1 /* 2 * Texas Instruments Ethernet Switch Driver 3 * 4 * Copyright (C) 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/io.h> 18 #include <linux/clk.h> 19 #include <linux/timer.h> 20 #include <linux/module.h> 21 #include <linux/platform_device.h> 22 #include <linux/irqreturn.h> 23 #include <linux/interrupt.h> 24 #include <linux/if_ether.h> 25 #include <linux/etherdevice.h> 26 #include <linux/netdevice.h> 27 #include <linux/net_tstamp.h> 28 #include <linux/phy.h> 29 #include <linux/workqueue.h> 30 #include <linux/delay.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/of.h> 33 #include <linux/of_net.h> 34 #include <linux/of_device.h> 35 #include <linux/if_vlan.h> 36 37 #include <linux/pinctrl/consumer.h> 38 39 #include "cpsw.h" 40 #include "cpsw_ale.h" 41 #include "cpts.h" 42 #include "davinci_cpdma.h" 43 44 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 45 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 46 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 47 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 48 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 49 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 50 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 51 NETIF_MSG_RX_STATUS) 52 53 #define cpsw_info(priv, type, format, ...) \ 54 do { \ 55 if (netif_msg_##type(priv) && net_ratelimit()) \ 56 dev_info(priv->dev, format, ## __VA_ARGS__); \ 57 } while (0) 58 59 #define cpsw_err(priv, type, format, ...) \ 60 do { \ 61 if (netif_msg_##type(priv) && net_ratelimit()) \ 62 dev_err(priv->dev, format, ## __VA_ARGS__); \ 63 } while (0) 64 65 #define cpsw_dbg(priv, type, format, ...) \ 66 do { \ 67 if (netif_msg_##type(priv) && net_ratelimit()) \ 68 dev_dbg(priv->dev, format, ## __VA_ARGS__); \ 69 } while (0) 70 71 #define cpsw_notice(priv, type, format, ...) \ 72 do { \ 73 if (netif_msg_##type(priv) && net_ratelimit()) \ 74 dev_notice(priv->dev, format, ## __VA_ARGS__); \ 75 } while (0) 76 77 #define ALE_ALL_PORTS 0x7 78 79 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7) 80 #define CPSW_MINOR_VERSION(reg) (reg & 0xff) 81 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f) 82 83 #define CPSW_VERSION_1 0x19010a 84 #define CPSW_VERSION_2 0x19010c 85 #define CPSW_VERSION_3 0x19010f 86 #define CPSW_VERSION_4 0x190112 87 88 #define HOST_PORT_NUM 0 89 #define SLIVER_SIZE 0x40 90 91 #define CPSW1_HOST_PORT_OFFSET 0x028 92 #define CPSW1_SLAVE_OFFSET 0x050 93 #define CPSW1_SLAVE_SIZE 0x040 94 #define CPSW1_CPDMA_OFFSET 0x100 95 #define CPSW1_STATERAM_OFFSET 0x200 96 #define CPSW1_HW_STATS 0x400 97 #define CPSW1_CPTS_OFFSET 0x500 98 #define CPSW1_ALE_OFFSET 0x600 99 #define CPSW1_SLIVER_OFFSET 0x700 100 101 #define CPSW2_HOST_PORT_OFFSET 0x108 102 #define CPSW2_SLAVE_OFFSET 0x200 103 #define CPSW2_SLAVE_SIZE 0x100 104 #define CPSW2_CPDMA_OFFSET 0x800 105 #define CPSW2_HW_STATS 0x900 106 #define CPSW2_STATERAM_OFFSET 0xa00 107 #define CPSW2_CPTS_OFFSET 0xc00 108 #define CPSW2_ALE_OFFSET 0xd00 109 #define CPSW2_SLIVER_OFFSET 0xd80 110 #define CPSW2_BD_OFFSET 0x2000 111 112 #define CPDMA_RXTHRESH 0x0c0 113 #define CPDMA_RXFREE 0x0e0 114 #define CPDMA_TXHDP 0x00 115 #define CPDMA_RXHDP 0x20 116 #define CPDMA_TXCP 0x40 117 #define CPDMA_RXCP 0x60 118 119 #define CPSW_POLL_WEIGHT 64 120 #define CPSW_MIN_PACKET_SIZE 60 121 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4) 122 123 #define RX_PRIORITY_MAPPING 0x76543210 124 #define TX_PRIORITY_MAPPING 0x33221100 125 #define CPDMA_TX_PRIORITY_MAP 0x76543210 126 127 #define CPSW_VLAN_AWARE BIT(1) 128 #define CPSW_ALE_VLAN_AWARE 1 129 130 #define CPSW_FIFO_NORMAL_MODE (0 << 15) 131 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 15) 132 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 15) 133 134 #define CPSW_INTPACEEN (0x3f << 16) 135 #define CPSW_INTPRESCALE_MASK (0x7FF << 0) 136 #define CPSW_CMINTMAX_CNT 63 137 #define CPSW_CMINTMIN_CNT 2 138 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT) 139 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1) 140 141 #define cpsw_enable_irq(priv) \ 142 do { \ 143 u32 i; \ 144 for (i = 0; i < priv->num_irqs; i++) \ 145 enable_irq(priv->irqs_table[i]); \ 146 } while (0) 147 #define cpsw_disable_irq(priv) \ 148 do { \ 149 u32 i; \ 150 for (i = 0; i < priv->num_irqs; i++) \ 151 disable_irq_nosync(priv->irqs_table[i]); \ 152 } while (0) 153 154 #define cpsw_slave_index(priv) \ 155 ((priv->data.dual_emac) ? priv->emac_port : \ 156 priv->data.active_slave) 157 158 static int debug_level; 159 module_param(debug_level, int, 0); 160 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 161 162 static int ale_ageout = 10; 163 module_param(ale_ageout, int, 0); 164 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 165 166 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 167 module_param(rx_packet_max, int, 0); 168 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 169 170 struct cpsw_wr_regs { 171 u32 id_ver; 172 u32 soft_reset; 173 u32 control; 174 u32 int_control; 175 u32 rx_thresh_en; 176 u32 rx_en; 177 u32 tx_en; 178 u32 misc_en; 179 u32 mem_allign1[8]; 180 u32 rx_thresh_stat; 181 u32 rx_stat; 182 u32 tx_stat; 183 u32 misc_stat; 184 u32 mem_allign2[8]; 185 u32 rx_imax; 186 u32 tx_imax; 187 188 }; 189 190 struct cpsw_ss_regs { 191 u32 id_ver; 192 u32 control; 193 u32 soft_reset; 194 u32 stat_port_en; 195 u32 ptype; 196 u32 soft_idle; 197 u32 thru_rate; 198 u32 gap_thresh; 199 u32 tx_start_wds; 200 u32 flow_control; 201 u32 vlan_ltype; 202 u32 ts_ltype; 203 u32 dlr_ltype; 204 }; 205 206 /* CPSW_PORT_V1 */ 207 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */ 208 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */ 209 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */ 210 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */ 211 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */ 212 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */ 213 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */ 214 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */ 215 216 /* CPSW_PORT_V2 */ 217 #define CPSW2_CONTROL 0x00 /* Control Register */ 218 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */ 219 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */ 220 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */ 221 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */ 222 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */ 223 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */ 224 225 /* CPSW_PORT_V1 and V2 */ 226 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */ 227 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */ 228 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */ 229 230 /* CPSW_PORT_V2 only */ 231 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */ 232 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */ 233 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */ 234 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */ 235 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */ 236 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */ 237 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */ 238 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */ 239 240 /* Bit definitions for the CPSW2_CONTROL register */ 241 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */ 242 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */ 243 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */ 244 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */ 245 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */ 246 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */ 247 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */ 248 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */ 249 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */ 250 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */ 251 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */ 252 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */ 253 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */ 254 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */ 255 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */ 256 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */ 257 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */ 258 259 #define CTRL_V2_TS_BITS \ 260 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 261 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN) 262 263 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN) 264 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN) 265 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN) 266 267 268 #define CTRL_V3_TS_BITS \ 269 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 270 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\ 271 TS_LTYPE1_EN) 272 273 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN) 274 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN) 275 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN) 276 277 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */ 278 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */ 279 #define TS_SEQ_ID_OFFSET_MASK (0x3f) 280 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */ 281 #define TS_MSG_TYPE_EN_MASK (0xffff) 282 283 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */ 284 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3)) 285 286 /* Bit definitions for the CPSW1_TS_CTL register */ 287 #define CPSW_V1_TS_RX_EN BIT(0) 288 #define CPSW_V1_TS_TX_EN BIT(4) 289 #define CPSW_V1_MSG_TYPE_OFS 16 290 291 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */ 292 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16 293 294 struct cpsw_host_regs { 295 u32 max_blks; 296 u32 blk_cnt; 297 u32 tx_in_ctl; 298 u32 port_vlan; 299 u32 tx_pri_map; 300 u32 cpdma_tx_pri_map; 301 u32 cpdma_rx_chan_map; 302 }; 303 304 struct cpsw_sliver_regs { 305 u32 id_ver; 306 u32 mac_control; 307 u32 mac_status; 308 u32 soft_reset; 309 u32 rx_maxlen; 310 u32 __reserved_0; 311 u32 rx_pause; 312 u32 tx_pause; 313 u32 __reserved_1; 314 u32 rx_pri_map; 315 }; 316 317 struct cpsw_hw_stats { 318 u32 rxgoodframes; 319 u32 rxbroadcastframes; 320 u32 rxmulticastframes; 321 u32 rxpauseframes; 322 u32 rxcrcerrors; 323 u32 rxaligncodeerrors; 324 u32 rxoversizedframes; 325 u32 rxjabberframes; 326 u32 rxundersizedframes; 327 u32 rxfragments; 328 u32 __pad_0[2]; 329 u32 rxoctets; 330 u32 txgoodframes; 331 u32 txbroadcastframes; 332 u32 txmulticastframes; 333 u32 txpauseframes; 334 u32 txdeferredframes; 335 u32 txcollisionframes; 336 u32 txsinglecollframes; 337 u32 txmultcollframes; 338 u32 txexcessivecollisions; 339 u32 txlatecollisions; 340 u32 txunderrun; 341 u32 txcarriersenseerrors; 342 u32 txoctets; 343 u32 octetframes64; 344 u32 octetframes65t127; 345 u32 octetframes128t255; 346 u32 octetframes256t511; 347 u32 octetframes512t1023; 348 u32 octetframes1024tup; 349 u32 netoctets; 350 u32 rxsofoverruns; 351 u32 rxmofoverruns; 352 u32 rxdmaoverruns; 353 }; 354 355 struct cpsw_slave { 356 void __iomem *regs; 357 struct cpsw_sliver_regs __iomem *sliver; 358 int slave_num; 359 u32 mac_control; 360 struct cpsw_slave_data *data; 361 struct phy_device *phy; 362 struct net_device *ndev; 363 u32 port_vlan; 364 u32 open_stat; 365 }; 366 367 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset) 368 { 369 return __raw_readl(slave->regs + offset); 370 } 371 372 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset) 373 { 374 __raw_writel(val, slave->regs + offset); 375 } 376 377 struct cpsw_priv { 378 spinlock_t lock; 379 struct platform_device *pdev; 380 struct net_device *ndev; 381 struct napi_struct napi; 382 struct device *dev; 383 struct cpsw_platform_data data; 384 struct cpsw_ss_regs __iomem *regs; 385 struct cpsw_wr_regs __iomem *wr_regs; 386 u8 __iomem *hw_stats; 387 struct cpsw_host_regs __iomem *host_port_regs; 388 u32 msg_enable; 389 u32 version; 390 u32 coal_intvl; 391 u32 bus_freq_mhz; 392 int rx_packet_max; 393 int host_port; 394 struct clk *clk; 395 u8 mac_addr[ETH_ALEN]; 396 struct cpsw_slave *slaves; 397 struct cpdma_ctlr *dma; 398 struct cpdma_chan *txch, *rxch; 399 struct cpsw_ale *ale; 400 /* snapshot of IRQ numbers */ 401 u32 irqs_table[4]; 402 u32 num_irqs; 403 bool irq_enabled; 404 struct cpts *cpts; 405 u32 emac_port; 406 }; 407 408 struct cpsw_stats { 409 char stat_string[ETH_GSTRING_LEN]; 410 int type; 411 int sizeof_stat; 412 int stat_offset; 413 }; 414 415 enum { 416 CPSW_STATS, 417 CPDMA_RX_STATS, 418 CPDMA_TX_STATS, 419 }; 420 421 #define CPSW_STAT(m) CPSW_STATS, \ 422 sizeof(((struct cpsw_hw_stats *)0)->m), \ 423 offsetof(struct cpsw_hw_stats, m) 424 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \ 425 sizeof(((struct cpdma_chan_stats *)0)->m), \ 426 offsetof(struct cpdma_chan_stats, m) 427 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \ 428 sizeof(((struct cpdma_chan_stats *)0)->m), \ 429 offsetof(struct cpdma_chan_stats, m) 430 431 static const struct cpsw_stats cpsw_gstrings_stats[] = { 432 { "Good Rx Frames", CPSW_STAT(rxgoodframes) }, 433 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) }, 434 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) }, 435 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) }, 436 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) }, 437 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) }, 438 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) }, 439 { "Rx Jabbers", CPSW_STAT(rxjabberframes) }, 440 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) }, 441 { "Rx Fragments", CPSW_STAT(rxfragments) }, 442 { "Rx Octets", CPSW_STAT(rxoctets) }, 443 { "Good Tx Frames", CPSW_STAT(txgoodframes) }, 444 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) }, 445 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) }, 446 { "Pause Tx Frames", CPSW_STAT(txpauseframes) }, 447 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) }, 448 { "Collisions", CPSW_STAT(txcollisionframes) }, 449 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) }, 450 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) }, 451 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) }, 452 { "Late Collisions", CPSW_STAT(txlatecollisions) }, 453 { "Tx Underrun", CPSW_STAT(txunderrun) }, 454 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) }, 455 { "Tx Octets", CPSW_STAT(txoctets) }, 456 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) }, 457 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) }, 458 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) }, 459 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) }, 460 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) }, 461 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) }, 462 { "Net Octets", CPSW_STAT(netoctets) }, 463 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) }, 464 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) }, 465 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) }, 466 { "Rx DMA chan: head_enqueue", CPDMA_RX_STAT(head_enqueue) }, 467 { "Rx DMA chan: tail_enqueue", CPDMA_RX_STAT(tail_enqueue) }, 468 { "Rx DMA chan: pad_enqueue", CPDMA_RX_STAT(pad_enqueue) }, 469 { "Rx DMA chan: misqueued", CPDMA_RX_STAT(misqueued) }, 470 { "Rx DMA chan: desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) }, 471 { "Rx DMA chan: pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) }, 472 { "Rx DMA chan: runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) }, 473 { "Rx DMA chan: runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) }, 474 { "Rx DMA chan: empty_dequeue", CPDMA_RX_STAT(empty_dequeue) }, 475 { "Rx DMA chan: busy_dequeue", CPDMA_RX_STAT(busy_dequeue) }, 476 { "Rx DMA chan: good_dequeue", CPDMA_RX_STAT(good_dequeue) }, 477 { "Rx DMA chan: requeue", CPDMA_RX_STAT(requeue) }, 478 { "Rx DMA chan: teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) }, 479 { "Tx DMA chan: head_enqueue", CPDMA_TX_STAT(head_enqueue) }, 480 { "Tx DMA chan: tail_enqueue", CPDMA_TX_STAT(tail_enqueue) }, 481 { "Tx DMA chan: pad_enqueue", CPDMA_TX_STAT(pad_enqueue) }, 482 { "Tx DMA chan: misqueued", CPDMA_TX_STAT(misqueued) }, 483 { "Tx DMA chan: desc_alloc_fail", CPDMA_TX_STAT(desc_alloc_fail) }, 484 { "Tx DMA chan: pad_alloc_fail", CPDMA_TX_STAT(pad_alloc_fail) }, 485 { "Tx DMA chan: runt_receive_buf", CPDMA_TX_STAT(runt_receive_buff) }, 486 { "Tx DMA chan: runt_transmit_buf", CPDMA_TX_STAT(runt_transmit_buff) }, 487 { "Tx DMA chan: empty_dequeue", CPDMA_TX_STAT(empty_dequeue) }, 488 { "Tx DMA chan: busy_dequeue", CPDMA_TX_STAT(busy_dequeue) }, 489 { "Tx DMA chan: good_dequeue", CPDMA_TX_STAT(good_dequeue) }, 490 { "Tx DMA chan: requeue", CPDMA_TX_STAT(requeue) }, 491 { "Tx DMA chan: teardown_dequeue", CPDMA_TX_STAT(teardown_dequeue) }, 492 }; 493 494 #define CPSW_STATS_LEN ARRAY_SIZE(cpsw_gstrings_stats) 495 496 #define napi_to_priv(napi) container_of(napi, struct cpsw_priv, napi) 497 #define for_each_slave(priv, func, arg...) \ 498 do { \ 499 struct cpsw_slave *slave; \ 500 int n; \ 501 if (priv->data.dual_emac) \ 502 (func)((priv)->slaves + priv->emac_port, ##arg);\ 503 else \ 504 for (n = (priv)->data.slaves, \ 505 slave = (priv)->slaves; \ 506 n; n--) \ 507 (func)(slave++, ##arg); \ 508 } while (0) 509 #define cpsw_get_slave_ndev(priv, __slave_no__) \ 510 (priv->slaves[__slave_no__].ndev) 511 #define cpsw_get_slave_priv(priv, __slave_no__) \ 512 ((priv->slaves[__slave_no__].ndev) ? \ 513 netdev_priv(priv->slaves[__slave_no__].ndev) : NULL) \ 514 515 #define cpsw_dual_emac_src_port_detect(status, priv, ndev, skb) \ 516 do { \ 517 if (!priv->data.dual_emac) \ 518 break; \ 519 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \ 520 ndev = cpsw_get_slave_ndev(priv, 0); \ 521 priv = netdev_priv(ndev); \ 522 skb->dev = ndev; \ 523 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \ 524 ndev = cpsw_get_slave_ndev(priv, 1); \ 525 priv = netdev_priv(ndev); \ 526 skb->dev = ndev; \ 527 } \ 528 } while (0) 529 #define cpsw_add_mcast(priv, addr) \ 530 do { \ 531 if (priv->data.dual_emac) { \ 532 struct cpsw_slave *slave = priv->slaves + \ 533 priv->emac_port; \ 534 int slave_port = cpsw_get_slave_port(priv, \ 535 slave->slave_num); \ 536 cpsw_ale_add_mcast(priv->ale, addr, \ 537 1 << slave_port | 1 << priv->host_port, \ 538 ALE_VLAN, slave->port_vlan, 0); \ 539 } else { \ 540 cpsw_ale_add_mcast(priv->ale, addr, \ 541 ALE_ALL_PORTS << priv->host_port, \ 542 0, 0, 0); \ 543 } \ 544 } while (0) 545 546 static inline int cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num) 547 { 548 if (priv->host_port == 0) 549 return slave_num + 1; 550 else 551 return slave_num; 552 } 553 554 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 555 { 556 struct cpsw_priv *priv = netdev_priv(ndev); 557 struct cpsw_ale *ale = priv->ale; 558 int i; 559 560 if (priv->data.dual_emac) { 561 bool flag = false; 562 563 /* Enabling promiscuous mode for one interface will be 564 * common for both the interface as the interface shares 565 * the same hardware resource. 566 */ 567 for (i = 0; i < priv->data.slaves; i++) 568 if (priv->slaves[i].ndev->flags & IFF_PROMISC) 569 flag = true; 570 571 if (!enable && flag) { 572 enable = true; 573 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 574 } 575 576 if (enable) { 577 /* Enable Bypass */ 578 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 579 580 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 581 } else { 582 /* Disable Bypass */ 583 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 584 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 585 } 586 } else { 587 if (enable) { 588 unsigned long timeout = jiffies + HZ; 589 590 /* Disable Learn for all ports */ 591 for (i = 0; i < priv->data.slaves; i++) { 592 cpsw_ale_control_set(ale, i, 593 ALE_PORT_NOLEARN, 1); 594 cpsw_ale_control_set(ale, i, 595 ALE_PORT_NO_SA_UPDATE, 1); 596 } 597 598 /* Clear All Untouched entries */ 599 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 600 do { 601 cpu_relax(); 602 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 603 break; 604 } while (time_after(timeout, jiffies)); 605 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 606 607 /* Clear all mcast from ALE */ 608 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS << 609 priv->host_port); 610 611 /* Flood All Unicast Packets to Host port */ 612 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 613 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 614 } else { 615 /* Flood All Unicast Packets to Host port */ 616 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 617 618 /* Enable Learn for all ports */ 619 for (i = 0; i < priv->data.slaves; i++) { 620 cpsw_ale_control_set(ale, i, 621 ALE_PORT_NOLEARN, 0); 622 cpsw_ale_control_set(ale, i, 623 ALE_PORT_NO_SA_UPDATE, 0); 624 } 625 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 626 } 627 } 628 } 629 630 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 631 { 632 struct cpsw_priv *priv = netdev_priv(ndev); 633 634 if (ndev->flags & IFF_PROMISC) { 635 /* Enable promiscuous mode */ 636 cpsw_set_promiscious(ndev, true); 637 return; 638 } else { 639 /* Disable promiscuous mode */ 640 cpsw_set_promiscious(ndev, false); 641 } 642 643 /* Clear all mcast from ALE */ 644 cpsw_ale_flush_multicast(priv->ale, ALE_ALL_PORTS << priv->host_port); 645 646 if (!netdev_mc_empty(ndev)) { 647 struct netdev_hw_addr *ha; 648 649 /* program multicast address list into ALE register */ 650 netdev_for_each_mc_addr(ha, ndev) { 651 cpsw_add_mcast(priv, (u8 *)ha->addr); 652 } 653 } 654 } 655 656 static void cpsw_intr_enable(struct cpsw_priv *priv) 657 { 658 __raw_writel(0xFF, &priv->wr_regs->tx_en); 659 __raw_writel(0xFF, &priv->wr_regs->rx_en); 660 661 cpdma_ctlr_int_ctrl(priv->dma, true); 662 return; 663 } 664 665 static void cpsw_intr_disable(struct cpsw_priv *priv) 666 { 667 __raw_writel(0, &priv->wr_regs->tx_en); 668 __raw_writel(0, &priv->wr_regs->rx_en); 669 670 cpdma_ctlr_int_ctrl(priv->dma, false); 671 return; 672 } 673 674 static void cpsw_tx_handler(void *token, int len, int status) 675 { 676 struct sk_buff *skb = token; 677 struct net_device *ndev = skb->dev; 678 struct cpsw_priv *priv = netdev_priv(ndev); 679 680 /* Check whether the queue is stopped due to stalled tx dma, if the 681 * queue is stopped then start the queue as we have free desc for tx 682 */ 683 if (unlikely(netif_queue_stopped(ndev))) 684 netif_wake_queue(ndev); 685 cpts_tx_timestamp(priv->cpts, skb); 686 ndev->stats.tx_packets++; 687 ndev->stats.tx_bytes += len; 688 dev_kfree_skb_any(skb); 689 } 690 691 static void cpsw_rx_handler(void *token, int len, int status) 692 { 693 struct sk_buff *skb = token; 694 struct sk_buff *new_skb; 695 struct net_device *ndev = skb->dev; 696 struct cpsw_priv *priv = netdev_priv(ndev); 697 int ret = 0; 698 699 cpsw_dual_emac_src_port_detect(status, priv, ndev, skb); 700 701 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 702 bool ndev_status = false; 703 struct cpsw_slave *slave = priv->slaves; 704 int n; 705 706 if (priv->data.dual_emac) { 707 /* In dual emac mode check for all interfaces */ 708 for (n = priv->data.slaves; n; n--, slave++) 709 if (netif_running(slave->ndev)) 710 ndev_status = true; 711 } 712 713 if (ndev_status && (status >= 0)) { 714 /* The packet received is for the interface which 715 * is already down and the other interface is up 716 * and running, intead of freeing which results 717 * in reducing of the number of rx descriptor in 718 * DMA engine, requeue skb back to cpdma. 719 */ 720 new_skb = skb; 721 goto requeue; 722 } 723 724 /* the interface is going down, skbs are purged */ 725 dev_kfree_skb_any(skb); 726 return; 727 } 728 729 new_skb = netdev_alloc_skb_ip_align(ndev, priv->rx_packet_max); 730 if (new_skb) { 731 skb_put(skb, len); 732 cpts_rx_timestamp(priv->cpts, skb); 733 skb->protocol = eth_type_trans(skb, ndev); 734 netif_receive_skb(skb); 735 ndev->stats.rx_bytes += len; 736 ndev->stats.rx_packets++; 737 } else { 738 ndev->stats.rx_dropped++; 739 new_skb = skb; 740 } 741 742 requeue: 743 ret = cpdma_chan_submit(priv->rxch, new_skb, new_skb->data, 744 skb_tailroom(new_skb), 0); 745 if (WARN_ON(ret < 0)) 746 dev_kfree_skb_any(new_skb); 747 } 748 749 static irqreturn_t cpsw_interrupt(int irq, void *dev_id) 750 { 751 struct cpsw_priv *priv = dev_id; 752 753 cpsw_intr_disable(priv); 754 if (priv->irq_enabled == true) { 755 cpsw_disable_irq(priv); 756 priv->irq_enabled = false; 757 } 758 759 if (netif_running(priv->ndev)) { 760 napi_schedule(&priv->napi); 761 return IRQ_HANDLED; 762 } 763 764 priv = cpsw_get_slave_priv(priv, 1); 765 if (!priv) 766 return IRQ_NONE; 767 768 if (netif_running(priv->ndev)) { 769 napi_schedule(&priv->napi); 770 return IRQ_HANDLED; 771 } 772 return IRQ_NONE; 773 } 774 775 static int cpsw_poll(struct napi_struct *napi, int budget) 776 { 777 struct cpsw_priv *priv = napi_to_priv(napi); 778 int num_tx, num_rx; 779 780 num_tx = cpdma_chan_process(priv->txch, 128); 781 if (num_tx) 782 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX); 783 784 num_rx = cpdma_chan_process(priv->rxch, budget); 785 if (num_rx < budget) { 786 struct cpsw_priv *prim_cpsw; 787 788 napi_complete(napi); 789 cpsw_intr_enable(priv); 790 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX); 791 prim_cpsw = cpsw_get_slave_priv(priv, 0); 792 if (prim_cpsw->irq_enabled == false) { 793 prim_cpsw->irq_enabled = true; 794 cpsw_enable_irq(priv); 795 } 796 } 797 798 if (num_rx || num_tx) 799 cpsw_dbg(priv, intr, "poll %d rx, %d tx pkts\n", 800 num_rx, num_tx); 801 802 return num_rx; 803 } 804 805 static inline void soft_reset(const char *module, void __iomem *reg) 806 { 807 unsigned long timeout = jiffies + HZ; 808 809 __raw_writel(1, reg); 810 do { 811 cpu_relax(); 812 } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies)); 813 814 WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module); 815 } 816 817 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \ 818 ((mac)[2] << 16) | ((mac)[3] << 24)) 819 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8)) 820 821 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 822 struct cpsw_priv *priv) 823 { 824 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 825 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 826 } 827 828 static void _cpsw_adjust_link(struct cpsw_slave *slave, 829 struct cpsw_priv *priv, bool *link) 830 { 831 struct phy_device *phy = slave->phy; 832 u32 mac_control = 0; 833 u32 slave_port; 834 835 if (!phy) 836 return; 837 838 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 839 840 if (phy->link) { 841 mac_control = priv->data.mac_control; 842 843 /* enable forwarding */ 844 cpsw_ale_control_set(priv->ale, slave_port, 845 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 846 847 if (phy->speed == 1000) 848 mac_control |= BIT(7); /* GIGABITEN */ 849 if (phy->duplex) 850 mac_control |= BIT(0); /* FULLDUPLEXEN */ 851 852 /* set speed_in input in case RMII mode is used in 100Mbps */ 853 if (phy->speed == 100) 854 mac_control |= BIT(15); 855 else if (phy->speed == 10) 856 mac_control |= BIT(18); /* In Band mode */ 857 858 *link = true; 859 } else { 860 mac_control = 0; 861 /* disable forwarding */ 862 cpsw_ale_control_set(priv->ale, slave_port, 863 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 864 } 865 866 if (mac_control != slave->mac_control) { 867 phy_print_status(phy); 868 __raw_writel(mac_control, &slave->sliver->mac_control); 869 } 870 871 slave->mac_control = mac_control; 872 } 873 874 static void cpsw_adjust_link(struct net_device *ndev) 875 { 876 struct cpsw_priv *priv = netdev_priv(ndev); 877 bool link = false; 878 879 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 880 881 if (link) { 882 netif_carrier_on(ndev); 883 if (netif_running(ndev)) 884 netif_wake_queue(ndev); 885 } else { 886 netif_carrier_off(ndev); 887 netif_stop_queue(ndev); 888 } 889 } 890 891 static int cpsw_get_coalesce(struct net_device *ndev, 892 struct ethtool_coalesce *coal) 893 { 894 struct cpsw_priv *priv = netdev_priv(ndev); 895 896 coal->rx_coalesce_usecs = priv->coal_intvl; 897 return 0; 898 } 899 900 static int cpsw_set_coalesce(struct net_device *ndev, 901 struct ethtool_coalesce *coal) 902 { 903 struct cpsw_priv *priv = netdev_priv(ndev); 904 u32 int_ctrl; 905 u32 num_interrupts = 0; 906 u32 prescale = 0; 907 u32 addnl_dvdr = 1; 908 u32 coal_intvl = 0; 909 910 coal_intvl = coal->rx_coalesce_usecs; 911 912 int_ctrl = readl(&priv->wr_regs->int_control); 913 prescale = priv->bus_freq_mhz * 4; 914 915 if (!coal->rx_coalesce_usecs) { 916 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN); 917 goto update_return; 918 } 919 920 if (coal_intvl < CPSW_CMINTMIN_INTVL) 921 coal_intvl = CPSW_CMINTMIN_INTVL; 922 923 if (coal_intvl > CPSW_CMINTMAX_INTVL) { 924 /* Interrupt pacer works with 4us Pulse, we can 925 * throttle further by dilating the 4us pulse. 926 */ 927 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale; 928 929 if (addnl_dvdr > 1) { 930 prescale *= addnl_dvdr; 931 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr)) 932 coal_intvl = (CPSW_CMINTMAX_INTVL 933 * addnl_dvdr); 934 } else { 935 addnl_dvdr = 1; 936 coal_intvl = CPSW_CMINTMAX_INTVL; 937 } 938 } 939 940 num_interrupts = (1000 * addnl_dvdr) / coal_intvl; 941 writel(num_interrupts, &priv->wr_regs->rx_imax); 942 writel(num_interrupts, &priv->wr_regs->tx_imax); 943 944 int_ctrl |= CPSW_INTPACEEN; 945 int_ctrl &= (~CPSW_INTPRESCALE_MASK); 946 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK); 947 948 update_return: 949 writel(int_ctrl, &priv->wr_regs->int_control); 950 951 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl); 952 if (priv->data.dual_emac) { 953 int i; 954 955 for (i = 0; i < priv->data.slaves; i++) { 956 priv = netdev_priv(priv->slaves[i].ndev); 957 priv->coal_intvl = coal_intvl; 958 } 959 } else { 960 priv->coal_intvl = coal_intvl; 961 } 962 963 return 0; 964 } 965 966 static int cpsw_get_sset_count(struct net_device *ndev, int sset) 967 { 968 switch (sset) { 969 case ETH_SS_STATS: 970 return CPSW_STATS_LEN; 971 default: 972 return -EOPNOTSUPP; 973 } 974 } 975 976 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 977 { 978 u8 *p = data; 979 int i; 980 981 switch (stringset) { 982 case ETH_SS_STATS: 983 for (i = 0; i < CPSW_STATS_LEN; i++) { 984 memcpy(p, cpsw_gstrings_stats[i].stat_string, 985 ETH_GSTRING_LEN); 986 p += ETH_GSTRING_LEN; 987 } 988 break; 989 } 990 } 991 992 static void cpsw_get_ethtool_stats(struct net_device *ndev, 993 struct ethtool_stats *stats, u64 *data) 994 { 995 struct cpsw_priv *priv = netdev_priv(ndev); 996 struct cpdma_chan_stats rx_stats; 997 struct cpdma_chan_stats tx_stats; 998 u32 val; 999 u8 *p; 1000 int i; 1001 1002 /* Collect Davinci CPDMA stats for Rx and Tx Channel */ 1003 cpdma_chan_get_stats(priv->rxch, &rx_stats); 1004 cpdma_chan_get_stats(priv->txch, &tx_stats); 1005 1006 for (i = 0; i < CPSW_STATS_LEN; i++) { 1007 switch (cpsw_gstrings_stats[i].type) { 1008 case CPSW_STATS: 1009 val = readl(priv->hw_stats + 1010 cpsw_gstrings_stats[i].stat_offset); 1011 data[i] = val; 1012 break; 1013 1014 case CPDMA_RX_STATS: 1015 p = (u8 *)&rx_stats + 1016 cpsw_gstrings_stats[i].stat_offset; 1017 data[i] = *(u32 *)p; 1018 break; 1019 1020 case CPDMA_TX_STATS: 1021 p = (u8 *)&tx_stats + 1022 cpsw_gstrings_stats[i].stat_offset; 1023 data[i] = *(u32 *)p; 1024 break; 1025 } 1026 } 1027 } 1028 1029 static int cpsw_common_res_usage_state(struct cpsw_priv *priv) 1030 { 1031 u32 i; 1032 u32 usage_count = 0; 1033 1034 if (!priv->data.dual_emac) 1035 return 0; 1036 1037 for (i = 0; i < priv->data.slaves; i++) 1038 if (priv->slaves[i].open_stat) 1039 usage_count++; 1040 1041 return usage_count; 1042 } 1043 1044 static inline int cpsw_tx_packet_submit(struct net_device *ndev, 1045 struct cpsw_priv *priv, struct sk_buff *skb) 1046 { 1047 if (!priv->data.dual_emac) 1048 return cpdma_chan_submit(priv->txch, skb, skb->data, 1049 skb->len, 0); 1050 1051 if (ndev == cpsw_get_slave_ndev(priv, 0)) 1052 return cpdma_chan_submit(priv->txch, skb, skb->data, 1053 skb->len, 1); 1054 else 1055 return cpdma_chan_submit(priv->txch, skb, skb->data, 1056 skb->len, 2); 1057 } 1058 1059 static inline void cpsw_add_dual_emac_def_ale_entries( 1060 struct cpsw_priv *priv, struct cpsw_slave *slave, 1061 u32 slave_port) 1062 { 1063 u32 port_mask = 1 << slave_port | 1 << priv->host_port; 1064 1065 if (priv->version == CPSW_VERSION_1) 1066 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 1067 else 1068 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 1069 cpsw_ale_add_vlan(priv->ale, slave->port_vlan, port_mask, 1070 port_mask, port_mask, 0); 1071 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1072 port_mask, ALE_VLAN, slave->port_vlan, 0); 1073 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, 1074 priv->host_port, ALE_VLAN, slave->port_vlan); 1075 } 1076 1077 static void soft_reset_slave(struct cpsw_slave *slave) 1078 { 1079 char name[32]; 1080 1081 snprintf(name, sizeof(name), "slave-%d", slave->slave_num); 1082 soft_reset(name, &slave->sliver->soft_reset); 1083 } 1084 1085 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 1086 { 1087 u32 slave_port; 1088 1089 soft_reset_slave(slave); 1090 1091 /* setup priority mapping */ 1092 __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map); 1093 1094 switch (priv->version) { 1095 case CPSW_VERSION_1: 1096 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 1097 break; 1098 case CPSW_VERSION_2: 1099 case CPSW_VERSION_3: 1100 case CPSW_VERSION_4: 1101 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 1102 break; 1103 } 1104 1105 /* setup max packet size, and mac address */ 1106 __raw_writel(priv->rx_packet_max, &slave->sliver->rx_maxlen); 1107 cpsw_set_slave_mac(slave, priv); 1108 1109 slave->mac_control = 0; /* no link yet */ 1110 1111 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 1112 1113 if (priv->data.dual_emac) 1114 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 1115 else 1116 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1117 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 1118 1119 slave->phy = phy_connect(priv->ndev, slave->data->phy_id, 1120 &cpsw_adjust_link, slave->data->phy_if); 1121 if (IS_ERR(slave->phy)) { 1122 dev_err(priv->dev, "phy %s not found on slave %d\n", 1123 slave->data->phy_id, slave->slave_num); 1124 slave->phy = NULL; 1125 } else { 1126 dev_info(priv->dev, "phy found : id is : 0x%x\n", 1127 slave->phy->phy_id); 1128 phy_start(slave->phy); 1129 1130 /* Configure GMII_SEL register */ 1131 cpsw_phy_sel(&priv->pdev->dev, slave->phy->interface, 1132 slave->slave_num); 1133 } 1134 } 1135 1136 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 1137 { 1138 const int vlan = priv->data.default_vlan; 1139 const int port = priv->host_port; 1140 u32 reg; 1141 int i; 1142 1143 reg = (priv->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 1144 CPSW2_PORT_VLAN; 1145 1146 writel(vlan, &priv->host_port_regs->port_vlan); 1147 1148 for (i = 0; i < priv->data.slaves; i++) 1149 slave_write(priv->slaves + i, vlan, reg); 1150 1151 cpsw_ale_add_vlan(priv->ale, vlan, ALE_ALL_PORTS << port, 1152 ALE_ALL_PORTS << port, ALE_ALL_PORTS << port, 1153 (ALE_PORT_1 | ALE_PORT_2) << port); 1154 } 1155 1156 static void cpsw_init_host_port(struct cpsw_priv *priv) 1157 { 1158 u32 control_reg; 1159 u32 fifo_mode; 1160 1161 /* soft reset the controller and initialize ale */ 1162 soft_reset("cpsw", &priv->regs->soft_reset); 1163 cpsw_ale_start(priv->ale); 1164 1165 /* switch to vlan unaware mode */ 1166 cpsw_ale_control_set(priv->ale, priv->host_port, ALE_VLAN_AWARE, 1167 CPSW_ALE_VLAN_AWARE); 1168 control_reg = readl(&priv->regs->control); 1169 control_reg |= CPSW_VLAN_AWARE; 1170 writel(control_reg, &priv->regs->control); 1171 fifo_mode = (priv->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 1172 CPSW_FIFO_NORMAL_MODE; 1173 writel(fifo_mode, &priv->host_port_regs->tx_in_ctl); 1174 1175 /* setup host port priority mapping */ 1176 __raw_writel(CPDMA_TX_PRIORITY_MAP, 1177 &priv->host_port_regs->cpdma_tx_pri_map); 1178 __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map); 1179 1180 cpsw_ale_control_set(priv->ale, priv->host_port, 1181 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1182 1183 if (!priv->data.dual_emac) { 1184 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, priv->host_port, 1185 0, 0); 1186 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1187 1 << priv->host_port, 0, 0, ALE_MCAST_FWD_2); 1188 } 1189 } 1190 1191 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_priv *priv) 1192 { 1193 u32 slave_port; 1194 1195 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 1196 1197 if (!slave->phy) 1198 return; 1199 phy_stop(slave->phy); 1200 phy_disconnect(slave->phy); 1201 slave->phy = NULL; 1202 cpsw_ale_control_set(priv->ale, slave_port, 1203 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1204 } 1205 1206 static int cpsw_ndo_open(struct net_device *ndev) 1207 { 1208 struct cpsw_priv *priv = netdev_priv(ndev); 1209 struct cpsw_priv *prim_cpsw; 1210 int i, ret; 1211 u32 reg; 1212 1213 if (!cpsw_common_res_usage_state(priv)) 1214 cpsw_intr_disable(priv); 1215 netif_carrier_off(ndev); 1216 1217 pm_runtime_get_sync(&priv->pdev->dev); 1218 1219 reg = priv->version; 1220 1221 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 1222 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 1223 CPSW_RTL_VERSION(reg)); 1224 1225 /* initialize host and slave ports */ 1226 if (!cpsw_common_res_usage_state(priv)) 1227 cpsw_init_host_port(priv); 1228 for_each_slave(priv, cpsw_slave_open, priv); 1229 1230 /* Add default VLAN */ 1231 if (!priv->data.dual_emac) 1232 cpsw_add_default_vlan(priv); 1233 else 1234 cpsw_ale_add_vlan(priv->ale, priv->data.default_vlan, 1235 ALE_ALL_PORTS << priv->host_port, 1236 ALE_ALL_PORTS << priv->host_port, 0, 0); 1237 1238 if (!cpsw_common_res_usage_state(priv)) { 1239 /* setup tx dma to fixed prio and zero offset */ 1240 cpdma_control_set(priv->dma, CPDMA_TX_PRIO_FIXED, 1); 1241 cpdma_control_set(priv->dma, CPDMA_RX_BUFFER_OFFSET, 0); 1242 1243 /* disable priority elevation */ 1244 __raw_writel(0, &priv->regs->ptype); 1245 1246 /* enable statistics collection only on all ports */ 1247 __raw_writel(0x7, &priv->regs->stat_port_en); 1248 1249 if (WARN_ON(!priv->data.rx_descs)) 1250 priv->data.rx_descs = 128; 1251 1252 for (i = 0; i < priv->data.rx_descs; i++) { 1253 struct sk_buff *skb; 1254 1255 ret = -ENOMEM; 1256 skb = __netdev_alloc_skb_ip_align(priv->ndev, 1257 priv->rx_packet_max, GFP_KERNEL); 1258 if (!skb) 1259 goto err_cleanup; 1260 ret = cpdma_chan_submit(priv->rxch, skb, skb->data, 1261 skb_tailroom(skb), 0); 1262 if (ret < 0) { 1263 kfree_skb(skb); 1264 goto err_cleanup; 1265 } 1266 } 1267 /* continue even if we didn't manage to submit all 1268 * receive descs 1269 */ 1270 cpsw_info(priv, ifup, "submitted %d rx descriptors\n", i); 1271 1272 if (cpts_register(&priv->pdev->dev, priv->cpts, 1273 priv->data.cpts_clock_mult, 1274 priv->data.cpts_clock_shift)) 1275 dev_err(priv->dev, "error registering cpts device\n"); 1276 1277 } 1278 1279 /* Enable Interrupt pacing if configured */ 1280 if (priv->coal_intvl != 0) { 1281 struct ethtool_coalesce coal; 1282 1283 coal.rx_coalesce_usecs = (priv->coal_intvl << 4); 1284 cpsw_set_coalesce(ndev, &coal); 1285 } 1286 1287 napi_enable(&priv->napi); 1288 cpdma_ctlr_start(priv->dma); 1289 cpsw_intr_enable(priv); 1290 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX); 1291 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX); 1292 1293 prim_cpsw = cpsw_get_slave_priv(priv, 0); 1294 if (prim_cpsw->irq_enabled == false) { 1295 if ((priv == prim_cpsw) || !netif_running(prim_cpsw->ndev)) { 1296 prim_cpsw->irq_enabled = true; 1297 cpsw_enable_irq(prim_cpsw); 1298 } 1299 } 1300 1301 if (priv->data.dual_emac) 1302 priv->slaves[priv->emac_port].open_stat = true; 1303 return 0; 1304 1305 err_cleanup: 1306 cpdma_ctlr_stop(priv->dma); 1307 for_each_slave(priv, cpsw_slave_stop, priv); 1308 pm_runtime_put_sync(&priv->pdev->dev); 1309 netif_carrier_off(priv->ndev); 1310 return ret; 1311 } 1312 1313 static int cpsw_ndo_stop(struct net_device *ndev) 1314 { 1315 struct cpsw_priv *priv = netdev_priv(ndev); 1316 1317 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 1318 netif_stop_queue(priv->ndev); 1319 napi_disable(&priv->napi); 1320 netif_carrier_off(priv->ndev); 1321 1322 if (cpsw_common_res_usage_state(priv) <= 1) { 1323 cpts_unregister(priv->cpts); 1324 cpsw_intr_disable(priv); 1325 cpdma_ctlr_int_ctrl(priv->dma, false); 1326 cpdma_ctlr_stop(priv->dma); 1327 cpsw_ale_stop(priv->ale); 1328 } 1329 for_each_slave(priv, cpsw_slave_stop, priv); 1330 pm_runtime_put_sync(&priv->pdev->dev); 1331 if (priv->data.dual_emac) 1332 priv->slaves[priv->emac_port].open_stat = false; 1333 return 0; 1334 } 1335 1336 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 1337 struct net_device *ndev) 1338 { 1339 struct cpsw_priv *priv = netdev_priv(ndev); 1340 int ret; 1341 1342 ndev->trans_start = jiffies; 1343 1344 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { 1345 cpsw_err(priv, tx_err, "packet pad failed\n"); 1346 ndev->stats.tx_dropped++; 1347 return NETDEV_TX_OK; 1348 } 1349 1350 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 1351 priv->cpts->tx_enable) 1352 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1353 1354 skb_tx_timestamp(skb); 1355 1356 ret = cpsw_tx_packet_submit(ndev, priv, skb); 1357 if (unlikely(ret != 0)) { 1358 cpsw_err(priv, tx_err, "desc submit failed\n"); 1359 goto fail; 1360 } 1361 1362 /* If there is no more tx desc left free then we need to 1363 * tell the kernel to stop sending us tx frames. 1364 */ 1365 if (unlikely(!cpdma_check_free_tx_desc(priv->txch))) 1366 netif_stop_queue(ndev); 1367 1368 return NETDEV_TX_OK; 1369 fail: 1370 ndev->stats.tx_dropped++; 1371 netif_stop_queue(ndev); 1372 return NETDEV_TX_BUSY; 1373 } 1374 1375 #ifdef CONFIG_TI_CPTS 1376 1377 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv) 1378 { 1379 struct cpsw_slave *slave = &priv->slaves[priv->data.active_slave]; 1380 u32 ts_en, seq_id; 1381 1382 if (!priv->cpts->tx_enable && !priv->cpts->rx_enable) { 1383 slave_write(slave, 0, CPSW1_TS_CTL); 1384 return; 1385 } 1386 1387 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 1388 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 1389 1390 if (priv->cpts->tx_enable) 1391 ts_en |= CPSW_V1_TS_TX_EN; 1392 1393 if (priv->cpts->rx_enable) 1394 ts_en |= CPSW_V1_TS_RX_EN; 1395 1396 slave_write(slave, ts_en, CPSW1_TS_CTL); 1397 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 1398 } 1399 1400 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 1401 { 1402 struct cpsw_slave *slave; 1403 u32 ctrl, mtype; 1404 1405 if (priv->data.dual_emac) 1406 slave = &priv->slaves[priv->emac_port]; 1407 else 1408 slave = &priv->slaves[priv->data.active_slave]; 1409 1410 ctrl = slave_read(slave, CPSW2_CONTROL); 1411 switch (priv->version) { 1412 case CPSW_VERSION_2: 1413 ctrl &= ~CTRL_V2_ALL_TS_MASK; 1414 1415 if (priv->cpts->tx_enable) 1416 ctrl |= CTRL_V2_TX_TS_BITS; 1417 1418 if (priv->cpts->rx_enable) 1419 ctrl |= CTRL_V2_RX_TS_BITS; 1420 break; 1421 case CPSW_VERSION_3: 1422 default: 1423 ctrl &= ~CTRL_V3_ALL_TS_MASK; 1424 1425 if (priv->cpts->tx_enable) 1426 ctrl |= CTRL_V3_TX_TS_BITS; 1427 1428 if (priv->cpts->rx_enable) 1429 ctrl |= CTRL_V3_RX_TS_BITS; 1430 break; 1431 } 1432 1433 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 1434 1435 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 1436 slave_write(slave, ctrl, CPSW2_CONTROL); 1437 __raw_writel(ETH_P_1588, &priv->regs->ts_ltype); 1438 } 1439 1440 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1441 { 1442 struct cpsw_priv *priv = netdev_priv(dev); 1443 struct cpts *cpts = priv->cpts; 1444 struct hwtstamp_config cfg; 1445 1446 if (priv->version != CPSW_VERSION_1 && 1447 priv->version != CPSW_VERSION_2 && 1448 priv->version != CPSW_VERSION_3) 1449 return -EOPNOTSUPP; 1450 1451 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1452 return -EFAULT; 1453 1454 /* reserved for future extensions */ 1455 if (cfg.flags) 1456 return -EINVAL; 1457 1458 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 1459 return -ERANGE; 1460 1461 switch (cfg.rx_filter) { 1462 case HWTSTAMP_FILTER_NONE: 1463 cpts->rx_enable = 0; 1464 break; 1465 case HWTSTAMP_FILTER_ALL: 1466 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1467 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1468 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1469 return -ERANGE; 1470 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1471 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1472 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1473 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1474 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1475 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1476 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1477 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1478 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1479 cpts->rx_enable = 1; 1480 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1481 break; 1482 default: 1483 return -ERANGE; 1484 } 1485 1486 cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON; 1487 1488 switch (priv->version) { 1489 case CPSW_VERSION_1: 1490 cpsw_hwtstamp_v1(priv); 1491 break; 1492 case CPSW_VERSION_2: 1493 case CPSW_VERSION_3: 1494 cpsw_hwtstamp_v2(priv); 1495 break; 1496 default: 1497 WARN_ON(1); 1498 } 1499 1500 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1501 } 1502 1503 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1504 { 1505 struct cpsw_priv *priv = netdev_priv(dev); 1506 struct cpts *cpts = priv->cpts; 1507 struct hwtstamp_config cfg; 1508 1509 if (priv->version != CPSW_VERSION_1 && 1510 priv->version != CPSW_VERSION_2 && 1511 priv->version != CPSW_VERSION_3) 1512 return -EOPNOTSUPP; 1513 1514 cfg.flags = 0; 1515 cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 1516 cfg.rx_filter = (cpts->rx_enable ? 1517 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE); 1518 1519 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1520 } 1521 1522 #endif /*CONFIG_TI_CPTS*/ 1523 1524 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 1525 { 1526 struct cpsw_priv *priv = netdev_priv(dev); 1527 int slave_no = cpsw_slave_index(priv); 1528 1529 if (!netif_running(dev)) 1530 return -EINVAL; 1531 1532 switch (cmd) { 1533 #ifdef CONFIG_TI_CPTS 1534 case SIOCSHWTSTAMP: 1535 return cpsw_hwtstamp_set(dev, req); 1536 case SIOCGHWTSTAMP: 1537 return cpsw_hwtstamp_get(dev, req); 1538 #endif 1539 } 1540 1541 if (!priv->slaves[slave_no].phy) 1542 return -EOPNOTSUPP; 1543 return phy_mii_ioctl(priv->slaves[slave_no].phy, req, cmd); 1544 } 1545 1546 static void cpsw_ndo_tx_timeout(struct net_device *ndev) 1547 { 1548 struct cpsw_priv *priv = netdev_priv(ndev); 1549 1550 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 1551 ndev->stats.tx_errors++; 1552 cpsw_intr_disable(priv); 1553 cpdma_ctlr_int_ctrl(priv->dma, false); 1554 cpdma_chan_stop(priv->txch); 1555 cpdma_chan_start(priv->txch); 1556 cpdma_ctlr_int_ctrl(priv->dma, true); 1557 cpsw_intr_enable(priv); 1558 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX); 1559 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX); 1560 1561 } 1562 1563 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 1564 { 1565 struct cpsw_priv *priv = netdev_priv(ndev); 1566 struct sockaddr *addr = (struct sockaddr *)p; 1567 int flags = 0; 1568 u16 vid = 0; 1569 1570 if (!is_valid_ether_addr(addr->sa_data)) 1571 return -EADDRNOTAVAIL; 1572 1573 if (priv->data.dual_emac) { 1574 vid = priv->slaves[priv->emac_port].port_vlan; 1575 flags = ALE_VLAN; 1576 } 1577 1578 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, priv->host_port, 1579 flags, vid); 1580 cpsw_ale_add_ucast(priv->ale, addr->sa_data, priv->host_port, 1581 flags, vid); 1582 1583 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 1584 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 1585 for_each_slave(priv, cpsw_set_slave_mac, priv); 1586 1587 return 0; 1588 } 1589 1590 #ifdef CONFIG_NET_POLL_CONTROLLER 1591 static void cpsw_ndo_poll_controller(struct net_device *ndev) 1592 { 1593 struct cpsw_priv *priv = netdev_priv(ndev); 1594 1595 cpsw_intr_disable(priv); 1596 cpdma_ctlr_int_ctrl(priv->dma, false); 1597 cpsw_interrupt(ndev->irq, priv); 1598 cpdma_ctlr_int_ctrl(priv->dma, true); 1599 cpsw_intr_enable(priv); 1600 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX); 1601 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX); 1602 1603 } 1604 #endif 1605 1606 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 1607 unsigned short vid) 1608 { 1609 int ret; 1610 1611 ret = cpsw_ale_add_vlan(priv->ale, vid, 1612 ALE_ALL_PORTS << priv->host_port, 1613 0, ALE_ALL_PORTS << priv->host_port, 1614 (ALE_PORT_1 | ALE_PORT_2) << priv->host_port); 1615 if (ret != 0) 1616 return ret; 1617 1618 ret = cpsw_ale_add_ucast(priv->ale, priv->mac_addr, 1619 priv->host_port, ALE_VLAN, vid); 1620 if (ret != 0) 1621 goto clean_vid; 1622 1623 ret = cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1624 ALE_ALL_PORTS << priv->host_port, 1625 ALE_VLAN, vid, 0); 1626 if (ret != 0) 1627 goto clean_vlan_ucast; 1628 return 0; 1629 1630 clean_vlan_ucast: 1631 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, 1632 priv->host_port, ALE_VLAN, vid); 1633 clean_vid: 1634 cpsw_ale_del_vlan(priv->ale, vid, 0); 1635 return ret; 1636 } 1637 1638 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 1639 __be16 proto, u16 vid) 1640 { 1641 struct cpsw_priv *priv = netdev_priv(ndev); 1642 1643 if (vid == priv->data.default_vlan) 1644 return 0; 1645 1646 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 1647 return cpsw_add_vlan_ale_entry(priv, vid); 1648 } 1649 1650 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 1651 __be16 proto, u16 vid) 1652 { 1653 struct cpsw_priv *priv = netdev_priv(ndev); 1654 int ret; 1655 1656 if (vid == priv->data.default_vlan) 1657 return 0; 1658 1659 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 1660 ret = cpsw_ale_del_vlan(priv->ale, vid, 0); 1661 if (ret != 0) 1662 return ret; 1663 1664 ret = cpsw_ale_del_ucast(priv->ale, priv->mac_addr, 1665 priv->host_port, ALE_VLAN, vid); 1666 if (ret != 0) 1667 return ret; 1668 1669 return cpsw_ale_del_mcast(priv->ale, priv->ndev->broadcast, 1670 0, ALE_VLAN, vid); 1671 } 1672 1673 static const struct net_device_ops cpsw_netdev_ops = { 1674 .ndo_open = cpsw_ndo_open, 1675 .ndo_stop = cpsw_ndo_stop, 1676 .ndo_start_xmit = cpsw_ndo_start_xmit, 1677 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 1678 .ndo_do_ioctl = cpsw_ndo_ioctl, 1679 .ndo_validate_addr = eth_validate_addr, 1680 .ndo_change_mtu = eth_change_mtu, 1681 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 1682 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 1683 #ifdef CONFIG_NET_POLL_CONTROLLER 1684 .ndo_poll_controller = cpsw_ndo_poll_controller, 1685 #endif 1686 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 1687 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 1688 }; 1689 1690 static int cpsw_get_regs_len(struct net_device *ndev) 1691 { 1692 struct cpsw_priv *priv = netdev_priv(ndev); 1693 1694 return priv->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32); 1695 } 1696 1697 static void cpsw_get_regs(struct net_device *ndev, 1698 struct ethtool_regs *regs, void *p) 1699 { 1700 struct cpsw_priv *priv = netdev_priv(ndev); 1701 u32 *reg = p; 1702 1703 /* update CPSW IP version */ 1704 regs->version = priv->version; 1705 1706 cpsw_ale_dump(priv->ale, reg); 1707 } 1708 1709 static void cpsw_get_drvinfo(struct net_device *ndev, 1710 struct ethtool_drvinfo *info) 1711 { 1712 struct cpsw_priv *priv = netdev_priv(ndev); 1713 1714 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 1715 strlcpy(info->version, "1.0", sizeof(info->version)); 1716 strlcpy(info->bus_info, priv->pdev->name, sizeof(info->bus_info)); 1717 info->regdump_len = cpsw_get_regs_len(ndev); 1718 } 1719 1720 static u32 cpsw_get_msglevel(struct net_device *ndev) 1721 { 1722 struct cpsw_priv *priv = netdev_priv(ndev); 1723 return priv->msg_enable; 1724 } 1725 1726 static void cpsw_set_msglevel(struct net_device *ndev, u32 value) 1727 { 1728 struct cpsw_priv *priv = netdev_priv(ndev); 1729 priv->msg_enable = value; 1730 } 1731 1732 static int cpsw_get_ts_info(struct net_device *ndev, 1733 struct ethtool_ts_info *info) 1734 { 1735 #ifdef CONFIG_TI_CPTS 1736 struct cpsw_priv *priv = netdev_priv(ndev); 1737 1738 info->so_timestamping = 1739 SOF_TIMESTAMPING_TX_HARDWARE | 1740 SOF_TIMESTAMPING_TX_SOFTWARE | 1741 SOF_TIMESTAMPING_RX_HARDWARE | 1742 SOF_TIMESTAMPING_RX_SOFTWARE | 1743 SOF_TIMESTAMPING_SOFTWARE | 1744 SOF_TIMESTAMPING_RAW_HARDWARE; 1745 info->phc_index = priv->cpts->phc_index; 1746 info->tx_types = 1747 (1 << HWTSTAMP_TX_OFF) | 1748 (1 << HWTSTAMP_TX_ON); 1749 info->rx_filters = 1750 (1 << HWTSTAMP_FILTER_NONE) | 1751 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 1752 #else 1753 info->so_timestamping = 1754 SOF_TIMESTAMPING_TX_SOFTWARE | 1755 SOF_TIMESTAMPING_RX_SOFTWARE | 1756 SOF_TIMESTAMPING_SOFTWARE; 1757 info->phc_index = -1; 1758 info->tx_types = 0; 1759 info->rx_filters = 0; 1760 #endif 1761 return 0; 1762 } 1763 1764 static int cpsw_get_settings(struct net_device *ndev, 1765 struct ethtool_cmd *ecmd) 1766 { 1767 struct cpsw_priv *priv = netdev_priv(ndev); 1768 int slave_no = cpsw_slave_index(priv); 1769 1770 if (priv->slaves[slave_no].phy) 1771 return phy_ethtool_gset(priv->slaves[slave_no].phy, ecmd); 1772 else 1773 return -EOPNOTSUPP; 1774 } 1775 1776 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd) 1777 { 1778 struct cpsw_priv *priv = netdev_priv(ndev); 1779 int slave_no = cpsw_slave_index(priv); 1780 1781 if (priv->slaves[slave_no].phy) 1782 return phy_ethtool_sset(priv->slaves[slave_no].phy, ecmd); 1783 else 1784 return -EOPNOTSUPP; 1785 } 1786 1787 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1788 { 1789 struct cpsw_priv *priv = netdev_priv(ndev); 1790 int slave_no = cpsw_slave_index(priv); 1791 1792 wol->supported = 0; 1793 wol->wolopts = 0; 1794 1795 if (priv->slaves[slave_no].phy) 1796 phy_ethtool_get_wol(priv->slaves[slave_no].phy, wol); 1797 } 1798 1799 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1800 { 1801 struct cpsw_priv *priv = netdev_priv(ndev); 1802 int slave_no = cpsw_slave_index(priv); 1803 1804 if (priv->slaves[slave_no].phy) 1805 return phy_ethtool_set_wol(priv->slaves[slave_no].phy, wol); 1806 else 1807 return -EOPNOTSUPP; 1808 } 1809 1810 static const struct ethtool_ops cpsw_ethtool_ops = { 1811 .get_drvinfo = cpsw_get_drvinfo, 1812 .get_msglevel = cpsw_get_msglevel, 1813 .set_msglevel = cpsw_set_msglevel, 1814 .get_link = ethtool_op_get_link, 1815 .get_ts_info = cpsw_get_ts_info, 1816 .get_settings = cpsw_get_settings, 1817 .set_settings = cpsw_set_settings, 1818 .get_coalesce = cpsw_get_coalesce, 1819 .set_coalesce = cpsw_set_coalesce, 1820 .get_sset_count = cpsw_get_sset_count, 1821 .get_strings = cpsw_get_strings, 1822 .get_ethtool_stats = cpsw_get_ethtool_stats, 1823 .get_wol = cpsw_get_wol, 1824 .set_wol = cpsw_set_wol, 1825 .get_regs_len = cpsw_get_regs_len, 1826 .get_regs = cpsw_get_regs, 1827 }; 1828 1829 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv, 1830 u32 slave_reg_ofs, u32 sliver_reg_ofs) 1831 { 1832 void __iomem *regs = priv->regs; 1833 int slave_num = slave->slave_num; 1834 struct cpsw_slave_data *data = priv->data.slave_data + slave_num; 1835 1836 slave->data = data; 1837 slave->regs = regs + slave_reg_ofs; 1838 slave->sliver = regs + sliver_reg_ofs; 1839 slave->port_vlan = data->dual_emac_res_vlan; 1840 } 1841 1842 static int cpsw_probe_dt(struct cpsw_platform_data *data, 1843 struct platform_device *pdev) 1844 { 1845 struct device_node *node = pdev->dev.of_node; 1846 struct device_node *slave_node; 1847 int i = 0, ret; 1848 u32 prop; 1849 1850 if (!node) 1851 return -EINVAL; 1852 1853 if (of_property_read_u32(node, "slaves", &prop)) { 1854 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 1855 return -EINVAL; 1856 } 1857 data->slaves = prop; 1858 1859 if (of_property_read_u32(node, "active_slave", &prop)) { 1860 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 1861 return -EINVAL; 1862 } 1863 data->active_slave = prop; 1864 1865 if (of_property_read_u32(node, "cpts_clock_mult", &prop)) { 1866 dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n"); 1867 return -EINVAL; 1868 } 1869 data->cpts_clock_mult = prop; 1870 1871 if (of_property_read_u32(node, "cpts_clock_shift", &prop)) { 1872 dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n"); 1873 return -EINVAL; 1874 } 1875 data->cpts_clock_shift = prop; 1876 1877 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves 1878 * sizeof(struct cpsw_slave_data), 1879 GFP_KERNEL); 1880 if (!data->slave_data) 1881 return -ENOMEM; 1882 1883 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 1884 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 1885 return -EINVAL; 1886 } 1887 data->channels = prop; 1888 1889 if (of_property_read_u32(node, "ale_entries", &prop)) { 1890 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); 1891 return -EINVAL; 1892 } 1893 data->ale_entries = prop; 1894 1895 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 1896 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 1897 return -EINVAL; 1898 } 1899 data->bd_ram_size = prop; 1900 1901 if (of_property_read_u32(node, "rx_descs", &prop)) { 1902 dev_err(&pdev->dev, "Missing rx_descs property in the DT.\n"); 1903 return -EINVAL; 1904 } 1905 data->rx_descs = prop; 1906 1907 if (of_property_read_u32(node, "mac_control", &prop)) { 1908 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 1909 return -EINVAL; 1910 } 1911 data->mac_control = prop; 1912 1913 if (of_property_read_bool(node, "dual_emac")) 1914 data->dual_emac = 1; 1915 1916 /* 1917 * Populate all the child nodes here... 1918 */ 1919 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 1920 /* We do not want to force this, as in some cases may not have child */ 1921 if (ret) 1922 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 1923 1924 for_each_child_of_node(node, slave_node) { 1925 struct cpsw_slave_data *slave_data = data->slave_data + i; 1926 const void *mac_addr = NULL; 1927 u32 phyid; 1928 int lenp; 1929 const __be32 *parp; 1930 struct device_node *mdio_node; 1931 struct platform_device *mdio; 1932 1933 /* This is no slave child node, continue */ 1934 if (strcmp(slave_node->name, "slave")) 1935 continue; 1936 1937 parp = of_get_property(slave_node, "phy_id", &lenp); 1938 if ((parp == NULL) || (lenp != (sizeof(void *) * 2))) { 1939 dev_err(&pdev->dev, "Missing slave[%d] phy_id property\n", i); 1940 return -EINVAL; 1941 } 1942 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 1943 phyid = be32_to_cpup(parp+1); 1944 mdio = of_find_device_by_node(mdio_node); 1945 of_node_put(mdio_node); 1946 if (!mdio) { 1947 pr_err("Missing mdio platform device\n"); 1948 return -EINVAL; 1949 } 1950 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 1951 PHY_ID_FMT, mdio->name, phyid); 1952 1953 mac_addr = of_get_mac_address(slave_node); 1954 if (mac_addr) 1955 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN); 1956 1957 slave_data->phy_if = of_get_phy_mode(slave_node); 1958 if (slave_data->phy_if < 0) { 1959 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 1960 i); 1961 return slave_data->phy_if; 1962 } 1963 1964 if (data->dual_emac) { 1965 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 1966 &prop)) { 1967 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 1968 slave_data->dual_emac_res_vlan = i+1; 1969 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 1970 slave_data->dual_emac_res_vlan, i); 1971 } else { 1972 slave_data->dual_emac_res_vlan = prop; 1973 } 1974 } 1975 1976 i++; 1977 if (i == data->slaves) 1978 break; 1979 } 1980 1981 return 0; 1982 } 1983 1984 static int cpsw_probe_dual_emac(struct platform_device *pdev, 1985 struct cpsw_priv *priv) 1986 { 1987 struct cpsw_platform_data *data = &priv->data; 1988 struct net_device *ndev; 1989 struct cpsw_priv *priv_sl2; 1990 int ret = 0, i; 1991 1992 ndev = alloc_etherdev(sizeof(struct cpsw_priv)); 1993 if (!ndev) { 1994 dev_err(&pdev->dev, "cpsw: error allocating net_device\n"); 1995 return -ENOMEM; 1996 } 1997 1998 priv_sl2 = netdev_priv(ndev); 1999 spin_lock_init(&priv_sl2->lock); 2000 priv_sl2->data = *data; 2001 priv_sl2->pdev = pdev; 2002 priv_sl2->ndev = ndev; 2003 priv_sl2->dev = &ndev->dev; 2004 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2005 priv_sl2->rx_packet_max = max(rx_packet_max, 128); 2006 2007 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 2008 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 2009 ETH_ALEN); 2010 dev_info(&pdev->dev, "cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr); 2011 } else { 2012 random_ether_addr(priv_sl2->mac_addr); 2013 dev_info(&pdev->dev, "cpsw: Random MACID = %pM\n", priv_sl2->mac_addr); 2014 } 2015 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); 2016 2017 priv_sl2->slaves = priv->slaves; 2018 priv_sl2->clk = priv->clk; 2019 2020 priv_sl2->coal_intvl = 0; 2021 priv_sl2->bus_freq_mhz = priv->bus_freq_mhz; 2022 2023 priv_sl2->regs = priv->regs; 2024 priv_sl2->host_port = priv->host_port; 2025 priv_sl2->host_port_regs = priv->host_port_regs; 2026 priv_sl2->wr_regs = priv->wr_regs; 2027 priv_sl2->hw_stats = priv->hw_stats; 2028 priv_sl2->dma = priv->dma; 2029 priv_sl2->txch = priv->txch; 2030 priv_sl2->rxch = priv->rxch; 2031 priv_sl2->ale = priv->ale; 2032 priv_sl2->emac_port = 1; 2033 priv->slaves[1].ndev = ndev; 2034 priv_sl2->cpts = priv->cpts; 2035 priv_sl2->version = priv->version; 2036 2037 for (i = 0; i < priv->num_irqs; i++) { 2038 priv_sl2->irqs_table[i] = priv->irqs_table[i]; 2039 priv_sl2->num_irqs = priv->num_irqs; 2040 } 2041 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2042 2043 ndev->netdev_ops = &cpsw_netdev_ops; 2044 ndev->ethtool_ops = &cpsw_ethtool_ops; 2045 netif_napi_add(ndev, &priv_sl2->napi, cpsw_poll, CPSW_POLL_WEIGHT); 2046 2047 /* register the network device */ 2048 SET_NETDEV_DEV(ndev, &pdev->dev); 2049 ret = register_netdev(ndev); 2050 if (ret) { 2051 dev_err(&pdev->dev, "cpsw: error registering net device\n"); 2052 free_netdev(ndev); 2053 ret = -ENODEV; 2054 } 2055 2056 return ret; 2057 } 2058 2059 static int cpsw_probe(struct platform_device *pdev) 2060 { 2061 struct cpsw_platform_data *data; 2062 struct net_device *ndev; 2063 struct cpsw_priv *priv; 2064 struct cpdma_params dma_params; 2065 struct cpsw_ale_params ale_params; 2066 void __iomem *ss_regs; 2067 struct resource *res, *ss_res; 2068 u32 slave_offset, sliver_offset, slave_size; 2069 int ret = 0, i, k = 0; 2070 2071 ndev = alloc_etherdev(sizeof(struct cpsw_priv)); 2072 if (!ndev) { 2073 dev_err(&pdev->dev, "error allocating net_device\n"); 2074 return -ENOMEM; 2075 } 2076 2077 platform_set_drvdata(pdev, ndev); 2078 priv = netdev_priv(ndev); 2079 spin_lock_init(&priv->lock); 2080 priv->pdev = pdev; 2081 priv->ndev = ndev; 2082 priv->dev = &ndev->dev; 2083 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2084 priv->rx_packet_max = max(rx_packet_max, 128); 2085 priv->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL); 2086 priv->irq_enabled = true; 2087 if (!priv->cpts) { 2088 dev_err(&pdev->dev, "error allocating cpts\n"); 2089 goto clean_ndev_ret; 2090 } 2091 2092 /* 2093 * This may be required here for child devices. 2094 */ 2095 pm_runtime_enable(&pdev->dev); 2096 2097 /* Select default pin state */ 2098 pinctrl_pm_select_default_state(&pdev->dev); 2099 2100 if (cpsw_probe_dt(&priv->data, pdev)) { 2101 dev_err(&pdev->dev, "cpsw: platform data missing\n"); 2102 ret = -ENODEV; 2103 goto clean_runtime_disable_ret; 2104 } 2105 data = &priv->data; 2106 2107 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 2108 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 2109 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr); 2110 } else { 2111 eth_random_addr(priv->mac_addr); 2112 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr); 2113 } 2114 2115 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 2116 2117 priv->slaves = devm_kzalloc(&pdev->dev, 2118 sizeof(struct cpsw_slave) * data->slaves, 2119 GFP_KERNEL); 2120 if (!priv->slaves) { 2121 ret = -ENOMEM; 2122 goto clean_runtime_disable_ret; 2123 } 2124 for (i = 0; i < data->slaves; i++) 2125 priv->slaves[i].slave_num = i; 2126 2127 priv->slaves[0].ndev = ndev; 2128 priv->emac_port = 0; 2129 2130 priv->clk = devm_clk_get(&pdev->dev, "fck"); 2131 if (IS_ERR(priv->clk)) { 2132 dev_err(priv->dev, "fck is not found\n"); 2133 ret = -ENODEV; 2134 goto clean_runtime_disable_ret; 2135 } 2136 priv->coal_intvl = 0; 2137 priv->bus_freq_mhz = clk_get_rate(priv->clk) / 1000000; 2138 2139 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2140 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res); 2141 if (IS_ERR(ss_regs)) { 2142 ret = PTR_ERR(ss_regs); 2143 goto clean_runtime_disable_ret; 2144 } 2145 priv->regs = ss_regs; 2146 priv->host_port = HOST_PORT_NUM; 2147 2148 /* Need to enable clocks with runtime PM api to access module 2149 * registers 2150 */ 2151 pm_runtime_get_sync(&pdev->dev); 2152 priv->version = readl(&priv->regs->id_ver); 2153 pm_runtime_put_sync(&pdev->dev); 2154 2155 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 2156 priv->wr_regs = devm_ioremap_resource(&pdev->dev, res); 2157 if (IS_ERR(priv->wr_regs)) { 2158 ret = PTR_ERR(priv->wr_regs); 2159 goto clean_runtime_disable_ret; 2160 } 2161 2162 memset(&dma_params, 0, sizeof(dma_params)); 2163 memset(&ale_params, 0, sizeof(ale_params)); 2164 2165 switch (priv->version) { 2166 case CPSW_VERSION_1: 2167 priv->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 2168 priv->cpts->reg = ss_regs + CPSW1_CPTS_OFFSET; 2169 priv->hw_stats = ss_regs + CPSW1_HW_STATS; 2170 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 2171 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 2172 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 2173 slave_offset = CPSW1_SLAVE_OFFSET; 2174 slave_size = CPSW1_SLAVE_SIZE; 2175 sliver_offset = CPSW1_SLIVER_OFFSET; 2176 dma_params.desc_mem_phys = 0; 2177 break; 2178 case CPSW_VERSION_2: 2179 case CPSW_VERSION_3: 2180 case CPSW_VERSION_4: 2181 priv->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 2182 priv->cpts->reg = ss_regs + CPSW2_CPTS_OFFSET; 2183 priv->hw_stats = ss_regs + CPSW2_HW_STATS; 2184 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 2185 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 2186 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 2187 slave_offset = CPSW2_SLAVE_OFFSET; 2188 slave_size = CPSW2_SLAVE_SIZE; 2189 sliver_offset = CPSW2_SLIVER_OFFSET; 2190 dma_params.desc_mem_phys = 2191 (u32 __force) ss_res->start + CPSW2_BD_OFFSET; 2192 break; 2193 default: 2194 dev_err(priv->dev, "unknown version 0x%08x\n", priv->version); 2195 ret = -ENODEV; 2196 goto clean_runtime_disable_ret; 2197 } 2198 for (i = 0; i < priv->data.slaves; i++) { 2199 struct cpsw_slave *slave = &priv->slaves[i]; 2200 cpsw_slave_init(slave, priv, slave_offset, sliver_offset); 2201 slave_offset += slave_size; 2202 sliver_offset += SLIVER_SIZE; 2203 } 2204 2205 dma_params.dev = &pdev->dev; 2206 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 2207 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 2208 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 2209 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 2210 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 2211 2212 dma_params.num_chan = data->channels; 2213 dma_params.has_soft_reset = true; 2214 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 2215 dma_params.desc_mem_size = data->bd_ram_size; 2216 dma_params.desc_align = 16; 2217 dma_params.has_ext_regs = true; 2218 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 2219 2220 priv->dma = cpdma_ctlr_create(&dma_params); 2221 if (!priv->dma) { 2222 dev_err(priv->dev, "error initializing dma\n"); 2223 ret = -ENOMEM; 2224 goto clean_runtime_disable_ret; 2225 } 2226 2227 priv->txch = cpdma_chan_create(priv->dma, tx_chan_num(0), 2228 cpsw_tx_handler); 2229 priv->rxch = cpdma_chan_create(priv->dma, rx_chan_num(0), 2230 cpsw_rx_handler); 2231 2232 if (WARN_ON(!priv->txch || !priv->rxch)) { 2233 dev_err(priv->dev, "error initializing dma channels\n"); 2234 ret = -ENOMEM; 2235 goto clean_dma_ret; 2236 } 2237 2238 ale_params.dev = &ndev->dev; 2239 ale_params.ale_ageout = ale_ageout; 2240 ale_params.ale_entries = data->ale_entries; 2241 ale_params.ale_ports = data->slaves; 2242 2243 priv->ale = cpsw_ale_create(&ale_params); 2244 if (!priv->ale) { 2245 dev_err(priv->dev, "error initializing ale engine\n"); 2246 ret = -ENODEV; 2247 goto clean_dma_ret; 2248 } 2249 2250 ndev->irq = platform_get_irq(pdev, 0); 2251 if (ndev->irq < 0) { 2252 dev_err(priv->dev, "error getting irq resource\n"); 2253 ret = -ENOENT; 2254 goto clean_ale_ret; 2255 } 2256 2257 while ((res = platform_get_resource(priv->pdev, IORESOURCE_IRQ, k))) { 2258 for (i = res->start; i <= res->end; i++) { 2259 if (devm_request_irq(&pdev->dev, i, cpsw_interrupt, 0, 2260 dev_name(&pdev->dev), priv)) { 2261 dev_err(priv->dev, "error attaching irq\n"); 2262 goto clean_ale_ret; 2263 } 2264 priv->irqs_table[k] = i; 2265 priv->num_irqs = k + 1; 2266 } 2267 k++; 2268 } 2269 2270 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2271 2272 ndev->netdev_ops = &cpsw_netdev_ops; 2273 ndev->ethtool_ops = &cpsw_ethtool_ops; 2274 netif_napi_add(ndev, &priv->napi, cpsw_poll, CPSW_POLL_WEIGHT); 2275 2276 /* register the network device */ 2277 SET_NETDEV_DEV(ndev, &pdev->dev); 2278 ret = register_netdev(ndev); 2279 if (ret) { 2280 dev_err(priv->dev, "error registering net device\n"); 2281 ret = -ENODEV; 2282 goto clean_ale_ret; 2283 } 2284 2285 cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n", 2286 &ss_res->start, ndev->irq); 2287 2288 if (priv->data.dual_emac) { 2289 ret = cpsw_probe_dual_emac(pdev, priv); 2290 if (ret) { 2291 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 2292 goto clean_ale_ret; 2293 } 2294 } 2295 2296 return 0; 2297 2298 clean_ale_ret: 2299 cpsw_ale_destroy(priv->ale); 2300 clean_dma_ret: 2301 cpdma_chan_destroy(priv->txch); 2302 cpdma_chan_destroy(priv->rxch); 2303 cpdma_ctlr_destroy(priv->dma); 2304 clean_runtime_disable_ret: 2305 pm_runtime_disable(&pdev->dev); 2306 clean_ndev_ret: 2307 free_netdev(priv->ndev); 2308 return ret; 2309 } 2310 2311 static int cpsw_remove(struct platform_device *pdev) 2312 { 2313 struct net_device *ndev = platform_get_drvdata(pdev); 2314 struct cpsw_priv *priv = netdev_priv(ndev); 2315 2316 if (priv->data.dual_emac) 2317 unregister_netdev(cpsw_get_slave_ndev(priv, 1)); 2318 unregister_netdev(ndev); 2319 2320 cpsw_ale_destroy(priv->ale); 2321 cpdma_chan_destroy(priv->txch); 2322 cpdma_chan_destroy(priv->rxch); 2323 cpdma_ctlr_destroy(priv->dma); 2324 pm_runtime_disable(&pdev->dev); 2325 if (priv->data.dual_emac) 2326 free_netdev(cpsw_get_slave_ndev(priv, 1)); 2327 free_netdev(ndev); 2328 return 0; 2329 } 2330 2331 static int cpsw_suspend(struct device *dev) 2332 { 2333 struct platform_device *pdev = to_platform_device(dev); 2334 struct net_device *ndev = platform_get_drvdata(pdev); 2335 struct cpsw_priv *priv = netdev_priv(ndev); 2336 2337 if (priv->data.dual_emac) { 2338 int i; 2339 2340 for (i = 0; i < priv->data.slaves; i++) { 2341 if (netif_running(priv->slaves[i].ndev)) 2342 cpsw_ndo_stop(priv->slaves[i].ndev); 2343 soft_reset_slave(priv->slaves + i); 2344 } 2345 } else { 2346 if (netif_running(ndev)) 2347 cpsw_ndo_stop(ndev); 2348 for_each_slave(priv, soft_reset_slave); 2349 } 2350 2351 pm_runtime_put_sync(&pdev->dev); 2352 2353 /* Select sleep pin state */ 2354 pinctrl_pm_select_sleep_state(&pdev->dev); 2355 2356 return 0; 2357 } 2358 2359 static int cpsw_resume(struct device *dev) 2360 { 2361 struct platform_device *pdev = to_platform_device(dev); 2362 struct net_device *ndev = platform_get_drvdata(pdev); 2363 struct cpsw_priv *priv = netdev_priv(ndev); 2364 2365 pm_runtime_get_sync(&pdev->dev); 2366 2367 /* Select default pin state */ 2368 pinctrl_pm_select_default_state(&pdev->dev); 2369 2370 if (priv->data.dual_emac) { 2371 int i; 2372 2373 for (i = 0; i < priv->data.slaves; i++) { 2374 if (netif_running(priv->slaves[i].ndev)) 2375 cpsw_ndo_open(priv->slaves[i].ndev); 2376 } 2377 } else { 2378 if (netif_running(ndev)) 2379 cpsw_ndo_open(ndev); 2380 } 2381 return 0; 2382 } 2383 2384 static const struct dev_pm_ops cpsw_pm_ops = { 2385 .suspend = cpsw_suspend, 2386 .resume = cpsw_resume, 2387 }; 2388 2389 static const struct of_device_id cpsw_of_mtable[] = { 2390 { .compatible = "ti,cpsw", }, 2391 { /* sentinel */ }, 2392 }; 2393 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 2394 2395 static struct platform_driver cpsw_driver = { 2396 .driver = { 2397 .name = "cpsw", 2398 .owner = THIS_MODULE, 2399 .pm = &cpsw_pm_ops, 2400 .of_match_table = cpsw_of_mtable, 2401 }, 2402 .probe = cpsw_probe, 2403 .remove = cpsw_remove, 2404 }; 2405 2406 static int __init cpsw_init(void) 2407 { 2408 return platform_driver_register(&cpsw_driver); 2409 } 2410 late_initcall(cpsw_init); 2411 2412 static void __exit cpsw_exit(void) 2413 { 2414 platform_driver_unregister(&cpsw_driver); 2415 } 2416 module_exit(cpsw_exit); 2417 2418 MODULE_LICENSE("GPL"); 2419 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 2420 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 2421 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 2422