xref: /linux/drivers/net/ethernet/ti/cpsw.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * Texas Instruments Ethernet Switch Driver
3  *
4  * Copyright (C) 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38 
39 #include <linux/pinctrl/consumer.h>
40 
41 #include "cpsw.h"
42 #include "cpsw_ale.h"
43 #include "cpts.h"
44 #include "davinci_cpdma.h"
45 
46 #define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
47 			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
48 			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
49 			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
50 			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
51 			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
52 			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
53 			 NETIF_MSG_RX_STATUS)
54 
55 #define cpsw_info(priv, type, format, ...)		\
56 do {								\
57 	if (netif_msg_##type(priv) && net_ratelimit())		\
58 		dev_info(priv->dev, format, ## __VA_ARGS__);	\
59 } while (0)
60 
61 #define cpsw_err(priv, type, format, ...)		\
62 do {								\
63 	if (netif_msg_##type(priv) && net_ratelimit())		\
64 		dev_err(priv->dev, format, ## __VA_ARGS__);	\
65 } while (0)
66 
67 #define cpsw_dbg(priv, type, format, ...)		\
68 do {								\
69 	if (netif_msg_##type(priv) && net_ratelimit())		\
70 		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
71 } while (0)
72 
73 #define cpsw_notice(priv, type, format, ...)		\
74 do {								\
75 	if (netif_msg_##type(priv) && net_ratelimit())		\
76 		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
77 } while (0)
78 
79 #define ALE_ALL_PORTS		0x7
80 
81 #define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
82 #define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
83 #define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)
84 
85 #define CPSW_VERSION_1		0x19010a
86 #define CPSW_VERSION_2		0x19010c
87 #define CPSW_VERSION_3		0x19010f
88 #define CPSW_VERSION_4		0x190112
89 
90 #define HOST_PORT_NUM		0
91 #define SLIVER_SIZE		0x40
92 
93 #define CPSW1_HOST_PORT_OFFSET	0x028
94 #define CPSW1_SLAVE_OFFSET	0x050
95 #define CPSW1_SLAVE_SIZE	0x040
96 #define CPSW1_CPDMA_OFFSET	0x100
97 #define CPSW1_STATERAM_OFFSET	0x200
98 #define CPSW1_HW_STATS		0x400
99 #define CPSW1_CPTS_OFFSET	0x500
100 #define CPSW1_ALE_OFFSET	0x600
101 #define CPSW1_SLIVER_OFFSET	0x700
102 
103 #define CPSW2_HOST_PORT_OFFSET	0x108
104 #define CPSW2_SLAVE_OFFSET	0x200
105 #define CPSW2_SLAVE_SIZE	0x100
106 #define CPSW2_CPDMA_OFFSET	0x800
107 #define CPSW2_HW_STATS		0x900
108 #define CPSW2_STATERAM_OFFSET	0xa00
109 #define CPSW2_CPTS_OFFSET	0xc00
110 #define CPSW2_ALE_OFFSET	0xd00
111 #define CPSW2_SLIVER_OFFSET	0xd80
112 #define CPSW2_BD_OFFSET		0x2000
113 
114 #define CPDMA_RXTHRESH		0x0c0
115 #define CPDMA_RXFREE		0x0e0
116 #define CPDMA_TXHDP		0x00
117 #define CPDMA_RXHDP		0x20
118 #define CPDMA_TXCP		0x40
119 #define CPDMA_RXCP		0x60
120 
121 #define CPSW_POLL_WEIGHT	64
122 #define CPSW_MIN_PACKET_SIZE	60
123 #define CPSW_MAX_PACKET_SIZE	(1500 + 14 + 4 + 4)
124 
125 #define RX_PRIORITY_MAPPING	0x76543210
126 #define TX_PRIORITY_MAPPING	0x33221100
127 #define CPDMA_TX_PRIORITY_MAP	0x01234567
128 
129 #define CPSW_VLAN_AWARE		BIT(1)
130 #define CPSW_ALE_VLAN_AWARE	1
131 
132 #define CPSW_FIFO_NORMAL_MODE		(0 << 16)
133 #define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
134 #define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
135 
136 #define CPSW_INTPACEEN		(0x3f << 16)
137 #define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
138 #define CPSW_CMINTMAX_CNT	63
139 #define CPSW_CMINTMIN_CNT	2
140 #define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
141 #define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)
142 
143 #define cpsw_slave_index(cpsw, priv)				\
144 		((cpsw->data.dual_emac) ? priv->emac_port :	\
145 		cpsw->data.active_slave)
146 #define IRQ_NUM			2
147 #define CPSW_MAX_QUEUES		8
148 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
149 
150 static int debug_level;
151 module_param(debug_level, int, 0);
152 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
153 
154 static int ale_ageout = 10;
155 module_param(ale_ageout, int, 0);
156 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
157 
158 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
159 module_param(rx_packet_max, int, 0);
160 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
161 
162 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
163 module_param(descs_pool_size, int, 0444);
164 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
165 
166 struct cpsw_wr_regs {
167 	u32	id_ver;
168 	u32	soft_reset;
169 	u32	control;
170 	u32	int_control;
171 	u32	rx_thresh_en;
172 	u32	rx_en;
173 	u32	tx_en;
174 	u32	misc_en;
175 	u32	mem_allign1[8];
176 	u32	rx_thresh_stat;
177 	u32	rx_stat;
178 	u32	tx_stat;
179 	u32	misc_stat;
180 	u32	mem_allign2[8];
181 	u32	rx_imax;
182 	u32	tx_imax;
183 
184 };
185 
186 struct cpsw_ss_regs {
187 	u32	id_ver;
188 	u32	control;
189 	u32	soft_reset;
190 	u32	stat_port_en;
191 	u32	ptype;
192 	u32	soft_idle;
193 	u32	thru_rate;
194 	u32	gap_thresh;
195 	u32	tx_start_wds;
196 	u32	flow_control;
197 	u32	vlan_ltype;
198 	u32	ts_ltype;
199 	u32	dlr_ltype;
200 };
201 
202 /* CPSW_PORT_V1 */
203 #define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
204 #define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
205 #define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
206 #define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
207 #define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
208 #define CPSW1_TS_CTL        0x14 /* Time Sync Control */
209 #define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
210 #define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */
211 
212 /* CPSW_PORT_V2 */
213 #define CPSW2_CONTROL       0x00 /* Control Register */
214 #define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
215 #define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
216 #define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
217 #define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
218 #define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
219 #define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */
220 
221 /* CPSW_PORT_V1 and V2 */
222 #define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
223 #define SA_HI               0x24 /* CPGMAC_SL Source Address High */
224 #define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */
225 
226 /* CPSW_PORT_V2 only */
227 #define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
228 #define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
229 #define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
230 #define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
231 #define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
232 #define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
233 #define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
234 #define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */
235 
236 /* Bit definitions for the CPSW2_CONTROL register */
237 #define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
238 #define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
239 #define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
240 #define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
241 #define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
242 #define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
243 #define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
244 #define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
245 #define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
246 #define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
247 #define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
248 #define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
249 #define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
250 #define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
251 #define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
252 #define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
253 #define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */
254 
255 #define CTRL_V2_TS_BITS \
256 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
257 	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
258 
259 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
260 #define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
261 #define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)
262 
263 
264 #define CTRL_V3_TS_BITS \
265 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
266 	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
267 	 TS_LTYPE1_EN)
268 
269 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
270 #define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
271 #define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
272 
273 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
274 #define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
275 #define TS_SEQ_ID_OFFSET_MASK    (0x3f)
276 #define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
277 #define TS_MSG_TYPE_EN_MASK      (0xffff)
278 
279 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
280 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
281 
282 /* Bit definitions for the CPSW1_TS_CTL register */
283 #define CPSW_V1_TS_RX_EN		BIT(0)
284 #define CPSW_V1_TS_TX_EN		BIT(4)
285 #define CPSW_V1_MSG_TYPE_OFS		16
286 
287 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
288 #define CPSW_V1_SEQ_ID_OFS_SHIFT	16
289 
290 struct cpsw_host_regs {
291 	u32	max_blks;
292 	u32	blk_cnt;
293 	u32	tx_in_ctl;
294 	u32	port_vlan;
295 	u32	tx_pri_map;
296 	u32	cpdma_tx_pri_map;
297 	u32	cpdma_rx_chan_map;
298 };
299 
300 struct cpsw_sliver_regs {
301 	u32	id_ver;
302 	u32	mac_control;
303 	u32	mac_status;
304 	u32	soft_reset;
305 	u32	rx_maxlen;
306 	u32	__reserved_0;
307 	u32	rx_pause;
308 	u32	tx_pause;
309 	u32	__reserved_1;
310 	u32	rx_pri_map;
311 };
312 
313 struct cpsw_hw_stats {
314 	u32	rxgoodframes;
315 	u32	rxbroadcastframes;
316 	u32	rxmulticastframes;
317 	u32	rxpauseframes;
318 	u32	rxcrcerrors;
319 	u32	rxaligncodeerrors;
320 	u32	rxoversizedframes;
321 	u32	rxjabberframes;
322 	u32	rxundersizedframes;
323 	u32	rxfragments;
324 	u32	__pad_0[2];
325 	u32	rxoctets;
326 	u32	txgoodframes;
327 	u32	txbroadcastframes;
328 	u32	txmulticastframes;
329 	u32	txpauseframes;
330 	u32	txdeferredframes;
331 	u32	txcollisionframes;
332 	u32	txsinglecollframes;
333 	u32	txmultcollframes;
334 	u32	txexcessivecollisions;
335 	u32	txlatecollisions;
336 	u32	txunderrun;
337 	u32	txcarriersenseerrors;
338 	u32	txoctets;
339 	u32	octetframes64;
340 	u32	octetframes65t127;
341 	u32	octetframes128t255;
342 	u32	octetframes256t511;
343 	u32	octetframes512t1023;
344 	u32	octetframes1024tup;
345 	u32	netoctets;
346 	u32	rxsofoverruns;
347 	u32	rxmofoverruns;
348 	u32	rxdmaoverruns;
349 };
350 
351 struct cpsw_slave {
352 	void __iomem			*regs;
353 	struct cpsw_sliver_regs __iomem	*sliver;
354 	int				slave_num;
355 	u32				mac_control;
356 	struct cpsw_slave_data		*data;
357 	struct phy_device		*phy;
358 	struct net_device		*ndev;
359 	u32				port_vlan;
360 };
361 
362 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
363 {
364 	return __raw_readl(slave->regs + offset);
365 }
366 
367 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
368 {
369 	__raw_writel(val, slave->regs + offset);
370 }
371 
372 struct cpsw_vector {
373 	struct cpdma_chan *ch;
374 	int budget;
375 };
376 
377 struct cpsw_common {
378 	struct device			*dev;
379 	struct cpsw_platform_data	data;
380 	struct napi_struct		napi_rx;
381 	struct napi_struct		napi_tx;
382 	struct cpsw_ss_regs __iomem	*regs;
383 	struct cpsw_wr_regs __iomem	*wr_regs;
384 	u8 __iomem			*hw_stats;
385 	struct cpsw_host_regs __iomem	*host_port_regs;
386 	u32				version;
387 	u32				coal_intvl;
388 	u32				bus_freq_mhz;
389 	int				rx_packet_max;
390 	struct cpsw_slave		*slaves;
391 	struct cpdma_ctlr		*dma;
392 	struct cpsw_vector		txv[CPSW_MAX_QUEUES];
393 	struct cpsw_vector		rxv[CPSW_MAX_QUEUES];
394 	struct cpsw_ale			*ale;
395 	bool				quirk_irq;
396 	bool				rx_irq_disabled;
397 	bool				tx_irq_disabled;
398 	u32 irqs_table[IRQ_NUM];
399 	struct cpts			*cpts;
400 	int				rx_ch_num, tx_ch_num;
401 	int				speed;
402 	int				usage_count;
403 };
404 
405 struct cpsw_priv {
406 	struct net_device		*ndev;
407 	struct device			*dev;
408 	u32				msg_enable;
409 	u8				mac_addr[ETH_ALEN];
410 	bool				rx_pause;
411 	bool				tx_pause;
412 	u32 emac_port;
413 	struct cpsw_common *cpsw;
414 };
415 
416 struct cpsw_stats {
417 	char stat_string[ETH_GSTRING_LEN];
418 	int type;
419 	int sizeof_stat;
420 	int stat_offset;
421 };
422 
423 enum {
424 	CPSW_STATS,
425 	CPDMA_RX_STATS,
426 	CPDMA_TX_STATS,
427 };
428 
429 #define CPSW_STAT(m)		CPSW_STATS,				\
430 				sizeof(((struct cpsw_hw_stats *)0)->m), \
431 				offsetof(struct cpsw_hw_stats, m)
432 #define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
433 				sizeof(((struct cpdma_chan_stats *)0)->m), \
434 				offsetof(struct cpdma_chan_stats, m)
435 #define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
436 				sizeof(((struct cpdma_chan_stats *)0)->m), \
437 				offsetof(struct cpdma_chan_stats, m)
438 
439 static const struct cpsw_stats cpsw_gstrings_stats[] = {
440 	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
441 	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
442 	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
443 	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
444 	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
445 	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
446 	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
447 	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
448 	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
449 	{ "Rx Fragments", CPSW_STAT(rxfragments) },
450 	{ "Rx Octets", CPSW_STAT(rxoctets) },
451 	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
452 	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
453 	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
454 	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
455 	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
456 	{ "Collisions", CPSW_STAT(txcollisionframes) },
457 	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
458 	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
459 	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
460 	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
461 	{ "Tx Underrun", CPSW_STAT(txunderrun) },
462 	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
463 	{ "Tx Octets", CPSW_STAT(txoctets) },
464 	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
465 	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
466 	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
467 	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
468 	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
469 	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
470 	{ "Net Octets", CPSW_STAT(netoctets) },
471 	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
472 	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
473 	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
474 };
475 
476 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
477 	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
478 	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
479 	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
480 	{ "misqueued", CPDMA_RX_STAT(misqueued) },
481 	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
482 	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
483 	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
484 	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
485 	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
486 	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
487 	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
488 	{ "requeue", CPDMA_RX_STAT(requeue) },
489 	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
490 };
491 
492 #define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
493 #define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
494 
495 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
496 #define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
497 #define for_each_slave(priv, func, arg...)				\
498 	do {								\
499 		struct cpsw_slave *slave;				\
500 		struct cpsw_common *cpsw = (priv)->cpsw;		\
501 		int n;							\
502 		if (cpsw->data.dual_emac)				\
503 			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
504 		else							\
505 			for (n = cpsw->data.slaves,			\
506 					slave = cpsw->slaves;		\
507 					n; n--)				\
508 				(func)(slave++, ##arg);			\
509 	} while (0)
510 
511 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb)		\
512 	do {								\
513 		if (!cpsw->data.dual_emac)				\
514 			break;						\
515 		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
516 			ndev = cpsw->slaves[0].ndev;			\
517 			skb->dev = ndev;				\
518 		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
519 			ndev = cpsw->slaves[1].ndev;			\
520 			skb->dev = ndev;				\
521 		}							\
522 	} while (0)
523 #define cpsw_add_mcast(cpsw, priv, addr)				\
524 	do {								\
525 		if (cpsw->data.dual_emac) {				\
526 			struct cpsw_slave *slave = cpsw->slaves +	\
527 						priv->emac_port;	\
528 			int slave_port = cpsw_get_slave_port(		\
529 						slave->slave_num);	\
530 			cpsw_ale_add_mcast(cpsw->ale, addr,		\
531 				1 << slave_port | ALE_PORT_HOST,	\
532 				ALE_VLAN, slave->port_vlan, 0);		\
533 		} else {						\
534 			cpsw_ale_add_mcast(cpsw->ale, addr,		\
535 				ALE_ALL_PORTS,				\
536 				0, 0, 0);				\
537 		}							\
538 	} while (0)
539 
540 static inline int cpsw_get_slave_port(u32 slave_num)
541 {
542 	return slave_num + 1;
543 }
544 
545 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
546 {
547 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
548 	struct cpsw_ale *ale = cpsw->ale;
549 	int i;
550 
551 	if (cpsw->data.dual_emac) {
552 		bool flag = false;
553 
554 		/* Enabling promiscuous mode for one interface will be
555 		 * common for both the interface as the interface shares
556 		 * the same hardware resource.
557 		 */
558 		for (i = 0; i < cpsw->data.slaves; i++)
559 			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
560 				flag = true;
561 
562 		if (!enable && flag) {
563 			enable = true;
564 			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
565 		}
566 
567 		if (enable) {
568 			/* Enable Bypass */
569 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
570 
571 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
572 		} else {
573 			/* Disable Bypass */
574 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
575 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
576 		}
577 	} else {
578 		if (enable) {
579 			unsigned long timeout = jiffies + HZ;
580 
581 			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
582 			for (i = 0; i <= cpsw->data.slaves; i++) {
583 				cpsw_ale_control_set(ale, i,
584 						     ALE_PORT_NOLEARN, 1);
585 				cpsw_ale_control_set(ale, i,
586 						     ALE_PORT_NO_SA_UPDATE, 1);
587 			}
588 
589 			/* Clear All Untouched entries */
590 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
591 			do {
592 				cpu_relax();
593 				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
594 					break;
595 			} while (time_after(timeout, jiffies));
596 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
597 
598 			/* Clear all mcast from ALE */
599 			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
600 
601 			/* Flood All Unicast Packets to Host port */
602 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
603 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
604 		} else {
605 			/* Don't Flood All Unicast Packets to Host port */
606 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
607 
608 			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
609 			for (i = 0; i <= cpsw->data.slaves; i++) {
610 				cpsw_ale_control_set(ale, i,
611 						     ALE_PORT_NOLEARN, 0);
612 				cpsw_ale_control_set(ale, i,
613 						     ALE_PORT_NO_SA_UPDATE, 0);
614 			}
615 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
616 		}
617 	}
618 }
619 
620 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
621 {
622 	struct cpsw_priv *priv = netdev_priv(ndev);
623 	struct cpsw_common *cpsw = priv->cpsw;
624 	int vid;
625 
626 	if (cpsw->data.dual_emac)
627 		vid = cpsw->slaves[priv->emac_port].port_vlan;
628 	else
629 		vid = cpsw->data.default_vlan;
630 
631 	if (ndev->flags & IFF_PROMISC) {
632 		/* Enable promiscuous mode */
633 		cpsw_set_promiscious(ndev, true);
634 		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
635 		return;
636 	} else {
637 		/* Disable promiscuous mode */
638 		cpsw_set_promiscious(ndev, false);
639 	}
640 
641 	/* Restore allmulti on vlans if necessary */
642 	cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
643 
644 	/* Clear all mcast from ALE */
645 	cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
646 
647 	if (!netdev_mc_empty(ndev)) {
648 		struct netdev_hw_addr *ha;
649 
650 		/* program multicast address list into ALE register */
651 		netdev_for_each_mc_addr(ha, ndev) {
652 			cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
653 		}
654 	}
655 }
656 
657 static void cpsw_intr_enable(struct cpsw_common *cpsw)
658 {
659 	__raw_writel(0xFF, &cpsw->wr_regs->tx_en);
660 	__raw_writel(0xFF, &cpsw->wr_regs->rx_en);
661 
662 	cpdma_ctlr_int_ctrl(cpsw->dma, true);
663 	return;
664 }
665 
666 static void cpsw_intr_disable(struct cpsw_common *cpsw)
667 {
668 	__raw_writel(0, &cpsw->wr_regs->tx_en);
669 	__raw_writel(0, &cpsw->wr_regs->rx_en);
670 
671 	cpdma_ctlr_int_ctrl(cpsw->dma, false);
672 	return;
673 }
674 
675 static void cpsw_tx_handler(void *token, int len, int status)
676 {
677 	struct netdev_queue	*txq;
678 	struct sk_buff		*skb = token;
679 	struct net_device	*ndev = skb->dev;
680 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
681 
682 	/* Check whether the queue is stopped due to stalled tx dma, if the
683 	 * queue is stopped then start the queue as we have free desc for tx
684 	 */
685 	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
686 	if (unlikely(netif_tx_queue_stopped(txq)))
687 		netif_tx_wake_queue(txq);
688 
689 	cpts_tx_timestamp(cpsw->cpts, skb);
690 	ndev->stats.tx_packets++;
691 	ndev->stats.tx_bytes += len;
692 	dev_kfree_skb_any(skb);
693 }
694 
695 static void cpsw_rx_handler(void *token, int len, int status)
696 {
697 	struct cpdma_chan	*ch;
698 	struct sk_buff		*skb = token;
699 	struct sk_buff		*new_skb;
700 	struct net_device	*ndev = skb->dev;
701 	int			ret = 0;
702 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
703 
704 	cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
705 
706 	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
707 		/* In dual emac mode check for all interfaces */
708 		if (cpsw->data.dual_emac && cpsw->usage_count &&
709 		    (status >= 0)) {
710 			/* The packet received is for the interface which
711 			 * is already down and the other interface is up
712 			 * and running, instead of freeing which results
713 			 * in reducing of the number of rx descriptor in
714 			 * DMA engine, requeue skb back to cpdma.
715 			 */
716 			new_skb = skb;
717 			goto requeue;
718 		}
719 
720 		/* the interface is going down, skbs are purged */
721 		dev_kfree_skb_any(skb);
722 		return;
723 	}
724 
725 	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
726 	if (new_skb) {
727 		skb_copy_queue_mapping(new_skb, skb);
728 		skb_put(skb, len);
729 		cpts_rx_timestamp(cpsw->cpts, skb);
730 		skb->protocol = eth_type_trans(skb, ndev);
731 		netif_receive_skb(skb);
732 		ndev->stats.rx_bytes += len;
733 		ndev->stats.rx_packets++;
734 		kmemleak_not_leak(new_skb);
735 	} else {
736 		ndev->stats.rx_dropped++;
737 		new_skb = skb;
738 	}
739 
740 requeue:
741 	if (netif_dormant(ndev)) {
742 		dev_kfree_skb_any(new_skb);
743 		return;
744 	}
745 
746 	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
747 	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
748 				skb_tailroom(new_skb), 0);
749 	if (WARN_ON(ret < 0))
750 		dev_kfree_skb_any(new_skb);
751 }
752 
753 static void cpsw_split_res(struct net_device *ndev)
754 {
755 	struct cpsw_priv *priv = netdev_priv(ndev);
756 	u32 consumed_rate = 0, bigest_rate = 0;
757 	struct cpsw_common *cpsw = priv->cpsw;
758 	struct cpsw_vector *txv = cpsw->txv;
759 	int i, ch_weight, rlim_ch_num = 0;
760 	int budget, bigest_rate_ch = 0;
761 	u32 ch_rate, max_rate;
762 	int ch_budget = 0;
763 
764 	for (i = 0; i < cpsw->tx_ch_num; i++) {
765 		ch_rate = cpdma_chan_get_rate(txv[i].ch);
766 		if (!ch_rate)
767 			continue;
768 
769 		rlim_ch_num++;
770 		consumed_rate += ch_rate;
771 	}
772 
773 	if (cpsw->tx_ch_num == rlim_ch_num) {
774 		max_rate = consumed_rate;
775 	} else if (!rlim_ch_num) {
776 		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
777 		bigest_rate = 0;
778 		max_rate = consumed_rate;
779 	} else {
780 		max_rate = cpsw->speed * 1000;
781 
782 		/* if max_rate is less then expected due to reduced link speed,
783 		 * split proportionally according next potential max speed
784 		 */
785 		if (max_rate < consumed_rate)
786 			max_rate *= 10;
787 
788 		if (max_rate < consumed_rate)
789 			max_rate *= 10;
790 
791 		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
792 		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
793 			    (cpsw->tx_ch_num - rlim_ch_num);
794 		bigest_rate = (max_rate - consumed_rate) /
795 			      (cpsw->tx_ch_num - rlim_ch_num);
796 	}
797 
798 	/* split tx weight/budget */
799 	budget = CPSW_POLL_WEIGHT;
800 	for (i = 0; i < cpsw->tx_ch_num; i++) {
801 		ch_rate = cpdma_chan_get_rate(txv[i].ch);
802 		if (ch_rate) {
803 			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
804 			if (!txv[i].budget)
805 				txv[i].budget++;
806 			if (ch_rate > bigest_rate) {
807 				bigest_rate_ch = i;
808 				bigest_rate = ch_rate;
809 			}
810 
811 			ch_weight = (ch_rate * 100) / max_rate;
812 			if (!ch_weight)
813 				ch_weight++;
814 			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
815 		} else {
816 			txv[i].budget = ch_budget;
817 			if (!bigest_rate_ch)
818 				bigest_rate_ch = i;
819 			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
820 		}
821 
822 		budget -= txv[i].budget;
823 	}
824 
825 	if (budget)
826 		txv[bigest_rate_ch].budget += budget;
827 
828 	/* split rx budget */
829 	budget = CPSW_POLL_WEIGHT;
830 	ch_budget = budget / cpsw->rx_ch_num;
831 	for (i = 0; i < cpsw->rx_ch_num; i++) {
832 		cpsw->rxv[i].budget = ch_budget;
833 		budget -= ch_budget;
834 	}
835 
836 	if (budget)
837 		cpsw->rxv[0].budget += budget;
838 }
839 
840 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
841 {
842 	struct cpsw_common *cpsw = dev_id;
843 
844 	writel(0, &cpsw->wr_regs->tx_en);
845 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
846 
847 	if (cpsw->quirk_irq) {
848 		disable_irq_nosync(cpsw->irqs_table[1]);
849 		cpsw->tx_irq_disabled = true;
850 	}
851 
852 	napi_schedule(&cpsw->napi_tx);
853 	return IRQ_HANDLED;
854 }
855 
856 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
857 {
858 	struct cpsw_common *cpsw = dev_id;
859 
860 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
861 	writel(0, &cpsw->wr_regs->rx_en);
862 
863 	if (cpsw->quirk_irq) {
864 		disable_irq_nosync(cpsw->irqs_table[0]);
865 		cpsw->rx_irq_disabled = true;
866 	}
867 
868 	napi_schedule(&cpsw->napi_rx);
869 	return IRQ_HANDLED;
870 }
871 
872 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
873 {
874 	u32			ch_map;
875 	int			num_tx, cur_budget, ch;
876 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
877 	struct cpsw_vector	*txv;
878 
879 	/* process every unprocessed channel */
880 	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
881 	for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) {
882 		if (!(ch_map & 0x01))
883 			continue;
884 
885 		txv = &cpsw->txv[ch];
886 		if (unlikely(txv->budget > budget - num_tx))
887 			cur_budget = budget - num_tx;
888 		else
889 			cur_budget = txv->budget;
890 
891 		num_tx += cpdma_chan_process(txv->ch, cur_budget);
892 		if (num_tx >= budget)
893 			break;
894 	}
895 
896 	if (num_tx < budget) {
897 		napi_complete(napi_tx);
898 		writel(0xff, &cpsw->wr_regs->tx_en);
899 		if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
900 			cpsw->tx_irq_disabled = false;
901 			enable_irq(cpsw->irqs_table[1]);
902 		}
903 	}
904 
905 	return num_tx;
906 }
907 
908 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
909 {
910 	u32			ch_map;
911 	int			num_rx, cur_budget, ch;
912 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
913 	struct cpsw_vector	*rxv;
914 
915 	/* process every unprocessed channel */
916 	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
917 	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
918 		if (!(ch_map & 0x01))
919 			continue;
920 
921 		rxv = &cpsw->rxv[ch];
922 		if (unlikely(rxv->budget > budget - num_rx))
923 			cur_budget = budget - num_rx;
924 		else
925 			cur_budget = rxv->budget;
926 
927 		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
928 		if (num_rx >= budget)
929 			break;
930 	}
931 
932 	if (num_rx < budget) {
933 		napi_complete_done(napi_rx, num_rx);
934 		writel(0xff, &cpsw->wr_regs->rx_en);
935 		if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
936 			cpsw->rx_irq_disabled = false;
937 			enable_irq(cpsw->irqs_table[0]);
938 		}
939 	}
940 
941 	return num_rx;
942 }
943 
944 static inline void soft_reset(const char *module, void __iomem *reg)
945 {
946 	unsigned long timeout = jiffies + HZ;
947 
948 	__raw_writel(1, reg);
949 	do {
950 		cpu_relax();
951 	} while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));
952 
953 	WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
954 }
955 
956 #define mac_hi(mac)	(((mac)[0] << 0) | ((mac)[1] << 8) |	\
957 			 ((mac)[2] << 16) | ((mac)[3] << 24))
958 #define mac_lo(mac)	(((mac)[4] << 0) | ((mac)[5] << 8))
959 
960 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
961 			       struct cpsw_priv *priv)
962 {
963 	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
964 	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
965 }
966 
967 static void _cpsw_adjust_link(struct cpsw_slave *slave,
968 			      struct cpsw_priv *priv, bool *link)
969 {
970 	struct phy_device	*phy = slave->phy;
971 	u32			mac_control = 0;
972 	u32			slave_port;
973 	struct cpsw_common *cpsw = priv->cpsw;
974 
975 	if (!phy)
976 		return;
977 
978 	slave_port = cpsw_get_slave_port(slave->slave_num);
979 
980 	if (phy->link) {
981 		mac_control = cpsw->data.mac_control;
982 
983 		/* enable forwarding */
984 		cpsw_ale_control_set(cpsw->ale, slave_port,
985 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
986 
987 		if (phy->speed == 1000)
988 			mac_control |= BIT(7);	/* GIGABITEN	*/
989 		if (phy->duplex)
990 			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
991 
992 		/* set speed_in input in case RMII mode is used in 100Mbps */
993 		if (phy->speed == 100)
994 			mac_control |= BIT(15);
995 		else if (phy->speed == 10)
996 			mac_control |= BIT(18); /* In Band mode */
997 
998 		if (priv->rx_pause)
999 			mac_control |= BIT(3);
1000 
1001 		if (priv->tx_pause)
1002 			mac_control |= BIT(4);
1003 
1004 		*link = true;
1005 	} else {
1006 		mac_control = 0;
1007 		/* disable forwarding */
1008 		cpsw_ale_control_set(cpsw->ale, slave_port,
1009 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1010 	}
1011 
1012 	if (mac_control != slave->mac_control) {
1013 		phy_print_status(phy);
1014 		__raw_writel(mac_control, &slave->sliver->mac_control);
1015 	}
1016 
1017 	slave->mac_control = mac_control;
1018 }
1019 
1020 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
1021 {
1022 	int i, speed;
1023 
1024 	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
1025 		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
1026 			speed += cpsw->slaves[i].phy->speed;
1027 
1028 	return speed;
1029 }
1030 
1031 static int cpsw_need_resplit(struct cpsw_common *cpsw)
1032 {
1033 	int i, rlim_ch_num;
1034 	int speed, ch_rate;
1035 
1036 	/* re-split resources only in case speed was changed */
1037 	speed = cpsw_get_common_speed(cpsw);
1038 	if (speed == cpsw->speed || !speed)
1039 		return 0;
1040 
1041 	cpsw->speed = speed;
1042 
1043 	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
1044 		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
1045 		if (!ch_rate)
1046 			break;
1047 
1048 		rlim_ch_num++;
1049 	}
1050 
1051 	/* cases not dependent on speed */
1052 	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
1053 		return 0;
1054 
1055 	return 1;
1056 }
1057 
1058 static void cpsw_adjust_link(struct net_device *ndev)
1059 {
1060 	struct cpsw_priv	*priv = netdev_priv(ndev);
1061 	struct cpsw_common	*cpsw = priv->cpsw;
1062 	bool			link = false;
1063 
1064 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1065 
1066 	if (link) {
1067 		if (cpsw_need_resplit(cpsw))
1068 			cpsw_split_res(ndev);
1069 
1070 		netif_carrier_on(ndev);
1071 		if (netif_running(ndev))
1072 			netif_tx_wake_all_queues(ndev);
1073 	} else {
1074 		netif_carrier_off(ndev);
1075 		netif_tx_stop_all_queues(ndev);
1076 	}
1077 }
1078 
1079 static int cpsw_get_coalesce(struct net_device *ndev,
1080 				struct ethtool_coalesce *coal)
1081 {
1082 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1083 
1084 	coal->rx_coalesce_usecs = cpsw->coal_intvl;
1085 	return 0;
1086 }
1087 
1088 static int cpsw_set_coalesce(struct net_device *ndev,
1089 				struct ethtool_coalesce *coal)
1090 {
1091 	struct cpsw_priv *priv = netdev_priv(ndev);
1092 	u32 int_ctrl;
1093 	u32 num_interrupts = 0;
1094 	u32 prescale = 0;
1095 	u32 addnl_dvdr = 1;
1096 	u32 coal_intvl = 0;
1097 	struct cpsw_common *cpsw = priv->cpsw;
1098 
1099 	coal_intvl = coal->rx_coalesce_usecs;
1100 
1101 	int_ctrl =  readl(&cpsw->wr_regs->int_control);
1102 	prescale = cpsw->bus_freq_mhz * 4;
1103 
1104 	if (!coal->rx_coalesce_usecs) {
1105 		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
1106 		goto update_return;
1107 	}
1108 
1109 	if (coal_intvl < CPSW_CMINTMIN_INTVL)
1110 		coal_intvl = CPSW_CMINTMIN_INTVL;
1111 
1112 	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
1113 		/* Interrupt pacer works with 4us Pulse, we can
1114 		 * throttle further by dilating the 4us pulse.
1115 		 */
1116 		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
1117 
1118 		if (addnl_dvdr > 1) {
1119 			prescale *= addnl_dvdr;
1120 			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
1121 				coal_intvl = (CPSW_CMINTMAX_INTVL
1122 						* addnl_dvdr);
1123 		} else {
1124 			addnl_dvdr = 1;
1125 			coal_intvl = CPSW_CMINTMAX_INTVL;
1126 		}
1127 	}
1128 
1129 	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1130 	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
1131 	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1132 
1133 	int_ctrl |= CPSW_INTPACEEN;
1134 	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1135 	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1136 
1137 update_return:
1138 	writel(int_ctrl, &cpsw->wr_regs->int_control);
1139 
1140 	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1141 	cpsw->coal_intvl = coal_intvl;
1142 
1143 	return 0;
1144 }
1145 
1146 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1147 {
1148 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1149 
1150 	switch (sset) {
1151 	case ETH_SS_STATS:
1152 		return (CPSW_STATS_COMMON_LEN +
1153 		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1154 		       CPSW_STATS_CH_LEN);
1155 	default:
1156 		return -EOPNOTSUPP;
1157 	}
1158 }
1159 
1160 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1161 {
1162 	int ch_stats_len;
1163 	int line;
1164 	int i;
1165 
1166 	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1167 	for (i = 0; i < ch_stats_len; i++) {
1168 		line = i % CPSW_STATS_CH_LEN;
1169 		snprintf(*p, ETH_GSTRING_LEN,
1170 			 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
1171 			 i / CPSW_STATS_CH_LEN,
1172 			 cpsw_gstrings_ch_stats[line].stat_string);
1173 		*p += ETH_GSTRING_LEN;
1174 	}
1175 }
1176 
1177 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1178 {
1179 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1180 	u8 *p = data;
1181 	int i;
1182 
1183 	switch (stringset) {
1184 	case ETH_SS_STATS:
1185 		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1186 			memcpy(p, cpsw_gstrings_stats[i].stat_string,
1187 			       ETH_GSTRING_LEN);
1188 			p += ETH_GSTRING_LEN;
1189 		}
1190 
1191 		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1192 		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1193 		break;
1194 	}
1195 }
1196 
1197 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1198 				    struct ethtool_stats *stats, u64 *data)
1199 {
1200 	u8 *p;
1201 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1202 	struct cpdma_chan_stats ch_stats;
1203 	int i, l, ch;
1204 
1205 	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1206 	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1207 		data[l] = readl(cpsw->hw_stats +
1208 				cpsw_gstrings_stats[l].stat_offset);
1209 
1210 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1211 		cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1212 		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1213 			p = (u8 *)&ch_stats +
1214 				cpsw_gstrings_ch_stats[i].stat_offset;
1215 			data[l] = *(u32 *)p;
1216 		}
1217 	}
1218 
1219 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1220 		cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1221 		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1222 			p = (u8 *)&ch_stats +
1223 				cpsw_gstrings_ch_stats[i].stat_offset;
1224 			data[l] = *(u32 *)p;
1225 		}
1226 	}
1227 }
1228 
1229 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1230 					struct sk_buff *skb,
1231 					struct cpdma_chan *txch)
1232 {
1233 	struct cpsw_common *cpsw = priv->cpsw;
1234 
1235 	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1236 				 priv->emac_port + cpsw->data.dual_emac);
1237 }
1238 
1239 static inline void cpsw_add_dual_emac_def_ale_entries(
1240 		struct cpsw_priv *priv, struct cpsw_slave *slave,
1241 		u32 slave_port)
1242 {
1243 	struct cpsw_common *cpsw = priv->cpsw;
1244 	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1245 
1246 	if (cpsw->version == CPSW_VERSION_1)
1247 		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1248 	else
1249 		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1250 	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1251 			  port_mask, port_mask, 0);
1252 	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1253 			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1254 	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1255 			   HOST_PORT_NUM, ALE_VLAN |
1256 			   ALE_SECURE, slave->port_vlan);
1257 }
1258 
1259 static void soft_reset_slave(struct cpsw_slave *slave)
1260 {
1261 	char name[32];
1262 
1263 	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1264 	soft_reset(name, &slave->sliver->soft_reset);
1265 }
1266 
1267 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1268 {
1269 	u32 slave_port;
1270 	struct phy_device *phy;
1271 	struct cpsw_common *cpsw = priv->cpsw;
1272 
1273 	soft_reset_slave(slave);
1274 
1275 	/* setup priority mapping */
1276 	__raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1277 
1278 	switch (cpsw->version) {
1279 	case CPSW_VERSION_1:
1280 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1281 		break;
1282 	case CPSW_VERSION_2:
1283 	case CPSW_VERSION_3:
1284 	case CPSW_VERSION_4:
1285 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1286 		break;
1287 	}
1288 
1289 	/* setup max packet size, and mac address */
1290 	__raw_writel(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1291 	cpsw_set_slave_mac(slave, priv);
1292 
1293 	slave->mac_control = 0;	/* no link yet */
1294 
1295 	slave_port = cpsw_get_slave_port(slave->slave_num);
1296 
1297 	if (cpsw->data.dual_emac)
1298 		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1299 	else
1300 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1301 				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1302 
1303 	if (slave->data->phy_node) {
1304 		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1305 				 &cpsw_adjust_link, 0, slave->data->phy_if);
1306 		if (!phy) {
1307 			dev_err(priv->dev, "phy \"%s\" not found on slave %d\n",
1308 				slave->data->phy_node->full_name,
1309 				slave->slave_num);
1310 			return;
1311 		}
1312 	} else {
1313 		phy = phy_connect(priv->ndev, slave->data->phy_id,
1314 				 &cpsw_adjust_link, slave->data->phy_if);
1315 		if (IS_ERR(phy)) {
1316 			dev_err(priv->dev,
1317 				"phy \"%s\" not found on slave %d, err %ld\n",
1318 				slave->data->phy_id, slave->slave_num,
1319 				PTR_ERR(phy));
1320 			return;
1321 		}
1322 	}
1323 
1324 	slave->phy = phy;
1325 
1326 	phy_attached_info(slave->phy);
1327 
1328 	phy_start(slave->phy);
1329 
1330 	/* Configure GMII_SEL register */
1331 	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1332 }
1333 
1334 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1335 {
1336 	struct cpsw_common *cpsw = priv->cpsw;
1337 	const int vlan = cpsw->data.default_vlan;
1338 	u32 reg;
1339 	int i;
1340 	int unreg_mcast_mask;
1341 
1342 	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1343 	       CPSW2_PORT_VLAN;
1344 
1345 	writel(vlan, &cpsw->host_port_regs->port_vlan);
1346 
1347 	for (i = 0; i < cpsw->data.slaves; i++)
1348 		slave_write(cpsw->slaves + i, vlan, reg);
1349 
1350 	if (priv->ndev->flags & IFF_ALLMULTI)
1351 		unreg_mcast_mask = ALE_ALL_PORTS;
1352 	else
1353 		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1354 
1355 	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1356 			  ALE_ALL_PORTS, ALE_ALL_PORTS,
1357 			  unreg_mcast_mask);
1358 }
1359 
1360 static void cpsw_init_host_port(struct cpsw_priv *priv)
1361 {
1362 	u32 fifo_mode;
1363 	u32 control_reg;
1364 	struct cpsw_common *cpsw = priv->cpsw;
1365 
1366 	/* soft reset the controller and initialize ale */
1367 	soft_reset("cpsw", &cpsw->regs->soft_reset);
1368 	cpsw_ale_start(cpsw->ale);
1369 
1370 	/* switch to vlan unaware mode */
1371 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1372 			     CPSW_ALE_VLAN_AWARE);
1373 	control_reg = readl(&cpsw->regs->control);
1374 	control_reg |= CPSW_VLAN_AWARE;
1375 	writel(control_reg, &cpsw->regs->control);
1376 	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1377 		     CPSW_FIFO_NORMAL_MODE;
1378 	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1379 
1380 	/* setup host port priority mapping */
1381 	__raw_writel(CPDMA_TX_PRIORITY_MAP,
1382 		     &cpsw->host_port_regs->cpdma_tx_pri_map);
1383 	__raw_writel(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1384 
1385 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1386 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1387 
1388 	if (!cpsw->data.dual_emac) {
1389 		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1390 				   0, 0);
1391 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1392 				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1393 	}
1394 }
1395 
1396 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1397 {
1398 	struct cpsw_common *cpsw = priv->cpsw;
1399 	struct sk_buff *skb;
1400 	int ch_buf_num;
1401 	int ch, i, ret;
1402 
1403 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1404 		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1405 		for (i = 0; i < ch_buf_num; i++) {
1406 			skb = __netdev_alloc_skb_ip_align(priv->ndev,
1407 							  cpsw->rx_packet_max,
1408 							  GFP_KERNEL);
1409 			if (!skb) {
1410 				cpsw_err(priv, ifup, "cannot allocate skb\n");
1411 				return -ENOMEM;
1412 			}
1413 
1414 			skb_set_queue_mapping(skb, ch);
1415 			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
1416 						skb->data, skb_tailroom(skb),
1417 						0);
1418 			if (ret < 0) {
1419 				cpsw_err(priv, ifup,
1420 					 "cannot submit skb to channel %d rx, error %d\n",
1421 					 ch, ret);
1422 				kfree_skb(skb);
1423 				return ret;
1424 			}
1425 			kmemleak_not_leak(skb);
1426 		}
1427 
1428 		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1429 			  ch, ch_buf_num);
1430 	}
1431 
1432 	return 0;
1433 }
1434 
1435 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1436 {
1437 	u32 slave_port;
1438 
1439 	slave_port = cpsw_get_slave_port(slave->slave_num);
1440 
1441 	if (!slave->phy)
1442 		return;
1443 	phy_stop(slave->phy);
1444 	phy_disconnect(slave->phy);
1445 	slave->phy = NULL;
1446 	cpsw_ale_control_set(cpsw->ale, slave_port,
1447 			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1448 	soft_reset_slave(slave);
1449 }
1450 
1451 static int cpsw_ndo_open(struct net_device *ndev)
1452 {
1453 	struct cpsw_priv *priv = netdev_priv(ndev);
1454 	struct cpsw_common *cpsw = priv->cpsw;
1455 	int ret;
1456 	u32 reg;
1457 
1458 	ret = pm_runtime_get_sync(cpsw->dev);
1459 	if (ret < 0) {
1460 		pm_runtime_put_noidle(cpsw->dev);
1461 		return ret;
1462 	}
1463 
1464 	netif_carrier_off(ndev);
1465 
1466 	/* Notify the stack of the actual queue counts. */
1467 	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1468 	if (ret) {
1469 		dev_err(priv->dev, "cannot set real number of tx queues\n");
1470 		goto err_cleanup;
1471 	}
1472 
1473 	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1474 	if (ret) {
1475 		dev_err(priv->dev, "cannot set real number of rx queues\n");
1476 		goto err_cleanup;
1477 	}
1478 
1479 	reg = cpsw->version;
1480 
1481 	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1482 		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1483 		 CPSW_RTL_VERSION(reg));
1484 
1485 	/* Initialize host and slave ports */
1486 	if (!cpsw->usage_count)
1487 		cpsw_init_host_port(priv);
1488 	for_each_slave(priv, cpsw_slave_open, priv);
1489 
1490 	/* Add default VLAN */
1491 	if (!cpsw->data.dual_emac)
1492 		cpsw_add_default_vlan(priv);
1493 	else
1494 		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1495 				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1496 
1497 	/* initialize shared resources for every ndev */
1498 	if (!cpsw->usage_count) {
1499 		/* disable priority elevation */
1500 		__raw_writel(0, &cpsw->regs->ptype);
1501 
1502 		/* enable statistics collection only on all ports */
1503 		__raw_writel(0x7, &cpsw->regs->stat_port_en);
1504 
1505 		/* Enable internal fifo flow control */
1506 		writel(0x7, &cpsw->regs->flow_control);
1507 
1508 		napi_enable(&cpsw->napi_rx);
1509 		napi_enable(&cpsw->napi_tx);
1510 
1511 		if (cpsw->tx_irq_disabled) {
1512 			cpsw->tx_irq_disabled = false;
1513 			enable_irq(cpsw->irqs_table[1]);
1514 		}
1515 
1516 		if (cpsw->rx_irq_disabled) {
1517 			cpsw->rx_irq_disabled = false;
1518 			enable_irq(cpsw->irqs_table[0]);
1519 		}
1520 
1521 		ret = cpsw_fill_rx_channels(priv);
1522 		if (ret < 0)
1523 			goto err_cleanup;
1524 
1525 		if (cpts_register(cpsw->cpts))
1526 			dev_err(priv->dev, "error registering cpts device\n");
1527 
1528 	}
1529 
1530 	/* Enable Interrupt pacing if configured */
1531 	if (cpsw->coal_intvl != 0) {
1532 		struct ethtool_coalesce coal;
1533 
1534 		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1535 		cpsw_set_coalesce(ndev, &coal);
1536 	}
1537 
1538 	cpdma_ctlr_start(cpsw->dma);
1539 	cpsw_intr_enable(cpsw);
1540 	cpsw->usage_count++;
1541 
1542 	return 0;
1543 
1544 err_cleanup:
1545 	cpdma_ctlr_stop(cpsw->dma);
1546 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1547 	pm_runtime_put_sync(cpsw->dev);
1548 	netif_carrier_off(priv->ndev);
1549 	return ret;
1550 }
1551 
1552 static int cpsw_ndo_stop(struct net_device *ndev)
1553 {
1554 	struct cpsw_priv *priv = netdev_priv(ndev);
1555 	struct cpsw_common *cpsw = priv->cpsw;
1556 
1557 	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1558 	netif_tx_stop_all_queues(priv->ndev);
1559 	netif_carrier_off(priv->ndev);
1560 
1561 	if (cpsw->usage_count <= 1) {
1562 		napi_disable(&cpsw->napi_rx);
1563 		napi_disable(&cpsw->napi_tx);
1564 		cpts_unregister(cpsw->cpts);
1565 		cpsw_intr_disable(cpsw);
1566 		cpdma_ctlr_stop(cpsw->dma);
1567 		cpsw_ale_stop(cpsw->ale);
1568 	}
1569 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1570 
1571 	if (cpsw_need_resplit(cpsw))
1572 		cpsw_split_res(ndev);
1573 
1574 	cpsw->usage_count--;
1575 	pm_runtime_put_sync(cpsw->dev);
1576 	return 0;
1577 }
1578 
1579 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1580 				       struct net_device *ndev)
1581 {
1582 	struct cpsw_priv *priv = netdev_priv(ndev);
1583 	struct cpsw_common *cpsw = priv->cpsw;
1584 	struct netdev_queue *txq;
1585 	struct cpdma_chan *txch;
1586 	int ret, q_idx;
1587 
1588 	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1589 		cpsw_err(priv, tx_err, "packet pad failed\n");
1590 		ndev->stats.tx_dropped++;
1591 		return NET_XMIT_DROP;
1592 	}
1593 
1594 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1595 	    cpts_is_tx_enabled(cpsw->cpts))
1596 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1597 
1598 	skb_tx_timestamp(skb);
1599 
1600 	q_idx = skb_get_queue_mapping(skb);
1601 	if (q_idx >= cpsw->tx_ch_num)
1602 		q_idx = q_idx % cpsw->tx_ch_num;
1603 
1604 	txch = cpsw->txv[q_idx].ch;
1605 	ret = cpsw_tx_packet_submit(priv, skb, txch);
1606 	if (unlikely(ret != 0)) {
1607 		cpsw_err(priv, tx_err, "desc submit failed\n");
1608 		goto fail;
1609 	}
1610 
1611 	/* If there is no more tx desc left free then we need to
1612 	 * tell the kernel to stop sending us tx frames.
1613 	 */
1614 	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
1615 		txq = netdev_get_tx_queue(ndev, q_idx);
1616 		netif_tx_stop_queue(txq);
1617 	}
1618 
1619 	return NETDEV_TX_OK;
1620 fail:
1621 	ndev->stats.tx_dropped++;
1622 	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
1623 	netif_tx_stop_queue(txq);
1624 	return NETDEV_TX_BUSY;
1625 }
1626 
1627 #if IS_ENABLED(CONFIG_TI_CPTS)
1628 
1629 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1630 {
1631 	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1632 	u32 ts_en, seq_id;
1633 
1634 	if (!cpts_is_tx_enabled(cpsw->cpts) &&
1635 	    !cpts_is_rx_enabled(cpsw->cpts)) {
1636 		slave_write(slave, 0, CPSW1_TS_CTL);
1637 		return;
1638 	}
1639 
1640 	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1641 	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1642 
1643 	if (cpts_is_tx_enabled(cpsw->cpts))
1644 		ts_en |= CPSW_V1_TS_TX_EN;
1645 
1646 	if (cpts_is_rx_enabled(cpsw->cpts))
1647 		ts_en |= CPSW_V1_TS_RX_EN;
1648 
1649 	slave_write(slave, ts_en, CPSW1_TS_CTL);
1650 	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1651 }
1652 
1653 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1654 {
1655 	struct cpsw_slave *slave;
1656 	struct cpsw_common *cpsw = priv->cpsw;
1657 	u32 ctrl, mtype;
1658 
1659 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1660 
1661 	ctrl = slave_read(slave, CPSW2_CONTROL);
1662 	switch (cpsw->version) {
1663 	case CPSW_VERSION_2:
1664 		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1665 
1666 		if (cpts_is_tx_enabled(cpsw->cpts))
1667 			ctrl |= CTRL_V2_TX_TS_BITS;
1668 
1669 		if (cpts_is_rx_enabled(cpsw->cpts))
1670 			ctrl |= CTRL_V2_RX_TS_BITS;
1671 		break;
1672 	case CPSW_VERSION_3:
1673 	default:
1674 		ctrl &= ~CTRL_V3_ALL_TS_MASK;
1675 
1676 		if (cpts_is_tx_enabled(cpsw->cpts))
1677 			ctrl |= CTRL_V3_TX_TS_BITS;
1678 
1679 		if (cpts_is_rx_enabled(cpsw->cpts))
1680 			ctrl |= CTRL_V3_RX_TS_BITS;
1681 		break;
1682 	}
1683 
1684 	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1685 
1686 	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1687 	slave_write(slave, ctrl, CPSW2_CONTROL);
1688 	__raw_writel(ETH_P_1588, &cpsw->regs->ts_ltype);
1689 }
1690 
1691 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1692 {
1693 	struct cpsw_priv *priv = netdev_priv(dev);
1694 	struct hwtstamp_config cfg;
1695 	struct cpsw_common *cpsw = priv->cpsw;
1696 	struct cpts *cpts = cpsw->cpts;
1697 
1698 	if (cpsw->version != CPSW_VERSION_1 &&
1699 	    cpsw->version != CPSW_VERSION_2 &&
1700 	    cpsw->version != CPSW_VERSION_3)
1701 		return -EOPNOTSUPP;
1702 
1703 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1704 		return -EFAULT;
1705 
1706 	/* reserved for future extensions */
1707 	if (cfg.flags)
1708 		return -EINVAL;
1709 
1710 	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1711 		return -ERANGE;
1712 
1713 	switch (cfg.rx_filter) {
1714 	case HWTSTAMP_FILTER_NONE:
1715 		cpts_rx_enable(cpts, 0);
1716 		break;
1717 	case HWTSTAMP_FILTER_ALL:
1718 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1719 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1720 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1721 		return -ERANGE;
1722 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1723 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1724 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1725 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1726 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1727 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1728 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1729 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1730 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1731 		cpts_rx_enable(cpts, 1);
1732 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1733 		break;
1734 	default:
1735 		return -ERANGE;
1736 	}
1737 
1738 	cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1739 
1740 	switch (cpsw->version) {
1741 	case CPSW_VERSION_1:
1742 		cpsw_hwtstamp_v1(cpsw);
1743 		break;
1744 	case CPSW_VERSION_2:
1745 	case CPSW_VERSION_3:
1746 		cpsw_hwtstamp_v2(priv);
1747 		break;
1748 	default:
1749 		WARN_ON(1);
1750 	}
1751 
1752 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1753 }
1754 
1755 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1756 {
1757 	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
1758 	struct cpts *cpts = cpsw->cpts;
1759 	struct hwtstamp_config cfg;
1760 
1761 	if (cpsw->version != CPSW_VERSION_1 &&
1762 	    cpsw->version != CPSW_VERSION_2 &&
1763 	    cpsw->version != CPSW_VERSION_3)
1764 		return -EOPNOTSUPP;
1765 
1766 	cfg.flags = 0;
1767 	cfg.tx_type = cpts_is_tx_enabled(cpts) ?
1768 		      HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1769 	cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1770 			 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE);
1771 
1772 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1773 }
1774 #else
1775 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1776 {
1777 	return -EOPNOTSUPP;
1778 }
1779 
1780 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1781 {
1782 	return -EOPNOTSUPP;
1783 }
1784 #endif /*CONFIG_TI_CPTS*/
1785 
1786 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1787 {
1788 	struct cpsw_priv *priv = netdev_priv(dev);
1789 	struct cpsw_common *cpsw = priv->cpsw;
1790 	int slave_no = cpsw_slave_index(cpsw, priv);
1791 
1792 	if (!netif_running(dev))
1793 		return -EINVAL;
1794 
1795 	switch (cmd) {
1796 	case SIOCSHWTSTAMP:
1797 		return cpsw_hwtstamp_set(dev, req);
1798 	case SIOCGHWTSTAMP:
1799 		return cpsw_hwtstamp_get(dev, req);
1800 	}
1801 
1802 	if (!cpsw->slaves[slave_no].phy)
1803 		return -EOPNOTSUPP;
1804 	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1805 }
1806 
1807 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1808 {
1809 	struct cpsw_priv *priv = netdev_priv(ndev);
1810 	struct cpsw_common *cpsw = priv->cpsw;
1811 	int ch;
1812 
1813 	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1814 	ndev->stats.tx_errors++;
1815 	cpsw_intr_disable(cpsw);
1816 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1817 		cpdma_chan_stop(cpsw->txv[ch].ch);
1818 		cpdma_chan_start(cpsw->txv[ch].ch);
1819 	}
1820 
1821 	cpsw_intr_enable(cpsw);
1822 	netif_trans_update(ndev);
1823 	netif_tx_wake_all_queues(ndev);
1824 }
1825 
1826 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1827 {
1828 	struct cpsw_priv *priv = netdev_priv(ndev);
1829 	struct sockaddr *addr = (struct sockaddr *)p;
1830 	struct cpsw_common *cpsw = priv->cpsw;
1831 	int flags = 0;
1832 	u16 vid = 0;
1833 	int ret;
1834 
1835 	if (!is_valid_ether_addr(addr->sa_data))
1836 		return -EADDRNOTAVAIL;
1837 
1838 	ret = pm_runtime_get_sync(cpsw->dev);
1839 	if (ret < 0) {
1840 		pm_runtime_put_noidle(cpsw->dev);
1841 		return ret;
1842 	}
1843 
1844 	if (cpsw->data.dual_emac) {
1845 		vid = cpsw->slaves[priv->emac_port].port_vlan;
1846 		flags = ALE_VLAN;
1847 	}
1848 
1849 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1850 			   flags, vid);
1851 	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1852 			   flags, vid);
1853 
1854 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1855 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1856 	for_each_slave(priv, cpsw_set_slave_mac, priv);
1857 
1858 	pm_runtime_put(cpsw->dev);
1859 
1860 	return 0;
1861 }
1862 
1863 #ifdef CONFIG_NET_POLL_CONTROLLER
1864 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1865 {
1866 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1867 
1868 	cpsw_intr_disable(cpsw);
1869 	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
1870 	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
1871 	cpsw_intr_enable(cpsw);
1872 }
1873 #endif
1874 
1875 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1876 				unsigned short vid)
1877 {
1878 	int ret;
1879 	int unreg_mcast_mask = 0;
1880 	u32 port_mask;
1881 	struct cpsw_common *cpsw = priv->cpsw;
1882 
1883 	if (cpsw->data.dual_emac) {
1884 		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1885 
1886 		if (priv->ndev->flags & IFF_ALLMULTI)
1887 			unreg_mcast_mask = port_mask;
1888 	} else {
1889 		port_mask = ALE_ALL_PORTS;
1890 
1891 		if (priv->ndev->flags & IFF_ALLMULTI)
1892 			unreg_mcast_mask = ALE_ALL_PORTS;
1893 		else
1894 			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1895 	}
1896 
1897 	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1898 				unreg_mcast_mask);
1899 	if (ret != 0)
1900 		return ret;
1901 
1902 	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1903 				 HOST_PORT_NUM, ALE_VLAN, vid);
1904 	if (ret != 0)
1905 		goto clean_vid;
1906 
1907 	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1908 				 port_mask, ALE_VLAN, vid, 0);
1909 	if (ret != 0)
1910 		goto clean_vlan_ucast;
1911 	return 0;
1912 
1913 clean_vlan_ucast:
1914 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1915 			   HOST_PORT_NUM, ALE_VLAN, vid);
1916 clean_vid:
1917 	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1918 	return ret;
1919 }
1920 
1921 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1922 				    __be16 proto, u16 vid)
1923 {
1924 	struct cpsw_priv *priv = netdev_priv(ndev);
1925 	struct cpsw_common *cpsw = priv->cpsw;
1926 	int ret;
1927 
1928 	if (vid == cpsw->data.default_vlan)
1929 		return 0;
1930 
1931 	ret = pm_runtime_get_sync(cpsw->dev);
1932 	if (ret < 0) {
1933 		pm_runtime_put_noidle(cpsw->dev);
1934 		return ret;
1935 	}
1936 
1937 	if (cpsw->data.dual_emac) {
1938 		/* In dual EMAC, reserved VLAN id should not be used for
1939 		 * creating VLAN interfaces as this can break the dual
1940 		 * EMAC port separation
1941 		 */
1942 		int i;
1943 
1944 		for (i = 0; i < cpsw->data.slaves; i++) {
1945 			if (vid == cpsw->slaves[i].port_vlan)
1946 				return -EINVAL;
1947 		}
1948 	}
1949 
1950 	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1951 	ret = cpsw_add_vlan_ale_entry(priv, vid);
1952 
1953 	pm_runtime_put(cpsw->dev);
1954 	return ret;
1955 }
1956 
1957 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1958 				     __be16 proto, u16 vid)
1959 {
1960 	struct cpsw_priv *priv = netdev_priv(ndev);
1961 	struct cpsw_common *cpsw = priv->cpsw;
1962 	int ret;
1963 
1964 	if (vid == cpsw->data.default_vlan)
1965 		return 0;
1966 
1967 	ret = pm_runtime_get_sync(cpsw->dev);
1968 	if (ret < 0) {
1969 		pm_runtime_put_noidle(cpsw->dev);
1970 		return ret;
1971 	}
1972 
1973 	if (cpsw->data.dual_emac) {
1974 		int i;
1975 
1976 		for (i = 0; i < cpsw->data.slaves; i++) {
1977 			if (vid == cpsw->slaves[i].port_vlan)
1978 				return -EINVAL;
1979 		}
1980 	}
1981 
1982 	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1983 	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1984 	if (ret != 0)
1985 		return ret;
1986 
1987 	ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1988 				 HOST_PORT_NUM, ALE_VLAN, vid);
1989 	if (ret != 0)
1990 		return ret;
1991 
1992 	ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
1993 				 0, ALE_VLAN, vid);
1994 	pm_runtime_put(cpsw->dev);
1995 	return ret;
1996 }
1997 
1998 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
1999 {
2000 	struct cpsw_priv *priv = netdev_priv(ndev);
2001 	struct cpsw_common *cpsw = priv->cpsw;
2002 	struct cpsw_slave *slave;
2003 	u32 min_rate;
2004 	u32 ch_rate;
2005 	int i, ret;
2006 
2007 	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
2008 	if (ch_rate == rate)
2009 		return 0;
2010 
2011 	ch_rate = rate * 1000;
2012 	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
2013 	if ((ch_rate < min_rate && ch_rate)) {
2014 		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
2015 			min_rate);
2016 		return -EINVAL;
2017 	}
2018 
2019 	if (rate > cpsw->speed) {
2020 		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2021 		return -EINVAL;
2022 	}
2023 
2024 	ret = pm_runtime_get_sync(cpsw->dev);
2025 	if (ret < 0) {
2026 		pm_runtime_put_noidle(cpsw->dev);
2027 		return ret;
2028 	}
2029 
2030 	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
2031 	pm_runtime_put(cpsw->dev);
2032 
2033 	if (ret)
2034 		return ret;
2035 
2036 	/* update rates for slaves tx queues */
2037 	for (i = 0; i < cpsw->data.slaves; i++) {
2038 		slave = &cpsw->slaves[i];
2039 		if (!slave->ndev)
2040 			continue;
2041 
2042 		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
2043 	}
2044 
2045 	cpsw_split_res(ndev);
2046 	return ret;
2047 }
2048 
2049 static const struct net_device_ops cpsw_netdev_ops = {
2050 	.ndo_open		= cpsw_ndo_open,
2051 	.ndo_stop		= cpsw_ndo_stop,
2052 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2053 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2054 	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2055 	.ndo_validate_addr	= eth_validate_addr,
2056 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2057 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2058 	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2059 #ifdef CONFIG_NET_POLL_CONTROLLER
2060 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
2061 #endif
2062 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
2063 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2064 };
2065 
2066 static int cpsw_get_regs_len(struct net_device *ndev)
2067 {
2068 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2069 
2070 	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2071 }
2072 
2073 static void cpsw_get_regs(struct net_device *ndev,
2074 			  struct ethtool_regs *regs, void *p)
2075 {
2076 	u32 *reg = p;
2077 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2078 
2079 	/* update CPSW IP version */
2080 	regs->version = cpsw->version;
2081 
2082 	cpsw_ale_dump(cpsw->ale, reg);
2083 }
2084 
2085 static void cpsw_get_drvinfo(struct net_device *ndev,
2086 			     struct ethtool_drvinfo *info)
2087 {
2088 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2089 	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2090 
2091 	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2092 	strlcpy(info->version, "1.0", sizeof(info->version));
2093 	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2094 }
2095 
2096 static u32 cpsw_get_msglevel(struct net_device *ndev)
2097 {
2098 	struct cpsw_priv *priv = netdev_priv(ndev);
2099 	return priv->msg_enable;
2100 }
2101 
2102 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
2103 {
2104 	struct cpsw_priv *priv = netdev_priv(ndev);
2105 	priv->msg_enable = value;
2106 }
2107 
2108 #if IS_ENABLED(CONFIG_TI_CPTS)
2109 static int cpsw_get_ts_info(struct net_device *ndev,
2110 			    struct ethtool_ts_info *info)
2111 {
2112 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2113 
2114 	info->so_timestamping =
2115 		SOF_TIMESTAMPING_TX_HARDWARE |
2116 		SOF_TIMESTAMPING_TX_SOFTWARE |
2117 		SOF_TIMESTAMPING_RX_HARDWARE |
2118 		SOF_TIMESTAMPING_RX_SOFTWARE |
2119 		SOF_TIMESTAMPING_SOFTWARE |
2120 		SOF_TIMESTAMPING_RAW_HARDWARE;
2121 	info->phc_index = cpsw->cpts->phc_index;
2122 	info->tx_types =
2123 		(1 << HWTSTAMP_TX_OFF) |
2124 		(1 << HWTSTAMP_TX_ON);
2125 	info->rx_filters =
2126 		(1 << HWTSTAMP_FILTER_NONE) |
2127 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2128 	return 0;
2129 }
2130 #else
2131 static int cpsw_get_ts_info(struct net_device *ndev,
2132 			    struct ethtool_ts_info *info)
2133 {
2134 	info->so_timestamping =
2135 		SOF_TIMESTAMPING_TX_SOFTWARE |
2136 		SOF_TIMESTAMPING_RX_SOFTWARE |
2137 		SOF_TIMESTAMPING_SOFTWARE;
2138 	info->phc_index = -1;
2139 	info->tx_types = 0;
2140 	info->rx_filters = 0;
2141 	return 0;
2142 }
2143 #endif
2144 
2145 static int cpsw_get_link_ksettings(struct net_device *ndev,
2146 				   struct ethtool_link_ksettings *ecmd)
2147 {
2148 	struct cpsw_priv *priv = netdev_priv(ndev);
2149 	struct cpsw_common *cpsw = priv->cpsw;
2150 	int slave_no = cpsw_slave_index(cpsw, priv);
2151 
2152 	if (cpsw->slaves[slave_no].phy)
2153 		return phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy,
2154 						 ecmd);
2155 	else
2156 		return -EOPNOTSUPP;
2157 }
2158 
2159 static int cpsw_set_link_ksettings(struct net_device *ndev,
2160 				   const struct ethtool_link_ksettings *ecmd)
2161 {
2162 	struct cpsw_priv *priv = netdev_priv(ndev);
2163 	struct cpsw_common *cpsw = priv->cpsw;
2164 	int slave_no = cpsw_slave_index(cpsw, priv);
2165 
2166 	if (cpsw->slaves[slave_no].phy)
2167 		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
2168 						 ecmd);
2169 	else
2170 		return -EOPNOTSUPP;
2171 }
2172 
2173 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2174 {
2175 	struct cpsw_priv *priv = netdev_priv(ndev);
2176 	struct cpsw_common *cpsw = priv->cpsw;
2177 	int slave_no = cpsw_slave_index(cpsw, priv);
2178 
2179 	wol->supported = 0;
2180 	wol->wolopts = 0;
2181 
2182 	if (cpsw->slaves[slave_no].phy)
2183 		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2184 }
2185 
2186 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2187 {
2188 	struct cpsw_priv *priv = netdev_priv(ndev);
2189 	struct cpsw_common *cpsw = priv->cpsw;
2190 	int slave_no = cpsw_slave_index(cpsw, priv);
2191 
2192 	if (cpsw->slaves[slave_no].phy)
2193 		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2194 	else
2195 		return -EOPNOTSUPP;
2196 }
2197 
2198 static void cpsw_get_pauseparam(struct net_device *ndev,
2199 				struct ethtool_pauseparam *pause)
2200 {
2201 	struct cpsw_priv *priv = netdev_priv(ndev);
2202 
2203 	pause->autoneg = AUTONEG_DISABLE;
2204 	pause->rx_pause = priv->rx_pause ? true : false;
2205 	pause->tx_pause = priv->tx_pause ? true : false;
2206 }
2207 
2208 static int cpsw_set_pauseparam(struct net_device *ndev,
2209 			       struct ethtool_pauseparam *pause)
2210 {
2211 	struct cpsw_priv *priv = netdev_priv(ndev);
2212 	bool link;
2213 
2214 	priv->rx_pause = pause->rx_pause ? true : false;
2215 	priv->tx_pause = pause->tx_pause ? true : false;
2216 
2217 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2218 	return 0;
2219 }
2220 
2221 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2222 {
2223 	struct cpsw_priv *priv = netdev_priv(ndev);
2224 	struct cpsw_common *cpsw = priv->cpsw;
2225 	int ret;
2226 
2227 	ret = pm_runtime_get_sync(cpsw->dev);
2228 	if (ret < 0) {
2229 		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2230 		pm_runtime_put_noidle(cpsw->dev);
2231 	}
2232 
2233 	return ret;
2234 }
2235 
2236 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2237 {
2238 	struct cpsw_priv *priv = netdev_priv(ndev);
2239 	int ret;
2240 
2241 	ret = pm_runtime_put(priv->cpsw->dev);
2242 	if (ret < 0)
2243 		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2244 }
2245 
2246 static void cpsw_get_channels(struct net_device *ndev,
2247 			      struct ethtool_channels *ch)
2248 {
2249 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2250 
2251 	ch->max_combined = 0;
2252 	ch->max_rx = CPSW_MAX_QUEUES;
2253 	ch->max_tx = CPSW_MAX_QUEUES;
2254 	ch->max_other = 0;
2255 	ch->other_count = 0;
2256 	ch->rx_count = cpsw->rx_ch_num;
2257 	ch->tx_count = cpsw->tx_ch_num;
2258 	ch->combined_count = 0;
2259 }
2260 
2261 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2262 				  struct ethtool_channels *ch)
2263 {
2264 	if (ch->combined_count)
2265 		return -EINVAL;
2266 
2267 	/* verify we have at least one channel in each direction */
2268 	if (!ch->rx_count || !ch->tx_count)
2269 		return -EINVAL;
2270 
2271 	if (ch->rx_count > cpsw->data.channels ||
2272 	    ch->tx_count > cpsw->data.channels)
2273 		return -EINVAL;
2274 
2275 	return 0;
2276 }
2277 
2278 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2279 {
2280 	int (*poll)(struct napi_struct *, int);
2281 	struct cpsw_common *cpsw = priv->cpsw;
2282 	void (*handler)(void *, int, int);
2283 	struct netdev_queue *queue;
2284 	struct cpsw_vector *vec;
2285 	int ret, *ch;
2286 
2287 	if (rx) {
2288 		ch = &cpsw->rx_ch_num;
2289 		vec = cpsw->rxv;
2290 		handler = cpsw_rx_handler;
2291 		poll = cpsw_rx_poll;
2292 	} else {
2293 		ch = &cpsw->tx_ch_num;
2294 		vec = cpsw->txv;
2295 		handler = cpsw_tx_handler;
2296 		poll = cpsw_tx_poll;
2297 	}
2298 
2299 	while (*ch < ch_num) {
2300 		vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2301 		queue = netdev_get_tx_queue(priv->ndev, *ch);
2302 		queue->tx_maxrate = 0;
2303 
2304 		if (IS_ERR(vec[*ch].ch))
2305 			return PTR_ERR(vec[*ch].ch);
2306 
2307 		if (!vec[*ch].ch)
2308 			return -EINVAL;
2309 
2310 		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2311 			  (rx ? "rx" : "tx"));
2312 		(*ch)++;
2313 	}
2314 
2315 	while (*ch > ch_num) {
2316 		(*ch)--;
2317 
2318 		ret = cpdma_chan_destroy(vec[*ch].ch);
2319 		if (ret)
2320 			return ret;
2321 
2322 		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2323 			  (rx ? "rx" : "tx"));
2324 	}
2325 
2326 	return 0;
2327 }
2328 
2329 static int cpsw_update_channels(struct cpsw_priv *priv,
2330 				struct ethtool_channels *ch)
2331 {
2332 	int ret;
2333 
2334 	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2335 	if (ret)
2336 		return ret;
2337 
2338 	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2339 	if (ret)
2340 		return ret;
2341 
2342 	return 0;
2343 }
2344 
2345 static void cpsw_suspend_data_pass(struct net_device *ndev)
2346 {
2347 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2348 	struct cpsw_slave *slave;
2349 	int i;
2350 
2351 	/* Disable NAPI scheduling */
2352 	cpsw_intr_disable(cpsw);
2353 
2354 	/* Stop all transmit queues for every network device.
2355 	 * Disable re-using rx descriptors with dormant_on.
2356 	 */
2357 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2358 		if (!(slave->ndev && netif_running(slave->ndev)))
2359 			continue;
2360 
2361 		netif_tx_stop_all_queues(slave->ndev);
2362 		netif_dormant_on(slave->ndev);
2363 	}
2364 
2365 	/* Handle rest of tx packets and stop cpdma channels */
2366 	cpdma_ctlr_stop(cpsw->dma);
2367 }
2368 
2369 static int cpsw_resume_data_pass(struct net_device *ndev)
2370 {
2371 	struct cpsw_priv *priv = netdev_priv(ndev);
2372 	struct cpsw_common *cpsw = priv->cpsw;
2373 	struct cpsw_slave *slave;
2374 	int i, ret;
2375 
2376 	/* Allow rx packets handling */
2377 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2378 		if (slave->ndev && netif_running(slave->ndev))
2379 			netif_dormant_off(slave->ndev);
2380 
2381 	/* After this receive is started */
2382 	if (cpsw->usage_count) {
2383 		ret = cpsw_fill_rx_channels(priv);
2384 		if (ret)
2385 			return ret;
2386 
2387 		cpdma_ctlr_start(cpsw->dma);
2388 		cpsw_intr_enable(cpsw);
2389 	}
2390 
2391 	/* Resume transmit for every affected interface */
2392 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2393 		if (slave->ndev && netif_running(slave->ndev))
2394 			netif_tx_start_all_queues(slave->ndev);
2395 
2396 	return 0;
2397 }
2398 
2399 static int cpsw_set_channels(struct net_device *ndev,
2400 			     struct ethtool_channels *chs)
2401 {
2402 	struct cpsw_priv *priv = netdev_priv(ndev);
2403 	struct cpsw_common *cpsw = priv->cpsw;
2404 	struct cpsw_slave *slave;
2405 	int i, ret;
2406 
2407 	ret = cpsw_check_ch_settings(cpsw, chs);
2408 	if (ret < 0)
2409 		return ret;
2410 
2411 	cpsw_suspend_data_pass(ndev);
2412 	ret = cpsw_update_channels(priv, chs);
2413 	if (ret)
2414 		goto err;
2415 
2416 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2417 		if (!(slave->ndev && netif_running(slave->ndev)))
2418 			continue;
2419 
2420 		/* Inform stack about new count of queues */
2421 		ret = netif_set_real_num_tx_queues(slave->ndev,
2422 						   cpsw->tx_ch_num);
2423 		if (ret) {
2424 			dev_err(priv->dev, "cannot set real number of tx queues\n");
2425 			goto err;
2426 		}
2427 
2428 		ret = netif_set_real_num_rx_queues(slave->ndev,
2429 						   cpsw->rx_ch_num);
2430 		if (ret) {
2431 			dev_err(priv->dev, "cannot set real number of rx queues\n");
2432 			goto err;
2433 		}
2434 	}
2435 
2436 	if (cpsw->usage_count)
2437 		cpsw_split_res(ndev);
2438 
2439 	ret = cpsw_resume_data_pass(ndev);
2440 	if (!ret)
2441 		return 0;
2442 err:
2443 	dev_err(priv->dev, "cannot update channels number, closing device\n");
2444 	dev_close(ndev);
2445 	return ret;
2446 }
2447 
2448 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2449 {
2450 	struct cpsw_priv *priv = netdev_priv(ndev);
2451 	struct cpsw_common *cpsw = priv->cpsw;
2452 	int slave_no = cpsw_slave_index(cpsw, priv);
2453 
2454 	if (cpsw->slaves[slave_no].phy)
2455 		return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
2456 	else
2457 		return -EOPNOTSUPP;
2458 }
2459 
2460 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2461 {
2462 	struct cpsw_priv *priv = netdev_priv(ndev);
2463 	struct cpsw_common *cpsw = priv->cpsw;
2464 	int slave_no = cpsw_slave_index(cpsw, priv);
2465 
2466 	if (cpsw->slaves[slave_no].phy)
2467 		return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
2468 	else
2469 		return -EOPNOTSUPP;
2470 }
2471 
2472 static int cpsw_nway_reset(struct net_device *ndev)
2473 {
2474 	struct cpsw_priv *priv = netdev_priv(ndev);
2475 	struct cpsw_common *cpsw = priv->cpsw;
2476 	int slave_no = cpsw_slave_index(cpsw, priv);
2477 
2478 	if (cpsw->slaves[slave_no].phy)
2479 		return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
2480 	else
2481 		return -EOPNOTSUPP;
2482 }
2483 
2484 static void cpsw_get_ringparam(struct net_device *ndev,
2485 			       struct ethtool_ringparam *ering)
2486 {
2487 	struct cpsw_priv *priv = netdev_priv(ndev);
2488 	struct cpsw_common *cpsw = priv->cpsw;
2489 
2490 	/* not supported */
2491 	ering->tx_max_pending = 0;
2492 	ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2493 	ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2494 	ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
2495 }
2496 
2497 static int cpsw_set_ringparam(struct net_device *ndev,
2498 			      struct ethtool_ringparam *ering)
2499 {
2500 	struct cpsw_priv *priv = netdev_priv(ndev);
2501 	struct cpsw_common *cpsw = priv->cpsw;
2502 	int ret;
2503 
2504 	/* ignore ering->tx_pending - only rx_pending adjustment is supported */
2505 
2506 	if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2507 	    ering->rx_pending < CPSW_MAX_QUEUES ||
2508 	    ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2509 		return -EINVAL;
2510 
2511 	if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
2512 		return 0;
2513 
2514 	cpsw_suspend_data_pass(ndev);
2515 
2516 	cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);
2517 
2518 	if (cpsw->usage_count)
2519 		cpdma_chan_split_pool(cpsw->dma);
2520 
2521 	ret = cpsw_resume_data_pass(ndev);
2522 	if (!ret)
2523 		return 0;
2524 
2525 	dev_err(&ndev->dev, "cannot set ring params, closing device\n");
2526 	dev_close(ndev);
2527 	return ret;
2528 }
2529 
2530 static const struct ethtool_ops cpsw_ethtool_ops = {
2531 	.get_drvinfo	= cpsw_get_drvinfo,
2532 	.get_msglevel	= cpsw_get_msglevel,
2533 	.set_msglevel	= cpsw_set_msglevel,
2534 	.get_link	= ethtool_op_get_link,
2535 	.get_ts_info	= cpsw_get_ts_info,
2536 	.get_coalesce	= cpsw_get_coalesce,
2537 	.set_coalesce	= cpsw_set_coalesce,
2538 	.get_sset_count		= cpsw_get_sset_count,
2539 	.get_strings		= cpsw_get_strings,
2540 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
2541 	.get_pauseparam		= cpsw_get_pauseparam,
2542 	.set_pauseparam		= cpsw_set_pauseparam,
2543 	.get_wol	= cpsw_get_wol,
2544 	.set_wol	= cpsw_set_wol,
2545 	.get_regs_len	= cpsw_get_regs_len,
2546 	.get_regs	= cpsw_get_regs,
2547 	.begin		= cpsw_ethtool_op_begin,
2548 	.complete	= cpsw_ethtool_op_complete,
2549 	.get_channels	= cpsw_get_channels,
2550 	.set_channels	= cpsw_set_channels,
2551 	.get_link_ksettings	= cpsw_get_link_ksettings,
2552 	.set_link_ksettings	= cpsw_set_link_ksettings,
2553 	.get_eee	= cpsw_get_eee,
2554 	.set_eee	= cpsw_set_eee,
2555 	.nway_reset	= cpsw_nway_reset,
2556 	.get_ringparam = cpsw_get_ringparam,
2557 	.set_ringparam = cpsw_set_ringparam,
2558 };
2559 
2560 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2561 			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
2562 {
2563 	void __iomem		*regs = cpsw->regs;
2564 	int			slave_num = slave->slave_num;
2565 	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
2566 
2567 	slave->data	= data;
2568 	slave->regs	= regs + slave_reg_ofs;
2569 	slave->sliver	= regs + sliver_reg_ofs;
2570 	slave->port_vlan = data->dual_emac_res_vlan;
2571 }
2572 
2573 static int cpsw_probe_dt(struct cpsw_platform_data *data,
2574 			 struct platform_device *pdev)
2575 {
2576 	struct device_node *node = pdev->dev.of_node;
2577 	struct device_node *slave_node;
2578 	int i = 0, ret;
2579 	u32 prop;
2580 
2581 	if (!node)
2582 		return -EINVAL;
2583 
2584 	if (of_property_read_u32(node, "slaves", &prop)) {
2585 		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2586 		return -EINVAL;
2587 	}
2588 	data->slaves = prop;
2589 
2590 	if (of_property_read_u32(node, "active_slave", &prop)) {
2591 		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2592 		return -EINVAL;
2593 	}
2594 	data->active_slave = prop;
2595 
2596 	data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
2597 					* sizeof(struct cpsw_slave_data),
2598 					GFP_KERNEL);
2599 	if (!data->slave_data)
2600 		return -ENOMEM;
2601 
2602 	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2603 		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2604 		return -EINVAL;
2605 	}
2606 	data->channels = prop;
2607 
2608 	if (of_property_read_u32(node, "ale_entries", &prop)) {
2609 		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2610 		return -EINVAL;
2611 	}
2612 	data->ale_entries = prop;
2613 
2614 	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2615 		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2616 		return -EINVAL;
2617 	}
2618 	data->bd_ram_size = prop;
2619 
2620 	if (of_property_read_u32(node, "mac_control", &prop)) {
2621 		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2622 		return -EINVAL;
2623 	}
2624 	data->mac_control = prop;
2625 
2626 	if (of_property_read_bool(node, "dual_emac"))
2627 		data->dual_emac = 1;
2628 
2629 	/*
2630 	 * Populate all the child nodes here...
2631 	 */
2632 	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2633 	/* We do not want to force this, as in some cases may not have child */
2634 	if (ret)
2635 		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2636 
2637 	for_each_available_child_of_node(node, slave_node) {
2638 		struct cpsw_slave_data *slave_data = data->slave_data + i;
2639 		const void *mac_addr = NULL;
2640 		int lenp;
2641 		const __be32 *parp;
2642 
2643 		/* This is no slave child node, continue */
2644 		if (strcmp(slave_node->name, "slave"))
2645 			continue;
2646 
2647 		slave_data->phy_node = of_parse_phandle(slave_node,
2648 							"phy-handle", 0);
2649 		parp = of_get_property(slave_node, "phy_id", &lenp);
2650 		if (slave_data->phy_node) {
2651 			dev_dbg(&pdev->dev,
2652 				"slave[%d] using phy-handle=\"%s\"\n",
2653 				i, slave_data->phy_node->full_name);
2654 		} else if (of_phy_is_fixed_link(slave_node)) {
2655 			/* In the case of a fixed PHY, the DT node associated
2656 			 * to the PHY is the Ethernet MAC DT node.
2657 			 */
2658 			ret = of_phy_register_fixed_link(slave_node);
2659 			if (ret) {
2660 				if (ret != -EPROBE_DEFER)
2661 					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2662 				return ret;
2663 			}
2664 			slave_data->phy_node = of_node_get(slave_node);
2665 		} else if (parp) {
2666 			u32 phyid;
2667 			struct device_node *mdio_node;
2668 			struct platform_device *mdio;
2669 
2670 			if (lenp != (sizeof(__be32) * 2)) {
2671 				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2672 				goto no_phy_slave;
2673 			}
2674 			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2675 			phyid = be32_to_cpup(parp+1);
2676 			mdio = of_find_device_by_node(mdio_node);
2677 			of_node_put(mdio_node);
2678 			if (!mdio) {
2679 				dev_err(&pdev->dev, "Missing mdio platform device\n");
2680 				return -EINVAL;
2681 			}
2682 			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2683 				 PHY_ID_FMT, mdio->name, phyid);
2684 			put_device(&mdio->dev);
2685 		} else {
2686 			dev_err(&pdev->dev,
2687 				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2688 				i);
2689 			goto no_phy_slave;
2690 		}
2691 		slave_data->phy_if = of_get_phy_mode(slave_node);
2692 		if (slave_data->phy_if < 0) {
2693 			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2694 				i);
2695 			return slave_data->phy_if;
2696 		}
2697 
2698 no_phy_slave:
2699 		mac_addr = of_get_mac_address(slave_node);
2700 		if (mac_addr) {
2701 			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2702 		} else {
2703 			ret = ti_cm_get_macid(&pdev->dev, i,
2704 					      slave_data->mac_addr);
2705 			if (ret)
2706 				return ret;
2707 		}
2708 		if (data->dual_emac) {
2709 			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2710 						 &prop)) {
2711 				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2712 				slave_data->dual_emac_res_vlan = i+1;
2713 				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2714 					slave_data->dual_emac_res_vlan, i);
2715 			} else {
2716 				slave_data->dual_emac_res_vlan = prop;
2717 			}
2718 		}
2719 
2720 		i++;
2721 		if (i == data->slaves)
2722 			break;
2723 	}
2724 
2725 	return 0;
2726 }
2727 
2728 static void cpsw_remove_dt(struct platform_device *pdev)
2729 {
2730 	struct net_device *ndev = platform_get_drvdata(pdev);
2731 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2732 	struct cpsw_platform_data *data = &cpsw->data;
2733 	struct device_node *node = pdev->dev.of_node;
2734 	struct device_node *slave_node;
2735 	int i = 0;
2736 
2737 	for_each_available_child_of_node(node, slave_node) {
2738 		struct cpsw_slave_data *slave_data = &data->slave_data[i];
2739 
2740 		if (strcmp(slave_node->name, "slave"))
2741 			continue;
2742 
2743 		if (of_phy_is_fixed_link(slave_node))
2744 			of_phy_deregister_fixed_link(slave_node);
2745 
2746 		of_node_put(slave_data->phy_node);
2747 
2748 		i++;
2749 		if (i == data->slaves)
2750 			break;
2751 	}
2752 
2753 	of_platform_depopulate(&pdev->dev);
2754 }
2755 
2756 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2757 {
2758 	struct cpsw_common		*cpsw = priv->cpsw;
2759 	struct cpsw_platform_data	*data = &cpsw->data;
2760 	struct net_device		*ndev;
2761 	struct cpsw_priv		*priv_sl2;
2762 	int ret = 0;
2763 
2764 	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2765 	if (!ndev) {
2766 		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2767 		return -ENOMEM;
2768 	}
2769 
2770 	priv_sl2 = netdev_priv(ndev);
2771 	priv_sl2->cpsw = cpsw;
2772 	priv_sl2->ndev = ndev;
2773 	priv_sl2->dev  = &ndev->dev;
2774 	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2775 
2776 	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2777 		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2778 			ETH_ALEN);
2779 		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
2780 			 priv_sl2->mac_addr);
2781 	} else {
2782 		random_ether_addr(priv_sl2->mac_addr);
2783 		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
2784 			 priv_sl2->mac_addr);
2785 	}
2786 	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2787 
2788 	priv_sl2->emac_port = 1;
2789 	cpsw->slaves[1].ndev = ndev;
2790 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2791 
2792 	ndev->netdev_ops = &cpsw_netdev_ops;
2793 	ndev->ethtool_ops = &cpsw_ethtool_ops;
2794 
2795 	/* register the network device */
2796 	SET_NETDEV_DEV(ndev, cpsw->dev);
2797 	ret = register_netdev(ndev);
2798 	if (ret) {
2799 		dev_err(cpsw->dev, "cpsw: error registering net device\n");
2800 		free_netdev(ndev);
2801 		ret = -ENODEV;
2802 	}
2803 
2804 	return ret;
2805 }
2806 
2807 #define CPSW_QUIRK_IRQ		BIT(0)
2808 
2809 static struct platform_device_id cpsw_devtype[] = {
2810 	{
2811 		/* keep it for existing comaptibles */
2812 		.name = "cpsw",
2813 		.driver_data = CPSW_QUIRK_IRQ,
2814 	}, {
2815 		.name = "am335x-cpsw",
2816 		.driver_data = CPSW_QUIRK_IRQ,
2817 	}, {
2818 		.name = "am4372-cpsw",
2819 		.driver_data = 0,
2820 	}, {
2821 		.name = "dra7-cpsw",
2822 		.driver_data = 0,
2823 	}, {
2824 		/* sentinel */
2825 	}
2826 };
2827 MODULE_DEVICE_TABLE(platform, cpsw_devtype);
2828 
2829 enum ti_cpsw_type {
2830 	CPSW = 0,
2831 	AM335X_CPSW,
2832 	AM4372_CPSW,
2833 	DRA7_CPSW,
2834 };
2835 
2836 static const struct of_device_id cpsw_of_mtable[] = {
2837 	{ .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
2838 	{ .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
2839 	{ .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
2840 	{ .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
2841 	{ /* sentinel */ },
2842 };
2843 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2844 
2845 static int cpsw_probe(struct platform_device *pdev)
2846 {
2847 	struct clk			*clk;
2848 	struct cpsw_platform_data	*data;
2849 	struct net_device		*ndev;
2850 	struct cpsw_priv		*priv;
2851 	struct cpdma_params		dma_params;
2852 	struct cpsw_ale_params		ale_params;
2853 	void __iomem			*ss_regs;
2854 	void __iomem			*cpts_regs;
2855 	struct resource			*res, *ss_res;
2856 	const struct of_device_id	*of_id;
2857 	struct gpio_descs		*mode;
2858 	u32 slave_offset, sliver_offset, slave_size;
2859 	struct cpsw_common		*cpsw;
2860 	int ret = 0, i;
2861 	int irq;
2862 
2863 	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2864 	if (!cpsw)
2865 		return -ENOMEM;
2866 
2867 	cpsw->dev = &pdev->dev;
2868 
2869 	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2870 	if (!ndev) {
2871 		dev_err(&pdev->dev, "error allocating net_device\n");
2872 		return -ENOMEM;
2873 	}
2874 
2875 	platform_set_drvdata(pdev, ndev);
2876 	priv = netdev_priv(ndev);
2877 	priv->cpsw = cpsw;
2878 	priv->ndev = ndev;
2879 	priv->dev  = &ndev->dev;
2880 	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2881 	cpsw->rx_packet_max = max(rx_packet_max, 128);
2882 
2883 	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
2884 	if (IS_ERR(mode)) {
2885 		ret = PTR_ERR(mode);
2886 		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
2887 		goto clean_ndev_ret;
2888 	}
2889 
2890 	/*
2891 	 * This may be required here for child devices.
2892 	 */
2893 	pm_runtime_enable(&pdev->dev);
2894 
2895 	/* Select default pin state */
2896 	pinctrl_pm_select_default_state(&pdev->dev);
2897 
2898 	/* Need to enable clocks with runtime PM api to access module
2899 	 * registers
2900 	 */
2901 	ret = pm_runtime_get_sync(&pdev->dev);
2902 	if (ret < 0) {
2903 		pm_runtime_put_noidle(&pdev->dev);
2904 		goto clean_runtime_disable_ret;
2905 	}
2906 
2907 	ret = cpsw_probe_dt(&cpsw->data, pdev);
2908 	if (ret)
2909 		goto clean_dt_ret;
2910 
2911 	data = &cpsw->data;
2912 	cpsw->rx_ch_num = 1;
2913 	cpsw->tx_ch_num = 1;
2914 
2915 	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2916 		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2917 		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2918 	} else {
2919 		eth_random_addr(priv->mac_addr);
2920 		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2921 	}
2922 
2923 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2924 
2925 	cpsw->slaves = devm_kzalloc(&pdev->dev,
2926 				    sizeof(struct cpsw_slave) * data->slaves,
2927 				    GFP_KERNEL);
2928 	if (!cpsw->slaves) {
2929 		ret = -ENOMEM;
2930 		goto clean_dt_ret;
2931 	}
2932 	for (i = 0; i < data->slaves; i++)
2933 		cpsw->slaves[i].slave_num = i;
2934 
2935 	cpsw->slaves[0].ndev = ndev;
2936 	priv->emac_port = 0;
2937 
2938 	clk = devm_clk_get(&pdev->dev, "fck");
2939 	if (IS_ERR(clk)) {
2940 		dev_err(priv->dev, "fck is not found\n");
2941 		ret = -ENODEV;
2942 		goto clean_dt_ret;
2943 	}
2944 	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2945 
2946 	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2947 	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
2948 	if (IS_ERR(ss_regs)) {
2949 		ret = PTR_ERR(ss_regs);
2950 		goto clean_dt_ret;
2951 	}
2952 	cpsw->regs = ss_regs;
2953 
2954 	cpsw->version = readl(&cpsw->regs->id_ver);
2955 
2956 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2957 	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
2958 	if (IS_ERR(cpsw->wr_regs)) {
2959 		ret = PTR_ERR(cpsw->wr_regs);
2960 		goto clean_dt_ret;
2961 	}
2962 
2963 	memset(&dma_params, 0, sizeof(dma_params));
2964 	memset(&ale_params, 0, sizeof(ale_params));
2965 
2966 	switch (cpsw->version) {
2967 	case CPSW_VERSION_1:
2968 		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2969 		cpts_regs		= ss_regs + CPSW1_CPTS_OFFSET;
2970 		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
2971 		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
2972 		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
2973 		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
2974 		slave_offset         = CPSW1_SLAVE_OFFSET;
2975 		slave_size           = CPSW1_SLAVE_SIZE;
2976 		sliver_offset        = CPSW1_SLIVER_OFFSET;
2977 		dma_params.desc_mem_phys = 0;
2978 		break;
2979 	case CPSW_VERSION_2:
2980 	case CPSW_VERSION_3:
2981 	case CPSW_VERSION_4:
2982 		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
2983 		cpts_regs		= ss_regs + CPSW2_CPTS_OFFSET;
2984 		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
2985 		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
2986 		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
2987 		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
2988 		slave_offset         = CPSW2_SLAVE_OFFSET;
2989 		slave_size           = CPSW2_SLAVE_SIZE;
2990 		sliver_offset        = CPSW2_SLIVER_OFFSET;
2991 		dma_params.desc_mem_phys =
2992 			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
2993 		break;
2994 	default:
2995 		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
2996 		ret = -ENODEV;
2997 		goto clean_dt_ret;
2998 	}
2999 	for (i = 0; i < cpsw->data.slaves; i++) {
3000 		struct cpsw_slave *slave = &cpsw->slaves[i];
3001 
3002 		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3003 		slave_offset  += slave_size;
3004 		sliver_offset += SLIVER_SIZE;
3005 	}
3006 
3007 	dma_params.dev		= &pdev->dev;
3008 	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
3009 	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
3010 	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
3011 	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
3012 	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
3013 
3014 	dma_params.num_chan		= data->channels;
3015 	dma_params.has_soft_reset	= true;
3016 	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
3017 	dma_params.desc_mem_size	= data->bd_ram_size;
3018 	dma_params.desc_align		= 16;
3019 	dma_params.has_ext_regs		= true;
3020 	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3021 	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
3022 	dma_params.descs_pool_size	= descs_pool_size;
3023 
3024 	cpsw->dma = cpdma_ctlr_create(&dma_params);
3025 	if (!cpsw->dma) {
3026 		dev_err(priv->dev, "error initializing dma\n");
3027 		ret = -ENOMEM;
3028 		goto clean_dt_ret;
3029 	}
3030 
3031 	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
3032 	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3033 	if (WARN_ON(!cpsw->rxv[0].ch || !cpsw->txv[0].ch)) {
3034 		dev_err(priv->dev, "error initializing dma channels\n");
3035 		ret = -ENOMEM;
3036 		goto clean_dma_ret;
3037 	}
3038 
3039 	ale_params.dev			= &pdev->dev;
3040 	ale_params.ale_ageout		= ale_ageout;
3041 	ale_params.ale_entries		= data->ale_entries;
3042 	ale_params.ale_ports		= data->slaves;
3043 
3044 	cpsw->ale = cpsw_ale_create(&ale_params);
3045 	if (!cpsw->ale) {
3046 		dev_err(priv->dev, "error initializing ale engine\n");
3047 		ret = -ENODEV;
3048 		goto clean_dma_ret;
3049 	}
3050 
3051 	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3052 	if (IS_ERR(cpsw->cpts)) {
3053 		ret = PTR_ERR(cpsw->cpts);
3054 		goto clean_ale_ret;
3055 	}
3056 
3057 	ndev->irq = platform_get_irq(pdev, 1);
3058 	if (ndev->irq < 0) {
3059 		dev_err(priv->dev, "error getting irq resource\n");
3060 		ret = ndev->irq;
3061 		goto clean_ale_ret;
3062 	}
3063 
3064 	of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
3065 	if (of_id) {
3066 		pdev->id_entry = of_id->data;
3067 		if (pdev->id_entry->driver_data)
3068 			cpsw->quirk_irq = true;
3069 	}
3070 
3071 	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
3072 	 * MISC IRQs which are always kept disabled with this driver so
3073 	 * we will not request them.
3074 	 *
3075 	 * If anyone wants to implement support for those, make sure to
3076 	 * first request and append them to irqs_table array.
3077 	 */
3078 
3079 	/* RX IRQ */
3080 	irq = platform_get_irq(pdev, 1);
3081 	if (irq < 0) {
3082 		ret = irq;
3083 		goto clean_ale_ret;
3084 	}
3085 
3086 	cpsw->irqs_table[0] = irq;
3087 	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3088 			       0, dev_name(&pdev->dev), cpsw);
3089 	if (ret < 0) {
3090 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3091 		goto clean_ale_ret;
3092 	}
3093 
3094 	/* TX IRQ */
3095 	irq = platform_get_irq(pdev, 2);
3096 	if (irq < 0) {
3097 		ret = irq;
3098 		goto clean_ale_ret;
3099 	}
3100 
3101 	cpsw->irqs_table[1] = irq;
3102 	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3103 			       0, dev_name(&pdev->dev), cpsw);
3104 	if (ret < 0) {
3105 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3106 		goto clean_ale_ret;
3107 	}
3108 
3109 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3110 
3111 	ndev->netdev_ops = &cpsw_netdev_ops;
3112 	ndev->ethtool_ops = &cpsw_ethtool_ops;
3113 	netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
3114 	netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
3115 	cpsw_split_res(ndev);
3116 
3117 	/* register the network device */
3118 	SET_NETDEV_DEV(ndev, &pdev->dev);
3119 	ret = register_netdev(ndev);
3120 	if (ret) {
3121 		dev_err(priv->dev, "error registering net device\n");
3122 		ret = -ENODEV;
3123 		goto clean_ale_ret;
3124 	}
3125 
3126 	cpsw_notice(priv, probe,
3127 		    "initialized device (regs %pa, irq %d, pool size %d)\n",
3128 		    &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3129 	if (cpsw->data.dual_emac) {
3130 		ret = cpsw_probe_dual_emac(priv);
3131 		if (ret) {
3132 			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3133 			goto clean_unregister_netdev_ret;
3134 		}
3135 	}
3136 
3137 	pm_runtime_put(&pdev->dev);
3138 
3139 	return 0;
3140 
3141 clean_unregister_netdev_ret:
3142 	unregister_netdev(ndev);
3143 clean_ale_ret:
3144 	cpsw_ale_destroy(cpsw->ale);
3145 clean_dma_ret:
3146 	cpdma_ctlr_destroy(cpsw->dma);
3147 clean_dt_ret:
3148 	cpsw_remove_dt(pdev);
3149 	pm_runtime_put_sync(&pdev->dev);
3150 clean_runtime_disable_ret:
3151 	pm_runtime_disable(&pdev->dev);
3152 clean_ndev_ret:
3153 	free_netdev(priv->ndev);
3154 	return ret;
3155 }
3156 
3157 static int cpsw_remove(struct platform_device *pdev)
3158 {
3159 	struct net_device *ndev = platform_get_drvdata(pdev);
3160 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3161 	int ret;
3162 
3163 	ret = pm_runtime_get_sync(&pdev->dev);
3164 	if (ret < 0) {
3165 		pm_runtime_put_noidle(&pdev->dev);
3166 		return ret;
3167 	}
3168 
3169 	if (cpsw->data.dual_emac)
3170 		unregister_netdev(cpsw->slaves[1].ndev);
3171 	unregister_netdev(ndev);
3172 
3173 	cpts_release(cpsw->cpts);
3174 	cpsw_ale_destroy(cpsw->ale);
3175 	cpdma_ctlr_destroy(cpsw->dma);
3176 	cpsw_remove_dt(pdev);
3177 	pm_runtime_put_sync(&pdev->dev);
3178 	pm_runtime_disable(&pdev->dev);
3179 	if (cpsw->data.dual_emac)
3180 		free_netdev(cpsw->slaves[1].ndev);
3181 	free_netdev(ndev);
3182 	return 0;
3183 }
3184 
3185 #ifdef CONFIG_PM_SLEEP
3186 static int cpsw_suspend(struct device *dev)
3187 {
3188 	struct platform_device	*pdev = to_platform_device(dev);
3189 	struct net_device	*ndev = platform_get_drvdata(pdev);
3190 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3191 
3192 	if (cpsw->data.dual_emac) {
3193 		int i;
3194 
3195 		for (i = 0; i < cpsw->data.slaves; i++) {
3196 			if (netif_running(cpsw->slaves[i].ndev))
3197 				cpsw_ndo_stop(cpsw->slaves[i].ndev);
3198 		}
3199 	} else {
3200 		if (netif_running(ndev))
3201 			cpsw_ndo_stop(ndev);
3202 	}
3203 
3204 	/* Select sleep pin state */
3205 	pinctrl_pm_select_sleep_state(dev);
3206 
3207 	return 0;
3208 }
3209 
3210 static int cpsw_resume(struct device *dev)
3211 {
3212 	struct platform_device	*pdev = to_platform_device(dev);
3213 	struct net_device	*ndev = platform_get_drvdata(pdev);
3214 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3215 
3216 	/* Select default pin state */
3217 	pinctrl_pm_select_default_state(dev);
3218 
3219 	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3220 	rtnl_lock();
3221 	if (cpsw->data.dual_emac) {
3222 		int i;
3223 
3224 		for (i = 0; i < cpsw->data.slaves; i++) {
3225 			if (netif_running(cpsw->slaves[i].ndev))
3226 				cpsw_ndo_open(cpsw->slaves[i].ndev);
3227 		}
3228 	} else {
3229 		if (netif_running(ndev))
3230 			cpsw_ndo_open(ndev);
3231 	}
3232 	rtnl_unlock();
3233 
3234 	return 0;
3235 }
3236 #endif
3237 
3238 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3239 
3240 static struct platform_driver cpsw_driver = {
3241 	.driver = {
3242 		.name	 = "cpsw",
3243 		.pm	 = &cpsw_pm_ops,
3244 		.of_match_table = cpsw_of_mtable,
3245 	},
3246 	.probe = cpsw_probe,
3247 	.remove = cpsw_remove,
3248 };
3249 
3250 module_platform_driver(cpsw_driver);
3251 
3252 MODULE_LICENSE("GPL");
3253 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3254 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3255 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
3256