	unsigned long timeout = jiffies + HZ;
1071 
1072 	writel_relaxed(1, reg);
1073 	do {
1074 		cpu_relax();
1075 	} while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
1076 
1077 	WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
1078 }
1079 
1080 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
1081 			       struct cpsw_priv *priv)
1082 {
1083 	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
1084 	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
1085 }
1086 
1087 static bool cpsw_shp_is_off(struct cpsw_priv *priv)
1088 {
1089 	struct cpsw_common *cpsw = priv->cpsw;
1090 	struct cpsw_slave *slave;
1091 	u32 shift, mask, val;
1092 
1093 	val = readl_relaxed(&cpsw->regs->ptype);
1094 
1095 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1096 	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
1097 	mask = 7 << shift;
1098 	val = val & mask;
1099 
1100 	return !val;
1101 }
1102 
1103 static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on)
1104 {
1105 	struct cpsw_common *cpsw = priv->cpsw;
1106 	struct cpsw_slave *slave;
1107 	u32 shift, mask, val;
1108 
1109 	val = readl_relaxed(&cpsw->regs->ptype);
1110 
1111 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1112 	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
1113 	mask = (1 << --fifo) << shift;
1114 	val = on ? val | mask : val & ~mask;
1115 
1116 	writel_relaxed(val, &cpsw->regs->ptype);
1117 }
1118 
1119 static void _cpsw_adjust_link(struct cpsw_slave *slave,
1120 			      struct cpsw_priv *priv, bool *link)
1121 {
1122 	struct phy_device	*phy = slave->phy;
1123 	u32			mac_control = 0;
1124 	u32			slave_port;
1125 	struct cpsw_common *cpsw = priv->cpsw;
1126 
1127 	if (!phy)
1128 		return;
1129 
1130 	slave_port = cpsw_get_slave_port(slave->slave_num);
1131 
1132 	if (phy->link) {
1133 		mac_control = cpsw->data.mac_control;
1134 
1135 		/* enable forwarding */
1136 		cpsw_ale_control_set(cpsw->ale, slave_port,
1137 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1138 
1139 		if (phy->speed == 1000)
1140 			mac_control |= BIT(7);	/* GIGABITEN	*/
1141 		if (phy->duplex)
1142 			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
1143 
1144 		/* set speed_in input in case RMII mode is used in 100Mbps */
1145 		if (phy->speed == 100)
1146 			mac_control |= BIT(15);
1147 		/* in band mode only works in 10Mbps RGMII mode */
1148 		else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
1149 			mac_control |= BIT(18); /* In Band mode */
1150 
1151 		if (priv->rx_pause)
1152 			mac_control |= BIT(3);
1153 
1154 		if (priv->tx_pause)
1155 			mac_control |= BIT(4);
1156 
1157 		*link = true;
1158 
1159 		if (priv->shp_cfg_speed &&
1160 		    priv->shp_cfg_speed != slave->phy->speed &&
1161 		    !cpsw_shp_is_off(priv))
1162 			dev_warn(priv->dev,
1163 				 "Speed was changed, CBS shaper speeds are changed!");
1164 	} else {
1165 		mac_control = 0;
1166 		/* disable forwarding */
1167 		cpsw_ale_control_set(cpsw->ale, slave_port,
1168 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1169 	}
1170 
1171 	if (mac_control != slave->mac_control) {
1172 		phy_print_status(phy);
1173 		writel_relaxed(mac_control, &slave->sliver->mac_control);
1174 	}
1175 
1176 	slave->mac_control = mac_control;
1177 }
1178 
1179 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
1180 {
1181 	int i, speed;
1182 
1183 	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
1184 		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
1185 			speed += cpsw->slaves[i].phy->speed;
1186 
1187 	return speed;
1188 }
1189 
1190 static int cpsw_need_resplit(struct cpsw_common *cpsw)
1191 {
1192 	int i, rlim_ch_num;
1193 	int speed, ch_rate;
1194 
1195 	/* re-split resources only in case speed was changed */
1196 	speed = cpsw_get_common_speed(cpsw);
1197 	if (speed == cpsw->speed || !speed)
1198 		return 0;
1199 
1200 	cpsw->speed = speed;
1201 
1202 	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
1203 		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
1204 		if (!ch_rate)
1205 			break;
1206 
1207 		rlim_ch_num++;
1208 	}
1209 
1210 	/* cases not dependent on speed */
1211 	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
1212 		return 0;
1213 
1214 	return 1;
1215 }
1216 
1217 static void cpsw_adjust_link(struct net_device *ndev)
1218 {
1219 	struct cpsw_priv	*priv = netdev_priv(ndev);
1220 	struct cpsw_common	*cpsw = priv->cpsw;
1221 	bool			link = false;
1222 
1223 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1224 
1225 	if (link) {
1226 		if (cpsw_need_resplit(cpsw))
1227 			cpsw_split_res(ndev);
1228 
1229 		netif_carrier_on(ndev);
1230 		if (netif_running(ndev))
1231 			netif_tx_wake_all_queues(ndev);
1232 	} else {
1233 		netif_carrier_off(ndev);
1234 		netif_tx_stop_all_queues(ndev);
1235 	}
1236 }
1237 
1238 static int cpsw_get_coalesce(struct net_device *ndev,
1239 				struct ethtool_coalesce *coal)
1240 {
1241 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1242 
1243 	coal->rx_coalesce_usecs = cpsw->coal_intvl;
1244 	return 0;
1245 }
1246 
1247 static int cpsw_set_coalesce(struct net_device *ndev,
1248 				struct ethtool_coalesce *coal)
1249 {
1250 	struct cpsw_priv *priv = netdev_priv(ndev);
1251 	u32 int_ctrl;
1252 	u32 num_interrupts = 0;
1253 	u32 prescale = 0;
1254 	u32 addnl_dvdr = 1;
1255 	u32 coal_intvl = 0;
1256 	struct cpsw_common *cpsw = priv->cpsw;
1257 
1258 	coal_intvl = coal->rx_coalesce_usecs;
1259 
1260 	int_ctrl =  readl(&cpsw->wr_regs->int_control);
1261 	prescale = cpsw->bus_freq_mhz * 4;
1262 
1263 	if (!coal->rx_coalesce_usecs) {
1264 		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
1265 		goto update_return;
1266 	}
1267 
1268 	if (coal_intvl < CPSW_CMINTMIN_INTVL)
1269 		coal_intvl = CPSW_CMINTMIN_INTVL;
1270 
1271 	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
1272 		/* Interrupt pacer works with 4us Pulse, we can
1273 		 * throttle further by dilating the 4us pulse.
1274 		 */
1275 		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
1276 
1277 		if (addnl_dvdr > 1) {
1278 			prescale *= addnl_dvdr;
1279 			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
1280 				coal_intvl = (CPSW_CMINTMAX_INTVL
1281 						* addnl_dvdr);
1282 		} else {
1283 			addnl_dvdr = 1;
1284 			coal_intvl = CPSW_CMINTMAX_INTVL;
1285 		}
1286 	}
1287 
1288 	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1289 	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
1290 	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1291 
1292 	int_ctrl |= CPSW_INTPACEEN;
1293 	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1294 	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1295 
1296 update_return:
1297 	writel(int_ctrl, &cpsw->wr_regs->int_control);
1298 
1299 	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1300 	cpsw->coal_intvl = coal_intvl;
1301 
1302 	return 0;
1303 }
1304 
1305 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1306 {
1307 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1308 
1309 	switch (sset) {
1310 	case ETH_SS_STATS:
1311 		return (CPSW_STATS_COMMON_LEN +
1312 		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1313 		       CPSW_STATS_CH_LEN);
1314 	default:
1315 		return -EOPNOTSUPP;
1316 	}
1317 }
1318 
1319 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1320 {
1321 	int ch_stats_len;
1322 	int line;
1323 	int i;
1324 
1325 	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1326 	for (i = 0; i < ch_stats_len; i++) {
1327 		line = i % CPSW_STATS_CH_LEN;
1328 		snprintf(*p, ETH_GSTRING_LEN,
1329 			 "%s DMA chan %ld: %s", rx_dir ? "Rx" : "Tx",
1330 			 (long)(i / CPSW_STATS_CH_LEN),
1331 			 cpsw_gstrings_ch_stats[line].stat_string);
1332 		*p += ETH_GSTRING_LEN;
1333 	}
1334 }
1335 
1336 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1337 {
1338 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1339 	u8 *p = data;
1340 	int i;
1341 
1342 	switch (stringset) {
1343 	case ETH_SS_STATS:
1344 		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1345 			memcpy(p, cpsw_gstrings_stats[i].stat_string,
1346 			       ETH_GSTRING_LEN);
1347 			p += ETH_GSTRING_LEN;
1348 		}
1349 
1350 		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1351 		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1352 		break;
1353 	}
1354 }
1355 
1356 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1357 				    struct ethtool_stats *stats, u64 *data)
1358 {
1359 	u8 *p;
1360 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1361 	struct cpdma_chan_stats ch_stats;
1362 	int i, l, ch;
1363 
1364 	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1365 	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1366 		data[l] = readl(cpsw->hw_stats +
1367 				cpsw_gstrings_stats[l].stat_offset);
1368 
1369 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1370 		cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1371 		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1372 			p = (u8 *)&ch_stats +
1373 				cpsw_gstrings_ch_stats[i].stat_offset;
1374 			data[l] = *(u32 *)p;
1375 		}
1376 	}
1377 
1378 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1379 		cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1380 		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1381 			p = (u8 *)&ch_stats +
1382 				cpsw_gstrings_ch_stats[i].stat_offset;
1383 			data[l] = *(u32 *)p;
1384 		}
1385 	}
1386 }
1387 
1388 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1389 					struct sk_buff *skb,
1390 					struct cpdma_chan *txch)
1391 {
1392 	struct cpsw_common *cpsw = priv->cpsw;
1393 
1394 	skb_tx_timestamp(skb);
1395 	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1396 				 priv->emac_port + cpsw->data.dual_emac);
1397 }
1398 
1399 static inline void cpsw_add_dual_emac_def_ale_entries(
1400 		struct cpsw_priv *priv, struct cpsw_slave *slave,
1401 		u32 slave_port)
1402 {
1403 	struct cpsw_common *cpsw = priv->cpsw;
1404 	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1405 
1406 	if (cpsw->version == CPSW_VERSION_1)
1407 		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1408 	else
1409 		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1410 	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1411 			  port_mask, port_mask, 0);
1412 	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1413 			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1414 	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1415 			   HOST_PORT_NUM, ALE_VLAN |
1416 			   ALE_SECURE, slave->port_vlan);
1417 	cpsw_ale_control_set(cpsw->ale, slave_port,
1418 			     ALE_PORT_DROP_UNKNOWN_VLAN, 1);
1419 }
1420 
1421 static void soft_reset_slave(struct cpsw_slave *slave)
1422 {
1423 	char name[32];
1424 
1425 	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1426 	soft_reset(name, &slave->sliver->soft_reset);
1427 }
1428 
1429 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1430 {
1431 	u32 slave_port;
1432 	struct phy_device *phy;
1433 	struct cpsw_common *cpsw = priv->cpsw;
1434 
1435 	soft_reset_slave(slave);
1436 
1437 	/* setup priority mapping */
1438 	writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1439 
1440 	switch (cpsw->version) {
1441 	case CPSW_VERSION_1:
1442 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1443 		/* Increase RX FIFO size to 5 for supporting fullduplex
1444 		 * flow control mode
1445 		 */
1446 		slave_write(slave,
1447 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1448 			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1449 		break;
1450 	case CPSW_VERSION_2:
1451 	case CPSW_VERSION_3:
1452 	case CPSW_VERSION_4:
1453 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1454 		/* Increase RX FIFO size to 5 for supporting fullduplex
1455 		 * flow control mode
1456 		 */
1457 		slave_write(slave,
1458 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1459 			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1460 		break;
1461 	}
1462 
1463 	/* setup max packet size, and mac address */
1464 	writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1465 	cpsw_set_slave_mac(slave, priv);
1466 
1467 	slave->mac_control = 0;	/* no link yet */
1468 
1469 	slave_port = cpsw_get_slave_port(slave->slave_num);
1470 
1471 	if (cpsw->data.dual_emac)
1472 		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1473 	else
1474 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1475 				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1476 
1477 	if (slave->data->phy_node) {
1478 		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1479 				 &cpsw_adjust_link, 0, slave->data->phy_if);
1480 		if (!phy) {
1481 			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
1482 				slave->data->phy_node,
1483 				slave->slave_num);
1484 			return;
1485 		}
1486 	} else {
1487 		phy = phy_connect(priv->ndev, slave->data->phy_id,
1488 				 &cpsw_adjust_link, slave->data->phy_if);
1489 		if (IS_ERR(phy)) {
1490 			dev_err(priv->dev,
1491 				"phy \"%s\" not found on slave %d, err %ld\n",
1492 				slave->data->phy_id, slave->slave_num,
1493 				PTR_ERR(phy));
1494 			return;
1495 		}
1496 	}
1497 
1498 	slave->phy = phy;
1499 
1500 	phy_attached_info(slave->phy);
1501 
1502 	phy_start(slave->phy);
1503 
1504 	/* Configure GMII_SEL register */
1505 	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1506 }
1507 
1508 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1509 {
1510 	struct cpsw_common *cpsw = priv->cpsw;
1511 	const int vlan = cpsw->data.default_vlan;
1512 	u32 reg;
1513 	int i;
1514 	int unreg_mcast_mask;
1515 
1516 	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1517 	       CPSW2_PORT_VLAN;
1518 
1519 	writel(vlan, &cpsw->host_port_regs->port_vlan);
1520 
1521 	for (i = 0; i < cpsw->data.slaves; i++)
1522 		slave_write(cpsw->slaves + i, vlan, reg);
1523 
1524 	if (priv->ndev->flags & IFF_ALLMULTI)
1525 		unreg_mcast_mask = ALE_ALL_PORTS;
1526 	else
1527 		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1528 
1529 	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1530 			  ALE_ALL_PORTS, ALE_ALL_PORTS,
1531 			  unreg_mcast_mask);
1532 }
1533 
1534 static void cpsw_init_host_port(struct cpsw_priv *priv)
1535 {
1536 	u32 fifo_mode;
1537 	u32 control_reg;
1538 	struct cpsw_common *cpsw = priv->cpsw;
1539 
1540 	/* soft reset the controller and initialize ale */
1541 	soft_reset("cpsw", &cpsw->regs->soft_reset);
1542 	cpsw_ale_start(cpsw->ale);
1543 
1544 	/* switch to vlan unaware mode */
1545 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1546 			     CPSW_ALE_VLAN_AWARE);
1547 	control_reg = readl(&cpsw->regs->control);
1548 	control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
1549 	writel(control_reg, &cpsw->regs->control);
1550 	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1551 		     CPSW_FIFO_NORMAL_MODE;
1552 	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1553 
1554 	/* setup host port priority mapping */
1555 	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
1556 		       &cpsw->host_port_regs->cpdma_tx_pri_map);
1557 	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1558 
1559 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1560 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1561 
1562 	if (!cpsw->data.dual_emac) {
1563 		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1564 				   0, 0);
1565 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1566 				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1567 	}
1568 }
1569 
1570 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1571 {
1572 	struct cpsw_common *cpsw = priv->cpsw;
1573 	struct sk_buff *skb;
1574 	int ch_buf_num;
1575 	int ch, i, ret;
1576 
1577 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1578 		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1579 		for (i = 0; i < ch_buf_num; i++) {
1580 			skb = __netdev_alloc_skb_ip_align(priv->ndev,
1581 							  cpsw->rx_packet_max,
1582 							  GFP_KERNEL);
1583 			if (!skb) {
1584 				cpsw_err(priv, ifup, "cannot allocate skb\n");
1585 				return -ENOMEM;
1586 			}
1587 
1588 			skb_set_queue_mapping(skb, ch);
1589 			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
1590 						skb->data, skb_tailroom(skb),
1591 						0);
1592 			if (ret < 0) {
1593 				cpsw_err(priv, ifup,
1594 					 "cannot submit skb to channel %d rx, error %d\n",
1595 					 ch, ret);
1596 				kfree_skb(skb);
1597 				return ret;
1598 			}
1599 			kmemleak_not_leak(skb);
1600 		}
1601 
1602 		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1603 			  ch, ch_buf_num);
1604 	}
1605 
1606 	return 0;
1607 }
1608 
1609 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1610 {
1611 	u32 slave_port;
1612 
1613 	slave_port = cpsw_get_slave_port(slave->slave_num);
1614 
1615 	if (!slave->phy)
1616 		return;
1617 	phy_stop(slave->phy);
1618 	phy_disconnect(slave->phy);
1619 	slave->phy = NULL;
1620 	cpsw_ale_control_set(cpsw->ale, slave_port,
1621 			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1622 	soft_reset_slave(slave);
1623 }
1624 
1625 static int cpsw_tc_to_fifo(int tc, int num_tc)
1626 {
1627 	if (tc == num_tc - 1)
1628 		return 0;
1629 
1630 	return CPSW_FIFO_SHAPERS_NUM - tc;
1631 }
1632 
1633 static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw)
1634 {
1635 	struct cpsw_common *cpsw = priv->cpsw;
1636 	u32 val = 0, send_pct, shift;
1637 	struct cpsw_slave *slave;
1638 	int pct = 0, i;
1639 
1640 	if (bw > priv->shp_cfg_speed * 1000)
1641 		goto err;
1642 
1643 	/* shaping has to stay enabled for highest fifos linearly
1644 	 * and fifo bw no more then interface can allow
1645 	 */
1646 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1647 	send_pct = slave_read(slave, SEND_PERCENT);
1648 	for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) {
1649 		if (!bw) {
1650 			if (i >= fifo || !priv->fifo_bw[i])
1651 				continue;
1652 
1653 			dev_warn(priv->dev, "Prev FIFO%d is shaped", i);
1654 			continue;
1655 		}
1656 
1657 		if (!priv->fifo_bw[i] && i > fifo) {
1658 			dev_err(priv->dev, "Upper FIFO%d is not shaped", i);
1659 			return -EINVAL;
1660 		}
1661 
1662 		shift = (i - 1) * 8;
1663 		if (i == fifo) {
1664 			send_pct &= ~(CPSW_PCT_MASK << shift);
1665 			val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10);
1666 			if (!val)
1667 				val = 1;
1668 
1669 			send_pct |= val << shift;
1670 			pct += val;
1671 			continue;
1672 		}
1673 
1674 		if (priv->fifo_bw[i])
1675 			pct += (send_pct >> shift) & CPSW_PCT_MASK;
1676 	}
1677 
1678 	if (pct >= 100)
1679 		goto err;
1680 
1681 	slave_write(slave, send_pct, SEND_PERCENT);
1682 	priv->fifo_bw[fifo] = bw;
1683 
1684 	dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo,
1685 		 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100));
1686 
1687 	return 0;
1688 err:
1689 	dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration");
1690 	return -EINVAL;
1691 }
1692 
1693 static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw)
1694 {
1695 	struct cpsw_common *cpsw = priv->cpsw;
1696 	struct cpsw_slave *slave;
1697 	u32 tx_in_ctl_rg, val;
1698 	int ret;
1699 
1700 	ret = cpsw_set_fifo_bw(priv, fifo, bw);
1701 	if (ret)
1702 		return ret;
1703 
1704 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1705 	tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ?
1706 		       CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL;
1707 
1708 	if (!bw)
1709 		cpsw_fifo_shp_on(priv, fifo, bw);
1710 
1711 	val = slave_read(slave, tx_in_ctl_rg);
1712 	if (cpsw_shp_is_off(priv)) {
1713 		/* disable FIFOs rate limited queues */
1714 		val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT);
1715 
1716 		/* set type of FIFO queues to normal priority mode */
1717 		val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT);
1718 
1719 		/* set type of FIFO queues to be rate limited */
1720 		if (bw)
1721 			val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT;
1722 		else
1723 			priv->shp_cfg_speed = 0;
1724 	}
1725 
1726 	/* toggle a FIFO rate limited queue */
1727 	if (bw)
1728 		val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
1729 	else
1730 		val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
1731 	slave_write(slave, val, tx_in_ctl_rg);
1732 
1733 	/* FIFO transmit shape enable */
1734 	cpsw_fifo_shp_on(priv, fifo, bw);
1735 	return 0;
1736 }
1737 
1738 /* Defaults:
1739  * class A - prio 3
1740  * class B - prio 2
1741  * shaping for class A should be set first
1742  */
1743 static int cpsw_set_cbs(struct net_device *ndev,
1744 			struct tc_cbs_qopt_offload *qopt)
1745 {
1746 	struct cpsw_priv *priv = netdev_priv(ndev);
1747 	struct cpsw_common *cpsw = priv->cpsw;
1748 	struct cpsw_slave *slave;
1749 	int prev_speed = 0;
1750 	int tc, ret, fifo;
1751 	u32 bw = 0;
1752 
1753 	tc = netdev_txq_to_tc(priv->ndev, qopt->queue);
1754 
1755 	/* enable channels in backward order, as highest FIFOs must be rate
1756 	 * limited first and for compliance with CPDMA rate limited channels
1757 	 * that also used in bacward order. FIFO0 cannot be rate limited.
1758 	 */
1759 	fifo = cpsw_tc_to_fifo(tc, ndev->num_tc);
1760 	if (!fifo) {
1761 		dev_err(priv->dev, "Last tc%d can't be rate limited", tc);
1762 		return -EINVAL;
1763 	}
1764 
1765 	/* do nothing, it's disabled anyway */
1766 	if (!qopt->enable && !priv->fifo_bw[fifo])
1767 		return 0;
1768 
1769 	/* shapers can be set if link speed is known */
1770 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1771 	if (slave->phy && slave->phy->link) {
1772 		if (priv->shp_cfg_speed &&
1773 		    priv->shp_cfg_speed != slave->phy->speed)
1774 			prev_speed = priv->shp_cfg_speed;
1775 
1776 		priv->shp_cfg_speed = slave->phy->speed;
1777 	}
1778 
1779 	if (!priv->shp_cfg_speed) {
1780 		dev_err(priv->dev, "Link speed is not known");
1781 		return -1;
1782 	}
1783 
1784 	ret = pm_runtime_get_sync(cpsw->dev);
1785 	if (ret < 0) {
1786 		pm_runtime_put_noidle(cpsw->dev);
1787 		return ret;
1788 	}
1789 
1790 	bw = qopt->enable ? qopt->idleslope : 0;
1791 	ret = cpsw_set_fifo_rlimit(priv, fifo, bw);
1792 	if (ret) {
1793 		priv->shp_cfg_speed = prev_speed;
1794 		prev_speed = 0;
1795 	}
1796 
1797 	if (bw && prev_speed)
1798 		dev_warn(priv->dev,
1799 			 "Speed was changed, CBS shaper speeds are changed!");
1800 
1801 	pm_runtime_put_sync(cpsw->dev);
1802 	return ret;
1803 }
1804 
1805 static void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
1806 {
1807 	int fifo, bw;
1808 
1809 	for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) {
1810 		bw = priv->fifo_bw[fifo];
1811 		if (!bw)
1812 			continue;
1813 
1814 		cpsw_set_fifo_rlimit(priv, fifo, bw);
1815 	}
1816 }
1817 
1818 static void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
1819 {
1820 	struct cpsw_common *cpsw = priv->cpsw;
1821 	u32 tx_prio_map = 0;
1822 	int i, tc, fifo;
1823 	u32 tx_prio_rg;
1824 
1825 	if (!priv->mqprio_hw)
1826 		return;
1827 
1828 	for (i = 0; i < 8; i++) {
1829 		tc = netdev_get_prio_tc_map(priv->ndev, i);
1830 		fifo = CPSW_FIFO_SHAPERS_NUM - tc;
1831 		tx_prio_map |= fifo << (4 * i);
1832 	}
1833 
1834 	tx_prio_rg = cpsw->version == CPSW_VERSION_1 ?
1835 		     CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;
1836 
1837 	slave_write(slave, tx_prio_map, tx_prio_rg);
1838 }
1839 
1840 /* restore resources after port reset */
1841 static void cpsw_restore(struct cpsw_priv *priv)
1842 {
1843 	/* restore MQPRIO offload */
1844 	for_each_slave(priv, cpsw_mqprio_resume, priv);
1845 
1846 	/* restore CBS offload */
1847 	for_each_slave(priv, cpsw_cbs_resume, priv);
1848 }
1849 
1850 static int cpsw_ndo_open(struct net_device *ndev)
1851 {
1852 	struct cpsw_priv *priv = netdev_priv(ndev);
1853 	struct cpsw_common *cpsw = priv->cpsw;
1854 	int ret;
1855 	u32 reg;
1856 
1857 	ret = pm_runtime_get_sync(cpsw->dev);
1858 	if (ret < 0) {
1859 		pm_runtime_put_noidle(cpsw->dev);
1860 		return ret;
1861 	}
1862 
1863 	netif_carrier_off(ndev);
1864 
1865 	/* Notify the stack of the actual queue counts. */
1866 	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1867 	if (ret) {
1868 		dev_err(priv->dev, "cannot set real number of tx queues\n");
1869 		goto err_cleanup;
1870 	}
1871 
1872 	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1873 	if (ret) {
1874 		dev_err(priv->dev, "cannot set real number of rx queues\n");
1875 		goto err_cleanup;
1876 	}
1877 
1878 	reg = cpsw->version;
1879 
1880 	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1881 		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1882 		 CPSW_RTL_VERSION(reg));
1883 
1884 	/* Initialize host and slave ports */
1885 	if (!cpsw->usage_count)
1886 		cpsw_init_host_port(priv);
1887 	for_each_slave(priv, cpsw_slave_open, priv);
1888 
1889 	/* Add default VLAN */
1890 	if (!cpsw->data.dual_emac)
1891 		cpsw_add_default_vlan(priv);
1892 	else
1893 		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1894 				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1895 
1896 	/* initialize shared resources for every ndev */
1897 	if (!cpsw->usage_count) {
1898 		/* disable priority elevation */
1899 		writel_relaxed(0, &cpsw->regs->ptype);
1900 
1901 		/* enable statistics collection only on all ports */
1902 		writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1903 
1904 		/* Enable internal fifo flow control */
1905 		writel(0x7, &cpsw->regs->flow_control);
1906 
1907 		napi_enable(&cpsw->napi_rx);
1908 		napi_enable(&cpsw->napi_tx);
1909 
1910 		if (cpsw->tx_irq_disabled) {
1911 			cpsw->tx_irq_disabled = false;
1912 			enable_irq(cpsw->irqs_table[1]);
1913 		}
1914 
1915 		if (cpsw->rx_irq_disabled) {
1916 			cpsw->rx_irq_disabled = false;
1917 			enable_irq(cpsw->irqs_table[0]);
1918 		}
1919 
1920 		ret = cpsw_fill_rx_channels(priv);
1921 		if (ret < 0)
1922 			goto err_cleanup;
1923 
1924 		if (cpts_register(cpsw->cpts))
1925 			dev_err(priv->dev, "error registering cpts device\n");
1926 
1927 	}
1928 
1929 	cpsw_restore(priv);
1930 
1931 	/* Enable Interrupt pacing if configured */
1932 	if (cpsw->coal_intvl != 0) {
1933 		struct ethtool_coalesce coal;
1934 
1935 		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1936 		cpsw_set_coalesce(ndev, &coal);
1937 	}
1938 
1939 	cpdma_ctlr_start(cpsw->dma);
1940 	cpsw_intr_enable(cpsw);
1941 	cpsw->usage_count++;
1942 
1943 	return 0;
1944 
1945 err_cleanup:
1946 	cpdma_ctlr_stop(cpsw->dma);
1947 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1948 	pm_runtime_put_sync(cpsw->dev);
1949 	netif_carrier_off(priv->ndev);
1950 	return ret;
1951 }
1952 
1953 static int cpsw_ndo_stop(struct net_device *ndev)
1954 {
1955 	struct cpsw_priv *priv = netdev_priv(ndev);
1956 	struct cpsw_common *cpsw = priv->cpsw;
1957 
1958 	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1959 	netif_tx_stop_all_queues(priv->ndev);
1960 	netif_carrier_off(priv->ndev);
1961 
1962 	if (cpsw->usage_count <= 1) {
1963 		napi_disable(&cpsw->napi_rx);
1964 		napi_disable(&cpsw->napi_tx);
1965 		cpts_unregister(cpsw->cpts);
1966 		cpsw_intr_disable(cpsw);
1967 		cpdma_ctlr_stop(cpsw->dma);
1968 		cpsw_ale_stop(cpsw->ale);
1969 	}
1970 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1971 
1972 	if (cpsw_need_resplit(cpsw))
1973 		cpsw_split_res(ndev);
1974 
1975 	cpsw->usage_count--;
1976 	pm_runtime_put_sync(cpsw->dev);
1977 	return 0;
1978 }
1979 
1980 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1981 				       struct net_device *ndev)
1982 {
1983 	struct cpsw_priv *priv = netdev_priv(ndev);
1984 	struct cpsw_common *cpsw = priv->cpsw;
1985 	struct cpts *cpts = cpsw->cpts;
1986 	struct netdev_queue *txq;
1987 	struct cpdma_chan *txch;
1988 	int ret, q_idx;
1989 
1990 	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1991 		cpsw_err(priv, tx_err, "packet pad failed\n");
1992 		ndev->stats.tx_dropped++;
1993 		return NET_XMIT_DROP;
1994 	}
1995 
1996 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1997 	    cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb))
1998 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1999 
2000 	q_idx = skb_get_queue_mapping(skb);
2001 	if (q_idx >= cpsw->tx_ch_num)
2002 		q_idx = q_idx % cpsw->tx_ch_num;
2003 
2004 	txch = cpsw->txv[q_idx].ch;
2005 	txq = netdev_get_tx_queue(ndev, q_idx);
2006 	ret = cpsw_tx_packet_submit(priv, skb, txch);
2007 	if (unlikely(ret != 0)) {
2008 		cpsw_err(priv, tx_err, "desc submit failed\n");
2009 		goto fail;
2010 	}
2011 
2012 	/* If there is no more tx desc left free then we need to
2013 	 * tell the kernel to stop sending us tx frames.
2014 	 */
2015 	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
2016 		netif_tx_stop_queue(txq);
2017 
2018 		/* Barrier, so that stop_queue visible to other cpus */
2019 		smp_mb__after_atomic();
2020 
2021 		if (cpdma_check_free_tx_desc(txch))
2022 			netif_tx_wake_queue(txq);
2023 	}
2024 
2025 	return NETDEV_TX_OK;
2026 fail:
2027 	ndev->stats.tx_dropped++;
2028 	netif_tx_stop_queue(txq);
2029 
2030 	/* Barrier, so that stop_queue visible to other cpus */
2031 	smp_mb__after_atomic();
2032 
2033 	if (cpdma_check_free_tx_desc(txch))
2034 		netif_tx_wake_queue(txq);
2035 
2036 	return NETDEV_TX_BUSY;
2037 }
2038 
2039 #if IS_ENABLED(CONFIG_TI_CPTS)
2040 
2041 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
2042 {
2043 	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
2044 	u32 ts_en, seq_id;
2045 
2046 	if (!cpts_is_tx_enabled(cpsw->cpts) &&
2047 	    !cpts_is_rx_enabled(cpsw->cpts)) {
2048 		slave_write(slave, 0, CPSW1_TS_CTL);
2049 		return;
2050 	}
2051 
2052 	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
2053 	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
2054 
2055 	if (cpts_is_tx_enabled(cpsw->cpts))
2056 		ts_en |= CPSW_V1_TS_TX_EN;
2057 
2058 	if (cpts_is_rx_enabled(cpsw->cpts))
2059 		ts_en |= CPSW_V1_TS_RX_EN;
2060 
2061 	slave_write(slave, ts_en, CPSW1_TS_CTL);
2062 	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
2063 }
2064 
2065 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
2066 {
2067 	struct cpsw_slave *slave;
2068 	struct cpsw_common *cpsw = priv->cpsw;
2069 	u32 ctrl, mtype;
2070 
2071 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
2072 
2073 	ctrl = slave_read(slave, CPSW2_CONTROL);
2074 	switch (cpsw->version) {
2075 	case CPSW_VERSION_2:
2076 		ctrl &= ~CTRL_V2_ALL_TS_MASK;
2077 
2078 		if (cpts_is_tx_enabled(cpsw->cpts))
2079 			ctrl |= CTRL_V2_TX_TS_BITS;
2080 
2081 		if (cpts_is_rx_enabled(cpsw->cpts))
2082 			ctrl |= CTRL_V2_RX_TS_BITS;
2083 		break;
2084 	case CPSW_VERSION_3:
2085 	default:
2086 		ctrl &= ~CTRL_V3_ALL_TS_MASK;
2087 
2088 		if (cpts_is_tx_enabled(cpsw->cpts))
2089 			ctrl |= CTRL_V3_TX_TS_BITS;
2090 
2091 		if (cpts_is_rx_enabled(cpsw->cpts))
2092 			ctrl |= CTRL_V3_RX_TS_BITS;
2093 		break;
2094 	}
2095 
2096 	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
2097 
2098 	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
2099 	slave_write(slave, ctrl, CPSW2_CONTROL);
2100 	writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
2101 }
2102 
2103 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
2104 {
2105 	struct cpsw_priv *priv = netdev_priv(dev);
2106 	struct hwtstamp_config cfg;
2107 	struct cpsw_common *cpsw = priv->cpsw;
2108 	struct cpts *cpts = cpsw->cpts;
2109 
2110 	if (cpsw->version != CPSW_VERSION_1 &&
2111 	    cpsw->version != CPSW_VERSION_2 &&
2112 	    cpsw->version != CPSW_VERSION_3)
2113 		return -EOPNOTSUPP;
2114 
2115 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
2116 		return -EFAULT;
2117 
2118 	/* reserved for future extensions */
2119 	if (cfg.flags)
2120 		return -EINVAL;
2121 
2122 	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
2123 		return -ERANGE;
2124 
2125 	switch (cfg.rx_filter) {
2126 	case HWTSTAMP_FILTER_NONE:
2127 		cpts_rx_enable(cpts, 0);
2128 		break;
2129 	case HWTSTAMP_FILTER_ALL:
2130 	case HWTSTAMP_FILTER_NTP_ALL:
2131 		return -ERANGE;
2132 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2133 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2134 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2135 		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT);
2136 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
2137 		break;
2138 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2139 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2140 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2141 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2142 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2143 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2144 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2145 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2146 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2147 		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT);
2148 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
2149 		break;
2150 	default:
2151 		return -ERANGE;
2152 	}
2153 
2154 	cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
2155 
2156 	switch (cpsw->version) {
2157 	case CPSW_VERSION_1:
2158 		cpsw_hwtstamp_v1(cpsw);
2159 		break;
2160 	case CPSW_VERSION_2:
2161 	case CPSW_VERSION_3:
2162 		cpsw_hwtstamp_v2(priv);
2163 		break;
2164 	default:
2165 		WARN_ON(1);
2166 	}
2167 
2168 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
2169 }
2170 
2171 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
2172 {
2173 	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
2174 	struct cpts *cpts = cpsw->cpts;
2175 	struct hwtstamp_config cfg;
2176 
2177 	if (cpsw->version != CPSW_VERSION_1 &&
2178 	    cpsw->version != CPSW_VERSION_2 &&
2179 	    cpsw->version != CPSW_VERSION_3)
2180 		return -EOPNOTSUPP;
2181 
2182 	cfg.flags = 0;
2183 	cfg.tx_type = cpts_is_tx_enabled(cpts) ?
2184 		      HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2185 	cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
2186 			 cpts->rx_enable : HWTSTAMP_FILTER_NONE);
2187 
2188 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
2189 }
2190 #else
2191 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
2192 {
2193 	return -EOPNOTSUPP;
2194 }
2195 
2196 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
2197 {
2198 	return -EOPNOTSUPP;
2199 }
2200 #endif /*CONFIG_TI_CPTS*/
2201 
2202 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2203 {
2204 	struct cpsw_priv *priv = netdev_priv(dev);
2205 	struct cpsw_common *cpsw = priv->cpsw;
2206 	int slave_no = cpsw_slave_index(cpsw, priv);
2207 
2208 	if (!netif_running(dev))
2209 		return -EINVAL;
2210 
2211 	switch (cmd) {
2212 	case SIOCSHWTSTAMP:
2213 		return cpsw_hwtstamp_set(dev, req);
2214 	case SIOCGHWTSTAMP:
2215 		return cpsw_hwtstamp_get(dev, req);
2216 	}
2217 
2218 	if (!cpsw->slaves[slave_no].phy)
2219 		return -EOPNOTSUPP;
2220 	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
2221 }
2222 
2223 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
2224 {
2225 	struct cpsw_priv *priv = netdev_priv(ndev);
2226 	struct cpsw_common *cpsw = priv->cpsw;
2227 	int ch;
2228 
2229 	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
2230 	ndev->stats.tx_errors++;
2231 	cpsw_intr_disable(cpsw);
2232 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
2233 		cpdma_chan_stop(cpsw->txv[ch].ch);
2234 		cpdma_chan_start(cpsw->txv[ch].ch);
2235 	}
2236 
2237 	cpsw_intr_enable(cpsw);
2238 	netif_trans_update(ndev);
2239 	netif_tx_wake_all_queues(ndev);
2240 }
2241 
2242 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
2243 {
2244 	struct cpsw_priv *priv = netdev_priv(ndev);
2245 	struct sockaddr *addr = (struct sockaddr *)p;
2246 	struct cpsw_common *cpsw = priv->cpsw;
2247 	int flags = 0;
2248 	u16 vid = 0;
2249 	int ret;
2250 
2251 	if (!is_valid_ether_addr(addr->sa_data))
2252 		return -EADDRNOTAVAIL;
2253 
2254 	ret = pm_runtime_get_sync(cpsw->dev);
2255 	if (ret < 0) {
2256 		pm_runtime_put_noidle(cpsw->dev);
2257 		return ret;
2258 	}
2259 
2260 	if (cpsw->data.dual_emac) {
2261 		vid = cpsw->slaves[priv->emac_port].port_vlan;
2262 		flags = ALE_VLAN;
2263 	}
2264 
2265 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
2266 			   flags, vid);
2267 	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
2268 			   flags, vid);
2269 
2270 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
2271 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2272 	for_each_slave(priv, cpsw_set_slave_mac, priv);
2273 
2274 	pm_runtime_put(cpsw->dev);
2275 
2276 	return 0;
2277 }
2278 
2279 #ifdef CONFIG_NET_POLL_CONTROLLER
2280 static void cpsw_ndo_poll_controller(struct net_device *ndev)
2281 {
2282 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2283 
2284 	cpsw_intr_disable(cpsw);
2285 	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
2286 	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
2287 	cpsw_intr_enable(cpsw);
2288 }
2289 #endif
2290 
2291 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
2292 				unsigned short vid)
2293 {
2294 	int ret;
2295 	int unreg_mcast_mask = 0;
2296 	u32 port_mask;
2297 	struct cpsw_common *cpsw = priv->cpsw;
2298 
2299 	if (cpsw->data.dual_emac) {
2300 		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
2301 
2302 		if (priv->ndev->flags & IFF_ALLMULTI)
2303 			unreg_mcast_mask = port_mask;
2304 	} else {
2305 		port_mask = ALE_ALL_PORTS;
2306 
2307 		if (priv->ndev->flags & IFF_ALLMULTI)
2308 			unreg_mcast_mask = ALE_ALL_PORTS;
2309 		else
2310 			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
2311 	}
2312 
2313 	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
2314 				unreg_mcast_mask);
2315 	if (ret != 0)
2316 		return ret;
2317 
2318 	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
2319 				 HOST_PORT_NUM, ALE_VLAN, vid);
2320 	if (ret != 0)
2321 		goto clean_vid;
2322 
2323 	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
2324 				 port_mask, ALE_VLAN, vid, 0);
2325 	if (ret != 0)
2326 		goto clean_vlan_ucast;
2327 	return 0;
2328 
2329 clean_vlan_ucast:
2330 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2331 			   HOST_PORT_NUM, ALE_VLAN, vid);
2332 clean_vid:
2333 	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2334 	return ret;
2335 }
2336 
2337 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
2338 				    __be16 proto, u16 vid)
2339 {
2340 	struct cpsw_priv *priv = netdev_priv(ndev);
2341 	struct cpsw_common *cpsw = priv->cpsw;
2342 	int ret;
2343 
2344 	if (vid == cpsw->data.default_vlan)
2345 		return 0;
2346 
2347 	ret = pm_runtime_get_sync(cpsw->dev);
2348 	if (ret < 0) {
2349 		pm_runtime_put_noidle(cpsw->dev);
2350 		return ret;
2351 	}
2352 
2353 	if (cpsw->data.dual_emac) {
2354 		/* In dual EMAC, reserved VLAN id should not be used for
2355 		 * creating VLAN interfaces as this can break the dual
2356 		 * EMAC port separation
2357 		 */
2358 		int i;
2359 
2360 		for (i = 0; i < cpsw->data.slaves; i++) {
2361 			if (vid == cpsw->slaves[i].port_vlan) {
2362 				ret = -EINVAL;
2363 				goto err;
2364 			}
2365 		}
2366 	}
2367 
2368 	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
2369 	ret = cpsw_add_vlan_ale_entry(priv, vid);
2370 err:
2371 	pm_runtime_put(cpsw->dev);
2372 	return ret;
2373 }
2374 
2375 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
2376 				     __be16 proto, u16 vid)
2377 {
2378 	struct cpsw_priv *priv = netdev_priv(ndev);
2379 	struct cpsw_common *cpsw = priv->cpsw;
2380 	int ret;
2381 
2382 	if (vid == cpsw->data.default_vlan)
2383 		return 0;
2384 
2385 	ret = pm_runtime_get_sync(cpsw->dev);
2386 	if (ret < 0) {
2387 		pm_runtime_put_noidle(cpsw->dev);
2388 		return ret;
2389 	}
2390 
2391 	if (cpsw->data.dual_emac) {
2392 		int i;
2393 
2394 		for (i = 0; i < cpsw->data.slaves; i++) {
2395 			if (vid == cpsw->slaves[i].port_vlan)
2396 				goto err;
2397 		}
2398 	}
2399 
2400 	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2401 	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2402 	ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2403 				  HOST_PORT_NUM, ALE_VLAN, vid);
2404 	ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2405 				  0, ALE_VLAN, vid);
2406 err:
2407 	pm_runtime_put(cpsw->dev);
2408 	return ret;
2409 }
2410 
2411 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
2412 {
2413 	struct cpsw_priv *priv = netdev_priv(ndev);
2414 	struct cpsw_common *cpsw = priv->cpsw;
2415 	struct cpsw_slave *slave;
2416 	u32 min_rate;
2417 	u32 ch_rate;
2418 	int i, ret;
2419 
2420 	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
2421 	if (ch_rate == rate)
2422 		return 0;
2423 
2424 	ch_rate = rate * 1000;
2425 	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
2426 	if ((ch_rate < min_rate && ch_rate)) {
2427 		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
2428 			min_rate);
2429 		return -EINVAL;
2430 	}
2431 
2432 	if (rate > cpsw->speed) {
2433 		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2434 		return -EINVAL;
2435 	}
2436 
2437 	ret = pm_runtime_get_sync(cpsw->dev);
2438 	if (ret < 0) {
2439 		pm_runtime_put_noidle(cpsw->dev);
2440 		return ret;
2441 	}
2442 
2443 	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
2444 	pm_runtime_put(cpsw->dev);
2445 
2446 	if (ret)
2447 		return ret;
2448 
2449 	/* update rates for slaves tx queues */
2450 	for (i = 0; i < cpsw->data.slaves; i++) {
2451 		slave = &cpsw->slaves[i];
2452 		if (!slave->ndev)
2453 			continue;
2454 
2455 		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
2456 	}
2457 
2458 	cpsw_split_res(ndev);
2459 	return ret;
2460 }
2461 
2462 static int cpsw_set_mqprio(struct net_device *ndev, void *type_data)
2463 {
2464 	struct tc_mqprio_qopt_offload *mqprio = type_data;
2465 	struct cpsw_priv *priv = netdev_priv(ndev);
2466 	struct cpsw_common *cpsw = priv->cpsw;
2467 	int fifo, num_tc, count, offset;
2468 	struct cpsw_slave *slave;
2469 	u32 tx_prio_map = 0;
2470 	int i, tc, ret;
2471 
2472 	num_tc = mqprio->qopt.num_tc;
2473 	if (num_tc > CPSW_TC_NUM)
2474 		return -EINVAL;
2475 
2476 	if (mqprio->mode != TC_MQPRIO_MODE_DCB)
2477 		return -EINVAL;
2478 
2479 	ret = pm_runtime_get_sync(cpsw->dev);
2480 	if (ret < 0) {
2481 		pm_runtime_put_noidle(cpsw->dev);
2482 		return ret;
2483 	}
2484 
2485 	if (num_tc) {
2486 		for (i = 0; i < 8; i++) {
2487 			tc = mqprio->qopt.prio_tc_map[i];
2488 			fifo = cpsw_tc_to_fifo(tc, num_tc);
2489 			tx_prio_map |= fifo << (4 * i);
2490 		}
2491 
2492 		netdev_set_num_tc(ndev, num_tc);
2493 		for (i = 0; i < num_tc; i++) {
2494 			count = mqprio->qopt.count[i];
2495 			offset = mqprio->qopt.offset[i];
2496 			netdev_set_tc_queue(ndev, i, count, offset);
2497 		}
2498 	}
2499 
2500 	if (!mqprio->qopt.hw) {
2501 		/* restore default configuration */
2502 		netdev_reset_tc(ndev);
2503 		tx_prio_map = TX_PRIORITY_MAPPING;
2504 	}
2505 
2506 	priv->mqprio_hw = mqprio->qopt.hw;
2507 
2508 	offset = cpsw->version == CPSW_VERSION_1 ?
2509 		 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;
2510 
2511 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
2512 	slave_write(slave, tx_prio_map, offset);
2513 
2514 	pm_runtime_put_sync(cpsw->dev);
2515 
2516 	return 0;
2517 }
2518 
2519 static int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type,
2520 			     void *type_data)
2521 {
2522 	switch (type) {
2523 	case TC_SETUP_QDISC_CBS:
2524 		return cpsw_set_cbs(ndev, type_data);
2525 
2526 	case TC_SETUP_QDISC_MQPRIO:
2527 		return cpsw_set_mqprio(ndev, type_data);
2528 
2529 	default:
2530 		return -EOPNOTSUPP;
2531 	}
2532 }
2533 
2534 static const struct net_device_ops cpsw_netdev_ops = {
2535 	.ndo_open		= cpsw_ndo_open,
2536 	.ndo_stop		= cpsw_ndo_stop,
2537 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2538 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2539 	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2540 	.ndo_validate_addr	= eth_validate_addr,
2541 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2542 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2543 	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2544 #ifdef CONFIG_NET_POLL_CONTROLLER
2545 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
2546 #endif
2547 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
2548 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2549 	.ndo_setup_tc           = cpsw_ndo_setup_tc,
2550 };
2551 
2552 static int cpsw_get_regs_len(struct net_device *ndev)
2553 {
2554 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2555 
2556 	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2557 }
2558 
2559 static void cpsw_get_regs(struct net_device *ndev,
2560 			  struct ethtool_regs *regs, void *p)
2561 {
2562 	u32 *reg = p;
2563 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2564 
2565 	/* update CPSW IP version */
2566 	regs->version = cpsw->version;
2567 
2568 	cpsw_ale_dump(cpsw->ale, reg);
2569 }
2570 
2571 static void cpsw_get_drvinfo(struct net_device *ndev,
2572 			     struct ethtool_drvinfo *info)
2573 {
2574 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2575 	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2576 
2577 	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2578 	strlcpy(info->version, "1.0", sizeof(info->version));
2579 	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2580 }
2581 
2582 static u32 cpsw_get_msglevel(struct net_device *ndev)
2583 {
2584 	struct cpsw_priv *priv = netdev_priv(ndev);
2585 	return priv->msg_enable;
2586 }
2587 
2588 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
2589 {
2590 	struct cpsw_priv *priv = netdev_priv(ndev);
2591 	priv->msg_enable = value;
2592 }
2593 
2594 #if IS_ENABLED(CONFIG_TI_CPTS)
2595 static int cpsw_get_ts_info(struct net_device *ndev,
2596 			    struct ethtool_ts_info *info)
2597 {
2598 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2599 
2600 	info->so_timestamping =
2601 		SOF_TIMESTAMPING_TX_HARDWARE |
2602 		SOF_TIMESTAMPING_TX_SOFTWARE |
2603 		SOF_TIMESTAMPING_RX_HARDWARE |
2604 		SOF_TIMESTAMPING_RX_SOFTWARE |
2605 		SOF_TIMESTAMPING_SOFTWARE |
2606 		SOF_TIMESTAMPING_RAW_HARDWARE;
2607 	info->phc_index = cpsw->cpts->phc_index;
2608 	info->tx_types =
2609 		(1 << HWTSTAMP_TX_OFF) |
2610 		(1 << HWTSTAMP_TX_ON);
2611 	info->rx_filters =
2612 		(1 << HWTSTAMP_FILTER_NONE) |
2613 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2614 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2615 	return 0;
2616 }
2617 #else
2618 static int cpsw_get_ts_info(struct net_device *ndev,
2619 			    struct ethtool_ts_info *info)
2620 {
2621 	info->so_timestamping =
2622 		SOF_TIMESTAMPING_TX_SOFTWARE |
2623 		SOF_TIMESTAMPING_RX_SOFTWARE |
2624 		SOF_TIMESTAMPING_SOFTWARE;
2625 	info->phc_index = -1;
2626 	info->tx_types = 0;
2627 	info->rx_filters = 0;
2628 	return 0;
2629 }
2630 #endif
2631 
2632 static int cpsw_get_link_ksettings(struct net_device *ndev,
2633 				   struct ethtool_link_ksettings *ecmd)
2634 {
2635 	struct cpsw_priv *priv = netdev_priv(ndev);
2636 	struct cpsw_common *cpsw = priv->cpsw;
2637 	int slave_no = cpsw_slave_index(cpsw, priv);
2638 
2639 	if (!cpsw->slaves[slave_no].phy)
2640 		return -EOPNOTSUPP;
2641 
2642 	phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
2643 	return 0;
2644 }
2645 
2646 static int cpsw_set_link_ksettings(struct net_device *ndev,
2647 				   const struct ethtool_link_ksettings *ecmd)
2648 {
2649 	struct cpsw_priv *priv = netdev_priv(ndev);
2650 	struct cpsw_common *cpsw = priv->cpsw;
2651 	int slave_no = cpsw_slave_index(cpsw, priv);
2652 
2653 	if (cpsw->slaves[slave_no].phy)
2654 		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
2655 						 ecmd);
2656 	else
2657 		return -EOPNOTSUPP;
2658 }
2659 
2660 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2661 {
2662 	struct cpsw_priv *priv = netdev_priv(ndev);
2663 	struct cpsw_common *cpsw = priv->cpsw;
2664 	int slave_no = cpsw_slave_index(cpsw, priv);
2665 
2666 	wol->supported = 0;
2667 	wol->wolopts = 0;
2668 
2669 	if (cpsw->slaves[slave_no].phy)
2670 		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2671 }
2672 
2673 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2674 {
2675 	struct cpsw_priv *priv = netdev_priv(ndev);
2676 	struct cpsw_common *cpsw = priv->cpsw;
2677 	int slave_no = cpsw_slave_index(cpsw, priv);
2678 
2679 	if (cpsw->slaves[slave_no].phy)
2680 		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2681 	else
2682 		return -EOPNOTSUPP;
2683 }
2684 
2685 static void cpsw_get_pauseparam(struct net_device *ndev,
2686 				struct ethtool_pauseparam *pause)
2687 {
2688 	struct cpsw_priv *priv = netdev_priv(ndev);
2689 
2690 	pause->autoneg = AUTONEG_DISABLE;
2691 	pause->rx_pause = priv->rx_pause ? true : false;
2692 	pause->tx_pause = priv->tx_pause ? true : false;
2693 }
2694 
2695 static int cpsw_set_pauseparam(struct net_device *ndev,
2696 			       struct ethtool_pauseparam *pause)
2697 {
2698 	struct cpsw_priv *priv = netdev_priv(ndev);
2699 	bool link;
2700 
2701 	priv->rx_pause = pause->rx_pause ? true : false;
2702 	priv->tx_pause = pause->tx_pause ? true : false;
2703 
2704 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2705 	return 0;
2706 }
2707 
2708 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2709 {
2710 	struct cpsw_priv *priv = netdev_priv(ndev);
2711 	struct cpsw_common *cpsw = priv->cpsw;
2712 	int ret;
2713 
2714 	ret = pm_runtime_get_sync(cpsw->dev);
2715 	if (ret < 0) {
2716 		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2717 		pm_runtime_put_noidle(cpsw->dev);
2718 	}
2719 
2720 	return ret;
2721 }
2722 
2723 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2724 {
2725 	struct cpsw_priv *priv = netdev_priv(ndev);
2726 	int ret;
2727 
2728 	ret = pm_runtime_put(priv->cpsw->dev);
2729 	if (ret < 0)
2730 		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2731 }
2732 
2733 static void cpsw_get_channels(struct net_device *ndev,
2734 			      struct ethtool_channels *ch)
2735 {
2736 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2737 
2738 	ch->max_rx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
2739 	ch->max_tx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
2740 	ch->max_combined = 0;
2741 	ch->max_other = 0;
2742 	ch->other_count = 0;
2743 	ch->rx_count = cpsw->rx_ch_num;
2744 	ch->tx_count = cpsw->tx_ch_num;
2745 	ch->combined_count = 0;
2746 }
2747 
2748 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2749 				  struct ethtool_channels *ch)
2750 {
2751 	if (cpsw->quirk_irq) {
2752 		dev_err(cpsw->dev, "Maximum one tx/rx queue is allowed");
2753 		return -EOPNOTSUPP;
2754 	}
2755 
2756 	if (ch->combined_count)
2757 		return -EINVAL;
2758 
2759 	/* verify we have at least one channel in each direction */
2760 	if (!ch->rx_count || !ch->tx_count)
2761 		return -EINVAL;
2762 
2763 	if (ch->rx_count > cpsw->data.channels ||
2764 	    ch->tx_count > cpsw->data.channels)
2765 		return -EINVAL;
2766 
2767 	return 0;
2768 }
2769 
2770 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2771 {
2772 	struct cpsw_common *cpsw = priv->cpsw;
2773 	void (*handler)(void *, int, int);
2774 	struct netdev_queue *queue;
2775 	struct cpsw_vector *vec;
2776 	int ret, *ch, vch;
2777 
2778 	if (rx) {
2779 		ch = &cpsw->rx_ch_num;
2780 		vec = cpsw->rxv;
2781 		handler = cpsw_rx_handler;
2782 	} else {
2783 		ch = &cpsw->tx_ch_num;
2784 		vec = cpsw->txv;
2785 		handler = cpsw_tx_handler;
2786 	}
2787 
2788 	while (*ch < ch_num) {
2789 		vch = rx ? *ch : 7 - *ch;
2790 		vec[*ch].ch = cpdma_chan_create(cpsw->dma, vch, handler, rx);
2791 		queue = netdev_get_tx_queue(priv->ndev, *ch);
2792 		queue->tx_maxrate = 0;
2793 
2794 		if (IS_ERR(vec[*ch].ch))
2795 			return PTR_ERR(vec[*ch].ch);
2796 
2797 		if (!vec[*ch].ch)
2798 			return -EINVAL;
2799 
2800 		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2801 			  (rx ? "rx" : "tx"));
2802 		(*ch)++;
2803 	}
2804 
2805 	while (*ch > ch_num) {
2806 		(*ch)--;
2807 
2808 		ret = cpdma_chan_destroy(vec[*ch].ch);
2809 		if (ret)
2810 			return ret;
2811 
2812 		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2813 			  (rx ? "rx" : "tx"));
2814 	}
2815 
2816 	return 0;
2817 }
2818 
2819 static int cpsw_update_channels(struct cpsw_priv *priv,
2820 				struct ethtool_channels *ch)
2821 {
2822 	int ret;
2823 
2824 	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2825 	if (ret)
2826 		return ret;
2827 
2828 	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2829 	if (ret)
2830 		return ret;
2831 
2832 	return 0;
2833 }
2834 
2835 static void cpsw_suspend_data_pass(struct net_device *ndev)
2836 {
2837 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2838 	struct cpsw_slave *slave;
2839 	int i;
2840 
2841 	/* Disable NAPI scheduling */
2842 	cpsw_intr_disable(cpsw);
2843 
2844 	/* Stop all transmit queues for every network device.
2845 	 * Disable re-using rx descriptors with dormant_on.
2846 	 */
2847 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2848 		if (!(slave->ndev && netif_running(slave->ndev)))
2849 			continue;
2850 
2851 		netif_tx_stop_all_queues(slave->ndev);
2852 		netif_dormant_on(slave->ndev);
2853 	}
2854 
2855 	/* Handle rest of tx packets and stop cpdma channels */
2856 	cpdma_ctlr_stop(cpsw->dma);
2857 }
2858 
2859 static int cpsw_resume_data_pass(struct net_device *ndev)
2860 {
2861 	struct cpsw_priv *priv = netdev_priv(ndev);
2862 	struct cpsw_common *cpsw = priv->cpsw;
2863 	struct cpsw_slave *slave;
2864 	int i, ret;
2865 
2866 	/* Allow rx packets handling */
2867 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2868 		if (slave->ndev && netif_running(slave->ndev))
2869 			netif_dormant_off(slave->ndev);
2870 
2871 	/* After this receive is started */
2872 	if (cpsw->usage_count) {
2873 		ret = cpsw_fill_rx_channels(priv);
2874 		if (ret)
2875 			return ret;
2876 
2877 		cpdma_ctlr_start(cpsw->dma);
2878 		cpsw_intr_enable(cpsw);
2879 	}
2880 
2881 	/* Resume transmit for every affected interface */
2882 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2883 		if (slave->ndev && netif_running(slave->ndev))
2884 			netif_tx_start_all_queues(slave->ndev);
2885 
2886 	return 0;
2887 }
2888 
2889 static int cpsw_set_channels(struct net_device *ndev,
2890 			     struct ethtool_channels *chs)
2891 {
2892 	struct cpsw_priv *priv = netdev_priv(ndev);
2893 	struct cpsw_common *cpsw = priv->cpsw;
2894 	struct cpsw_slave *slave;
2895 	int i, ret;
2896 
2897 	ret = cpsw_check_ch_settings(cpsw, chs);
2898 	if (ret < 0)
2899 		return ret;
2900 
2901 	cpsw_suspend_data_pass(ndev);
2902 	ret = cpsw_update_channels(priv, chs);
2903 	if (ret)
2904 		goto err;
2905 
2906 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2907 		if (!(slave->ndev && netif_running(slave->ndev)))
2908 			continue;
2909 
2910 		/* Inform stack about new count of queues */
2911 		ret = netif_set_real_num_tx_queues(slave->ndev,
2912 						   cpsw->tx_ch_num);
2913 		if (ret) {
2914 			dev_err(priv->dev, "cannot set real number of tx queues\n");
2915 			goto err;
2916 		}
2917 
2918 		ret = netif_set_real_num_rx_queues(slave->ndev,
2919 						   cpsw->rx_ch_num);
2920 		if (ret) {
2921 			dev_err(priv->dev, "cannot set real number of rx queues\n");
2922 			goto err;
2923 		}
2924 	}
2925 
2926 	if (cpsw->usage_count)
2927 		cpsw_split_res(ndev);
2928 
2929 	ret = cpsw_resume_data_pass(ndev);
2930 	if (!ret)
2931 		return 0;
2932 err:
2933 	dev_err(priv->dev, "cannot update channels number, closing device\n");
2934 	dev_close(ndev);
2935 	return ret;
2936 }
2937 
2938 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2939 {
2940 	struct cpsw_priv *priv = netdev_priv(ndev);
2941 	struct cpsw_common *cpsw = priv->cpsw;
2942 	int slave_no = cpsw_slave_index(cpsw, priv);
2943 
2944 	if (cpsw->slaves[slave_no].phy)
2945 		return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
2946 	else
2947 		return -EOPNOTSUPP;
2948 }
2949 
2950 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2951 {
2952 	struct cpsw_priv *priv = netdev_priv(ndev);
2953 	struct cpsw_common *cpsw = priv->cpsw;
2954 	int slave_no = cpsw_slave_index(cpsw, priv);
2955 
2956 	if (cpsw->slaves[slave_no].phy)
2957 		return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
2958 	else
2959 		return -EOPNOTSUPP;
2960 }
2961 
2962 static int cpsw_nway_reset(struct net_device *ndev)
2963 {
2964 	struct cpsw_priv *priv = netdev_priv(ndev);
2965 	struct cpsw_common *cpsw = priv->cpsw;
2966 	int slave_no = cpsw_slave_index(cpsw, priv);
2967 
2968 	if (cpsw->slaves[slave_no].phy)
2969 		return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
2970 	else
2971 		return -EOPNOTSUPP;
2972 }
2973 
2974 static void cpsw_get_ringparam(struct net_device *ndev,
2975 			       struct ethtool_ringparam *ering)
2976 {
2977 	struct cpsw_priv *priv = netdev_priv(ndev);
2978 	struct cpsw_common *cpsw = priv->cpsw;
2979 
2980 	/* not supported */
2981 	ering->tx_max_pending = 0;
2982 	ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2983 	ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2984 	ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
2985 }
2986 
2987 static int cpsw_set_ringparam(struct net_device *ndev,
2988 			      struct ethtool_ringparam *ering)
2989 {
2990 	struct cpsw_priv *priv = netdev_priv(ndev);
2991 	struct cpsw_common *cpsw = priv->cpsw;
2992 	int ret;
2993 
2994 	/* ignore ering->tx_pending - only rx_pending adjustment is supported */
2995 
2996 	if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2997 	    ering->rx_pending < CPSW_MAX_QUEUES ||
2998 	    ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2999 		return -EINVAL;
3000 
3001 	if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
3002 		return 0;
3003 
3004 	cpsw_suspend_data_pass(ndev);
3005 
3006 	cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);
3007 
3008 	if (cpsw->usage_count)
3009 		cpdma_chan_split_pool(cpsw->dma);
3010 
3011 	ret = cpsw_resume_data_pass(ndev);
3012 	if (!ret)
3013 		return 0;
3014 
3015 	dev_err(&ndev->dev, "cannot set ring params, closing device\n");
3016 	dev_close(ndev);
3017 	return ret;
3018 }
3019 
3020 static const struct ethtool_ops cpsw_ethtool_ops = {
3021 	.get_drvinfo	= cpsw_get_drvinfo,
3022 	.get_msglevel	= cpsw_get_msglevel,
3023 	.set_msglevel	= cpsw_set_msglevel,
3024 	.get_link	= ethtool_op_get_link,
3025 	.get_ts_info	= cpsw_get_ts_info,
3026 	.get_coalesce	= cpsw_get_coalesce,
3027 	.set_coalesce	= cpsw_set_coalesce,
3028 	.get_sset_count		= cpsw_get_sset_count,
3029 	.get_strings		= cpsw_get_strings,
3030 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
3031 	.get_pauseparam		= cpsw_get_pauseparam,
3032 	.set_pauseparam		= cpsw_set_pauseparam,
3033 	.get_wol	= cpsw_get_wol,
3034 	.set_wol	= cpsw_set_wol,
3035 	.get_regs_len	= cpsw_get_regs_len,
3036 	.get_regs	= cpsw_get_regs,
3037 	.begin		= cpsw_ethtool_op_begin,
3038 	.complete	= cpsw_ethtool_op_complete,
3039 	.get_channels	= cpsw_get_channels,
3040 	.set_channels	= cpsw_set_channels,
3041 	.get_link_ksettings	= cpsw_get_link_ksettings,
3042 	.set_link_ksettings	= cpsw_set_link_ksettings,
3043 	.get_eee	= cpsw_get_eee,
3044 	.set_eee	= cpsw_set_eee,
3045 	.nway_reset	= cpsw_nway_reset,
3046 	.get_ringparam = cpsw_get_ringparam,
3047 	.set_ringparam = cpsw_set_ringparam,
3048 };
3049 
3050 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
3051 			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
3052 {
3053 	void __iomem		*regs = cpsw->regs;
3054 	int			slave_num = slave->slave_num;
3055 	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
3056 
3057 	slave->data	= data;
3058 	slave->regs	= regs + slave_reg_ofs;
3059 	slave->sliver	= regs + sliver_reg_ofs;
3060 	slave->port_vlan = data->dual_emac_res_vlan;
3061 }
3062 
3063 static int cpsw_probe_dt(struct cpsw_platform_data *data,
3064 			 struct platform_device *pdev)
3065 {
3066 	struct device_node *node = pdev->dev.of_node;
3067 	struct device_node *slave_node;
3068 	int i = 0, ret;
3069 	u32 prop;
3070 
3071 	if (!node)
3072 		return -EINVAL;
3073 
3074 	if (of_property_read_u32(node, "slaves", &prop)) {
3075 		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
3076 		return -EINVAL;
3077 	}
3078 	data->slaves = prop;
3079 
3080 	if (of_property_read_u32(node, "active_slave", &prop)) {
3081 		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
3082 		return -EINVAL;
3083 	}
3084 	data->active_slave = prop;
3085 
3086 	data->slave_data = devm_kcalloc(&pdev->dev,
3087 					data->slaves,
3088 					sizeof(struct cpsw_slave_data),
3089 					GFP_KERNEL);
3090 	if (!data->slave_data)
3091 		return -ENOMEM;
3092 
3093 	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
3094 		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
3095 		return -EINVAL;
3096 	}
3097 	data->channels = prop;
3098 
3099 	if (of_property_read_u32(node, "ale_entries", &prop)) {
3100 		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
3101 		return -EINVAL;
3102 	}
3103 	data->ale_entries = prop;
3104 
3105 	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
3106 		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
3107 		return -EINVAL;
3108 	}
3109 	data->bd_ram_size = prop;
3110 
3111 	if (of_property_read_u32(node, "mac_control", &prop)) {
3112 		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
3113 		return -EINVAL;
3114 	}
3115 	data->mac_control = prop;
3116 
3117 	if (of_property_read_bool(node, "dual_emac"))
3118 		data->dual_emac = 1;
3119 
3120 	/*
3121 	 * Populate all the child nodes here...
3122 	 */
3123 	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
3124 	/* We do not want to force this, as in some cases may not have child */
3125 	if (ret)
3126 		dev_warn(&pdev->dev, "Doesn't have any child node\n");
3127 
3128 	for_each_available_child_of_node(node, slave_node) {
3129 		struct cpsw_slave_data *slave_data = data->slave_data + i;
3130 		const void *mac_addr = NULL;
3131 		int lenp;
3132 		const __be32 *parp;
3133 
3134 		/* This is no slave child node, continue */
3135 		if (strcmp(slave_node->name, "slave"))
3136 			continue;
3137 
3138 		slave_data->phy_node = of_parse_phandle(slave_node,
3139 							"phy-handle", 0);
3140 		parp = of_get_property(slave_node, "phy_id", &lenp);
3141 		if (slave_data->phy_node) {
3142 			dev_dbg(&pdev->dev,
3143 				"slave[%d] using phy-handle=\"%pOF\"\n",
3144 				i, slave_data->phy_node);
3145 		} else if (of_phy_is_fixed_link(slave_node)) {
3146 			/* In the case of a fixed PHY, the DT node associated
3147 			 * to the PHY is the Ethernet MAC DT node.
3148 			 */
3149 			ret = of_phy_register_fixed_link(slave_node);
3150 			if (ret) {
3151 				if (ret != -EPROBE_DEFER)
3152 					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
3153 				return ret;
3154 			}
3155 			slave_data->phy_node = of_node_get(slave_node);
3156 		} else if (parp) {
3157 			u32 phyid;
3158 			struct device_node *mdio_node;
3159 			struct platform_device *mdio;
3160 
3161 			if (lenp != (sizeof(__be32) * 2)) {
3162 				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
3163 				goto no_phy_slave;
3164 			}
3165 			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
3166 			phyid = be32_to_cpup(parp+1);
3167 			mdio = of_find_device_by_node(mdio_node);
3168 			of_node_put(mdio_node);
3169 			if (!mdio) {
3170 				dev_err(&pdev->dev, "Missing mdio platform device\n");
3171 				return -EINVAL;
3172 			}
3173 			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
3174 				 PHY_ID_FMT, mdio->name, phyid);
3175 			put_device(&mdio->dev);
3176 		} else {
3177 			dev_err(&pdev->dev,
3178 				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
3179 				i);
3180 			goto no_phy_slave;
3181 		}
3182 		slave_data->phy_if = of_get_phy_mode(slave_node);
3183 		if (slave_data->phy_if < 0) {
3184 			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
3185 				i);
3186 			return slave_data->phy_if;
3187 		}
3188 
3189 no_phy_slave:
3190 		mac_addr = of_get_mac_address(slave_node);
3191 		if (mac_addr) {
3192 			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
3193 		} else {
3194 			ret = ti_cm_get_macid(&pdev->dev, i,
3195 					      slave_data->mac_addr);
3196 			if (ret)
3197 				return ret;
3198 		}
3199 		if (data->dual_emac) {
3200 			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
3201 						 &prop)) {
3202 				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
3203 				slave_data->dual_emac_res_vlan = i+1;
3204 				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
3205 					slave_data->dual_emac_res_vlan, i);
3206 			} else {
3207 				slave_data->dual_emac_res_vlan = prop;
3208 			}
3209 		}
3210 
3211 		i++;
3212 		if (i == data->slaves)
3213 			break;
3214 	}
3215 
3216 	return 0;
3217 }
3218 
3219 static void cpsw_remove_dt(struct platform_device *pdev)
3220 {
3221 	struct net_device *ndev = platform_get_drvdata(pdev);
3222 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3223 	struct cpsw_platform_data *data = &cpsw->data;
3224 	struct device_node *node = pdev->dev.of_node;
3225 	struct device_node *slave_node;
3226 	int i = 0;
3227 
3228 	for_each_available_child_of_node(node, slave_node) {
3229 		struct cpsw_slave_data *slave_data = &data->slave_data[i];
3230 
3231 		if (strcmp(slave_node->name, "slave"))
3232 			continue;
3233 
3234 		if (of_phy_is_fixed_link(slave_node))
3235 			of_phy_deregister_fixed_link(slave_node);
3236 
3237 		of_node_put(slave_data->phy_node);
3238 
3239 		i++;
3240 		if (i == data->slaves)
3241 			break;
3242 	}
3243 
3244 	of_platform_depopulate(&pdev->dev);
3245 }
3246 
3247 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
3248 {
3249 	struct cpsw_common		*cpsw = priv->cpsw;
3250 	struct cpsw_platform_data	*data = &cpsw->data;
3251 	struct net_device		*ndev;
3252 	struct cpsw_priv		*priv_sl2;
3253 	int ret = 0;
3254 
3255 	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
3256 	if (!ndev) {
3257 		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
3258 		return -ENOMEM;
3259 	}
3260 
3261 	priv_sl2 = netdev_priv(ndev);
3262 	priv_sl2->cpsw = cpsw;
3263 	priv_sl2->ndev = ndev;
3264 	priv_sl2->dev  = &ndev->dev;
3265 	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
3266 
3267 	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
3268 		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
3269 			ETH_ALEN);
3270 		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
3271 			 priv_sl2->mac_addr);
3272 	} else {
3273 		eth_random_addr(priv_sl2->mac_addr);
3274 		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
3275 			 priv_sl2->mac_addr);
3276 	}
3277 	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
3278 
3279 	priv_sl2->emac_port = 1;
3280 	cpsw->slaves[1].ndev = ndev;
3281 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3282 
3283 	ndev->netdev_ops = &cpsw_netdev_ops;
3284 	ndev->ethtool_ops = &cpsw_ethtool_ops;
3285 
3286 	/* register the network device */
3287 	SET_NETDEV_DEV(ndev, cpsw->dev);
3288 	ret = register_netdev(ndev);
3289 	if (ret) {
3290 		dev_err(cpsw->dev, "cpsw: error registering net device\n");
3291 		free_netdev(ndev);
3292 		ret = -ENODEV;
3293 	}
3294 
3295 	return ret;
3296 }
3297 
3298 static const struct of_device_id cpsw_of_mtable[] = {
3299 	{ .compatible = "ti,cpsw"},
3300 	{ .compatible = "ti,am335x-cpsw"},
3301 	{ .compatible = "ti,am4372-cpsw"},
3302 	{ .compatible = "ti,dra7-cpsw"},
3303 	{ /* sentinel */ },
3304 };
3305 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
3306 
3307 static const struct soc_device_attribute cpsw_soc_devices[] = {
3308 	{ .family = "AM33xx", .revision = "ES1.0"},
3309 	{ /* sentinel */ }
3310 };
3311 
3312 static int cpsw_probe(struct platform_device *pdev)
3313 {
3314 	struct clk			*clk;
3315 	struct cpsw_platform_data	*data;
3316 	struct net_device		*ndev;
3317 	struct cpsw_priv		*priv;
3318 	struct cpdma_params		dma_params;
3319 	struct cpsw_ale_params		ale_params;
3320 	void __iomem			*ss_regs;
3321 	void __iomem			*cpts_regs;
3322 	struct resource			*res, *ss_res;
3323 	struct gpio_descs		*mode;
3324 	u32 slave_offset, sliver_offset, slave_size;
3325 	const struct soc_device_attribute *soc;
3326 	struct cpsw_common		*cpsw;
3327 	int ret = 0, i, ch;
3328 	int irq;
3329 
3330 	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
3331 	if (!cpsw)
3332 		return -ENOMEM;
3333 
3334 	cpsw->dev = &pdev->dev;
3335 
3336 	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
3337 	if (!ndev) {
3338 		dev_err(&pdev->dev, "error allocating net_device\n");
3339 		return -ENOMEM;
3340 	}
3341 
3342 	platform_set_drvdata(pdev, ndev);
3343 	priv = netdev_priv(ndev);
3344 	priv->cpsw = cpsw;
3345 	priv->ndev = ndev;
3346 	priv->dev  = &ndev->dev;
3347 	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
3348 	cpsw->rx_packet_max = max(rx_packet_max, 128);
3349 
3350 	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
3351 	if (IS_ERR(mode)) {
3352 		ret = PTR_ERR(mode);
3353 		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
3354 		goto clean_ndev_ret;
3355 	}
3356 
3357 	/*
3358 	 * This may be required here for child devices.
3359 	 */
3360 	pm_runtime_enable(&pdev->dev);
3361 
3362 	/* Select default pin state */
3363 	pinctrl_pm_select_default_state(&pdev->dev);
3364 
3365 	/* Need to enable clocks with runtime PM api to access module
3366 	 * registers
3367 	 */
3368 	ret = pm_runtime_get_sync(&pdev->dev);
3369 	if (ret < 0) {
3370 		pm_runtime_put_noidle(&pdev->dev);
3371 		goto clean_runtime_disable_ret;
3372 	}
3373 
3374 	ret = cpsw_probe_dt(&cpsw->data, pdev);
3375 	if (ret)
3376 		goto clean_dt_ret;
3377 
3378 	data = &cpsw->data;
3379 	cpsw->rx_ch_num = 1;
3380 	cpsw->tx_ch_num = 1;
3381 
3382 	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
3383 		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
3384 		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
3385 	} else {
3386 		eth_random_addr(priv->mac_addr);
3387 		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
3388 	}
3389 
3390 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
3391 
3392 	cpsw->slaves = devm_kcalloc(&pdev->dev,
3393 				    data->slaves, sizeof(struct cpsw_slave),
3394 				    GFP_KERNEL);
3395 	if (!cpsw->slaves) {
3396 		ret = -ENOMEM;
3397 		goto clean_dt_ret;
3398 	}
3399 	for (i = 0; i < data->slaves; i++)
3400 		cpsw->slaves[i].slave_num = i;
3401 
3402 	cpsw->slaves[0].ndev = ndev;
3403 	priv->emac_port = 0;
3404 
3405 	clk = devm_clk_get(&pdev->dev, "fck");
3406 	if (IS_ERR(clk)) {
3407 		dev_err(priv->dev, "fck is not found\n");
3408 		ret = -ENODEV;
3409 		goto clean_dt_ret;
3410 	}
3411 	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
3412 
3413 	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3414 	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
3415 	if (IS_ERR(ss_regs)) {
3416 		ret = PTR_ERR(ss_regs);
3417 		goto clean_dt_ret;
3418 	}
3419 	cpsw->regs = ss_regs;
3420 
3421 	cpsw->version = readl(&cpsw->regs->id_ver);
3422 
3423 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3424 	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
3425 	if (IS_ERR(cpsw->wr_regs)) {
3426 		ret = PTR_ERR(cpsw->wr_regs);
3427 		goto clean_dt_ret;
3428 	}
3429 
3430 	memset(&dma_params, 0, sizeof(dma_params));
3431 	memset(&ale_params, 0, sizeof(ale_params));
3432 
3433 	switch (cpsw->version) {
3434 	case CPSW_VERSION_1:
3435 		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3436 		cpts_regs		= ss_regs + CPSW1_CPTS_OFFSET;
3437 		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
3438 		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
3439 		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
3440 		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
3441 		slave_offset         = CPSW1_SLAVE_OFFSET;
3442 		slave_size           = CPSW1_SLAVE_SIZE;
3443 		sliver_offset        = CPSW1_SLIVER_OFFSET;
3444 		dma_params.desc_mem_phys = 0;
3445 		break;
3446 	case CPSW_VERSION_2:
3447 	case CPSW_VERSION_3:
3448 	case CPSW_VERSION_4:
3449 		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3450 		cpts_regs		= ss_regs + CPSW2_CPTS_OFFSET;
3451 		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
3452 		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
3453 		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
3454 		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
3455 		slave_offset         = CPSW2_SLAVE_OFFSET;
3456 		slave_size           = CPSW2_SLAVE_SIZE;
3457 		sliver_offset        = CPSW2_SLIVER_OFFSET;
3458 		dma_params.desc_mem_phys =
3459 			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3460 		break;
3461 	default:
3462 		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3463 		ret = -ENODEV;
3464 		goto clean_dt_ret;
3465 	}
3466 	for (i = 0; i < cpsw->data.slaves; i++) {
3467 		struct cpsw_slave *slave = &cpsw->slaves[i];
3468 
3469 		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3470 		slave_offset  += slave_size;
3471 		sliver_offset += SLIVER_SIZE;
3472 	}
3473 
3474 	dma_params.dev		= &pdev->dev;
3475 	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
3476 	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
3477 	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
3478 	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
3479 	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
3480 
3481 	dma_params.num_chan		= data->channels;
3482 	dma_params.has_soft_reset	= true;
3483 	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
3484 	dma_params.desc_mem_size	= data->bd_ram_size;
3485 	dma_params.desc_align		= 16;
3486 	dma_params.has_ext_regs		= true;
3487 	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3488 	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
3489 	dma_params.descs_pool_size	= descs_pool_size;
3490 
3491 	cpsw->dma = cpdma_ctlr_create(&dma_params);
3492 	if (!cpsw->dma) {
3493 		dev_err(priv->dev, "error initializing dma\n");
3494 		ret = -ENOMEM;
3495 		goto clean_dt_ret;
3496 	}
3497 
3498 	soc = soc_device_match(cpsw_soc_devices);
3499 	if (soc)
3500 		cpsw->quirk_irq = 1;
3501 
3502 	ch = cpsw->quirk_irq ? 0 : 7;
3503 	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0);
3504 	if (IS_ERR(cpsw->txv[0].ch)) {
3505 		dev_err(priv->dev, "error initializing tx dma channel\n");
3506 		ret = PTR_ERR(cpsw->txv[0].ch);
3507 		goto clean_dma_ret;
3508 	}
3509 
3510 	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3511 	if (IS_ERR(cpsw->rxv[0].ch)) {
3512 		dev_err(priv->dev, "error initializing rx dma channel\n");
3513 		ret = PTR_ERR(cpsw->rxv[0].ch);
3514 		goto clean_dma_ret;
3515 	}
3516 
3517 	ale_params.dev			= &pdev->dev;
3518 	ale_params.ale_ageout		= ale_ageout;
3519 	ale_params.ale_entries		= data->ale_entries;
3520 	ale_params.ale_ports		= CPSW_ALE_PORTS_NUM;
3521 
3522 	cpsw->ale = cpsw_ale_create(&ale_params);
3523 	if (!cpsw->ale) {
3524 		dev_err(priv->dev, "error initializing ale engine\n");
3525 		ret = -ENODEV;
3526 		goto clean_dma_ret;
3527 	}
3528 
3529 	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3530 	if (IS_ERR(cpsw->cpts)) {
3531 		ret = PTR_ERR(cpsw->cpts);
3532 		goto clean_dma_ret;
3533 	}
3534 
3535 	ndev->irq = platform_get_irq(pdev, 1);
3536 	if (ndev->irq < 0) {
3537 		dev_err(priv->dev, "error getting irq resource\n");
3538 		ret = ndev->irq;
3539 		goto clean_dma_ret;
3540 	}
3541 
3542 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3543 
3544 	ndev->netdev_ops = &cpsw_netdev_ops;
3545 	ndev->ethtool_ops = &cpsw_ethtool_ops;
3546 	netif_napi_add(ndev, &cpsw->napi_rx,
3547 		       cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll,
3548 		       CPSW_POLL_WEIGHT);
3549 	netif_tx_napi_add(ndev, &cpsw->napi_tx,
3550 			  cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll,
3551 			  CPSW_POLL_WEIGHT);
3552 	cpsw_split_res(ndev);
3553 
3554 	/* register the network device */
3555 	SET_NETDEV_DEV(ndev, &pdev->dev);
3556 	ret = register_netdev(ndev);
3557 	if (ret) {
3558 		dev_err(priv->dev, "error registering net device\n");
3559 		ret = -ENODEV;
3560 		goto clean_dma_ret;
3561 	}
3562 
3563 	if (cpsw->data.dual_emac) {
3564 		ret = cpsw_probe_dual_emac(priv);
3565 		if (ret) {
3566 			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3567 			goto clean_unregister_netdev_ret;
3568 		}
3569 	}
3570 
3571 	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
3572 	 * MISC IRQs which are always kept disabled with this driver so
3573 	 * we will not request them.
3574 	 *
3575 	 * If anyone wants to implement support for those, make sure to
3576 	 * first request and append them to irqs_table array.
3577 	 */
3578 
3579 	/* RX IRQ */
3580 	irq = platform_get_irq(pdev, 1);
3581 	if (irq < 0) {
3582 		ret = irq;
3583 		goto clean_dma_ret;
3584 	}
3585 
3586 	cpsw->irqs_table[0] = irq;
3587 	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3588 			       0, dev_name(&pdev->dev), cpsw);
3589 	if (ret < 0) {
3590 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3591 		goto clean_dma_ret;
3592 	}
3593 
3594 	/* TX IRQ */
3595 	irq = platform_get_irq(pdev, 2);
3596 	if (irq < 0) {
3597 		ret = irq;
3598 		goto clean_dma_ret;
3599 	}
3600 
3601 	cpsw->irqs_table[1] = irq;
3602 	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3603 			       0, dev_name(&pdev->dev), cpsw);
3604 	if (ret < 0) {
3605 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3606 		goto clean_dma_ret;
3607 	}
3608 
3609 	cpsw_notice(priv, probe,
3610 		    "initialized device (regs %pa, irq %d, pool size %d)\n",
3611 		    &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3612 
3613 	pm_runtime_put(&pdev->dev);
3614 
3615 	return 0;
3616 
3617 clean_unregister_netdev_ret:
3618 	unregister_netdev(ndev);
3619 clean_dma_ret:
3620 	cpdma_ctlr_destroy(cpsw->dma);
3621 clean_dt_ret:
3622 	cpsw_remove_dt(pdev);
3623 	pm_runtime_put_sync(&pdev->dev);
3624 clean_runtime_disable_ret:
3625 	pm_runtime_disable(&pdev->dev);
3626 clean_ndev_ret:
3627 	free_netdev(priv->ndev);
3628 	return ret;
3629 }
3630 
3631 static int cpsw_remove(struct platform_device *pdev)
3632 {
3633 	struct net_device *ndev = platform_get_drvdata(pdev);
3634 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3635 	int ret;
3636 
3637 	ret = pm_runtime_get_sync(&pdev->dev);
3638 	if (ret < 0) {
3639 		pm_runtime_put_noidle(&pdev->dev);
3640 		return ret;
3641 	}
3642 
3643 	if (cpsw->data.dual_emac)
3644 		unregister_netdev(cpsw->slaves[1].ndev);
3645 	unregister_netdev(ndev);
3646 
3647 	cpts_release(cpsw->cpts);
3648 	cpdma_ctlr_destroy(cpsw->dma);
3649 	cpsw_remove_dt(pdev);
3650 	pm_runtime_put_sync(&pdev->dev);
3651 	pm_runtime_disable(&pdev->dev);
3652 	if (cpsw->data.dual_emac)
3653 		free_netdev(cpsw->slaves[1].ndev);
3654 	free_netdev(ndev);
3655 	return 0;
3656 }
3657 
3658 #ifdef CONFIG_PM_SLEEP
3659 static int cpsw_suspend(struct device *dev)
3660 {
3661 	struct platform_device	*pdev = to_platform_device(dev);
3662 	struct net_device	*ndev = platform_get_drvdata(pdev);
3663 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3664 
3665 	if (cpsw->data.dual_emac) {
3666 		int i;
3667 
3668 		for (i = 0; i < cpsw->data.slaves; i++) {
3669 			if (netif_running(cpsw->slaves[i].ndev))
3670 				cpsw_ndo_stop(cpsw->slaves[i].ndev);
3671 		}
3672 	} else {
3673 		if (netif_running(ndev))
3674 			cpsw_ndo_stop(ndev);
3675 	}
3676 
3677 	/* Select sleep pin state */
3678 	pinctrl_pm_select_sleep_state(dev);
3679 
3680 	return 0;
3681 }
3682 
3683 static int cpsw_resume(struct device *dev)
3684 {
3685 	struct platform_device	*pdev = to_platform_device(dev);
3686 	struct net_device	*ndev = platform_get_drvdata(pdev);
3687 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3688 
3689 	/* Select default pin state */
3690 	pinctrl_pm_select_default_state(dev);
3691 
3692 	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3693 	rtnl_lock();
3694 	if (cpsw->data.dual_emac) {
3695 		int i;
3696 
3697 		for (i = 0; i < cpsw->data.slaves; i++) {
3698 			if (netif_running(cpsw->slaves[i].ndev))
3699 				cpsw_ndo_open(cpsw->slaves[i].ndev);
3700 		}
3701 	} else {
3702 		if (netif_running(ndev))
3703 			cpsw_ndo_open(ndev);
3704 	}
3705 	rtnl_unlock();
3706 
3707 	return 0;
3708 }
3709 #endif
3710 
3711 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3712 
3713 static struct platform_driver cpsw_driver = {
3714 	.driver = {
3715 		.name	 = "cpsw",
3716 		.pm	 = &cpsw_pm_ops,
3717 		.of_match_table = cpsw_of_mtable,
3718 	},
3719 	.probe = cpsw_probe,
3720 	.remove = cpsw_remove,
3721 };
3722 
3723 module_platform_driver(cpsw_driver);
3724 
3725 MODULE_LICENSE("GPL");
3726 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3727 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3728 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
3729