1 /* 2 * Texas Instruments Ethernet Switch Driver 3 * 4 * Copyright (C) 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/io.h> 18 #include <linux/clk.h> 19 #include <linux/timer.h> 20 #include <linux/module.h> 21 #include <linux/platform_device.h> 22 #include <linux/irqreturn.h> 23 #include <linux/interrupt.h> 24 #include <linux/if_ether.h> 25 #include <linux/etherdevice.h> 26 #include <linux/netdevice.h> 27 #include <linux/net_tstamp.h> 28 #include <linux/phy.h> 29 #include <linux/workqueue.h> 30 #include <linux/delay.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/gpio.h> 33 #include <linux/of.h> 34 #include <linux/of_mdio.h> 35 #include <linux/of_net.h> 36 #include <linux/of_device.h> 37 #include <linux/if_vlan.h> 38 39 #include <linux/pinctrl/consumer.h> 40 41 #include "cpsw.h" 42 #include "cpsw_ale.h" 43 #include "cpts.h" 44 #include "davinci_cpdma.h" 45 46 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 47 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 48 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 49 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 50 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 51 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 52 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 53 NETIF_MSG_RX_STATUS) 54 55 #define cpsw_info(priv, type, format, ...) \ 56 do { \ 57 if (netif_msg_##type(priv) && net_ratelimit()) \ 58 dev_info(priv->dev, format, ## __VA_ARGS__); \ 59 } while (0) 60 61 #define cpsw_err(priv, type, format, ...) \ 62 do { \ 63 if (netif_msg_##type(priv) && net_ratelimit()) \ 64 dev_err(priv->dev, format, ## __VA_ARGS__); \ 65 } while (0) 66 67 #define cpsw_dbg(priv, type, format, ...) \ 68 do { \ 69 if (netif_msg_##type(priv) && net_ratelimit()) \ 70 dev_dbg(priv->dev, format, ## __VA_ARGS__); \ 71 } while (0) 72 73 #define cpsw_notice(priv, type, format, ...) \ 74 do { \ 75 if (netif_msg_##type(priv) && net_ratelimit()) \ 76 dev_notice(priv->dev, format, ## __VA_ARGS__); \ 77 } while (0) 78 79 #define ALE_ALL_PORTS 0x7 80 81 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7) 82 #define CPSW_MINOR_VERSION(reg) (reg & 0xff) 83 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f) 84 85 #define CPSW_VERSION_1 0x19010a 86 #define CPSW_VERSION_2 0x19010c 87 #define CPSW_VERSION_3 0x19010f 88 #define CPSW_VERSION_4 0x190112 89 90 #define HOST_PORT_NUM 0 91 #define SLIVER_SIZE 0x40 92 93 #define CPSW1_HOST_PORT_OFFSET 0x028 94 #define CPSW1_SLAVE_OFFSET 0x050 95 #define CPSW1_SLAVE_SIZE 0x040 96 #define CPSW1_CPDMA_OFFSET 0x100 97 #define CPSW1_STATERAM_OFFSET 0x200 98 #define CPSW1_HW_STATS 0x400 99 #define CPSW1_CPTS_OFFSET 0x500 100 #define CPSW1_ALE_OFFSET 0x600 101 #define CPSW1_SLIVER_OFFSET 0x700 102 103 #define CPSW2_HOST_PORT_OFFSET 0x108 104 #define CPSW2_SLAVE_OFFSET 0x200 105 #define CPSW2_SLAVE_SIZE 0x100 106 #define CPSW2_CPDMA_OFFSET 0x800 107 #define CPSW2_HW_STATS 0x900 108 #define CPSW2_STATERAM_OFFSET 0xa00 109 #define CPSW2_CPTS_OFFSET 0xc00 110 #define CPSW2_ALE_OFFSET 0xd00 111 #define CPSW2_SLIVER_OFFSET 0xd80 112 #define CPSW2_BD_OFFSET 0x2000 113 114 #define CPDMA_RXTHRESH 0x0c0 115 #define CPDMA_RXFREE 0x0e0 116 #define CPDMA_TXHDP 0x00 117 #define CPDMA_RXHDP 0x20 118 #define CPDMA_TXCP 0x40 119 #define CPDMA_RXCP 0x60 120 121 #define CPSW_POLL_WEIGHT 64 122 #define CPSW_MIN_PACKET_SIZE 60 123 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4) 124 125 #define RX_PRIORITY_MAPPING 0x76543210 126 #define TX_PRIORITY_MAPPING 0x33221100 127 #define CPDMA_TX_PRIORITY_MAP 0x01234567 128 129 #define CPSW_VLAN_AWARE BIT(1) 130 #define CPSW_ALE_VLAN_AWARE 1 131 132 #define CPSW_FIFO_NORMAL_MODE (0 << 16) 133 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16) 134 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16) 135 136 #define CPSW_INTPACEEN (0x3f << 16) 137 #define CPSW_INTPRESCALE_MASK (0x7FF << 0) 138 #define CPSW_CMINTMAX_CNT 63 139 #define CPSW_CMINTMIN_CNT 2 140 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT) 141 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1) 142 143 #define cpsw_slave_index(cpsw, priv) \ 144 ((cpsw->data.dual_emac) ? priv->emac_port : \ 145 cpsw->data.active_slave) 146 #define IRQ_NUM 2 147 #define CPSW_MAX_QUEUES 8 148 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256 149 150 static int debug_level; 151 module_param(debug_level, int, 0); 152 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 153 154 static int ale_ageout = 10; 155 module_param(ale_ageout, int, 0); 156 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 157 158 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 159 module_param(rx_packet_max, int, 0); 160 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 161 162 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT; 163 module_param(descs_pool_size, int, 0444); 164 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool"); 165 166 struct cpsw_wr_regs { 167 u32 id_ver; 168 u32 soft_reset; 169 u32 control; 170 u32 int_control; 171 u32 rx_thresh_en; 172 u32 rx_en; 173 u32 tx_en; 174 u32 misc_en; 175 u32 mem_allign1[8]; 176 u32 rx_thresh_stat; 177 u32 rx_stat; 178 u32 tx_stat; 179 u32 misc_stat; 180 u32 mem_allign2[8]; 181 u32 rx_imax; 182 u32 tx_imax; 183 184 }; 185 186 struct cpsw_ss_regs { 187 u32 id_ver; 188 u32 control; 189 u32 soft_reset; 190 u32 stat_port_en; 191 u32 ptype; 192 u32 soft_idle; 193 u32 thru_rate; 194 u32 gap_thresh; 195 u32 tx_start_wds; 196 u32 flow_control; 197 u32 vlan_ltype; 198 u32 ts_ltype; 199 u32 dlr_ltype; 200 }; 201 202 /* CPSW_PORT_V1 */ 203 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */ 204 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */ 205 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */ 206 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */ 207 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */ 208 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */ 209 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */ 210 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */ 211 212 /* CPSW_PORT_V2 */ 213 #define CPSW2_CONTROL 0x00 /* Control Register */ 214 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */ 215 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */ 216 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */ 217 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */ 218 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */ 219 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */ 220 221 /* CPSW_PORT_V1 and V2 */ 222 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */ 223 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */ 224 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */ 225 226 /* CPSW_PORT_V2 only */ 227 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */ 228 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */ 229 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */ 230 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */ 231 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */ 232 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */ 233 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */ 234 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */ 235 236 /* Bit definitions for the CPSW2_CONTROL register */ 237 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */ 238 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */ 239 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */ 240 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */ 241 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */ 242 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */ 243 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */ 244 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */ 245 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */ 246 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */ 247 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */ 248 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */ 249 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */ 250 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */ 251 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */ 252 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */ 253 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */ 254 255 #define CTRL_V2_TS_BITS \ 256 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 257 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN) 258 259 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN) 260 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN) 261 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN) 262 263 264 #define CTRL_V3_TS_BITS \ 265 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 266 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\ 267 TS_LTYPE1_EN) 268 269 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN) 270 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN) 271 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN) 272 273 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */ 274 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */ 275 #define TS_SEQ_ID_OFFSET_MASK (0x3f) 276 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */ 277 #define TS_MSG_TYPE_EN_MASK (0xffff) 278 279 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */ 280 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3)) 281 282 /* Bit definitions for the CPSW1_TS_CTL register */ 283 #define CPSW_V1_TS_RX_EN BIT(0) 284 #define CPSW_V1_TS_TX_EN BIT(4) 285 #define CPSW_V1_MSG_TYPE_OFS 16 286 287 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */ 288 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16 289 290 struct cpsw_host_regs { 291 u32 max_blks; 292 u32 blk_cnt; 293 u32 tx_in_ctl; 294 u32 port_vlan; 295 u32 tx_pri_map; 296 u32 cpdma_tx_pri_map; 297 u32 cpdma_rx_chan_map; 298 }; 299 300 struct cpsw_sliver_regs { 301 u32 id_ver; 302 u32 mac_control; 303 u32 mac_status; 304 u32 soft_reset; 305 u32 rx_maxlen; 306 u32 __reserved_0; 307 u32 rx_pause; 308 u32 tx_pause; 309 u32 __reserved_1; 310 u32 rx_pri_map; 311 }; 312 313 struct cpsw_hw_stats { 314 u32 rxgoodframes; 315 u32 rxbroadcastframes; 316 u32 rxmulticastframes; 317 u32 rxpauseframes; 318 u32 rxcrcerrors; 319 u32 rxaligncodeerrors; 320 u32 rxoversizedframes; 321 u32 rxjabberframes; 322 u32 rxundersizedframes; 323 u32 rxfragments; 324 u32 __pad_0[2]; 325 u32 rxoctets; 326 u32 txgoodframes; 327 u32 txbroadcastframes; 328 u32 txmulticastframes; 329 u32 txpauseframes; 330 u32 txdeferredframes; 331 u32 txcollisionframes; 332 u32 txsinglecollframes; 333 u32 txmultcollframes; 334 u32 txexcessivecollisions; 335 u32 txlatecollisions; 336 u32 txunderrun; 337 u32 txcarriersenseerrors; 338 u32 txoctets; 339 u32 octetframes64; 340 u32 octetframes65t127; 341 u32 octetframes128t255; 342 u32 octetframes256t511; 343 u32 octetframes512t1023; 344 u32 octetframes1024tup; 345 u32 netoctets; 346 u32 rxsofoverruns; 347 u32 rxmofoverruns; 348 u32 rxdmaoverruns; 349 }; 350 351 struct cpsw_slave { 352 void __iomem *regs; 353 struct cpsw_sliver_regs __iomem *sliver; 354 int slave_num; 355 u32 mac_control; 356 struct cpsw_slave_data *data; 357 struct phy_device *phy; 358 struct net_device *ndev; 359 u32 port_vlan; 360 }; 361 362 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset) 363 { 364 return __raw_readl(slave->regs + offset); 365 } 366 367 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset) 368 { 369 __raw_writel(val, slave->regs + offset); 370 } 371 372 struct cpsw_vector { 373 struct cpdma_chan *ch; 374 int budget; 375 }; 376 377 struct cpsw_common { 378 struct device *dev; 379 struct cpsw_platform_data data; 380 struct napi_struct napi_rx; 381 struct napi_struct napi_tx; 382 struct cpsw_ss_regs __iomem *regs; 383 struct cpsw_wr_regs __iomem *wr_regs; 384 u8 __iomem *hw_stats; 385 struct cpsw_host_regs __iomem *host_port_regs; 386 u32 version; 387 u32 coal_intvl; 388 u32 bus_freq_mhz; 389 int rx_packet_max; 390 struct cpsw_slave *slaves; 391 struct cpdma_ctlr *dma; 392 struct cpsw_vector txv[CPSW_MAX_QUEUES]; 393 struct cpsw_vector rxv[CPSW_MAX_QUEUES]; 394 struct cpsw_ale *ale; 395 bool quirk_irq; 396 bool rx_irq_disabled; 397 bool tx_irq_disabled; 398 u32 irqs_table[IRQ_NUM]; 399 struct cpts *cpts; 400 int rx_ch_num, tx_ch_num; 401 int speed; 402 int usage_count; 403 }; 404 405 struct cpsw_priv { 406 struct net_device *ndev; 407 struct device *dev; 408 u32 msg_enable; 409 u8 mac_addr[ETH_ALEN]; 410 bool rx_pause; 411 bool tx_pause; 412 u32 emac_port; 413 struct cpsw_common *cpsw; 414 }; 415 416 struct cpsw_stats { 417 char stat_string[ETH_GSTRING_LEN]; 418 int type; 419 int sizeof_stat; 420 int stat_offset; 421 }; 422 423 enum { 424 CPSW_STATS, 425 CPDMA_RX_STATS, 426 CPDMA_TX_STATS, 427 }; 428 429 #define CPSW_STAT(m) CPSW_STATS, \ 430 sizeof(((struct cpsw_hw_stats *)0)->m), \ 431 offsetof(struct cpsw_hw_stats, m) 432 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \ 433 sizeof(((struct cpdma_chan_stats *)0)->m), \ 434 offsetof(struct cpdma_chan_stats, m) 435 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \ 436 sizeof(((struct cpdma_chan_stats *)0)->m), \ 437 offsetof(struct cpdma_chan_stats, m) 438 439 static const struct cpsw_stats cpsw_gstrings_stats[] = { 440 { "Good Rx Frames", CPSW_STAT(rxgoodframes) }, 441 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) }, 442 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) }, 443 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) }, 444 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) }, 445 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) }, 446 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) }, 447 { "Rx Jabbers", CPSW_STAT(rxjabberframes) }, 448 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) }, 449 { "Rx Fragments", CPSW_STAT(rxfragments) }, 450 { "Rx Octets", CPSW_STAT(rxoctets) }, 451 { "Good Tx Frames", CPSW_STAT(txgoodframes) }, 452 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) }, 453 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) }, 454 { "Pause Tx Frames", CPSW_STAT(txpauseframes) }, 455 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) }, 456 { "Collisions", CPSW_STAT(txcollisionframes) }, 457 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) }, 458 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) }, 459 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) }, 460 { "Late Collisions", CPSW_STAT(txlatecollisions) }, 461 { "Tx Underrun", CPSW_STAT(txunderrun) }, 462 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) }, 463 { "Tx Octets", CPSW_STAT(txoctets) }, 464 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) }, 465 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) }, 466 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) }, 467 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) }, 468 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) }, 469 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) }, 470 { "Net Octets", CPSW_STAT(netoctets) }, 471 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) }, 472 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) }, 473 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) }, 474 }; 475 476 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = { 477 { "head_enqueue", CPDMA_RX_STAT(head_enqueue) }, 478 { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) }, 479 { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) }, 480 { "misqueued", CPDMA_RX_STAT(misqueued) }, 481 { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) }, 482 { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) }, 483 { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) }, 484 { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) }, 485 { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) }, 486 { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) }, 487 { "good_dequeue", CPDMA_RX_STAT(good_dequeue) }, 488 { "requeue", CPDMA_RX_STAT(requeue) }, 489 { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) }, 490 }; 491 492 #define CPSW_STATS_COMMON_LEN ARRAY_SIZE(cpsw_gstrings_stats) 493 #define CPSW_STATS_CH_LEN ARRAY_SIZE(cpsw_gstrings_ch_stats) 494 495 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw) 496 #define napi_to_cpsw(napi) container_of(napi, struct cpsw_common, napi) 497 #define for_each_slave(priv, func, arg...) \ 498 do { \ 499 struct cpsw_slave *slave; \ 500 struct cpsw_common *cpsw = (priv)->cpsw; \ 501 int n; \ 502 if (cpsw->data.dual_emac) \ 503 (func)((cpsw)->slaves + priv->emac_port, ##arg);\ 504 else \ 505 for (n = cpsw->data.slaves, \ 506 slave = cpsw->slaves; \ 507 n; n--) \ 508 (func)(slave++, ##arg); \ 509 } while (0) 510 511 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb) \ 512 do { \ 513 if (!cpsw->data.dual_emac) \ 514 break; \ 515 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \ 516 ndev = cpsw->slaves[0].ndev; \ 517 skb->dev = ndev; \ 518 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \ 519 ndev = cpsw->slaves[1].ndev; \ 520 skb->dev = ndev; \ 521 } \ 522 } while (0) 523 #define cpsw_add_mcast(cpsw, priv, addr) \ 524 do { \ 525 if (cpsw->data.dual_emac) { \ 526 struct cpsw_slave *slave = cpsw->slaves + \ 527 priv->emac_port; \ 528 int slave_port = cpsw_get_slave_port( \ 529 slave->slave_num); \ 530 cpsw_ale_add_mcast(cpsw->ale, addr, \ 531 1 << slave_port | ALE_PORT_HOST, \ 532 ALE_VLAN, slave->port_vlan, 0); \ 533 } else { \ 534 cpsw_ale_add_mcast(cpsw->ale, addr, \ 535 ALE_ALL_PORTS, \ 536 0, 0, 0); \ 537 } \ 538 } while (0) 539 540 static inline int cpsw_get_slave_port(u32 slave_num) 541 { 542 return slave_num + 1; 543 } 544 545 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 546 { 547 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 548 struct cpsw_ale *ale = cpsw->ale; 549 int i; 550 551 if (cpsw->data.dual_emac) { 552 bool flag = false; 553 554 /* Enabling promiscuous mode for one interface will be 555 * common for both the interface as the interface shares 556 * the same hardware resource. 557 */ 558 for (i = 0; i < cpsw->data.slaves; i++) 559 if (cpsw->slaves[i].ndev->flags & IFF_PROMISC) 560 flag = true; 561 562 if (!enable && flag) { 563 enable = true; 564 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 565 } 566 567 if (enable) { 568 /* Enable Bypass */ 569 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 570 571 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 572 } else { 573 /* Disable Bypass */ 574 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 575 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 576 } 577 } else { 578 if (enable) { 579 unsigned long timeout = jiffies + HZ; 580 581 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ 582 for (i = 0; i <= cpsw->data.slaves; i++) { 583 cpsw_ale_control_set(ale, i, 584 ALE_PORT_NOLEARN, 1); 585 cpsw_ale_control_set(ale, i, 586 ALE_PORT_NO_SA_UPDATE, 1); 587 } 588 589 /* Clear All Untouched entries */ 590 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 591 do { 592 cpu_relax(); 593 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 594 break; 595 } while (time_after(timeout, jiffies)); 596 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 597 598 /* Clear all mcast from ALE */ 599 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1); 600 601 /* Flood All Unicast Packets to Host port */ 602 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 603 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 604 } else { 605 /* Don't Flood All Unicast Packets to Host port */ 606 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 607 608 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ 609 for (i = 0; i <= cpsw->data.slaves; i++) { 610 cpsw_ale_control_set(ale, i, 611 ALE_PORT_NOLEARN, 0); 612 cpsw_ale_control_set(ale, i, 613 ALE_PORT_NO_SA_UPDATE, 0); 614 } 615 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 616 } 617 } 618 } 619 620 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 621 { 622 struct cpsw_priv *priv = netdev_priv(ndev); 623 struct cpsw_common *cpsw = priv->cpsw; 624 int vid; 625 626 if (cpsw->data.dual_emac) 627 vid = cpsw->slaves[priv->emac_port].port_vlan; 628 else 629 vid = cpsw->data.default_vlan; 630 631 if (ndev->flags & IFF_PROMISC) { 632 /* Enable promiscuous mode */ 633 cpsw_set_promiscious(ndev, true); 634 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI); 635 return; 636 } else { 637 /* Disable promiscuous mode */ 638 cpsw_set_promiscious(ndev, false); 639 } 640 641 /* Restore allmulti on vlans if necessary */ 642 cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI); 643 644 /* Clear all mcast from ALE */ 645 cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid); 646 647 if (!netdev_mc_empty(ndev)) { 648 struct netdev_hw_addr *ha; 649 650 /* program multicast address list into ALE register */ 651 netdev_for_each_mc_addr(ha, ndev) { 652 cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr); 653 } 654 } 655 } 656 657 static void cpsw_intr_enable(struct cpsw_common *cpsw) 658 { 659 __raw_writel(0xFF, &cpsw->wr_regs->tx_en); 660 __raw_writel(0xFF, &cpsw->wr_regs->rx_en); 661 662 cpdma_ctlr_int_ctrl(cpsw->dma, true); 663 return; 664 } 665 666 static void cpsw_intr_disable(struct cpsw_common *cpsw) 667 { 668 __raw_writel(0, &cpsw->wr_regs->tx_en); 669 __raw_writel(0, &cpsw->wr_regs->rx_en); 670 671 cpdma_ctlr_int_ctrl(cpsw->dma, false); 672 return; 673 } 674 675 static void cpsw_tx_handler(void *token, int len, int status) 676 { 677 struct netdev_queue *txq; 678 struct sk_buff *skb = token; 679 struct net_device *ndev = skb->dev; 680 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 681 682 /* Check whether the queue is stopped due to stalled tx dma, if the 683 * queue is stopped then start the queue as we have free desc for tx 684 */ 685 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb)); 686 if (unlikely(netif_tx_queue_stopped(txq))) 687 netif_tx_wake_queue(txq); 688 689 cpts_tx_timestamp(cpsw->cpts, skb); 690 ndev->stats.tx_packets++; 691 ndev->stats.tx_bytes += len; 692 dev_kfree_skb_any(skb); 693 } 694 695 static void cpsw_rx_handler(void *token, int len, int status) 696 { 697 struct cpdma_chan *ch; 698 struct sk_buff *skb = token; 699 struct sk_buff *new_skb; 700 struct net_device *ndev = skb->dev; 701 int ret = 0; 702 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 703 704 cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb); 705 706 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 707 /* In dual emac mode check for all interfaces */ 708 if (cpsw->data.dual_emac && cpsw->usage_count && 709 (status >= 0)) { 710 /* The packet received is for the interface which 711 * is already down and the other interface is up 712 * and running, instead of freeing which results 713 * in reducing of the number of rx descriptor in 714 * DMA engine, requeue skb back to cpdma. 715 */ 716 new_skb = skb; 717 goto requeue; 718 } 719 720 /* the interface is going down, skbs are purged */ 721 dev_kfree_skb_any(skb); 722 return; 723 } 724 725 new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max); 726 if (new_skb) { 727 skb_copy_queue_mapping(new_skb, skb); 728 skb_put(skb, len); 729 cpts_rx_timestamp(cpsw->cpts, skb); 730 skb->protocol = eth_type_trans(skb, ndev); 731 netif_receive_skb(skb); 732 ndev->stats.rx_bytes += len; 733 ndev->stats.rx_packets++; 734 kmemleak_not_leak(new_skb); 735 } else { 736 ndev->stats.rx_dropped++; 737 new_skb = skb; 738 } 739 740 requeue: 741 if (netif_dormant(ndev)) { 742 dev_kfree_skb_any(new_skb); 743 return; 744 } 745 746 ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch; 747 ret = cpdma_chan_submit(ch, new_skb, new_skb->data, 748 skb_tailroom(new_skb), 0); 749 if (WARN_ON(ret < 0)) 750 dev_kfree_skb_any(new_skb); 751 } 752 753 static void cpsw_split_res(struct net_device *ndev) 754 { 755 struct cpsw_priv *priv = netdev_priv(ndev); 756 u32 consumed_rate = 0, bigest_rate = 0; 757 struct cpsw_common *cpsw = priv->cpsw; 758 struct cpsw_vector *txv = cpsw->txv; 759 int i, ch_weight, rlim_ch_num = 0; 760 int budget, bigest_rate_ch = 0; 761 u32 ch_rate, max_rate; 762 int ch_budget = 0; 763 764 for (i = 0; i < cpsw->tx_ch_num; i++) { 765 ch_rate = cpdma_chan_get_rate(txv[i].ch); 766 if (!ch_rate) 767 continue; 768 769 rlim_ch_num++; 770 consumed_rate += ch_rate; 771 } 772 773 if (cpsw->tx_ch_num == rlim_ch_num) { 774 max_rate = consumed_rate; 775 } else if (!rlim_ch_num) { 776 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num; 777 bigest_rate = 0; 778 max_rate = consumed_rate; 779 } else { 780 max_rate = cpsw->speed * 1000; 781 782 /* if max_rate is less then expected due to reduced link speed, 783 * split proportionally according next potential max speed 784 */ 785 if (max_rate < consumed_rate) 786 max_rate *= 10; 787 788 if (max_rate < consumed_rate) 789 max_rate *= 10; 790 791 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate; 792 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) / 793 (cpsw->tx_ch_num - rlim_ch_num); 794 bigest_rate = (max_rate - consumed_rate) / 795 (cpsw->tx_ch_num - rlim_ch_num); 796 } 797 798 /* split tx weight/budget */ 799 budget = CPSW_POLL_WEIGHT; 800 for (i = 0; i < cpsw->tx_ch_num; i++) { 801 ch_rate = cpdma_chan_get_rate(txv[i].ch); 802 if (ch_rate) { 803 txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate; 804 if (!txv[i].budget) 805 txv[i].budget++; 806 if (ch_rate > bigest_rate) { 807 bigest_rate_ch = i; 808 bigest_rate = ch_rate; 809 } 810 811 ch_weight = (ch_rate * 100) / max_rate; 812 if (!ch_weight) 813 ch_weight++; 814 cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight); 815 } else { 816 txv[i].budget = ch_budget; 817 if (!bigest_rate_ch) 818 bigest_rate_ch = i; 819 cpdma_chan_set_weight(cpsw->txv[i].ch, 0); 820 } 821 822 budget -= txv[i].budget; 823 } 824 825 if (budget) 826 txv[bigest_rate_ch].budget += budget; 827 828 /* split rx budget */ 829 budget = CPSW_POLL_WEIGHT; 830 ch_budget = budget / cpsw->rx_ch_num; 831 for (i = 0; i < cpsw->rx_ch_num; i++) { 832 cpsw->rxv[i].budget = ch_budget; 833 budget -= ch_budget; 834 } 835 836 if (budget) 837 cpsw->rxv[0].budget += budget; 838 } 839 840 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id) 841 { 842 struct cpsw_common *cpsw = dev_id; 843 844 writel(0, &cpsw->wr_regs->tx_en); 845 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX); 846 847 if (cpsw->quirk_irq) { 848 disable_irq_nosync(cpsw->irqs_table[1]); 849 cpsw->tx_irq_disabled = true; 850 } 851 852 napi_schedule(&cpsw->napi_tx); 853 return IRQ_HANDLED; 854 } 855 856 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id) 857 { 858 struct cpsw_common *cpsw = dev_id; 859 860 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX); 861 writel(0, &cpsw->wr_regs->rx_en); 862 863 if (cpsw->quirk_irq) { 864 disable_irq_nosync(cpsw->irqs_table[0]); 865 cpsw->rx_irq_disabled = true; 866 } 867 868 napi_schedule(&cpsw->napi_rx); 869 return IRQ_HANDLED; 870 } 871 872 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget) 873 { 874 u32 ch_map; 875 int num_tx, cur_budget, ch; 876 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); 877 struct cpsw_vector *txv; 878 879 /* process every unprocessed channel */ 880 ch_map = cpdma_ctrl_txchs_state(cpsw->dma); 881 for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) { 882 if (!(ch_map & 0x01)) 883 continue; 884 885 txv = &cpsw->txv[ch]; 886 if (unlikely(txv->budget > budget - num_tx)) 887 cur_budget = budget - num_tx; 888 else 889 cur_budget = txv->budget; 890 891 num_tx += cpdma_chan_process(txv->ch, cur_budget); 892 if (num_tx >= budget) 893 break; 894 } 895 896 if (num_tx < budget) { 897 napi_complete(napi_tx); 898 writel(0xff, &cpsw->wr_regs->tx_en); 899 if (cpsw->quirk_irq && cpsw->tx_irq_disabled) { 900 cpsw->tx_irq_disabled = false; 901 enable_irq(cpsw->irqs_table[1]); 902 } 903 } 904 905 return num_tx; 906 } 907 908 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget) 909 { 910 u32 ch_map; 911 int num_rx, cur_budget, ch; 912 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); 913 struct cpsw_vector *rxv; 914 915 /* process every unprocessed channel */ 916 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma); 917 for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) { 918 if (!(ch_map & 0x01)) 919 continue; 920 921 rxv = &cpsw->rxv[ch]; 922 if (unlikely(rxv->budget > budget - num_rx)) 923 cur_budget = budget - num_rx; 924 else 925 cur_budget = rxv->budget; 926 927 num_rx += cpdma_chan_process(rxv->ch, cur_budget); 928 if (num_rx >= budget) 929 break; 930 } 931 932 if (num_rx < budget) { 933 napi_complete_done(napi_rx, num_rx); 934 writel(0xff, &cpsw->wr_regs->rx_en); 935 if (cpsw->quirk_irq && cpsw->rx_irq_disabled) { 936 cpsw->rx_irq_disabled = false; 937 enable_irq(cpsw->irqs_table[0]); 938 } 939 } 940 941 return num_rx; 942 } 943 944 static inline void soft_reset(const char *module, void __iomem *reg) 945 { 946 unsigned long timeout = jiffies + HZ; 947 948 __raw_writel(1, reg); 949 do { 950 cpu_relax(); 951 } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies)); 952 953 WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module); 954 } 955 956 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \ 957 ((mac)[2] << 16) | ((mac)[3] << 24)) 958 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8)) 959 960 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 961 struct cpsw_priv *priv) 962 { 963 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 964 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 965 } 966 967 static void _cpsw_adjust_link(struct cpsw_slave *slave, 968 struct cpsw_priv *priv, bool *link) 969 { 970 struct phy_device *phy = slave->phy; 971 u32 mac_control = 0; 972 u32 slave_port; 973 struct cpsw_common *cpsw = priv->cpsw; 974 975 if (!phy) 976 return; 977 978 slave_port = cpsw_get_slave_port(slave->slave_num); 979 980 if (phy->link) { 981 mac_control = cpsw->data.mac_control; 982 983 /* enable forwarding */ 984 cpsw_ale_control_set(cpsw->ale, slave_port, 985 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 986 987 if (phy->speed == 1000) 988 mac_control |= BIT(7); /* GIGABITEN */ 989 if (phy->duplex) 990 mac_control |= BIT(0); /* FULLDUPLEXEN */ 991 992 /* set speed_in input in case RMII mode is used in 100Mbps */ 993 if (phy->speed == 100) 994 mac_control |= BIT(15); 995 else if (phy->speed == 10) 996 mac_control |= BIT(18); /* In Band mode */ 997 998 if (priv->rx_pause) 999 mac_control |= BIT(3); 1000 1001 if (priv->tx_pause) 1002 mac_control |= BIT(4); 1003 1004 *link = true; 1005 } else { 1006 mac_control = 0; 1007 /* disable forwarding */ 1008 cpsw_ale_control_set(cpsw->ale, slave_port, 1009 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1010 } 1011 1012 if (mac_control != slave->mac_control) { 1013 phy_print_status(phy); 1014 __raw_writel(mac_control, &slave->sliver->mac_control); 1015 } 1016 1017 slave->mac_control = mac_control; 1018 } 1019 1020 static int cpsw_get_common_speed(struct cpsw_common *cpsw) 1021 { 1022 int i, speed; 1023 1024 for (i = 0, speed = 0; i < cpsw->data.slaves; i++) 1025 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link) 1026 speed += cpsw->slaves[i].phy->speed; 1027 1028 return speed; 1029 } 1030 1031 static int cpsw_need_resplit(struct cpsw_common *cpsw) 1032 { 1033 int i, rlim_ch_num; 1034 int speed, ch_rate; 1035 1036 /* re-split resources only in case speed was changed */ 1037 speed = cpsw_get_common_speed(cpsw); 1038 if (speed == cpsw->speed || !speed) 1039 return 0; 1040 1041 cpsw->speed = speed; 1042 1043 for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) { 1044 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch); 1045 if (!ch_rate) 1046 break; 1047 1048 rlim_ch_num++; 1049 } 1050 1051 /* cases not dependent on speed */ 1052 if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num) 1053 return 0; 1054 1055 return 1; 1056 } 1057 1058 static void cpsw_adjust_link(struct net_device *ndev) 1059 { 1060 struct cpsw_priv *priv = netdev_priv(ndev); 1061 struct cpsw_common *cpsw = priv->cpsw; 1062 bool link = false; 1063 1064 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 1065 1066 if (link) { 1067 if (cpsw_need_resplit(cpsw)) 1068 cpsw_split_res(ndev); 1069 1070 netif_carrier_on(ndev); 1071 if (netif_running(ndev)) 1072 netif_tx_wake_all_queues(ndev); 1073 } else { 1074 netif_carrier_off(ndev); 1075 netif_tx_stop_all_queues(ndev); 1076 } 1077 } 1078 1079 static int cpsw_get_coalesce(struct net_device *ndev, 1080 struct ethtool_coalesce *coal) 1081 { 1082 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1083 1084 coal->rx_coalesce_usecs = cpsw->coal_intvl; 1085 return 0; 1086 } 1087 1088 static int cpsw_set_coalesce(struct net_device *ndev, 1089 struct ethtool_coalesce *coal) 1090 { 1091 struct cpsw_priv *priv = netdev_priv(ndev); 1092 u32 int_ctrl; 1093 u32 num_interrupts = 0; 1094 u32 prescale = 0; 1095 u32 addnl_dvdr = 1; 1096 u32 coal_intvl = 0; 1097 struct cpsw_common *cpsw = priv->cpsw; 1098 1099 coal_intvl = coal->rx_coalesce_usecs; 1100 1101 int_ctrl = readl(&cpsw->wr_regs->int_control); 1102 prescale = cpsw->bus_freq_mhz * 4; 1103 1104 if (!coal->rx_coalesce_usecs) { 1105 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN); 1106 goto update_return; 1107 } 1108 1109 if (coal_intvl < CPSW_CMINTMIN_INTVL) 1110 coal_intvl = CPSW_CMINTMIN_INTVL; 1111 1112 if (coal_intvl > CPSW_CMINTMAX_INTVL) { 1113 /* Interrupt pacer works with 4us Pulse, we can 1114 * throttle further by dilating the 4us pulse. 1115 */ 1116 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale; 1117 1118 if (addnl_dvdr > 1) { 1119 prescale *= addnl_dvdr; 1120 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr)) 1121 coal_intvl = (CPSW_CMINTMAX_INTVL 1122 * addnl_dvdr); 1123 } else { 1124 addnl_dvdr = 1; 1125 coal_intvl = CPSW_CMINTMAX_INTVL; 1126 } 1127 } 1128 1129 num_interrupts = (1000 * addnl_dvdr) / coal_intvl; 1130 writel(num_interrupts, &cpsw->wr_regs->rx_imax); 1131 writel(num_interrupts, &cpsw->wr_regs->tx_imax); 1132 1133 int_ctrl |= CPSW_INTPACEEN; 1134 int_ctrl &= (~CPSW_INTPRESCALE_MASK); 1135 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK); 1136 1137 update_return: 1138 writel(int_ctrl, &cpsw->wr_regs->int_control); 1139 1140 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl); 1141 cpsw->coal_intvl = coal_intvl; 1142 1143 return 0; 1144 } 1145 1146 static int cpsw_get_sset_count(struct net_device *ndev, int sset) 1147 { 1148 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1149 1150 switch (sset) { 1151 case ETH_SS_STATS: 1152 return (CPSW_STATS_COMMON_LEN + 1153 (cpsw->rx_ch_num + cpsw->tx_ch_num) * 1154 CPSW_STATS_CH_LEN); 1155 default: 1156 return -EOPNOTSUPP; 1157 } 1158 } 1159 1160 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir) 1161 { 1162 int ch_stats_len; 1163 int line; 1164 int i; 1165 1166 ch_stats_len = CPSW_STATS_CH_LEN * ch_num; 1167 for (i = 0; i < ch_stats_len; i++) { 1168 line = i % CPSW_STATS_CH_LEN; 1169 snprintf(*p, ETH_GSTRING_LEN, 1170 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx", 1171 i / CPSW_STATS_CH_LEN, 1172 cpsw_gstrings_ch_stats[line].stat_string); 1173 *p += ETH_GSTRING_LEN; 1174 } 1175 } 1176 1177 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 1178 { 1179 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1180 u8 *p = data; 1181 int i; 1182 1183 switch (stringset) { 1184 case ETH_SS_STATS: 1185 for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) { 1186 memcpy(p, cpsw_gstrings_stats[i].stat_string, 1187 ETH_GSTRING_LEN); 1188 p += ETH_GSTRING_LEN; 1189 } 1190 1191 cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1); 1192 cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0); 1193 break; 1194 } 1195 } 1196 1197 static void cpsw_get_ethtool_stats(struct net_device *ndev, 1198 struct ethtool_stats *stats, u64 *data) 1199 { 1200 u8 *p; 1201 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1202 struct cpdma_chan_stats ch_stats; 1203 int i, l, ch; 1204 1205 /* Collect Davinci CPDMA stats for Rx and Tx Channel */ 1206 for (l = 0; l < CPSW_STATS_COMMON_LEN; l++) 1207 data[l] = readl(cpsw->hw_stats + 1208 cpsw_gstrings_stats[l].stat_offset); 1209 1210 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1211 cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats); 1212 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) { 1213 p = (u8 *)&ch_stats + 1214 cpsw_gstrings_ch_stats[i].stat_offset; 1215 data[l] = *(u32 *)p; 1216 } 1217 } 1218 1219 for (ch = 0; ch < cpsw->tx_ch_num; ch++) { 1220 cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats); 1221 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) { 1222 p = (u8 *)&ch_stats + 1223 cpsw_gstrings_ch_stats[i].stat_offset; 1224 data[l] = *(u32 *)p; 1225 } 1226 } 1227 } 1228 1229 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv, 1230 struct sk_buff *skb, 1231 struct cpdma_chan *txch) 1232 { 1233 struct cpsw_common *cpsw = priv->cpsw; 1234 1235 return cpdma_chan_submit(txch, skb, skb->data, skb->len, 1236 priv->emac_port + cpsw->data.dual_emac); 1237 } 1238 1239 static inline void cpsw_add_dual_emac_def_ale_entries( 1240 struct cpsw_priv *priv, struct cpsw_slave *slave, 1241 u32 slave_port) 1242 { 1243 struct cpsw_common *cpsw = priv->cpsw; 1244 u32 port_mask = 1 << slave_port | ALE_PORT_HOST; 1245 1246 if (cpsw->version == CPSW_VERSION_1) 1247 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 1248 else 1249 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 1250 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask, 1251 port_mask, port_mask, 0); 1252 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1253 port_mask, ALE_VLAN, slave->port_vlan, 0); 1254 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 1255 HOST_PORT_NUM, ALE_VLAN | 1256 ALE_SECURE, slave->port_vlan); 1257 } 1258 1259 static void soft_reset_slave(struct cpsw_slave *slave) 1260 { 1261 char name[32]; 1262 1263 snprintf(name, sizeof(name), "slave-%d", slave->slave_num); 1264 soft_reset(name, &slave->sliver->soft_reset); 1265 } 1266 1267 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 1268 { 1269 u32 slave_port; 1270 struct phy_device *phy; 1271 struct cpsw_common *cpsw = priv->cpsw; 1272 1273 soft_reset_slave(slave); 1274 1275 /* setup priority mapping */ 1276 __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map); 1277 1278 switch (cpsw->version) { 1279 case CPSW_VERSION_1: 1280 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 1281 break; 1282 case CPSW_VERSION_2: 1283 case CPSW_VERSION_3: 1284 case CPSW_VERSION_4: 1285 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 1286 break; 1287 } 1288 1289 /* setup max packet size, and mac address */ 1290 __raw_writel(cpsw->rx_packet_max, &slave->sliver->rx_maxlen); 1291 cpsw_set_slave_mac(slave, priv); 1292 1293 slave->mac_control = 0; /* no link yet */ 1294 1295 slave_port = cpsw_get_slave_port(slave->slave_num); 1296 1297 if (cpsw->data.dual_emac) 1298 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 1299 else 1300 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1301 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 1302 1303 if (slave->data->phy_node) { 1304 phy = of_phy_connect(priv->ndev, slave->data->phy_node, 1305 &cpsw_adjust_link, 0, slave->data->phy_if); 1306 if (!phy) { 1307 dev_err(priv->dev, "phy \"%s\" not found on slave %d\n", 1308 slave->data->phy_node->full_name, 1309 slave->slave_num); 1310 return; 1311 } 1312 } else { 1313 phy = phy_connect(priv->ndev, slave->data->phy_id, 1314 &cpsw_adjust_link, slave->data->phy_if); 1315 if (IS_ERR(phy)) { 1316 dev_err(priv->dev, 1317 "phy \"%s\" not found on slave %d, err %ld\n", 1318 slave->data->phy_id, slave->slave_num, 1319 PTR_ERR(phy)); 1320 return; 1321 } 1322 } 1323 1324 slave->phy = phy; 1325 1326 phy_attached_info(slave->phy); 1327 1328 phy_start(slave->phy); 1329 1330 /* Configure GMII_SEL register */ 1331 cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num); 1332 } 1333 1334 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 1335 { 1336 struct cpsw_common *cpsw = priv->cpsw; 1337 const int vlan = cpsw->data.default_vlan; 1338 u32 reg; 1339 int i; 1340 int unreg_mcast_mask; 1341 1342 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 1343 CPSW2_PORT_VLAN; 1344 1345 writel(vlan, &cpsw->host_port_regs->port_vlan); 1346 1347 for (i = 0; i < cpsw->data.slaves; i++) 1348 slave_write(cpsw->slaves + i, vlan, reg); 1349 1350 if (priv->ndev->flags & IFF_ALLMULTI) 1351 unreg_mcast_mask = ALE_ALL_PORTS; 1352 else 1353 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1354 1355 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, 1356 ALE_ALL_PORTS, ALE_ALL_PORTS, 1357 unreg_mcast_mask); 1358 } 1359 1360 static void cpsw_init_host_port(struct cpsw_priv *priv) 1361 { 1362 u32 fifo_mode; 1363 u32 control_reg; 1364 struct cpsw_common *cpsw = priv->cpsw; 1365 1366 /* soft reset the controller and initialize ale */ 1367 soft_reset("cpsw", &cpsw->regs->soft_reset); 1368 cpsw_ale_start(cpsw->ale); 1369 1370 /* switch to vlan unaware mode */ 1371 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE, 1372 CPSW_ALE_VLAN_AWARE); 1373 control_reg = readl(&cpsw->regs->control); 1374 control_reg |= CPSW_VLAN_AWARE; 1375 writel(control_reg, &cpsw->regs->control); 1376 fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 1377 CPSW_FIFO_NORMAL_MODE; 1378 writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl); 1379 1380 /* setup host port priority mapping */ 1381 __raw_writel(CPDMA_TX_PRIORITY_MAP, 1382 &cpsw->host_port_regs->cpdma_tx_pri_map); 1383 __raw_writel(0, &cpsw->host_port_regs->cpdma_rx_chan_map); 1384 1385 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 1386 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1387 1388 if (!cpsw->data.dual_emac) { 1389 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 1390 0, 0); 1391 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1392 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2); 1393 } 1394 } 1395 1396 static int cpsw_fill_rx_channels(struct cpsw_priv *priv) 1397 { 1398 struct cpsw_common *cpsw = priv->cpsw; 1399 struct sk_buff *skb; 1400 int ch_buf_num; 1401 int ch, i, ret; 1402 1403 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1404 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch); 1405 for (i = 0; i < ch_buf_num; i++) { 1406 skb = __netdev_alloc_skb_ip_align(priv->ndev, 1407 cpsw->rx_packet_max, 1408 GFP_KERNEL); 1409 if (!skb) { 1410 cpsw_err(priv, ifup, "cannot allocate skb\n"); 1411 return -ENOMEM; 1412 } 1413 1414 skb_set_queue_mapping(skb, ch); 1415 ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb, 1416 skb->data, skb_tailroom(skb), 1417 0); 1418 if (ret < 0) { 1419 cpsw_err(priv, ifup, 1420 "cannot submit skb to channel %d rx, error %d\n", 1421 ch, ret); 1422 kfree_skb(skb); 1423 return ret; 1424 } 1425 kmemleak_not_leak(skb); 1426 } 1427 1428 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n", 1429 ch, ch_buf_num); 1430 } 1431 1432 return 0; 1433 } 1434 1435 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw) 1436 { 1437 u32 slave_port; 1438 1439 slave_port = cpsw_get_slave_port(slave->slave_num); 1440 1441 if (!slave->phy) 1442 return; 1443 phy_stop(slave->phy); 1444 phy_disconnect(slave->phy); 1445 slave->phy = NULL; 1446 cpsw_ale_control_set(cpsw->ale, slave_port, 1447 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1448 soft_reset_slave(slave); 1449 } 1450 1451 static int cpsw_ndo_open(struct net_device *ndev) 1452 { 1453 struct cpsw_priv *priv = netdev_priv(ndev); 1454 struct cpsw_common *cpsw = priv->cpsw; 1455 int ret; 1456 u32 reg; 1457 1458 ret = pm_runtime_get_sync(cpsw->dev); 1459 if (ret < 0) { 1460 pm_runtime_put_noidle(cpsw->dev); 1461 return ret; 1462 } 1463 1464 netif_carrier_off(ndev); 1465 1466 /* Notify the stack of the actual queue counts. */ 1467 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num); 1468 if (ret) { 1469 dev_err(priv->dev, "cannot set real number of tx queues\n"); 1470 goto err_cleanup; 1471 } 1472 1473 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num); 1474 if (ret) { 1475 dev_err(priv->dev, "cannot set real number of rx queues\n"); 1476 goto err_cleanup; 1477 } 1478 1479 reg = cpsw->version; 1480 1481 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 1482 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 1483 CPSW_RTL_VERSION(reg)); 1484 1485 /* Initialize host and slave ports */ 1486 if (!cpsw->usage_count) 1487 cpsw_init_host_port(priv); 1488 for_each_slave(priv, cpsw_slave_open, priv); 1489 1490 /* Add default VLAN */ 1491 if (!cpsw->data.dual_emac) 1492 cpsw_add_default_vlan(priv); 1493 else 1494 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan, 1495 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0); 1496 1497 /* initialize shared resources for every ndev */ 1498 if (!cpsw->usage_count) { 1499 /* disable priority elevation */ 1500 __raw_writel(0, &cpsw->regs->ptype); 1501 1502 /* enable statistics collection only on all ports */ 1503 __raw_writel(0x7, &cpsw->regs->stat_port_en); 1504 1505 /* Enable internal fifo flow control */ 1506 writel(0x7, &cpsw->regs->flow_control); 1507 1508 napi_enable(&cpsw->napi_rx); 1509 napi_enable(&cpsw->napi_tx); 1510 1511 if (cpsw->tx_irq_disabled) { 1512 cpsw->tx_irq_disabled = false; 1513 enable_irq(cpsw->irqs_table[1]); 1514 } 1515 1516 if (cpsw->rx_irq_disabled) { 1517 cpsw->rx_irq_disabled = false; 1518 enable_irq(cpsw->irqs_table[0]); 1519 } 1520 1521 ret = cpsw_fill_rx_channels(priv); 1522 if (ret < 0) 1523 goto err_cleanup; 1524 1525 if (cpts_register(cpsw->cpts)) 1526 dev_err(priv->dev, "error registering cpts device\n"); 1527 1528 } 1529 1530 /* Enable Interrupt pacing if configured */ 1531 if (cpsw->coal_intvl != 0) { 1532 struct ethtool_coalesce coal; 1533 1534 coal.rx_coalesce_usecs = cpsw->coal_intvl; 1535 cpsw_set_coalesce(ndev, &coal); 1536 } 1537 1538 cpdma_ctlr_start(cpsw->dma); 1539 cpsw_intr_enable(cpsw); 1540 cpsw->usage_count++; 1541 1542 return 0; 1543 1544 err_cleanup: 1545 cpdma_ctlr_stop(cpsw->dma); 1546 for_each_slave(priv, cpsw_slave_stop, cpsw); 1547 pm_runtime_put_sync(cpsw->dev); 1548 netif_carrier_off(priv->ndev); 1549 return ret; 1550 } 1551 1552 static int cpsw_ndo_stop(struct net_device *ndev) 1553 { 1554 struct cpsw_priv *priv = netdev_priv(ndev); 1555 struct cpsw_common *cpsw = priv->cpsw; 1556 1557 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 1558 netif_tx_stop_all_queues(priv->ndev); 1559 netif_carrier_off(priv->ndev); 1560 1561 if (cpsw->usage_count <= 1) { 1562 napi_disable(&cpsw->napi_rx); 1563 napi_disable(&cpsw->napi_tx); 1564 cpts_unregister(cpsw->cpts); 1565 cpsw_intr_disable(cpsw); 1566 cpdma_ctlr_stop(cpsw->dma); 1567 cpsw_ale_stop(cpsw->ale); 1568 } 1569 for_each_slave(priv, cpsw_slave_stop, cpsw); 1570 1571 if (cpsw_need_resplit(cpsw)) 1572 cpsw_split_res(ndev); 1573 1574 cpsw->usage_count--; 1575 pm_runtime_put_sync(cpsw->dev); 1576 return 0; 1577 } 1578 1579 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 1580 struct net_device *ndev) 1581 { 1582 struct cpsw_priv *priv = netdev_priv(ndev); 1583 struct cpsw_common *cpsw = priv->cpsw; 1584 struct netdev_queue *txq; 1585 struct cpdma_chan *txch; 1586 int ret, q_idx; 1587 1588 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { 1589 cpsw_err(priv, tx_err, "packet pad failed\n"); 1590 ndev->stats.tx_dropped++; 1591 return NET_XMIT_DROP; 1592 } 1593 1594 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 1595 cpts_is_tx_enabled(cpsw->cpts)) 1596 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1597 1598 skb_tx_timestamp(skb); 1599 1600 q_idx = skb_get_queue_mapping(skb); 1601 if (q_idx >= cpsw->tx_ch_num) 1602 q_idx = q_idx % cpsw->tx_ch_num; 1603 1604 txch = cpsw->txv[q_idx].ch; 1605 ret = cpsw_tx_packet_submit(priv, skb, txch); 1606 if (unlikely(ret != 0)) { 1607 cpsw_err(priv, tx_err, "desc submit failed\n"); 1608 goto fail; 1609 } 1610 1611 /* If there is no more tx desc left free then we need to 1612 * tell the kernel to stop sending us tx frames. 1613 */ 1614 if (unlikely(!cpdma_check_free_tx_desc(txch))) { 1615 txq = netdev_get_tx_queue(ndev, q_idx); 1616 netif_tx_stop_queue(txq); 1617 } 1618 1619 return NETDEV_TX_OK; 1620 fail: 1621 ndev->stats.tx_dropped++; 1622 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb)); 1623 netif_tx_stop_queue(txq); 1624 return NETDEV_TX_BUSY; 1625 } 1626 1627 #if IS_ENABLED(CONFIG_TI_CPTS) 1628 1629 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw) 1630 { 1631 struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave]; 1632 u32 ts_en, seq_id; 1633 1634 if (!cpts_is_tx_enabled(cpsw->cpts) && 1635 !cpts_is_rx_enabled(cpsw->cpts)) { 1636 slave_write(slave, 0, CPSW1_TS_CTL); 1637 return; 1638 } 1639 1640 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 1641 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 1642 1643 if (cpts_is_tx_enabled(cpsw->cpts)) 1644 ts_en |= CPSW_V1_TS_TX_EN; 1645 1646 if (cpts_is_rx_enabled(cpsw->cpts)) 1647 ts_en |= CPSW_V1_TS_RX_EN; 1648 1649 slave_write(slave, ts_en, CPSW1_TS_CTL); 1650 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 1651 } 1652 1653 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 1654 { 1655 struct cpsw_slave *slave; 1656 struct cpsw_common *cpsw = priv->cpsw; 1657 u32 ctrl, mtype; 1658 1659 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1660 1661 ctrl = slave_read(slave, CPSW2_CONTROL); 1662 switch (cpsw->version) { 1663 case CPSW_VERSION_2: 1664 ctrl &= ~CTRL_V2_ALL_TS_MASK; 1665 1666 if (cpts_is_tx_enabled(cpsw->cpts)) 1667 ctrl |= CTRL_V2_TX_TS_BITS; 1668 1669 if (cpts_is_rx_enabled(cpsw->cpts)) 1670 ctrl |= CTRL_V2_RX_TS_BITS; 1671 break; 1672 case CPSW_VERSION_3: 1673 default: 1674 ctrl &= ~CTRL_V3_ALL_TS_MASK; 1675 1676 if (cpts_is_tx_enabled(cpsw->cpts)) 1677 ctrl |= CTRL_V3_TX_TS_BITS; 1678 1679 if (cpts_is_rx_enabled(cpsw->cpts)) 1680 ctrl |= CTRL_V3_RX_TS_BITS; 1681 break; 1682 } 1683 1684 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 1685 1686 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 1687 slave_write(slave, ctrl, CPSW2_CONTROL); 1688 __raw_writel(ETH_P_1588, &cpsw->regs->ts_ltype); 1689 } 1690 1691 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1692 { 1693 struct cpsw_priv *priv = netdev_priv(dev); 1694 struct hwtstamp_config cfg; 1695 struct cpsw_common *cpsw = priv->cpsw; 1696 struct cpts *cpts = cpsw->cpts; 1697 1698 if (cpsw->version != CPSW_VERSION_1 && 1699 cpsw->version != CPSW_VERSION_2 && 1700 cpsw->version != CPSW_VERSION_3) 1701 return -EOPNOTSUPP; 1702 1703 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1704 return -EFAULT; 1705 1706 /* reserved for future extensions */ 1707 if (cfg.flags) 1708 return -EINVAL; 1709 1710 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 1711 return -ERANGE; 1712 1713 switch (cfg.rx_filter) { 1714 case HWTSTAMP_FILTER_NONE: 1715 cpts_rx_enable(cpts, 0); 1716 break; 1717 case HWTSTAMP_FILTER_ALL: 1718 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1719 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1720 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1721 return -ERANGE; 1722 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1723 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1724 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1725 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1726 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1727 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1728 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1729 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1730 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1731 cpts_rx_enable(cpts, 1); 1732 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1733 break; 1734 default: 1735 return -ERANGE; 1736 } 1737 1738 cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON); 1739 1740 switch (cpsw->version) { 1741 case CPSW_VERSION_1: 1742 cpsw_hwtstamp_v1(cpsw); 1743 break; 1744 case CPSW_VERSION_2: 1745 case CPSW_VERSION_3: 1746 cpsw_hwtstamp_v2(priv); 1747 break; 1748 default: 1749 WARN_ON(1); 1750 } 1751 1752 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1753 } 1754 1755 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1756 { 1757 struct cpsw_common *cpsw = ndev_to_cpsw(dev); 1758 struct cpts *cpts = cpsw->cpts; 1759 struct hwtstamp_config cfg; 1760 1761 if (cpsw->version != CPSW_VERSION_1 && 1762 cpsw->version != CPSW_VERSION_2 && 1763 cpsw->version != CPSW_VERSION_3) 1764 return -EOPNOTSUPP; 1765 1766 cfg.flags = 0; 1767 cfg.tx_type = cpts_is_tx_enabled(cpts) ? 1768 HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 1769 cfg.rx_filter = (cpts_is_rx_enabled(cpts) ? 1770 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE); 1771 1772 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1773 } 1774 #else 1775 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1776 { 1777 return -EOPNOTSUPP; 1778 } 1779 1780 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1781 { 1782 return -EOPNOTSUPP; 1783 } 1784 #endif /*CONFIG_TI_CPTS*/ 1785 1786 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 1787 { 1788 struct cpsw_priv *priv = netdev_priv(dev); 1789 struct cpsw_common *cpsw = priv->cpsw; 1790 int slave_no = cpsw_slave_index(cpsw, priv); 1791 1792 if (!netif_running(dev)) 1793 return -EINVAL; 1794 1795 switch (cmd) { 1796 case SIOCSHWTSTAMP: 1797 return cpsw_hwtstamp_set(dev, req); 1798 case SIOCGHWTSTAMP: 1799 return cpsw_hwtstamp_get(dev, req); 1800 } 1801 1802 if (!cpsw->slaves[slave_no].phy) 1803 return -EOPNOTSUPP; 1804 return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd); 1805 } 1806 1807 static void cpsw_ndo_tx_timeout(struct net_device *ndev) 1808 { 1809 struct cpsw_priv *priv = netdev_priv(ndev); 1810 struct cpsw_common *cpsw = priv->cpsw; 1811 int ch; 1812 1813 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 1814 ndev->stats.tx_errors++; 1815 cpsw_intr_disable(cpsw); 1816 for (ch = 0; ch < cpsw->tx_ch_num; ch++) { 1817 cpdma_chan_stop(cpsw->txv[ch].ch); 1818 cpdma_chan_start(cpsw->txv[ch].ch); 1819 } 1820 1821 cpsw_intr_enable(cpsw); 1822 netif_trans_update(ndev); 1823 netif_tx_wake_all_queues(ndev); 1824 } 1825 1826 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 1827 { 1828 struct cpsw_priv *priv = netdev_priv(ndev); 1829 struct sockaddr *addr = (struct sockaddr *)p; 1830 struct cpsw_common *cpsw = priv->cpsw; 1831 int flags = 0; 1832 u16 vid = 0; 1833 int ret; 1834 1835 if (!is_valid_ether_addr(addr->sa_data)) 1836 return -EADDRNOTAVAIL; 1837 1838 ret = pm_runtime_get_sync(cpsw->dev); 1839 if (ret < 0) { 1840 pm_runtime_put_noidle(cpsw->dev); 1841 return ret; 1842 } 1843 1844 if (cpsw->data.dual_emac) { 1845 vid = cpsw->slaves[priv->emac_port].port_vlan; 1846 flags = ALE_VLAN; 1847 } 1848 1849 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 1850 flags, vid); 1851 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM, 1852 flags, vid); 1853 1854 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 1855 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 1856 for_each_slave(priv, cpsw_set_slave_mac, priv); 1857 1858 pm_runtime_put(cpsw->dev); 1859 1860 return 0; 1861 } 1862 1863 #ifdef CONFIG_NET_POLL_CONTROLLER 1864 static void cpsw_ndo_poll_controller(struct net_device *ndev) 1865 { 1866 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1867 1868 cpsw_intr_disable(cpsw); 1869 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw); 1870 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw); 1871 cpsw_intr_enable(cpsw); 1872 } 1873 #endif 1874 1875 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 1876 unsigned short vid) 1877 { 1878 int ret; 1879 int unreg_mcast_mask = 0; 1880 u32 port_mask; 1881 struct cpsw_common *cpsw = priv->cpsw; 1882 1883 if (cpsw->data.dual_emac) { 1884 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; 1885 1886 if (priv->ndev->flags & IFF_ALLMULTI) 1887 unreg_mcast_mask = port_mask; 1888 } else { 1889 port_mask = ALE_ALL_PORTS; 1890 1891 if (priv->ndev->flags & IFF_ALLMULTI) 1892 unreg_mcast_mask = ALE_ALL_PORTS; 1893 else 1894 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1895 } 1896 1897 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask, 1898 unreg_mcast_mask); 1899 if (ret != 0) 1900 return ret; 1901 1902 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 1903 HOST_PORT_NUM, ALE_VLAN, vid); 1904 if (ret != 0) 1905 goto clean_vid; 1906 1907 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1908 port_mask, ALE_VLAN, vid, 0); 1909 if (ret != 0) 1910 goto clean_vlan_ucast; 1911 return 0; 1912 1913 clean_vlan_ucast: 1914 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 1915 HOST_PORT_NUM, ALE_VLAN, vid); 1916 clean_vid: 1917 cpsw_ale_del_vlan(cpsw->ale, vid, 0); 1918 return ret; 1919 } 1920 1921 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 1922 __be16 proto, u16 vid) 1923 { 1924 struct cpsw_priv *priv = netdev_priv(ndev); 1925 struct cpsw_common *cpsw = priv->cpsw; 1926 int ret; 1927 1928 if (vid == cpsw->data.default_vlan) 1929 return 0; 1930 1931 ret = pm_runtime_get_sync(cpsw->dev); 1932 if (ret < 0) { 1933 pm_runtime_put_noidle(cpsw->dev); 1934 return ret; 1935 } 1936 1937 if (cpsw->data.dual_emac) { 1938 /* In dual EMAC, reserved VLAN id should not be used for 1939 * creating VLAN interfaces as this can break the dual 1940 * EMAC port separation 1941 */ 1942 int i; 1943 1944 for (i = 0; i < cpsw->data.slaves; i++) { 1945 if (vid == cpsw->slaves[i].port_vlan) 1946 return -EINVAL; 1947 } 1948 } 1949 1950 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 1951 ret = cpsw_add_vlan_ale_entry(priv, vid); 1952 1953 pm_runtime_put(cpsw->dev); 1954 return ret; 1955 } 1956 1957 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 1958 __be16 proto, u16 vid) 1959 { 1960 struct cpsw_priv *priv = netdev_priv(ndev); 1961 struct cpsw_common *cpsw = priv->cpsw; 1962 int ret; 1963 1964 if (vid == cpsw->data.default_vlan) 1965 return 0; 1966 1967 ret = pm_runtime_get_sync(cpsw->dev); 1968 if (ret < 0) { 1969 pm_runtime_put_noidle(cpsw->dev); 1970 return ret; 1971 } 1972 1973 if (cpsw->data.dual_emac) { 1974 int i; 1975 1976 for (i = 0; i < cpsw->data.slaves; i++) { 1977 if (vid == cpsw->slaves[i].port_vlan) 1978 return -EINVAL; 1979 } 1980 } 1981 1982 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 1983 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0); 1984 if (ret != 0) 1985 return ret; 1986 1987 ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 1988 HOST_PORT_NUM, ALE_VLAN, vid); 1989 if (ret != 0) 1990 return ret; 1991 1992 ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast, 1993 0, ALE_VLAN, vid); 1994 pm_runtime_put(cpsw->dev); 1995 return ret; 1996 } 1997 1998 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate) 1999 { 2000 struct cpsw_priv *priv = netdev_priv(ndev); 2001 struct cpsw_common *cpsw = priv->cpsw; 2002 struct cpsw_slave *slave; 2003 u32 min_rate; 2004 u32 ch_rate; 2005 int i, ret; 2006 2007 ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate; 2008 if (ch_rate == rate) 2009 return 0; 2010 2011 ch_rate = rate * 1000; 2012 min_rate = cpdma_chan_get_min_rate(cpsw->dma); 2013 if ((ch_rate < min_rate && ch_rate)) { 2014 dev_err(priv->dev, "The channel rate cannot be less than %dMbps", 2015 min_rate); 2016 return -EINVAL; 2017 } 2018 2019 if (rate > cpsw->speed) { 2020 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps"); 2021 return -EINVAL; 2022 } 2023 2024 ret = pm_runtime_get_sync(cpsw->dev); 2025 if (ret < 0) { 2026 pm_runtime_put_noidle(cpsw->dev); 2027 return ret; 2028 } 2029 2030 ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate); 2031 pm_runtime_put(cpsw->dev); 2032 2033 if (ret) 2034 return ret; 2035 2036 /* update rates for slaves tx queues */ 2037 for (i = 0; i < cpsw->data.slaves; i++) { 2038 slave = &cpsw->slaves[i]; 2039 if (!slave->ndev) 2040 continue; 2041 2042 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate; 2043 } 2044 2045 cpsw_split_res(ndev); 2046 return ret; 2047 } 2048 2049 static const struct net_device_ops cpsw_netdev_ops = { 2050 .ndo_open = cpsw_ndo_open, 2051 .ndo_stop = cpsw_ndo_stop, 2052 .ndo_start_xmit = cpsw_ndo_start_xmit, 2053 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 2054 .ndo_do_ioctl = cpsw_ndo_ioctl, 2055 .ndo_validate_addr = eth_validate_addr, 2056 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 2057 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 2058 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate, 2059 #ifdef CONFIG_NET_POLL_CONTROLLER 2060 .ndo_poll_controller = cpsw_ndo_poll_controller, 2061 #endif 2062 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 2063 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 2064 }; 2065 2066 static int cpsw_get_regs_len(struct net_device *ndev) 2067 { 2068 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2069 2070 return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32); 2071 } 2072 2073 static void cpsw_get_regs(struct net_device *ndev, 2074 struct ethtool_regs *regs, void *p) 2075 { 2076 u32 *reg = p; 2077 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2078 2079 /* update CPSW IP version */ 2080 regs->version = cpsw->version; 2081 2082 cpsw_ale_dump(cpsw->ale, reg); 2083 } 2084 2085 static void cpsw_get_drvinfo(struct net_device *ndev, 2086 struct ethtool_drvinfo *info) 2087 { 2088 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2089 struct platform_device *pdev = to_platform_device(cpsw->dev); 2090 2091 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 2092 strlcpy(info->version, "1.0", sizeof(info->version)); 2093 strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info)); 2094 } 2095 2096 static u32 cpsw_get_msglevel(struct net_device *ndev) 2097 { 2098 struct cpsw_priv *priv = netdev_priv(ndev); 2099 return priv->msg_enable; 2100 } 2101 2102 static void cpsw_set_msglevel(struct net_device *ndev, u32 value) 2103 { 2104 struct cpsw_priv *priv = netdev_priv(ndev); 2105 priv->msg_enable = value; 2106 } 2107 2108 #if IS_ENABLED(CONFIG_TI_CPTS) 2109 static int cpsw_get_ts_info(struct net_device *ndev, 2110 struct ethtool_ts_info *info) 2111 { 2112 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2113 2114 info->so_timestamping = 2115 SOF_TIMESTAMPING_TX_HARDWARE | 2116 SOF_TIMESTAMPING_TX_SOFTWARE | 2117 SOF_TIMESTAMPING_RX_HARDWARE | 2118 SOF_TIMESTAMPING_RX_SOFTWARE | 2119 SOF_TIMESTAMPING_SOFTWARE | 2120 SOF_TIMESTAMPING_RAW_HARDWARE; 2121 info->phc_index = cpsw->cpts->phc_index; 2122 info->tx_types = 2123 (1 << HWTSTAMP_TX_OFF) | 2124 (1 << HWTSTAMP_TX_ON); 2125 info->rx_filters = 2126 (1 << HWTSTAMP_FILTER_NONE) | 2127 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2128 return 0; 2129 } 2130 #else 2131 static int cpsw_get_ts_info(struct net_device *ndev, 2132 struct ethtool_ts_info *info) 2133 { 2134 info->so_timestamping = 2135 SOF_TIMESTAMPING_TX_SOFTWARE | 2136 SOF_TIMESTAMPING_RX_SOFTWARE | 2137 SOF_TIMESTAMPING_SOFTWARE; 2138 info->phc_index = -1; 2139 info->tx_types = 0; 2140 info->rx_filters = 0; 2141 return 0; 2142 } 2143 #endif 2144 2145 static int cpsw_get_link_ksettings(struct net_device *ndev, 2146 struct ethtool_link_ksettings *ecmd) 2147 { 2148 struct cpsw_priv *priv = netdev_priv(ndev); 2149 struct cpsw_common *cpsw = priv->cpsw; 2150 int slave_no = cpsw_slave_index(cpsw, priv); 2151 2152 if (cpsw->slaves[slave_no].phy) 2153 return phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, 2154 ecmd); 2155 else 2156 return -EOPNOTSUPP; 2157 } 2158 2159 static int cpsw_set_link_ksettings(struct net_device *ndev, 2160 const struct ethtool_link_ksettings *ecmd) 2161 { 2162 struct cpsw_priv *priv = netdev_priv(ndev); 2163 struct cpsw_common *cpsw = priv->cpsw; 2164 int slave_no = cpsw_slave_index(cpsw, priv); 2165 2166 if (cpsw->slaves[slave_no].phy) 2167 return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy, 2168 ecmd); 2169 else 2170 return -EOPNOTSUPP; 2171 } 2172 2173 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2174 { 2175 struct cpsw_priv *priv = netdev_priv(ndev); 2176 struct cpsw_common *cpsw = priv->cpsw; 2177 int slave_no = cpsw_slave_index(cpsw, priv); 2178 2179 wol->supported = 0; 2180 wol->wolopts = 0; 2181 2182 if (cpsw->slaves[slave_no].phy) 2183 phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol); 2184 } 2185 2186 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2187 { 2188 struct cpsw_priv *priv = netdev_priv(ndev); 2189 struct cpsw_common *cpsw = priv->cpsw; 2190 int slave_no = cpsw_slave_index(cpsw, priv); 2191 2192 if (cpsw->slaves[slave_no].phy) 2193 return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol); 2194 else 2195 return -EOPNOTSUPP; 2196 } 2197 2198 static void cpsw_get_pauseparam(struct net_device *ndev, 2199 struct ethtool_pauseparam *pause) 2200 { 2201 struct cpsw_priv *priv = netdev_priv(ndev); 2202 2203 pause->autoneg = AUTONEG_DISABLE; 2204 pause->rx_pause = priv->rx_pause ? true : false; 2205 pause->tx_pause = priv->tx_pause ? true : false; 2206 } 2207 2208 static int cpsw_set_pauseparam(struct net_device *ndev, 2209 struct ethtool_pauseparam *pause) 2210 { 2211 struct cpsw_priv *priv = netdev_priv(ndev); 2212 bool link; 2213 2214 priv->rx_pause = pause->rx_pause ? true : false; 2215 priv->tx_pause = pause->tx_pause ? true : false; 2216 2217 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 2218 return 0; 2219 } 2220 2221 static int cpsw_ethtool_op_begin(struct net_device *ndev) 2222 { 2223 struct cpsw_priv *priv = netdev_priv(ndev); 2224 struct cpsw_common *cpsw = priv->cpsw; 2225 int ret; 2226 2227 ret = pm_runtime_get_sync(cpsw->dev); 2228 if (ret < 0) { 2229 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret); 2230 pm_runtime_put_noidle(cpsw->dev); 2231 } 2232 2233 return ret; 2234 } 2235 2236 static void cpsw_ethtool_op_complete(struct net_device *ndev) 2237 { 2238 struct cpsw_priv *priv = netdev_priv(ndev); 2239 int ret; 2240 2241 ret = pm_runtime_put(priv->cpsw->dev); 2242 if (ret < 0) 2243 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret); 2244 } 2245 2246 static void cpsw_get_channels(struct net_device *ndev, 2247 struct ethtool_channels *ch) 2248 { 2249 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2250 2251 ch->max_combined = 0; 2252 ch->max_rx = CPSW_MAX_QUEUES; 2253 ch->max_tx = CPSW_MAX_QUEUES; 2254 ch->max_other = 0; 2255 ch->other_count = 0; 2256 ch->rx_count = cpsw->rx_ch_num; 2257 ch->tx_count = cpsw->tx_ch_num; 2258 ch->combined_count = 0; 2259 } 2260 2261 static int cpsw_check_ch_settings(struct cpsw_common *cpsw, 2262 struct ethtool_channels *ch) 2263 { 2264 if (ch->combined_count) 2265 return -EINVAL; 2266 2267 /* verify we have at least one channel in each direction */ 2268 if (!ch->rx_count || !ch->tx_count) 2269 return -EINVAL; 2270 2271 if (ch->rx_count > cpsw->data.channels || 2272 ch->tx_count > cpsw->data.channels) 2273 return -EINVAL; 2274 2275 return 0; 2276 } 2277 2278 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx) 2279 { 2280 int (*poll)(struct napi_struct *, int); 2281 struct cpsw_common *cpsw = priv->cpsw; 2282 void (*handler)(void *, int, int); 2283 struct netdev_queue *queue; 2284 struct cpsw_vector *vec; 2285 int ret, *ch; 2286 2287 if (rx) { 2288 ch = &cpsw->rx_ch_num; 2289 vec = cpsw->rxv; 2290 handler = cpsw_rx_handler; 2291 poll = cpsw_rx_poll; 2292 } else { 2293 ch = &cpsw->tx_ch_num; 2294 vec = cpsw->txv; 2295 handler = cpsw_tx_handler; 2296 poll = cpsw_tx_poll; 2297 } 2298 2299 while (*ch < ch_num) { 2300 vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx); 2301 queue = netdev_get_tx_queue(priv->ndev, *ch); 2302 queue->tx_maxrate = 0; 2303 2304 if (IS_ERR(vec[*ch].ch)) 2305 return PTR_ERR(vec[*ch].ch); 2306 2307 if (!vec[*ch].ch) 2308 return -EINVAL; 2309 2310 cpsw_info(priv, ifup, "created new %d %s channel\n", *ch, 2311 (rx ? "rx" : "tx")); 2312 (*ch)++; 2313 } 2314 2315 while (*ch > ch_num) { 2316 (*ch)--; 2317 2318 ret = cpdma_chan_destroy(vec[*ch].ch); 2319 if (ret) 2320 return ret; 2321 2322 cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch, 2323 (rx ? "rx" : "tx")); 2324 } 2325 2326 return 0; 2327 } 2328 2329 static int cpsw_update_channels(struct cpsw_priv *priv, 2330 struct ethtool_channels *ch) 2331 { 2332 int ret; 2333 2334 ret = cpsw_update_channels_res(priv, ch->rx_count, 1); 2335 if (ret) 2336 return ret; 2337 2338 ret = cpsw_update_channels_res(priv, ch->tx_count, 0); 2339 if (ret) 2340 return ret; 2341 2342 return 0; 2343 } 2344 2345 static void cpsw_suspend_data_pass(struct net_device *ndev) 2346 { 2347 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2348 struct cpsw_slave *slave; 2349 int i; 2350 2351 /* Disable NAPI scheduling */ 2352 cpsw_intr_disable(cpsw); 2353 2354 /* Stop all transmit queues for every network device. 2355 * Disable re-using rx descriptors with dormant_on. 2356 */ 2357 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) { 2358 if (!(slave->ndev && netif_running(slave->ndev))) 2359 continue; 2360 2361 netif_tx_stop_all_queues(slave->ndev); 2362 netif_dormant_on(slave->ndev); 2363 } 2364 2365 /* Handle rest of tx packets and stop cpdma channels */ 2366 cpdma_ctlr_stop(cpsw->dma); 2367 } 2368 2369 static int cpsw_resume_data_pass(struct net_device *ndev) 2370 { 2371 struct cpsw_priv *priv = netdev_priv(ndev); 2372 struct cpsw_common *cpsw = priv->cpsw; 2373 struct cpsw_slave *slave; 2374 int i, ret; 2375 2376 /* Allow rx packets handling */ 2377 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) 2378 if (slave->ndev && netif_running(slave->ndev)) 2379 netif_dormant_off(slave->ndev); 2380 2381 /* After this receive is started */ 2382 if (cpsw->usage_count) { 2383 ret = cpsw_fill_rx_channels(priv); 2384 if (ret) 2385 return ret; 2386 2387 cpdma_ctlr_start(cpsw->dma); 2388 cpsw_intr_enable(cpsw); 2389 } 2390 2391 /* Resume transmit for every affected interface */ 2392 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) 2393 if (slave->ndev && netif_running(slave->ndev)) 2394 netif_tx_start_all_queues(slave->ndev); 2395 2396 return 0; 2397 } 2398 2399 static int cpsw_set_channels(struct net_device *ndev, 2400 struct ethtool_channels *chs) 2401 { 2402 struct cpsw_priv *priv = netdev_priv(ndev); 2403 struct cpsw_common *cpsw = priv->cpsw; 2404 struct cpsw_slave *slave; 2405 int i, ret; 2406 2407 ret = cpsw_check_ch_settings(cpsw, chs); 2408 if (ret < 0) 2409 return ret; 2410 2411 cpsw_suspend_data_pass(ndev); 2412 ret = cpsw_update_channels(priv, chs); 2413 if (ret) 2414 goto err; 2415 2416 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) { 2417 if (!(slave->ndev && netif_running(slave->ndev))) 2418 continue; 2419 2420 /* Inform stack about new count of queues */ 2421 ret = netif_set_real_num_tx_queues(slave->ndev, 2422 cpsw->tx_ch_num); 2423 if (ret) { 2424 dev_err(priv->dev, "cannot set real number of tx queues\n"); 2425 goto err; 2426 } 2427 2428 ret = netif_set_real_num_rx_queues(slave->ndev, 2429 cpsw->rx_ch_num); 2430 if (ret) { 2431 dev_err(priv->dev, "cannot set real number of rx queues\n"); 2432 goto err; 2433 } 2434 } 2435 2436 if (cpsw->usage_count) 2437 cpsw_split_res(ndev); 2438 2439 ret = cpsw_resume_data_pass(ndev); 2440 if (!ret) 2441 return 0; 2442 err: 2443 dev_err(priv->dev, "cannot update channels number, closing device\n"); 2444 dev_close(ndev); 2445 return ret; 2446 } 2447 2448 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata) 2449 { 2450 struct cpsw_priv *priv = netdev_priv(ndev); 2451 struct cpsw_common *cpsw = priv->cpsw; 2452 int slave_no = cpsw_slave_index(cpsw, priv); 2453 2454 if (cpsw->slaves[slave_no].phy) 2455 return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata); 2456 else 2457 return -EOPNOTSUPP; 2458 } 2459 2460 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata) 2461 { 2462 struct cpsw_priv *priv = netdev_priv(ndev); 2463 struct cpsw_common *cpsw = priv->cpsw; 2464 int slave_no = cpsw_slave_index(cpsw, priv); 2465 2466 if (cpsw->slaves[slave_no].phy) 2467 return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata); 2468 else 2469 return -EOPNOTSUPP; 2470 } 2471 2472 static int cpsw_nway_reset(struct net_device *ndev) 2473 { 2474 struct cpsw_priv *priv = netdev_priv(ndev); 2475 struct cpsw_common *cpsw = priv->cpsw; 2476 int slave_no = cpsw_slave_index(cpsw, priv); 2477 2478 if (cpsw->slaves[slave_no].phy) 2479 return genphy_restart_aneg(cpsw->slaves[slave_no].phy); 2480 else 2481 return -EOPNOTSUPP; 2482 } 2483 2484 static void cpsw_get_ringparam(struct net_device *ndev, 2485 struct ethtool_ringparam *ering) 2486 { 2487 struct cpsw_priv *priv = netdev_priv(ndev); 2488 struct cpsw_common *cpsw = priv->cpsw; 2489 2490 /* not supported */ 2491 ering->tx_max_pending = 0; 2492 ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma); 2493 ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES; 2494 ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma); 2495 } 2496 2497 static int cpsw_set_ringparam(struct net_device *ndev, 2498 struct ethtool_ringparam *ering) 2499 { 2500 struct cpsw_priv *priv = netdev_priv(ndev); 2501 struct cpsw_common *cpsw = priv->cpsw; 2502 int ret; 2503 2504 /* ignore ering->tx_pending - only rx_pending adjustment is supported */ 2505 2506 if (ering->rx_mini_pending || ering->rx_jumbo_pending || 2507 ering->rx_pending < CPSW_MAX_QUEUES || 2508 ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES)) 2509 return -EINVAL; 2510 2511 if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma)) 2512 return 0; 2513 2514 cpsw_suspend_data_pass(ndev); 2515 2516 cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending); 2517 2518 if (cpsw->usage_count) 2519 cpdma_chan_split_pool(cpsw->dma); 2520 2521 ret = cpsw_resume_data_pass(ndev); 2522 if (!ret) 2523 return 0; 2524 2525 dev_err(&ndev->dev, "cannot set ring params, closing device\n"); 2526 dev_close(ndev); 2527 return ret; 2528 } 2529 2530 static const struct ethtool_ops cpsw_ethtool_ops = { 2531 .get_drvinfo = cpsw_get_drvinfo, 2532 .get_msglevel = cpsw_get_msglevel, 2533 .set_msglevel = cpsw_set_msglevel, 2534 .get_link = ethtool_op_get_link, 2535 .get_ts_info = cpsw_get_ts_info, 2536 .get_coalesce = cpsw_get_coalesce, 2537 .set_coalesce = cpsw_set_coalesce, 2538 .get_sset_count = cpsw_get_sset_count, 2539 .get_strings = cpsw_get_strings, 2540 .get_ethtool_stats = cpsw_get_ethtool_stats, 2541 .get_pauseparam = cpsw_get_pauseparam, 2542 .set_pauseparam = cpsw_set_pauseparam, 2543 .get_wol = cpsw_get_wol, 2544 .set_wol = cpsw_set_wol, 2545 .get_regs_len = cpsw_get_regs_len, 2546 .get_regs = cpsw_get_regs, 2547 .begin = cpsw_ethtool_op_begin, 2548 .complete = cpsw_ethtool_op_complete, 2549 .get_channels = cpsw_get_channels, 2550 .set_channels = cpsw_set_channels, 2551 .get_link_ksettings = cpsw_get_link_ksettings, 2552 .set_link_ksettings = cpsw_set_link_ksettings, 2553 .get_eee = cpsw_get_eee, 2554 .set_eee = cpsw_set_eee, 2555 .nway_reset = cpsw_nway_reset, 2556 .get_ringparam = cpsw_get_ringparam, 2557 .set_ringparam = cpsw_set_ringparam, 2558 }; 2559 2560 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw, 2561 u32 slave_reg_ofs, u32 sliver_reg_ofs) 2562 { 2563 void __iomem *regs = cpsw->regs; 2564 int slave_num = slave->slave_num; 2565 struct cpsw_slave_data *data = cpsw->data.slave_data + slave_num; 2566 2567 slave->data = data; 2568 slave->regs = regs + slave_reg_ofs; 2569 slave->sliver = regs + sliver_reg_ofs; 2570 slave->port_vlan = data->dual_emac_res_vlan; 2571 } 2572 2573 static int cpsw_probe_dt(struct cpsw_platform_data *data, 2574 struct platform_device *pdev) 2575 { 2576 struct device_node *node = pdev->dev.of_node; 2577 struct device_node *slave_node; 2578 int i = 0, ret; 2579 u32 prop; 2580 2581 if (!node) 2582 return -EINVAL; 2583 2584 if (of_property_read_u32(node, "slaves", &prop)) { 2585 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 2586 return -EINVAL; 2587 } 2588 data->slaves = prop; 2589 2590 if (of_property_read_u32(node, "active_slave", &prop)) { 2591 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 2592 return -EINVAL; 2593 } 2594 data->active_slave = prop; 2595 2596 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves 2597 * sizeof(struct cpsw_slave_data), 2598 GFP_KERNEL); 2599 if (!data->slave_data) 2600 return -ENOMEM; 2601 2602 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 2603 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 2604 return -EINVAL; 2605 } 2606 data->channels = prop; 2607 2608 if (of_property_read_u32(node, "ale_entries", &prop)) { 2609 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); 2610 return -EINVAL; 2611 } 2612 data->ale_entries = prop; 2613 2614 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 2615 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 2616 return -EINVAL; 2617 } 2618 data->bd_ram_size = prop; 2619 2620 if (of_property_read_u32(node, "mac_control", &prop)) { 2621 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 2622 return -EINVAL; 2623 } 2624 data->mac_control = prop; 2625 2626 if (of_property_read_bool(node, "dual_emac")) 2627 data->dual_emac = 1; 2628 2629 /* 2630 * Populate all the child nodes here... 2631 */ 2632 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 2633 /* We do not want to force this, as in some cases may not have child */ 2634 if (ret) 2635 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 2636 2637 for_each_available_child_of_node(node, slave_node) { 2638 struct cpsw_slave_data *slave_data = data->slave_data + i; 2639 const void *mac_addr = NULL; 2640 int lenp; 2641 const __be32 *parp; 2642 2643 /* This is no slave child node, continue */ 2644 if (strcmp(slave_node->name, "slave")) 2645 continue; 2646 2647 slave_data->phy_node = of_parse_phandle(slave_node, 2648 "phy-handle", 0); 2649 parp = of_get_property(slave_node, "phy_id", &lenp); 2650 if (slave_data->phy_node) { 2651 dev_dbg(&pdev->dev, 2652 "slave[%d] using phy-handle=\"%s\"\n", 2653 i, slave_data->phy_node->full_name); 2654 } else if (of_phy_is_fixed_link(slave_node)) { 2655 /* In the case of a fixed PHY, the DT node associated 2656 * to the PHY is the Ethernet MAC DT node. 2657 */ 2658 ret = of_phy_register_fixed_link(slave_node); 2659 if (ret) { 2660 if (ret != -EPROBE_DEFER) 2661 dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret); 2662 return ret; 2663 } 2664 slave_data->phy_node = of_node_get(slave_node); 2665 } else if (parp) { 2666 u32 phyid; 2667 struct device_node *mdio_node; 2668 struct platform_device *mdio; 2669 2670 if (lenp != (sizeof(__be32) * 2)) { 2671 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i); 2672 goto no_phy_slave; 2673 } 2674 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 2675 phyid = be32_to_cpup(parp+1); 2676 mdio = of_find_device_by_node(mdio_node); 2677 of_node_put(mdio_node); 2678 if (!mdio) { 2679 dev_err(&pdev->dev, "Missing mdio platform device\n"); 2680 return -EINVAL; 2681 } 2682 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 2683 PHY_ID_FMT, mdio->name, phyid); 2684 put_device(&mdio->dev); 2685 } else { 2686 dev_err(&pdev->dev, 2687 "No slave[%d] phy_id, phy-handle, or fixed-link property\n", 2688 i); 2689 goto no_phy_slave; 2690 } 2691 slave_data->phy_if = of_get_phy_mode(slave_node); 2692 if (slave_data->phy_if < 0) { 2693 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 2694 i); 2695 return slave_data->phy_if; 2696 } 2697 2698 no_phy_slave: 2699 mac_addr = of_get_mac_address(slave_node); 2700 if (mac_addr) { 2701 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN); 2702 } else { 2703 ret = ti_cm_get_macid(&pdev->dev, i, 2704 slave_data->mac_addr); 2705 if (ret) 2706 return ret; 2707 } 2708 if (data->dual_emac) { 2709 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 2710 &prop)) { 2711 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 2712 slave_data->dual_emac_res_vlan = i+1; 2713 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 2714 slave_data->dual_emac_res_vlan, i); 2715 } else { 2716 slave_data->dual_emac_res_vlan = prop; 2717 } 2718 } 2719 2720 i++; 2721 if (i == data->slaves) 2722 break; 2723 } 2724 2725 return 0; 2726 } 2727 2728 static void cpsw_remove_dt(struct platform_device *pdev) 2729 { 2730 struct net_device *ndev = platform_get_drvdata(pdev); 2731 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2732 struct cpsw_platform_data *data = &cpsw->data; 2733 struct device_node *node = pdev->dev.of_node; 2734 struct device_node *slave_node; 2735 int i = 0; 2736 2737 for_each_available_child_of_node(node, slave_node) { 2738 struct cpsw_slave_data *slave_data = &data->slave_data[i]; 2739 2740 if (strcmp(slave_node->name, "slave")) 2741 continue; 2742 2743 if (of_phy_is_fixed_link(slave_node)) 2744 of_phy_deregister_fixed_link(slave_node); 2745 2746 of_node_put(slave_data->phy_node); 2747 2748 i++; 2749 if (i == data->slaves) 2750 break; 2751 } 2752 2753 of_platform_depopulate(&pdev->dev); 2754 } 2755 2756 static int cpsw_probe_dual_emac(struct cpsw_priv *priv) 2757 { 2758 struct cpsw_common *cpsw = priv->cpsw; 2759 struct cpsw_platform_data *data = &cpsw->data; 2760 struct net_device *ndev; 2761 struct cpsw_priv *priv_sl2; 2762 int ret = 0; 2763 2764 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES); 2765 if (!ndev) { 2766 dev_err(cpsw->dev, "cpsw: error allocating net_device\n"); 2767 return -ENOMEM; 2768 } 2769 2770 priv_sl2 = netdev_priv(ndev); 2771 priv_sl2->cpsw = cpsw; 2772 priv_sl2->ndev = ndev; 2773 priv_sl2->dev = &ndev->dev; 2774 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2775 2776 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 2777 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 2778 ETH_ALEN); 2779 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n", 2780 priv_sl2->mac_addr); 2781 } else { 2782 random_ether_addr(priv_sl2->mac_addr); 2783 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n", 2784 priv_sl2->mac_addr); 2785 } 2786 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); 2787 2788 priv_sl2->emac_port = 1; 2789 cpsw->slaves[1].ndev = ndev; 2790 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2791 2792 ndev->netdev_ops = &cpsw_netdev_ops; 2793 ndev->ethtool_ops = &cpsw_ethtool_ops; 2794 2795 /* register the network device */ 2796 SET_NETDEV_DEV(ndev, cpsw->dev); 2797 ret = register_netdev(ndev); 2798 if (ret) { 2799 dev_err(cpsw->dev, "cpsw: error registering net device\n"); 2800 free_netdev(ndev); 2801 ret = -ENODEV; 2802 } 2803 2804 return ret; 2805 } 2806 2807 #define CPSW_QUIRK_IRQ BIT(0) 2808 2809 static struct platform_device_id cpsw_devtype[] = { 2810 { 2811 /* keep it for existing comaptibles */ 2812 .name = "cpsw", 2813 .driver_data = CPSW_QUIRK_IRQ, 2814 }, { 2815 .name = "am335x-cpsw", 2816 .driver_data = CPSW_QUIRK_IRQ, 2817 }, { 2818 .name = "am4372-cpsw", 2819 .driver_data = 0, 2820 }, { 2821 .name = "dra7-cpsw", 2822 .driver_data = 0, 2823 }, { 2824 /* sentinel */ 2825 } 2826 }; 2827 MODULE_DEVICE_TABLE(platform, cpsw_devtype); 2828 2829 enum ti_cpsw_type { 2830 CPSW = 0, 2831 AM335X_CPSW, 2832 AM4372_CPSW, 2833 DRA7_CPSW, 2834 }; 2835 2836 static const struct of_device_id cpsw_of_mtable[] = { 2837 { .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], }, 2838 { .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], }, 2839 { .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], }, 2840 { .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], }, 2841 { /* sentinel */ }, 2842 }; 2843 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 2844 2845 static int cpsw_probe(struct platform_device *pdev) 2846 { 2847 struct clk *clk; 2848 struct cpsw_platform_data *data; 2849 struct net_device *ndev; 2850 struct cpsw_priv *priv; 2851 struct cpdma_params dma_params; 2852 struct cpsw_ale_params ale_params; 2853 void __iomem *ss_regs; 2854 void __iomem *cpts_regs; 2855 struct resource *res, *ss_res; 2856 const struct of_device_id *of_id; 2857 struct gpio_descs *mode; 2858 u32 slave_offset, sliver_offset, slave_size; 2859 struct cpsw_common *cpsw; 2860 int ret = 0, i; 2861 int irq; 2862 2863 cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL); 2864 if (!cpsw) 2865 return -ENOMEM; 2866 2867 cpsw->dev = &pdev->dev; 2868 2869 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES); 2870 if (!ndev) { 2871 dev_err(&pdev->dev, "error allocating net_device\n"); 2872 return -ENOMEM; 2873 } 2874 2875 platform_set_drvdata(pdev, ndev); 2876 priv = netdev_priv(ndev); 2877 priv->cpsw = cpsw; 2878 priv->ndev = ndev; 2879 priv->dev = &ndev->dev; 2880 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2881 cpsw->rx_packet_max = max(rx_packet_max, 128); 2882 2883 mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW); 2884 if (IS_ERR(mode)) { 2885 ret = PTR_ERR(mode); 2886 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret); 2887 goto clean_ndev_ret; 2888 } 2889 2890 /* 2891 * This may be required here for child devices. 2892 */ 2893 pm_runtime_enable(&pdev->dev); 2894 2895 /* Select default pin state */ 2896 pinctrl_pm_select_default_state(&pdev->dev); 2897 2898 /* Need to enable clocks with runtime PM api to access module 2899 * registers 2900 */ 2901 ret = pm_runtime_get_sync(&pdev->dev); 2902 if (ret < 0) { 2903 pm_runtime_put_noidle(&pdev->dev); 2904 goto clean_runtime_disable_ret; 2905 } 2906 2907 ret = cpsw_probe_dt(&cpsw->data, pdev); 2908 if (ret) 2909 goto clean_dt_ret; 2910 2911 data = &cpsw->data; 2912 cpsw->rx_ch_num = 1; 2913 cpsw->tx_ch_num = 1; 2914 2915 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 2916 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 2917 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr); 2918 } else { 2919 eth_random_addr(priv->mac_addr); 2920 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr); 2921 } 2922 2923 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 2924 2925 cpsw->slaves = devm_kzalloc(&pdev->dev, 2926 sizeof(struct cpsw_slave) * data->slaves, 2927 GFP_KERNEL); 2928 if (!cpsw->slaves) { 2929 ret = -ENOMEM; 2930 goto clean_dt_ret; 2931 } 2932 for (i = 0; i < data->slaves; i++) 2933 cpsw->slaves[i].slave_num = i; 2934 2935 cpsw->slaves[0].ndev = ndev; 2936 priv->emac_port = 0; 2937 2938 clk = devm_clk_get(&pdev->dev, "fck"); 2939 if (IS_ERR(clk)) { 2940 dev_err(priv->dev, "fck is not found\n"); 2941 ret = -ENODEV; 2942 goto clean_dt_ret; 2943 } 2944 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000; 2945 2946 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2947 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res); 2948 if (IS_ERR(ss_regs)) { 2949 ret = PTR_ERR(ss_regs); 2950 goto clean_dt_ret; 2951 } 2952 cpsw->regs = ss_regs; 2953 2954 cpsw->version = readl(&cpsw->regs->id_ver); 2955 2956 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 2957 cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res); 2958 if (IS_ERR(cpsw->wr_regs)) { 2959 ret = PTR_ERR(cpsw->wr_regs); 2960 goto clean_dt_ret; 2961 } 2962 2963 memset(&dma_params, 0, sizeof(dma_params)); 2964 memset(&ale_params, 0, sizeof(ale_params)); 2965 2966 switch (cpsw->version) { 2967 case CPSW_VERSION_1: 2968 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 2969 cpts_regs = ss_regs + CPSW1_CPTS_OFFSET; 2970 cpsw->hw_stats = ss_regs + CPSW1_HW_STATS; 2971 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 2972 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 2973 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 2974 slave_offset = CPSW1_SLAVE_OFFSET; 2975 slave_size = CPSW1_SLAVE_SIZE; 2976 sliver_offset = CPSW1_SLIVER_OFFSET; 2977 dma_params.desc_mem_phys = 0; 2978 break; 2979 case CPSW_VERSION_2: 2980 case CPSW_VERSION_3: 2981 case CPSW_VERSION_4: 2982 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 2983 cpts_regs = ss_regs + CPSW2_CPTS_OFFSET; 2984 cpsw->hw_stats = ss_regs + CPSW2_HW_STATS; 2985 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 2986 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 2987 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 2988 slave_offset = CPSW2_SLAVE_OFFSET; 2989 slave_size = CPSW2_SLAVE_SIZE; 2990 sliver_offset = CPSW2_SLIVER_OFFSET; 2991 dma_params.desc_mem_phys = 2992 (u32 __force) ss_res->start + CPSW2_BD_OFFSET; 2993 break; 2994 default: 2995 dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version); 2996 ret = -ENODEV; 2997 goto clean_dt_ret; 2998 } 2999 for (i = 0; i < cpsw->data.slaves; i++) { 3000 struct cpsw_slave *slave = &cpsw->slaves[i]; 3001 3002 cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset); 3003 slave_offset += slave_size; 3004 sliver_offset += SLIVER_SIZE; 3005 } 3006 3007 dma_params.dev = &pdev->dev; 3008 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 3009 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 3010 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 3011 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 3012 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 3013 3014 dma_params.num_chan = data->channels; 3015 dma_params.has_soft_reset = true; 3016 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 3017 dma_params.desc_mem_size = data->bd_ram_size; 3018 dma_params.desc_align = 16; 3019 dma_params.has_ext_regs = true; 3020 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 3021 dma_params.bus_freq_mhz = cpsw->bus_freq_mhz; 3022 dma_params.descs_pool_size = descs_pool_size; 3023 3024 cpsw->dma = cpdma_ctlr_create(&dma_params); 3025 if (!cpsw->dma) { 3026 dev_err(priv->dev, "error initializing dma\n"); 3027 ret = -ENOMEM; 3028 goto clean_dt_ret; 3029 } 3030 3031 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0); 3032 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1); 3033 if (WARN_ON(!cpsw->rxv[0].ch || !cpsw->txv[0].ch)) { 3034 dev_err(priv->dev, "error initializing dma channels\n"); 3035 ret = -ENOMEM; 3036 goto clean_dma_ret; 3037 } 3038 3039 ale_params.dev = &pdev->dev; 3040 ale_params.ale_ageout = ale_ageout; 3041 ale_params.ale_entries = data->ale_entries; 3042 ale_params.ale_ports = data->slaves; 3043 3044 cpsw->ale = cpsw_ale_create(&ale_params); 3045 if (!cpsw->ale) { 3046 dev_err(priv->dev, "error initializing ale engine\n"); 3047 ret = -ENODEV; 3048 goto clean_dma_ret; 3049 } 3050 3051 cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node); 3052 if (IS_ERR(cpsw->cpts)) { 3053 ret = PTR_ERR(cpsw->cpts); 3054 goto clean_ale_ret; 3055 } 3056 3057 ndev->irq = platform_get_irq(pdev, 1); 3058 if (ndev->irq < 0) { 3059 dev_err(priv->dev, "error getting irq resource\n"); 3060 ret = ndev->irq; 3061 goto clean_ale_ret; 3062 } 3063 3064 of_id = of_match_device(cpsw_of_mtable, &pdev->dev); 3065 if (of_id) { 3066 pdev->id_entry = of_id->data; 3067 if (pdev->id_entry->driver_data) 3068 cpsw->quirk_irq = true; 3069 } 3070 3071 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 3072 * MISC IRQs which are always kept disabled with this driver so 3073 * we will not request them. 3074 * 3075 * If anyone wants to implement support for those, make sure to 3076 * first request and append them to irqs_table array. 3077 */ 3078 3079 /* RX IRQ */ 3080 irq = platform_get_irq(pdev, 1); 3081 if (irq < 0) { 3082 ret = irq; 3083 goto clean_ale_ret; 3084 } 3085 3086 cpsw->irqs_table[0] = irq; 3087 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt, 3088 0, dev_name(&pdev->dev), cpsw); 3089 if (ret < 0) { 3090 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 3091 goto clean_ale_ret; 3092 } 3093 3094 /* TX IRQ */ 3095 irq = platform_get_irq(pdev, 2); 3096 if (irq < 0) { 3097 ret = irq; 3098 goto clean_ale_ret; 3099 } 3100 3101 cpsw->irqs_table[1] = irq; 3102 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt, 3103 0, dev_name(&pdev->dev), cpsw); 3104 if (ret < 0) { 3105 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 3106 goto clean_ale_ret; 3107 } 3108 3109 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 3110 3111 ndev->netdev_ops = &cpsw_netdev_ops; 3112 ndev->ethtool_ops = &cpsw_ethtool_ops; 3113 netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT); 3114 netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT); 3115 cpsw_split_res(ndev); 3116 3117 /* register the network device */ 3118 SET_NETDEV_DEV(ndev, &pdev->dev); 3119 ret = register_netdev(ndev); 3120 if (ret) { 3121 dev_err(priv->dev, "error registering net device\n"); 3122 ret = -ENODEV; 3123 goto clean_ale_ret; 3124 } 3125 3126 cpsw_notice(priv, probe, 3127 "initialized device (regs %pa, irq %d, pool size %d)\n", 3128 &ss_res->start, ndev->irq, dma_params.descs_pool_size); 3129 if (cpsw->data.dual_emac) { 3130 ret = cpsw_probe_dual_emac(priv); 3131 if (ret) { 3132 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 3133 goto clean_unregister_netdev_ret; 3134 } 3135 } 3136 3137 pm_runtime_put(&pdev->dev); 3138 3139 return 0; 3140 3141 clean_unregister_netdev_ret: 3142 unregister_netdev(ndev); 3143 clean_ale_ret: 3144 cpsw_ale_destroy(cpsw->ale); 3145 clean_dma_ret: 3146 cpdma_ctlr_destroy(cpsw->dma); 3147 clean_dt_ret: 3148 cpsw_remove_dt(pdev); 3149 pm_runtime_put_sync(&pdev->dev); 3150 clean_runtime_disable_ret: 3151 pm_runtime_disable(&pdev->dev); 3152 clean_ndev_ret: 3153 free_netdev(priv->ndev); 3154 return ret; 3155 } 3156 3157 static int cpsw_remove(struct platform_device *pdev) 3158 { 3159 struct net_device *ndev = platform_get_drvdata(pdev); 3160 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3161 int ret; 3162 3163 ret = pm_runtime_get_sync(&pdev->dev); 3164 if (ret < 0) { 3165 pm_runtime_put_noidle(&pdev->dev); 3166 return ret; 3167 } 3168 3169 if (cpsw->data.dual_emac) 3170 unregister_netdev(cpsw->slaves[1].ndev); 3171 unregister_netdev(ndev); 3172 3173 cpts_release(cpsw->cpts); 3174 cpsw_ale_destroy(cpsw->ale); 3175 cpdma_ctlr_destroy(cpsw->dma); 3176 cpsw_remove_dt(pdev); 3177 pm_runtime_put_sync(&pdev->dev); 3178 pm_runtime_disable(&pdev->dev); 3179 if (cpsw->data.dual_emac) 3180 free_netdev(cpsw->slaves[1].ndev); 3181 free_netdev(ndev); 3182 return 0; 3183 } 3184 3185 #ifdef CONFIG_PM_SLEEP 3186 static int cpsw_suspend(struct device *dev) 3187 { 3188 struct platform_device *pdev = to_platform_device(dev); 3189 struct net_device *ndev = platform_get_drvdata(pdev); 3190 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3191 3192 if (cpsw->data.dual_emac) { 3193 int i; 3194 3195 for (i = 0; i < cpsw->data.slaves; i++) { 3196 if (netif_running(cpsw->slaves[i].ndev)) 3197 cpsw_ndo_stop(cpsw->slaves[i].ndev); 3198 } 3199 } else { 3200 if (netif_running(ndev)) 3201 cpsw_ndo_stop(ndev); 3202 } 3203 3204 /* Select sleep pin state */ 3205 pinctrl_pm_select_sleep_state(dev); 3206 3207 return 0; 3208 } 3209 3210 static int cpsw_resume(struct device *dev) 3211 { 3212 struct platform_device *pdev = to_platform_device(dev); 3213 struct net_device *ndev = platform_get_drvdata(pdev); 3214 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3215 3216 /* Select default pin state */ 3217 pinctrl_pm_select_default_state(dev); 3218 3219 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */ 3220 rtnl_lock(); 3221 if (cpsw->data.dual_emac) { 3222 int i; 3223 3224 for (i = 0; i < cpsw->data.slaves; i++) { 3225 if (netif_running(cpsw->slaves[i].ndev)) 3226 cpsw_ndo_open(cpsw->slaves[i].ndev); 3227 } 3228 } else { 3229 if (netif_running(ndev)) 3230 cpsw_ndo_open(ndev); 3231 } 3232 rtnl_unlock(); 3233 3234 return 0; 3235 } 3236 #endif 3237 3238 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 3239 3240 static struct platform_driver cpsw_driver = { 3241 .driver = { 3242 .name = "cpsw", 3243 .pm = &cpsw_pm_ops, 3244 .of_match_table = cpsw_of_mtable, 3245 }, 3246 .probe = cpsw_probe, 3247 .remove = cpsw_remove, 3248 }; 3249 3250 module_platform_driver(cpsw_driver); 3251 3252 MODULE_LICENSE("GPL"); 3253 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 3254 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 3255 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 3256