xref: /linux/drivers/net/ethernet/ti/cpsw.c (revision 4f58e6dceb0e44ca8f21568ed81e1df24e55964c)
1 /*
2  * Texas Instruments Ethernet Switch Driver
3  *
4  * Copyright (C) 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38 
39 #include <linux/pinctrl/consumer.h>
40 
41 #include "cpsw.h"
42 #include "cpsw_ale.h"
43 #include "cpts.h"
44 #include "davinci_cpdma.h"
45 
46 #define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
47 			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
48 			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
49 			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
50 			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
51 			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
52 			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
53 			 NETIF_MSG_RX_STATUS)
54 
55 #define cpsw_info(priv, type, format, ...)		\
56 do {								\
57 	if (netif_msg_##type(priv) && net_ratelimit())		\
58 		dev_info(priv->dev, format, ## __VA_ARGS__);	\
59 } while (0)
60 
61 #define cpsw_err(priv, type, format, ...)		\
62 do {								\
63 	if (netif_msg_##type(priv) && net_ratelimit())		\
64 		dev_err(priv->dev, format, ## __VA_ARGS__);	\
65 } while (0)
66 
67 #define cpsw_dbg(priv, type, format, ...)		\
68 do {								\
69 	if (netif_msg_##type(priv) && net_ratelimit())		\
70 		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
71 } while (0)
72 
73 #define cpsw_notice(priv, type, format, ...)		\
74 do {								\
75 	if (netif_msg_##type(priv) && net_ratelimit())		\
76 		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
77 } while (0)
78 
79 #define ALE_ALL_PORTS		0x7
80 
81 #define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
82 #define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
83 #define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)
84 
85 #define CPSW_VERSION_1		0x19010a
86 #define CPSW_VERSION_2		0x19010c
87 #define CPSW_VERSION_3		0x19010f
88 #define CPSW_VERSION_4		0x190112
89 
90 #define HOST_PORT_NUM		0
91 #define SLIVER_SIZE		0x40
92 
93 #define CPSW1_HOST_PORT_OFFSET	0x028
94 #define CPSW1_SLAVE_OFFSET	0x050
95 #define CPSW1_SLAVE_SIZE	0x040
96 #define CPSW1_CPDMA_OFFSET	0x100
97 #define CPSW1_STATERAM_OFFSET	0x200
98 #define CPSW1_HW_STATS		0x400
99 #define CPSW1_CPTS_OFFSET	0x500
100 #define CPSW1_ALE_OFFSET	0x600
101 #define CPSW1_SLIVER_OFFSET	0x700
102 
103 #define CPSW2_HOST_PORT_OFFSET	0x108
104 #define CPSW2_SLAVE_OFFSET	0x200
105 #define CPSW2_SLAVE_SIZE	0x100
106 #define CPSW2_CPDMA_OFFSET	0x800
107 #define CPSW2_HW_STATS		0x900
108 #define CPSW2_STATERAM_OFFSET	0xa00
109 #define CPSW2_CPTS_OFFSET	0xc00
110 #define CPSW2_ALE_OFFSET	0xd00
111 #define CPSW2_SLIVER_OFFSET	0xd80
112 #define CPSW2_BD_OFFSET		0x2000
113 
114 #define CPDMA_RXTHRESH		0x0c0
115 #define CPDMA_RXFREE		0x0e0
116 #define CPDMA_TXHDP		0x00
117 #define CPDMA_RXHDP		0x20
118 #define CPDMA_TXCP		0x40
119 #define CPDMA_RXCP		0x60
120 
121 #define CPSW_POLL_WEIGHT	64
122 #define CPSW_MIN_PACKET_SIZE	60
123 #define CPSW_MAX_PACKET_SIZE	(1500 + 14 + 4 + 4)
124 
125 #define RX_PRIORITY_MAPPING	0x76543210
126 #define TX_PRIORITY_MAPPING	0x33221100
127 #define CPDMA_TX_PRIORITY_MAP	0x01234567
128 
129 #define CPSW_VLAN_AWARE		BIT(1)
130 #define CPSW_ALE_VLAN_AWARE	1
131 
132 #define CPSW_FIFO_NORMAL_MODE		(0 << 16)
133 #define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
134 #define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
135 
136 #define CPSW_INTPACEEN		(0x3f << 16)
137 #define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
138 #define CPSW_CMINTMAX_CNT	63
139 #define CPSW_CMINTMIN_CNT	2
140 #define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
141 #define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)
142 
143 #define cpsw_slave_index(cpsw, priv)				\
144 		((cpsw->data.dual_emac) ? priv->emac_port :	\
145 		cpsw->data.active_slave)
146 #define IRQ_NUM			2
147 #define CPSW_MAX_QUEUES		8
148 
149 static int debug_level;
150 module_param(debug_level, int, 0);
151 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
152 
153 static int ale_ageout = 10;
154 module_param(ale_ageout, int, 0);
155 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
156 
157 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
158 module_param(rx_packet_max, int, 0);
159 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
160 
161 struct cpsw_wr_regs {
162 	u32	id_ver;
163 	u32	soft_reset;
164 	u32	control;
165 	u32	int_control;
166 	u32	rx_thresh_en;
167 	u32	rx_en;
168 	u32	tx_en;
169 	u32	misc_en;
170 	u32	mem_allign1[8];
171 	u32	rx_thresh_stat;
172 	u32	rx_stat;
173 	u32	tx_stat;
174 	u32	misc_stat;
175 	u32	mem_allign2[8];
176 	u32	rx_imax;
177 	u32	tx_imax;
178 
179 };
180 
181 struct cpsw_ss_regs {
182 	u32	id_ver;
183 	u32	control;
184 	u32	soft_reset;
185 	u32	stat_port_en;
186 	u32	ptype;
187 	u32	soft_idle;
188 	u32	thru_rate;
189 	u32	gap_thresh;
190 	u32	tx_start_wds;
191 	u32	flow_control;
192 	u32	vlan_ltype;
193 	u32	ts_ltype;
194 	u32	dlr_ltype;
195 };
196 
197 /* CPSW_PORT_V1 */
198 #define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
199 #define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
200 #define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
201 #define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
202 #define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
203 #define CPSW1_TS_CTL        0x14 /* Time Sync Control */
204 #define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
205 #define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */
206 
207 /* CPSW_PORT_V2 */
208 #define CPSW2_CONTROL       0x00 /* Control Register */
209 #define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
210 #define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
211 #define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
212 #define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
213 #define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
214 #define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */
215 
216 /* CPSW_PORT_V1 and V2 */
217 #define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
218 #define SA_HI               0x24 /* CPGMAC_SL Source Address High */
219 #define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */
220 
221 /* CPSW_PORT_V2 only */
222 #define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
223 #define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
224 #define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
225 #define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
226 #define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
227 #define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
228 #define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
229 #define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */
230 
231 /* Bit definitions for the CPSW2_CONTROL register */
232 #define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
233 #define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
234 #define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
235 #define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
236 #define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
237 #define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
238 #define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
239 #define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
240 #define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
241 #define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
242 #define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
243 #define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
244 #define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
245 #define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
246 #define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
247 #define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
248 #define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */
249 
250 #define CTRL_V2_TS_BITS \
251 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
252 	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
253 
254 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
255 #define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
256 #define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)
257 
258 
259 #define CTRL_V3_TS_BITS \
260 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
261 	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
262 	 TS_LTYPE1_EN)
263 
264 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
265 #define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
266 #define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
267 
268 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
269 #define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
270 #define TS_SEQ_ID_OFFSET_MASK    (0x3f)
271 #define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
272 #define TS_MSG_TYPE_EN_MASK      (0xffff)
273 
274 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
275 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
276 
277 /* Bit definitions for the CPSW1_TS_CTL register */
278 #define CPSW_V1_TS_RX_EN		BIT(0)
279 #define CPSW_V1_TS_TX_EN		BIT(4)
280 #define CPSW_V1_MSG_TYPE_OFS		16
281 
282 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
283 #define CPSW_V1_SEQ_ID_OFS_SHIFT	16
284 
285 struct cpsw_host_regs {
286 	u32	max_blks;
287 	u32	blk_cnt;
288 	u32	tx_in_ctl;
289 	u32	port_vlan;
290 	u32	tx_pri_map;
291 	u32	cpdma_tx_pri_map;
292 	u32	cpdma_rx_chan_map;
293 };
294 
295 struct cpsw_sliver_regs {
296 	u32	id_ver;
297 	u32	mac_control;
298 	u32	mac_status;
299 	u32	soft_reset;
300 	u32	rx_maxlen;
301 	u32	__reserved_0;
302 	u32	rx_pause;
303 	u32	tx_pause;
304 	u32	__reserved_1;
305 	u32	rx_pri_map;
306 };
307 
308 struct cpsw_hw_stats {
309 	u32	rxgoodframes;
310 	u32	rxbroadcastframes;
311 	u32	rxmulticastframes;
312 	u32	rxpauseframes;
313 	u32	rxcrcerrors;
314 	u32	rxaligncodeerrors;
315 	u32	rxoversizedframes;
316 	u32	rxjabberframes;
317 	u32	rxundersizedframes;
318 	u32	rxfragments;
319 	u32	__pad_0[2];
320 	u32	rxoctets;
321 	u32	txgoodframes;
322 	u32	txbroadcastframes;
323 	u32	txmulticastframes;
324 	u32	txpauseframes;
325 	u32	txdeferredframes;
326 	u32	txcollisionframes;
327 	u32	txsinglecollframes;
328 	u32	txmultcollframes;
329 	u32	txexcessivecollisions;
330 	u32	txlatecollisions;
331 	u32	txunderrun;
332 	u32	txcarriersenseerrors;
333 	u32	txoctets;
334 	u32	octetframes64;
335 	u32	octetframes65t127;
336 	u32	octetframes128t255;
337 	u32	octetframes256t511;
338 	u32	octetframes512t1023;
339 	u32	octetframes1024tup;
340 	u32	netoctets;
341 	u32	rxsofoverruns;
342 	u32	rxmofoverruns;
343 	u32	rxdmaoverruns;
344 };
345 
346 struct cpsw_slave {
347 	void __iomem			*regs;
348 	struct cpsw_sliver_regs __iomem	*sliver;
349 	int				slave_num;
350 	u32				mac_control;
351 	struct cpsw_slave_data		*data;
352 	struct phy_device		*phy;
353 	struct net_device		*ndev;
354 	u32				port_vlan;
355 	u32				open_stat;
356 };
357 
358 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
359 {
360 	return __raw_readl(slave->regs + offset);
361 }
362 
363 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
364 {
365 	__raw_writel(val, slave->regs + offset);
366 }
367 
368 struct cpsw_common {
369 	struct device			*dev;
370 	struct cpsw_platform_data	data;
371 	struct napi_struct		napi_rx;
372 	struct napi_struct		napi_tx;
373 	struct cpsw_ss_regs __iomem	*regs;
374 	struct cpsw_wr_regs __iomem	*wr_regs;
375 	u8 __iomem			*hw_stats;
376 	struct cpsw_host_regs __iomem	*host_port_regs;
377 	u32				version;
378 	u32				coal_intvl;
379 	u32				bus_freq_mhz;
380 	int				rx_packet_max;
381 	struct cpsw_slave		*slaves;
382 	struct cpdma_ctlr		*dma;
383 	struct cpdma_chan		*txch[CPSW_MAX_QUEUES];
384 	struct cpdma_chan		*rxch[CPSW_MAX_QUEUES];
385 	struct cpsw_ale			*ale;
386 	bool				quirk_irq;
387 	bool				rx_irq_disabled;
388 	bool				tx_irq_disabled;
389 	u32 irqs_table[IRQ_NUM];
390 	struct cpts			*cpts;
391 	int				rx_ch_num, tx_ch_num;
392 };
393 
394 struct cpsw_priv {
395 	struct net_device		*ndev;
396 	struct device			*dev;
397 	u32				msg_enable;
398 	u8				mac_addr[ETH_ALEN];
399 	bool				rx_pause;
400 	bool				tx_pause;
401 	u32 emac_port;
402 	struct cpsw_common *cpsw;
403 };
404 
405 struct cpsw_stats {
406 	char stat_string[ETH_GSTRING_LEN];
407 	int type;
408 	int sizeof_stat;
409 	int stat_offset;
410 };
411 
412 enum {
413 	CPSW_STATS,
414 	CPDMA_RX_STATS,
415 	CPDMA_TX_STATS,
416 };
417 
418 #define CPSW_STAT(m)		CPSW_STATS,				\
419 				sizeof(((struct cpsw_hw_stats *)0)->m), \
420 				offsetof(struct cpsw_hw_stats, m)
421 #define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
422 				sizeof(((struct cpdma_chan_stats *)0)->m), \
423 				offsetof(struct cpdma_chan_stats, m)
424 #define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
425 				sizeof(((struct cpdma_chan_stats *)0)->m), \
426 				offsetof(struct cpdma_chan_stats, m)
427 
428 static const struct cpsw_stats cpsw_gstrings_stats[] = {
429 	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
430 	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
431 	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
432 	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
433 	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
434 	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
435 	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
436 	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
437 	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
438 	{ "Rx Fragments", CPSW_STAT(rxfragments) },
439 	{ "Rx Octets", CPSW_STAT(rxoctets) },
440 	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
441 	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
442 	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
443 	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
444 	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
445 	{ "Collisions", CPSW_STAT(txcollisionframes) },
446 	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
447 	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
448 	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
449 	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
450 	{ "Tx Underrun", CPSW_STAT(txunderrun) },
451 	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
452 	{ "Tx Octets", CPSW_STAT(txoctets) },
453 	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
454 	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
455 	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
456 	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
457 	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
458 	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
459 	{ "Net Octets", CPSW_STAT(netoctets) },
460 	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
461 	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
462 	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
463 };
464 
465 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
466 	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
467 	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
468 	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
469 	{ "misqueued", CPDMA_RX_STAT(misqueued) },
470 	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
471 	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
472 	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
473 	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
474 	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
475 	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
476 	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
477 	{ "requeue", CPDMA_RX_STAT(requeue) },
478 	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
479 };
480 
481 #define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
482 #define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
483 
484 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
485 #define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
486 #define for_each_slave(priv, func, arg...)				\
487 	do {								\
488 		struct cpsw_slave *slave;				\
489 		struct cpsw_common *cpsw = (priv)->cpsw;		\
490 		int n;							\
491 		if (cpsw->data.dual_emac)				\
492 			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
493 		else							\
494 			for (n = cpsw->data.slaves,			\
495 					slave = cpsw->slaves;		\
496 					n; n--)				\
497 				(func)(slave++, ##arg);			\
498 	} while (0)
499 
500 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb)		\
501 	do {								\
502 		if (!cpsw->data.dual_emac)				\
503 			break;						\
504 		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
505 			ndev = cpsw->slaves[0].ndev;			\
506 			skb->dev = ndev;				\
507 		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
508 			ndev = cpsw->slaves[1].ndev;			\
509 			skb->dev = ndev;				\
510 		}							\
511 	} while (0)
512 #define cpsw_add_mcast(cpsw, priv, addr)				\
513 	do {								\
514 		if (cpsw->data.dual_emac) {				\
515 			struct cpsw_slave *slave = cpsw->slaves +	\
516 						priv->emac_port;	\
517 			int slave_port = cpsw_get_slave_port(		\
518 						slave->slave_num);	\
519 			cpsw_ale_add_mcast(cpsw->ale, addr,		\
520 				1 << slave_port | ALE_PORT_HOST,	\
521 				ALE_VLAN, slave->port_vlan, 0);		\
522 		} else {						\
523 			cpsw_ale_add_mcast(cpsw->ale, addr,		\
524 				ALE_ALL_PORTS,				\
525 				0, 0, 0);				\
526 		}							\
527 	} while (0)
528 
529 static inline int cpsw_get_slave_port(u32 slave_num)
530 {
531 	return slave_num + 1;
532 }
533 
534 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
535 {
536 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
537 	struct cpsw_ale *ale = cpsw->ale;
538 	int i;
539 
540 	if (cpsw->data.dual_emac) {
541 		bool flag = false;
542 
543 		/* Enabling promiscuous mode for one interface will be
544 		 * common for both the interface as the interface shares
545 		 * the same hardware resource.
546 		 */
547 		for (i = 0; i < cpsw->data.slaves; i++)
548 			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
549 				flag = true;
550 
551 		if (!enable && flag) {
552 			enable = true;
553 			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
554 		}
555 
556 		if (enable) {
557 			/* Enable Bypass */
558 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
559 
560 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
561 		} else {
562 			/* Disable Bypass */
563 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
564 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
565 		}
566 	} else {
567 		if (enable) {
568 			unsigned long timeout = jiffies + HZ;
569 
570 			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
571 			for (i = 0; i <= cpsw->data.slaves; i++) {
572 				cpsw_ale_control_set(ale, i,
573 						     ALE_PORT_NOLEARN, 1);
574 				cpsw_ale_control_set(ale, i,
575 						     ALE_PORT_NO_SA_UPDATE, 1);
576 			}
577 
578 			/* Clear All Untouched entries */
579 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
580 			do {
581 				cpu_relax();
582 				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
583 					break;
584 			} while (time_after(timeout, jiffies));
585 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
586 
587 			/* Clear all mcast from ALE */
588 			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
589 
590 			/* Flood All Unicast Packets to Host port */
591 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
592 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
593 		} else {
594 			/* Don't Flood All Unicast Packets to Host port */
595 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
596 
597 			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
598 			for (i = 0; i <= cpsw->data.slaves; i++) {
599 				cpsw_ale_control_set(ale, i,
600 						     ALE_PORT_NOLEARN, 0);
601 				cpsw_ale_control_set(ale, i,
602 						     ALE_PORT_NO_SA_UPDATE, 0);
603 			}
604 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
605 		}
606 	}
607 }
608 
609 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
610 {
611 	struct cpsw_priv *priv = netdev_priv(ndev);
612 	struct cpsw_common *cpsw = priv->cpsw;
613 	int vid;
614 
615 	if (cpsw->data.dual_emac)
616 		vid = cpsw->slaves[priv->emac_port].port_vlan;
617 	else
618 		vid = cpsw->data.default_vlan;
619 
620 	if (ndev->flags & IFF_PROMISC) {
621 		/* Enable promiscuous mode */
622 		cpsw_set_promiscious(ndev, true);
623 		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
624 		return;
625 	} else {
626 		/* Disable promiscuous mode */
627 		cpsw_set_promiscious(ndev, false);
628 	}
629 
630 	/* Restore allmulti on vlans if necessary */
631 	cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
632 
633 	/* Clear all mcast from ALE */
634 	cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
635 
636 	if (!netdev_mc_empty(ndev)) {
637 		struct netdev_hw_addr *ha;
638 
639 		/* program multicast address list into ALE register */
640 		netdev_for_each_mc_addr(ha, ndev) {
641 			cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
642 		}
643 	}
644 }
645 
646 static void cpsw_intr_enable(struct cpsw_common *cpsw)
647 {
648 	__raw_writel(0xFF, &cpsw->wr_regs->tx_en);
649 	__raw_writel(0xFF, &cpsw->wr_regs->rx_en);
650 
651 	cpdma_ctlr_int_ctrl(cpsw->dma, true);
652 	return;
653 }
654 
655 static void cpsw_intr_disable(struct cpsw_common *cpsw)
656 {
657 	__raw_writel(0, &cpsw->wr_regs->tx_en);
658 	__raw_writel(0, &cpsw->wr_regs->rx_en);
659 
660 	cpdma_ctlr_int_ctrl(cpsw->dma, false);
661 	return;
662 }
663 
664 static void cpsw_tx_handler(void *token, int len, int status)
665 {
666 	struct netdev_queue	*txq;
667 	struct sk_buff		*skb = token;
668 	struct net_device	*ndev = skb->dev;
669 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
670 
671 	/* Check whether the queue is stopped due to stalled tx dma, if the
672 	 * queue is stopped then start the queue as we have free desc for tx
673 	 */
674 	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
675 	if (unlikely(netif_tx_queue_stopped(txq)))
676 		netif_tx_wake_queue(txq);
677 
678 	cpts_tx_timestamp(cpsw->cpts, skb);
679 	ndev->stats.tx_packets++;
680 	ndev->stats.tx_bytes += len;
681 	dev_kfree_skb_any(skb);
682 }
683 
684 static void cpsw_rx_handler(void *token, int len, int status)
685 {
686 	struct cpdma_chan	*ch;
687 	struct sk_buff		*skb = token;
688 	struct sk_buff		*new_skb;
689 	struct net_device	*ndev = skb->dev;
690 	int			ret = 0;
691 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
692 
693 	cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
694 
695 	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
696 		bool ndev_status = false;
697 		struct cpsw_slave *slave = cpsw->slaves;
698 		int n;
699 
700 		if (cpsw->data.dual_emac) {
701 			/* In dual emac mode check for all interfaces */
702 			for (n = cpsw->data.slaves; n; n--, slave++)
703 				if (netif_running(slave->ndev))
704 					ndev_status = true;
705 		}
706 
707 		if (ndev_status && (status >= 0)) {
708 			/* The packet received is for the interface which
709 			 * is already down and the other interface is up
710 			 * and running, instead of freeing which results
711 			 * in reducing of the number of rx descriptor in
712 			 * DMA engine, requeue skb back to cpdma.
713 			 */
714 			new_skb = skb;
715 			goto requeue;
716 		}
717 
718 		/* the interface is going down, skbs are purged */
719 		dev_kfree_skb_any(skb);
720 		return;
721 	}
722 
723 	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
724 	if (new_skb) {
725 		skb_copy_queue_mapping(new_skb, skb);
726 		skb_put(skb, len);
727 		cpts_rx_timestamp(cpsw->cpts, skb);
728 		skb->protocol = eth_type_trans(skb, ndev);
729 		netif_receive_skb(skb);
730 		ndev->stats.rx_bytes += len;
731 		ndev->stats.rx_packets++;
732 		kmemleak_not_leak(new_skb);
733 	} else {
734 		ndev->stats.rx_dropped++;
735 		new_skb = skb;
736 	}
737 
738 requeue:
739 	if (netif_dormant(ndev)) {
740 		dev_kfree_skb_any(new_skb);
741 		return;
742 	}
743 
744 	ch = cpsw->rxch[skb_get_queue_mapping(new_skb)];
745 	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
746 				skb_tailroom(new_skb), 0);
747 	if (WARN_ON(ret < 0))
748 		dev_kfree_skb_any(new_skb);
749 }
750 
751 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
752 {
753 	struct cpsw_common *cpsw = dev_id;
754 
755 	writel(0, &cpsw->wr_regs->tx_en);
756 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
757 
758 	if (cpsw->quirk_irq) {
759 		disable_irq_nosync(cpsw->irqs_table[1]);
760 		cpsw->tx_irq_disabled = true;
761 	}
762 
763 	napi_schedule(&cpsw->napi_tx);
764 	return IRQ_HANDLED;
765 }
766 
767 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
768 {
769 	struct cpsw_common *cpsw = dev_id;
770 
771 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
772 	writel(0, &cpsw->wr_regs->rx_en);
773 
774 	if (cpsw->quirk_irq) {
775 		disable_irq_nosync(cpsw->irqs_table[0]);
776 		cpsw->rx_irq_disabled = true;
777 	}
778 
779 	napi_schedule(&cpsw->napi_rx);
780 	return IRQ_HANDLED;
781 }
782 
783 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
784 {
785 	u32			ch_map;
786 	int			num_tx, ch;
787 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
788 
789 	/* process every unprocessed channel */
790 	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
791 	for (ch = 0, num_tx = 0; num_tx < budget; ch_map >>= 1, ch++) {
792 		if (!ch_map) {
793 			ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
794 			if (!ch_map)
795 				break;
796 
797 			ch = 0;
798 		}
799 
800 		if (!(ch_map & 0x01))
801 			continue;
802 
803 		num_tx += cpdma_chan_process(cpsw->txch[ch], budget - num_tx);
804 	}
805 
806 	if (num_tx < budget) {
807 		napi_complete(napi_tx);
808 		writel(0xff, &cpsw->wr_regs->tx_en);
809 		if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
810 			cpsw->tx_irq_disabled = false;
811 			enable_irq(cpsw->irqs_table[1]);
812 		}
813 	}
814 
815 	return num_tx;
816 }
817 
818 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
819 {
820 	u32			ch_map;
821 	int			num_rx, ch;
822 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
823 
824 	/* process every unprocessed channel */
825 	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
826 	for (ch = 0, num_rx = 0; num_rx < budget; ch_map >>= 1, ch++) {
827 		if (!ch_map) {
828 			ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
829 			if (!ch_map)
830 				break;
831 
832 			ch = 0;
833 		}
834 
835 		if (!(ch_map & 0x01))
836 			continue;
837 
838 		num_rx += cpdma_chan_process(cpsw->rxch[ch], budget - num_rx);
839 	}
840 
841 	if (num_rx < budget) {
842 		napi_complete(napi_rx);
843 		writel(0xff, &cpsw->wr_regs->rx_en);
844 		if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
845 			cpsw->rx_irq_disabled = false;
846 			enable_irq(cpsw->irqs_table[0]);
847 		}
848 	}
849 
850 	return num_rx;
851 }
852 
853 static inline void soft_reset(const char *module, void __iomem *reg)
854 {
855 	unsigned long timeout = jiffies + HZ;
856 
857 	__raw_writel(1, reg);
858 	do {
859 		cpu_relax();
860 	} while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));
861 
862 	WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
863 }
864 
865 #define mac_hi(mac)	(((mac)[0] << 0) | ((mac)[1] << 8) |	\
866 			 ((mac)[2] << 16) | ((mac)[3] << 24))
867 #define mac_lo(mac)	(((mac)[4] << 0) | ((mac)[5] << 8))
868 
869 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
870 			       struct cpsw_priv *priv)
871 {
872 	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
873 	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
874 }
875 
876 static void _cpsw_adjust_link(struct cpsw_slave *slave,
877 			      struct cpsw_priv *priv, bool *link)
878 {
879 	struct phy_device	*phy = slave->phy;
880 	u32			mac_control = 0;
881 	u32			slave_port;
882 	struct cpsw_common *cpsw = priv->cpsw;
883 
884 	if (!phy)
885 		return;
886 
887 	slave_port = cpsw_get_slave_port(slave->slave_num);
888 
889 	if (phy->link) {
890 		mac_control = cpsw->data.mac_control;
891 
892 		/* enable forwarding */
893 		cpsw_ale_control_set(cpsw->ale, slave_port,
894 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
895 
896 		if (phy->speed == 1000)
897 			mac_control |= BIT(7);	/* GIGABITEN	*/
898 		if (phy->duplex)
899 			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
900 
901 		/* set speed_in input in case RMII mode is used in 100Mbps */
902 		if (phy->speed == 100)
903 			mac_control |= BIT(15);
904 		else if (phy->speed == 10)
905 			mac_control |= BIT(18); /* In Band mode */
906 
907 		if (priv->rx_pause)
908 			mac_control |= BIT(3);
909 
910 		if (priv->tx_pause)
911 			mac_control |= BIT(4);
912 
913 		*link = true;
914 	} else {
915 		mac_control = 0;
916 		/* disable forwarding */
917 		cpsw_ale_control_set(cpsw->ale, slave_port,
918 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
919 	}
920 
921 	if (mac_control != slave->mac_control) {
922 		phy_print_status(phy);
923 		__raw_writel(mac_control, &slave->sliver->mac_control);
924 	}
925 
926 	slave->mac_control = mac_control;
927 }
928 
929 static void cpsw_adjust_link(struct net_device *ndev)
930 {
931 	struct cpsw_priv	*priv = netdev_priv(ndev);
932 	bool			link = false;
933 
934 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
935 
936 	if (link) {
937 		netif_carrier_on(ndev);
938 		if (netif_running(ndev))
939 			netif_tx_wake_all_queues(ndev);
940 	} else {
941 		netif_carrier_off(ndev);
942 		netif_tx_stop_all_queues(ndev);
943 	}
944 }
945 
946 static int cpsw_get_coalesce(struct net_device *ndev,
947 				struct ethtool_coalesce *coal)
948 {
949 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
950 
951 	coal->rx_coalesce_usecs = cpsw->coal_intvl;
952 	return 0;
953 }
954 
955 static int cpsw_set_coalesce(struct net_device *ndev,
956 				struct ethtool_coalesce *coal)
957 {
958 	struct cpsw_priv *priv = netdev_priv(ndev);
959 	u32 int_ctrl;
960 	u32 num_interrupts = 0;
961 	u32 prescale = 0;
962 	u32 addnl_dvdr = 1;
963 	u32 coal_intvl = 0;
964 	struct cpsw_common *cpsw = priv->cpsw;
965 
966 	coal_intvl = coal->rx_coalesce_usecs;
967 
968 	int_ctrl =  readl(&cpsw->wr_regs->int_control);
969 	prescale = cpsw->bus_freq_mhz * 4;
970 
971 	if (!coal->rx_coalesce_usecs) {
972 		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
973 		goto update_return;
974 	}
975 
976 	if (coal_intvl < CPSW_CMINTMIN_INTVL)
977 		coal_intvl = CPSW_CMINTMIN_INTVL;
978 
979 	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
980 		/* Interrupt pacer works with 4us Pulse, we can
981 		 * throttle further by dilating the 4us pulse.
982 		 */
983 		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
984 
985 		if (addnl_dvdr > 1) {
986 			prescale *= addnl_dvdr;
987 			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
988 				coal_intvl = (CPSW_CMINTMAX_INTVL
989 						* addnl_dvdr);
990 		} else {
991 			addnl_dvdr = 1;
992 			coal_intvl = CPSW_CMINTMAX_INTVL;
993 		}
994 	}
995 
996 	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
997 	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
998 	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
999 
1000 	int_ctrl |= CPSW_INTPACEEN;
1001 	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1002 	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1003 
1004 update_return:
1005 	writel(int_ctrl, &cpsw->wr_regs->int_control);
1006 
1007 	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1008 	cpsw->coal_intvl = coal_intvl;
1009 
1010 	return 0;
1011 }
1012 
1013 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1014 {
1015 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1016 
1017 	switch (sset) {
1018 	case ETH_SS_STATS:
1019 		return (CPSW_STATS_COMMON_LEN +
1020 		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1021 		       CPSW_STATS_CH_LEN);
1022 	default:
1023 		return -EOPNOTSUPP;
1024 	}
1025 }
1026 
1027 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1028 {
1029 	int ch_stats_len;
1030 	int line;
1031 	int i;
1032 
1033 	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1034 	for (i = 0; i < ch_stats_len; i++) {
1035 		line = i % CPSW_STATS_CH_LEN;
1036 		snprintf(*p, ETH_GSTRING_LEN,
1037 			 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
1038 			 i / CPSW_STATS_CH_LEN,
1039 			 cpsw_gstrings_ch_stats[line].stat_string);
1040 		*p += ETH_GSTRING_LEN;
1041 	}
1042 }
1043 
1044 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1045 {
1046 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1047 	u8 *p = data;
1048 	int i;
1049 
1050 	switch (stringset) {
1051 	case ETH_SS_STATS:
1052 		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1053 			memcpy(p, cpsw_gstrings_stats[i].stat_string,
1054 			       ETH_GSTRING_LEN);
1055 			p += ETH_GSTRING_LEN;
1056 		}
1057 
1058 		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1059 		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1060 		break;
1061 	}
1062 }
1063 
1064 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1065 				    struct ethtool_stats *stats, u64 *data)
1066 {
1067 	u8 *p;
1068 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1069 	struct cpdma_chan_stats ch_stats;
1070 	int i, l, ch;
1071 
1072 	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1073 	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1074 		data[l] = readl(cpsw->hw_stats +
1075 				cpsw_gstrings_stats[l].stat_offset);
1076 
1077 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1078 		cpdma_chan_get_stats(cpsw->rxch[ch], &ch_stats);
1079 		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1080 			p = (u8 *)&ch_stats +
1081 				cpsw_gstrings_ch_stats[i].stat_offset;
1082 			data[l] = *(u32 *)p;
1083 		}
1084 	}
1085 
1086 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1087 		cpdma_chan_get_stats(cpsw->txch[ch], &ch_stats);
1088 		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1089 			p = (u8 *)&ch_stats +
1090 				cpsw_gstrings_ch_stats[i].stat_offset;
1091 			data[l] = *(u32 *)p;
1092 		}
1093 	}
1094 }
1095 
1096 static int cpsw_common_res_usage_state(struct cpsw_common *cpsw)
1097 {
1098 	u32 i;
1099 	u32 usage_count = 0;
1100 
1101 	if (!cpsw->data.dual_emac)
1102 		return 0;
1103 
1104 	for (i = 0; i < cpsw->data.slaves; i++)
1105 		if (cpsw->slaves[i].open_stat)
1106 			usage_count++;
1107 
1108 	return usage_count;
1109 }
1110 
1111 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1112 					struct sk_buff *skb,
1113 					struct cpdma_chan *txch)
1114 {
1115 	struct cpsw_common *cpsw = priv->cpsw;
1116 
1117 	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1118 				 priv->emac_port + cpsw->data.dual_emac);
1119 }
1120 
1121 static inline void cpsw_add_dual_emac_def_ale_entries(
1122 		struct cpsw_priv *priv, struct cpsw_slave *slave,
1123 		u32 slave_port)
1124 {
1125 	struct cpsw_common *cpsw = priv->cpsw;
1126 	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1127 
1128 	if (cpsw->version == CPSW_VERSION_1)
1129 		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1130 	else
1131 		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1132 	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1133 			  port_mask, port_mask, 0);
1134 	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1135 			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1136 	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1137 			   HOST_PORT_NUM, ALE_VLAN |
1138 			   ALE_SECURE, slave->port_vlan);
1139 }
1140 
1141 static void soft_reset_slave(struct cpsw_slave *slave)
1142 {
1143 	char name[32];
1144 
1145 	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1146 	soft_reset(name, &slave->sliver->soft_reset);
1147 }
1148 
1149 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1150 {
1151 	u32 slave_port;
1152 	struct cpsw_common *cpsw = priv->cpsw;
1153 
1154 	soft_reset_slave(slave);
1155 
1156 	/* setup priority mapping */
1157 	__raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1158 
1159 	switch (cpsw->version) {
1160 	case CPSW_VERSION_1:
1161 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1162 		break;
1163 	case CPSW_VERSION_2:
1164 	case CPSW_VERSION_3:
1165 	case CPSW_VERSION_4:
1166 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1167 		break;
1168 	}
1169 
1170 	/* setup max packet size, and mac address */
1171 	__raw_writel(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1172 	cpsw_set_slave_mac(slave, priv);
1173 
1174 	slave->mac_control = 0;	/* no link yet */
1175 
1176 	slave_port = cpsw_get_slave_port(slave->slave_num);
1177 
1178 	if (cpsw->data.dual_emac)
1179 		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1180 	else
1181 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1182 				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1183 
1184 	if (slave->data->phy_node) {
1185 		slave->phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1186 				 &cpsw_adjust_link, 0, slave->data->phy_if);
1187 		if (!slave->phy) {
1188 			dev_err(priv->dev, "phy \"%s\" not found on slave %d\n",
1189 				slave->data->phy_node->full_name,
1190 				slave->slave_num);
1191 			return;
1192 		}
1193 	} else {
1194 		slave->phy = phy_connect(priv->ndev, slave->data->phy_id,
1195 				 &cpsw_adjust_link, slave->data->phy_if);
1196 		if (IS_ERR(slave->phy)) {
1197 			dev_err(priv->dev,
1198 				"phy \"%s\" not found on slave %d, err %ld\n",
1199 				slave->data->phy_id, slave->slave_num,
1200 				PTR_ERR(slave->phy));
1201 			slave->phy = NULL;
1202 			return;
1203 		}
1204 	}
1205 
1206 	phy_attached_info(slave->phy);
1207 
1208 	phy_start(slave->phy);
1209 
1210 	/* Configure GMII_SEL register */
1211 	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1212 }
1213 
1214 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1215 {
1216 	struct cpsw_common *cpsw = priv->cpsw;
1217 	const int vlan = cpsw->data.default_vlan;
1218 	u32 reg;
1219 	int i;
1220 	int unreg_mcast_mask;
1221 
1222 	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1223 	       CPSW2_PORT_VLAN;
1224 
1225 	writel(vlan, &cpsw->host_port_regs->port_vlan);
1226 
1227 	for (i = 0; i < cpsw->data.slaves; i++)
1228 		slave_write(cpsw->slaves + i, vlan, reg);
1229 
1230 	if (priv->ndev->flags & IFF_ALLMULTI)
1231 		unreg_mcast_mask = ALE_ALL_PORTS;
1232 	else
1233 		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1234 
1235 	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1236 			  ALE_ALL_PORTS, ALE_ALL_PORTS,
1237 			  unreg_mcast_mask);
1238 }
1239 
1240 static void cpsw_init_host_port(struct cpsw_priv *priv)
1241 {
1242 	u32 fifo_mode;
1243 	u32 control_reg;
1244 	struct cpsw_common *cpsw = priv->cpsw;
1245 
1246 	/* soft reset the controller and initialize ale */
1247 	soft_reset("cpsw", &cpsw->regs->soft_reset);
1248 	cpsw_ale_start(cpsw->ale);
1249 
1250 	/* switch to vlan unaware mode */
1251 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1252 			     CPSW_ALE_VLAN_AWARE);
1253 	control_reg = readl(&cpsw->regs->control);
1254 	control_reg |= CPSW_VLAN_AWARE;
1255 	writel(control_reg, &cpsw->regs->control);
1256 	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1257 		     CPSW_FIFO_NORMAL_MODE;
1258 	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1259 
1260 	/* setup host port priority mapping */
1261 	__raw_writel(CPDMA_TX_PRIORITY_MAP,
1262 		     &cpsw->host_port_regs->cpdma_tx_pri_map);
1263 	__raw_writel(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1264 
1265 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1266 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1267 
1268 	if (!cpsw->data.dual_emac) {
1269 		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1270 				   0, 0);
1271 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1272 				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1273 	}
1274 }
1275 
1276 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1277 {
1278 	struct cpsw_common *cpsw = priv->cpsw;
1279 	struct sk_buff *skb;
1280 	int ch_buf_num;
1281 	int ch, i, ret;
1282 
1283 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1284 		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxch[ch]);
1285 		for (i = 0; i < ch_buf_num; i++) {
1286 			skb = __netdev_alloc_skb_ip_align(priv->ndev,
1287 							  cpsw->rx_packet_max,
1288 							  GFP_KERNEL);
1289 			if (!skb) {
1290 				cpsw_err(priv, ifup, "cannot allocate skb\n");
1291 				return -ENOMEM;
1292 			}
1293 
1294 			skb_set_queue_mapping(skb, ch);
1295 			ret = cpdma_chan_submit(cpsw->rxch[ch], skb, skb->data,
1296 						skb_tailroom(skb), 0);
1297 			if (ret < 0) {
1298 				cpsw_err(priv, ifup,
1299 					 "cannot submit skb to channel %d rx, error %d\n",
1300 					 ch, ret);
1301 				kfree_skb(skb);
1302 				return ret;
1303 			}
1304 			kmemleak_not_leak(skb);
1305 		}
1306 
1307 		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1308 			  ch, ch_buf_num);
1309 	}
1310 
1311 	return 0;
1312 }
1313 
1314 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1315 {
1316 	u32 slave_port;
1317 
1318 	slave_port = cpsw_get_slave_port(slave->slave_num);
1319 
1320 	if (!slave->phy)
1321 		return;
1322 	phy_stop(slave->phy);
1323 	phy_disconnect(slave->phy);
1324 	slave->phy = NULL;
1325 	cpsw_ale_control_set(cpsw->ale, slave_port,
1326 			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1327 	soft_reset_slave(slave);
1328 }
1329 
1330 static int cpsw_ndo_open(struct net_device *ndev)
1331 {
1332 	struct cpsw_priv *priv = netdev_priv(ndev);
1333 	struct cpsw_common *cpsw = priv->cpsw;
1334 	int ret;
1335 	u32 reg;
1336 
1337 	ret = pm_runtime_get_sync(cpsw->dev);
1338 	if (ret < 0) {
1339 		pm_runtime_put_noidle(cpsw->dev);
1340 		return ret;
1341 	}
1342 
1343 	if (!cpsw_common_res_usage_state(cpsw))
1344 		cpsw_intr_disable(cpsw);
1345 	netif_carrier_off(ndev);
1346 
1347 	/* Notify the stack of the actual queue counts. */
1348 	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1349 	if (ret) {
1350 		dev_err(priv->dev, "cannot set real number of tx queues\n");
1351 		goto err_cleanup;
1352 	}
1353 
1354 	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1355 	if (ret) {
1356 		dev_err(priv->dev, "cannot set real number of rx queues\n");
1357 		goto err_cleanup;
1358 	}
1359 
1360 	reg = cpsw->version;
1361 
1362 	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1363 		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1364 		 CPSW_RTL_VERSION(reg));
1365 
1366 	/* initialize host and slave ports */
1367 	if (!cpsw_common_res_usage_state(cpsw))
1368 		cpsw_init_host_port(priv);
1369 	for_each_slave(priv, cpsw_slave_open, priv);
1370 
1371 	/* Add default VLAN */
1372 	if (!cpsw->data.dual_emac)
1373 		cpsw_add_default_vlan(priv);
1374 	else
1375 		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1376 				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1377 
1378 	if (!cpsw_common_res_usage_state(cpsw)) {
1379 		/* setup tx dma to fixed prio and zero offset */
1380 		cpdma_control_set(cpsw->dma, CPDMA_TX_PRIO_FIXED, 1);
1381 		cpdma_control_set(cpsw->dma, CPDMA_RX_BUFFER_OFFSET, 0);
1382 
1383 		/* disable priority elevation */
1384 		__raw_writel(0, &cpsw->regs->ptype);
1385 
1386 		/* enable statistics collection only on all ports */
1387 		__raw_writel(0x7, &cpsw->regs->stat_port_en);
1388 
1389 		/* Enable internal fifo flow control */
1390 		writel(0x7, &cpsw->regs->flow_control);
1391 
1392 		napi_enable(&cpsw->napi_rx);
1393 		napi_enable(&cpsw->napi_tx);
1394 
1395 		if (cpsw->tx_irq_disabled) {
1396 			cpsw->tx_irq_disabled = false;
1397 			enable_irq(cpsw->irqs_table[1]);
1398 		}
1399 
1400 		if (cpsw->rx_irq_disabled) {
1401 			cpsw->rx_irq_disabled = false;
1402 			enable_irq(cpsw->irqs_table[0]);
1403 		}
1404 
1405 		ret = cpsw_fill_rx_channels(priv);
1406 		if (ret < 0)
1407 			goto err_cleanup;
1408 
1409 		if (cpts_register(cpsw->dev, cpsw->cpts,
1410 				  cpsw->data.cpts_clock_mult,
1411 				  cpsw->data.cpts_clock_shift))
1412 			dev_err(priv->dev, "error registering cpts device\n");
1413 
1414 	}
1415 
1416 	/* Enable Interrupt pacing if configured */
1417 	if (cpsw->coal_intvl != 0) {
1418 		struct ethtool_coalesce coal;
1419 
1420 		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1421 		cpsw_set_coalesce(ndev, &coal);
1422 	}
1423 
1424 	cpdma_ctlr_start(cpsw->dma);
1425 	cpsw_intr_enable(cpsw);
1426 
1427 	if (cpsw->data.dual_emac)
1428 		cpsw->slaves[priv->emac_port].open_stat = true;
1429 
1430 	netif_tx_start_all_queues(ndev);
1431 
1432 	return 0;
1433 
1434 err_cleanup:
1435 	cpdma_ctlr_stop(cpsw->dma);
1436 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1437 	pm_runtime_put_sync(cpsw->dev);
1438 	netif_carrier_off(priv->ndev);
1439 	return ret;
1440 }
1441 
1442 static int cpsw_ndo_stop(struct net_device *ndev)
1443 {
1444 	struct cpsw_priv *priv = netdev_priv(ndev);
1445 	struct cpsw_common *cpsw = priv->cpsw;
1446 
1447 	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1448 	netif_tx_stop_all_queues(priv->ndev);
1449 	netif_carrier_off(priv->ndev);
1450 
1451 	if (cpsw_common_res_usage_state(cpsw) <= 1) {
1452 		napi_disable(&cpsw->napi_rx);
1453 		napi_disable(&cpsw->napi_tx);
1454 		cpts_unregister(cpsw->cpts);
1455 		cpsw_intr_disable(cpsw);
1456 		cpdma_ctlr_stop(cpsw->dma);
1457 		cpsw_ale_stop(cpsw->ale);
1458 	}
1459 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1460 	pm_runtime_put_sync(cpsw->dev);
1461 	if (cpsw->data.dual_emac)
1462 		cpsw->slaves[priv->emac_port].open_stat = false;
1463 	return 0;
1464 }
1465 
1466 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1467 				       struct net_device *ndev)
1468 {
1469 	struct cpsw_priv *priv = netdev_priv(ndev);
1470 	struct cpsw_common *cpsw = priv->cpsw;
1471 	struct netdev_queue *txq;
1472 	struct cpdma_chan *txch;
1473 	int ret, q_idx;
1474 
1475 	netif_trans_update(ndev);
1476 
1477 	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1478 		cpsw_err(priv, tx_err, "packet pad failed\n");
1479 		ndev->stats.tx_dropped++;
1480 		return NETDEV_TX_OK;
1481 	}
1482 
1483 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1484 				cpsw->cpts->tx_enable)
1485 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1486 
1487 	skb_tx_timestamp(skb);
1488 
1489 	q_idx = skb_get_queue_mapping(skb);
1490 	if (q_idx >= cpsw->tx_ch_num)
1491 		q_idx = q_idx % cpsw->tx_ch_num;
1492 
1493 	txch = cpsw->txch[q_idx];
1494 	ret = cpsw_tx_packet_submit(priv, skb, txch);
1495 	if (unlikely(ret != 0)) {
1496 		cpsw_err(priv, tx_err, "desc submit failed\n");
1497 		goto fail;
1498 	}
1499 
1500 	/* If there is no more tx desc left free then we need to
1501 	 * tell the kernel to stop sending us tx frames.
1502 	 */
1503 	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
1504 		txq = netdev_get_tx_queue(ndev, q_idx);
1505 		netif_tx_stop_queue(txq);
1506 	}
1507 
1508 	return NETDEV_TX_OK;
1509 fail:
1510 	ndev->stats.tx_dropped++;
1511 	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
1512 	netif_tx_stop_queue(txq);
1513 	return NETDEV_TX_BUSY;
1514 }
1515 
1516 #ifdef CONFIG_TI_CPTS
1517 
1518 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1519 {
1520 	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1521 	u32 ts_en, seq_id;
1522 
1523 	if (!cpsw->cpts->tx_enable && !cpsw->cpts->rx_enable) {
1524 		slave_write(slave, 0, CPSW1_TS_CTL);
1525 		return;
1526 	}
1527 
1528 	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1529 	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1530 
1531 	if (cpsw->cpts->tx_enable)
1532 		ts_en |= CPSW_V1_TS_TX_EN;
1533 
1534 	if (cpsw->cpts->rx_enable)
1535 		ts_en |= CPSW_V1_TS_RX_EN;
1536 
1537 	slave_write(slave, ts_en, CPSW1_TS_CTL);
1538 	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1539 }
1540 
1541 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1542 {
1543 	struct cpsw_slave *slave;
1544 	struct cpsw_common *cpsw = priv->cpsw;
1545 	u32 ctrl, mtype;
1546 
1547 	if (cpsw->data.dual_emac)
1548 		slave = &cpsw->slaves[priv->emac_port];
1549 	else
1550 		slave = &cpsw->slaves[cpsw->data.active_slave];
1551 
1552 	ctrl = slave_read(slave, CPSW2_CONTROL);
1553 	switch (cpsw->version) {
1554 	case CPSW_VERSION_2:
1555 		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1556 
1557 		if (cpsw->cpts->tx_enable)
1558 			ctrl |= CTRL_V2_TX_TS_BITS;
1559 
1560 		if (cpsw->cpts->rx_enable)
1561 			ctrl |= CTRL_V2_RX_TS_BITS;
1562 		break;
1563 	case CPSW_VERSION_3:
1564 	default:
1565 		ctrl &= ~CTRL_V3_ALL_TS_MASK;
1566 
1567 		if (cpsw->cpts->tx_enable)
1568 			ctrl |= CTRL_V3_TX_TS_BITS;
1569 
1570 		if (cpsw->cpts->rx_enable)
1571 			ctrl |= CTRL_V3_RX_TS_BITS;
1572 		break;
1573 	}
1574 
1575 	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1576 
1577 	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1578 	slave_write(slave, ctrl, CPSW2_CONTROL);
1579 	__raw_writel(ETH_P_1588, &cpsw->regs->ts_ltype);
1580 }
1581 
1582 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1583 {
1584 	struct cpsw_priv *priv = netdev_priv(dev);
1585 	struct hwtstamp_config cfg;
1586 	struct cpsw_common *cpsw = priv->cpsw;
1587 	struct cpts *cpts = cpsw->cpts;
1588 
1589 	if (cpsw->version != CPSW_VERSION_1 &&
1590 	    cpsw->version != CPSW_VERSION_2 &&
1591 	    cpsw->version != CPSW_VERSION_3)
1592 		return -EOPNOTSUPP;
1593 
1594 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1595 		return -EFAULT;
1596 
1597 	/* reserved for future extensions */
1598 	if (cfg.flags)
1599 		return -EINVAL;
1600 
1601 	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1602 		return -ERANGE;
1603 
1604 	switch (cfg.rx_filter) {
1605 	case HWTSTAMP_FILTER_NONE:
1606 		cpts->rx_enable = 0;
1607 		break;
1608 	case HWTSTAMP_FILTER_ALL:
1609 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1610 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1611 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1612 		return -ERANGE;
1613 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1614 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1615 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1616 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1617 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1618 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1619 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1620 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1621 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1622 		cpts->rx_enable = 1;
1623 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1624 		break;
1625 	default:
1626 		return -ERANGE;
1627 	}
1628 
1629 	cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON;
1630 
1631 	switch (cpsw->version) {
1632 	case CPSW_VERSION_1:
1633 		cpsw_hwtstamp_v1(cpsw);
1634 		break;
1635 	case CPSW_VERSION_2:
1636 	case CPSW_VERSION_3:
1637 		cpsw_hwtstamp_v2(priv);
1638 		break;
1639 	default:
1640 		WARN_ON(1);
1641 	}
1642 
1643 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1644 }
1645 
1646 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1647 {
1648 	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
1649 	struct cpts *cpts = cpsw->cpts;
1650 	struct hwtstamp_config cfg;
1651 
1652 	if (cpsw->version != CPSW_VERSION_1 &&
1653 	    cpsw->version != CPSW_VERSION_2 &&
1654 	    cpsw->version != CPSW_VERSION_3)
1655 		return -EOPNOTSUPP;
1656 
1657 	cfg.flags = 0;
1658 	cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1659 	cfg.rx_filter = (cpts->rx_enable ?
1660 			 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE);
1661 
1662 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1663 }
1664 
1665 #endif /*CONFIG_TI_CPTS*/
1666 
1667 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1668 {
1669 	struct cpsw_priv *priv = netdev_priv(dev);
1670 	struct cpsw_common *cpsw = priv->cpsw;
1671 	int slave_no = cpsw_slave_index(cpsw, priv);
1672 
1673 	if (!netif_running(dev))
1674 		return -EINVAL;
1675 
1676 	switch (cmd) {
1677 #ifdef CONFIG_TI_CPTS
1678 	case SIOCSHWTSTAMP:
1679 		return cpsw_hwtstamp_set(dev, req);
1680 	case SIOCGHWTSTAMP:
1681 		return cpsw_hwtstamp_get(dev, req);
1682 #endif
1683 	}
1684 
1685 	if (!cpsw->slaves[slave_no].phy)
1686 		return -EOPNOTSUPP;
1687 	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1688 }
1689 
1690 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1691 {
1692 	struct cpsw_priv *priv = netdev_priv(ndev);
1693 	struct cpsw_common *cpsw = priv->cpsw;
1694 	int ch;
1695 
1696 	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1697 	ndev->stats.tx_errors++;
1698 	cpsw_intr_disable(cpsw);
1699 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1700 		cpdma_chan_stop(cpsw->txch[ch]);
1701 		cpdma_chan_start(cpsw->txch[ch]);
1702 	}
1703 
1704 	cpsw_intr_enable(cpsw);
1705 }
1706 
1707 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1708 {
1709 	struct cpsw_priv *priv = netdev_priv(ndev);
1710 	struct sockaddr *addr = (struct sockaddr *)p;
1711 	struct cpsw_common *cpsw = priv->cpsw;
1712 	int flags = 0;
1713 	u16 vid = 0;
1714 	int ret;
1715 
1716 	if (!is_valid_ether_addr(addr->sa_data))
1717 		return -EADDRNOTAVAIL;
1718 
1719 	ret = pm_runtime_get_sync(cpsw->dev);
1720 	if (ret < 0) {
1721 		pm_runtime_put_noidle(cpsw->dev);
1722 		return ret;
1723 	}
1724 
1725 	if (cpsw->data.dual_emac) {
1726 		vid = cpsw->slaves[priv->emac_port].port_vlan;
1727 		flags = ALE_VLAN;
1728 	}
1729 
1730 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1731 			   flags, vid);
1732 	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1733 			   flags, vid);
1734 
1735 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1736 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1737 	for_each_slave(priv, cpsw_set_slave_mac, priv);
1738 
1739 	pm_runtime_put(cpsw->dev);
1740 
1741 	return 0;
1742 }
1743 
1744 #ifdef CONFIG_NET_POLL_CONTROLLER
1745 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1746 {
1747 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1748 
1749 	cpsw_intr_disable(cpsw);
1750 	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
1751 	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
1752 	cpsw_intr_enable(cpsw);
1753 }
1754 #endif
1755 
1756 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1757 				unsigned short vid)
1758 {
1759 	int ret;
1760 	int unreg_mcast_mask = 0;
1761 	u32 port_mask;
1762 	struct cpsw_common *cpsw = priv->cpsw;
1763 
1764 	if (cpsw->data.dual_emac) {
1765 		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1766 
1767 		if (priv->ndev->flags & IFF_ALLMULTI)
1768 			unreg_mcast_mask = port_mask;
1769 	} else {
1770 		port_mask = ALE_ALL_PORTS;
1771 
1772 		if (priv->ndev->flags & IFF_ALLMULTI)
1773 			unreg_mcast_mask = ALE_ALL_PORTS;
1774 		else
1775 			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1776 	}
1777 
1778 	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1779 				unreg_mcast_mask);
1780 	if (ret != 0)
1781 		return ret;
1782 
1783 	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1784 				 HOST_PORT_NUM, ALE_VLAN, vid);
1785 	if (ret != 0)
1786 		goto clean_vid;
1787 
1788 	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1789 				 port_mask, ALE_VLAN, vid, 0);
1790 	if (ret != 0)
1791 		goto clean_vlan_ucast;
1792 	return 0;
1793 
1794 clean_vlan_ucast:
1795 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1796 			   HOST_PORT_NUM, ALE_VLAN, vid);
1797 clean_vid:
1798 	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1799 	return ret;
1800 }
1801 
1802 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1803 				    __be16 proto, u16 vid)
1804 {
1805 	struct cpsw_priv *priv = netdev_priv(ndev);
1806 	struct cpsw_common *cpsw = priv->cpsw;
1807 	int ret;
1808 
1809 	if (vid == cpsw->data.default_vlan)
1810 		return 0;
1811 
1812 	ret = pm_runtime_get_sync(cpsw->dev);
1813 	if (ret < 0) {
1814 		pm_runtime_put_noidle(cpsw->dev);
1815 		return ret;
1816 	}
1817 
1818 	if (cpsw->data.dual_emac) {
1819 		/* In dual EMAC, reserved VLAN id should not be used for
1820 		 * creating VLAN interfaces as this can break the dual
1821 		 * EMAC port separation
1822 		 */
1823 		int i;
1824 
1825 		for (i = 0; i < cpsw->data.slaves; i++) {
1826 			if (vid == cpsw->slaves[i].port_vlan)
1827 				return -EINVAL;
1828 		}
1829 	}
1830 
1831 	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1832 	ret = cpsw_add_vlan_ale_entry(priv, vid);
1833 
1834 	pm_runtime_put(cpsw->dev);
1835 	return ret;
1836 }
1837 
1838 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1839 				     __be16 proto, u16 vid)
1840 {
1841 	struct cpsw_priv *priv = netdev_priv(ndev);
1842 	struct cpsw_common *cpsw = priv->cpsw;
1843 	int ret;
1844 
1845 	if (vid == cpsw->data.default_vlan)
1846 		return 0;
1847 
1848 	ret = pm_runtime_get_sync(cpsw->dev);
1849 	if (ret < 0) {
1850 		pm_runtime_put_noidle(cpsw->dev);
1851 		return ret;
1852 	}
1853 
1854 	if (cpsw->data.dual_emac) {
1855 		int i;
1856 
1857 		for (i = 0; i < cpsw->data.slaves; i++) {
1858 			if (vid == cpsw->slaves[i].port_vlan)
1859 				return -EINVAL;
1860 		}
1861 	}
1862 
1863 	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1864 	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1865 	if (ret != 0)
1866 		return ret;
1867 
1868 	ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1869 				 HOST_PORT_NUM, ALE_VLAN, vid);
1870 	if (ret != 0)
1871 		return ret;
1872 
1873 	ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
1874 				 0, ALE_VLAN, vid);
1875 	pm_runtime_put(cpsw->dev);
1876 	return ret;
1877 }
1878 
1879 static const struct net_device_ops cpsw_netdev_ops = {
1880 	.ndo_open		= cpsw_ndo_open,
1881 	.ndo_stop		= cpsw_ndo_stop,
1882 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
1883 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
1884 	.ndo_do_ioctl		= cpsw_ndo_ioctl,
1885 	.ndo_validate_addr	= eth_validate_addr,
1886 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
1887 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
1888 #ifdef CONFIG_NET_POLL_CONTROLLER
1889 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
1890 #endif
1891 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
1892 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
1893 };
1894 
1895 static int cpsw_get_regs_len(struct net_device *ndev)
1896 {
1897 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1898 
1899 	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
1900 }
1901 
1902 static void cpsw_get_regs(struct net_device *ndev,
1903 			  struct ethtool_regs *regs, void *p)
1904 {
1905 	u32 *reg = p;
1906 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1907 
1908 	/* update CPSW IP version */
1909 	regs->version = cpsw->version;
1910 
1911 	cpsw_ale_dump(cpsw->ale, reg);
1912 }
1913 
1914 static void cpsw_get_drvinfo(struct net_device *ndev,
1915 			     struct ethtool_drvinfo *info)
1916 {
1917 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1918 	struct platform_device	*pdev = to_platform_device(cpsw->dev);
1919 
1920 	strlcpy(info->driver, "cpsw", sizeof(info->driver));
1921 	strlcpy(info->version, "1.0", sizeof(info->version));
1922 	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
1923 }
1924 
1925 static u32 cpsw_get_msglevel(struct net_device *ndev)
1926 {
1927 	struct cpsw_priv *priv = netdev_priv(ndev);
1928 	return priv->msg_enable;
1929 }
1930 
1931 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
1932 {
1933 	struct cpsw_priv *priv = netdev_priv(ndev);
1934 	priv->msg_enable = value;
1935 }
1936 
1937 static int cpsw_get_ts_info(struct net_device *ndev,
1938 			    struct ethtool_ts_info *info)
1939 {
1940 #ifdef CONFIG_TI_CPTS
1941 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1942 
1943 	info->so_timestamping =
1944 		SOF_TIMESTAMPING_TX_HARDWARE |
1945 		SOF_TIMESTAMPING_TX_SOFTWARE |
1946 		SOF_TIMESTAMPING_RX_HARDWARE |
1947 		SOF_TIMESTAMPING_RX_SOFTWARE |
1948 		SOF_TIMESTAMPING_SOFTWARE |
1949 		SOF_TIMESTAMPING_RAW_HARDWARE;
1950 	info->phc_index = cpsw->cpts->phc_index;
1951 	info->tx_types =
1952 		(1 << HWTSTAMP_TX_OFF) |
1953 		(1 << HWTSTAMP_TX_ON);
1954 	info->rx_filters =
1955 		(1 << HWTSTAMP_FILTER_NONE) |
1956 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
1957 #else
1958 	info->so_timestamping =
1959 		SOF_TIMESTAMPING_TX_SOFTWARE |
1960 		SOF_TIMESTAMPING_RX_SOFTWARE |
1961 		SOF_TIMESTAMPING_SOFTWARE;
1962 	info->phc_index = -1;
1963 	info->tx_types = 0;
1964 	info->rx_filters = 0;
1965 #endif
1966 	return 0;
1967 }
1968 
1969 static int cpsw_get_link_ksettings(struct net_device *ndev,
1970 				   struct ethtool_link_ksettings *ecmd)
1971 {
1972 	struct cpsw_priv *priv = netdev_priv(ndev);
1973 	struct cpsw_common *cpsw = priv->cpsw;
1974 	int slave_no = cpsw_slave_index(cpsw, priv);
1975 
1976 	if (cpsw->slaves[slave_no].phy)
1977 		return phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy,
1978 						 ecmd);
1979 	else
1980 		return -EOPNOTSUPP;
1981 }
1982 
1983 static int cpsw_set_link_ksettings(struct net_device *ndev,
1984 				   const struct ethtool_link_ksettings *ecmd)
1985 {
1986 	struct cpsw_priv *priv = netdev_priv(ndev);
1987 	struct cpsw_common *cpsw = priv->cpsw;
1988 	int slave_no = cpsw_slave_index(cpsw, priv);
1989 
1990 	if (cpsw->slaves[slave_no].phy)
1991 		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
1992 						 ecmd);
1993 	else
1994 		return -EOPNOTSUPP;
1995 }
1996 
1997 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1998 {
1999 	struct cpsw_priv *priv = netdev_priv(ndev);
2000 	struct cpsw_common *cpsw = priv->cpsw;
2001 	int slave_no = cpsw_slave_index(cpsw, priv);
2002 
2003 	wol->supported = 0;
2004 	wol->wolopts = 0;
2005 
2006 	if (cpsw->slaves[slave_no].phy)
2007 		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2008 }
2009 
2010 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2011 {
2012 	struct cpsw_priv *priv = netdev_priv(ndev);
2013 	struct cpsw_common *cpsw = priv->cpsw;
2014 	int slave_no = cpsw_slave_index(cpsw, priv);
2015 
2016 	if (cpsw->slaves[slave_no].phy)
2017 		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2018 	else
2019 		return -EOPNOTSUPP;
2020 }
2021 
2022 static void cpsw_get_pauseparam(struct net_device *ndev,
2023 				struct ethtool_pauseparam *pause)
2024 {
2025 	struct cpsw_priv *priv = netdev_priv(ndev);
2026 
2027 	pause->autoneg = AUTONEG_DISABLE;
2028 	pause->rx_pause = priv->rx_pause ? true : false;
2029 	pause->tx_pause = priv->tx_pause ? true : false;
2030 }
2031 
2032 static int cpsw_set_pauseparam(struct net_device *ndev,
2033 			       struct ethtool_pauseparam *pause)
2034 {
2035 	struct cpsw_priv *priv = netdev_priv(ndev);
2036 	bool link;
2037 
2038 	priv->rx_pause = pause->rx_pause ? true : false;
2039 	priv->tx_pause = pause->tx_pause ? true : false;
2040 
2041 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2042 	return 0;
2043 }
2044 
2045 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2046 {
2047 	struct cpsw_priv *priv = netdev_priv(ndev);
2048 	struct cpsw_common *cpsw = priv->cpsw;
2049 	int ret;
2050 
2051 	ret = pm_runtime_get_sync(cpsw->dev);
2052 	if (ret < 0) {
2053 		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2054 		pm_runtime_put_noidle(cpsw->dev);
2055 	}
2056 
2057 	return ret;
2058 }
2059 
2060 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2061 {
2062 	struct cpsw_priv *priv = netdev_priv(ndev);
2063 	int ret;
2064 
2065 	ret = pm_runtime_put(priv->cpsw->dev);
2066 	if (ret < 0)
2067 		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2068 }
2069 
2070 static void cpsw_get_channels(struct net_device *ndev,
2071 			      struct ethtool_channels *ch)
2072 {
2073 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2074 
2075 	ch->max_combined = 0;
2076 	ch->max_rx = CPSW_MAX_QUEUES;
2077 	ch->max_tx = CPSW_MAX_QUEUES;
2078 	ch->max_other = 0;
2079 	ch->other_count = 0;
2080 	ch->rx_count = cpsw->rx_ch_num;
2081 	ch->tx_count = cpsw->tx_ch_num;
2082 	ch->combined_count = 0;
2083 }
2084 
2085 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2086 				  struct ethtool_channels *ch)
2087 {
2088 	if (ch->combined_count)
2089 		return -EINVAL;
2090 
2091 	/* verify we have at least one channel in each direction */
2092 	if (!ch->rx_count || !ch->tx_count)
2093 		return -EINVAL;
2094 
2095 	if (ch->rx_count > cpsw->data.channels ||
2096 	    ch->tx_count > cpsw->data.channels)
2097 		return -EINVAL;
2098 
2099 	return 0;
2100 }
2101 
2102 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2103 {
2104 	int (*poll)(struct napi_struct *, int);
2105 	struct cpsw_common *cpsw = priv->cpsw;
2106 	void (*handler)(void *, int, int);
2107 	struct cpdma_chan **chan;
2108 	int ret, *ch;
2109 
2110 	if (rx) {
2111 		ch = &cpsw->rx_ch_num;
2112 		chan = cpsw->rxch;
2113 		handler = cpsw_rx_handler;
2114 		poll = cpsw_rx_poll;
2115 	} else {
2116 		ch = &cpsw->tx_ch_num;
2117 		chan = cpsw->txch;
2118 		handler = cpsw_tx_handler;
2119 		poll = cpsw_tx_poll;
2120 	}
2121 
2122 	while (*ch < ch_num) {
2123 		chan[*ch] = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2124 
2125 		if (IS_ERR(chan[*ch]))
2126 			return PTR_ERR(chan[*ch]);
2127 
2128 		if (!chan[*ch])
2129 			return -EINVAL;
2130 
2131 		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2132 			  (rx ? "rx" : "tx"));
2133 		(*ch)++;
2134 	}
2135 
2136 	while (*ch > ch_num) {
2137 		(*ch)--;
2138 
2139 		ret = cpdma_chan_destroy(chan[*ch]);
2140 		if (ret)
2141 			return ret;
2142 
2143 		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2144 			  (rx ? "rx" : "tx"));
2145 	}
2146 
2147 	return 0;
2148 }
2149 
2150 static int cpsw_update_channels(struct cpsw_priv *priv,
2151 				struct ethtool_channels *ch)
2152 {
2153 	int ret;
2154 
2155 	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2156 	if (ret)
2157 		return ret;
2158 
2159 	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2160 	if (ret)
2161 		return ret;
2162 
2163 	return 0;
2164 }
2165 
2166 static int cpsw_set_channels(struct net_device *ndev,
2167 			     struct ethtool_channels *chs)
2168 {
2169 	struct cpsw_priv *priv = netdev_priv(ndev);
2170 	struct cpsw_common *cpsw = priv->cpsw;
2171 	struct cpsw_slave *slave;
2172 	int i, ret;
2173 
2174 	ret = cpsw_check_ch_settings(cpsw, chs);
2175 	if (ret < 0)
2176 		return ret;
2177 
2178 	/* Disable NAPI scheduling */
2179 	cpsw_intr_disable(cpsw);
2180 
2181 	/* Stop all transmit queues for every network device.
2182 	 * Disable re-using rx descriptors with dormant_on.
2183 	 */
2184 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2185 		if (!(slave->ndev && netif_running(slave->ndev)))
2186 			continue;
2187 
2188 		netif_tx_stop_all_queues(slave->ndev);
2189 		netif_dormant_on(slave->ndev);
2190 	}
2191 
2192 	/* Handle rest of tx packets and stop cpdma channels */
2193 	cpdma_ctlr_stop(cpsw->dma);
2194 	ret = cpsw_update_channels(priv, chs);
2195 	if (ret)
2196 		goto err;
2197 
2198 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2199 		if (!(slave->ndev && netif_running(slave->ndev)))
2200 			continue;
2201 
2202 		/* Inform stack about new count of queues */
2203 		ret = netif_set_real_num_tx_queues(slave->ndev,
2204 						   cpsw->tx_ch_num);
2205 		if (ret) {
2206 			dev_err(priv->dev, "cannot set real number of tx queues\n");
2207 			goto err;
2208 		}
2209 
2210 		ret = netif_set_real_num_rx_queues(slave->ndev,
2211 						   cpsw->rx_ch_num);
2212 		if (ret) {
2213 			dev_err(priv->dev, "cannot set real number of rx queues\n");
2214 			goto err;
2215 		}
2216 
2217 		/* Enable rx packets handling */
2218 		netif_dormant_off(slave->ndev);
2219 	}
2220 
2221 	if (cpsw_common_res_usage_state(cpsw)) {
2222 		ret = cpsw_fill_rx_channels(priv);
2223 		if (ret)
2224 			goto err;
2225 
2226 		/* After this receive is started */
2227 		cpdma_ctlr_start(cpsw->dma);
2228 		cpsw_intr_enable(cpsw);
2229 	}
2230 
2231 	/* Resume transmit for every affected interface */
2232 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2233 		if (!(slave->ndev && netif_running(slave->ndev)))
2234 			continue;
2235 		netif_tx_start_all_queues(slave->ndev);
2236 	}
2237 	return 0;
2238 err:
2239 	dev_err(priv->dev, "cannot update channels number, closing device\n");
2240 	dev_close(ndev);
2241 	return ret;
2242 }
2243 
2244 static const struct ethtool_ops cpsw_ethtool_ops = {
2245 	.get_drvinfo	= cpsw_get_drvinfo,
2246 	.get_msglevel	= cpsw_get_msglevel,
2247 	.set_msglevel	= cpsw_set_msglevel,
2248 	.get_link	= ethtool_op_get_link,
2249 	.get_ts_info	= cpsw_get_ts_info,
2250 	.get_coalesce	= cpsw_get_coalesce,
2251 	.set_coalesce	= cpsw_set_coalesce,
2252 	.get_sset_count		= cpsw_get_sset_count,
2253 	.get_strings		= cpsw_get_strings,
2254 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
2255 	.get_pauseparam		= cpsw_get_pauseparam,
2256 	.set_pauseparam		= cpsw_set_pauseparam,
2257 	.get_wol	= cpsw_get_wol,
2258 	.set_wol	= cpsw_set_wol,
2259 	.get_regs_len	= cpsw_get_regs_len,
2260 	.get_regs	= cpsw_get_regs,
2261 	.begin		= cpsw_ethtool_op_begin,
2262 	.complete	= cpsw_ethtool_op_complete,
2263 	.get_channels	= cpsw_get_channels,
2264 	.set_channels	= cpsw_set_channels,
2265 	.get_link_ksettings	= cpsw_get_link_ksettings,
2266 	.set_link_ksettings	= cpsw_set_link_ksettings,
2267 };
2268 
2269 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2270 			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
2271 {
2272 	void __iomem		*regs = cpsw->regs;
2273 	int			slave_num = slave->slave_num;
2274 	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
2275 
2276 	slave->data	= data;
2277 	slave->regs	= regs + slave_reg_ofs;
2278 	slave->sliver	= regs + sliver_reg_ofs;
2279 	slave->port_vlan = data->dual_emac_res_vlan;
2280 }
2281 
2282 static int cpsw_probe_dt(struct cpsw_platform_data *data,
2283 			 struct platform_device *pdev)
2284 {
2285 	struct device_node *node = pdev->dev.of_node;
2286 	struct device_node *slave_node;
2287 	int i = 0, ret;
2288 	u32 prop;
2289 
2290 	if (!node)
2291 		return -EINVAL;
2292 
2293 	if (of_property_read_u32(node, "slaves", &prop)) {
2294 		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2295 		return -EINVAL;
2296 	}
2297 	data->slaves = prop;
2298 
2299 	if (of_property_read_u32(node, "active_slave", &prop)) {
2300 		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2301 		return -EINVAL;
2302 	}
2303 	data->active_slave = prop;
2304 
2305 	if (of_property_read_u32(node, "cpts_clock_mult", &prop)) {
2306 		dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n");
2307 		return -EINVAL;
2308 	}
2309 	data->cpts_clock_mult = prop;
2310 
2311 	if (of_property_read_u32(node, "cpts_clock_shift", &prop)) {
2312 		dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n");
2313 		return -EINVAL;
2314 	}
2315 	data->cpts_clock_shift = prop;
2316 
2317 	data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
2318 					* sizeof(struct cpsw_slave_data),
2319 					GFP_KERNEL);
2320 	if (!data->slave_data)
2321 		return -ENOMEM;
2322 
2323 	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2324 		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2325 		return -EINVAL;
2326 	}
2327 	data->channels = prop;
2328 
2329 	if (of_property_read_u32(node, "ale_entries", &prop)) {
2330 		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2331 		return -EINVAL;
2332 	}
2333 	data->ale_entries = prop;
2334 
2335 	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2336 		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2337 		return -EINVAL;
2338 	}
2339 	data->bd_ram_size = prop;
2340 
2341 	if (of_property_read_u32(node, "mac_control", &prop)) {
2342 		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2343 		return -EINVAL;
2344 	}
2345 	data->mac_control = prop;
2346 
2347 	if (of_property_read_bool(node, "dual_emac"))
2348 		data->dual_emac = 1;
2349 
2350 	/*
2351 	 * Populate all the child nodes here...
2352 	 */
2353 	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2354 	/* We do not want to force this, as in some cases may not have child */
2355 	if (ret)
2356 		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2357 
2358 	for_each_available_child_of_node(node, slave_node) {
2359 		struct cpsw_slave_data *slave_data = data->slave_data + i;
2360 		const void *mac_addr = NULL;
2361 		int lenp;
2362 		const __be32 *parp;
2363 
2364 		/* This is no slave child node, continue */
2365 		if (strcmp(slave_node->name, "slave"))
2366 			continue;
2367 
2368 		slave_data->phy_node = of_parse_phandle(slave_node,
2369 							"phy-handle", 0);
2370 		parp = of_get_property(slave_node, "phy_id", &lenp);
2371 		if (slave_data->phy_node) {
2372 			dev_dbg(&pdev->dev,
2373 				"slave[%d] using phy-handle=\"%s\"\n",
2374 				i, slave_data->phy_node->full_name);
2375 		} else if (of_phy_is_fixed_link(slave_node)) {
2376 			/* In the case of a fixed PHY, the DT node associated
2377 			 * to the PHY is the Ethernet MAC DT node.
2378 			 */
2379 			ret = of_phy_register_fixed_link(slave_node);
2380 			if (ret)
2381 				return ret;
2382 			slave_data->phy_node = of_node_get(slave_node);
2383 		} else if (parp) {
2384 			u32 phyid;
2385 			struct device_node *mdio_node;
2386 			struct platform_device *mdio;
2387 
2388 			if (lenp != (sizeof(__be32) * 2)) {
2389 				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2390 				goto no_phy_slave;
2391 			}
2392 			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2393 			phyid = be32_to_cpup(parp+1);
2394 			mdio = of_find_device_by_node(mdio_node);
2395 			of_node_put(mdio_node);
2396 			if (!mdio) {
2397 				dev_err(&pdev->dev, "Missing mdio platform device\n");
2398 				return -EINVAL;
2399 			}
2400 			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2401 				 PHY_ID_FMT, mdio->name, phyid);
2402 		} else {
2403 			dev_err(&pdev->dev,
2404 				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2405 				i);
2406 			goto no_phy_slave;
2407 		}
2408 		slave_data->phy_if = of_get_phy_mode(slave_node);
2409 		if (slave_data->phy_if < 0) {
2410 			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2411 				i);
2412 			return slave_data->phy_if;
2413 		}
2414 
2415 no_phy_slave:
2416 		mac_addr = of_get_mac_address(slave_node);
2417 		if (mac_addr) {
2418 			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2419 		} else {
2420 			ret = ti_cm_get_macid(&pdev->dev, i,
2421 					      slave_data->mac_addr);
2422 			if (ret)
2423 				return ret;
2424 		}
2425 		if (data->dual_emac) {
2426 			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2427 						 &prop)) {
2428 				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2429 				slave_data->dual_emac_res_vlan = i+1;
2430 				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2431 					slave_data->dual_emac_res_vlan, i);
2432 			} else {
2433 				slave_data->dual_emac_res_vlan = prop;
2434 			}
2435 		}
2436 
2437 		i++;
2438 		if (i == data->slaves)
2439 			break;
2440 	}
2441 
2442 	return 0;
2443 }
2444 
2445 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2446 {
2447 	struct cpsw_common		*cpsw = priv->cpsw;
2448 	struct cpsw_platform_data	*data = &cpsw->data;
2449 	struct net_device		*ndev;
2450 	struct cpsw_priv		*priv_sl2;
2451 	int ret = 0;
2452 
2453 	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2454 	if (!ndev) {
2455 		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2456 		return -ENOMEM;
2457 	}
2458 
2459 	priv_sl2 = netdev_priv(ndev);
2460 	priv_sl2->cpsw = cpsw;
2461 	priv_sl2->ndev = ndev;
2462 	priv_sl2->dev  = &ndev->dev;
2463 	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2464 
2465 	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2466 		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2467 			ETH_ALEN);
2468 		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
2469 			 priv_sl2->mac_addr);
2470 	} else {
2471 		random_ether_addr(priv_sl2->mac_addr);
2472 		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
2473 			 priv_sl2->mac_addr);
2474 	}
2475 	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2476 
2477 	priv_sl2->emac_port = 1;
2478 	cpsw->slaves[1].ndev = ndev;
2479 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2480 
2481 	ndev->netdev_ops = &cpsw_netdev_ops;
2482 	ndev->ethtool_ops = &cpsw_ethtool_ops;
2483 
2484 	/* register the network device */
2485 	SET_NETDEV_DEV(ndev, cpsw->dev);
2486 	ret = register_netdev(ndev);
2487 	if (ret) {
2488 		dev_err(cpsw->dev, "cpsw: error registering net device\n");
2489 		free_netdev(ndev);
2490 		ret = -ENODEV;
2491 	}
2492 
2493 	return ret;
2494 }
2495 
2496 #define CPSW_QUIRK_IRQ		BIT(0)
2497 
2498 static struct platform_device_id cpsw_devtype[] = {
2499 	{
2500 		/* keep it for existing comaptibles */
2501 		.name = "cpsw",
2502 		.driver_data = CPSW_QUIRK_IRQ,
2503 	}, {
2504 		.name = "am335x-cpsw",
2505 		.driver_data = CPSW_QUIRK_IRQ,
2506 	}, {
2507 		.name = "am4372-cpsw",
2508 		.driver_data = 0,
2509 	}, {
2510 		.name = "dra7-cpsw",
2511 		.driver_data = 0,
2512 	}, {
2513 		/* sentinel */
2514 	}
2515 };
2516 MODULE_DEVICE_TABLE(platform, cpsw_devtype);
2517 
2518 enum ti_cpsw_type {
2519 	CPSW = 0,
2520 	AM335X_CPSW,
2521 	AM4372_CPSW,
2522 	DRA7_CPSW,
2523 };
2524 
2525 static const struct of_device_id cpsw_of_mtable[] = {
2526 	{ .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
2527 	{ .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
2528 	{ .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
2529 	{ .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
2530 	{ /* sentinel */ },
2531 };
2532 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2533 
2534 static int cpsw_probe(struct platform_device *pdev)
2535 {
2536 	struct clk			*clk;
2537 	struct cpsw_platform_data	*data;
2538 	struct net_device		*ndev;
2539 	struct cpsw_priv		*priv;
2540 	struct cpdma_params		dma_params;
2541 	struct cpsw_ale_params		ale_params;
2542 	void __iomem			*ss_regs;
2543 	struct resource			*res, *ss_res;
2544 	const struct of_device_id	*of_id;
2545 	struct gpio_descs		*mode;
2546 	u32 slave_offset, sliver_offset, slave_size;
2547 	struct cpsw_common		*cpsw;
2548 	int ret = 0, i;
2549 	int irq;
2550 
2551 	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2552 	cpsw->dev = &pdev->dev;
2553 
2554 	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2555 	if (!ndev) {
2556 		dev_err(&pdev->dev, "error allocating net_device\n");
2557 		return -ENOMEM;
2558 	}
2559 
2560 	platform_set_drvdata(pdev, ndev);
2561 	priv = netdev_priv(ndev);
2562 	priv->cpsw = cpsw;
2563 	priv->ndev = ndev;
2564 	priv->dev  = &ndev->dev;
2565 	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2566 	cpsw->rx_packet_max = max(rx_packet_max, 128);
2567 	cpsw->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL);
2568 	if (!cpsw->cpts) {
2569 		dev_err(&pdev->dev, "error allocating cpts\n");
2570 		ret = -ENOMEM;
2571 		goto clean_ndev_ret;
2572 	}
2573 
2574 	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
2575 	if (IS_ERR(mode)) {
2576 		ret = PTR_ERR(mode);
2577 		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
2578 		goto clean_ndev_ret;
2579 	}
2580 
2581 	/*
2582 	 * This may be required here for child devices.
2583 	 */
2584 	pm_runtime_enable(&pdev->dev);
2585 
2586 	/* Select default pin state */
2587 	pinctrl_pm_select_default_state(&pdev->dev);
2588 
2589 	if (cpsw_probe_dt(&cpsw->data, pdev)) {
2590 		dev_err(&pdev->dev, "cpsw: platform data missing\n");
2591 		ret = -ENODEV;
2592 		goto clean_runtime_disable_ret;
2593 	}
2594 	data = &cpsw->data;
2595 	cpsw->rx_ch_num = 1;
2596 	cpsw->tx_ch_num = 1;
2597 
2598 	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2599 		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2600 		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2601 	} else {
2602 		eth_random_addr(priv->mac_addr);
2603 		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2604 	}
2605 
2606 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2607 
2608 	cpsw->slaves = devm_kzalloc(&pdev->dev,
2609 				    sizeof(struct cpsw_slave) * data->slaves,
2610 				    GFP_KERNEL);
2611 	if (!cpsw->slaves) {
2612 		ret = -ENOMEM;
2613 		goto clean_runtime_disable_ret;
2614 	}
2615 	for (i = 0; i < data->slaves; i++)
2616 		cpsw->slaves[i].slave_num = i;
2617 
2618 	cpsw->slaves[0].ndev = ndev;
2619 	priv->emac_port = 0;
2620 
2621 	clk = devm_clk_get(&pdev->dev, "fck");
2622 	if (IS_ERR(clk)) {
2623 		dev_err(priv->dev, "fck is not found\n");
2624 		ret = -ENODEV;
2625 		goto clean_runtime_disable_ret;
2626 	}
2627 	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2628 
2629 	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2630 	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
2631 	if (IS_ERR(ss_regs)) {
2632 		ret = PTR_ERR(ss_regs);
2633 		goto clean_runtime_disable_ret;
2634 	}
2635 	cpsw->regs = ss_regs;
2636 
2637 	/* Need to enable clocks with runtime PM api to access module
2638 	 * registers
2639 	 */
2640 	ret = pm_runtime_get_sync(&pdev->dev);
2641 	if (ret < 0) {
2642 		pm_runtime_put_noidle(&pdev->dev);
2643 		goto clean_runtime_disable_ret;
2644 	}
2645 	cpsw->version = readl(&cpsw->regs->id_ver);
2646 	pm_runtime_put_sync(&pdev->dev);
2647 
2648 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2649 	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
2650 	if (IS_ERR(cpsw->wr_regs)) {
2651 		ret = PTR_ERR(cpsw->wr_regs);
2652 		goto clean_runtime_disable_ret;
2653 	}
2654 
2655 	memset(&dma_params, 0, sizeof(dma_params));
2656 	memset(&ale_params, 0, sizeof(ale_params));
2657 
2658 	switch (cpsw->version) {
2659 	case CPSW_VERSION_1:
2660 		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2661 		cpsw->cpts->reg      = ss_regs + CPSW1_CPTS_OFFSET;
2662 		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
2663 		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
2664 		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
2665 		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
2666 		slave_offset         = CPSW1_SLAVE_OFFSET;
2667 		slave_size           = CPSW1_SLAVE_SIZE;
2668 		sliver_offset        = CPSW1_SLIVER_OFFSET;
2669 		dma_params.desc_mem_phys = 0;
2670 		break;
2671 	case CPSW_VERSION_2:
2672 	case CPSW_VERSION_3:
2673 	case CPSW_VERSION_4:
2674 		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
2675 		cpsw->cpts->reg      = ss_regs + CPSW2_CPTS_OFFSET;
2676 		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
2677 		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
2678 		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
2679 		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
2680 		slave_offset         = CPSW2_SLAVE_OFFSET;
2681 		slave_size           = CPSW2_SLAVE_SIZE;
2682 		sliver_offset        = CPSW2_SLIVER_OFFSET;
2683 		dma_params.desc_mem_phys =
2684 			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
2685 		break;
2686 	default:
2687 		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
2688 		ret = -ENODEV;
2689 		goto clean_runtime_disable_ret;
2690 	}
2691 	for (i = 0; i < cpsw->data.slaves; i++) {
2692 		struct cpsw_slave *slave = &cpsw->slaves[i];
2693 
2694 		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
2695 		slave_offset  += slave_size;
2696 		sliver_offset += SLIVER_SIZE;
2697 	}
2698 
2699 	dma_params.dev		= &pdev->dev;
2700 	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
2701 	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
2702 	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
2703 	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
2704 	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
2705 
2706 	dma_params.num_chan		= data->channels;
2707 	dma_params.has_soft_reset	= true;
2708 	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
2709 	dma_params.desc_mem_size	= data->bd_ram_size;
2710 	dma_params.desc_align		= 16;
2711 	dma_params.has_ext_regs		= true;
2712 	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
2713 
2714 	cpsw->dma = cpdma_ctlr_create(&dma_params);
2715 	if (!cpsw->dma) {
2716 		dev_err(priv->dev, "error initializing dma\n");
2717 		ret = -ENOMEM;
2718 		goto clean_runtime_disable_ret;
2719 	}
2720 
2721 	cpsw->txch[0] = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
2722 	cpsw->rxch[0] = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
2723 	if (WARN_ON(!cpsw->rxch[0] || !cpsw->txch[0])) {
2724 		dev_err(priv->dev, "error initializing dma channels\n");
2725 		ret = -ENOMEM;
2726 		goto clean_dma_ret;
2727 	}
2728 
2729 	ale_params.dev			= &ndev->dev;
2730 	ale_params.ale_ageout		= ale_ageout;
2731 	ale_params.ale_entries		= data->ale_entries;
2732 	ale_params.ale_ports		= data->slaves;
2733 
2734 	cpsw->ale = cpsw_ale_create(&ale_params);
2735 	if (!cpsw->ale) {
2736 		dev_err(priv->dev, "error initializing ale engine\n");
2737 		ret = -ENODEV;
2738 		goto clean_dma_ret;
2739 	}
2740 
2741 	ndev->irq = platform_get_irq(pdev, 1);
2742 	if (ndev->irq < 0) {
2743 		dev_err(priv->dev, "error getting irq resource\n");
2744 		ret = ndev->irq;
2745 		goto clean_ale_ret;
2746 	}
2747 
2748 	of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
2749 	if (of_id) {
2750 		pdev->id_entry = of_id->data;
2751 		if (pdev->id_entry->driver_data)
2752 			cpsw->quirk_irq = true;
2753 	}
2754 
2755 	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
2756 	 * MISC IRQs which are always kept disabled with this driver so
2757 	 * we will not request them.
2758 	 *
2759 	 * If anyone wants to implement support for those, make sure to
2760 	 * first request and append them to irqs_table array.
2761 	 */
2762 
2763 	/* RX IRQ */
2764 	irq = platform_get_irq(pdev, 1);
2765 	if (irq < 0) {
2766 		ret = irq;
2767 		goto clean_ale_ret;
2768 	}
2769 
2770 	cpsw->irqs_table[0] = irq;
2771 	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
2772 			       0, dev_name(&pdev->dev), cpsw);
2773 	if (ret < 0) {
2774 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
2775 		goto clean_ale_ret;
2776 	}
2777 
2778 	/* TX IRQ */
2779 	irq = platform_get_irq(pdev, 2);
2780 	if (irq < 0) {
2781 		ret = irq;
2782 		goto clean_ale_ret;
2783 	}
2784 
2785 	cpsw->irqs_table[1] = irq;
2786 	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
2787 			       0, dev_name(&pdev->dev), cpsw);
2788 	if (ret < 0) {
2789 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
2790 		goto clean_ale_ret;
2791 	}
2792 
2793 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2794 
2795 	ndev->netdev_ops = &cpsw_netdev_ops;
2796 	ndev->ethtool_ops = &cpsw_ethtool_ops;
2797 	netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
2798 	netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
2799 
2800 	/* register the network device */
2801 	SET_NETDEV_DEV(ndev, &pdev->dev);
2802 	ret = register_netdev(ndev);
2803 	if (ret) {
2804 		dev_err(priv->dev, "error registering net device\n");
2805 		ret = -ENODEV;
2806 		goto clean_ale_ret;
2807 	}
2808 
2809 	cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n",
2810 		    &ss_res->start, ndev->irq);
2811 
2812 	if (cpsw->data.dual_emac) {
2813 		ret = cpsw_probe_dual_emac(priv);
2814 		if (ret) {
2815 			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
2816 			goto clean_ale_ret;
2817 		}
2818 	}
2819 
2820 	return 0;
2821 
2822 clean_ale_ret:
2823 	cpsw_ale_destroy(cpsw->ale);
2824 clean_dma_ret:
2825 	cpdma_ctlr_destroy(cpsw->dma);
2826 clean_runtime_disable_ret:
2827 	pm_runtime_disable(&pdev->dev);
2828 clean_ndev_ret:
2829 	free_netdev(priv->ndev);
2830 	return ret;
2831 }
2832 
2833 static int cpsw_remove(struct platform_device *pdev)
2834 {
2835 	struct net_device *ndev = platform_get_drvdata(pdev);
2836 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2837 	int ret;
2838 
2839 	ret = pm_runtime_get_sync(&pdev->dev);
2840 	if (ret < 0) {
2841 		pm_runtime_put_noidle(&pdev->dev);
2842 		return ret;
2843 	}
2844 
2845 	if (cpsw->data.dual_emac)
2846 		unregister_netdev(cpsw->slaves[1].ndev);
2847 	unregister_netdev(ndev);
2848 
2849 	cpsw_ale_destroy(cpsw->ale);
2850 	cpdma_ctlr_destroy(cpsw->dma);
2851 	of_platform_depopulate(&pdev->dev);
2852 	pm_runtime_put_sync(&pdev->dev);
2853 	pm_runtime_disable(&pdev->dev);
2854 	if (cpsw->data.dual_emac)
2855 		free_netdev(cpsw->slaves[1].ndev);
2856 	free_netdev(ndev);
2857 	return 0;
2858 }
2859 
2860 #ifdef CONFIG_PM_SLEEP
2861 static int cpsw_suspend(struct device *dev)
2862 {
2863 	struct platform_device	*pdev = to_platform_device(dev);
2864 	struct net_device	*ndev = platform_get_drvdata(pdev);
2865 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
2866 
2867 	if (cpsw->data.dual_emac) {
2868 		int i;
2869 
2870 		for (i = 0; i < cpsw->data.slaves; i++) {
2871 			if (netif_running(cpsw->slaves[i].ndev))
2872 				cpsw_ndo_stop(cpsw->slaves[i].ndev);
2873 		}
2874 	} else {
2875 		if (netif_running(ndev))
2876 			cpsw_ndo_stop(ndev);
2877 	}
2878 
2879 	/* Select sleep pin state */
2880 	pinctrl_pm_select_sleep_state(dev);
2881 
2882 	return 0;
2883 }
2884 
2885 static int cpsw_resume(struct device *dev)
2886 {
2887 	struct platform_device	*pdev = to_platform_device(dev);
2888 	struct net_device	*ndev = platform_get_drvdata(pdev);
2889 	struct cpsw_common	*cpsw = netdev_priv(ndev);
2890 
2891 	/* Select default pin state */
2892 	pinctrl_pm_select_default_state(dev);
2893 
2894 	if (cpsw->data.dual_emac) {
2895 		int i;
2896 
2897 		for (i = 0; i < cpsw->data.slaves; i++) {
2898 			if (netif_running(cpsw->slaves[i].ndev))
2899 				cpsw_ndo_open(cpsw->slaves[i].ndev);
2900 		}
2901 	} else {
2902 		if (netif_running(ndev))
2903 			cpsw_ndo_open(ndev);
2904 	}
2905 	return 0;
2906 }
2907 #endif
2908 
2909 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
2910 
2911 static struct platform_driver cpsw_driver = {
2912 	.driver = {
2913 		.name	 = "cpsw",
2914 		.pm	 = &cpsw_pm_ops,
2915 		.of_match_table = cpsw_of_mtable,
2916 	},
2917 	.probe = cpsw_probe,
2918 	.remove = cpsw_remove,
2919 };
2920 
2921 module_platform_driver(cpsw_driver);
2922 
2923 MODULE_LICENSE("GPL");
2924 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
2925 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
2926 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
2927