xref: /linux/drivers/net/ethernet/ti/cpsw.c (revision 79b3325d0d87a6b3af96485ff8029bcc26e070e3)
1 /*
2  * Texas Instruments Ethernet Switch Driver
3  *
4  * Copyright (C) 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38 #include <linux/kmemleak.h>
39 #include <linux/sys_soc.h>
40 
41 #include <linux/pinctrl/consumer.h>
42 
43 #include "cpsw.h"
44 #include "cpsw_ale.h"
45 #include "cpts.h"
46 #include "davinci_cpdma.h"
47 
48 #define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
49 			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
50 			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
51 			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
52 			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
53 			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
54 			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
55 			 NETIF_MSG_RX_STATUS)
56 
57 #define cpsw_info(priv, type, format, ...)		\
58 do {								\
59 	if (netif_msg_##type(priv) && net_ratelimit())		\
60 		dev_info(priv->dev, format, ## __VA_ARGS__);	\
61 } while (0)
62 
63 #define cpsw_err(priv, type, format, ...)		\
64 do {								\
65 	if (netif_msg_##type(priv) && net_ratelimit())		\
66 		dev_err(priv->dev, format, ## __VA_ARGS__);	\
67 } while (0)
68 
69 #define cpsw_dbg(priv, type, format, ...)		\
70 do {								\
71 	if (netif_msg_##type(priv) && net_ratelimit())		\
72 		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
73 } while (0)
74 
75 #define cpsw_notice(priv, type, format, ...)		\
76 do {								\
77 	if (netif_msg_##type(priv) && net_ratelimit())		\
78 		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
79 } while (0)
80 
81 #define ALE_ALL_PORTS		0x7
82 
83 #define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
84 #define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
85 #define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)
86 
87 #define CPSW_VERSION_1		0x19010a
88 #define CPSW_VERSION_2		0x19010c
89 #define CPSW_VERSION_3		0x19010f
90 #define CPSW_VERSION_4		0x190112
91 
92 #define HOST_PORT_NUM		0
93 #define CPSW_ALE_PORTS_NUM	3
94 #define SLIVER_SIZE		0x40
95 
96 #define CPSW1_HOST_PORT_OFFSET	0x028
97 #define CPSW1_SLAVE_OFFSET	0x050
98 #define CPSW1_SLAVE_SIZE	0x040
99 #define CPSW1_CPDMA_OFFSET	0x100
100 #define CPSW1_STATERAM_OFFSET	0x200
101 #define CPSW1_HW_STATS		0x400
102 #define CPSW1_CPTS_OFFSET	0x500
103 #define CPSW1_ALE_OFFSET	0x600
104 #define CPSW1_SLIVER_OFFSET	0x700
105 
106 #define CPSW2_HOST_PORT_OFFSET	0x108
107 #define CPSW2_SLAVE_OFFSET	0x200
108 #define CPSW2_SLAVE_SIZE	0x100
109 #define CPSW2_CPDMA_OFFSET	0x800
110 #define CPSW2_HW_STATS		0x900
111 #define CPSW2_STATERAM_OFFSET	0xa00
112 #define CPSW2_CPTS_OFFSET	0xc00
113 #define CPSW2_ALE_OFFSET	0xd00
114 #define CPSW2_SLIVER_OFFSET	0xd80
115 #define CPSW2_BD_OFFSET		0x2000
116 
117 #define CPDMA_RXTHRESH		0x0c0
118 #define CPDMA_RXFREE		0x0e0
119 #define CPDMA_TXHDP		0x00
120 #define CPDMA_RXHDP		0x20
121 #define CPDMA_TXCP		0x40
122 #define CPDMA_RXCP		0x60
123 
124 #define CPSW_POLL_WEIGHT	64
125 #define CPSW_RX_VLAN_ENCAP_HDR_SIZE		4
126 #define CPSW_MIN_PACKET_SIZE	(VLAN_ETH_ZLEN)
127 #define CPSW_MAX_PACKET_SIZE	(VLAN_ETH_FRAME_LEN +\
128 				 ETH_FCS_LEN +\
129 				 CPSW_RX_VLAN_ENCAP_HDR_SIZE)
130 
131 #define RX_PRIORITY_MAPPING	0x76543210
132 #define TX_PRIORITY_MAPPING	0x33221100
133 #define CPDMA_TX_PRIORITY_MAP	0x76543210
134 
135 #define CPSW_VLAN_AWARE		BIT(1)
136 #define CPSW_RX_VLAN_ENCAP	BIT(2)
137 #define CPSW_ALE_VLAN_AWARE	1
138 
139 #define CPSW_FIFO_NORMAL_MODE		(0 << 16)
140 #define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
141 #define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
142 
143 #define CPSW_INTPACEEN		(0x3f << 16)
144 #define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
145 #define CPSW_CMINTMAX_CNT	63
146 #define CPSW_CMINTMIN_CNT	2
147 #define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
148 #define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)
149 
150 #define cpsw_slave_index(cpsw, priv)				\
151 		((cpsw->data.dual_emac) ? priv->emac_port :	\
152 		cpsw->data.active_slave)
153 #define IRQ_NUM			2
154 #define CPSW_MAX_QUEUES		8
155 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
156 
157 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT	29
158 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK		GENMASK(2, 0)
159 #define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT	16
160 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT	8
161 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK	GENMASK(1, 0)
162 enum {
163 	CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0,
164 	CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV,
165 	CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG,
166 	CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG,
167 };
168 
169 static int debug_level;
170 module_param(debug_level, int, 0);
171 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
172 
173 static int ale_ageout = 10;
174 module_param(ale_ageout, int, 0);
175 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
176 
177 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
178 module_param(rx_packet_max, int, 0);
179 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
180 
181 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
182 module_param(descs_pool_size, int, 0444);
183 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
184 
185 struct cpsw_wr_regs {
186 	u32	id_ver;
187 	u32	soft_reset;
188 	u32	control;
189 	u32	int_control;
190 	u32	rx_thresh_en;
191 	u32	rx_en;
192 	u32	tx_en;
193 	u32	misc_en;
194 	u32	mem_allign1[8];
195 	u32	rx_thresh_stat;
196 	u32	rx_stat;
197 	u32	tx_stat;
198 	u32	misc_stat;
199 	u32	mem_allign2[8];
200 	u32	rx_imax;
201 	u32	tx_imax;
202 
203 };
204 
205 struct cpsw_ss_regs {
206 	u32	id_ver;
207 	u32	control;
208 	u32	soft_reset;
209 	u32	stat_port_en;
210 	u32	ptype;
211 	u32	soft_idle;
212 	u32	thru_rate;
213 	u32	gap_thresh;
214 	u32	tx_start_wds;
215 	u32	flow_control;
216 	u32	vlan_ltype;
217 	u32	ts_ltype;
218 	u32	dlr_ltype;
219 };
220 
221 /* CPSW_PORT_V1 */
222 #define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
223 #define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
224 #define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
225 #define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
226 #define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
227 #define CPSW1_TS_CTL        0x14 /* Time Sync Control */
228 #define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
229 #define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */
230 
231 /* CPSW_PORT_V2 */
232 #define CPSW2_CONTROL       0x00 /* Control Register */
233 #define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
234 #define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
235 #define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
236 #define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
237 #define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
238 #define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */
239 
240 /* CPSW_PORT_V1 and V2 */
241 #define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
242 #define SA_HI               0x24 /* CPGMAC_SL Source Address High */
243 #define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */
244 
245 /* CPSW_PORT_V2 only */
246 #define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
247 #define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
248 #define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
249 #define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
250 #define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
251 #define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
252 #define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
253 #define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */
254 
255 /* Bit definitions for the CPSW2_CONTROL register */
256 #define PASS_PRI_TAGGED     BIT(24) /* Pass Priority Tagged */
257 #define VLAN_LTYPE2_EN      BIT(21) /* VLAN LTYPE 2 enable */
258 #define VLAN_LTYPE1_EN      BIT(20) /* VLAN LTYPE 1 enable */
259 #define DSCP_PRI_EN         BIT(16) /* DSCP Priority Enable */
260 #define TS_107              BIT(15) /* Tyme Sync Dest IP Address 107 */
261 #define TS_320              BIT(14) /* Time Sync Dest Port 320 enable */
262 #define TS_319              BIT(13) /* Time Sync Dest Port 319 enable */
263 #define TS_132              BIT(12) /* Time Sync Dest IP Addr 132 enable */
264 #define TS_131              BIT(11) /* Time Sync Dest IP Addr 131 enable */
265 #define TS_130              BIT(10) /* Time Sync Dest IP Addr 130 enable */
266 #define TS_129              BIT(9)  /* Time Sync Dest IP Addr 129 enable */
267 #define TS_TTL_NONZERO      BIT(8)  /* Time Sync Time To Live Non-zero enable */
268 #define TS_ANNEX_F_EN       BIT(6)  /* Time Sync Annex F enable */
269 #define TS_ANNEX_D_EN       BIT(4)  /* Time Sync Annex D enable */
270 #define TS_LTYPE2_EN        BIT(3)  /* Time Sync LTYPE 2 enable */
271 #define TS_LTYPE1_EN        BIT(2)  /* Time Sync LTYPE 1 enable */
272 #define TS_TX_EN            BIT(1)  /* Time Sync Transmit Enable */
273 #define TS_RX_EN            BIT(0)  /* Time Sync Receive Enable */
274 
275 #define CTRL_V2_TS_BITS \
276 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
277 	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
278 
279 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
280 #define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
281 #define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)
282 
283 
284 #define CTRL_V3_TS_BITS \
285 	(TS_107 | TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
286 	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
287 	 TS_LTYPE1_EN)
288 
289 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
290 #define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
291 #define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
292 
293 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
294 #define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
295 #define TS_SEQ_ID_OFFSET_MASK    (0x3f)
296 #define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
297 #define TS_MSG_TYPE_EN_MASK      (0xffff)
298 
299 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
300 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
301 
302 /* Bit definitions for the CPSW1_TS_CTL register */
303 #define CPSW_V1_TS_RX_EN		BIT(0)
304 #define CPSW_V1_TS_TX_EN		BIT(4)
305 #define CPSW_V1_MSG_TYPE_OFS		16
306 
307 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
308 #define CPSW_V1_SEQ_ID_OFS_SHIFT	16
309 
310 #define CPSW_MAX_BLKS_TX		15
311 #define CPSW_MAX_BLKS_TX_SHIFT		4
312 #define CPSW_MAX_BLKS_RX		5
313 
314 struct cpsw_host_regs {
315 	u32	max_blks;
316 	u32	blk_cnt;
317 	u32	tx_in_ctl;
318 	u32	port_vlan;
319 	u32	tx_pri_map;
320 	u32	cpdma_tx_pri_map;
321 	u32	cpdma_rx_chan_map;
322 };
323 
324 struct cpsw_sliver_regs {
325 	u32	id_ver;
326 	u32	mac_control;
327 	u32	mac_status;
328 	u32	soft_reset;
329 	u32	rx_maxlen;
330 	u32	__reserved_0;
331 	u32	rx_pause;
332 	u32	tx_pause;
333 	u32	__reserved_1;
334 	u32	rx_pri_map;
335 };
336 
337 struct cpsw_hw_stats {
338 	u32	rxgoodframes;
339 	u32	rxbroadcastframes;
340 	u32	rxmulticastframes;
341 	u32	rxpauseframes;
342 	u32	rxcrcerrors;
343 	u32	rxaligncodeerrors;
344 	u32	rxoversizedframes;
345 	u32	rxjabberframes;
346 	u32	rxundersizedframes;
347 	u32	rxfragments;
348 	u32	__pad_0[2];
349 	u32	rxoctets;
350 	u32	txgoodframes;
351 	u32	txbroadcastframes;
352 	u32	txmulticastframes;
353 	u32	txpauseframes;
354 	u32	txdeferredframes;
355 	u32	txcollisionframes;
356 	u32	txsinglecollframes;
357 	u32	txmultcollframes;
358 	u32	txexcessivecollisions;
359 	u32	txlatecollisions;
360 	u32	txunderrun;
361 	u32	txcarriersenseerrors;
362 	u32	txoctets;
363 	u32	octetframes64;
364 	u32	octetframes65t127;
365 	u32	octetframes128t255;
366 	u32	octetframes256t511;
367 	u32	octetframes512t1023;
368 	u32	octetframes1024tup;
369 	u32	netoctets;
370 	u32	rxsofoverruns;
371 	u32	rxmofoverruns;
372 	u32	rxdmaoverruns;
373 };
374 
375 struct cpsw_slave_data {
376 	struct device_node *phy_node;
377 	char		phy_id[MII_BUS_ID_SIZE];
378 	int		phy_if;
379 	u8		mac_addr[ETH_ALEN];
380 	u16		dual_emac_res_vlan;	/* Reserved VLAN for DualEMAC */
381 };
382 
383 struct cpsw_platform_data {
384 	struct cpsw_slave_data	*slave_data;
385 	u32	ss_reg_ofs;	/* Subsystem control register offset */
386 	u32	channels;	/* number of cpdma channels (symmetric) */
387 	u32	slaves;		/* number of slave cpgmac ports */
388 	u32	active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */
389 	u32	ale_entries;	/* ale table size */
390 	u32	bd_ram_size;  /*buffer descriptor ram size */
391 	u32	mac_control;	/* Mac control register */
392 	u16	default_vlan;	/* Def VLAN for ALE lookup in VLAN aware mode*/
393 	bool	dual_emac;	/* Enable Dual EMAC mode */
394 };
395 
396 struct cpsw_slave {
397 	void __iomem			*regs;
398 	struct cpsw_sliver_regs __iomem	*sliver;
399 	int				slave_num;
400 	u32				mac_control;
401 	struct cpsw_slave_data		*data;
402 	struct phy_device		*phy;
403 	struct net_device		*ndev;
404 	u32				port_vlan;
405 };
406 
407 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
408 {
409 	return readl_relaxed(slave->regs + offset);
410 }
411 
412 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
413 {
414 	writel_relaxed(val, slave->regs + offset);
415 }
416 
417 struct cpsw_vector {
418 	struct cpdma_chan *ch;
419 	int budget;
420 };
421 
422 struct cpsw_common {
423 	struct device			*dev;
424 	struct cpsw_platform_data	data;
425 	struct napi_struct		napi_rx;
426 	struct napi_struct		napi_tx;
427 	struct cpsw_ss_regs __iomem	*regs;
428 	struct cpsw_wr_regs __iomem	*wr_regs;
429 	u8 __iomem			*hw_stats;
430 	struct cpsw_host_regs __iomem	*host_port_regs;
431 	u32				version;
432 	u32				coal_intvl;
433 	u32				bus_freq_mhz;
434 	int				rx_packet_max;
435 	struct cpsw_slave		*slaves;
436 	struct cpdma_ctlr		*dma;
437 	struct cpsw_vector		txv[CPSW_MAX_QUEUES];
438 	struct cpsw_vector		rxv[CPSW_MAX_QUEUES];
439 	struct cpsw_ale			*ale;
440 	bool				quirk_irq;
441 	bool				rx_irq_disabled;
442 	bool				tx_irq_disabled;
443 	u32 irqs_table[IRQ_NUM];
444 	struct cpts			*cpts;
445 	int				rx_ch_num, tx_ch_num;
446 	int				speed;
447 	int				usage_count;
448 };
449 
450 struct cpsw_priv {
451 	struct net_device		*ndev;
452 	struct device			*dev;
453 	u32				msg_enable;
454 	u8				mac_addr[ETH_ALEN];
455 	bool				rx_pause;
456 	bool				tx_pause;
457 	u32 emac_port;
458 	struct cpsw_common *cpsw;
459 };
460 
461 struct cpsw_stats {
462 	char stat_string[ETH_GSTRING_LEN];
463 	int type;
464 	int sizeof_stat;
465 	int stat_offset;
466 };
467 
468 enum {
469 	CPSW_STATS,
470 	CPDMA_RX_STATS,
471 	CPDMA_TX_STATS,
472 };
473 
474 #define CPSW_STAT(m)		CPSW_STATS,				\
475 				sizeof(((struct cpsw_hw_stats *)0)->m), \
476 				offsetof(struct cpsw_hw_stats, m)
477 #define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
478 				sizeof(((struct cpdma_chan_stats *)0)->m), \
479 				offsetof(struct cpdma_chan_stats, m)
480 #define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
481 				sizeof(((struct cpdma_chan_stats *)0)->m), \
482 				offsetof(struct cpdma_chan_stats, m)
483 
484 static const struct cpsw_stats cpsw_gstrings_stats[] = {
485 	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
486 	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
487 	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
488 	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
489 	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
490 	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
491 	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
492 	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
493 	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
494 	{ "Rx Fragments", CPSW_STAT(rxfragments) },
495 	{ "Rx Octets", CPSW_STAT(rxoctets) },
496 	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
497 	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
498 	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
499 	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
500 	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
501 	{ "Collisions", CPSW_STAT(txcollisionframes) },
502 	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
503 	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
504 	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
505 	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
506 	{ "Tx Underrun", CPSW_STAT(txunderrun) },
507 	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
508 	{ "Tx Octets", CPSW_STAT(txoctets) },
509 	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
510 	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
511 	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
512 	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
513 	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
514 	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
515 	{ "Net Octets", CPSW_STAT(netoctets) },
516 	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
517 	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
518 	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
519 };
520 
521 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
522 	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
523 	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
524 	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
525 	{ "misqueued", CPDMA_RX_STAT(misqueued) },
526 	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
527 	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
528 	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
529 	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
530 	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
531 	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
532 	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
533 	{ "requeue", CPDMA_RX_STAT(requeue) },
534 	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
535 };
536 
537 #define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
538 #define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
539 
540 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
541 #define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
542 #define for_each_slave(priv, func, arg...)				\
543 	do {								\
544 		struct cpsw_slave *slave;				\
545 		struct cpsw_common *cpsw = (priv)->cpsw;		\
546 		int n;							\
547 		if (cpsw->data.dual_emac)				\
548 			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
549 		else							\
550 			for (n = cpsw->data.slaves,			\
551 					slave = cpsw->slaves;		\
552 					n; n--)				\
553 				(func)(slave++, ##arg);			\
554 	} while (0)
555 
556 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb)		\
557 	do {								\
558 		if (!cpsw->data.dual_emac)				\
559 			break;						\
560 		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
561 			ndev = cpsw->slaves[0].ndev;			\
562 			skb->dev = ndev;				\
563 		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
564 			ndev = cpsw->slaves[1].ndev;			\
565 			skb->dev = ndev;				\
566 		}							\
567 	} while (0)
568 #define cpsw_add_mcast(cpsw, priv, addr)				\
569 	do {								\
570 		if (cpsw->data.dual_emac) {				\
571 			struct cpsw_slave *slave = cpsw->slaves +	\
572 						priv->emac_port;	\
573 			int slave_port = cpsw_get_slave_port(		\
574 						slave->slave_num);	\
575 			cpsw_ale_add_mcast(cpsw->ale, addr,		\
576 				1 << slave_port | ALE_PORT_HOST,	\
577 				ALE_VLAN, slave->port_vlan, 0);		\
578 		} else {						\
579 			cpsw_ale_add_mcast(cpsw->ale, addr,		\
580 				ALE_ALL_PORTS,				\
581 				0, 0, 0);				\
582 		}							\
583 	} while (0)
584 
585 static inline int cpsw_get_slave_port(u32 slave_num)
586 {
587 	return slave_num + 1;
588 }
589 
590 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
591 {
592 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
593 	struct cpsw_ale *ale = cpsw->ale;
594 	int i;
595 
596 	if (cpsw->data.dual_emac) {
597 		bool flag = false;
598 
599 		/* Enabling promiscuous mode for one interface will be
600 		 * common for both the interface as the interface shares
601 		 * the same hardware resource.
602 		 */
603 		for (i = 0; i < cpsw->data.slaves; i++)
604 			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
605 				flag = true;
606 
607 		if (!enable && flag) {
608 			enable = true;
609 			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
610 		}
611 
612 		if (enable) {
613 			/* Enable Bypass */
614 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
615 
616 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
617 		} else {
618 			/* Disable Bypass */
619 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
620 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
621 		}
622 	} else {
623 		if (enable) {
624 			unsigned long timeout = jiffies + HZ;
625 
626 			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
627 			for (i = 0; i <= cpsw->data.slaves; i++) {
628 				cpsw_ale_control_set(ale, i,
629 						     ALE_PORT_NOLEARN, 1);
630 				cpsw_ale_control_set(ale, i,
631 						     ALE_PORT_NO_SA_UPDATE, 1);
632 			}
633 
634 			/* Clear All Untouched entries */
635 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
636 			do {
637 				cpu_relax();
638 				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
639 					break;
640 			} while (time_after(timeout, jiffies));
641 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
642 
643 			/* Clear all mcast from ALE */
644 			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
645 
646 			/* Flood All Unicast Packets to Host port */
647 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
648 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
649 		} else {
650 			/* Don't Flood All Unicast Packets to Host port */
651 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
652 
653 			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
654 			for (i = 0; i <= cpsw->data.slaves; i++) {
655 				cpsw_ale_control_set(ale, i,
656 						     ALE_PORT_NOLEARN, 0);
657 				cpsw_ale_control_set(ale, i,
658 						     ALE_PORT_NO_SA_UPDATE, 0);
659 			}
660 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
661 		}
662 	}
663 }
664 
665 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
666 {
667 	struct cpsw_priv *priv = netdev_priv(ndev);
668 	struct cpsw_common *cpsw = priv->cpsw;
669 	int vid;
670 
671 	if (cpsw->data.dual_emac)
672 		vid = cpsw->slaves[priv->emac_port].port_vlan;
673 	else
674 		vid = cpsw->data.default_vlan;
675 
676 	if (ndev->flags & IFF_PROMISC) {
677 		/* Enable promiscuous mode */
678 		cpsw_set_promiscious(ndev, true);
679 		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
680 		return;
681 	} else {
682 		/* Disable promiscuous mode */
683 		cpsw_set_promiscious(ndev, false);
684 	}
685 
686 	/* Restore allmulti on vlans if necessary */
687 	cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
688 
689 	/* Clear all mcast from ALE */
690 	cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
691 
692 	if (!netdev_mc_empty(ndev)) {
693 		struct netdev_hw_addr *ha;
694 
695 		/* program multicast address list into ALE register */
696 		netdev_for_each_mc_addr(ha, ndev) {
697 			cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
698 		}
699 	}
700 }
701 
702 static void cpsw_intr_enable(struct cpsw_common *cpsw)
703 {
704 	writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
705 	writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
706 
707 	cpdma_ctlr_int_ctrl(cpsw->dma, true);
708 	return;
709 }
710 
711 static void cpsw_intr_disable(struct cpsw_common *cpsw)
712 {
713 	writel_relaxed(0, &cpsw->wr_regs->tx_en);
714 	writel_relaxed(0, &cpsw->wr_regs->rx_en);
715 
716 	cpdma_ctlr_int_ctrl(cpsw->dma, false);
717 	return;
718 }
719 
720 static void cpsw_tx_handler(void *token, int len, int status)
721 {
722 	struct netdev_queue	*txq;
723 	struct sk_buff		*skb = token;
724 	struct net_device	*ndev = skb->dev;
725 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
726 
727 	/* Check whether the queue is stopped due to stalled tx dma, if the
728 	 * queue is stopped then start the queue as we have free desc for tx
729 	 */
730 	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
731 	if (unlikely(netif_tx_queue_stopped(txq)))
732 		netif_tx_wake_queue(txq);
733 
734 	cpts_tx_timestamp(cpsw->cpts, skb);
735 	ndev->stats.tx_packets++;
736 	ndev->stats.tx_bytes += len;
737 	dev_kfree_skb_any(skb);
738 }
739 
740 static void cpsw_rx_vlan_encap(struct sk_buff *skb)
741 {
742 	struct cpsw_priv *priv = netdev_priv(skb->dev);
743 	struct cpsw_common *cpsw = priv->cpsw;
744 	u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
745 	u16 vtag, vid, prio, pkt_type;
746 
747 	/* Remove VLAN header encapsulation word */
748 	skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);
749 
750 	pkt_type = (rx_vlan_encap_hdr >>
751 		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
752 		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
753 	/* Ignore unknown & Priority-tagged packets*/
754 	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
755 	    pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
756 		return;
757 
758 	vid = (rx_vlan_encap_hdr >>
759 	       CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
760 	       VLAN_VID_MASK;
761 	/* Ignore vid 0 and pass packet as is */
762 	if (!vid)
763 		return;
764 	/* Ignore default vlans in dual mac mode */
765 	if (cpsw->data.dual_emac &&
766 	    vid == cpsw->slaves[priv->emac_port].port_vlan)
767 		return;
768 
769 	prio = (rx_vlan_encap_hdr >>
770 		CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
771 		CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;
772 
773 	vtag = (prio << VLAN_PRIO_SHIFT) | vid;
774 	__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
775 
776 	/* strip vlan tag for VLAN-tagged packet */
777 	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
778 		memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
779 		skb_pull(skb, VLAN_HLEN);
780 	}
781 }
782 
783 static void cpsw_rx_handler(void *token, int len, int status)
784 {
785 	struct cpdma_chan	*ch;
786 	struct sk_buff		*skb = token;
787 	struct sk_buff		*new_skb;
788 	struct net_device	*ndev = skb->dev;
789 	int			ret = 0;
790 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
791 
792 	cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
793 
794 	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
795 		/* In dual emac mode check for all interfaces */
796 		if (cpsw->data.dual_emac && cpsw->usage_count &&
797 		    (status >= 0)) {
798 			/* The packet received is for the interface which
799 			 * is already down and the other interface is up
800 			 * and running, instead of freeing which results
801 			 * in reducing of the number of rx descriptor in
802 			 * DMA engine, requeue skb back to cpdma.
803 			 */
804 			new_skb = skb;
805 			goto requeue;
806 		}
807 
808 		/* the interface is going down, skbs are purged */
809 		dev_kfree_skb_any(skb);
810 		return;
811 	}
812 
813 	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
814 	if (new_skb) {
815 		skb_copy_queue_mapping(new_skb, skb);
816 		skb_put(skb, len);
817 		if (status & CPDMA_RX_VLAN_ENCAP)
818 			cpsw_rx_vlan_encap(skb);
819 		cpts_rx_timestamp(cpsw->cpts, skb);
820 		skb->protocol = eth_type_trans(skb, ndev);
821 		netif_receive_skb(skb);
822 		ndev->stats.rx_bytes += len;
823 		ndev->stats.rx_packets++;
824 		kmemleak_not_leak(new_skb);
825 	} else {
826 		ndev->stats.rx_dropped++;
827 		new_skb = skb;
828 	}
829 
830 requeue:
831 	if (netif_dormant(ndev)) {
832 		dev_kfree_skb_any(new_skb);
833 		return;
834 	}
835 
836 	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
837 	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
838 				skb_tailroom(new_skb), 0);
839 	if (WARN_ON(ret < 0))
840 		dev_kfree_skb_any(new_skb);
841 }
842 
843 static void cpsw_split_res(struct net_device *ndev)
844 {
845 	struct cpsw_priv *priv = netdev_priv(ndev);
846 	u32 consumed_rate = 0, bigest_rate = 0;
847 	struct cpsw_common *cpsw = priv->cpsw;
848 	struct cpsw_vector *txv = cpsw->txv;
849 	int i, ch_weight, rlim_ch_num = 0;
850 	int budget, bigest_rate_ch = 0;
851 	u32 ch_rate, max_rate;
852 	int ch_budget = 0;
853 
854 	for (i = 0; i < cpsw->tx_ch_num; i++) {
855 		ch_rate = cpdma_chan_get_rate(txv[i].ch);
856 		if (!ch_rate)
857 			continue;
858 
859 		rlim_ch_num++;
860 		consumed_rate += ch_rate;
861 	}
862 
863 	if (cpsw->tx_ch_num == rlim_ch_num) {
864 		max_rate = consumed_rate;
865 	} else if (!rlim_ch_num) {
866 		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
867 		bigest_rate = 0;
868 		max_rate = consumed_rate;
869 	} else {
870 		max_rate = cpsw->speed * 1000;
871 
872 		/* if max_rate is less then expected due to reduced link speed,
873 		 * split proportionally according next potential max speed
874 		 */
875 		if (max_rate < consumed_rate)
876 			max_rate *= 10;
877 
878 		if (max_rate < consumed_rate)
879 			max_rate *= 10;
880 
881 		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
882 		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
883 			    (cpsw->tx_ch_num - rlim_ch_num);
884 		bigest_rate = (max_rate - consumed_rate) /
885 			      (cpsw->tx_ch_num - rlim_ch_num);
886 	}
887 
888 	/* split tx weight/budget */
889 	budget = CPSW_POLL_WEIGHT;
890 	for (i = 0; i < cpsw->tx_ch_num; i++) {
891 		ch_rate = cpdma_chan_get_rate(txv[i].ch);
892 		if (ch_rate) {
893 			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
894 			if (!txv[i].budget)
895 				txv[i].budget++;
896 			if (ch_rate > bigest_rate) {
897 				bigest_rate_ch = i;
898 				bigest_rate = ch_rate;
899 			}
900 
901 			ch_weight = (ch_rate * 100) / max_rate;
902 			if (!ch_weight)
903 				ch_weight++;
904 			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
905 		} else {
906 			txv[i].budget = ch_budget;
907 			if (!bigest_rate_ch)
908 				bigest_rate_ch = i;
909 			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
910 		}
911 
912 		budget -= txv[i].budget;
913 	}
914 
915 	if (budget)
916 		txv[bigest_rate_ch].budget += budget;
917 
918 	/* split rx budget */
919 	budget = CPSW_POLL_WEIGHT;
920 	ch_budget = budget / cpsw->rx_ch_num;
921 	for (i = 0; i < cpsw->rx_ch_num; i++) {
922 		cpsw->rxv[i].budget = ch_budget;
923 		budget -= ch_budget;
924 	}
925 
926 	if (budget)
927 		cpsw->rxv[0].budget += budget;
928 }
929 
930 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
931 {
932 	struct cpsw_common *cpsw = dev_id;
933 
934 	writel(0, &cpsw->wr_regs->tx_en);
935 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
936 
937 	if (cpsw->quirk_irq) {
938 		disable_irq_nosync(cpsw->irqs_table[1]);
939 		cpsw->tx_irq_disabled = true;
940 	}
941 
942 	napi_schedule(&cpsw->napi_tx);
943 	return IRQ_HANDLED;
944 }
945 
946 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
947 {
948 	struct cpsw_common *cpsw = dev_id;
949 
950 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
951 	writel(0, &cpsw->wr_regs->rx_en);
952 
953 	if (cpsw->quirk_irq) {
954 		disable_irq_nosync(cpsw->irqs_table[0]);
955 		cpsw->rx_irq_disabled = true;
956 	}
957 
958 	napi_schedule(&cpsw->napi_rx);
959 	return IRQ_HANDLED;
960 }
961 
962 static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget)
963 {
964 	u32			ch_map;
965 	int			num_tx, cur_budget, ch;
966 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
967 	struct cpsw_vector	*txv;
968 
969 	/* process every unprocessed channel */
970 	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
971 	for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) {
972 		if (!(ch_map & 0x80))
973 			continue;
974 
975 		txv = &cpsw->txv[ch];
976 		if (unlikely(txv->budget > budget - num_tx))
977 			cur_budget = budget - num_tx;
978 		else
979 			cur_budget = txv->budget;
980 
981 		num_tx += cpdma_chan_process(txv->ch, cur_budget);
982 		if (num_tx >= budget)
983 			break;
984 	}
985 
986 	if (num_tx < budget) {
987 		napi_complete(napi_tx);
988 		writel(0xff, &cpsw->wr_regs->tx_en);
989 	}
990 
991 	return num_tx;
992 }
993 
994 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
995 {
996 	struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
997 	int num_tx;
998 
999 	num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget);
1000 	if (num_tx < budget) {
1001 		napi_complete(napi_tx);
1002 		writel(0xff, &cpsw->wr_regs->tx_en);
1003 		if (cpsw->tx_irq_disabled) {
1004 			cpsw->tx_irq_disabled = false;
1005 			enable_irq(cpsw->irqs_table[1]);
1006 		}
1007 	}
1008 
1009 	return num_tx;
1010 }
1011 
1012 static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget)
1013 {
1014 	u32			ch_map;
1015 	int			num_rx, cur_budget, ch;
1016 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
1017 	struct cpsw_vector	*rxv;
1018 
1019 	/* process every unprocessed channel */
1020 	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
1021 	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
1022 		if (!(ch_map & 0x01))
1023 			continue;
1024 
1025 		rxv = &cpsw->rxv[ch];
1026 		if (unlikely(rxv->budget > budget - num_rx))
1027 			cur_budget = budget - num_rx;
1028 		else
1029 			cur_budget = rxv->budget;
1030 
1031 		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
1032 		if (num_rx >= budget)
1033 			break;
1034 	}
1035 
1036 	if (num_rx < budget) {
1037 		napi_complete_done(napi_rx, num_rx);
1038 		writel(0xff, &cpsw->wr_regs->rx_en);
1039 	}
1040 
1041 	return num_rx;
1042 }
1043 
1044 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
1045 {
1046 	struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
1047 	int num_rx;
1048 
1049 	num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget);
1050 	if (num_rx < budget) {
1051 		napi_complete_done(napi_rx, num_rx);
1052 		writel(0xff, &cpsw->wr_regs->rx_en);
1053 		if (cpsw->rx_irq_disabled) {
1054 			cpsw->rx_irq_disabled = false;
1055 			enable_irq(cpsw->irqs_table[0]);
1056 		}
1057 	}
1058 
1059 	return num_rx;
1060 }
1061 
1062 static inline void soft_reset(const char *module, void __iomem *reg)
1063 {
1064 	unsigned long timeout = jiffies + HZ;
1065 
1066 	writel_relaxed(1, reg);
1067 	do {
1068 		cpu_relax();
1069 	} while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
1070 
1071 	WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
1072 }
1073 
1074 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
1075 			       struct cpsw_priv *priv)
1076 {
1077 	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
1078 	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
1079 }
1080 
1081 static void _cpsw_adjust_link(struct cpsw_slave *slave,
1082 			      struct cpsw_priv *priv, bool *link)
1083 {
1084 	struct phy_device	*phy = slave->phy;
1085 	u32			mac_control = 0;
1086 	u32			slave_port;
1087 	struct cpsw_common *cpsw = priv->cpsw;
1088 
1089 	if (!phy)
1090 		return;
1091 
1092 	slave_port = cpsw_get_slave_port(slave->slave_num);
1093 
1094 	if (phy->link) {
1095 		mac_control = cpsw->data.mac_control;
1096 
1097 		/* enable forwarding */
1098 		cpsw_ale_control_set(cpsw->ale, slave_port,
1099 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1100 
1101 		if (phy->speed == 1000)
1102 			mac_control |= BIT(7);	/* GIGABITEN	*/
1103 		if (phy->duplex)
1104 			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
1105 
1106 		/* set speed_in input in case RMII mode is used in 100Mbps */
1107 		if (phy->speed == 100)
1108 			mac_control |= BIT(15);
1109 		/* in band mode only works in 10Mbps RGMII mode */
1110 		else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
1111 			mac_control |= BIT(18); /* In Band mode */
1112 
1113 		if (priv->rx_pause)
1114 			mac_control |= BIT(3);
1115 
1116 		if (priv->tx_pause)
1117 			mac_control |= BIT(4);
1118 
1119 		*link = true;
1120 	} else {
1121 		mac_control = 0;
1122 		/* disable forwarding */
1123 		cpsw_ale_control_set(cpsw->ale, slave_port,
1124 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1125 	}
1126 
1127 	if (mac_control != slave->mac_control) {
1128 		phy_print_status(phy);
1129 		writel_relaxed(mac_control, &slave->sliver->mac_control);
1130 	}
1131 
1132 	slave->mac_control = mac_control;
1133 }
1134 
1135 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
1136 {
1137 	int i, speed;
1138 
1139 	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
1140 		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
1141 			speed += cpsw->slaves[i].phy->speed;
1142 
1143 	return speed;
1144 }
1145 
1146 static int cpsw_need_resplit(struct cpsw_common *cpsw)
1147 {
1148 	int i, rlim_ch_num;
1149 	int speed, ch_rate;
1150 
1151 	/* re-split resources only in case speed was changed */
1152 	speed = cpsw_get_common_speed(cpsw);
1153 	if (speed == cpsw->speed || !speed)
1154 		return 0;
1155 
1156 	cpsw->speed = speed;
1157 
1158 	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
1159 		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
1160 		if (!ch_rate)
1161 			break;
1162 
1163 		rlim_ch_num++;
1164 	}
1165 
1166 	/* cases not dependent on speed */
1167 	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
1168 		return 0;
1169 
1170 	return 1;
1171 }
1172 
1173 static void cpsw_adjust_link(struct net_device *ndev)
1174 {
1175 	struct cpsw_priv	*priv = netdev_priv(ndev);
1176 	struct cpsw_common	*cpsw = priv->cpsw;
1177 	bool			link = false;
1178 
1179 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1180 
1181 	if (link) {
1182 		if (cpsw_need_resplit(cpsw))
1183 			cpsw_split_res(ndev);
1184 
1185 		netif_carrier_on(ndev);
1186 		if (netif_running(ndev))
1187 			netif_tx_wake_all_queues(ndev);
1188 	} else {
1189 		netif_carrier_off(ndev);
1190 		netif_tx_stop_all_queues(ndev);
1191 	}
1192 }
1193 
1194 static int cpsw_get_coalesce(struct net_device *ndev,
1195 				struct ethtool_coalesce *coal)
1196 {
1197 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1198 
1199 	coal->rx_coalesce_usecs = cpsw->coal_intvl;
1200 	return 0;
1201 }
1202 
1203 static int cpsw_set_coalesce(struct net_device *ndev,
1204 				struct ethtool_coalesce *coal)
1205 {
1206 	struct cpsw_priv *priv = netdev_priv(ndev);
1207 	u32 int_ctrl;
1208 	u32 num_interrupts = 0;
1209 	u32 prescale = 0;
1210 	u32 addnl_dvdr = 1;
1211 	u32 coal_intvl = 0;
1212 	struct cpsw_common *cpsw = priv->cpsw;
1213 
1214 	coal_intvl = coal->rx_coalesce_usecs;
1215 
1216 	int_ctrl =  readl(&cpsw->wr_regs->int_control);
1217 	prescale = cpsw->bus_freq_mhz * 4;
1218 
1219 	if (!coal->rx_coalesce_usecs) {
1220 		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
1221 		goto update_return;
1222 	}
1223 
1224 	if (coal_intvl < CPSW_CMINTMIN_INTVL)
1225 		coal_intvl = CPSW_CMINTMIN_INTVL;
1226 
1227 	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
1228 		/* Interrupt pacer works with 4us Pulse, we can
1229 		 * throttle further by dilating the 4us pulse.
1230 		 */
1231 		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
1232 
1233 		if (addnl_dvdr > 1) {
1234 			prescale *= addnl_dvdr;
1235 			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
1236 				coal_intvl = (CPSW_CMINTMAX_INTVL
1237 						* addnl_dvdr);
1238 		} else {
1239 			addnl_dvdr = 1;
1240 			coal_intvl = CPSW_CMINTMAX_INTVL;
1241 		}
1242 	}
1243 
1244 	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1245 	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
1246 	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1247 
1248 	int_ctrl |= CPSW_INTPACEEN;
1249 	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1250 	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1251 
1252 update_return:
1253 	writel(int_ctrl, &cpsw->wr_regs->int_control);
1254 
1255 	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1256 	cpsw->coal_intvl = coal_intvl;
1257 
1258 	return 0;
1259 }
1260 
1261 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1262 {
1263 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1264 
1265 	switch (sset) {
1266 	case ETH_SS_STATS:
1267 		return (CPSW_STATS_COMMON_LEN +
1268 		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1269 		       CPSW_STATS_CH_LEN);
1270 	default:
1271 		return -EOPNOTSUPP;
1272 	}
1273 }
1274 
1275 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1276 {
1277 	int ch_stats_len;
1278 	int line;
1279 	int i;
1280 
1281 	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1282 	for (i = 0; i < ch_stats_len; i++) {
1283 		line = i % CPSW_STATS_CH_LEN;
1284 		snprintf(*p, ETH_GSTRING_LEN,
1285 			 "%s DMA chan %ld: %s", rx_dir ? "Rx" : "Tx",
1286 			 (long)(i / CPSW_STATS_CH_LEN),
1287 			 cpsw_gstrings_ch_stats[line].stat_string);
1288 		*p += ETH_GSTRING_LEN;
1289 	}
1290 }
1291 
1292 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1293 {
1294 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1295 	u8 *p = data;
1296 	int i;
1297 
1298 	switch (stringset) {
1299 	case ETH_SS_STATS:
1300 		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1301 			memcpy(p, cpsw_gstrings_stats[i].stat_string,
1302 			       ETH_GSTRING_LEN);
1303 			p += ETH_GSTRING_LEN;
1304 		}
1305 
1306 		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1307 		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1308 		break;
1309 	}
1310 }
1311 
1312 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1313 				    struct ethtool_stats *stats, u64 *data)
1314 {
1315 	u8 *p;
1316 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1317 	struct cpdma_chan_stats ch_stats;
1318 	int i, l, ch;
1319 
1320 	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1321 	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1322 		data[l] = readl(cpsw->hw_stats +
1323 				cpsw_gstrings_stats[l].stat_offset);
1324 
1325 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1326 		cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1327 		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1328 			p = (u8 *)&ch_stats +
1329 				cpsw_gstrings_ch_stats[i].stat_offset;
1330 			data[l] = *(u32 *)p;
1331 		}
1332 	}
1333 
1334 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1335 		cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1336 		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1337 			p = (u8 *)&ch_stats +
1338 				cpsw_gstrings_ch_stats[i].stat_offset;
1339 			data[l] = *(u32 *)p;
1340 		}
1341 	}
1342 }
1343 
1344 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1345 					struct sk_buff *skb,
1346 					struct cpdma_chan *txch)
1347 {
1348 	struct cpsw_common *cpsw = priv->cpsw;
1349 
1350 	skb_tx_timestamp(skb);
1351 	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1352 				 priv->emac_port + cpsw->data.dual_emac);
1353 }
1354 
1355 static inline void cpsw_add_dual_emac_def_ale_entries(
1356 		struct cpsw_priv *priv, struct cpsw_slave *slave,
1357 		u32 slave_port)
1358 {
1359 	struct cpsw_common *cpsw = priv->cpsw;
1360 	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1361 
1362 	if (cpsw->version == CPSW_VERSION_1)
1363 		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1364 	else
1365 		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1366 	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1367 			  port_mask, port_mask, 0);
1368 	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1369 			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1370 	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1371 			   HOST_PORT_NUM, ALE_VLAN |
1372 			   ALE_SECURE, slave->port_vlan);
1373 	cpsw_ale_control_set(cpsw->ale, slave_port,
1374 			     ALE_PORT_DROP_UNKNOWN_VLAN, 1);
1375 }
1376 
1377 static void soft_reset_slave(struct cpsw_slave *slave)
1378 {
1379 	char name[32];
1380 
1381 	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1382 	soft_reset(name, &slave->sliver->soft_reset);
1383 }
1384 
1385 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1386 {
1387 	u32 slave_port;
1388 	struct phy_device *phy;
1389 	struct cpsw_common *cpsw = priv->cpsw;
1390 
1391 	soft_reset_slave(slave);
1392 
1393 	/* setup priority mapping */
1394 	writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1395 
1396 	switch (cpsw->version) {
1397 	case CPSW_VERSION_1:
1398 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1399 		/* Increase RX FIFO size to 5 for supporting fullduplex
1400 		 * flow control mode
1401 		 */
1402 		slave_write(slave,
1403 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1404 			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1405 		break;
1406 	case CPSW_VERSION_2:
1407 	case CPSW_VERSION_3:
1408 	case CPSW_VERSION_4:
1409 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1410 		/* Increase RX FIFO size to 5 for supporting fullduplex
1411 		 * flow control mode
1412 		 */
1413 		slave_write(slave,
1414 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1415 			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1416 		break;
1417 	}
1418 
1419 	/* setup max packet size, and mac address */
1420 	writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1421 	cpsw_set_slave_mac(slave, priv);
1422 
1423 	slave->mac_control = 0;	/* no link yet */
1424 
1425 	slave_port = cpsw_get_slave_port(slave->slave_num);
1426 
1427 	if (cpsw->data.dual_emac)
1428 		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1429 	else
1430 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1431 				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1432 
1433 	if (slave->data->phy_node) {
1434 		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1435 				 &cpsw_adjust_link, 0, slave->data->phy_if);
1436 		if (!phy) {
1437 			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
1438 				slave->data->phy_node,
1439 				slave->slave_num);
1440 			return;
1441 		}
1442 	} else {
1443 		phy = phy_connect(priv->ndev, slave->data->phy_id,
1444 				 &cpsw_adjust_link, slave->data->phy_if);
1445 		if (IS_ERR(phy)) {
1446 			dev_err(priv->dev,
1447 				"phy \"%s\" not found on slave %d, err %ld\n",
1448 				slave->data->phy_id, slave->slave_num,
1449 				PTR_ERR(phy));
1450 			return;
1451 		}
1452 	}
1453 
1454 	slave->phy = phy;
1455 
1456 	phy_attached_info(slave->phy);
1457 
1458 	phy_start(slave->phy);
1459 
1460 	/* Configure GMII_SEL register */
1461 	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1462 }
1463 
1464 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1465 {
1466 	struct cpsw_common *cpsw = priv->cpsw;
1467 	const int vlan = cpsw->data.default_vlan;
1468 	u32 reg;
1469 	int i;
1470 	int unreg_mcast_mask;
1471 
1472 	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1473 	       CPSW2_PORT_VLAN;
1474 
1475 	writel(vlan, &cpsw->host_port_regs->port_vlan);
1476 
1477 	for (i = 0; i < cpsw->data.slaves; i++)
1478 		slave_write(cpsw->slaves + i, vlan, reg);
1479 
1480 	if (priv->ndev->flags & IFF_ALLMULTI)
1481 		unreg_mcast_mask = ALE_ALL_PORTS;
1482 	else
1483 		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1484 
1485 	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1486 			  ALE_ALL_PORTS, ALE_ALL_PORTS,
1487 			  unreg_mcast_mask);
1488 }
1489 
1490 static void cpsw_init_host_port(struct cpsw_priv *priv)
1491 {
1492 	u32 fifo_mode;
1493 	u32 control_reg;
1494 	struct cpsw_common *cpsw = priv->cpsw;
1495 
1496 	/* soft reset the controller and initialize ale */
1497 	soft_reset("cpsw", &cpsw->regs->soft_reset);
1498 	cpsw_ale_start(cpsw->ale);
1499 
1500 	/* switch to vlan unaware mode */
1501 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1502 			     CPSW_ALE_VLAN_AWARE);
1503 	control_reg = readl(&cpsw->regs->control);
1504 	control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
1505 	writel(control_reg, &cpsw->regs->control);
1506 	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1507 		     CPSW_FIFO_NORMAL_MODE;
1508 	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1509 
1510 	/* setup host port priority mapping */
1511 	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
1512 		       &cpsw->host_port_regs->cpdma_tx_pri_map);
1513 	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1514 
1515 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1516 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1517 
1518 	if (!cpsw->data.dual_emac) {
1519 		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1520 				   0, 0);
1521 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1522 				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1523 	}
1524 }
1525 
1526 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1527 {
1528 	struct cpsw_common *cpsw = priv->cpsw;
1529 	struct sk_buff *skb;
1530 	int ch_buf_num;
1531 	int ch, i, ret;
1532 
1533 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1534 		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1535 		for (i = 0; i < ch_buf_num; i++) {
1536 			skb = __netdev_alloc_skb_ip_align(priv->ndev,
1537 							  cpsw->rx_packet_max,
1538 							  GFP_KERNEL);
1539 			if (!skb) {
1540 				cpsw_err(priv, ifup, "cannot allocate skb\n");
1541 				return -ENOMEM;
1542 			}
1543 
1544 			skb_set_queue_mapping(skb, ch);
1545 			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
1546 						skb->data, skb_tailroom(skb),
1547 						0);
1548 			if (ret < 0) {
1549 				cpsw_err(priv, ifup,
1550 					 "cannot submit skb to channel %d rx, error %d\n",
1551 					 ch, ret);
1552 				kfree_skb(skb);
1553 				return ret;
1554 			}
1555 			kmemleak_not_leak(skb);
1556 		}
1557 
1558 		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1559 			  ch, ch_buf_num);
1560 	}
1561 
1562 	return 0;
1563 }
1564 
1565 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1566 {
1567 	u32 slave_port;
1568 
1569 	slave_port = cpsw_get_slave_port(slave->slave_num);
1570 
1571 	if (!slave->phy)
1572 		return;
1573 	phy_stop(slave->phy);
1574 	phy_disconnect(slave->phy);
1575 	slave->phy = NULL;
1576 	cpsw_ale_control_set(cpsw->ale, slave_port,
1577 			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1578 	soft_reset_slave(slave);
1579 }
1580 
1581 static int cpsw_ndo_open(struct net_device *ndev)
1582 {
1583 	struct cpsw_priv *priv = netdev_priv(ndev);
1584 	struct cpsw_common *cpsw = priv->cpsw;
1585 	int ret;
1586 	u32 reg;
1587 
1588 	ret = pm_runtime_get_sync(cpsw->dev);
1589 	if (ret < 0) {
1590 		pm_runtime_put_noidle(cpsw->dev);
1591 		return ret;
1592 	}
1593 
1594 	netif_carrier_off(ndev);
1595 
1596 	/* Notify the stack of the actual queue counts. */
1597 	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1598 	if (ret) {
1599 		dev_err(priv->dev, "cannot set real number of tx queues\n");
1600 		goto err_cleanup;
1601 	}
1602 
1603 	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1604 	if (ret) {
1605 		dev_err(priv->dev, "cannot set real number of rx queues\n");
1606 		goto err_cleanup;
1607 	}
1608 
1609 	reg = cpsw->version;
1610 
1611 	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1612 		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1613 		 CPSW_RTL_VERSION(reg));
1614 
1615 	/* Initialize host and slave ports */
1616 	if (!cpsw->usage_count)
1617 		cpsw_init_host_port(priv);
1618 	for_each_slave(priv, cpsw_slave_open, priv);
1619 
1620 	/* Add default VLAN */
1621 	if (!cpsw->data.dual_emac)
1622 		cpsw_add_default_vlan(priv);
1623 	else
1624 		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1625 				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1626 
1627 	/* initialize shared resources for every ndev */
1628 	if (!cpsw->usage_count) {
1629 		/* disable priority elevation */
1630 		writel_relaxed(0, &cpsw->regs->ptype);
1631 
1632 		/* enable statistics collection only on all ports */
1633 		writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1634 
1635 		/* Enable internal fifo flow control */
1636 		writel(0x7, &cpsw->regs->flow_control);
1637 
1638 		napi_enable(&cpsw->napi_rx);
1639 		napi_enable(&cpsw->napi_tx);
1640 
1641 		if (cpsw->tx_irq_disabled) {
1642 			cpsw->tx_irq_disabled = false;
1643 			enable_irq(cpsw->irqs_table[1]);
1644 		}
1645 
1646 		if (cpsw->rx_irq_disabled) {
1647 			cpsw->rx_irq_disabled = false;
1648 			enable_irq(cpsw->irqs_table[0]);
1649 		}
1650 
1651 		ret = cpsw_fill_rx_channels(priv);
1652 		if (ret < 0)
1653 			goto err_cleanup;
1654 
1655 		if (cpts_register(cpsw->cpts))
1656 			dev_err(priv->dev, "error registering cpts device\n");
1657 
1658 	}
1659 
1660 	/* Enable Interrupt pacing if configured */
1661 	if (cpsw->coal_intvl != 0) {
1662 		struct ethtool_coalesce coal;
1663 
1664 		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1665 		cpsw_set_coalesce(ndev, &coal);
1666 	}
1667 
1668 	cpdma_ctlr_start(cpsw->dma);
1669 	cpsw_intr_enable(cpsw);
1670 	cpsw->usage_count++;
1671 
1672 	return 0;
1673 
1674 err_cleanup:
1675 	cpdma_ctlr_stop(cpsw->dma);
1676 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1677 	pm_runtime_put_sync(cpsw->dev);
1678 	netif_carrier_off(priv->ndev);
1679 	return ret;
1680 }
1681 
1682 static int cpsw_ndo_stop(struct net_device *ndev)
1683 {
1684 	struct cpsw_priv *priv = netdev_priv(ndev);
1685 	struct cpsw_common *cpsw = priv->cpsw;
1686 
1687 	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1688 	netif_tx_stop_all_queues(priv->ndev);
1689 	netif_carrier_off(priv->ndev);
1690 
1691 	if (cpsw->usage_count <= 1) {
1692 		napi_disable(&cpsw->napi_rx);
1693 		napi_disable(&cpsw->napi_tx);
1694 		cpts_unregister(cpsw->cpts);
1695 		cpsw_intr_disable(cpsw);
1696 		cpdma_ctlr_stop(cpsw->dma);
1697 		cpsw_ale_stop(cpsw->ale);
1698 	}
1699 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1700 
1701 	if (cpsw_need_resplit(cpsw))
1702 		cpsw_split_res(ndev);
1703 
1704 	cpsw->usage_count--;
1705 	pm_runtime_put_sync(cpsw->dev);
1706 	return 0;
1707 }
1708 
1709 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1710 				       struct net_device *ndev)
1711 {
1712 	struct cpsw_priv *priv = netdev_priv(ndev);
1713 	struct cpsw_common *cpsw = priv->cpsw;
1714 	struct cpts *cpts = cpsw->cpts;
1715 	struct netdev_queue *txq;
1716 	struct cpdma_chan *txch;
1717 	int ret, q_idx;
1718 
1719 	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1720 		cpsw_err(priv, tx_err, "packet pad failed\n");
1721 		ndev->stats.tx_dropped++;
1722 		return NET_XMIT_DROP;
1723 	}
1724 
1725 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1726 	    cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb))
1727 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1728 
1729 	q_idx = skb_get_queue_mapping(skb);
1730 	if (q_idx >= cpsw->tx_ch_num)
1731 		q_idx = q_idx % cpsw->tx_ch_num;
1732 
1733 	txch = cpsw->txv[q_idx].ch;
1734 	txq = netdev_get_tx_queue(ndev, q_idx);
1735 	ret = cpsw_tx_packet_submit(priv, skb, txch);
1736 	if (unlikely(ret != 0)) {
1737 		cpsw_err(priv, tx_err, "desc submit failed\n");
1738 		goto fail;
1739 	}
1740 
1741 	/* If there is no more tx desc left free then we need to
1742 	 * tell the kernel to stop sending us tx frames.
1743 	 */
1744 	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
1745 		netif_tx_stop_queue(txq);
1746 
1747 		/* Barrier, so that stop_queue visible to other cpus */
1748 		smp_mb__after_atomic();
1749 
1750 		if (cpdma_check_free_tx_desc(txch))
1751 			netif_tx_wake_queue(txq);
1752 	}
1753 
1754 	return NETDEV_TX_OK;
1755 fail:
1756 	ndev->stats.tx_dropped++;
1757 	netif_tx_stop_queue(txq);
1758 
1759 	/* Barrier, so that stop_queue visible to other cpus */
1760 	smp_mb__after_atomic();
1761 
1762 	if (cpdma_check_free_tx_desc(txch))
1763 		netif_tx_wake_queue(txq);
1764 
1765 	return NETDEV_TX_BUSY;
1766 }
1767 
1768 #if IS_ENABLED(CONFIG_TI_CPTS)
1769 
1770 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1771 {
1772 	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1773 	u32 ts_en, seq_id;
1774 
1775 	if (!cpts_is_tx_enabled(cpsw->cpts) &&
1776 	    !cpts_is_rx_enabled(cpsw->cpts)) {
1777 		slave_write(slave, 0, CPSW1_TS_CTL);
1778 		return;
1779 	}
1780 
1781 	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1782 	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1783 
1784 	if (cpts_is_tx_enabled(cpsw->cpts))
1785 		ts_en |= CPSW_V1_TS_TX_EN;
1786 
1787 	if (cpts_is_rx_enabled(cpsw->cpts))
1788 		ts_en |= CPSW_V1_TS_RX_EN;
1789 
1790 	slave_write(slave, ts_en, CPSW1_TS_CTL);
1791 	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1792 }
1793 
1794 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1795 {
1796 	struct cpsw_slave *slave;
1797 	struct cpsw_common *cpsw = priv->cpsw;
1798 	u32 ctrl, mtype;
1799 
1800 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1801 
1802 	ctrl = slave_read(slave, CPSW2_CONTROL);
1803 	switch (cpsw->version) {
1804 	case CPSW_VERSION_2:
1805 		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1806 
1807 		if (cpts_is_tx_enabled(cpsw->cpts))
1808 			ctrl |= CTRL_V2_TX_TS_BITS;
1809 
1810 		if (cpts_is_rx_enabled(cpsw->cpts))
1811 			ctrl |= CTRL_V2_RX_TS_BITS;
1812 		break;
1813 	case CPSW_VERSION_3:
1814 	default:
1815 		ctrl &= ~CTRL_V3_ALL_TS_MASK;
1816 
1817 		if (cpts_is_tx_enabled(cpsw->cpts))
1818 			ctrl |= CTRL_V3_TX_TS_BITS;
1819 
1820 		if (cpts_is_rx_enabled(cpsw->cpts))
1821 			ctrl |= CTRL_V3_RX_TS_BITS;
1822 		break;
1823 	}
1824 
1825 	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1826 
1827 	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1828 	slave_write(slave, ctrl, CPSW2_CONTROL);
1829 	writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
1830 }
1831 
1832 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1833 {
1834 	struct cpsw_priv *priv = netdev_priv(dev);
1835 	struct hwtstamp_config cfg;
1836 	struct cpsw_common *cpsw = priv->cpsw;
1837 	struct cpts *cpts = cpsw->cpts;
1838 
1839 	if (cpsw->version != CPSW_VERSION_1 &&
1840 	    cpsw->version != CPSW_VERSION_2 &&
1841 	    cpsw->version != CPSW_VERSION_3)
1842 		return -EOPNOTSUPP;
1843 
1844 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1845 		return -EFAULT;
1846 
1847 	/* reserved for future extensions */
1848 	if (cfg.flags)
1849 		return -EINVAL;
1850 
1851 	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1852 		return -ERANGE;
1853 
1854 	switch (cfg.rx_filter) {
1855 	case HWTSTAMP_FILTER_NONE:
1856 		cpts_rx_enable(cpts, 0);
1857 		break;
1858 	case HWTSTAMP_FILTER_ALL:
1859 	case HWTSTAMP_FILTER_NTP_ALL:
1860 		return -ERANGE;
1861 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1862 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1863 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1864 		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT);
1865 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1866 		break;
1867 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1868 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1869 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1870 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1871 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1872 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1873 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1874 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1875 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1876 		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT);
1877 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1878 		break;
1879 	default:
1880 		return -ERANGE;
1881 	}
1882 
1883 	cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1884 
1885 	switch (cpsw->version) {
1886 	case CPSW_VERSION_1:
1887 		cpsw_hwtstamp_v1(cpsw);
1888 		break;
1889 	case CPSW_VERSION_2:
1890 	case CPSW_VERSION_3:
1891 		cpsw_hwtstamp_v2(priv);
1892 		break;
1893 	default:
1894 		WARN_ON(1);
1895 	}
1896 
1897 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1898 }
1899 
1900 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1901 {
1902 	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
1903 	struct cpts *cpts = cpsw->cpts;
1904 	struct hwtstamp_config cfg;
1905 
1906 	if (cpsw->version != CPSW_VERSION_1 &&
1907 	    cpsw->version != CPSW_VERSION_2 &&
1908 	    cpsw->version != CPSW_VERSION_3)
1909 		return -EOPNOTSUPP;
1910 
1911 	cfg.flags = 0;
1912 	cfg.tx_type = cpts_is_tx_enabled(cpts) ?
1913 		      HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1914 	cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1915 			 cpts->rx_enable : HWTSTAMP_FILTER_NONE);
1916 
1917 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1918 }
1919 #else
1920 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1921 {
1922 	return -EOPNOTSUPP;
1923 }
1924 
1925 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1926 {
1927 	return -EOPNOTSUPP;
1928 }
1929 #endif /*CONFIG_TI_CPTS*/
1930 
1931 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1932 {
1933 	struct cpsw_priv *priv = netdev_priv(dev);
1934 	struct cpsw_common *cpsw = priv->cpsw;
1935 	int slave_no = cpsw_slave_index(cpsw, priv);
1936 
1937 	if (!netif_running(dev))
1938 		return -EINVAL;
1939 
1940 	switch (cmd) {
1941 	case SIOCSHWTSTAMP:
1942 		return cpsw_hwtstamp_set(dev, req);
1943 	case SIOCGHWTSTAMP:
1944 		return cpsw_hwtstamp_get(dev, req);
1945 	}
1946 
1947 	if (!cpsw->slaves[slave_no].phy)
1948 		return -EOPNOTSUPP;
1949 	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1950 }
1951 
1952 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1953 {
1954 	struct cpsw_priv *priv = netdev_priv(ndev);
1955 	struct cpsw_common *cpsw = priv->cpsw;
1956 	int ch;
1957 
1958 	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1959 	ndev->stats.tx_errors++;
1960 	cpsw_intr_disable(cpsw);
1961 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1962 		cpdma_chan_stop(cpsw->txv[ch].ch);
1963 		cpdma_chan_start(cpsw->txv[ch].ch);
1964 	}
1965 
1966 	cpsw_intr_enable(cpsw);
1967 	netif_trans_update(ndev);
1968 	netif_tx_wake_all_queues(ndev);
1969 }
1970 
1971 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1972 {
1973 	struct cpsw_priv *priv = netdev_priv(ndev);
1974 	struct sockaddr *addr = (struct sockaddr *)p;
1975 	struct cpsw_common *cpsw = priv->cpsw;
1976 	int flags = 0;
1977 	u16 vid = 0;
1978 	int ret;
1979 
1980 	if (!is_valid_ether_addr(addr->sa_data))
1981 		return -EADDRNOTAVAIL;
1982 
1983 	ret = pm_runtime_get_sync(cpsw->dev);
1984 	if (ret < 0) {
1985 		pm_runtime_put_noidle(cpsw->dev);
1986 		return ret;
1987 	}
1988 
1989 	if (cpsw->data.dual_emac) {
1990 		vid = cpsw->slaves[priv->emac_port].port_vlan;
1991 		flags = ALE_VLAN;
1992 	}
1993 
1994 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1995 			   flags, vid);
1996 	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1997 			   flags, vid);
1998 
1999 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
2000 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2001 	for_each_slave(priv, cpsw_set_slave_mac, priv);
2002 
2003 	pm_runtime_put(cpsw->dev);
2004 
2005 	return 0;
2006 }
2007 
2008 #ifdef CONFIG_NET_POLL_CONTROLLER
2009 static void cpsw_ndo_poll_controller(struct net_device *ndev)
2010 {
2011 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2012 
2013 	cpsw_intr_disable(cpsw);
2014 	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
2015 	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
2016 	cpsw_intr_enable(cpsw);
2017 }
2018 #endif
2019 
2020 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
2021 				unsigned short vid)
2022 {
2023 	int ret;
2024 	int unreg_mcast_mask = 0;
2025 	u32 port_mask;
2026 	struct cpsw_common *cpsw = priv->cpsw;
2027 
2028 	if (cpsw->data.dual_emac) {
2029 		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
2030 
2031 		if (priv->ndev->flags & IFF_ALLMULTI)
2032 			unreg_mcast_mask = port_mask;
2033 	} else {
2034 		port_mask = ALE_ALL_PORTS;
2035 
2036 		if (priv->ndev->flags & IFF_ALLMULTI)
2037 			unreg_mcast_mask = ALE_ALL_PORTS;
2038 		else
2039 			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
2040 	}
2041 
2042 	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
2043 				unreg_mcast_mask);
2044 	if (ret != 0)
2045 		return ret;
2046 
2047 	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
2048 				 HOST_PORT_NUM, ALE_VLAN, vid);
2049 	if (ret != 0)
2050 		goto clean_vid;
2051 
2052 	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
2053 				 port_mask, ALE_VLAN, vid, 0);
2054 	if (ret != 0)
2055 		goto clean_vlan_ucast;
2056 	return 0;
2057 
2058 clean_vlan_ucast:
2059 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2060 			   HOST_PORT_NUM, ALE_VLAN, vid);
2061 clean_vid:
2062 	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2063 	return ret;
2064 }
2065 
2066 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
2067 				    __be16 proto, u16 vid)
2068 {
2069 	struct cpsw_priv *priv = netdev_priv(ndev);
2070 	struct cpsw_common *cpsw = priv->cpsw;
2071 	int ret;
2072 
2073 	if (vid == cpsw->data.default_vlan)
2074 		return 0;
2075 
2076 	ret = pm_runtime_get_sync(cpsw->dev);
2077 	if (ret < 0) {
2078 		pm_runtime_put_noidle(cpsw->dev);
2079 		return ret;
2080 	}
2081 
2082 	if (cpsw->data.dual_emac) {
2083 		/* In dual EMAC, reserved VLAN id should not be used for
2084 		 * creating VLAN interfaces as this can break the dual
2085 		 * EMAC port separation
2086 		 */
2087 		int i;
2088 
2089 		for (i = 0; i < cpsw->data.slaves; i++) {
2090 			if (vid == cpsw->slaves[i].port_vlan)
2091 				return -EINVAL;
2092 		}
2093 	}
2094 
2095 	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
2096 	ret = cpsw_add_vlan_ale_entry(priv, vid);
2097 
2098 	pm_runtime_put(cpsw->dev);
2099 	return ret;
2100 }
2101 
2102 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
2103 				     __be16 proto, u16 vid)
2104 {
2105 	struct cpsw_priv *priv = netdev_priv(ndev);
2106 	struct cpsw_common *cpsw = priv->cpsw;
2107 	int ret;
2108 
2109 	if (vid == cpsw->data.default_vlan)
2110 		return 0;
2111 
2112 	ret = pm_runtime_get_sync(cpsw->dev);
2113 	if (ret < 0) {
2114 		pm_runtime_put_noidle(cpsw->dev);
2115 		return ret;
2116 	}
2117 
2118 	if (cpsw->data.dual_emac) {
2119 		int i;
2120 
2121 		for (i = 0; i < cpsw->data.slaves; i++) {
2122 			if (vid == cpsw->slaves[i].port_vlan)
2123 				return -EINVAL;
2124 		}
2125 	}
2126 
2127 	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2128 	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2129 	if (ret != 0)
2130 		return ret;
2131 
2132 	ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2133 				 HOST_PORT_NUM, ALE_VLAN, vid);
2134 	if (ret != 0)
2135 		return ret;
2136 
2137 	ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2138 				 0, ALE_VLAN, vid);
2139 	pm_runtime_put(cpsw->dev);
2140 	return ret;
2141 }
2142 
2143 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
2144 {
2145 	struct cpsw_priv *priv = netdev_priv(ndev);
2146 	struct cpsw_common *cpsw = priv->cpsw;
2147 	struct cpsw_slave *slave;
2148 	u32 min_rate;
2149 	u32 ch_rate;
2150 	int i, ret;
2151 
2152 	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
2153 	if (ch_rate == rate)
2154 		return 0;
2155 
2156 	ch_rate = rate * 1000;
2157 	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
2158 	if ((ch_rate < min_rate && ch_rate)) {
2159 		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
2160 			min_rate);
2161 		return -EINVAL;
2162 	}
2163 
2164 	if (rate > cpsw->speed) {
2165 		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2166 		return -EINVAL;
2167 	}
2168 
2169 	ret = pm_runtime_get_sync(cpsw->dev);
2170 	if (ret < 0) {
2171 		pm_runtime_put_noidle(cpsw->dev);
2172 		return ret;
2173 	}
2174 
2175 	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
2176 	pm_runtime_put(cpsw->dev);
2177 
2178 	if (ret)
2179 		return ret;
2180 
2181 	/* update rates for slaves tx queues */
2182 	for (i = 0; i < cpsw->data.slaves; i++) {
2183 		slave = &cpsw->slaves[i];
2184 		if (!slave->ndev)
2185 			continue;
2186 
2187 		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
2188 	}
2189 
2190 	cpsw_split_res(ndev);
2191 	return ret;
2192 }
2193 
2194 static const struct net_device_ops cpsw_netdev_ops = {
2195 	.ndo_open		= cpsw_ndo_open,
2196 	.ndo_stop		= cpsw_ndo_stop,
2197 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2198 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2199 	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2200 	.ndo_validate_addr	= eth_validate_addr,
2201 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2202 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2203 	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2204 #ifdef CONFIG_NET_POLL_CONTROLLER
2205 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
2206 #endif
2207 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
2208 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2209 };
2210 
2211 static int cpsw_get_regs_len(struct net_device *ndev)
2212 {
2213 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2214 
2215 	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2216 }
2217 
2218 static void cpsw_get_regs(struct net_device *ndev,
2219 			  struct ethtool_regs *regs, void *p)
2220 {
2221 	u32 *reg = p;
2222 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2223 
2224 	/* update CPSW IP version */
2225 	regs->version = cpsw->version;
2226 
2227 	cpsw_ale_dump(cpsw->ale, reg);
2228 }
2229 
2230 static void cpsw_get_drvinfo(struct net_device *ndev,
2231 			     struct ethtool_drvinfo *info)
2232 {
2233 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2234 	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2235 
2236 	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2237 	strlcpy(info->version, "1.0", sizeof(info->version));
2238 	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2239 }
2240 
2241 static u32 cpsw_get_msglevel(struct net_device *ndev)
2242 {
2243 	struct cpsw_priv *priv = netdev_priv(ndev);
2244 	return priv->msg_enable;
2245 }
2246 
2247 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
2248 {
2249 	struct cpsw_priv *priv = netdev_priv(ndev);
2250 	priv->msg_enable = value;
2251 }
2252 
2253 #if IS_ENABLED(CONFIG_TI_CPTS)
2254 static int cpsw_get_ts_info(struct net_device *ndev,
2255 			    struct ethtool_ts_info *info)
2256 {
2257 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2258 
2259 	info->so_timestamping =
2260 		SOF_TIMESTAMPING_TX_HARDWARE |
2261 		SOF_TIMESTAMPING_TX_SOFTWARE |
2262 		SOF_TIMESTAMPING_RX_HARDWARE |
2263 		SOF_TIMESTAMPING_RX_SOFTWARE |
2264 		SOF_TIMESTAMPING_SOFTWARE |
2265 		SOF_TIMESTAMPING_RAW_HARDWARE;
2266 	info->phc_index = cpsw->cpts->phc_index;
2267 	info->tx_types =
2268 		(1 << HWTSTAMP_TX_OFF) |
2269 		(1 << HWTSTAMP_TX_ON);
2270 	info->rx_filters =
2271 		(1 << HWTSTAMP_FILTER_NONE) |
2272 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2273 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2274 	return 0;
2275 }
2276 #else
2277 static int cpsw_get_ts_info(struct net_device *ndev,
2278 			    struct ethtool_ts_info *info)
2279 {
2280 	info->so_timestamping =
2281 		SOF_TIMESTAMPING_TX_SOFTWARE |
2282 		SOF_TIMESTAMPING_RX_SOFTWARE |
2283 		SOF_TIMESTAMPING_SOFTWARE;
2284 	info->phc_index = -1;
2285 	info->tx_types = 0;
2286 	info->rx_filters = 0;
2287 	return 0;
2288 }
2289 #endif
2290 
2291 static int cpsw_get_link_ksettings(struct net_device *ndev,
2292 				   struct ethtool_link_ksettings *ecmd)
2293 {
2294 	struct cpsw_priv *priv = netdev_priv(ndev);
2295 	struct cpsw_common *cpsw = priv->cpsw;
2296 	int slave_no = cpsw_slave_index(cpsw, priv);
2297 
2298 	if (!cpsw->slaves[slave_no].phy)
2299 		return -EOPNOTSUPP;
2300 
2301 	phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
2302 	return 0;
2303 }
2304 
2305 static int cpsw_set_link_ksettings(struct net_device *ndev,
2306 				   const struct ethtool_link_ksettings *ecmd)
2307 {
2308 	struct cpsw_priv *priv = netdev_priv(ndev);
2309 	struct cpsw_common *cpsw = priv->cpsw;
2310 	int slave_no = cpsw_slave_index(cpsw, priv);
2311 
2312 	if (cpsw->slaves[slave_no].phy)
2313 		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
2314 						 ecmd);
2315 	else
2316 		return -EOPNOTSUPP;
2317 }
2318 
2319 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2320 {
2321 	struct cpsw_priv *priv = netdev_priv(ndev);
2322 	struct cpsw_common *cpsw = priv->cpsw;
2323 	int slave_no = cpsw_slave_index(cpsw, priv);
2324 
2325 	wol->supported = 0;
2326 	wol->wolopts = 0;
2327 
2328 	if (cpsw->slaves[slave_no].phy)
2329 		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2330 }
2331 
2332 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2333 {
2334 	struct cpsw_priv *priv = netdev_priv(ndev);
2335 	struct cpsw_common *cpsw = priv->cpsw;
2336 	int slave_no = cpsw_slave_index(cpsw, priv);
2337 
2338 	if (cpsw->slaves[slave_no].phy)
2339 		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2340 	else
2341 		return -EOPNOTSUPP;
2342 }
2343 
2344 static void cpsw_get_pauseparam(struct net_device *ndev,
2345 				struct ethtool_pauseparam *pause)
2346 {
2347 	struct cpsw_priv *priv = netdev_priv(ndev);
2348 
2349 	pause->autoneg = AUTONEG_DISABLE;
2350 	pause->rx_pause = priv->rx_pause ? true : false;
2351 	pause->tx_pause = priv->tx_pause ? true : false;
2352 }
2353 
2354 static int cpsw_set_pauseparam(struct net_device *ndev,
2355 			       struct ethtool_pauseparam *pause)
2356 {
2357 	struct cpsw_priv *priv = netdev_priv(ndev);
2358 	bool link;
2359 
2360 	priv->rx_pause = pause->rx_pause ? true : false;
2361 	priv->tx_pause = pause->tx_pause ? true : false;
2362 
2363 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2364 	return 0;
2365 }
2366 
2367 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2368 {
2369 	struct cpsw_priv *priv = netdev_priv(ndev);
2370 	struct cpsw_common *cpsw = priv->cpsw;
2371 	int ret;
2372 
2373 	ret = pm_runtime_get_sync(cpsw->dev);
2374 	if (ret < 0) {
2375 		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2376 		pm_runtime_put_noidle(cpsw->dev);
2377 	}
2378 
2379 	return ret;
2380 }
2381 
2382 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2383 {
2384 	struct cpsw_priv *priv = netdev_priv(ndev);
2385 	int ret;
2386 
2387 	ret = pm_runtime_put(priv->cpsw->dev);
2388 	if (ret < 0)
2389 		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2390 }
2391 
2392 static void cpsw_get_channels(struct net_device *ndev,
2393 			      struct ethtool_channels *ch)
2394 {
2395 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2396 
2397 	ch->max_rx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
2398 	ch->max_tx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
2399 	ch->max_combined = 0;
2400 	ch->max_other = 0;
2401 	ch->other_count = 0;
2402 	ch->rx_count = cpsw->rx_ch_num;
2403 	ch->tx_count = cpsw->tx_ch_num;
2404 	ch->combined_count = 0;
2405 }
2406 
2407 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2408 				  struct ethtool_channels *ch)
2409 {
2410 	if (cpsw->quirk_irq) {
2411 		dev_err(cpsw->dev, "Maximum one tx/rx queue is allowed");
2412 		return -EOPNOTSUPP;
2413 	}
2414 
2415 	if (ch->combined_count)
2416 		return -EINVAL;
2417 
2418 	/* verify we have at least one channel in each direction */
2419 	if (!ch->rx_count || !ch->tx_count)
2420 		return -EINVAL;
2421 
2422 	if (ch->rx_count > cpsw->data.channels ||
2423 	    ch->tx_count > cpsw->data.channels)
2424 		return -EINVAL;
2425 
2426 	return 0;
2427 }
2428 
2429 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2430 {
2431 	struct cpsw_common *cpsw = priv->cpsw;
2432 	void (*handler)(void *, int, int);
2433 	struct netdev_queue *queue;
2434 	struct cpsw_vector *vec;
2435 	int ret, *ch, vch;
2436 
2437 	if (rx) {
2438 		ch = &cpsw->rx_ch_num;
2439 		vec = cpsw->rxv;
2440 		handler = cpsw_rx_handler;
2441 	} else {
2442 		ch = &cpsw->tx_ch_num;
2443 		vec = cpsw->txv;
2444 		handler = cpsw_tx_handler;
2445 	}
2446 
2447 	while (*ch < ch_num) {
2448 		vch = rx ? *ch : 7 - *ch;
2449 		vec[*ch].ch = cpdma_chan_create(cpsw->dma, vch, handler, rx);
2450 		queue = netdev_get_tx_queue(priv->ndev, *ch);
2451 		queue->tx_maxrate = 0;
2452 
2453 		if (IS_ERR(vec[*ch].ch))
2454 			return PTR_ERR(vec[*ch].ch);
2455 
2456 		if (!vec[*ch].ch)
2457 			return -EINVAL;
2458 
2459 		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2460 			  (rx ? "rx" : "tx"));
2461 		(*ch)++;
2462 	}
2463 
2464 	while (*ch > ch_num) {
2465 		(*ch)--;
2466 
2467 		ret = cpdma_chan_destroy(vec[*ch].ch);
2468 		if (ret)
2469 			return ret;
2470 
2471 		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2472 			  (rx ? "rx" : "tx"));
2473 	}
2474 
2475 	return 0;
2476 }
2477 
2478 static int cpsw_update_channels(struct cpsw_priv *priv,
2479 				struct ethtool_channels *ch)
2480 {
2481 	int ret;
2482 
2483 	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2484 	if (ret)
2485 		return ret;
2486 
2487 	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2488 	if (ret)
2489 		return ret;
2490 
2491 	return 0;
2492 }
2493 
2494 static void cpsw_suspend_data_pass(struct net_device *ndev)
2495 {
2496 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2497 	struct cpsw_slave *slave;
2498 	int i;
2499 
2500 	/* Disable NAPI scheduling */
2501 	cpsw_intr_disable(cpsw);
2502 
2503 	/* Stop all transmit queues for every network device.
2504 	 * Disable re-using rx descriptors with dormant_on.
2505 	 */
2506 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2507 		if (!(slave->ndev && netif_running(slave->ndev)))
2508 			continue;
2509 
2510 		netif_tx_stop_all_queues(slave->ndev);
2511 		netif_dormant_on(slave->ndev);
2512 	}
2513 
2514 	/* Handle rest of tx packets and stop cpdma channels */
2515 	cpdma_ctlr_stop(cpsw->dma);
2516 }
2517 
2518 static int cpsw_resume_data_pass(struct net_device *ndev)
2519 {
2520 	struct cpsw_priv *priv = netdev_priv(ndev);
2521 	struct cpsw_common *cpsw = priv->cpsw;
2522 	struct cpsw_slave *slave;
2523 	int i, ret;
2524 
2525 	/* Allow rx packets handling */
2526 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2527 		if (slave->ndev && netif_running(slave->ndev))
2528 			netif_dormant_off(slave->ndev);
2529 
2530 	/* After this receive is started */
2531 	if (cpsw->usage_count) {
2532 		ret = cpsw_fill_rx_channels(priv);
2533 		if (ret)
2534 			return ret;
2535 
2536 		cpdma_ctlr_start(cpsw->dma);
2537 		cpsw_intr_enable(cpsw);
2538 	}
2539 
2540 	/* Resume transmit for every affected interface */
2541 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2542 		if (slave->ndev && netif_running(slave->ndev))
2543 			netif_tx_start_all_queues(slave->ndev);
2544 
2545 	return 0;
2546 }
2547 
2548 static int cpsw_set_channels(struct net_device *ndev,
2549 			     struct ethtool_channels *chs)
2550 {
2551 	struct cpsw_priv *priv = netdev_priv(ndev);
2552 	struct cpsw_common *cpsw = priv->cpsw;
2553 	struct cpsw_slave *slave;
2554 	int i, ret;
2555 
2556 	ret = cpsw_check_ch_settings(cpsw, chs);
2557 	if (ret < 0)
2558 		return ret;
2559 
2560 	cpsw_suspend_data_pass(ndev);
2561 	ret = cpsw_update_channels(priv, chs);
2562 	if (ret)
2563 		goto err;
2564 
2565 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2566 		if (!(slave->ndev && netif_running(slave->ndev)))
2567 			continue;
2568 
2569 		/* Inform stack about new count of queues */
2570 		ret = netif_set_real_num_tx_queues(slave->ndev,
2571 						   cpsw->tx_ch_num);
2572 		if (ret) {
2573 			dev_err(priv->dev, "cannot set real number of tx queues\n");
2574 			goto err;
2575 		}
2576 
2577 		ret = netif_set_real_num_rx_queues(slave->ndev,
2578 						   cpsw->rx_ch_num);
2579 		if (ret) {
2580 			dev_err(priv->dev, "cannot set real number of rx queues\n");
2581 			goto err;
2582 		}
2583 	}
2584 
2585 	if (cpsw->usage_count)
2586 		cpsw_split_res(ndev);
2587 
2588 	ret = cpsw_resume_data_pass(ndev);
2589 	if (!ret)
2590 		return 0;
2591 err:
2592 	dev_err(priv->dev, "cannot update channels number, closing device\n");
2593 	dev_close(ndev);
2594 	return ret;
2595 }
2596 
2597 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2598 {
2599 	struct cpsw_priv *priv = netdev_priv(ndev);
2600 	struct cpsw_common *cpsw = priv->cpsw;
2601 	int slave_no = cpsw_slave_index(cpsw, priv);
2602 
2603 	if (cpsw->slaves[slave_no].phy)
2604 		return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
2605 	else
2606 		return -EOPNOTSUPP;
2607 }
2608 
2609 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2610 {
2611 	struct cpsw_priv *priv = netdev_priv(ndev);
2612 	struct cpsw_common *cpsw = priv->cpsw;
2613 	int slave_no = cpsw_slave_index(cpsw, priv);
2614 
2615 	if (cpsw->slaves[slave_no].phy)
2616 		return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
2617 	else
2618 		return -EOPNOTSUPP;
2619 }
2620 
2621 static int cpsw_nway_reset(struct net_device *ndev)
2622 {
2623 	struct cpsw_priv *priv = netdev_priv(ndev);
2624 	struct cpsw_common *cpsw = priv->cpsw;
2625 	int slave_no = cpsw_slave_index(cpsw, priv);
2626 
2627 	if (cpsw->slaves[slave_no].phy)
2628 		return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
2629 	else
2630 		return -EOPNOTSUPP;
2631 }
2632 
2633 static void cpsw_get_ringparam(struct net_device *ndev,
2634 			       struct ethtool_ringparam *ering)
2635 {
2636 	struct cpsw_priv *priv = netdev_priv(ndev);
2637 	struct cpsw_common *cpsw = priv->cpsw;
2638 
2639 	/* not supported */
2640 	ering->tx_max_pending = 0;
2641 	ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2642 	ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2643 	ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
2644 }
2645 
2646 static int cpsw_set_ringparam(struct net_device *ndev,
2647 			      struct ethtool_ringparam *ering)
2648 {
2649 	struct cpsw_priv *priv = netdev_priv(ndev);
2650 	struct cpsw_common *cpsw = priv->cpsw;
2651 	int ret;
2652 
2653 	/* ignore ering->tx_pending - only rx_pending adjustment is supported */
2654 
2655 	if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2656 	    ering->rx_pending < CPSW_MAX_QUEUES ||
2657 	    ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2658 		return -EINVAL;
2659 
2660 	if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
2661 		return 0;
2662 
2663 	cpsw_suspend_data_pass(ndev);
2664 
2665 	cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);
2666 
2667 	if (cpsw->usage_count)
2668 		cpdma_chan_split_pool(cpsw->dma);
2669 
2670 	ret = cpsw_resume_data_pass(ndev);
2671 	if (!ret)
2672 		return 0;
2673 
2674 	dev_err(&ndev->dev, "cannot set ring params, closing device\n");
2675 	dev_close(ndev);
2676 	return ret;
2677 }
2678 
2679 static const struct ethtool_ops cpsw_ethtool_ops = {
2680 	.get_drvinfo	= cpsw_get_drvinfo,
2681 	.get_msglevel	= cpsw_get_msglevel,
2682 	.set_msglevel	= cpsw_set_msglevel,
2683 	.get_link	= ethtool_op_get_link,
2684 	.get_ts_info	= cpsw_get_ts_info,
2685 	.get_coalesce	= cpsw_get_coalesce,
2686 	.set_coalesce	= cpsw_set_coalesce,
2687 	.get_sset_count		= cpsw_get_sset_count,
2688 	.get_strings		= cpsw_get_strings,
2689 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
2690 	.get_pauseparam		= cpsw_get_pauseparam,
2691 	.set_pauseparam		= cpsw_set_pauseparam,
2692 	.get_wol	= cpsw_get_wol,
2693 	.set_wol	= cpsw_set_wol,
2694 	.get_regs_len	= cpsw_get_regs_len,
2695 	.get_regs	= cpsw_get_regs,
2696 	.begin		= cpsw_ethtool_op_begin,
2697 	.complete	= cpsw_ethtool_op_complete,
2698 	.get_channels	= cpsw_get_channels,
2699 	.set_channels	= cpsw_set_channels,
2700 	.get_link_ksettings	= cpsw_get_link_ksettings,
2701 	.set_link_ksettings	= cpsw_set_link_ksettings,
2702 	.get_eee	= cpsw_get_eee,
2703 	.set_eee	= cpsw_set_eee,
2704 	.nway_reset	= cpsw_nway_reset,
2705 	.get_ringparam = cpsw_get_ringparam,
2706 	.set_ringparam = cpsw_set_ringparam,
2707 };
2708 
2709 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2710 			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
2711 {
2712 	void __iomem		*regs = cpsw->regs;
2713 	int			slave_num = slave->slave_num;
2714 	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
2715 
2716 	slave->data	= data;
2717 	slave->regs	= regs + slave_reg_ofs;
2718 	slave->sliver	= regs + sliver_reg_ofs;
2719 	slave->port_vlan = data->dual_emac_res_vlan;
2720 }
2721 
2722 static int cpsw_probe_dt(struct cpsw_platform_data *data,
2723 			 struct platform_device *pdev)
2724 {
2725 	struct device_node *node = pdev->dev.of_node;
2726 	struct device_node *slave_node;
2727 	int i = 0, ret;
2728 	u32 prop;
2729 
2730 	if (!node)
2731 		return -EINVAL;
2732 
2733 	if (of_property_read_u32(node, "slaves", &prop)) {
2734 		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2735 		return -EINVAL;
2736 	}
2737 	data->slaves = prop;
2738 
2739 	if (of_property_read_u32(node, "active_slave", &prop)) {
2740 		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2741 		return -EINVAL;
2742 	}
2743 	data->active_slave = prop;
2744 
2745 	data->slave_data = devm_kcalloc(&pdev->dev,
2746 					data->slaves,
2747 					sizeof(struct cpsw_slave_data),
2748 					GFP_KERNEL);
2749 	if (!data->slave_data)
2750 		return -ENOMEM;
2751 
2752 	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2753 		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2754 		return -EINVAL;
2755 	}
2756 	data->channels = prop;
2757 
2758 	if (of_property_read_u32(node, "ale_entries", &prop)) {
2759 		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2760 		return -EINVAL;
2761 	}
2762 	data->ale_entries = prop;
2763 
2764 	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2765 		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2766 		return -EINVAL;
2767 	}
2768 	data->bd_ram_size = prop;
2769 
2770 	if (of_property_read_u32(node, "mac_control", &prop)) {
2771 		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2772 		return -EINVAL;
2773 	}
2774 	data->mac_control = prop;
2775 
2776 	if (of_property_read_bool(node, "dual_emac"))
2777 		data->dual_emac = 1;
2778 
2779 	/*
2780 	 * Populate all the child nodes here...
2781 	 */
2782 	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2783 	/* We do not want to force this, as in some cases may not have child */
2784 	if (ret)
2785 		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2786 
2787 	for_each_available_child_of_node(node, slave_node) {
2788 		struct cpsw_slave_data *slave_data = data->slave_data + i;
2789 		const void *mac_addr = NULL;
2790 		int lenp;
2791 		const __be32 *parp;
2792 
2793 		/* This is no slave child node, continue */
2794 		if (strcmp(slave_node->name, "slave"))
2795 			continue;
2796 
2797 		slave_data->phy_node = of_parse_phandle(slave_node,
2798 							"phy-handle", 0);
2799 		parp = of_get_property(slave_node, "phy_id", &lenp);
2800 		if (slave_data->phy_node) {
2801 			dev_dbg(&pdev->dev,
2802 				"slave[%d] using phy-handle=\"%pOF\"\n",
2803 				i, slave_data->phy_node);
2804 		} else if (of_phy_is_fixed_link(slave_node)) {
2805 			/* In the case of a fixed PHY, the DT node associated
2806 			 * to the PHY is the Ethernet MAC DT node.
2807 			 */
2808 			ret = of_phy_register_fixed_link(slave_node);
2809 			if (ret) {
2810 				if (ret != -EPROBE_DEFER)
2811 					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2812 				return ret;
2813 			}
2814 			slave_data->phy_node = of_node_get(slave_node);
2815 		} else if (parp) {
2816 			u32 phyid;
2817 			struct device_node *mdio_node;
2818 			struct platform_device *mdio;
2819 
2820 			if (lenp != (sizeof(__be32) * 2)) {
2821 				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2822 				goto no_phy_slave;
2823 			}
2824 			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2825 			phyid = be32_to_cpup(parp+1);
2826 			mdio = of_find_device_by_node(mdio_node);
2827 			of_node_put(mdio_node);
2828 			if (!mdio) {
2829 				dev_err(&pdev->dev, "Missing mdio platform device\n");
2830 				return -EINVAL;
2831 			}
2832 			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2833 				 PHY_ID_FMT, mdio->name, phyid);
2834 			put_device(&mdio->dev);
2835 		} else {
2836 			dev_err(&pdev->dev,
2837 				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2838 				i);
2839 			goto no_phy_slave;
2840 		}
2841 		slave_data->phy_if = of_get_phy_mode(slave_node);
2842 		if (slave_data->phy_if < 0) {
2843 			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2844 				i);
2845 			return slave_data->phy_if;
2846 		}
2847 
2848 no_phy_slave:
2849 		mac_addr = of_get_mac_address(slave_node);
2850 		if (mac_addr) {
2851 			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2852 		} else {
2853 			ret = ti_cm_get_macid(&pdev->dev, i,
2854 					      slave_data->mac_addr);
2855 			if (ret)
2856 				return ret;
2857 		}
2858 		if (data->dual_emac) {
2859 			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2860 						 &prop)) {
2861 				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2862 				slave_data->dual_emac_res_vlan = i+1;
2863 				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2864 					slave_data->dual_emac_res_vlan, i);
2865 			} else {
2866 				slave_data->dual_emac_res_vlan = prop;
2867 			}
2868 		}
2869 
2870 		i++;
2871 		if (i == data->slaves)
2872 			break;
2873 	}
2874 
2875 	return 0;
2876 }
2877 
2878 static void cpsw_remove_dt(struct platform_device *pdev)
2879 {
2880 	struct net_device *ndev = platform_get_drvdata(pdev);
2881 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2882 	struct cpsw_platform_data *data = &cpsw->data;
2883 	struct device_node *node = pdev->dev.of_node;
2884 	struct device_node *slave_node;
2885 	int i = 0;
2886 
2887 	for_each_available_child_of_node(node, slave_node) {
2888 		struct cpsw_slave_data *slave_data = &data->slave_data[i];
2889 
2890 		if (strcmp(slave_node->name, "slave"))
2891 			continue;
2892 
2893 		if (of_phy_is_fixed_link(slave_node))
2894 			of_phy_deregister_fixed_link(slave_node);
2895 
2896 		of_node_put(slave_data->phy_node);
2897 
2898 		i++;
2899 		if (i == data->slaves)
2900 			break;
2901 	}
2902 
2903 	of_platform_depopulate(&pdev->dev);
2904 }
2905 
2906 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2907 {
2908 	struct cpsw_common		*cpsw = priv->cpsw;
2909 	struct cpsw_platform_data	*data = &cpsw->data;
2910 	struct net_device		*ndev;
2911 	struct cpsw_priv		*priv_sl2;
2912 	int ret = 0;
2913 
2914 	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2915 	if (!ndev) {
2916 		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2917 		return -ENOMEM;
2918 	}
2919 
2920 	priv_sl2 = netdev_priv(ndev);
2921 	priv_sl2->cpsw = cpsw;
2922 	priv_sl2->ndev = ndev;
2923 	priv_sl2->dev  = &ndev->dev;
2924 	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2925 
2926 	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2927 		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2928 			ETH_ALEN);
2929 		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
2930 			 priv_sl2->mac_addr);
2931 	} else {
2932 		eth_random_addr(priv_sl2->mac_addr);
2933 		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
2934 			 priv_sl2->mac_addr);
2935 	}
2936 	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2937 
2938 	priv_sl2->emac_port = 1;
2939 	cpsw->slaves[1].ndev = ndev;
2940 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2941 
2942 	ndev->netdev_ops = &cpsw_netdev_ops;
2943 	ndev->ethtool_ops = &cpsw_ethtool_ops;
2944 
2945 	/* register the network device */
2946 	SET_NETDEV_DEV(ndev, cpsw->dev);
2947 	ret = register_netdev(ndev);
2948 	if (ret) {
2949 		dev_err(cpsw->dev, "cpsw: error registering net device\n");
2950 		free_netdev(ndev);
2951 		ret = -ENODEV;
2952 	}
2953 
2954 	return ret;
2955 }
2956 
2957 static const struct of_device_id cpsw_of_mtable[] = {
2958 	{ .compatible = "ti,cpsw"},
2959 	{ .compatible = "ti,am335x-cpsw"},
2960 	{ .compatible = "ti,am4372-cpsw"},
2961 	{ .compatible = "ti,dra7-cpsw"},
2962 	{ /* sentinel */ },
2963 };
2964 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2965 
2966 static const struct soc_device_attribute cpsw_soc_devices[] = {
2967 	{ .family = "AM33xx", .revision = "ES1.0"},
2968 	{ /* sentinel */ }
2969 };
2970 
2971 static int cpsw_probe(struct platform_device *pdev)
2972 {
2973 	struct clk			*clk;
2974 	struct cpsw_platform_data	*data;
2975 	struct net_device		*ndev;
2976 	struct cpsw_priv		*priv;
2977 	struct cpdma_params		dma_params;
2978 	struct cpsw_ale_params		ale_params;
2979 	void __iomem			*ss_regs;
2980 	void __iomem			*cpts_regs;
2981 	struct resource			*res, *ss_res;
2982 	struct gpio_descs		*mode;
2983 	u32 slave_offset, sliver_offset, slave_size;
2984 	const struct soc_device_attribute *soc;
2985 	struct cpsw_common		*cpsw;
2986 	int ret = 0, i, ch;
2987 	int irq;
2988 
2989 	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2990 	if (!cpsw)
2991 		return -ENOMEM;
2992 
2993 	cpsw->dev = &pdev->dev;
2994 
2995 	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2996 	if (!ndev) {
2997 		dev_err(&pdev->dev, "error allocating net_device\n");
2998 		return -ENOMEM;
2999 	}
3000 
3001 	platform_set_drvdata(pdev, ndev);
3002 	priv = netdev_priv(ndev);
3003 	priv->cpsw = cpsw;
3004 	priv->ndev = ndev;
3005 	priv->dev  = &ndev->dev;
3006 	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
3007 	cpsw->rx_packet_max = max(rx_packet_max, 128);
3008 
3009 	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
3010 	if (IS_ERR(mode)) {
3011 		ret = PTR_ERR(mode);
3012 		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
3013 		goto clean_ndev_ret;
3014 	}
3015 
3016 	/*
3017 	 * This may be required here for child devices.
3018 	 */
3019 	pm_runtime_enable(&pdev->dev);
3020 
3021 	/* Select default pin state */
3022 	pinctrl_pm_select_default_state(&pdev->dev);
3023 
3024 	/* Need to enable clocks with runtime PM api to access module
3025 	 * registers
3026 	 */
3027 	ret = pm_runtime_get_sync(&pdev->dev);
3028 	if (ret < 0) {
3029 		pm_runtime_put_noidle(&pdev->dev);
3030 		goto clean_runtime_disable_ret;
3031 	}
3032 
3033 	ret = cpsw_probe_dt(&cpsw->data, pdev);
3034 	if (ret)
3035 		goto clean_dt_ret;
3036 
3037 	data = &cpsw->data;
3038 	cpsw->rx_ch_num = 1;
3039 	cpsw->tx_ch_num = 1;
3040 
3041 	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
3042 		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
3043 		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
3044 	} else {
3045 		eth_random_addr(priv->mac_addr);
3046 		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
3047 	}
3048 
3049 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
3050 
3051 	cpsw->slaves = devm_kcalloc(&pdev->dev,
3052 				    data->slaves, sizeof(struct cpsw_slave),
3053 				    GFP_KERNEL);
3054 	if (!cpsw->slaves) {
3055 		ret = -ENOMEM;
3056 		goto clean_dt_ret;
3057 	}
3058 	for (i = 0; i < data->slaves; i++)
3059 		cpsw->slaves[i].slave_num = i;
3060 
3061 	cpsw->slaves[0].ndev = ndev;
3062 	priv->emac_port = 0;
3063 
3064 	clk = devm_clk_get(&pdev->dev, "fck");
3065 	if (IS_ERR(clk)) {
3066 		dev_err(priv->dev, "fck is not found\n");
3067 		ret = -ENODEV;
3068 		goto clean_dt_ret;
3069 	}
3070 	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
3071 
3072 	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3073 	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
3074 	if (IS_ERR(ss_regs)) {
3075 		ret = PTR_ERR(ss_regs);
3076 		goto clean_dt_ret;
3077 	}
3078 	cpsw->regs = ss_regs;
3079 
3080 	cpsw->version = readl(&cpsw->regs->id_ver);
3081 
3082 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3083 	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
3084 	if (IS_ERR(cpsw->wr_regs)) {
3085 		ret = PTR_ERR(cpsw->wr_regs);
3086 		goto clean_dt_ret;
3087 	}
3088 
3089 	memset(&dma_params, 0, sizeof(dma_params));
3090 	memset(&ale_params, 0, sizeof(ale_params));
3091 
3092 	switch (cpsw->version) {
3093 	case CPSW_VERSION_1:
3094 		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3095 		cpts_regs		= ss_regs + CPSW1_CPTS_OFFSET;
3096 		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
3097 		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
3098 		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
3099 		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
3100 		slave_offset         = CPSW1_SLAVE_OFFSET;
3101 		slave_size           = CPSW1_SLAVE_SIZE;
3102 		sliver_offset        = CPSW1_SLIVER_OFFSET;
3103 		dma_params.desc_mem_phys = 0;
3104 		break;
3105 	case CPSW_VERSION_2:
3106 	case CPSW_VERSION_3:
3107 	case CPSW_VERSION_4:
3108 		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3109 		cpts_regs		= ss_regs + CPSW2_CPTS_OFFSET;
3110 		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
3111 		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
3112 		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
3113 		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
3114 		slave_offset         = CPSW2_SLAVE_OFFSET;
3115 		slave_size           = CPSW2_SLAVE_SIZE;
3116 		sliver_offset        = CPSW2_SLIVER_OFFSET;
3117 		dma_params.desc_mem_phys =
3118 			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3119 		break;
3120 	default:
3121 		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3122 		ret = -ENODEV;
3123 		goto clean_dt_ret;
3124 	}
3125 	for (i = 0; i < cpsw->data.slaves; i++) {
3126 		struct cpsw_slave *slave = &cpsw->slaves[i];
3127 
3128 		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3129 		slave_offset  += slave_size;
3130 		sliver_offset += SLIVER_SIZE;
3131 	}
3132 
3133 	dma_params.dev		= &pdev->dev;
3134 	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
3135 	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
3136 	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
3137 	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
3138 	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
3139 
3140 	dma_params.num_chan		= data->channels;
3141 	dma_params.has_soft_reset	= true;
3142 	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
3143 	dma_params.desc_mem_size	= data->bd_ram_size;
3144 	dma_params.desc_align		= 16;
3145 	dma_params.has_ext_regs		= true;
3146 	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3147 	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
3148 	dma_params.descs_pool_size	= descs_pool_size;
3149 
3150 	cpsw->dma = cpdma_ctlr_create(&dma_params);
3151 	if (!cpsw->dma) {
3152 		dev_err(priv->dev, "error initializing dma\n");
3153 		ret = -ENOMEM;
3154 		goto clean_dt_ret;
3155 	}
3156 
3157 	soc = soc_device_match(cpsw_soc_devices);
3158 	if (soc)
3159 		cpsw->quirk_irq = 1;
3160 
3161 	ch = cpsw->quirk_irq ? 0 : 7;
3162 	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0);
3163 	if (IS_ERR(cpsw->txv[0].ch)) {
3164 		dev_err(priv->dev, "error initializing tx dma channel\n");
3165 		ret = PTR_ERR(cpsw->txv[0].ch);
3166 		goto clean_dma_ret;
3167 	}
3168 
3169 	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3170 	if (IS_ERR(cpsw->rxv[0].ch)) {
3171 		dev_err(priv->dev, "error initializing rx dma channel\n");
3172 		ret = PTR_ERR(cpsw->rxv[0].ch);
3173 		goto clean_dma_ret;
3174 	}
3175 
3176 	ale_params.dev			= &pdev->dev;
3177 	ale_params.ale_ageout		= ale_ageout;
3178 	ale_params.ale_entries		= data->ale_entries;
3179 	ale_params.ale_ports		= CPSW_ALE_PORTS_NUM;
3180 
3181 	cpsw->ale = cpsw_ale_create(&ale_params);
3182 	if (!cpsw->ale) {
3183 		dev_err(priv->dev, "error initializing ale engine\n");
3184 		ret = -ENODEV;
3185 		goto clean_dma_ret;
3186 	}
3187 
3188 	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3189 	if (IS_ERR(cpsw->cpts)) {
3190 		ret = PTR_ERR(cpsw->cpts);
3191 		goto clean_dma_ret;
3192 	}
3193 
3194 	ndev->irq = platform_get_irq(pdev, 1);
3195 	if (ndev->irq < 0) {
3196 		dev_err(priv->dev, "error getting irq resource\n");
3197 		ret = ndev->irq;
3198 		goto clean_dma_ret;
3199 	}
3200 
3201 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3202 
3203 	ndev->netdev_ops = &cpsw_netdev_ops;
3204 	ndev->ethtool_ops = &cpsw_ethtool_ops;
3205 	netif_napi_add(ndev, &cpsw->napi_rx,
3206 		       cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll,
3207 		       CPSW_POLL_WEIGHT);
3208 	netif_tx_napi_add(ndev, &cpsw->napi_tx,
3209 			  cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll,
3210 			  CPSW_POLL_WEIGHT);
3211 	cpsw_split_res(ndev);
3212 
3213 	/* register the network device */
3214 	SET_NETDEV_DEV(ndev, &pdev->dev);
3215 	ret = register_netdev(ndev);
3216 	if (ret) {
3217 		dev_err(priv->dev, "error registering net device\n");
3218 		ret = -ENODEV;
3219 		goto clean_dma_ret;
3220 	}
3221 
3222 	if (cpsw->data.dual_emac) {
3223 		ret = cpsw_probe_dual_emac(priv);
3224 		if (ret) {
3225 			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3226 			goto clean_unregister_netdev_ret;
3227 		}
3228 	}
3229 
3230 	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
3231 	 * MISC IRQs which are always kept disabled with this driver so
3232 	 * we will not request them.
3233 	 *
3234 	 * If anyone wants to implement support for those, make sure to
3235 	 * first request and append them to irqs_table array.
3236 	 */
3237 
3238 	/* RX IRQ */
3239 	irq = platform_get_irq(pdev, 1);
3240 	if (irq < 0) {
3241 		ret = irq;
3242 		goto clean_dma_ret;
3243 	}
3244 
3245 	cpsw->irqs_table[0] = irq;
3246 	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3247 			       0, dev_name(&pdev->dev), cpsw);
3248 	if (ret < 0) {
3249 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3250 		goto clean_dma_ret;
3251 	}
3252 
3253 	/* TX IRQ */
3254 	irq = platform_get_irq(pdev, 2);
3255 	if (irq < 0) {
3256 		ret = irq;
3257 		goto clean_dma_ret;
3258 	}
3259 
3260 	cpsw->irqs_table[1] = irq;
3261 	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3262 			       0, dev_name(&pdev->dev), cpsw);
3263 	if (ret < 0) {
3264 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3265 		goto clean_dma_ret;
3266 	}
3267 
3268 	cpsw_notice(priv, probe,
3269 		    "initialized device (regs %pa, irq %d, pool size %d)\n",
3270 		    &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3271 
3272 	pm_runtime_put(&pdev->dev);
3273 
3274 	return 0;
3275 
3276 clean_unregister_netdev_ret:
3277 	unregister_netdev(ndev);
3278 clean_dma_ret:
3279 	cpdma_ctlr_destroy(cpsw->dma);
3280 clean_dt_ret:
3281 	cpsw_remove_dt(pdev);
3282 	pm_runtime_put_sync(&pdev->dev);
3283 clean_runtime_disable_ret:
3284 	pm_runtime_disable(&pdev->dev);
3285 clean_ndev_ret:
3286 	free_netdev(priv->ndev);
3287 	return ret;
3288 }
3289 
3290 static int cpsw_remove(struct platform_device *pdev)
3291 {
3292 	struct net_device *ndev = platform_get_drvdata(pdev);
3293 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3294 	int ret;
3295 
3296 	ret = pm_runtime_get_sync(&pdev->dev);
3297 	if (ret < 0) {
3298 		pm_runtime_put_noidle(&pdev->dev);
3299 		return ret;
3300 	}
3301 
3302 	if (cpsw->data.dual_emac)
3303 		unregister_netdev(cpsw->slaves[1].ndev);
3304 	unregister_netdev(ndev);
3305 
3306 	cpts_release(cpsw->cpts);
3307 	cpdma_ctlr_destroy(cpsw->dma);
3308 	cpsw_remove_dt(pdev);
3309 	pm_runtime_put_sync(&pdev->dev);
3310 	pm_runtime_disable(&pdev->dev);
3311 	if (cpsw->data.dual_emac)
3312 		free_netdev(cpsw->slaves[1].ndev);
3313 	free_netdev(ndev);
3314 	return 0;
3315 }
3316 
3317 #ifdef CONFIG_PM_SLEEP
3318 static int cpsw_suspend(struct device *dev)
3319 {
3320 	struct platform_device	*pdev = to_platform_device(dev);
3321 	struct net_device	*ndev = platform_get_drvdata(pdev);
3322 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3323 
3324 	if (cpsw->data.dual_emac) {
3325 		int i;
3326 
3327 		for (i = 0; i < cpsw->data.slaves; i++) {
3328 			if (netif_running(cpsw->slaves[i].ndev))
3329 				cpsw_ndo_stop(cpsw->slaves[i].ndev);
3330 		}
3331 	} else {
3332 		if (netif_running(ndev))
3333 			cpsw_ndo_stop(ndev);
3334 	}
3335 
3336 	/* Select sleep pin state */
3337 	pinctrl_pm_select_sleep_state(dev);
3338 
3339 	return 0;
3340 }
3341 
3342 static int cpsw_resume(struct device *dev)
3343 {
3344 	struct platform_device	*pdev = to_platform_device(dev);
3345 	struct net_device	*ndev = platform_get_drvdata(pdev);
3346 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3347 
3348 	/* Select default pin state */
3349 	pinctrl_pm_select_default_state(dev);
3350 
3351 	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3352 	rtnl_lock();
3353 	if (cpsw->data.dual_emac) {
3354 		int i;
3355 
3356 		for (i = 0; i < cpsw->data.slaves; i++) {
3357 			if (netif_running(cpsw->slaves[i].ndev))
3358 				cpsw_ndo_open(cpsw->slaves[i].ndev);
3359 		}
3360 	} else {
3361 		if (netif_running(ndev))
3362 			cpsw_ndo_open(ndev);
3363 	}
3364 	rtnl_unlock();
3365 
3366 	return 0;
3367 }
3368 #endif
3369 
3370 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3371 
3372 static struct platform_driver cpsw_driver = {
3373 	.driver = {
3374 		.name	 = "cpsw",
3375 		.pm	 = &cpsw_pm_ops,
3376 		.of_match_table = cpsw_of_mtable,
3377 	},
3378 	.probe = cpsw_probe,
3379 	.remove = cpsw_remove,
3380 };
3381 
3382 module_platform_driver(cpsw_driver);
3383 
3384 MODULE_LICENSE("GPL");
3385 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3386 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3387 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
3388