1 /* 2 * Texas Instruments Ethernet Switch Driver 3 * 4 * Copyright (C) 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/io.h> 18 #include <linux/clk.h> 19 #include <linux/timer.h> 20 #include <linux/module.h> 21 #include <linux/platform_device.h> 22 #include <linux/irqreturn.h> 23 #include <linux/interrupt.h> 24 #include <linux/if_ether.h> 25 #include <linux/etherdevice.h> 26 #include <linux/netdevice.h> 27 #include <linux/net_tstamp.h> 28 #include <linux/phy.h> 29 #include <linux/workqueue.h> 30 #include <linux/delay.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/gpio/consumer.h> 33 #include <linux/of.h> 34 #include <linux/of_mdio.h> 35 #include <linux/of_net.h> 36 #include <linux/of_device.h> 37 #include <linux/if_vlan.h> 38 #include <linux/kmemleak.h> 39 #include <linux/sys_soc.h> 40 41 #include <linux/pinctrl/consumer.h> 42 #include <net/pkt_cls.h> 43 44 #include "cpsw.h" 45 #include "cpsw_ale.h" 46 #include "cpts.h" 47 #include "davinci_cpdma.h" 48 49 #include <net/pkt_sched.h> 50 51 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 52 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 53 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 54 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 55 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 56 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 57 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 58 NETIF_MSG_RX_STATUS) 59 60 #define cpsw_info(priv, type, format, ...) \ 61 do { \ 62 if (netif_msg_##type(priv) && net_ratelimit()) \ 63 dev_info(priv->dev, format, ## __VA_ARGS__); \ 64 } while (0) 65 66 #define cpsw_err(priv, type, format, ...) \ 67 do { \ 68 if (netif_msg_##type(priv) && net_ratelimit()) \ 69 dev_err(priv->dev, format, ## __VA_ARGS__); \ 70 } while (0) 71 72 #define cpsw_dbg(priv, type, format, ...) \ 73 do { \ 74 if (netif_msg_##type(priv) && net_ratelimit()) \ 75 dev_dbg(priv->dev, format, ## __VA_ARGS__); \ 76 } while (0) 77 78 #define cpsw_notice(priv, type, format, ...) \ 79 do { \ 80 if (netif_msg_##type(priv) && net_ratelimit()) \ 81 dev_notice(priv->dev, format, ## __VA_ARGS__); \ 82 } while (0) 83 84 #define ALE_ALL_PORTS 0x7 85 86 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7) 87 #define CPSW_MINOR_VERSION(reg) (reg & 0xff) 88 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f) 89 90 #define CPSW_VERSION_1 0x19010a 91 #define CPSW_VERSION_2 0x19010c 92 #define CPSW_VERSION_3 0x19010f 93 #define CPSW_VERSION_4 0x190112 94 95 #define HOST_PORT_NUM 0 96 #define CPSW_ALE_PORTS_NUM 3 97 #define SLIVER_SIZE 0x40 98 99 #define CPSW1_HOST_PORT_OFFSET 0x028 100 #define CPSW1_SLAVE_OFFSET 0x050 101 #define CPSW1_SLAVE_SIZE 0x040 102 #define CPSW1_CPDMA_OFFSET 0x100 103 #define CPSW1_STATERAM_OFFSET 0x200 104 #define CPSW1_HW_STATS 0x400 105 #define CPSW1_CPTS_OFFSET 0x500 106 #define CPSW1_ALE_OFFSET 0x600 107 #define CPSW1_SLIVER_OFFSET 0x700 108 109 #define CPSW2_HOST_PORT_OFFSET 0x108 110 #define CPSW2_SLAVE_OFFSET 0x200 111 #define CPSW2_SLAVE_SIZE 0x100 112 #define CPSW2_CPDMA_OFFSET 0x800 113 #define CPSW2_HW_STATS 0x900 114 #define CPSW2_STATERAM_OFFSET 0xa00 115 #define CPSW2_CPTS_OFFSET 0xc00 116 #define CPSW2_ALE_OFFSET 0xd00 117 #define CPSW2_SLIVER_OFFSET 0xd80 118 #define CPSW2_BD_OFFSET 0x2000 119 120 #define CPDMA_RXTHRESH 0x0c0 121 #define CPDMA_RXFREE 0x0e0 122 #define CPDMA_TXHDP 0x00 123 #define CPDMA_RXHDP 0x20 124 #define CPDMA_TXCP 0x40 125 #define CPDMA_RXCP 0x60 126 127 #define CPSW_POLL_WEIGHT 64 128 #define CPSW_RX_VLAN_ENCAP_HDR_SIZE 4 129 #define CPSW_MIN_PACKET_SIZE (VLAN_ETH_ZLEN) 130 #define CPSW_MAX_PACKET_SIZE (VLAN_ETH_FRAME_LEN +\ 131 ETH_FCS_LEN +\ 132 CPSW_RX_VLAN_ENCAP_HDR_SIZE) 133 134 #define RX_PRIORITY_MAPPING 0x76543210 135 #define TX_PRIORITY_MAPPING 0x33221100 136 #define CPDMA_TX_PRIORITY_MAP 0x76543210 137 138 #define CPSW_VLAN_AWARE BIT(1) 139 #define CPSW_RX_VLAN_ENCAP BIT(2) 140 #define CPSW_ALE_VLAN_AWARE 1 141 142 #define CPSW_FIFO_NORMAL_MODE (0 << 16) 143 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16) 144 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16) 145 146 #define CPSW_INTPACEEN (0x3f << 16) 147 #define CPSW_INTPRESCALE_MASK (0x7FF << 0) 148 #define CPSW_CMINTMAX_CNT 63 149 #define CPSW_CMINTMIN_CNT 2 150 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT) 151 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1) 152 153 #define cpsw_slave_index(cpsw, priv) \ 154 ((cpsw->data.dual_emac) ? priv->emac_port : \ 155 cpsw->data.active_slave) 156 #define IRQ_NUM 2 157 #define CPSW_MAX_QUEUES 8 158 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256 159 #define CPSW_FIFO_QUEUE_TYPE_SHIFT 16 160 #define CPSW_FIFO_SHAPE_EN_SHIFT 16 161 #define CPSW_FIFO_RATE_EN_SHIFT 20 162 #define CPSW_TC_NUM 4 163 #define CPSW_FIFO_SHAPERS_NUM (CPSW_TC_NUM - 1) 164 #define CPSW_PCT_MASK 0x7f 165 166 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT 29 167 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK GENMASK(2, 0) 168 #define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT 16 169 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT 8 170 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK GENMASK(1, 0) 171 enum { 172 CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0, 173 CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV, 174 CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG, 175 CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG, 176 }; 177 178 static int debug_level; 179 module_param(debug_level, int, 0); 180 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 181 182 static int ale_ageout = 10; 183 module_param(ale_ageout, int, 0); 184 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 185 186 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 187 module_param(rx_packet_max, int, 0); 188 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 189 190 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT; 191 module_param(descs_pool_size, int, 0444); 192 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool"); 193 194 struct cpsw_wr_regs { 195 u32 id_ver; 196 u32 soft_reset; 197 u32 control; 198 u32 int_control; 199 u32 rx_thresh_en; 200 u32 rx_en; 201 u32 tx_en; 202 u32 misc_en; 203 u32 mem_allign1[8]; 204 u32 rx_thresh_stat; 205 u32 rx_stat; 206 u32 tx_stat; 207 u32 misc_stat; 208 u32 mem_allign2[8]; 209 u32 rx_imax; 210 u32 tx_imax; 211 212 }; 213 214 struct cpsw_ss_regs { 215 u32 id_ver; 216 u32 control; 217 u32 soft_reset; 218 u32 stat_port_en; 219 u32 ptype; 220 u32 soft_idle; 221 u32 thru_rate; 222 u32 gap_thresh; 223 u32 tx_start_wds; 224 u32 flow_control; 225 u32 vlan_ltype; 226 u32 ts_ltype; 227 u32 dlr_ltype; 228 }; 229 230 /* CPSW_PORT_V1 */ 231 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */ 232 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */ 233 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */ 234 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */ 235 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */ 236 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */ 237 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */ 238 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */ 239 240 /* CPSW_PORT_V2 */ 241 #define CPSW2_CONTROL 0x00 /* Control Register */ 242 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */ 243 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */ 244 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */ 245 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */ 246 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */ 247 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */ 248 249 /* CPSW_PORT_V1 and V2 */ 250 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */ 251 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */ 252 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */ 253 254 /* CPSW_PORT_V2 only */ 255 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */ 256 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */ 257 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */ 258 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */ 259 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */ 260 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */ 261 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */ 262 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */ 263 264 /* Bit definitions for the CPSW2_CONTROL register */ 265 #define PASS_PRI_TAGGED BIT(24) /* Pass Priority Tagged */ 266 #define VLAN_LTYPE2_EN BIT(21) /* VLAN LTYPE 2 enable */ 267 #define VLAN_LTYPE1_EN BIT(20) /* VLAN LTYPE 1 enable */ 268 #define DSCP_PRI_EN BIT(16) /* DSCP Priority Enable */ 269 #define TS_107 BIT(15) /* Tyme Sync Dest IP Address 107 */ 270 #define TS_320 BIT(14) /* Time Sync Dest Port 320 enable */ 271 #define TS_319 BIT(13) /* Time Sync Dest Port 319 enable */ 272 #define TS_132 BIT(12) /* Time Sync Dest IP Addr 132 enable */ 273 #define TS_131 BIT(11) /* Time Sync Dest IP Addr 131 enable */ 274 #define TS_130 BIT(10) /* Time Sync Dest IP Addr 130 enable */ 275 #define TS_129 BIT(9) /* Time Sync Dest IP Addr 129 enable */ 276 #define TS_TTL_NONZERO BIT(8) /* Time Sync Time To Live Non-zero enable */ 277 #define TS_ANNEX_F_EN BIT(6) /* Time Sync Annex F enable */ 278 #define TS_ANNEX_D_EN BIT(4) /* Time Sync Annex D enable */ 279 #define TS_LTYPE2_EN BIT(3) /* Time Sync LTYPE 2 enable */ 280 #define TS_LTYPE1_EN BIT(2) /* Time Sync LTYPE 1 enable */ 281 #define TS_TX_EN BIT(1) /* Time Sync Transmit Enable */ 282 #define TS_RX_EN BIT(0) /* Time Sync Receive Enable */ 283 284 #define CTRL_V2_TS_BITS \ 285 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 286 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN) 287 288 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN) 289 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN) 290 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN) 291 292 293 #define CTRL_V3_TS_BITS \ 294 (TS_107 | TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 295 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\ 296 TS_LTYPE1_EN) 297 298 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN) 299 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN) 300 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN) 301 302 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */ 303 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */ 304 #define TS_SEQ_ID_OFFSET_MASK (0x3f) 305 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */ 306 #define TS_MSG_TYPE_EN_MASK (0xffff) 307 308 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */ 309 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3)) 310 311 /* Bit definitions for the CPSW1_TS_CTL register */ 312 #define CPSW_V1_TS_RX_EN BIT(0) 313 #define CPSW_V1_TS_TX_EN BIT(4) 314 #define CPSW_V1_MSG_TYPE_OFS 16 315 316 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */ 317 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16 318 319 #define CPSW_MAX_BLKS_TX 15 320 #define CPSW_MAX_BLKS_TX_SHIFT 4 321 #define CPSW_MAX_BLKS_RX 5 322 323 struct cpsw_host_regs { 324 u32 max_blks; 325 u32 blk_cnt; 326 u32 tx_in_ctl; 327 u32 port_vlan; 328 u32 tx_pri_map; 329 u32 cpdma_tx_pri_map; 330 u32 cpdma_rx_chan_map; 331 }; 332 333 struct cpsw_sliver_regs { 334 u32 id_ver; 335 u32 mac_control; 336 u32 mac_status; 337 u32 soft_reset; 338 u32 rx_maxlen; 339 u32 __reserved_0; 340 u32 rx_pause; 341 u32 tx_pause; 342 u32 __reserved_1; 343 u32 rx_pri_map; 344 }; 345 346 struct cpsw_hw_stats { 347 u32 rxgoodframes; 348 u32 rxbroadcastframes; 349 u32 rxmulticastframes; 350 u32 rxpauseframes; 351 u32 rxcrcerrors; 352 u32 rxaligncodeerrors; 353 u32 rxoversizedframes; 354 u32 rxjabberframes; 355 u32 rxundersizedframes; 356 u32 rxfragments; 357 u32 __pad_0[2]; 358 u32 rxoctets; 359 u32 txgoodframes; 360 u32 txbroadcastframes; 361 u32 txmulticastframes; 362 u32 txpauseframes; 363 u32 txdeferredframes; 364 u32 txcollisionframes; 365 u32 txsinglecollframes; 366 u32 txmultcollframes; 367 u32 txexcessivecollisions; 368 u32 txlatecollisions; 369 u32 txunderrun; 370 u32 txcarriersenseerrors; 371 u32 txoctets; 372 u32 octetframes64; 373 u32 octetframes65t127; 374 u32 octetframes128t255; 375 u32 octetframes256t511; 376 u32 octetframes512t1023; 377 u32 octetframes1024tup; 378 u32 netoctets; 379 u32 rxsofoverruns; 380 u32 rxmofoverruns; 381 u32 rxdmaoverruns; 382 }; 383 384 struct cpsw_slave_data { 385 struct device_node *phy_node; 386 char phy_id[MII_BUS_ID_SIZE]; 387 int phy_if; 388 u8 mac_addr[ETH_ALEN]; 389 u16 dual_emac_res_vlan; /* Reserved VLAN for DualEMAC */ 390 }; 391 392 struct cpsw_platform_data { 393 struct cpsw_slave_data *slave_data; 394 u32 ss_reg_ofs; /* Subsystem control register offset */ 395 u32 channels; /* number of cpdma channels (symmetric) */ 396 u32 slaves; /* number of slave cpgmac ports */ 397 u32 active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */ 398 u32 ale_entries; /* ale table size */ 399 u32 bd_ram_size; /*buffer descriptor ram size */ 400 u32 mac_control; /* Mac control register */ 401 u16 default_vlan; /* Def VLAN for ALE lookup in VLAN aware mode*/ 402 bool dual_emac; /* Enable Dual EMAC mode */ 403 }; 404 405 struct cpsw_slave { 406 void __iomem *regs; 407 struct cpsw_sliver_regs __iomem *sliver; 408 int slave_num; 409 u32 mac_control; 410 struct cpsw_slave_data *data; 411 struct phy_device *phy; 412 struct net_device *ndev; 413 u32 port_vlan; 414 }; 415 416 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset) 417 { 418 return readl_relaxed(slave->regs + offset); 419 } 420 421 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset) 422 { 423 writel_relaxed(val, slave->regs + offset); 424 } 425 426 struct cpsw_vector { 427 struct cpdma_chan *ch; 428 int budget; 429 }; 430 431 struct cpsw_common { 432 struct device *dev; 433 struct cpsw_platform_data data; 434 struct napi_struct napi_rx; 435 struct napi_struct napi_tx; 436 struct cpsw_ss_regs __iomem *regs; 437 struct cpsw_wr_regs __iomem *wr_regs; 438 u8 __iomem *hw_stats; 439 struct cpsw_host_regs __iomem *host_port_regs; 440 u32 version; 441 u32 coal_intvl; 442 u32 bus_freq_mhz; 443 int rx_packet_max; 444 struct cpsw_slave *slaves; 445 struct cpdma_ctlr *dma; 446 struct cpsw_vector txv[CPSW_MAX_QUEUES]; 447 struct cpsw_vector rxv[CPSW_MAX_QUEUES]; 448 struct cpsw_ale *ale; 449 bool quirk_irq; 450 bool rx_irq_disabled; 451 bool tx_irq_disabled; 452 u32 irqs_table[IRQ_NUM]; 453 struct cpts *cpts; 454 int rx_ch_num, tx_ch_num; 455 int speed; 456 int usage_count; 457 }; 458 459 struct cpsw_priv { 460 struct net_device *ndev; 461 struct device *dev; 462 u32 msg_enable; 463 u8 mac_addr[ETH_ALEN]; 464 bool rx_pause; 465 bool tx_pause; 466 bool mqprio_hw; 467 int fifo_bw[CPSW_TC_NUM]; 468 int shp_cfg_speed; 469 u32 emac_port; 470 struct cpsw_common *cpsw; 471 }; 472 473 struct cpsw_stats { 474 char stat_string[ETH_GSTRING_LEN]; 475 int type; 476 int sizeof_stat; 477 int stat_offset; 478 }; 479 480 enum { 481 CPSW_STATS, 482 CPDMA_RX_STATS, 483 CPDMA_TX_STATS, 484 }; 485 486 #define CPSW_STAT(m) CPSW_STATS, \ 487 sizeof(((struct cpsw_hw_stats *)0)->m), \ 488 offsetof(struct cpsw_hw_stats, m) 489 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \ 490 sizeof(((struct cpdma_chan_stats *)0)->m), \ 491 offsetof(struct cpdma_chan_stats, m) 492 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \ 493 sizeof(((struct cpdma_chan_stats *)0)->m), \ 494 offsetof(struct cpdma_chan_stats, m) 495 496 static const struct cpsw_stats cpsw_gstrings_stats[] = { 497 { "Good Rx Frames", CPSW_STAT(rxgoodframes) }, 498 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) }, 499 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) }, 500 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) }, 501 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) }, 502 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) }, 503 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) }, 504 { "Rx Jabbers", CPSW_STAT(rxjabberframes) }, 505 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) }, 506 { "Rx Fragments", CPSW_STAT(rxfragments) }, 507 { "Rx Octets", CPSW_STAT(rxoctets) }, 508 { "Good Tx Frames", CPSW_STAT(txgoodframes) }, 509 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) }, 510 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) }, 511 { "Pause Tx Frames", CPSW_STAT(txpauseframes) }, 512 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) }, 513 { "Collisions", CPSW_STAT(txcollisionframes) }, 514 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) }, 515 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) }, 516 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) }, 517 { "Late Collisions", CPSW_STAT(txlatecollisions) }, 518 { "Tx Underrun", CPSW_STAT(txunderrun) }, 519 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) }, 520 { "Tx Octets", CPSW_STAT(txoctets) }, 521 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) }, 522 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) }, 523 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) }, 524 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) }, 525 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) }, 526 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) }, 527 { "Net Octets", CPSW_STAT(netoctets) }, 528 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) }, 529 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) }, 530 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) }, 531 }; 532 533 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = { 534 { "head_enqueue", CPDMA_RX_STAT(head_enqueue) }, 535 { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) }, 536 { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) }, 537 { "misqueued", CPDMA_RX_STAT(misqueued) }, 538 { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) }, 539 { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) }, 540 { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) }, 541 { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) }, 542 { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) }, 543 { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) }, 544 { "good_dequeue", CPDMA_RX_STAT(good_dequeue) }, 545 { "requeue", CPDMA_RX_STAT(requeue) }, 546 { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) }, 547 }; 548 549 #define CPSW_STATS_COMMON_LEN ARRAY_SIZE(cpsw_gstrings_stats) 550 #define CPSW_STATS_CH_LEN ARRAY_SIZE(cpsw_gstrings_ch_stats) 551 552 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw) 553 #define napi_to_cpsw(napi) container_of(napi, struct cpsw_common, napi) 554 #define for_each_slave(priv, func, arg...) \ 555 do { \ 556 struct cpsw_slave *slave; \ 557 struct cpsw_common *cpsw = (priv)->cpsw; \ 558 int n; \ 559 if (cpsw->data.dual_emac) \ 560 (func)((cpsw)->slaves + priv->emac_port, ##arg);\ 561 else \ 562 for (n = cpsw->data.slaves, \ 563 slave = cpsw->slaves; \ 564 n; n--) \ 565 (func)(slave++, ##arg); \ 566 } while (0) 567 568 static inline int cpsw_get_slave_port(u32 slave_num) 569 { 570 return slave_num + 1; 571 } 572 573 static void cpsw_add_mcast(struct cpsw_priv *priv, u8 *addr) 574 { 575 struct cpsw_common *cpsw = priv->cpsw; 576 577 if (cpsw->data.dual_emac) { 578 struct cpsw_slave *slave = cpsw->slaves + priv->emac_port; 579 int slave_port = cpsw_get_slave_port(slave->slave_num); 580 581 cpsw_ale_add_mcast(cpsw->ale, addr, 582 1 << slave_port | ALE_PORT_HOST, 583 ALE_VLAN, slave->port_vlan, 0); 584 return; 585 } 586 587 cpsw_ale_add_mcast(cpsw->ale, addr, ALE_ALL_PORTS, 0, 0, 0); 588 } 589 590 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 591 { 592 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 593 struct cpsw_ale *ale = cpsw->ale; 594 int i; 595 596 if (cpsw->data.dual_emac) { 597 bool flag = false; 598 599 /* Enabling promiscuous mode for one interface will be 600 * common for both the interface as the interface shares 601 * the same hardware resource. 602 */ 603 for (i = 0; i < cpsw->data.slaves; i++) 604 if (cpsw->slaves[i].ndev->flags & IFF_PROMISC) 605 flag = true; 606 607 if (!enable && flag) { 608 enable = true; 609 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 610 } 611 612 if (enable) { 613 /* Enable Bypass */ 614 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 615 616 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 617 } else { 618 /* Disable Bypass */ 619 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 620 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 621 } 622 } else { 623 if (enable) { 624 unsigned long timeout = jiffies + HZ; 625 626 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ 627 for (i = 0; i <= cpsw->data.slaves; i++) { 628 cpsw_ale_control_set(ale, i, 629 ALE_PORT_NOLEARN, 1); 630 cpsw_ale_control_set(ale, i, 631 ALE_PORT_NO_SA_UPDATE, 1); 632 } 633 634 /* Clear All Untouched entries */ 635 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 636 do { 637 cpu_relax(); 638 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 639 break; 640 } while (time_after(timeout, jiffies)); 641 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 642 643 /* Clear all mcast from ALE */ 644 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1); 645 646 /* Flood All Unicast Packets to Host port */ 647 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 648 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 649 } else { 650 /* Don't Flood All Unicast Packets to Host port */ 651 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 652 653 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ 654 for (i = 0; i <= cpsw->data.slaves; i++) { 655 cpsw_ale_control_set(ale, i, 656 ALE_PORT_NOLEARN, 0); 657 cpsw_ale_control_set(ale, i, 658 ALE_PORT_NO_SA_UPDATE, 0); 659 } 660 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 661 } 662 } 663 } 664 665 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 666 { 667 struct cpsw_priv *priv = netdev_priv(ndev); 668 struct cpsw_common *cpsw = priv->cpsw; 669 int vid; 670 671 if (cpsw->data.dual_emac) 672 vid = cpsw->slaves[priv->emac_port].port_vlan; 673 else 674 vid = cpsw->data.default_vlan; 675 676 if (ndev->flags & IFF_PROMISC) { 677 /* Enable promiscuous mode */ 678 cpsw_set_promiscious(ndev, true); 679 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI); 680 return; 681 } else { 682 /* Disable promiscuous mode */ 683 cpsw_set_promiscious(ndev, false); 684 } 685 686 /* Restore allmulti on vlans if necessary */ 687 cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI); 688 689 /* Clear all mcast from ALE */ 690 cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid); 691 692 if (!netdev_mc_empty(ndev)) { 693 struct netdev_hw_addr *ha; 694 695 /* program multicast address list into ALE register */ 696 netdev_for_each_mc_addr(ha, ndev) { 697 cpsw_add_mcast(priv, ha->addr); 698 } 699 } 700 } 701 702 static void cpsw_intr_enable(struct cpsw_common *cpsw) 703 { 704 writel_relaxed(0xFF, &cpsw->wr_regs->tx_en); 705 writel_relaxed(0xFF, &cpsw->wr_regs->rx_en); 706 707 cpdma_ctlr_int_ctrl(cpsw->dma, true); 708 return; 709 } 710 711 static void cpsw_intr_disable(struct cpsw_common *cpsw) 712 { 713 writel_relaxed(0, &cpsw->wr_regs->tx_en); 714 writel_relaxed(0, &cpsw->wr_regs->rx_en); 715 716 cpdma_ctlr_int_ctrl(cpsw->dma, false); 717 return; 718 } 719 720 static void cpsw_tx_handler(void *token, int len, int status) 721 { 722 struct netdev_queue *txq; 723 struct sk_buff *skb = token; 724 struct net_device *ndev = skb->dev; 725 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 726 727 /* Check whether the queue is stopped due to stalled tx dma, if the 728 * queue is stopped then start the queue as we have free desc for tx 729 */ 730 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb)); 731 if (unlikely(netif_tx_queue_stopped(txq))) 732 netif_tx_wake_queue(txq); 733 734 cpts_tx_timestamp(cpsw->cpts, skb); 735 ndev->stats.tx_packets++; 736 ndev->stats.tx_bytes += len; 737 dev_kfree_skb_any(skb); 738 } 739 740 static void cpsw_rx_vlan_encap(struct sk_buff *skb) 741 { 742 struct cpsw_priv *priv = netdev_priv(skb->dev); 743 struct cpsw_common *cpsw = priv->cpsw; 744 u32 rx_vlan_encap_hdr = *((u32 *)skb->data); 745 u16 vtag, vid, prio, pkt_type; 746 747 /* Remove VLAN header encapsulation word */ 748 skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE); 749 750 pkt_type = (rx_vlan_encap_hdr >> 751 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) & 752 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK; 753 /* Ignore unknown & Priority-tagged packets*/ 754 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV || 755 pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG) 756 return; 757 758 vid = (rx_vlan_encap_hdr >> 759 CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) & 760 VLAN_VID_MASK; 761 /* Ignore vid 0 and pass packet as is */ 762 if (!vid) 763 return; 764 /* Ignore default vlans in dual mac mode */ 765 if (cpsw->data.dual_emac && 766 vid == cpsw->slaves[priv->emac_port].port_vlan) 767 return; 768 769 prio = (rx_vlan_encap_hdr >> 770 CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) & 771 CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK; 772 773 vtag = (prio << VLAN_PRIO_SHIFT) | vid; 774 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag); 775 776 /* strip vlan tag for VLAN-tagged packet */ 777 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) { 778 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 779 skb_pull(skb, VLAN_HLEN); 780 } 781 } 782 783 static void cpsw_rx_handler(void *token, int len, int status) 784 { 785 struct cpdma_chan *ch; 786 struct sk_buff *skb = token; 787 struct sk_buff *new_skb; 788 struct net_device *ndev = skb->dev; 789 int ret = 0, port; 790 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 791 792 if (cpsw->data.dual_emac) { 793 port = CPDMA_RX_SOURCE_PORT(status); 794 if (port) { 795 ndev = cpsw->slaves[--port].ndev; 796 skb->dev = ndev; 797 } 798 } 799 800 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 801 /* In dual emac mode check for all interfaces */ 802 if (cpsw->data.dual_emac && cpsw->usage_count && 803 (status >= 0)) { 804 /* The packet received is for the interface which 805 * is already down and the other interface is up 806 * and running, instead of freeing which results 807 * in reducing of the number of rx descriptor in 808 * DMA engine, requeue skb back to cpdma. 809 */ 810 new_skb = skb; 811 goto requeue; 812 } 813 814 /* the interface is going down, skbs are purged */ 815 dev_kfree_skb_any(skb); 816 return; 817 } 818 819 new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max); 820 if (new_skb) { 821 skb_copy_queue_mapping(new_skb, skb); 822 skb_put(skb, len); 823 if (status & CPDMA_RX_VLAN_ENCAP) 824 cpsw_rx_vlan_encap(skb); 825 cpts_rx_timestamp(cpsw->cpts, skb); 826 skb->protocol = eth_type_trans(skb, ndev); 827 netif_receive_skb(skb); 828 ndev->stats.rx_bytes += len; 829 ndev->stats.rx_packets++; 830 kmemleak_not_leak(new_skb); 831 } else { 832 ndev->stats.rx_dropped++; 833 new_skb = skb; 834 } 835 836 requeue: 837 if (netif_dormant(ndev)) { 838 dev_kfree_skb_any(new_skb); 839 return; 840 } 841 842 ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch; 843 ret = cpdma_chan_submit(ch, new_skb, new_skb->data, 844 skb_tailroom(new_skb), 0); 845 if (WARN_ON(ret < 0)) 846 dev_kfree_skb_any(new_skb); 847 } 848 849 static void cpsw_split_res(struct net_device *ndev) 850 { 851 struct cpsw_priv *priv = netdev_priv(ndev); 852 u32 consumed_rate = 0, bigest_rate = 0; 853 struct cpsw_common *cpsw = priv->cpsw; 854 struct cpsw_vector *txv = cpsw->txv; 855 int i, ch_weight, rlim_ch_num = 0; 856 int budget, bigest_rate_ch = 0; 857 u32 ch_rate, max_rate; 858 int ch_budget = 0; 859 860 for (i = 0; i < cpsw->tx_ch_num; i++) { 861 ch_rate = cpdma_chan_get_rate(txv[i].ch); 862 if (!ch_rate) 863 continue; 864 865 rlim_ch_num++; 866 consumed_rate += ch_rate; 867 } 868 869 if (cpsw->tx_ch_num == rlim_ch_num) { 870 max_rate = consumed_rate; 871 } else if (!rlim_ch_num) { 872 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num; 873 bigest_rate = 0; 874 max_rate = consumed_rate; 875 } else { 876 max_rate = cpsw->speed * 1000; 877 878 /* if max_rate is less then expected due to reduced link speed, 879 * split proportionally according next potential max speed 880 */ 881 if (max_rate < consumed_rate) 882 max_rate *= 10; 883 884 if (max_rate < consumed_rate) 885 max_rate *= 10; 886 887 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate; 888 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) / 889 (cpsw->tx_ch_num - rlim_ch_num); 890 bigest_rate = (max_rate - consumed_rate) / 891 (cpsw->tx_ch_num - rlim_ch_num); 892 } 893 894 /* split tx weight/budget */ 895 budget = CPSW_POLL_WEIGHT; 896 for (i = 0; i < cpsw->tx_ch_num; i++) { 897 ch_rate = cpdma_chan_get_rate(txv[i].ch); 898 if (ch_rate) { 899 txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate; 900 if (!txv[i].budget) 901 txv[i].budget++; 902 if (ch_rate > bigest_rate) { 903 bigest_rate_ch = i; 904 bigest_rate = ch_rate; 905 } 906 907 ch_weight = (ch_rate * 100) / max_rate; 908 if (!ch_weight) 909 ch_weight++; 910 cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight); 911 } else { 912 txv[i].budget = ch_budget; 913 if (!bigest_rate_ch) 914 bigest_rate_ch = i; 915 cpdma_chan_set_weight(cpsw->txv[i].ch, 0); 916 } 917 918 budget -= txv[i].budget; 919 } 920 921 if (budget) 922 txv[bigest_rate_ch].budget += budget; 923 924 /* split rx budget */ 925 budget = CPSW_POLL_WEIGHT; 926 ch_budget = budget / cpsw->rx_ch_num; 927 for (i = 0; i < cpsw->rx_ch_num; i++) { 928 cpsw->rxv[i].budget = ch_budget; 929 budget -= ch_budget; 930 } 931 932 if (budget) 933 cpsw->rxv[0].budget += budget; 934 } 935 936 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id) 937 { 938 struct cpsw_common *cpsw = dev_id; 939 940 writel(0, &cpsw->wr_regs->tx_en); 941 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX); 942 943 if (cpsw->quirk_irq) { 944 disable_irq_nosync(cpsw->irqs_table[1]); 945 cpsw->tx_irq_disabled = true; 946 } 947 948 napi_schedule(&cpsw->napi_tx); 949 return IRQ_HANDLED; 950 } 951 952 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id) 953 { 954 struct cpsw_common *cpsw = dev_id; 955 956 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX); 957 writel(0, &cpsw->wr_regs->rx_en); 958 959 if (cpsw->quirk_irq) { 960 disable_irq_nosync(cpsw->irqs_table[0]); 961 cpsw->rx_irq_disabled = true; 962 } 963 964 napi_schedule(&cpsw->napi_rx); 965 return IRQ_HANDLED; 966 } 967 968 static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget) 969 { 970 u32 ch_map; 971 int num_tx, cur_budget, ch; 972 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); 973 struct cpsw_vector *txv; 974 975 /* process every unprocessed channel */ 976 ch_map = cpdma_ctrl_txchs_state(cpsw->dma); 977 for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) { 978 if (!(ch_map & 0x80)) 979 continue; 980 981 txv = &cpsw->txv[ch]; 982 if (unlikely(txv->budget > budget - num_tx)) 983 cur_budget = budget - num_tx; 984 else 985 cur_budget = txv->budget; 986 987 num_tx += cpdma_chan_process(txv->ch, cur_budget); 988 if (num_tx >= budget) 989 break; 990 } 991 992 if (num_tx < budget) { 993 napi_complete(napi_tx); 994 writel(0xff, &cpsw->wr_regs->tx_en); 995 } 996 997 return num_tx; 998 } 999 1000 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget) 1001 { 1002 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); 1003 int num_tx; 1004 1005 num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget); 1006 if (num_tx < budget) { 1007 napi_complete(napi_tx); 1008 writel(0xff, &cpsw->wr_regs->tx_en); 1009 if (cpsw->tx_irq_disabled) { 1010 cpsw->tx_irq_disabled = false; 1011 enable_irq(cpsw->irqs_table[1]); 1012 } 1013 } 1014 1015 return num_tx; 1016 } 1017 1018 static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget) 1019 { 1020 u32 ch_map; 1021 int num_rx, cur_budget, ch; 1022 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); 1023 struct cpsw_vector *rxv; 1024 1025 /* process every unprocessed channel */ 1026 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma); 1027 for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) { 1028 if (!(ch_map & 0x01)) 1029 continue; 1030 1031 rxv = &cpsw->rxv[ch]; 1032 if (unlikely(rxv->budget > budget - num_rx)) 1033 cur_budget = budget - num_rx; 1034 else 1035 cur_budget = rxv->budget; 1036 1037 num_rx += cpdma_chan_process(rxv->ch, cur_budget); 1038 if (num_rx >= budget) 1039 break; 1040 } 1041 1042 if (num_rx < budget) { 1043 napi_complete_done(napi_rx, num_rx); 1044 writel(0xff, &cpsw->wr_regs->rx_en); 1045 } 1046 1047 return num_rx; 1048 } 1049 1050 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget) 1051 { 1052 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); 1053 int num_rx; 1054 1055 num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget); 1056 if (num_rx < budget) { 1057 napi_complete_done(napi_rx, num_rx); 1058 writel(0xff, &cpsw->wr_regs->rx_en); 1059 if (cpsw->rx_irq_disabled) { 1060 cpsw->rx_irq_disabled = false; 1061 enable_irq(cpsw->irqs_table[0]); 1062 } 1063 } 1064 1065 return num_rx; 1066 } 1067 1068 static inline void soft_reset(const char *module, void __iomem *reg) 1069 { 1070 unsigned long timeout = jiffies + HZ; 1071 1072 writel_relaxed(1, reg); 1073 do { 1074 cpu_relax(); 1075 } while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies)); 1076 1077 WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module); 1078 } 1079 1080 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 1081 struct cpsw_priv *priv) 1082 { 1083 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 1084 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 1085 } 1086 1087 static bool cpsw_shp_is_off(struct cpsw_priv *priv) 1088 { 1089 struct cpsw_common *cpsw = priv->cpsw; 1090 struct cpsw_slave *slave; 1091 u32 shift, mask, val; 1092 1093 val = readl_relaxed(&cpsw->regs->ptype); 1094 1095 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1096 shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num; 1097 mask = 7 << shift; 1098 val = val & mask; 1099 1100 return !val; 1101 } 1102 1103 static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on) 1104 { 1105 struct cpsw_common *cpsw = priv->cpsw; 1106 struct cpsw_slave *slave; 1107 u32 shift, mask, val; 1108 1109 val = readl_relaxed(&cpsw->regs->ptype); 1110 1111 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1112 shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num; 1113 mask = (1 << --fifo) << shift; 1114 val = on ? val | mask : val & ~mask; 1115 1116 writel_relaxed(val, &cpsw->regs->ptype); 1117 } 1118 1119 static void _cpsw_adjust_link(struct cpsw_slave *slave, 1120 struct cpsw_priv *priv, bool *link) 1121 { 1122 struct phy_device *phy = slave->phy; 1123 u32 mac_control = 0; 1124 u32 slave_port; 1125 struct cpsw_common *cpsw = priv->cpsw; 1126 1127 if (!phy) 1128 return; 1129 1130 slave_port = cpsw_get_slave_port(slave->slave_num); 1131 1132 if (phy->link) { 1133 mac_control = cpsw->data.mac_control; 1134 1135 /* enable forwarding */ 1136 cpsw_ale_control_set(cpsw->ale, slave_port, 1137 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1138 1139 if (phy->speed == 1000) 1140 mac_control |= BIT(7); /* GIGABITEN */ 1141 if (phy->duplex) 1142 mac_control |= BIT(0); /* FULLDUPLEXEN */ 1143 1144 /* set speed_in input in case RMII mode is used in 100Mbps */ 1145 if (phy->speed == 100) 1146 mac_control |= BIT(15); 1147 /* in band mode only works in 10Mbps RGMII mode */ 1148 else if ((phy->speed == 10) && phy_interface_is_rgmii(phy)) 1149 mac_control |= BIT(18); /* In Band mode */ 1150 1151 if (priv->rx_pause) 1152 mac_control |= BIT(3); 1153 1154 if (priv->tx_pause) 1155 mac_control |= BIT(4); 1156 1157 *link = true; 1158 1159 if (priv->shp_cfg_speed && 1160 priv->shp_cfg_speed != slave->phy->speed && 1161 !cpsw_shp_is_off(priv)) 1162 dev_warn(priv->dev, 1163 "Speed was changed, CBS shaper speeds are changed!"); 1164 } else { 1165 mac_control = 0; 1166 /* disable forwarding */ 1167 cpsw_ale_control_set(cpsw->ale, slave_port, 1168 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1169 } 1170 1171 if (mac_control != slave->mac_control) { 1172 phy_print_status(phy); 1173 writel_relaxed(mac_control, &slave->sliver->mac_control); 1174 } 1175 1176 slave->mac_control = mac_control; 1177 } 1178 1179 static int cpsw_get_common_speed(struct cpsw_common *cpsw) 1180 { 1181 int i, speed; 1182 1183 for (i = 0, speed = 0; i < cpsw->data.slaves; i++) 1184 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link) 1185 speed += cpsw->slaves[i].phy->speed; 1186 1187 return speed; 1188 } 1189 1190 static int cpsw_need_resplit(struct cpsw_common *cpsw) 1191 { 1192 int i, rlim_ch_num; 1193 int speed, ch_rate; 1194 1195 /* re-split resources only in case speed was changed */ 1196 speed = cpsw_get_common_speed(cpsw); 1197 if (speed == cpsw->speed || !speed) 1198 return 0; 1199 1200 cpsw->speed = speed; 1201 1202 for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) { 1203 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch); 1204 if (!ch_rate) 1205 break; 1206 1207 rlim_ch_num++; 1208 } 1209 1210 /* cases not dependent on speed */ 1211 if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num) 1212 return 0; 1213 1214 return 1; 1215 } 1216 1217 static void cpsw_adjust_link(struct net_device *ndev) 1218 { 1219 struct cpsw_priv *priv = netdev_priv(ndev); 1220 struct cpsw_common *cpsw = priv->cpsw; 1221 bool link = false; 1222 1223 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 1224 1225 if (link) { 1226 if (cpsw_need_resplit(cpsw)) 1227 cpsw_split_res(ndev); 1228 1229 netif_carrier_on(ndev); 1230 if (netif_running(ndev)) 1231 netif_tx_wake_all_queues(ndev); 1232 } else { 1233 netif_carrier_off(ndev); 1234 netif_tx_stop_all_queues(ndev); 1235 } 1236 } 1237 1238 static int cpsw_get_coalesce(struct net_device *ndev, 1239 struct ethtool_coalesce *coal) 1240 { 1241 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1242 1243 coal->rx_coalesce_usecs = cpsw->coal_intvl; 1244 return 0; 1245 } 1246 1247 static int cpsw_set_coalesce(struct net_device *ndev, 1248 struct ethtool_coalesce *coal) 1249 { 1250 struct cpsw_priv *priv = netdev_priv(ndev); 1251 u32 int_ctrl; 1252 u32 num_interrupts = 0; 1253 u32 prescale = 0; 1254 u32 addnl_dvdr = 1; 1255 u32 coal_intvl = 0; 1256 struct cpsw_common *cpsw = priv->cpsw; 1257 1258 coal_intvl = coal->rx_coalesce_usecs; 1259 1260 int_ctrl = readl(&cpsw->wr_regs->int_control); 1261 prescale = cpsw->bus_freq_mhz * 4; 1262 1263 if (!coal->rx_coalesce_usecs) { 1264 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN); 1265 goto update_return; 1266 } 1267 1268 if (coal_intvl < CPSW_CMINTMIN_INTVL) 1269 coal_intvl = CPSW_CMINTMIN_INTVL; 1270 1271 if (coal_intvl > CPSW_CMINTMAX_INTVL) { 1272 /* Interrupt pacer works with 4us Pulse, we can 1273 * throttle further by dilating the 4us pulse. 1274 */ 1275 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale; 1276 1277 if (addnl_dvdr > 1) { 1278 prescale *= addnl_dvdr; 1279 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr)) 1280 coal_intvl = (CPSW_CMINTMAX_INTVL 1281 * addnl_dvdr); 1282 } else { 1283 addnl_dvdr = 1; 1284 coal_intvl = CPSW_CMINTMAX_INTVL; 1285 } 1286 } 1287 1288 num_interrupts = (1000 * addnl_dvdr) / coal_intvl; 1289 writel(num_interrupts, &cpsw->wr_regs->rx_imax); 1290 writel(num_interrupts, &cpsw->wr_regs->tx_imax); 1291 1292 int_ctrl |= CPSW_INTPACEEN; 1293 int_ctrl &= (~CPSW_INTPRESCALE_MASK); 1294 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK); 1295 1296 update_return: 1297 writel(int_ctrl, &cpsw->wr_regs->int_control); 1298 1299 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl); 1300 cpsw->coal_intvl = coal_intvl; 1301 1302 return 0; 1303 } 1304 1305 static int cpsw_get_sset_count(struct net_device *ndev, int sset) 1306 { 1307 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1308 1309 switch (sset) { 1310 case ETH_SS_STATS: 1311 return (CPSW_STATS_COMMON_LEN + 1312 (cpsw->rx_ch_num + cpsw->tx_ch_num) * 1313 CPSW_STATS_CH_LEN); 1314 default: 1315 return -EOPNOTSUPP; 1316 } 1317 } 1318 1319 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir) 1320 { 1321 int ch_stats_len; 1322 int line; 1323 int i; 1324 1325 ch_stats_len = CPSW_STATS_CH_LEN * ch_num; 1326 for (i = 0; i < ch_stats_len; i++) { 1327 line = i % CPSW_STATS_CH_LEN; 1328 snprintf(*p, ETH_GSTRING_LEN, 1329 "%s DMA chan %ld: %s", rx_dir ? "Rx" : "Tx", 1330 (long)(i / CPSW_STATS_CH_LEN), 1331 cpsw_gstrings_ch_stats[line].stat_string); 1332 *p += ETH_GSTRING_LEN; 1333 } 1334 } 1335 1336 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 1337 { 1338 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1339 u8 *p = data; 1340 int i; 1341 1342 switch (stringset) { 1343 case ETH_SS_STATS: 1344 for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) { 1345 memcpy(p, cpsw_gstrings_stats[i].stat_string, 1346 ETH_GSTRING_LEN); 1347 p += ETH_GSTRING_LEN; 1348 } 1349 1350 cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1); 1351 cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0); 1352 break; 1353 } 1354 } 1355 1356 static void cpsw_get_ethtool_stats(struct net_device *ndev, 1357 struct ethtool_stats *stats, u64 *data) 1358 { 1359 u8 *p; 1360 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1361 struct cpdma_chan_stats ch_stats; 1362 int i, l, ch; 1363 1364 /* Collect Davinci CPDMA stats for Rx and Tx Channel */ 1365 for (l = 0; l < CPSW_STATS_COMMON_LEN; l++) 1366 data[l] = readl(cpsw->hw_stats + 1367 cpsw_gstrings_stats[l].stat_offset); 1368 1369 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1370 cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats); 1371 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) { 1372 p = (u8 *)&ch_stats + 1373 cpsw_gstrings_ch_stats[i].stat_offset; 1374 data[l] = *(u32 *)p; 1375 } 1376 } 1377 1378 for (ch = 0; ch < cpsw->tx_ch_num; ch++) { 1379 cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats); 1380 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) { 1381 p = (u8 *)&ch_stats + 1382 cpsw_gstrings_ch_stats[i].stat_offset; 1383 data[l] = *(u32 *)p; 1384 } 1385 } 1386 } 1387 1388 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv, 1389 struct sk_buff *skb, 1390 struct cpdma_chan *txch) 1391 { 1392 struct cpsw_common *cpsw = priv->cpsw; 1393 1394 skb_tx_timestamp(skb); 1395 return cpdma_chan_submit(txch, skb, skb->data, skb->len, 1396 priv->emac_port + cpsw->data.dual_emac); 1397 } 1398 1399 static inline void cpsw_add_dual_emac_def_ale_entries( 1400 struct cpsw_priv *priv, struct cpsw_slave *slave, 1401 u32 slave_port) 1402 { 1403 struct cpsw_common *cpsw = priv->cpsw; 1404 u32 port_mask = 1 << slave_port | ALE_PORT_HOST; 1405 1406 if (cpsw->version == CPSW_VERSION_1) 1407 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 1408 else 1409 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 1410 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask, 1411 port_mask, port_mask, 0); 1412 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1413 port_mask, ALE_VLAN, slave->port_vlan, 0); 1414 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 1415 HOST_PORT_NUM, ALE_VLAN | 1416 ALE_SECURE, slave->port_vlan); 1417 cpsw_ale_control_set(cpsw->ale, slave_port, 1418 ALE_PORT_DROP_UNKNOWN_VLAN, 1); 1419 } 1420 1421 static void soft_reset_slave(struct cpsw_slave *slave) 1422 { 1423 char name[32]; 1424 1425 snprintf(name, sizeof(name), "slave-%d", slave->slave_num); 1426 soft_reset(name, &slave->sliver->soft_reset); 1427 } 1428 1429 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 1430 { 1431 u32 slave_port; 1432 struct phy_device *phy; 1433 struct cpsw_common *cpsw = priv->cpsw; 1434 1435 soft_reset_slave(slave); 1436 1437 /* setup priority mapping */ 1438 writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map); 1439 1440 switch (cpsw->version) { 1441 case CPSW_VERSION_1: 1442 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 1443 /* Increase RX FIFO size to 5 for supporting fullduplex 1444 * flow control mode 1445 */ 1446 slave_write(slave, 1447 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 1448 CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS); 1449 break; 1450 case CPSW_VERSION_2: 1451 case CPSW_VERSION_3: 1452 case CPSW_VERSION_4: 1453 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 1454 /* Increase RX FIFO size to 5 for supporting fullduplex 1455 * flow control mode 1456 */ 1457 slave_write(slave, 1458 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 1459 CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS); 1460 break; 1461 } 1462 1463 /* setup max packet size, and mac address */ 1464 writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen); 1465 cpsw_set_slave_mac(slave, priv); 1466 1467 slave->mac_control = 0; /* no link yet */ 1468 1469 slave_port = cpsw_get_slave_port(slave->slave_num); 1470 1471 if (cpsw->data.dual_emac) 1472 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 1473 else 1474 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1475 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 1476 1477 if (slave->data->phy_node) { 1478 phy = of_phy_connect(priv->ndev, slave->data->phy_node, 1479 &cpsw_adjust_link, 0, slave->data->phy_if); 1480 if (!phy) { 1481 dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n", 1482 slave->data->phy_node, 1483 slave->slave_num); 1484 return; 1485 } 1486 } else { 1487 phy = phy_connect(priv->ndev, slave->data->phy_id, 1488 &cpsw_adjust_link, slave->data->phy_if); 1489 if (IS_ERR(phy)) { 1490 dev_err(priv->dev, 1491 "phy \"%s\" not found on slave %d, err %ld\n", 1492 slave->data->phy_id, slave->slave_num, 1493 PTR_ERR(phy)); 1494 return; 1495 } 1496 } 1497 1498 slave->phy = phy; 1499 1500 phy_attached_info(slave->phy); 1501 1502 phy_start(slave->phy); 1503 1504 /* Configure GMII_SEL register */ 1505 cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num); 1506 } 1507 1508 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 1509 { 1510 struct cpsw_common *cpsw = priv->cpsw; 1511 const int vlan = cpsw->data.default_vlan; 1512 u32 reg; 1513 int i; 1514 int unreg_mcast_mask; 1515 1516 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 1517 CPSW2_PORT_VLAN; 1518 1519 writel(vlan, &cpsw->host_port_regs->port_vlan); 1520 1521 for (i = 0; i < cpsw->data.slaves; i++) 1522 slave_write(cpsw->slaves + i, vlan, reg); 1523 1524 if (priv->ndev->flags & IFF_ALLMULTI) 1525 unreg_mcast_mask = ALE_ALL_PORTS; 1526 else 1527 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1528 1529 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, 1530 ALE_ALL_PORTS, ALE_ALL_PORTS, 1531 unreg_mcast_mask); 1532 } 1533 1534 static void cpsw_init_host_port(struct cpsw_priv *priv) 1535 { 1536 u32 fifo_mode; 1537 u32 control_reg; 1538 struct cpsw_common *cpsw = priv->cpsw; 1539 1540 /* soft reset the controller and initialize ale */ 1541 soft_reset("cpsw", &cpsw->regs->soft_reset); 1542 cpsw_ale_start(cpsw->ale); 1543 1544 /* switch to vlan unaware mode */ 1545 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE, 1546 CPSW_ALE_VLAN_AWARE); 1547 control_reg = readl(&cpsw->regs->control); 1548 control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP; 1549 writel(control_reg, &cpsw->regs->control); 1550 fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 1551 CPSW_FIFO_NORMAL_MODE; 1552 writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl); 1553 1554 /* setup host port priority mapping */ 1555 writel_relaxed(CPDMA_TX_PRIORITY_MAP, 1556 &cpsw->host_port_regs->cpdma_tx_pri_map); 1557 writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map); 1558 1559 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 1560 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1561 1562 if (!cpsw->data.dual_emac) { 1563 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 1564 0, 0); 1565 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1566 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2); 1567 } 1568 } 1569 1570 static int cpsw_fill_rx_channels(struct cpsw_priv *priv) 1571 { 1572 struct cpsw_common *cpsw = priv->cpsw; 1573 struct sk_buff *skb; 1574 int ch_buf_num; 1575 int ch, i, ret; 1576 1577 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1578 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch); 1579 for (i = 0; i < ch_buf_num; i++) { 1580 skb = __netdev_alloc_skb_ip_align(priv->ndev, 1581 cpsw->rx_packet_max, 1582 GFP_KERNEL); 1583 if (!skb) { 1584 cpsw_err(priv, ifup, "cannot allocate skb\n"); 1585 return -ENOMEM; 1586 } 1587 1588 skb_set_queue_mapping(skb, ch); 1589 ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb, 1590 skb->data, skb_tailroom(skb), 1591 0); 1592 if (ret < 0) { 1593 cpsw_err(priv, ifup, 1594 "cannot submit skb to channel %d rx, error %d\n", 1595 ch, ret); 1596 kfree_skb(skb); 1597 return ret; 1598 } 1599 kmemleak_not_leak(skb); 1600 } 1601 1602 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n", 1603 ch, ch_buf_num); 1604 } 1605 1606 return 0; 1607 } 1608 1609 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw) 1610 { 1611 u32 slave_port; 1612 1613 slave_port = cpsw_get_slave_port(slave->slave_num); 1614 1615 if (!slave->phy) 1616 return; 1617 phy_stop(slave->phy); 1618 phy_disconnect(slave->phy); 1619 slave->phy = NULL; 1620 cpsw_ale_control_set(cpsw->ale, slave_port, 1621 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1622 soft_reset_slave(slave); 1623 } 1624 1625 static int cpsw_tc_to_fifo(int tc, int num_tc) 1626 { 1627 if (tc == num_tc - 1) 1628 return 0; 1629 1630 return CPSW_FIFO_SHAPERS_NUM - tc; 1631 } 1632 1633 static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw) 1634 { 1635 struct cpsw_common *cpsw = priv->cpsw; 1636 u32 val = 0, send_pct, shift; 1637 struct cpsw_slave *slave; 1638 int pct = 0, i; 1639 1640 if (bw > priv->shp_cfg_speed * 1000) 1641 goto err; 1642 1643 /* shaping has to stay enabled for highest fifos linearly 1644 * and fifo bw no more then interface can allow 1645 */ 1646 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1647 send_pct = slave_read(slave, SEND_PERCENT); 1648 for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) { 1649 if (!bw) { 1650 if (i >= fifo || !priv->fifo_bw[i]) 1651 continue; 1652 1653 dev_warn(priv->dev, "Prev FIFO%d is shaped", i); 1654 continue; 1655 } 1656 1657 if (!priv->fifo_bw[i] && i > fifo) { 1658 dev_err(priv->dev, "Upper FIFO%d is not shaped", i); 1659 return -EINVAL; 1660 } 1661 1662 shift = (i - 1) * 8; 1663 if (i == fifo) { 1664 send_pct &= ~(CPSW_PCT_MASK << shift); 1665 val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10); 1666 if (!val) 1667 val = 1; 1668 1669 send_pct |= val << shift; 1670 pct += val; 1671 continue; 1672 } 1673 1674 if (priv->fifo_bw[i]) 1675 pct += (send_pct >> shift) & CPSW_PCT_MASK; 1676 } 1677 1678 if (pct >= 100) 1679 goto err; 1680 1681 slave_write(slave, send_pct, SEND_PERCENT); 1682 priv->fifo_bw[fifo] = bw; 1683 1684 dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo, 1685 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100)); 1686 1687 return 0; 1688 err: 1689 dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration"); 1690 return -EINVAL; 1691 } 1692 1693 static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw) 1694 { 1695 struct cpsw_common *cpsw = priv->cpsw; 1696 struct cpsw_slave *slave; 1697 u32 tx_in_ctl_rg, val; 1698 int ret; 1699 1700 ret = cpsw_set_fifo_bw(priv, fifo, bw); 1701 if (ret) 1702 return ret; 1703 1704 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1705 tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ? 1706 CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL; 1707 1708 if (!bw) 1709 cpsw_fifo_shp_on(priv, fifo, bw); 1710 1711 val = slave_read(slave, tx_in_ctl_rg); 1712 if (cpsw_shp_is_off(priv)) { 1713 /* disable FIFOs rate limited queues */ 1714 val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT); 1715 1716 /* set type of FIFO queues to normal priority mode */ 1717 val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT); 1718 1719 /* set type of FIFO queues to be rate limited */ 1720 if (bw) 1721 val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT; 1722 else 1723 priv->shp_cfg_speed = 0; 1724 } 1725 1726 /* toggle a FIFO rate limited queue */ 1727 if (bw) 1728 val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT); 1729 else 1730 val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT); 1731 slave_write(slave, val, tx_in_ctl_rg); 1732 1733 /* FIFO transmit shape enable */ 1734 cpsw_fifo_shp_on(priv, fifo, bw); 1735 return 0; 1736 } 1737 1738 /* Defaults: 1739 * class A - prio 3 1740 * class B - prio 2 1741 * shaping for class A should be set first 1742 */ 1743 static int cpsw_set_cbs(struct net_device *ndev, 1744 struct tc_cbs_qopt_offload *qopt) 1745 { 1746 struct cpsw_priv *priv = netdev_priv(ndev); 1747 struct cpsw_common *cpsw = priv->cpsw; 1748 struct cpsw_slave *slave; 1749 int prev_speed = 0; 1750 int tc, ret, fifo; 1751 u32 bw = 0; 1752 1753 tc = netdev_txq_to_tc(priv->ndev, qopt->queue); 1754 1755 /* enable channels in backward order, as highest FIFOs must be rate 1756 * limited first and for compliance with CPDMA rate limited channels 1757 * that also used in bacward order. FIFO0 cannot be rate limited. 1758 */ 1759 fifo = cpsw_tc_to_fifo(tc, ndev->num_tc); 1760 if (!fifo) { 1761 dev_err(priv->dev, "Last tc%d can't be rate limited", tc); 1762 return -EINVAL; 1763 } 1764 1765 /* do nothing, it's disabled anyway */ 1766 if (!qopt->enable && !priv->fifo_bw[fifo]) 1767 return 0; 1768 1769 /* shapers can be set if link speed is known */ 1770 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1771 if (slave->phy && slave->phy->link) { 1772 if (priv->shp_cfg_speed && 1773 priv->shp_cfg_speed != slave->phy->speed) 1774 prev_speed = priv->shp_cfg_speed; 1775 1776 priv->shp_cfg_speed = slave->phy->speed; 1777 } 1778 1779 if (!priv->shp_cfg_speed) { 1780 dev_err(priv->dev, "Link speed is not known"); 1781 return -1; 1782 } 1783 1784 ret = pm_runtime_get_sync(cpsw->dev); 1785 if (ret < 0) { 1786 pm_runtime_put_noidle(cpsw->dev); 1787 return ret; 1788 } 1789 1790 bw = qopt->enable ? qopt->idleslope : 0; 1791 ret = cpsw_set_fifo_rlimit(priv, fifo, bw); 1792 if (ret) { 1793 priv->shp_cfg_speed = prev_speed; 1794 prev_speed = 0; 1795 } 1796 1797 if (bw && prev_speed) 1798 dev_warn(priv->dev, 1799 "Speed was changed, CBS shaper speeds are changed!"); 1800 1801 pm_runtime_put_sync(cpsw->dev); 1802 return ret; 1803 } 1804 1805 static void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv) 1806 { 1807 int fifo, bw; 1808 1809 for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) { 1810 bw = priv->fifo_bw[fifo]; 1811 if (!bw) 1812 continue; 1813 1814 cpsw_set_fifo_rlimit(priv, fifo, bw); 1815 } 1816 } 1817 1818 static void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv) 1819 { 1820 struct cpsw_common *cpsw = priv->cpsw; 1821 u32 tx_prio_map = 0; 1822 int i, tc, fifo; 1823 u32 tx_prio_rg; 1824 1825 if (!priv->mqprio_hw) 1826 return; 1827 1828 for (i = 0; i < 8; i++) { 1829 tc = netdev_get_prio_tc_map(priv->ndev, i); 1830 fifo = CPSW_FIFO_SHAPERS_NUM - tc; 1831 tx_prio_map |= fifo << (4 * i); 1832 } 1833 1834 tx_prio_rg = cpsw->version == CPSW_VERSION_1 ? 1835 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP; 1836 1837 slave_write(slave, tx_prio_map, tx_prio_rg); 1838 } 1839 1840 /* restore resources after port reset */ 1841 static void cpsw_restore(struct cpsw_priv *priv) 1842 { 1843 /* restore MQPRIO offload */ 1844 for_each_slave(priv, cpsw_mqprio_resume, priv); 1845 1846 /* restore CBS offload */ 1847 for_each_slave(priv, cpsw_cbs_resume, priv); 1848 } 1849 1850 static int cpsw_ndo_open(struct net_device *ndev) 1851 { 1852 struct cpsw_priv *priv = netdev_priv(ndev); 1853 struct cpsw_common *cpsw = priv->cpsw; 1854 int ret; 1855 u32 reg; 1856 1857 ret = pm_runtime_get_sync(cpsw->dev); 1858 if (ret < 0) { 1859 pm_runtime_put_noidle(cpsw->dev); 1860 return ret; 1861 } 1862 1863 netif_carrier_off(ndev); 1864 1865 /* Notify the stack of the actual queue counts. */ 1866 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num); 1867 if (ret) { 1868 dev_err(priv->dev, "cannot set real number of tx queues\n"); 1869 goto err_cleanup; 1870 } 1871 1872 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num); 1873 if (ret) { 1874 dev_err(priv->dev, "cannot set real number of rx queues\n"); 1875 goto err_cleanup; 1876 } 1877 1878 reg = cpsw->version; 1879 1880 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 1881 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 1882 CPSW_RTL_VERSION(reg)); 1883 1884 /* Initialize host and slave ports */ 1885 if (!cpsw->usage_count) 1886 cpsw_init_host_port(priv); 1887 for_each_slave(priv, cpsw_slave_open, priv); 1888 1889 /* Add default VLAN */ 1890 if (!cpsw->data.dual_emac) 1891 cpsw_add_default_vlan(priv); 1892 else 1893 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan, 1894 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0); 1895 1896 /* initialize shared resources for every ndev */ 1897 if (!cpsw->usage_count) { 1898 /* disable priority elevation */ 1899 writel_relaxed(0, &cpsw->regs->ptype); 1900 1901 /* enable statistics collection only on all ports */ 1902 writel_relaxed(0x7, &cpsw->regs->stat_port_en); 1903 1904 /* Enable internal fifo flow control */ 1905 writel(0x7, &cpsw->regs->flow_control); 1906 1907 napi_enable(&cpsw->napi_rx); 1908 napi_enable(&cpsw->napi_tx); 1909 1910 if (cpsw->tx_irq_disabled) { 1911 cpsw->tx_irq_disabled = false; 1912 enable_irq(cpsw->irqs_table[1]); 1913 } 1914 1915 if (cpsw->rx_irq_disabled) { 1916 cpsw->rx_irq_disabled = false; 1917 enable_irq(cpsw->irqs_table[0]); 1918 } 1919 1920 ret = cpsw_fill_rx_channels(priv); 1921 if (ret < 0) 1922 goto err_cleanup; 1923 1924 if (cpts_register(cpsw->cpts)) 1925 dev_err(priv->dev, "error registering cpts device\n"); 1926 1927 } 1928 1929 cpsw_restore(priv); 1930 1931 /* Enable Interrupt pacing if configured */ 1932 if (cpsw->coal_intvl != 0) { 1933 struct ethtool_coalesce coal; 1934 1935 coal.rx_coalesce_usecs = cpsw->coal_intvl; 1936 cpsw_set_coalesce(ndev, &coal); 1937 } 1938 1939 cpdma_ctlr_start(cpsw->dma); 1940 cpsw_intr_enable(cpsw); 1941 cpsw->usage_count++; 1942 1943 return 0; 1944 1945 err_cleanup: 1946 cpdma_ctlr_stop(cpsw->dma); 1947 for_each_slave(priv, cpsw_slave_stop, cpsw); 1948 pm_runtime_put_sync(cpsw->dev); 1949 netif_carrier_off(priv->ndev); 1950 return ret; 1951 } 1952 1953 static int cpsw_ndo_stop(struct net_device *ndev) 1954 { 1955 struct cpsw_priv *priv = netdev_priv(ndev); 1956 struct cpsw_common *cpsw = priv->cpsw; 1957 1958 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 1959 netif_tx_stop_all_queues(priv->ndev); 1960 netif_carrier_off(priv->ndev); 1961 1962 if (cpsw->usage_count <= 1) { 1963 napi_disable(&cpsw->napi_rx); 1964 napi_disable(&cpsw->napi_tx); 1965 cpts_unregister(cpsw->cpts); 1966 cpsw_intr_disable(cpsw); 1967 cpdma_ctlr_stop(cpsw->dma); 1968 cpsw_ale_stop(cpsw->ale); 1969 } 1970 for_each_slave(priv, cpsw_slave_stop, cpsw); 1971 1972 if (cpsw_need_resplit(cpsw)) 1973 cpsw_split_res(ndev); 1974 1975 cpsw->usage_count--; 1976 pm_runtime_put_sync(cpsw->dev); 1977 return 0; 1978 } 1979 1980 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 1981 struct net_device *ndev) 1982 { 1983 struct cpsw_priv *priv = netdev_priv(ndev); 1984 struct cpsw_common *cpsw = priv->cpsw; 1985 struct cpts *cpts = cpsw->cpts; 1986 struct netdev_queue *txq; 1987 struct cpdma_chan *txch; 1988 int ret, q_idx; 1989 1990 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { 1991 cpsw_err(priv, tx_err, "packet pad failed\n"); 1992 ndev->stats.tx_dropped++; 1993 return NET_XMIT_DROP; 1994 } 1995 1996 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 1997 cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb)) 1998 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1999 2000 q_idx = skb_get_queue_mapping(skb); 2001 if (q_idx >= cpsw->tx_ch_num) 2002 q_idx = q_idx % cpsw->tx_ch_num; 2003 2004 txch = cpsw->txv[q_idx].ch; 2005 txq = netdev_get_tx_queue(ndev, q_idx); 2006 ret = cpsw_tx_packet_submit(priv, skb, txch); 2007 if (unlikely(ret != 0)) { 2008 cpsw_err(priv, tx_err, "desc submit failed\n"); 2009 goto fail; 2010 } 2011 2012 /* If there is no more tx desc left free then we need to 2013 * tell the kernel to stop sending us tx frames. 2014 */ 2015 if (unlikely(!cpdma_check_free_tx_desc(txch))) { 2016 netif_tx_stop_queue(txq); 2017 2018 /* Barrier, so that stop_queue visible to other cpus */ 2019 smp_mb__after_atomic(); 2020 2021 if (cpdma_check_free_tx_desc(txch)) 2022 netif_tx_wake_queue(txq); 2023 } 2024 2025 return NETDEV_TX_OK; 2026 fail: 2027 ndev->stats.tx_dropped++; 2028 netif_tx_stop_queue(txq); 2029 2030 /* Barrier, so that stop_queue visible to other cpus */ 2031 smp_mb__after_atomic(); 2032 2033 if (cpdma_check_free_tx_desc(txch)) 2034 netif_tx_wake_queue(txq); 2035 2036 return NETDEV_TX_BUSY; 2037 } 2038 2039 #if IS_ENABLED(CONFIG_TI_CPTS) 2040 2041 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw) 2042 { 2043 struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave]; 2044 u32 ts_en, seq_id; 2045 2046 if (!cpts_is_tx_enabled(cpsw->cpts) && 2047 !cpts_is_rx_enabled(cpsw->cpts)) { 2048 slave_write(slave, 0, CPSW1_TS_CTL); 2049 return; 2050 } 2051 2052 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 2053 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 2054 2055 if (cpts_is_tx_enabled(cpsw->cpts)) 2056 ts_en |= CPSW_V1_TS_TX_EN; 2057 2058 if (cpts_is_rx_enabled(cpsw->cpts)) 2059 ts_en |= CPSW_V1_TS_RX_EN; 2060 2061 slave_write(slave, ts_en, CPSW1_TS_CTL); 2062 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 2063 } 2064 2065 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 2066 { 2067 struct cpsw_slave *slave; 2068 struct cpsw_common *cpsw = priv->cpsw; 2069 u32 ctrl, mtype; 2070 2071 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 2072 2073 ctrl = slave_read(slave, CPSW2_CONTROL); 2074 switch (cpsw->version) { 2075 case CPSW_VERSION_2: 2076 ctrl &= ~CTRL_V2_ALL_TS_MASK; 2077 2078 if (cpts_is_tx_enabled(cpsw->cpts)) 2079 ctrl |= CTRL_V2_TX_TS_BITS; 2080 2081 if (cpts_is_rx_enabled(cpsw->cpts)) 2082 ctrl |= CTRL_V2_RX_TS_BITS; 2083 break; 2084 case CPSW_VERSION_3: 2085 default: 2086 ctrl &= ~CTRL_V3_ALL_TS_MASK; 2087 2088 if (cpts_is_tx_enabled(cpsw->cpts)) 2089 ctrl |= CTRL_V3_TX_TS_BITS; 2090 2091 if (cpts_is_rx_enabled(cpsw->cpts)) 2092 ctrl |= CTRL_V3_RX_TS_BITS; 2093 break; 2094 } 2095 2096 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 2097 2098 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 2099 slave_write(slave, ctrl, CPSW2_CONTROL); 2100 writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype); 2101 } 2102 2103 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 2104 { 2105 struct cpsw_priv *priv = netdev_priv(dev); 2106 struct hwtstamp_config cfg; 2107 struct cpsw_common *cpsw = priv->cpsw; 2108 struct cpts *cpts = cpsw->cpts; 2109 2110 if (cpsw->version != CPSW_VERSION_1 && 2111 cpsw->version != CPSW_VERSION_2 && 2112 cpsw->version != CPSW_VERSION_3) 2113 return -EOPNOTSUPP; 2114 2115 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 2116 return -EFAULT; 2117 2118 /* reserved for future extensions */ 2119 if (cfg.flags) 2120 return -EINVAL; 2121 2122 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 2123 return -ERANGE; 2124 2125 switch (cfg.rx_filter) { 2126 case HWTSTAMP_FILTER_NONE: 2127 cpts_rx_enable(cpts, 0); 2128 break; 2129 case HWTSTAMP_FILTER_ALL: 2130 case HWTSTAMP_FILTER_NTP_ALL: 2131 return -ERANGE; 2132 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2133 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2134 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2135 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT); 2136 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 2137 break; 2138 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2139 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2140 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2141 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2142 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2143 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2144 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2145 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2146 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2147 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT); 2148 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 2149 break; 2150 default: 2151 return -ERANGE; 2152 } 2153 2154 cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON); 2155 2156 switch (cpsw->version) { 2157 case CPSW_VERSION_1: 2158 cpsw_hwtstamp_v1(cpsw); 2159 break; 2160 case CPSW_VERSION_2: 2161 case CPSW_VERSION_3: 2162 cpsw_hwtstamp_v2(priv); 2163 break; 2164 default: 2165 WARN_ON(1); 2166 } 2167 2168 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 2169 } 2170 2171 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 2172 { 2173 struct cpsw_common *cpsw = ndev_to_cpsw(dev); 2174 struct cpts *cpts = cpsw->cpts; 2175 struct hwtstamp_config cfg; 2176 2177 if (cpsw->version != CPSW_VERSION_1 && 2178 cpsw->version != CPSW_VERSION_2 && 2179 cpsw->version != CPSW_VERSION_3) 2180 return -EOPNOTSUPP; 2181 2182 cfg.flags = 0; 2183 cfg.tx_type = cpts_is_tx_enabled(cpts) ? 2184 HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 2185 cfg.rx_filter = (cpts_is_rx_enabled(cpts) ? 2186 cpts->rx_enable : HWTSTAMP_FILTER_NONE); 2187 2188 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 2189 } 2190 #else 2191 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 2192 { 2193 return -EOPNOTSUPP; 2194 } 2195 2196 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 2197 { 2198 return -EOPNOTSUPP; 2199 } 2200 #endif /*CONFIG_TI_CPTS*/ 2201 2202 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2203 { 2204 struct cpsw_priv *priv = netdev_priv(dev); 2205 struct cpsw_common *cpsw = priv->cpsw; 2206 int slave_no = cpsw_slave_index(cpsw, priv); 2207 2208 if (!netif_running(dev)) 2209 return -EINVAL; 2210 2211 switch (cmd) { 2212 case SIOCSHWTSTAMP: 2213 return cpsw_hwtstamp_set(dev, req); 2214 case SIOCGHWTSTAMP: 2215 return cpsw_hwtstamp_get(dev, req); 2216 } 2217 2218 if (!cpsw->slaves[slave_no].phy) 2219 return -EOPNOTSUPP; 2220 return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd); 2221 } 2222 2223 static void cpsw_ndo_tx_timeout(struct net_device *ndev) 2224 { 2225 struct cpsw_priv *priv = netdev_priv(ndev); 2226 struct cpsw_common *cpsw = priv->cpsw; 2227 int ch; 2228 2229 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 2230 ndev->stats.tx_errors++; 2231 cpsw_intr_disable(cpsw); 2232 for (ch = 0; ch < cpsw->tx_ch_num; ch++) { 2233 cpdma_chan_stop(cpsw->txv[ch].ch); 2234 cpdma_chan_start(cpsw->txv[ch].ch); 2235 } 2236 2237 cpsw_intr_enable(cpsw); 2238 netif_trans_update(ndev); 2239 netif_tx_wake_all_queues(ndev); 2240 } 2241 2242 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 2243 { 2244 struct cpsw_priv *priv = netdev_priv(ndev); 2245 struct sockaddr *addr = (struct sockaddr *)p; 2246 struct cpsw_common *cpsw = priv->cpsw; 2247 int flags = 0; 2248 u16 vid = 0; 2249 int ret; 2250 2251 if (!is_valid_ether_addr(addr->sa_data)) 2252 return -EADDRNOTAVAIL; 2253 2254 ret = pm_runtime_get_sync(cpsw->dev); 2255 if (ret < 0) { 2256 pm_runtime_put_noidle(cpsw->dev); 2257 return ret; 2258 } 2259 2260 if (cpsw->data.dual_emac) { 2261 vid = cpsw->slaves[priv->emac_port].port_vlan; 2262 flags = ALE_VLAN; 2263 } 2264 2265 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 2266 flags, vid); 2267 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM, 2268 flags, vid); 2269 2270 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 2271 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 2272 for_each_slave(priv, cpsw_set_slave_mac, priv); 2273 2274 pm_runtime_put(cpsw->dev); 2275 2276 return 0; 2277 } 2278 2279 #ifdef CONFIG_NET_POLL_CONTROLLER 2280 static void cpsw_ndo_poll_controller(struct net_device *ndev) 2281 { 2282 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2283 2284 cpsw_intr_disable(cpsw); 2285 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw); 2286 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw); 2287 cpsw_intr_enable(cpsw); 2288 } 2289 #endif 2290 2291 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 2292 unsigned short vid) 2293 { 2294 int ret; 2295 int unreg_mcast_mask = 0; 2296 u32 port_mask; 2297 struct cpsw_common *cpsw = priv->cpsw; 2298 2299 if (cpsw->data.dual_emac) { 2300 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; 2301 2302 if (priv->ndev->flags & IFF_ALLMULTI) 2303 unreg_mcast_mask = port_mask; 2304 } else { 2305 port_mask = ALE_ALL_PORTS; 2306 2307 if (priv->ndev->flags & IFF_ALLMULTI) 2308 unreg_mcast_mask = ALE_ALL_PORTS; 2309 else 2310 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 2311 } 2312 2313 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask, 2314 unreg_mcast_mask); 2315 if (ret != 0) 2316 return ret; 2317 2318 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 2319 HOST_PORT_NUM, ALE_VLAN, vid); 2320 if (ret != 0) 2321 goto clean_vid; 2322 2323 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 2324 port_mask, ALE_VLAN, vid, 0); 2325 if (ret != 0) 2326 goto clean_vlan_ucast; 2327 return 0; 2328 2329 clean_vlan_ucast: 2330 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 2331 HOST_PORT_NUM, ALE_VLAN, vid); 2332 clean_vid: 2333 cpsw_ale_del_vlan(cpsw->ale, vid, 0); 2334 return ret; 2335 } 2336 2337 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 2338 __be16 proto, u16 vid) 2339 { 2340 struct cpsw_priv *priv = netdev_priv(ndev); 2341 struct cpsw_common *cpsw = priv->cpsw; 2342 int ret; 2343 2344 if (vid == cpsw->data.default_vlan) 2345 return 0; 2346 2347 ret = pm_runtime_get_sync(cpsw->dev); 2348 if (ret < 0) { 2349 pm_runtime_put_noidle(cpsw->dev); 2350 return ret; 2351 } 2352 2353 if (cpsw->data.dual_emac) { 2354 /* In dual EMAC, reserved VLAN id should not be used for 2355 * creating VLAN interfaces as this can break the dual 2356 * EMAC port separation 2357 */ 2358 int i; 2359 2360 for (i = 0; i < cpsw->data.slaves; i++) { 2361 if (vid == cpsw->slaves[i].port_vlan) { 2362 ret = -EINVAL; 2363 goto err; 2364 } 2365 } 2366 } 2367 2368 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 2369 ret = cpsw_add_vlan_ale_entry(priv, vid); 2370 err: 2371 pm_runtime_put(cpsw->dev); 2372 return ret; 2373 } 2374 2375 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 2376 __be16 proto, u16 vid) 2377 { 2378 struct cpsw_priv *priv = netdev_priv(ndev); 2379 struct cpsw_common *cpsw = priv->cpsw; 2380 int ret; 2381 2382 if (vid == cpsw->data.default_vlan) 2383 return 0; 2384 2385 ret = pm_runtime_get_sync(cpsw->dev); 2386 if (ret < 0) { 2387 pm_runtime_put_noidle(cpsw->dev); 2388 return ret; 2389 } 2390 2391 if (cpsw->data.dual_emac) { 2392 int i; 2393 2394 for (i = 0; i < cpsw->data.slaves; i++) { 2395 if (vid == cpsw->slaves[i].port_vlan) 2396 goto err; 2397 } 2398 } 2399 2400 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 2401 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0); 2402 ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 2403 HOST_PORT_NUM, ALE_VLAN, vid); 2404 ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast, 2405 0, ALE_VLAN, vid); 2406 err: 2407 pm_runtime_put(cpsw->dev); 2408 return ret; 2409 } 2410 2411 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate) 2412 { 2413 struct cpsw_priv *priv = netdev_priv(ndev); 2414 struct cpsw_common *cpsw = priv->cpsw; 2415 struct cpsw_slave *slave; 2416 u32 min_rate; 2417 u32 ch_rate; 2418 int i, ret; 2419 2420 ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate; 2421 if (ch_rate == rate) 2422 return 0; 2423 2424 ch_rate = rate * 1000; 2425 min_rate = cpdma_chan_get_min_rate(cpsw->dma); 2426 if ((ch_rate < min_rate && ch_rate)) { 2427 dev_err(priv->dev, "The channel rate cannot be less than %dMbps", 2428 min_rate); 2429 return -EINVAL; 2430 } 2431 2432 if (rate > cpsw->speed) { 2433 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps"); 2434 return -EINVAL; 2435 } 2436 2437 ret = pm_runtime_get_sync(cpsw->dev); 2438 if (ret < 0) { 2439 pm_runtime_put_noidle(cpsw->dev); 2440 return ret; 2441 } 2442 2443 ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate); 2444 pm_runtime_put(cpsw->dev); 2445 2446 if (ret) 2447 return ret; 2448 2449 /* update rates for slaves tx queues */ 2450 for (i = 0; i < cpsw->data.slaves; i++) { 2451 slave = &cpsw->slaves[i]; 2452 if (!slave->ndev) 2453 continue; 2454 2455 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate; 2456 } 2457 2458 cpsw_split_res(ndev); 2459 return ret; 2460 } 2461 2462 static int cpsw_set_mqprio(struct net_device *ndev, void *type_data) 2463 { 2464 struct tc_mqprio_qopt_offload *mqprio = type_data; 2465 struct cpsw_priv *priv = netdev_priv(ndev); 2466 struct cpsw_common *cpsw = priv->cpsw; 2467 int fifo, num_tc, count, offset; 2468 struct cpsw_slave *slave; 2469 u32 tx_prio_map = 0; 2470 int i, tc, ret; 2471 2472 num_tc = mqprio->qopt.num_tc; 2473 if (num_tc > CPSW_TC_NUM) 2474 return -EINVAL; 2475 2476 if (mqprio->mode != TC_MQPRIO_MODE_DCB) 2477 return -EINVAL; 2478 2479 ret = pm_runtime_get_sync(cpsw->dev); 2480 if (ret < 0) { 2481 pm_runtime_put_noidle(cpsw->dev); 2482 return ret; 2483 } 2484 2485 if (num_tc) { 2486 for (i = 0; i < 8; i++) { 2487 tc = mqprio->qopt.prio_tc_map[i]; 2488 fifo = cpsw_tc_to_fifo(tc, num_tc); 2489 tx_prio_map |= fifo << (4 * i); 2490 } 2491 2492 netdev_set_num_tc(ndev, num_tc); 2493 for (i = 0; i < num_tc; i++) { 2494 count = mqprio->qopt.count[i]; 2495 offset = mqprio->qopt.offset[i]; 2496 netdev_set_tc_queue(ndev, i, count, offset); 2497 } 2498 } 2499 2500 if (!mqprio->qopt.hw) { 2501 /* restore default configuration */ 2502 netdev_reset_tc(ndev); 2503 tx_prio_map = TX_PRIORITY_MAPPING; 2504 } 2505 2506 priv->mqprio_hw = mqprio->qopt.hw; 2507 2508 offset = cpsw->version == CPSW_VERSION_1 ? 2509 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP; 2510 2511 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 2512 slave_write(slave, tx_prio_map, offset); 2513 2514 pm_runtime_put_sync(cpsw->dev); 2515 2516 return 0; 2517 } 2518 2519 static int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type, 2520 void *type_data) 2521 { 2522 switch (type) { 2523 case TC_SETUP_QDISC_CBS: 2524 return cpsw_set_cbs(ndev, type_data); 2525 2526 case TC_SETUP_QDISC_MQPRIO: 2527 return cpsw_set_mqprio(ndev, type_data); 2528 2529 default: 2530 return -EOPNOTSUPP; 2531 } 2532 } 2533 2534 static const struct net_device_ops cpsw_netdev_ops = { 2535 .ndo_open = cpsw_ndo_open, 2536 .ndo_stop = cpsw_ndo_stop, 2537 .ndo_start_xmit = cpsw_ndo_start_xmit, 2538 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 2539 .ndo_do_ioctl = cpsw_ndo_ioctl, 2540 .ndo_validate_addr = eth_validate_addr, 2541 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 2542 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 2543 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate, 2544 #ifdef CONFIG_NET_POLL_CONTROLLER 2545 .ndo_poll_controller = cpsw_ndo_poll_controller, 2546 #endif 2547 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 2548 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 2549 .ndo_setup_tc = cpsw_ndo_setup_tc, 2550 }; 2551 2552 static int cpsw_get_regs_len(struct net_device *ndev) 2553 { 2554 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2555 2556 return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32); 2557 } 2558 2559 static void cpsw_get_regs(struct net_device *ndev, 2560 struct ethtool_regs *regs, void *p) 2561 { 2562 u32 *reg = p; 2563 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2564 2565 /* update CPSW IP version */ 2566 regs->version = cpsw->version; 2567 2568 cpsw_ale_dump(cpsw->ale, reg); 2569 } 2570 2571 static void cpsw_get_drvinfo(struct net_device *ndev, 2572 struct ethtool_drvinfo *info) 2573 { 2574 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2575 struct platform_device *pdev = to_platform_device(cpsw->dev); 2576 2577 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 2578 strlcpy(info->version, "1.0", sizeof(info->version)); 2579 strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info)); 2580 } 2581 2582 static u32 cpsw_get_msglevel(struct net_device *ndev) 2583 { 2584 struct cpsw_priv *priv = netdev_priv(ndev); 2585 return priv->msg_enable; 2586 } 2587 2588 static void cpsw_set_msglevel(struct net_device *ndev, u32 value) 2589 { 2590 struct cpsw_priv *priv = netdev_priv(ndev); 2591 priv->msg_enable = value; 2592 } 2593 2594 #if IS_ENABLED(CONFIG_TI_CPTS) 2595 static int cpsw_get_ts_info(struct net_device *ndev, 2596 struct ethtool_ts_info *info) 2597 { 2598 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2599 2600 info->so_timestamping = 2601 SOF_TIMESTAMPING_TX_HARDWARE | 2602 SOF_TIMESTAMPING_TX_SOFTWARE | 2603 SOF_TIMESTAMPING_RX_HARDWARE | 2604 SOF_TIMESTAMPING_RX_SOFTWARE | 2605 SOF_TIMESTAMPING_SOFTWARE | 2606 SOF_TIMESTAMPING_RAW_HARDWARE; 2607 info->phc_index = cpsw->cpts->phc_index; 2608 info->tx_types = 2609 (1 << HWTSTAMP_TX_OFF) | 2610 (1 << HWTSTAMP_TX_ON); 2611 info->rx_filters = 2612 (1 << HWTSTAMP_FILTER_NONE) | 2613 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 2614 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2615 return 0; 2616 } 2617 #else 2618 static int cpsw_get_ts_info(struct net_device *ndev, 2619 struct ethtool_ts_info *info) 2620 { 2621 info->so_timestamping = 2622 SOF_TIMESTAMPING_TX_SOFTWARE | 2623 SOF_TIMESTAMPING_RX_SOFTWARE | 2624 SOF_TIMESTAMPING_SOFTWARE; 2625 info->phc_index = -1; 2626 info->tx_types = 0; 2627 info->rx_filters = 0; 2628 return 0; 2629 } 2630 #endif 2631 2632 static int cpsw_get_link_ksettings(struct net_device *ndev, 2633 struct ethtool_link_ksettings *ecmd) 2634 { 2635 struct cpsw_priv *priv = netdev_priv(ndev); 2636 struct cpsw_common *cpsw = priv->cpsw; 2637 int slave_no = cpsw_slave_index(cpsw, priv); 2638 2639 if (!cpsw->slaves[slave_no].phy) 2640 return -EOPNOTSUPP; 2641 2642 phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd); 2643 return 0; 2644 } 2645 2646 static int cpsw_set_link_ksettings(struct net_device *ndev, 2647 const struct ethtool_link_ksettings *ecmd) 2648 { 2649 struct cpsw_priv *priv = netdev_priv(ndev); 2650 struct cpsw_common *cpsw = priv->cpsw; 2651 int slave_no = cpsw_slave_index(cpsw, priv); 2652 2653 if (cpsw->slaves[slave_no].phy) 2654 return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy, 2655 ecmd); 2656 else 2657 return -EOPNOTSUPP; 2658 } 2659 2660 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2661 { 2662 struct cpsw_priv *priv = netdev_priv(ndev); 2663 struct cpsw_common *cpsw = priv->cpsw; 2664 int slave_no = cpsw_slave_index(cpsw, priv); 2665 2666 wol->supported = 0; 2667 wol->wolopts = 0; 2668 2669 if (cpsw->slaves[slave_no].phy) 2670 phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol); 2671 } 2672 2673 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2674 { 2675 struct cpsw_priv *priv = netdev_priv(ndev); 2676 struct cpsw_common *cpsw = priv->cpsw; 2677 int slave_no = cpsw_slave_index(cpsw, priv); 2678 2679 if (cpsw->slaves[slave_no].phy) 2680 return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol); 2681 else 2682 return -EOPNOTSUPP; 2683 } 2684 2685 static void cpsw_get_pauseparam(struct net_device *ndev, 2686 struct ethtool_pauseparam *pause) 2687 { 2688 struct cpsw_priv *priv = netdev_priv(ndev); 2689 2690 pause->autoneg = AUTONEG_DISABLE; 2691 pause->rx_pause = priv->rx_pause ? true : false; 2692 pause->tx_pause = priv->tx_pause ? true : false; 2693 } 2694 2695 static int cpsw_set_pauseparam(struct net_device *ndev, 2696 struct ethtool_pauseparam *pause) 2697 { 2698 struct cpsw_priv *priv = netdev_priv(ndev); 2699 bool link; 2700 2701 priv->rx_pause = pause->rx_pause ? true : false; 2702 priv->tx_pause = pause->tx_pause ? true : false; 2703 2704 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 2705 return 0; 2706 } 2707 2708 static int cpsw_ethtool_op_begin(struct net_device *ndev) 2709 { 2710 struct cpsw_priv *priv = netdev_priv(ndev); 2711 struct cpsw_common *cpsw = priv->cpsw; 2712 int ret; 2713 2714 ret = pm_runtime_get_sync(cpsw->dev); 2715 if (ret < 0) { 2716 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret); 2717 pm_runtime_put_noidle(cpsw->dev); 2718 } 2719 2720 return ret; 2721 } 2722 2723 static void cpsw_ethtool_op_complete(struct net_device *ndev) 2724 { 2725 struct cpsw_priv *priv = netdev_priv(ndev); 2726 int ret; 2727 2728 ret = pm_runtime_put(priv->cpsw->dev); 2729 if (ret < 0) 2730 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret); 2731 } 2732 2733 static void cpsw_get_channels(struct net_device *ndev, 2734 struct ethtool_channels *ch) 2735 { 2736 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2737 2738 ch->max_rx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES; 2739 ch->max_tx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES; 2740 ch->max_combined = 0; 2741 ch->max_other = 0; 2742 ch->other_count = 0; 2743 ch->rx_count = cpsw->rx_ch_num; 2744 ch->tx_count = cpsw->tx_ch_num; 2745 ch->combined_count = 0; 2746 } 2747 2748 static int cpsw_check_ch_settings(struct cpsw_common *cpsw, 2749 struct ethtool_channels *ch) 2750 { 2751 if (cpsw->quirk_irq) { 2752 dev_err(cpsw->dev, "Maximum one tx/rx queue is allowed"); 2753 return -EOPNOTSUPP; 2754 } 2755 2756 if (ch->combined_count) 2757 return -EINVAL; 2758 2759 /* verify we have at least one channel in each direction */ 2760 if (!ch->rx_count || !ch->tx_count) 2761 return -EINVAL; 2762 2763 if (ch->rx_count > cpsw->data.channels || 2764 ch->tx_count > cpsw->data.channels) 2765 return -EINVAL; 2766 2767 return 0; 2768 } 2769 2770 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx) 2771 { 2772 struct cpsw_common *cpsw = priv->cpsw; 2773 void (*handler)(void *, int, int); 2774 struct netdev_queue *queue; 2775 struct cpsw_vector *vec; 2776 int ret, *ch, vch; 2777 2778 if (rx) { 2779 ch = &cpsw->rx_ch_num; 2780 vec = cpsw->rxv; 2781 handler = cpsw_rx_handler; 2782 } else { 2783 ch = &cpsw->tx_ch_num; 2784 vec = cpsw->txv; 2785 handler = cpsw_tx_handler; 2786 } 2787 2788 while (*ch < ch_num) { 2789 vch = rx ? *ch : 7 - *ch; 2790 vec[*ch].ch = cpdma_chan_create(cpsw->dma, vch, handler, rx); 2791 queue = netdev_get_tx_queue(priv->ndev, *ch); 2792 queue->tx_maxrate = 0; 2793 2794 if (IS_ERR(vec[*ch].ch)) 2795 return PTR_ERR(vec[*ch].ch); 2796 2797 if (!vec[*ch].ch) 2798 return -EINVAL; 2799 2800 cpsw_info(priv, ifup, "created new %d %s channel\n", *ch, 2801 (rx ? "rx" : "tx")); 2802 (*ch)++; 2803 } 2804 2805 while (*ch > ch_num) { 2806 (*ch)--; 2807 2808 ret = cpdma_chan_destroy(vec[*ch].ch); 2809 if (ret) 2810 return ret; 2811 2812 cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch, 2813 (rx ? "rx" : "tx")); 2814 } 2815 2816 return 0; 2817 } 2818 2819 static int cpsw_update_channels(struct cpsw_priv *priv, 2820 struct ethtool_channels *ch) 2821 { 2822 int ret; 2823 2824 ret = cpsw_update_channels_res(priv, ch->rx_count, 1); 2825 if (ret) 2826 return ret; 2827 2828 ret = cpsw_update_channels_res(priv, ch->tx_count, 0); 2829 if (ret) 2830 return ret; 2831 2832 return 0; 2833 } 2834 2835 static void cpsw_suspend_data_pass(struct net_device *ndev) 2836 { 2837 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2838 struct cpsw_slave *slave; 2839 int i; 2840 2841 /* Disable NAPI scheduling */ 2842 cpsw_intr_disable(cpsw); 2843 2844 /* Stop all transmit queues for every network device. 2845 * Disable re-using rx descriptors with dormant_on. 2846 */ 2847 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) { 2848 if (!(slave->ndev && netif_running(slave->ndev))) 2849 continue; 2850 2851 netif_tx_stop_all_queues(slave->ndev); 2852 netif_dormant_on(slave->ndev); 2853 } 2854 2855 /* Handle rest of tx packets and stop cpdma channels */ 2856 cpdma_ctlr_stop(cpsw->dma); 2857 } 2858 2859 static int cpsw_resume_data_pass(struct net_device *ndev) 2860 { 2861 struct cpsw_priv *priv = netdev_priv(ndev); 2862 struct cpsw_common *cpsw = priv->cpsw; 2863 struct cpsw_slave *slave; 2864 int i, ret; 2865 2866 /* Allow rx packets handling */ 2867 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) 2868 if (slave->ndev && netif_running(slave->ndev)) 2869 netif_dormant_off(slave->ndev); 2870 2871 /* After this receive is started */ 2872 if (cpsw->usage_count) { 2873 ret = cpsw_fill_rx_channels(priv); 2874 if (ret) 2875 return ret; 2876 2877 cpdma_ctlr_start(cpsw->dma); 2878 cpsw_intr_enable(cpsw); 2879 } 2880 2881 /* Resume transmit for every affected interface */ 2882 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) 2883 if (slave->ndev && netif_running(slave->ndev)) 2884 netif_tx_start_all_queues(slave->ndev); 2885 2886 return 0; 2887 } 2888 2889 static int cpsw_set_channels(struct net_device *ndev, 2890 struct ethtool_channels *chs) 2891 { 2892 struct cpsw_priv *priv = netdev_priv(ndev); 2893 struct cpsw_common *cpsw = priv->cpsw; 2894 struct cpsw_slave *slave; 2895 int i, ret; 2896 2897 ret = cpsw_check_ch_settings(cpsw, chs); 2898 if (ret < 0) 2899 return ret; 2900 2901 cpsw_suspend_data_pass(ndev); 2902 ret = cpsw_update_channels(priv, chs); 2903 if (ret) 2904 goto err; 2905 2906 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) { 2907 if (!(slave->ndev && netif_running(slave->ndev))) 2908 continue; 2909 2910 /* Inform stack about new count of queues */ 2911 ret = netif_set_real_num_tx_queues(slave->ndev, 2912 cpsw->tx_ch_num); 2913 if (ret) { 2914 dev_err(priv->dev, "cannot set real number of tx queues\n"); 2915 goto err; 2916 } 2917 2918 ret = netif_set_real_num_rx_queues(slave->ndev, 2919 cpsw->rx_ch_num); 2920 if (ret) { 2921 dev_err(priv->dev, "cannot set real number of rx queues\n"); 2922 goto err; 2923 } 2924 } 2925 2926 if (cpsw->usage_count) 2927 cpsw_split_res(ndev); 2928 2929 ret = cpsw_resume_data_pass(ndev); 2930 if (!ret) 2931 return 0; 2932 err: 2933 dev_err(priv->dev, "cannot update channels number, closing device\n"); 2934 dev_close(ndev); 2935 return ret; 2936 } 2937 2938 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata) 2939 { 2940 struct cpsw_priv *priv = netdev_priv(ndev); 2941 struct cpsw_common *cpsw = priv->cpsw; 2942 int slave_no = cpsw_slave_index(cpsw, priv); 2943 2944 if (cpsw->slaves[slave_no].phy) 2945 return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata); 2946 else 2947 return -EOPNOTSUPP; 2948 } 2949 2950 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata) 2951 { 2952 struct cpsw_priv *priv = netdev_priv(ndev); 2953 struct cpsw_common *cpsw = priv->cpsw; 2954 int slave_no = cpsw_slave_index(cpsw, priv); 2955 2956 if (cpsw->slaves[slave_no].phy) 2957 return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata); 2958 else 2959 return -EOPNOTSUPP; 2960 } 2961 2962 static int cpsw_nway_reset(struct net_device *ndev) 2963 { 2964 struct cpsw_priv *priv = netdev_priv(ndev); 2965 struct cpsw_common *cpsw = priv->cpsw; 2966 int slave_no = cpsw_slave_index(cpsw, priv); 2967 2968 if (cpsw->slaves[slave_no].phy) 2969 return genphy_restart_aneg(cpsw->slaves[slave_no].phy); 2970 else 2971 return -EOPNOTSUPP; 2972 } 2973 2974 static void cpsw_get_ringparam(struct net_device *ndev, 2975 struct ethtool_ringparam *ering) 2976 { 2977 struct cpsw_priv *priv = netdev_priv(ndev); 2978 struct cpsw_common *cpsw = priv->cpsw; 2979 2980 /* not supported */ 2981 ering->tx_max_pending = 0; 2982 ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma); 2983 ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES; 2984 ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma); 2985 } 2986 2987 static int cpsw_set_ringparam(struct net_device *ndev, 2988 struct ethtool_ringparam *ering) 2989 { 2990 struct cpsw_priv *priv = netdev_priv(ndev); 2991 struct cpsw_common *cpsw = priv->cpsw; 2992 int ret; 2993 2994 /* ignore ering->tx_pending - only rx_pending adjustment is supported */ 2995 2996 if (ering->rx_mini_pending || ering->rx_jumbo_pending || 2997 ering->rx_pending < CPSW_MAX_QUEUES || 2998 ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES)) 2999 return -EINVAL; 3000 3001 if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma)) 3002 return 0; 3003 3004 cpsw_suspend_data_pass(ndev); 3005 3006 cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending); 3007 3008 if (cpsw->usage_count) 3009 cpdma_chan_split_pool(cpsw->dma); 3010 3011 ret = cpsw_resume_data_pass(ndev); 3012 if (!ret) 3013 return 0; 3014 3015 dev_err(&ndev->dev, "cannot set ring params, closing device\n"); 3016 dev_close(ndev); 3017 return ret; 3018 } 3019 3020 static const struct ethtool_ops cpsw_ethtool_ops = { 3021 .get_drvinfo = cpsw_get_drvinfo, 3022 .get_msglevel = cpsw_get_msglevel, 3023 .set_msglevel = cpsw_set_msglevel, 3024 .get_link = ethtool_op_get_link, 3025 .get_ts_info = cpsw_get_ts_info, 3026 .get_coalesce = cpsw_get_coalesce, 3027 .set_coalesce = cpsw_set_coalesce, 3028 .get_sset_count = cpsw_get_sset_count, 3029 .get_strings = cpsw_get_strings, 3030 .get_ethtool_stats = cpsw_get_ethtool_stats, 3031 .get_pauseparam = cpsw_get_pauseparam, 3032 .set_pauseparam = cpsw_set_pauseparam, 3033 .get_wol = cpsw_get_wol, 3034 .set_wol = cpsw_set_wol, 3035 .get_regs_len = cpsw_get_regs_len, 3036 .get_regs = cpsw_get_regs, 3037 .begin = cpsw_ethtool_op_begin, 3038 .complete = cpsw_ethtool_op_complete, 3039 .get_channels = cpsw_get_channels, 3040 .set_channels = cpsw_set_channels, 3041 .get_link_ksettings = cpsw_get_link_ksettings, 3042 .set_link_ksettings = cpsw_set_link_ksettings, 3043 .get_eee = cpsw_get_eee, 3044 .set_eee = cpsw_set_eee, 3045 .nway_reset = cpsw_nway_reset, 3046 .get_ringparam = cpsw_get_ringparam, 3047 .set_ringparam = cpsw_set_ringparam, 3048 }; 3049 3050 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw, 3051 u32 slave_reg_ofs, u32 sliver_reg_ofs) 3052 { 3053 void __iomem *regs = cpsw->regs; 3054 int slave_num = slave->slave_num; 3055 struct cpsw_slave_data *data = cpsw->data.slave_data + slave_num; 3056 3057 slave->data = data; 3058 slave->regs = regs + slave_reg_ofs; 3059 slave->sliver = regs + sliver_reg_ofs; 3060 slave->port_vlan = data->dual_emac_res_vlan; 3061 } 3062 3063 static int cpsw_probe_dt(struct cpsw_platform_data *data, 3064 struct platform_device *pdev) 3065 { 3066 struct device_node *node = pdev->dev.of_node; 3067 struct device_node *slave_node; 3068 int i = 0, ret; 3069 u32 prop; 3070 3071 if (!node) 3072 return -EINVAL; 3073 3074 if (of_property_read_u32(node, "slaves", &prop)) { 3075 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 3076 return -EINVAL; 3077 } 3078 data->slaves = prop; 3079 3080 if (of_property_read_u32(node, "active_slave", &prop)) { 3081 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 3082 return -EINVAL; 3083 } 3084 data->active_slave = prop; 3085 3086 data->slave_data = devm_kcalloc(&pdev->dev, 3087 data->slaves, 3088 sizeof(struct cpsw_slave_data), 3089 GFP_KERNEL); 3090 if (!data->slave_data) 3091 return -ENOMEM; 3092 3093 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 3094 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 3095 return -EINVAL; 3096 } 3097 data->channels = prop; 3098 3099 if (of_property_read_u32(node, "ale_entries", &prop)) { 3100 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); 3101 return -EINVAL; 3102 } 3103 data->ale_entries = prop; 3104 3105 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 3106 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 3107 return -EINVAL; 3108 } 3109 data->bd_ram_size = prop; 3110 3111 if (of_property_read_u32(node, "mac_control", &prop)) { 3112 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 3113 return -EINVAL; 3114 } 3115 data->mac_control = prop; 3116 3117 if (of_property_read_bool(node, "dual_emac")) 3118 data->dual_emac = 1; 3119 3120 /* 3121 * Populate all the child nodes here... 3122 */ 3123 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 3124 /* We do not want to force this, as in some cases may not have child */ 3125 if (ret) 3126 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 3127 3128 for_each_available_child_of_node(node, slave_node) { 3129 struct cpsw_slave_data *slave_data = data->slave_data + i; 3130 const void *mac_addr = NULL; 3131 int lenp; 3132 const __be32 *parp; 3133 3134 /* This is no slave child node, continue */ 3135 if (strcmp(slave_node->name, "slave")) 3136 continue; 3137 3138 slave_data->phy_node = of_parse_phandle(slave_node, 3139 "phy-handle", 0); 3140 parp = of_get_property(slave_node, "phy_id", &lenp); 3141 if (slave_data->phy_node) { 3142 dev_dbg(&pdev->dev, 3143 "slave[%d] using phy-handle=\"%pOF\"\n", 3144 i, slave_data->phy_node); 3145 } else if (of_phy_is_fixed_link(slave_node)) { 3146 /* In the case of a fixed PHY, the DT node associated 3147 * to the PHY is the Ethernet MAC DT node. 3148 */ 3149 ret = of_phy_register_fixed_link(slave_node); 3150 if (ret) { 3151 if (ret != -EPROBE_DEFER) 3152 dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret); 3153 return ret; 3154 } 3155 slave_data->phy_node = of_node_get(slave_node); 3156 } else if (parp) { 3157 u32 phyid; 3158 struct device_node *mdio_node; 3159 struct platform_device *mdio; 3160 3161 if (lenp != (sizeof(__be32) * 2)) { 3162 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i); 3163 goto no_phy_slave; 3164 } 3165 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 3166 phyid = be32_to_cpup(parp+1); 3167 mdio = of_find_device_by_node(mdio_node); 3168 of_node_put(mdio_node); 3169 if (!mdio) { 3170 dev_err(&pdev->dev, "Missing mdio platform device\n"); 3171 return -EINVAL; 3172 } 3173 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 3174 PHY_ID_FMT, mdio->name, phyid); 3175 put_device(&mdio->dev); 3176 } else { 3177 dev_err(&pdev->dev, 3178 "No slave[%d] phy_id, phy-handle, or fixed-link property\n", 3179 i); 3180 goto no_phy_slave; 3181 } 3182 slave_data->phy_if = of_get_phy_mode(slave_node); 3183 if (slave_data->phy_if < 0) { 3184 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 3185 i); 3186 return slave_data->phy_if; 3187 } 3188 3189 no_phy_slave: 3190 mac_addr = of_get_mac_address(slave_node); 3191 if (mac_addr) { 3192 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN); 3193 } else { 3194 ret = ti_cm_get_macid(&pdev->dev, i, 3195 slave_data->mac_addr); 3196 if (ret) 3197 return ret; 3198 } 3199 if (data->dual_emac) { 3200 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 3201 &prop)) { 3202 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 3203 slave_data->dual_emac_res_vlan = i+1; 3204 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 3205 slave_data->dual_emac_res_vlan, i); 3206 } else { 3207 slave_data->dual_emac_res_vlan = prop; 3208 } 3209 } 3210 3211 i++; 3212 if (i == data->slaves) 3213 break; 3214 } 3215 3216 return 0; 3217 } 3218 3219 static void cpsw_remove_dt(struct platform_device *pdev) 3220 { 3221 struct net_device *ndev = platform_get_drvdata(pdev); 3222 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3223 struct cpsw_platform_data *data = &cpsw->data; 3224 struct device_node *node = pdev->dev.of_node; 3225 struct device_node *slave_node; 3226 int i = 0; 3227 3228 for_each_available_child_of_node(node, slave_node) { 3229 struct cpsw_slave_data *slave_data = &data->slave_data[i]; 3230 3231 if (strcmp(slave_node->name, "slave")) 3232 continue; 3233 3234 if (of_phy_is_fixed_link(slave_node)) 3235 of_phy_deregister_fixed_link(slave_node); 3236 3237 of_node_put(slave_data->phy_node); 3238 3239 i++; 3240 if (i == data->slaves) 3241 break; 3242 } 3243 3244 of_platform_depopulate(&pdev->dev); 3245 } 3246 3247 static int cpsw_probe_dual_emac(struct cpsw_priv *priv) 3248 { 3249 struct cpsw_common *cpsw = priv->cpsw; 3250 struct cpsw_platform_data *data = &cpsw->data; 3251 struct net_device *ndev; 3252 struct cpsw_priv *priv_sl2; 3253 int ret = 0; 3254 3255 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES); 3256 if (!ndev) { 3257 dev_err(cpsw->dev, "cpsw: error allocating net_device\n"); 3258 return -ENOMEM; 3259 } 3260 3261 priv_sl2 = netdev_priv(ndev); 3262 priv_sl2->cpsw = cpsw; 3263 priv_sl2->ndev = ndev; 3264 priv_sl2->dev = &ndev->dev; 3265 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 3266 3267 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 3268 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 3269 ETH_ALEN); 3270 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n", 3271 priv_sl2->mac_addr); 3272 } else { 3273 eth_random_addr(priv_sl2->mac_addr); 3274 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n", 3275 priv_sl2->mac_addr); 3276 } 3277 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); 3278 3279 priv_sl2->emac_port = 1; 3280 cpsw->slaves[1].ndev = ndev; 3281 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX; 3282 3283 ndev->netdev_ops = &cpsw_netdev_ops; 3284 ndev->ethtool_ops = &cpsw_ethtool_ops; 3285 3286 /* register the network device */ 3287 SET_NETDEV_DEV(ndev, cpsw->dev); 3288 ret = register_netdev(ndev); 3289 if (ret) { 3290 dev_err(cpsw->dev, "cpsw: error registering net device\n"); 3291 free_netdev(ndev); 3292 ret = -ENODEV; 3293 } 3294 3295 return ret; 3296 } 3297 3298 static const struct of_device_id cpsw_of_mtable[] = { 3299 { .compatible = "ti,cpsw"}, 3300 { .compatible = "ti,am335x-cpsw"}, 3301 { .compatible = "ti,am4372-cpsw"}, 3302 { .compatible = "ti,dra7-cpsw"}, 3303 { /* sentinel */ }, 3304 }; 3305 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 3306 3307 static const struct soc_device_attribute cpsw_soc_devices[] = { 3308 { .family = "AM33xx", .revision = "ES1.0"}, 3309 { /* sentinel */ } 3310 }; 3311 3312 static int cpsw_probe(struct platform_device *pdev) 3313 { 3314 struct clk *clk; 3315 struct cpsw_platform_data *data; 3316 struct net_device *ndev; 3317 struct cpsw_priv *priv; 3318 struct cpdma_params dma_params; 3319 struct cpsw_ale_params ale_params; 3320 void __iomem *ss_regs; 3321 void __iomem *cpts_regs; 3322 struct resource *res, *ss_res; 3323 struct gpio_descs *mode; 3324 u32 slave_offset, sliver_offset, slave_size; 3325 const struct soc_device_attribute *soc; 3326 struct cpsw_common *cpsw; 3327 int ret = 0, i, ch; 3328 int irq; 3329 3330 cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL); 3331 if (!cpsw) 3332 return -ENOMEM; 3333 3334 cpsw->dev = &pdev->dev; 3335 3336 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES); 3337 if (!ndev) { 3338 dev_err(&pdev->dev, "error allocating net_device\n"); 3339 return -ENOMEM; 3340 } 3341 3342 platform_set_drvdata(pdev, ndev); 3343 priv = netdev_priv(ndev); 3344 priv->cpsw = cpsw; 3345 priv->ndev = ndev; 3346 priv->dev = &ndev->dev; 3347 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 3348 cpsw->rx_packet_max = max(rx_packet_max, 128); 3349 3350 mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW); 3351 if (IS_ERR(mode)) { 3352 ret = PTR_ERR(mode); 3353 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret); 3354 goto clean_ndev_ret; 3355 } 3356 3357 /* 3358 * This may be required here for child devices. 3359 */ 3360 pm_runtime_enable(&pdev->dev); 3361 3362 /* Select default pin state */ 3363 pinctrl_pm_select_default_state(&pdev->dev); 3364 3365 /* Need to enable clocks with runtime PM api to access module 3366 * registers 3367 */ 3368 ret = pm_runtime_get_sync(&pdev->dev); 3369 if (ret < 0) { 3370 pm_runtime_put_noidle(&pdev->dev); 3371 goto clean_runtime_disable_ret; 3372 } 3373 3374 ret = cpsw_probe_dt(&cpsw->data, pdev); 3375 if (ret) 3376 goto clean_dt_ret; 3377 3378 data = &cpsw->data; 3379 cpsw->rx_ch_num = 1; 3380 cpsw->tx_ch_num = 1; 3381 3382 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 3383 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 3384 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr); 3385 } else { 3386 eth_random_addr(priv->mac_addr); 3387 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr); 3388 } 3389 3390 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 3391 3392 cpsw->slaves = devm_kcalloc(&pdev->dev, 3393 data->slaves, sizeof(struct cpsw_slave), 3394 GFP_KERNEL); 3395 if (!cpsw->slaves) { 3396 ret = -ENOMEM; 3397 goto clean_dt_ret; 3398 } 3399 for (i = 0; i < data->slaves; i++) 3400 cpsw->slaves[i].slave_num = i; 3401 3402 cpsw->slaves[0].ndev = ndev; 3403 priv->emac_port = 0; 3404 3405 clk = devm_clk_get(&pdev->dev, "fck"); 3406 if (IS_ERR(clk)) { 3407 dev_err(priv->dev, "fck is not found\n"); 3408 ret = -ENODEV; 3409 goto clean_dt_ret; 3410 } 3411 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000; 3412 3413 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3414 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res); 3415 if (IS_ERR(ss_regs)) { 3416 ret = PTR_ERR(ss_regs); 3417 goto clean_dt_ret; 3418 } 3419 cpsw->regs = ss_regs; 3420 3421 cpsw->version = readl(&cpsw->regs->id_ver); 3422 3423 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 3424 cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res); 3425 if (IS_ERR(cpsw->wr_regs)) { 3426 ret = PTR_ERR(cpsw->wr_regs); 3427 goto clean_dt_ret; 3428 } 3429 3430 memset(&dma_params, 0, sizeof(dma_params)); 3431 memset(&ale_params, 0, sizeof(ale_params)); 3432 3433 switch (cpsw->version) { 3434 case CPSW_VERSION_1: 3435 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 3436 cpts_regs = ss_regs + CPSW1_CPTS_OFFSET; 3437 cpsw->hw_stats = ss_regs + CPSW1_HW_STATS; 3438 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 3439 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 3440 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 3441 slave_offset = CPSW1_SLAVE_OFFSET; 3442 slave_size = CPSW1_SLAVE_SIZE; 3443 sliver_offset = CPSW1_SLIVER_OFFSET; 3444 dma_params.desc_mem_phys = 0; 3445 break; 3446 case CPSW_VERSION_2: 3447 case CPSW_VERSION_3: 3448 case CPSW_VERSION_4: 3449 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 3450 cpts_regs = ss_regs + CPSW2_CPTS_OFFSET; 3451 cpsw->hw_stats = ss_regs + CPSW2_HW_STATS; 3452 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 3453 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 3454 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 3455 slave_offset = CPSW2_SLAVE_OFFSET; 3456 slave_size = CPSW2_SLAVE_SIZE; 3457 sliver_offset = CPSW2_SLIVER_OFFSET; 3458 dma_params.desc_mem_phys = 3459 (u32 __force) ss_res->start + CPSW2_BD_OFFSET; 3460 break; 3461 default: 3462 dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version); 3463 ret = -ENODEV; 3464 goto clean_dt_ret; 3465 } 3466 for (i = 0; i < cpsw->data.slaves; i++) { 3467 struct cpsw_slave *slave = &cpsw->slaves[i]; 3468 3469 cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset); 3470 slave_offset += slave_size; 3471 sliver_offset += SLIVER_SIZE; 3472 } 3473 3474 dma_params.dev = &pdev->dev; 3475 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 3476 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 3477 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 3478 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 3479 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 3480 3481 dma_params.num_chan = data->channels; 3482 dma_params.has_soft_reset = true; 3483 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 3484 dma_params.desc_mem_size = data->bd_ram_size; 3485 dma_params.desc_align = 16; 3486 dma_params.has_ext_regs = true; 3487 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 3488 dma_params.bus_freq_mhz = cpsw->bus_freq_mhz; 3489 dma_params.descs_pool_size = descs_pool_size; 3490 3491 cpsw->dma = cpdma_ctlr_create(&dma_params); 3492 if (!cpsw->dma) { 3493 dev_err(priv->dev, "error initializing dma\n"); 3494 ret = -ENOMEM; 3495 goto clean_dt_ret; 3496 } 3497 3498 soc = soc_device_match(cpsw_soc_devices); 3499 if (soc) 3500 cpsw->quirk_irq = 1; 3501 3502 ch = cpsw->quirk_irq ? 0 : 7; 3503 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0); 3504 if (IS_ERR(cpsw->txv[0].ch)) { 3505 dev_err(priv->dev, "error initializing tx dma channel\n"); 3506 ret = PTR_ERR(cpsw->txv[0].ch); 3507 goto clean_dma_ret; 3508 } 3509 3510 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1); 3511 if (IS_ERR(cpsw->rxv[0].ch)) { 3512 dev_err(priv->dev, "error initializing rx dma channel\n"); 3513 ret = PTR_ERR(cpsw->rxv[0].ch); 3514 goto clean_dma_ret; 3515 } 3516 3517 ale_params.dev = &pdev->dev; 3518 ale_params.ale_ageout = ale_ageout; 3519 ale_params.ale_entries = data->ale_entries; 3520 ale_params.ale_ports = CPSW_ALE_PORTS_NUM; 3521 3522 cpsw->ale = cpsw_ale_create(&ale_params); 3523 if (!cpsw->ale) { 3524 dev_err(priv->dev, "error initializing ale engine\n"); 3525 ret = -ENODEV; 3526 goto clean_dma_ret; 3527 } 3528 3529 cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node); 3530 if (IS_ERR(cpsw->cpts)) { 3531 ret = PTR_ERR(cpsw->cpts); 3532 goto clean_dma_ret; 3533 } 3534 3535 ndev->irq = platform_get_irq(pdev, 1); 3536 if (ndev->irq < 0) { 3537 dev_err(priv->dev, "error getting irq resource\n"); 3538 ret = ndev->irq; 3539 goto clean_dma_ret; 3540 } 3541 3542 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX; 3543 3544 ndev->netdev_ops = &cpsw_netdev_ops; 3545 ndev->ethtool_ops = &cpsw_ethtool_ops; 3546 netif_napi_add(ndev, &cpsw->napi_rx, 3547 cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll, 3548 CPSW_POLL_WEIGHT); 3549 netif_tx_napi_add(ndev, &cpsw->napi_tx, 3550 cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll, 3551 CPSW_POLL_WEIGHT); 3552 cpsw_split_res(ndev); 3553 3554 /* register the network device */ 3555 SET_NETDEV_DEV(ndev, &pdev->dev); 3556 ret = register_netdev(ndev); 3557 if (ret) { 3558 dev_err(priv->dev, "error registering net device\n"); 3559 ret = -ENODEV; 3560 goto clean_dma_ret; 3561 } 3562 3563 if (cpsw->data.dual_emac) { 3564 ret = cpsw_probe_dual_emac(priv); 3565 if (ret) { 3566 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 3567 goto clean_unregister_netdev_ret; 3568 } 3569 } 3570 3571 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 3572 * MISC IRQs which are always kept disabled with this driver so 3573 * we will not request them. 3574 * 3575 * If anyone wants to implement support for those, make sure to 3576 * first request and append them to irqs_table array. 3577 */ 3578 3579 /* RX IRQ */ 3580 irq = platform_get_irq(pdev, 1); 3581 if (irq < 0) { 3582 ret = irq; 3583 goto clean_dma_ret; 3584 } 3585 3586 cpsw->irqs_table[0] = irq; 3587 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt, 3588 0, dev_name(&pdev->dev), cpsw); 3589 if (ret < 0) { 3590 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 3591 goto clean_dma_ret; 3592 } 3593 3594 /* TX IRQ */ 3595 irq = platform_get_irq(pdev, 2); 3596 if (irq < 0) { 3597 ret = irq; 3598 goto clean_dma_ret; 3599 } 3600 3601 cpsw->irqs_table[1] = irq; 3602 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt, 3603 0, dev_name(&pdev->dev), cpsw); 3604 if (ret < 0) { 3605 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 3606 goto clean_dma_ret; 3607 } 3608 3609 cpsw_notice(priv, probe, 3610 "initialized device (regs %pa, irq %d, pool size %d)\n", 3611 &ss_res->start, ndev->irq, dma_params.descs_pool_size); 3612 3613 pm_runtime_put(&pdev->dev); 3614 3615 return 0; 3616 3617 clean_unregister_netdev_ret: 3618 unregister_netdev(ndev); 3619 clean_dma_ret: 3620 cpdma_ctlr_destroy(cpsw->dma); 3621 clean_dt_ret: 3622 cpsw_remove_dt(pdev); 3623 pm_runtime_put_sync(&pdev->dev); 3624 clean_runtime_disable_ret: 3625 pm_runtime_disable(&pdev->dev); 3626 clean_ndev_ret: 3627 free_netdev(priv->ndev); 3628 return ret; 3629 } 3630 3631 static int cpsw_remove(struct platform_device *pdev) 3632 { 3633 struct net_device *ndev = platform_get_drvdata(pdev); 3634 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3635 int ret; 3636 3637 ret = pm_runtime_get_sync(&pdev->dev); 3638 if (ret < 0) { 3639 pm_runtime_put_noidle(&pdev->dev); 3640 return ret; 3641 } 3642 3643 if (cpsw->data.dual_emac) 3644 unregister_netdev(cpsw->slaves[1].ndev); 3645 unregister_netdev(ndev); 3646 3647 cpts_release(cpsw->cpts); 3648 cpdma_ctlr_destroy(cpsw->dma); 3649 cpsw_remove_dt(pdev); 3650 pm_runtime_put_sync(&pdev->dev); 3651 pm_runtime_disable(&pdev->dev); 3652 if (cpsw->data.dual_emac) 3653 free_netdev(cpsw->slaves[1].ndev); 3654 free_netdev(ndev); 3655 return 0; 3656 } 3657 3658 #ifdef CONFIG_PM_SLEEP 3659 static int cpsw_suspend(struct device *dev) 3660 { 3661 struct platform_device *pdev = to_platform_device(dev); 3662 struct net_device *ndev = platform_get_drvdata(pdev); 3663 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3664 3665 if (cpsw->data.dual_emac) { 3666 int i; 3667 3668 for (i = 0; i < cpsw->data.slaves; i++) { 3669 if (netif_running(cpsw->slaves[i].ndev)) 3670 cpsw_ndo_stop(cpsw->slaves[i].ndev); 3671 } 3672 } else { 3673 if (netif_running(ndev)) 3674 cpsw_ndo_stop(ndev); 3675 } 3676 3677 /* Select sleep pin state */ 3678 pinctrl_pm_select_sleep_state(dev); 3679 3680 return 0; 3681 } 3682 3683 static int cpsw_resume(struct device *dev) 3684 { 3685 struct platform_device *pdev = to_platform_device(dev); 3686 struct net_device *ndev = platform_get_drvdata(pdev); 3687 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3688 3689 /* Select default pin state */ 3690 pinctrl_pm_select_default_state(dev); 3691 3692 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */ 3693 rtnl_lock(); 3694 if (cpsw->data.dual_emac) { 3695 int i; 3696 3697 for (i = 0; i < cpsw->data.slaves; i++) { 3698 if (netif_running(cpsw->slaves[i].ndev)) 3699 cpsw_ndo_open(cpsw->slaves[i].ndev); 3700 } 3701 } else { 3702 if (netif_running(ndev)) 3703 cpsw_ndo_open(ndev); 3704 } 3705 rtnl_unlock(); 3706 3707 return 0; 3708 } 3709 #endif 3710 3711 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 3712 3713 static struct platform_driver cpsw_driver = { 3714 .driver = { 3715 .name = "cpsw", 3716 .pm = &cpsw_pm_ops, 3717 .of_match_table = cpsw_of_mtable, 3718 }, 3719 .probe = cpsw_probe, 3720 .remove = cpsw_remove, 3721 }; 3722 3723 module_platform_driver(cpsw_driver); 3724 3725 MODULE_LICENSE("GPL"); 3726 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 3727 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 3728 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 3729