xref: /linux/drivers/net/ethernet/ti/cpsw.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Texas Instruments Ethernet Switch Driver
3  *
4  * Copyright (C) 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38 
39 #include <linux/pinctrl/consumer.h>
40 
41 #include "cpsw.h"
42 #include "cpsw_ale.h"
43 #include "cpts.h"
44 #include "davinci_cpdma.h"
45 
46 #define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
47 			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
48 			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
49 			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
50 			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
51 			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
52 			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
53 			 NETIF_MSG_RX_STATUS)
54 
55 #define cpsw_info(priv, type, format, ...)		\
56 do {								\
57 	if (netif_msg_##type(priv) && net_ratelimit())		\
58 		dev_info(priv->dev, format, ## __VA_ARGS__);	\
59 } while (0)
60 
61 #define cpsw_err(priv, type, format, ...)		\
62 do {								\
63 	if (netif_msg_##type(priv) && net_ratelimit())		\
64 		dev_err(priv->dev, format, ## __VA_ARGS__);	\
65 } while (0)
66 
67 #define cpsw_dbg(priv, type, format, ...)		\
68 do {								\
69 	if (netif_msg_##type(priv) && net_ratelimit())		\
70 		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
71 } while (0)
72 
73 #define cpsw_notice(priv, type, format, ...)		\
74 do {								\
75 	if (netif_msg_##type(priv) && net_ratelimit())		\
76 		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
77 } while (0)
78 
79 #define ALE_ALL_PORTS		0x7
80 
81 #define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
82 #define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
83 #define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)
84 
85 #define CPSW_VERSION_1		0x19010a
86 #define CPSW_VERSION_2		0x19010c
87 #define CPSW_VERSION_3		0x19010f
88 #define CPSW_VERSION_4		0x190112
89 
90 #define HOST_PORT_NUM		0
91 #define SLIVER_SIZE		0x40
92 
93 #define CPSW1_HOST_PORT_OFFSET	0x028
94 #define CPSW1_SLAVE_OFFSET	0x050
95 #define CPSW1_SLAVE_SIZE	0x040
96 #define CPSW1_CPDMA_OFFSET	0x100
97 #define CPSW1_STATERAM_OFFSET	0x200
98 #define CPSW1_HW_STATS		0x400
99 #define CPSW1_CPTS_OFFSET	0x500
100 #define CPSW1_ALE_OFFSET	0x600
101 #define CPSW1_SLIVER_OFFSET	0x700
102 
103 #define CPSW2_HOST_PORT_OFFSET	0x108
104 #define CPSW2_SLAVE_OFFSET	0x200
105 #define CPSW2_SLAVE_SIZE	0x100
106 #define CPSW2_CPDMA_OFFSET	0x800
107 #define CPSW2_HW_STATS		0x900
108 #define CPSW2_STATERAM_OFFSET	0xa00
109 #define CPSW2_CPTS_OFFSET	0xc00
110 #define CPSW2_ALE_OFFSET	0xd00
111 #define CPSW2_SLIVER_OFFSET	0xd80
112 #define CPSW2_BD_OFFSET		0x2000
113 
114 #define CPDMA_RXTHRESH		0x0c0
115 #define CPDMA_RXFREE		0x0e0
116 #define CPDMA_TXHDP		0x00
117 #define CPDMA_RXHDP		0x20
118 #define CPDMA_TXCP		0x40
119 #define CPDMA_RXCP		0x60
120 
121 #define CPSW_POLL_WEIGHT	64
122 #define CPSW_MIN_PACKET_SIZE	60
123 #define CPSW_MAX_PACKET_SIZE	(1500 + 14 + 4 + 4)
124 
125 #define RX_PRIORITY_MAPPING	0x76543210
126 #define TX_PRIORITY_MAPPING	0x33221100
127 #define CPDMA_TX_PRIORITY_MAP	0x76543210
128 
129 #define CPSW_VLAN_AWARE		BIT(1)
130 #define CPSW_ALE_VLAN_AWARE	1
131 
132 #define CPSW_FIFO_NORMAL_MODE		(0 << 16)
133 #define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
134 #define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
135 
136 #define CPSW_INTPACEEN		(0x3f << 16)
137 #define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
138 #define CPSW_CMINTMAX_CNT	63
139 #define CPSW_CMINTMIN_CNT	2
140 #define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
141 #define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)
142 
143 #define cpsw_slave_index(priv)				\
144 		((priv->data.dual_emac) ? priv->emac_port :	\
145 		priv->data.active_slave)
146 
147 static int debug_level;
148 module_param(debug_level, int, 0);
149 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
150 
151 static int ale_ageout = 10;
152 module_param(ale_ageout, int, 0);
153 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
154 
155 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
156 module_param(rx_packet_max, int, 0);
157 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
158 
159 struct cpsw_wr_regs {
160 	u32	id_ver;
161 	u32	soft_reset;
162 	u32	control;
163 	u32	int_control;
164 	u32	rx_thresh_en;
165 	u32	rx_en;
166 	u32	tx_en;
167 	u32	misc_en;
168 	u32	mem_allign1[8];
169 	u32	rx_thresh_stat;
170 	u32	rx_stat;
171 	u32	tx_stat;
172 	u32	misc_stat;
173 	u32	mem_allign2[8];
174 	u32	rx_imax;
175 	u32	tx_imax;
176 
177 };
178 
179 struct cpsw_ss_regs {
180 	u32	id_ver;
181 	u32	control;
182 	u32	soft_reset;
183 	u32	stat_port_en;
184 	u32	ptype;
185 	u32	soft_idle;
186 	u32	thru_rate;
187 	u32	gap_thresh;
188 	u32	tx_start_wds;
189 	u32	flow_control;
190 	u32	vlan_ltype;
191 	u32	ts_ltype;
192 	u32	dlr_ltype;
193 };
194 
195 /* CPSW_PORT_V1 */
196 #define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
197 #define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
198 #define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
199 #define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
200 #define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
201 #define CPSW1_TS_CTL        0x14 /* Time Sync Control */
202 #define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
203 #define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */
204 
205 /* CPSW_PORT_V2 */
206 #define CPSW2_CONTROL       0x00 /* Control Register */
207 #define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
208 #define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
209 #define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
210 #define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
211 #define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
212 #define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */
213 
214 /* CPSW_PORT_V1 and V2 */
215 #define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
216 #define SA_HI               0x24 /* CPGMAC_SL Source Address High */
217 #define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */
218 
219 /* CPSW_PORT_V2 only */
220 #define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
221 #define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
222 #define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
223 #define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
224 #define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
225 #define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
226 #define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
227 #define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */
228 
229 /* Bit definitions for the CPSW2_CONTROL register */
230 #define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
231 #define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
232 #define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
233 #define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
234 #define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
235 #define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
236 #define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
237 #define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
238 #define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
239 #define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
240 #define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
241 #define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
242 #define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
243 #define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
244 #define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
245 #define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
246 #define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */
247 
248 #define CTRL_V2_TS_BITS \
249 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
250 	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
251 
252 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
253 #define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
254 #define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)
255 
256 
257 #define CTRL_V3_TS_BITS \
258 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
259 	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
260 	 TS_LTYPE1_EN)
261 
262 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
263 #define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
264 #define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
265 
266 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
267 #define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
268 #define TS_SEQ_ID_OFFSET_MASK    (0x3f)
269 #define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
270 #define TS_MSG_TYPE_EN_MASK      (0xffff)
271 
272 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
273 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
274 
275 /* Bit definitions for the CPSW1_TS_CTL register */
276 #define CPSW_V1_TS_RX_EN		BIT(0)
277 #define CPSW_V1_TS_TX_EN		BIT(4)
278 #define CPSW_V1_MSG_TYPE_OFS		16
279 
280 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
281 #define CPSW_V1_SEQ_ID_OFS_SHIFT	16
282 
283 struct cpsw_host_regs {
284 	u32	max_blks;
285 	u32	blk_cnt;
286 	u32	tx_in_ctl;
287 	u32	port_vlan;
288 	u32	tx_pri_map;
289 	u32	cpdma_tx_pri_map;
290 	u32	cpdma_rx_chan_map;
291 };
292 
293 struct cpsw_sliver_regs {
294 	u32	id_ver;
295 	u32	mac_control;
296 	u32	mac_status;
297 	u32	soft_reset;
298 	u32	rx_maxlen;
299 	u32	__reserved_0;
300 	u32	rx_pause;
301 	u32	tx_pause;
302 	u32	__reserved_1;
303 	u32	rx_pri_map;
304 };
305 
306 struct cpsw_hw_stats {
307 	u32	rxgoodframes;
308 	u32	rxbroadcastframes;
309 	u32	rxmulticastframes;
310 	u32	rxpauseframes;
311 	u32	rxcrcerrors;
312 	u32	rxaligncodeerrors;
313 	u32	rxoversizedframes;
314 	u32	rxjabberframes;
315 	u32	rxundersizedframes;
316 	u32	rxfragments;
317 	u32	__pad_0[2];
318 	u32	rxoctets;
319 	u32	txgoodframes;
320 	u32	txbroadcastframes;
321 	u32	txmulticastframes;
322 	u32	txpauseframes;
323 	u32	txdeferredframes;
324 	u32	txcollisionframes;
325 	u32	txsinglecollframes;
326 	u32	txmultcollframes;
327 	u32	txexcessivecollisions;
328 	u32	txlatecollisions;
329 	u32	txunderrun;
330 	u32	txcarriersenseerrors;
331 	u32	txoctets;
332 	u32	octetframes64;
333 	u32	octetframes65t127;
334 	u32	octetframes128t255;
335 	u32	octetframes256t511;
336 	u32	octetframes512t1023;
337 	u32	octetframes1024tup;
338 	u32	netoctets;
339 	u32	rxsofoverruns;
340 	u32	rxmofoverruns;
341 	u32	rxdmaoverruns;
342 };
343 
344 struct cpsw_slave {
345 	void __iomem			*regs;
346 	struct cpsw_sliver_regs __iomem	*sliver;
347 	int				slave_num;
348 	u32				mac_control;
349 	struct cpsw_slave_data		*data;
350 	struct phy_device		*phy;
351 	struct net_device		*ndev;
352 	u32				port_vlan;
353 	u32				open_stat;
354 };
355 
356 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
357 {
358 	return __raw_readl(slave->regs + offset);
359 }
360 
361 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
362 {
363 	__raw_writel(val, slave->regs + offset);
364 }
365 
366 struct cpsw_priv {
367 	spinlock_t			lock;
368 	struct platform_device		*pdev;
369 	struct net_device		*ndev;
370 	struct napi_struct		napi_rx;
371 	struct napi_struct		napi_tx;
372 	struct device			*dev;
373 	struct cpsw_platform_data	data;
374 	struct cpsw_ss_regs __iomem	*regs;
375 	struct cpsw_wr_regs __iomem	*wr_regs;
376 	u8 __iomem			*hw_stats;
377 	struct cpsw_host_regs __iomem	*host_port_regs;
378 	u32				msg_enable;
379 	u32				version;
380 	u32				coal_intvl;
381 	u32				bus_freq_mhz;
382 	int				rx_packet_max;
383 	struct clk			*clk;
384 	u8				mac_addr[ETH_ALEN];
385 	struct cpsw_slave		*slaves;
386 	struct cpdma_ctlr		*dma;
387 	struct cpdma_chan		*txch, *rxch;
388 	struct cpsw_ale			*ale;
389 	bool				rx_pause;
390 	bool				tx_pause;
391 	bool				quirk_irq;
392 	bool				rx_irq_disabled;
393 	bool				tx_irq_disabled;
394 	/* snapshot of IRQ numbers */
395 	u32 irqs_table[4];
396 	u32 num_irqs;
397 	struct cpts *cpts;
398 	u32 emac_port;
399 };
400 
401 struct cpsw_stats {
402 	char stat_string[ETH_GSTRING_LEN];
403 	int type;
404 	int sizeof_stat;
405 	int stat_offset;
406 };
407 
408 enum {
409 	CPSW_STATS,
410 	CPDMA_RX_STATS,
411 	CPDMA_TX_STATS,
412 };
413 
414 #define CPSW_STAT(m)		CPSW_STATS,				\
415 				sizeof(((struct cpsw_hw_stats *)0)->m), \
416 				offsetof(struct cpsw_hw_stats, m)
417 #define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
418 				sizeof(((struct cpdma_chan_stats *)0)->m), \
419 				offsetof(struct cpdma_chan_stats, m)
420 #define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
421 				sizeof(((struct cpdma_chan_stats *)0)->m), \
422 				offsetof(struct cpdma_chan_stats, m)
423 
424 static const struct cpsw_stats cpsw_gstrings_stats[] = {
425 	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
426 	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
427 	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
428 	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
429 	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
430 	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
431 	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
432 	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
433 	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
434 	{ "Rx Fragments", CPSW_STAT(rxfragments) },
435 	{ "Rx Octets", CPSW_STAT(rxoctets) },
436 	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
437 	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
438 	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
439 	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
440 	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
441 	{ "Collisions", CPSW_STAT(txcollisionframes) },
442 	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
443 	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
444 	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
445 	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
446 	{ "Tx Underrun", CPSW_STAT(txunderrun) },
447 	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
448 	{ "Tx Octets", CPSW_STAT(txoctets) },
449 	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
450 	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
451 	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
452 	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
453 	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
454 	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
455 	{ "Net Octets", CPSW_STAT(netoctets) },
456 	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
457 	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
458 	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
459 	{ "Rx DMA chan: head_enqueue", CPDMA_RX_STAT(head_enqueue) },
460 	{ "Rx DMA chan: tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
461 	{ "Rx DMA chan: pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
462 	{ "Rx DMA chan: misqueued", CPDMA_RX_STAT(misqueued) },
463 	{ "Rx DMA chan: desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
464 	{ "Rx DMA chan: pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
465 	{ "Rx DMA chan: runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
466 	{ "Rx DMA chan: runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
467 	{ "Rx DMA chan: empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
468 	{ "Rx DMA chan: busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
469 	{ "Rx DMA chan: good_dequeue", CPDMA_RX_STAT(good_dequeue) },
470 	{ "Rx DMA chan: requeue", CPDMA_RX_STAT(requeue) },
471 	{ "Rx DMA chan: teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
472 	{ "Tx DMA chan: head_enqueue", CPDMA_TX_STAT(head_enqueue) },
473 	{ "Tx DMA chan: tail_enqueue", CPDMA_TX_STAT(tail_enqueue) },
474 	{ "Tx DMA chan: pad_enqueue", CPDMA_TX_STAT(pad_enqueue) },
475 	{ "Tx DMA chan: misqueued", CPDMA_TX_STAT(misqueued) },
476 	{ "Tx DMA chan: desc_alloc_fail", CPDMA_TX_STAT(desc_alloc_fail) },
477 	{ "Tx DMA chan: pad_alloc_fail", CPDMA_TX_STAT(pad_alloc_fail) },
478 	{ "Tx DMA chan: runt_receive_buf", CPDMA_TX_STAT(runt_receive_buff) },
479 	{ "Tx DMA chan: runt_transmit_buf", CPDMA_TX_STAT(runt_transmit_buff) },
480 	{ "Tx DMA chan: empty_dequeue", CPDMA_TX_STAT(empty_dequeue) },
481 	{ "Tx DMA chan: busy_dequeue", CPDMA_TX_STAT(busy_dequeue) },
482 	{ "Tx DMA chan: good_dequeue", CPDMA_TX_STAT(good_dequeue) },
483 	{ "Tx DMA chan: requeue", CPDMA_TX_STAT(requeue) },
484 	{ "Tx DMA chan: teardown_dequeue", CPDMA_TX_STAT(teardown_dequeue) },
485 };
486 
487 #define CPSW_STATS_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
488 
489 #define napi_to_priv(napi)	container_of(napi, struct cpsw_priv, napi)
490 #define for_each_slave(priv, func, arg...)				\
491 	do {								\
492 		struct cpsw_slave *slave;				\
493 		int n;							\
494 		if (priv->data.dual_emac)				\
495 			(func)((priv)->slaves + priv->emac_port, ##arg);\
496 		else							\
497 			for (n = (priv)->data.slaves,			\
498 					slave = (priv)->slaves;		\
499 					n; n--)				\
500 				(func)(slave++, ##arg);			\
501 	} while (0)
502 #define cpsw_get_slave_ndev(priv, __slave_no__)				\
503 	((__slave_no__ < priv->data.slaves) ?				\
504 		priv->slaves[__slave_no__].ndev : NULL)
505 #define cpsw_get_slave_priv(priv, __slave_no__)				\
506 	(((__slave_no__ < priv->data.slaves) &&				\
507 		(priv->slaves[__slave_no__].ndev)) ?			\
508 		netdev_priv(priv->slaves[__slave_no__].ndev) : NULL)	\
509 
510 #define cpsw_dual_emac_src_port_detect(status, priv, ndev, skb)		\
511 	do {								\
512 		if (!priv->data.dual_emac)				\
513 			break;						\
514 		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
515 			ndev = cpsw_get_slave_ndev(priv, 0);		\
516 			priv = netdev_priv(ndev);			\
517 			skb->dev = ndev;				\
518 		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
519 			ndev = cpsw_get_slave_ndev(priv, 1);		\
520 			priv = netdev_priv(ndev);			\
521 			skb->dev = ndev;				\
522 		}							\
523 	} while (0)
524 #define cpsw_add_mcast(priv, addr)					\
525 	do {								\
526 		if (priv->data.dual_emac) {				\
527 			struct cpsw_slave *slave = priv->slaves +	\
528 						priv->emac_port;	\
529 			int slave_port = cpsw_get_slave_port(priv,	\
530 						slave->slave_num);	\
531 			cpsw_ale_add_mcast(priv->ale, addr,		\
532 				1 << slave_port | ALE_PORT_HOST,	\
533 				ALE_VLAN, slave->port_vlan, 0);		\
534 		} else {						\
535 			cpsw_ale_add_mcast(priv->ale, addr,		\
536 				ALE_ALL_PORTS,				\
537 				0, 0, 0);				\
538 		}							\
539 	} while (0)
540 
541 static inline int cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
542 {
543 	return slave_num + 1;
544 }
545 
546 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
547 {
548 	struct cpsw_priv *priv = netdev_priv(ndev);
549 	struct cpsw_ale *ale = priv->ale;
550 	int i;
551 
552 	if (priv->data.dual_emac) {
553 		bool flag = false;
554 
555 		/* Enabling promiscuous mode for one interface will be
556 		 * common for both the interface as the interface shares
557 		 * the same hardware resource.
558 		 */
559 		for (i = 0; i < priv->data.slaves; i++)
560 			if (priv->slaves[i].ndev->flags & IFF_PROMISC)
561 				flag = true;
562 
563 		if (!enable && flag) {
564 			enable = true;
565 			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
566 		}
567 
568 		if (enable) {
569 			/* Enable Bypass */
570 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
571 
572 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
573 		} else {
574 			/* Disable Bypass */
575 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
576 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
577 		}
578 	} else {
579 		if (enable) {
580 			unsigned long timeout = jiffies + HZ;
581 
582 			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
583 			for (i = 0; i <= priv->data.slaves; i++) {
584 				cpsw_ale_control_set(ale, i,
585 						     ALE_PORT_NOLEARN, 1);
586 				cpsw_ale_control_set(ale, i,
587 						     ALE_PORT_NO_SA_UPDATE, 1);
588 			}
589 
590 			/* Clear All Untouched entries */
591 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
592 			do {
593 				cpu_relax();
594 				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
595 					break;
596 			} while (time_after(timeout, jiffies));
597 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
598 
599 			/* Clear all mcast from ALE */
600 			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
601 
602 			/* Flood All Unicast Packets to Host port */
603 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
604 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
605 		} else {
606 			/* Don't Flood All Unicast Packets to Host port */
607 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
608 
609 			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
610 			for (i = 0; i <= priv->data.slaves; i++) {
611 				cpsw_ale_control_set(ale, i,
612 						     ALE_PORT_NOLEARN, 0);
613 				cpsw_ale_control_set(ale, i,
614 						     ALE_PORT_NO_SA_UPDATE, 0);
615 			}
616 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
617 		}
618 	}
619 }
620 
621 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
622 {
623 	struct cpsw_priv *priv = netdev_priv(ndev);
624 	int vid;
625 
626 	if (priv->data.dual_emac)
627 		vid = priv->slaves[priv->emac_port].port_vlan;
628 	else
629 		vid = priv->data.default_vlan;
630 
631 	if (ndev->flags & IFF_PROMISC) {
632 		/* Enable promiscuous mode */
633 		cpsw_set_promiscious(ndev, true);
634 		cpsw_ale_set_allmulti(priv->ale, IFF_ALLMULTI);
635 		return;
636 	} else {
637 		/* Disable promiscuous mode */
638 		cpsw_set_promiscious(ndev, false);
639 	}
640 
641 	/* Restore allmulti on vlans if necessary */
642 	cpsw_ale_set_allmulti(priv->ale, priv->ndev->flags & IFF_ALLMULTI);
643 
644 	/* Clear all mcast from ALE */
645 	cpsw_ale_flush_multicast(priv->ale, ALE_ALL_PORTS, vid);
646 
647 	if (!netdev_mc_empty(ndev)) {
648 		struct netdev_hw_addr *ha;
649 
650 		/* program multicast address list into ALE register */
651 		netdev_for_each_mc_addr(ha, ndev) {
652 			cpsw_add_mcast(priv, (u8 *)ha->addr);
653 		}
654 	}
655 }
656 
657 static void cpsw_intr_enable(struct cpsw_priv *priv)
658 {
659 	__raw_writel(0xFF, &priv->wr_regs->tx_en);
660 	__raw_writel(0xFF, &priv->wr_regs->rx_en);
661 
662 	cpdma_ctlr_int_ctrl(priv->dma, true);
663 	return;
664 }
665 
666 static void cpsw_intr_disable(struct cpsw_priv *priv)
667 {
668 	__raw_writel(0, &priv->wr_regs->tx_en);
669 	__raw_writel(0, &priv->wr_regs->rx_en);
670 
671 	cpdma_ctlr_int_ctrl(priv->dma, false);
672 	return;
673 }
674 
675 static void cpsw_tx_handler(void *token, int len, int status)
676 {
677 	struct sk_buff		*skb = token;
678 	struct net_device	*ndev = skb->dev;
679 	struct cpsw_priv	*priv = netdev_priv(ndev);
680 
681 	/* Check whether the queue is stopped due to stalled tx dma, if the
682 	 * queue is stopped then start the queue as we have free desc for tx
683 	 */
684 	if (unlikely(netif_queue_stopped(ndev)))
685 		netif_wake_queue(ndev);
686 	cpts_tx_timestamp(priv->cpts, skb);
687 	ndev->stats.tx_packets++;
688 	ndev->stats.tx_bytes += len;
689 	dev_kfree_skb_any(skb);
690 }
691 
692 static void cpsw_rx_handler(void *token, int len, int status)
693 {
694 	struct sk_buff		*skb = token;
695 	struct sk_buff		*new_skb;
696 	struct net_device	*ndev = skb->dev;
697 	struct cpsw_priv	*priv = netdev_priv(ndev);
698 	int			ret = 0;
699 
700 	cpsw_dual_emac_src_port_detect(status, priv, ndev, skb);
701 
702 	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
703 		bool ndev_status = false;
704 		struct cpsw_slave *slave = priv->slaves;
705 		int n;
706 
707 		if (priv->data.dual_emac) {
708 			/* In dual emac mode check for all interfaces */
709 			for (n = priv->data.slaves; n; n--, slave++)
710 				if (netif_running(slave->ndev))
711 					ndev_status = true;
712 		}
713 
714 		if (ndev_status && (status >= 0)) {
715 			/* The packet received is for the interface which
716 			 * is already down and the other interface is up
717 			 * and running, instead of freeing which results
718 			 * in reducing of the number of rx descriptor in
719 			 * DMA engine, requeue skb back to cpdma.
720 			 */
721 			new_skb = skb;
722 			goto requeue;
723 		}
724 
725 		/* the interface is going down, skbs are purged */
726 		dev_kfree_skb_any(skb);
727 		return;
728 	}
729 
730 	new_skb = netdev_alloc_skb_ip_align(ndev, priv->rx_packet_max);
731 	if (new_skb) {
732 		skb_put(skb, len);
733 		cpts_rx_timestamp(priv->cpts, skb);
734 		skb->protocol = eth_type_trans(skb, ndev);
735 		netif_receive_skb(skb);
736 		ndev->stats.rx_bytes += len;
737 		ndev->stats.rx_packets++;
738 	} else {
739 		ndev->stats.rx_dropped++;
740 		new_skb = skb;
741 	}
742 
743 requeue:
744 	ret = cpdma_chan_submit(priv->rxch, new_skb, new_skb->data,
745 			skb_tailroom(new_skb), 0);
746 	if (WARN_ON(ret < 0))
747 		dev_kfree_skb_any(new_skb);
748 }
749 
750 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
751 {
752 	struct cpsw_priv *priv = dev_id;
753 
754 	writel(0, &priv->wr_regs->tx_en);
755 	cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX);
756 
757 	if (priv->quirk_irq) {
758 		disable_irq_nosync(priv->irqs_table[1]);
759 		priv->tx_irq_disabled = true;
760 	}
761 
762 	napi_schedule(&priv->napi_tx);
763 	return IRQ_HANDLED;
764 }
765 
766 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
767 {
768 	struct cpsw_priv *priv = dev_id;
769 
770 	cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX);
771 	writel(0, &priv->wr_regs->rx_en);
772 
773 	if (priv->quirk_irq) {
774 		disable_irq_nosync(priv->irqs_table[0]);
775 		priv->rx_irq_disabled = true;
776 	}
777 
778 	napi_schedule(&priv->napi_rx);
779 	return IRQ_HANDLED;
780 }
781 
782 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
783 {
784 	struct cpsw_priv	*priv = napi_to_priv(napi_tx);
785 	int			num_tx;
786 
787 	num_tx = cpdma_chan_process(priv->txch, budget);
788 	if (num_tx < budget) {
789 		napi_complete(napi_tx);
790 		writel(0xff, &priv->wr_regs->tx_en);
791 		if (priv->quirk_irq && priv->tx_irq_disabled) {
792 			priv->tx_irq_disabled = false;
793 			enable_irq(priv->irqs_table[1]);
794 		}
795 	}
796 
797 	if (num_tx)
798 		cpsw_dbg(priv, intr, "poll %d tx pkts\n", num_tx);
799 
800 	return num_tx;
801 }
802 
803 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
804 {
805 	struct cpsw_priv	*priv = napi_to_priv(napi_rx);
806 	int			num_rx;
807 
808 	num_rx = cpdma_chan_process(priv->rxch, budget);
809 	if (num_rx < budget) {
810 		napi_complete(napi_rx);
811 		writel(0xff, &priv->wr_regs->rx_en);
812 		if (priv->quirk_irq && priv->rx_irq_disabled) {
813 			priv->rx_irq_disabled = false;
814 			enable_irq(priv->irqs_table[0]);
815 		}
816 	}
817 
818 	if (num_rx)
819 		cpsw_dbg(priv, intr, "poll %d rx pkts\n", num_rx);
820 
821 	return num_rx;
822 }
823 
824 static inline void soft_reset(const char *module, void __iomem *reg)
825 {
826 	unsigned long timeout = jiffies + HZ;
827 
828 	__raw_writel(1, reg);
829 	do {
830 		cpu_relax();
831 	} while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));
832 
833 	WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
834 }
835 
836 #define mac_hi(mac)	(((mac)[0] << 0) | ((mac)[1] << 8) |	\
837 			 ((mac)[2] << 16) | ((mac)[3] << 24))
838 #define mac_lo(mac)	(((mac)[4] << 0) | ((mac)[5] << 8))
839 
840 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
841 			       struct cpsw_priv *priv)
842 {
843 	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
844 	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
845 }
846 
847 static void _cpsw_adjust_link(struct cpsw_slave *slave,
848 			      struct cpsw_priv *priv, bool *link)
849 {
850 	struct phy_device	*phy = slave->phy;
851 	u32			mac_control = 0;
852 	u32			slave_port;
853 
854 	if (!phy)
855 		return;
856 
857 	slave_port = cpsw_get_slave_port(priv, slave->slave_num);
858 
859 	if (phy->link) {
860 		mac_control = priv->data.mac_control;
861 
862 		/* enable forwarding */
863 		cpsw_ale_control_set(priv->ale, slave_port,
864 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
865 
866 		if (phy->speed == 1000)
867 			mac_control |= BIT(7);	/* GIGABITEN	*/
868 		if (phy->duplex)
869 			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
870 
871 		/* set speed_in input in case RMII mode is used in 100Mbps */
872 		if (phy->speed == 100)
873 			mac_control |= BIT(15);
874 		else if (phy->speed == 10)
875 			mac_control |= BIT(18); /* In Band mode */
876 
877 		if (priv->rx_pause)
878 			mac_control |= BIT(3);
879 
880 		if (priv->tx_pause)
881 			mac_control |= BIT(4);
882 
883 		*link = true;
884 	} else {
885 		mac_control = 0;
886 		/* disable forwarding */
887 		cpsw_ale_control_set(priv->ale, slave_port,
888 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
889 	}
890 
891 	if (mac_control != slave->mac_control) {
892 		phy_print_status(phy);
893 		__raw_writel(mac_control, &slave->sliver->mac_control);
894 	}
895 
896 	slave->mac_control = mac_control;
897 }
898 
899 static void cpsw_adjust_link(struct net_device *ndev)
900 {
901 	struct cpsw_priv	*priv = netdev_priv(ndev);
902 	bool			link = false;
903 
904 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
905 
906 	if (link) {
907 		netif_carrier_on(ndev);
908 		if (netif_running(ndev))
909 			netif_wake_queue(ndev);
910 	} else {
911 		netif_carrier_off(ndev);
912 		netif_stop_queue(ndev);
913 	}
914 }
915 
916 static int cpsw_get_coalesce(struct net_device *ndev,
917 				struct ethtool_coalesce *coal)
918 {
919 	struct cpsw_priv *priv = netdev_priv(ndev);
920 
921 	coal->rx_coalesce_usecs = priv->coal_intvl;
922 	return 0;
923 }
924 
925 static int cpsw_set_coalesce(struct net_device *ndev,
926 				struct ethtool_coalesce *coal)
927 {
928 	struct cpsw_priv *priv = netdev_priv(ndev);
929 	u32 int_ctrl;
930 	u32 num_interrupts = 0;
931 	u32 prescale = 0;
932 	u32 addnl_dvdr = 1;
933 	u32 coal_intvl = 0;
934 
935 	coal_intvl = coal->rx_coalesce_usecs;
936 
937 	int_ctrl =  readl(&priv->wr_regs->int_control);
938 	prescale = priv->bus_freq_mhz * 4;
939 
940 	if (!coal->rx_coalesce_usecs) {
941 		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
942 		goto update_return;
943 	}
944 
945 	if (coal_intvl < CPSW_CMINTMIN_INTVL)
946 		coal_intvl = CPSW_CMINTMIN_INTVL;
947 
948 	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
949 		/* Interrupt pacer works with 4us Pulse, we can
950 		 * throttle further by dilating the 4us pulse.
951 		 */
952 		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
953 
954 		if (addnl_dvdr > 1) {
955 			prescale *= addnl_dvdr;
956 			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
957 				coal_intvl = (CPSW_CMINTMAX_INTVL
958 						* addnl_dvdr);
959 		} else {
960 			addnl_dvdr = 1;
961 			coal_intvl = CPSW_CMINTMAX_INTVL;
962 		}
963 	}
964 
965 	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
966 	writel(num_interrupts, &priv->wr_regs->rx_imax);
967 	writel(num_interrupts, &priv->wr_regs->tx_imax);
968 
969 	int_ctrl |= CPSW_INTPACEEN;
970 	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
971 	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
972 
973 update_return:
974 	writel(int_ctrl, &priv->wr_regs->int_control);
975 
976 	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
977 	if (priv->data.dual_emac) {
978 		int i;
979 
980 		for (i = 0; i < priv->data.slaves; i++) {
981 			priv = netdev_priv(priv->slaves[i].ndev);
982 			priv->coal_intvl = coal_intvl;
983 		}
984 	} else {
985 		priv->coal_intvl = coal_intvl;
986 	}
987 
988 	return 0;
989 }
990 
991 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
992 {
993 	switch (sset) {
994 	case ETH_SS_STATS:
995 		return CPSW_STATS_LEN;
996 	default:
997 		return -EOPNOTSUPP;
998 	}
999 }
1000 
1001 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1002 {
1003 	u8 *p = data;
1004 	int i;
1005 
1006 	switch (stringset) {
1007 	case ETH_SS_STATS:
1008 		for (i = 0; i < CPSW_STATS_LEN; i++) {
1009 			memcpy(p, cpsw_gstrings_stats[i].stat_string,
1010 			       ETH_GSTRING_LEN);
1011 			p += ETH_GSTRING_LEN;
1012 		}
1013 		break;
1014 	}
1015 }
1016 
1017 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1018 				    struct ethtool_stats *stats, u64 *data)
1019 {
1020 	struct cpsw_priv *priv = netdev_priv(ndev);
1021 	struct cpdma_chan_stats rx_stats;
1022 	struct cpdma_chan_stats tx_stats;
1023 	u32 val;
1024 	u8 *p;
1025 	int i;
1026 
1027 	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1028 	cpdma_chan_get_stats(priv->rxch, &rx_stats);
1029 	cpdma_chan_get_stats(priv->txch, &tx_stats);
1030 
1031 	for (i = 0; i < CPSW_STATS_LEN; i++) {
1032 		switch (cpsw_gstrings_stats[i].type) {
1033 		case CPSW_STATS:
1034 			val = readl(priv->hw_stats +
1035 				    cpsw_gstrings_stats[i].stat_offset);
1036 			data[i] = val;
1037 			break;
1038 
1039 		case CPDMA_RX_STATS:
1040 			p = (u8 *)&rx_stats +
1041 				cpsw_gstrings_stats[i].stat_offset;
1042 			data[i] = *(u32 *)p;
1043 			break;
1044 
1045 		case CPDMA_TX_STATS:
1046 			p = (u8 *)&tx_stats +
1047 				cpsw_gstrings_stats[i].stat_offset;
1048 			data[i] = *(u32 *)p;
1049 			break;
1050 		}
1051 	}
1052 }
1053 
1054 static int cpsw_common_res_usage_state(struct cpsw_priv *priv)
1055 {
1056 	u32 i;
1057 	u32 usage_count = 0;
1058 
1059 	if (!priv->data.dual_emac)
1060 		return 0;
1061 
1062 	for (i = 0; i < priv->data.slaves; i++)
1063 		if (priv->slaves[i].open_stat)
1064 			usage_count++;
1065 
1066 	return usage_count;
1067 }
1068 
1069 static inline int cpsw_tx_packet_submit(struct net_device *ndev,
1070 			struct cpsw_priv *priv, struct sk_buff *skb)
1071 {
1072 	if (!priv->data.dual_emac)
1073 		return cpdma_chan_submit(priv->txch, skb, skb->data,
1074 				  skb->len, 0);
1075 
1076 	if (ndev == cpsw_get_slave_ndev(priv, 0))
1077 		return cpdma_chan_submit(priv->txch, skb, skb->data,
1078 				  skb->len, 1);
1079 	else
1080 		return cpdma_chan_submit(priv->txch, skb, skb->data,
1081 				  skb->len, 2);
1082 }
1083 
1084 static inline void cpsw_add_dual_emac_def_ale_entries(
1085 		struct cpsw_priv *priv, struct cpsw_slave *slave,
1086 		u32 slave_port)
1087 {
1088 	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1089 
1090 	if (priv->version == CPSW_VERSION_1)
1091 		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1092 	else
1093 		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1094 	cpsw_ale_add_vlan(priv->ale, slave->port_vlan, port_mask,
1095 			  port_mask, port_mask, 0);
1096 	cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1097 			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1098 	cpsw_ale_add_ucast(priv->ale, priv->mac_addr,
1099 		HOST_PORT_NUM, ALE_VLAN | ALE_SECURE, slave->port_vlan);
1100 }
1101 
1102 static void soft_reset_slave(struct cpsw_slave *slave)
1103 {
1104 	char name[32];
1105 
1106 	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1107 	soft_reset(name, &slave->sliver->soft_reset);
1108 }
1109 
1110 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1111 {
1112 	u32 slave_port;
1113 
1114 	soft_reset_slave(slave);
1115 
1116 	/* setup priority mapping */
1117 	__raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1118 
1119 	switch (priv->version) {
1120 	case CPSW_VERSION_1:
1121 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1122 		break;
1123 	case CPSW_VERSION_2:
1124 	case CPSW_VERSION_3:
1125 	case CPSW_VERSION_4:
1126 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1127 		break;
1128 	}
1129 
1130 	/* setup max packet size, and mac address */
1131 	__raw_writel(priv->rx_packet_max, &slave->sliver->rx_maxlen);
1132 	cpsw_set_slave_mac(slave, priv);
1133 
1134 	slave->mac_control = 0;	/* no link yet */
1135 
1136 	slave_port = cpsw_get_slave_port(priv, slave->slave_num);
1137 
1138 	if (priv->data.dual_emac)
1139 		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1140 	else
1141 		cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1142 				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1143 
1144 	if (slave->data->phy_node) {
1145 		slave->phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1146 				 &cpsw_adjust_link, 0, slave->data->phy_if);
1147 		if (!slave->phy) {
1148 			dev_err(priv->dev, "phy \"%s\" not found on slave %d\n",
1149 				slave->data->phy_node->full_name,
1150 				slave->slave_num);
1151 			return;
1152 		}
1153 	} else {
1154 		slave->phy = phy_connect(priv->ndev, slave->data->phy_id,
1155 				 &cpsw_adjust_link, slave->data->phy_if);
1156 		if (IS_ERR(slave->phy)) {
1157 			dev_err(priv->dev,
1158 				"phy \"%s\" not found on slave %d, err %ld\n",
1159 				slave->data->phy_id, slave->slave_num,
1160 				PTR_ERR(slave->phy));
1161 			slave->phy = NULL;
1162 			return;
1163 		}
1164 	}
1165 
1166 	phy_attached_info(slave->phy);
1167 
1168 	phy_start(slave->phy);
1169 
1170 	/* Configure GMII_SEL register */
1171 	cpsw_phy_sel(&priv->pdev->dev, slave->phy->interface, slave->slave_num);
1172 }
1173 
1174 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1175 {
1176 	const int vlan = priv->data.default_vlan;
1177 	u32 reg;
1178 	int i;
1179 	int unreg_mcast_mask;
1180 
1181 	reg = (priv->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1182 	       CPSW2_PORT_VLAN;
1183 
1184 	writel(vlan, &priv->host_port_regs->port_vlan);
1185 
1186 	for (i = 0; i < priv->data.slaves; i++)
1187 		slave_write(priv->slaves + i, vlan, reg);
1188 
1189 	if (priv->ndev->flags & IFF_ALLMULTI)
1190 		unreg_mcast_mask = ALE_ALL_PORTS;
1191 	else
1192 		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1193 
1194 	cpsw_ale_add_vlan(priv->ale, vlan, ALE_ALL_PORTS,
1195 			  ALE_ALL_PORTS, ALE_ALL_PORTS,
1196 			  unreg_mcast_mask);
1197 }
1198 
1199 static void cpsw_init_host_port(struct cpsw_priv *priv)
1200 {
1201 	u32 control_reg;
1202 	u32 fifo_mode;
1203 
1204 	/* soft reset the controller and initialize ale */
1205 	soft_reset("cpsw", &priv->regs->soft_reset);
1206 	cpsw_ale_start(priv->ale);
1207 
1208 	/* switch to vlan unaware mode */
1209 	cpsw_ale_control_set(priv->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1210 			     CPSW_ALE_VLAN_AWARE);
1211 	control_reg = readl(&priv->regs->control);
1212 	control_reg |= CPSW_VLAN_AWARE;
1213 	writel(control_reg, &priv->regs->control);
1214 	fifo_mode = (priv->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1215 		     CPSW_FIFO_NORMAL_MODE;
1216 	writel(fifo_mode, &priv->host_port_regs->tx_in_ctl);
1217 
1218 	/* setup host port priority mapping */
1219 	__raw_writel(CPDMA_TX_PRIORITY_MAP,
1220 		     &priv->host_port_regs->cpdma_tx_pri_map);
1221 	__raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
1222 
1223 	cpsw_ale_control_set(priv->ale, HOST_PORT_NUM,
1224 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1225 
1226 	if (!priv->data.dual_emac) {
1227 		cpsw_ale_add_ucast(priv->ale, priv->mac_addr, HOST_PORT_NUM,
1228 				   0, 0);
1229 		cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1230 				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1231 	}
1232 }
1233 
1234 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_priv *priv)
1235 {
1236 	u32 slave_port;
1237 
1238 	slave_port = cpsw_get_slave_port(priv, slave->slave_num);
1239 
1240 	if (!slave->phy)
1241 		return;
1242 	phy_stop(slave->phy);
1243 	phy_disconnect(slave->phy);
1244 	slave->phy = NULL;
1245 	cpsw_ale_control_set(priv->ale, slave_port,
1246 			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1247 }
1248 
1249 static int cpsw_ndo_open(struct net_device *ndev)
1250 {
1251 	struct cpsw_priv *priv = netdev_priv(ndev);
1252 	int i, ret;
1253 	u32 reg;
1254 
1255 	pm_runtime_get_sync(&priv->pdev->dev);
1256 
1257 	if (!cpsw_common_res_usage_state(priv))
1258 		cpsw_intr_disable(priv);
1259 	netif_carrier_off(ndev);
1260 
1261 	reg = priv->version;
1262 
1263 	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1264 		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1265 		 CPSW_RTL_VERSION(reg));
1266 
1267 	/* initialize host and slave ports */
1268 	if (!cpsw_common_res_usage_state(priv))
1269 		cpsw_init_host_port(priv);
1270 	for_each_slave(priv, cpsw_slave_open, priv);
1271 
1272 	/* Add default VLAN */
1273 	if (!priv->data.dual_emac)
1274 		cpsw_add_default_vlan(priv);
1275 	else
1276 		cpsw_ale_add_vlan(priv->ale, priv->data.default_vlan,
1277 				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1278 
1279 	if (!cpsw_common_res_usage_state(priv)) {
1280 		struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0);
1281 
1282 		/* setup tx dma to fixed prio and zero offset */
1283 		cpdma_control_set(priv->dma, CPDMA_TX_PRIO_FIXED, 1);
1284 		cpdma_control_set(priv->dma, CPDMA_RX_BUFFER_OFFSET, 0);
1285 
1286 		/* disable priority elevation */
1287 		__raw_writel(0, &priv->regs->ptype);
1288 
1289 		/* enable statistics collection only on all ports */
1290 		__raw_writel(0x7, &priv->regs->stat_port_en);
1291 
1292 		/* Enable internal fifo flow control */
1293 		writel(0x7, &priv->regs->flow_control);
1294 
1295 		napi_enable(&priv_sl0->napi_rx);
1296 		napi_enable(&priv_sl0->napi_tx);
1297 
1298 		if (priv_sl0->tx_irq_disabled) {
1299 			priv_sl0->tx_irq_disabled = false;
1300 			enable_irq(priv->irqs_table[1]);
1301 		}
1302 
1303 		if (priv_sl0->rx_irq_disabled) {
1304 			priv_sl0->rx_irq_disabled = false;
1305 			enable_irq(priv->irqs_table[0]);
1306 		}
1307 
1308 		if (WARN_ON(!priv->data.rx_descs))
1309 			priv->data.rx_descs = 128;
1310 
1311 		for (i = 0; i < priv->data.rx_descs; i++) {
1312 			struct sk_buff *skb;
1313 
1314 			ret = -ENOMEM;
1315 			skb = __netdev_alloc_skb_ip_align(priv->ndev,
1316 					priv->rx_packet_max, GFP_KERNEL);
1317 			if (!skb)
1318 				goto err_cleanup;
1319 			ret = cpdma_chan_submit(priv->rxch, skb, skb->data,
1320 					skb_tailroom(skb), 0);
1321 			if (ret < 0) {
1322 				kfree_skb(skb);
1323 				goto err_cleanup;
1324 			}
1325 		}
1326 		/* continue even if we didn't manage to submit all
1327 		 * receive descs
1328 		 */
1329 		cpsw_info(priv, ifup, "submitted %d rx descriptors\n", i);
1330 
1331 		if (cpts_register(&priv->pdev->dev, priv->cpts,
1332 				  priv->data.cpts_clock_mult,
1333 				  priv->data.cpts_clock_shift))
1334 			dev_err(priv->dev, "error registering cpts device\n");
1335 
1336 	}
1337 
1338 	/* Enable Interrupt pacing if configured */
1339 	if (priv->coal_intvl != 0) {
1340 		struct ethtool_coalesce coal;
1341 
1342 		coal.rx_coalesce_usecs = priv->coal_intvl;
1343 		cpsw_set_coalesce(ndev, &coal);
1344 	}
1345 
1346 	cpdma_ctlr_start(priv->dma);
1347 	cpsw_intr_enable(priv);
1348 
1349 	if (priv->data.dual_emac)
1350 		priv->slaves[priv->emac_port].open_stat = true;
1351 	return 0;
1352 
1353 err_cleanup:
1354 	cpdma_ctlr_stop(priv->dma);
1355 	for_each_slave(priv, cpsw_slave_stop, priv);
1356 	pm_runtime_put_sync(&priv->pdev->dev);
1357 	netif_carrier_off(priv->ndev);
1358 	return ret;
1359 }
1360 
1361 static int cpsw_ndo_stop(struct net_device *ndev)
1362 {
1363 	struct cpsw_priv *priv = netdev_priv(ndev);
1364 
1365 	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1366 	netif_stop_queue(priv->ndev);
1367 	netif_carrier_off(priv->ndev);
1368 
1369 	if (cpsw_common_res_usage_state(priv) <= 1) {
1370 		struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0);
1371 
1372 		napi_disable(&priv_sl0->napi_rx);
1373 		napi_disable(&priv_sl0->napi_tx);
1374 		cpts_unregister(priv->cpts);
1375 		cpsw_intr_disable(priv);
1376 		cpdma_ctlr_stop(priv->dma);
1377 		cpsw_ale_stop(priv->ale);
1378 	}
1379 	for_each_slave(priv, cpsw_slave_stop, priv);
1380 	pm_runtime_put_sync(&priv->pdev->dev);
1381 	if (priv->data.dual_emac)
1382 		priv->slaves[priv->emac_port].open_stat = false;
1383 	return 0;
1384 }
1385 
1386 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1387 				       struct net_device *ndev)
1388 {
1389 	struct cpsw_priv *priv = netdev_priv(ndev);
1390 	int ret;
1391 
1392 	netif_trans_update(ndev);
1393 
1394 	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1395 		cpsw_err(priv, tx_err, "packet pad failed\n");
1396 		ndev->stats.tx_dropped++;
1397 		return NETDEV_TX_OK;
1398 	}
1399 
1400 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1401 				priv->cpts->tx_enable)
1402 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1403 
1404 	skb_tx_timestamp(skb);
1405 
1406 	ret = cpsw_tx_packet_submit(ndev, priv, skb);
1407 	if (unlikely(ret != 0)) {
1408 		cpsw_err(priv, tx_err, "desc submit failed\n");
1409 		goto fail;
1410 	}
1411 
1412 	/* If there is no more tx desc left free then we need to
1413 	 * tell the kernel to stop sending us tx frames.
1414 	 */
1415 	if (unlikely(!cpdma_check_free_tx_desc(priv->txch)))
1416 		netif_stop_queue(ndev);
1417 
1418 	return NETDEV_TX_OK;
1419 fail:
1420 	ndev->stats.tx_dropped++;
1421 	netif_stop_queue(ndev);
1422 	return NETDEV_TX_BUSY;
1423 }
1424 
1425 #ifdef CONFIG_TI_CPTS
1426 
1427 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv)
1428 {
1429 	struct cpsw_slave *slave = &priv->slaves[priv->data.active_slave];
1430 	u32 ts_en, seq_id;
1431 
1432 	if (!priv->cpts->tx_enable && !priv->cpts->rx_enable) {
1433 		slave_write(slave, 0, CPSW1_TS_CTL);
1434 		return;
1435 	}
1436 
1437 	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1438 	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1439 
1440 	if (priv->cpts->tx_enable)
1441 		ts_en |= CPSW_V1_TS_TX_EN;
1442 
1443 	if (priv->cpts->rx_enable)
1444 		ts_en |= CPSW_V1_TS_RX_EN;
1445 
1446 	slave_write(slave, ts_en, CPSW1_TS_CTL);
1447 	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1448 }
1449 
1450 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1451 {
1452 	struct cpsw_slave *slave;
1453 	u32 ctrl, mtype;
1454 
1455 	if (priv->data.dual_emac)
1456 		slave = &priv->slaves[priv->emac_port];
1457 	else
1458 		slave = &priv->slaves[priv->data.active_slave];
1459 
1460 	ctrl = slave_read(slave, CPSW2_CONTROL);
1461 	switch (priv->version) {
1462 	case CPSW_VERSION_2:
1463 		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1464 
1465 		if (priv->cpts->tx_enable)
1466 			ctrl |= CTRL_V2_TX_TS_BITS;
1467 
1468 		if (priv->cpts->rx_enable)
1469 			ctrl |= CTRL_V2_RX_TS_BITS;
1470 		break;
1471 	case CPSW_VERSION_3:
1472 	default:
1473 		ctrl &= ~CTRL_V3_ALL_TS_MASK;
1474 
1475 		if (priv->cpts->tx_enable)
1476 			ctrl |= CTRL_V3_TX_TS_BITS;
1477 
1478 		if (priv->cpts->rx_enable)
1479 			ctrl |= CTRL_V3_RX_TS_BITS;
1480 		break;
1481 	}
1482 
1483 	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1484 
1485 	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1486 	slave_write(slave, ctrl, CPSW2_CONTROL);
1487 	__raw_writel(ETH_P_1588, &priv->regs->ts_ltype);
1488 }
1489 
1490 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1491 {
1492 	struct cpsw_priv *priv = netdev_priv(dev);
1493 	struct cpts *cpts = priv->cpts;
1494 	struct hwtstamp_config cfg;
1495 
1496 	if (priv->version != CPSW_VERSION_1 &&
1497 	    priv->version != CPSW_VERSION_2 &&
1498 	    priv->version != CPSW_VERSION_3)
1499 		return -EOPNOTSUPP;
1500 
1501 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1502 		return -EFAULT;
1503 
1504 	/* reserved for future extensions */
1505 	if (cfg.flags)
1506 		return -EINVAL;
1507 
1508 	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1509 		return -ERANGE;
1510 
1511 	switch (cfg.rx_filter) {
1512 	case HWTSTAMP_FILTER_NONE:
1513 		cpts->rx_enable = 0;
1514 		break;
1515 	case HWTSTAMP_FILTER_ALL:
1516 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1517 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1518 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1519 		return -ERANGE;
1520 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1521 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1522 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1523 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1524 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1525 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1526 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1527 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1528 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1529 		cpts->rx_enable = 1;
1530 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1531 		break;
1532 	default:
1533 		return -ERANGE;
1534 	}
1535 
1536 	cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON;
1537 
1538 	switch (priv->version) {
1539 	case CPSW_VERSION_1:
1540 		cpsw_hwtstamp_v1(priv);
1541 		break;
1542 	case CPSW_VERSION_2:
1543 	case CPSW_VERSION_3:
1544 		cpsw_hwtstamp_v2(priv);
1545 		break;
1546 	default:
1547 		WARN_ON(1);
1548 	}
1549 
1550 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1551 }
1552 
1553 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1554 {
1555 	struct cpsw_priv *priv = netdev_priv(dev);
1556 	struct cpts *cpts = priv->cpts;
1557 	struct hwtstamp_config cfg;
1558 
1559 	if (priv->version != CPSW_VERSION_1 &&
1560 	    priv->version != CPSW_VERSION_2 &&
1561 	    priv->version != CPSW_VERSION_3)
1562 		return -EOPNOTSUPP;
1563 
1564 	cfg.flags = 0;
1565 	cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1566 	cfg.rx_filter = (cpts->rx_enable ?
1567 			 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE);
1568 
1569 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1570 }
1571 
1572 #endif /*CONFIG_TI_CPTS*/
1573 
1574 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1575 {
1576 	struct cpsw_priv *priv = netdev_priv(dev);
1577 	int slave_no = cpsw_slave_index(priv);
1578 
1579 	if (!netif_running(dev))
1580 		return -EINVAL;
1581 
1582 	switch (cmd) {
1583 #ifdef CONFIG_TI_CPTS
1584 	case SIOCSHWTSTAMP:
1585 		return cpsw_hwtstamp_set(dev, req);
1586 	case SIOCGHWTSTAMP:
1587 		return cpsw_hwtstamp_get(dev, req);
1588 #endif
1589 	}
1590 
1591 	if (!priv->slaves[slave_no].phy)
1592 		return -EOPNOTSUPP;
1593 	return phy_mii_ioctl(priv->slaves[slave_no].phy, req, cmd);
1594 }
1595 
1596 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1597 {
1598 	struct cpsw_priv *priv = netdev_priv(ndev);
1599 
1600 	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1601 	ndev->stats.tx_errors++;
1602 	cpsw_intr_disable(priv);
1603 	cpdma_chan_stop(priv->txch);
1604 	cpdma_chan_start(priv->txch);
1605 	cpsw_intr_enable(priv);
1606 }
1607 
1608 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1609 {
1610 	struct cpsw_priv *priv = netdev_priv(ndev);
1611 	struct sockaddr *addr = (struct sockaddr *)p;
1612 	int flags = 0;
1613 	u16 vid = 0;
1614 
1615 	if (!is_valid_ether_addr(addr->sa_data))
1616 		return -EADDRNOTAVAIL;
1617 
1618 	if (priv->data.dual_emac) {
1619 		vid = priv->slaves[priv->emac_port].port_vlan;
1620 		flags = ALE_VLAN;
1621 	}
1622 
1623 	cpsw_ale_del_ucast(priv->ale, priv->mac_addr, HOST_PORT_NUM,
1624 			   flags, vid);
1625 	cpsw_ale_add_ucast(priv->ale, addr->sa_data, HOST_PORT_NUM,
1626 			   flags, vid);
1627 
1628 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1629 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1630 	for_each_slave(priv, cpsw_set_slave_mac, priv);
1631 
1632 	return 0;
1633 }
1634 
1635 #ifdef CONFIG_NET_POLL_CONTROLLER
1636 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1637 {
1638 	struct cpsw_priv *priv = netdev_priv(ndev);
1639 
1640 	cpsw_intr_disable(priv);
1641 	cpsw_rx_interrupt(priv->irqs_table[0], priv);
1642 	cpsw_tx_interrupt(priv->irqs_table[1], priv);
1643 	cpsw_intr_enable(priv);
1644 }
1645 #endif
1646 
1647 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1648 				unsigned short vid)
1649 {
1650 	int ret;
1651 	int unreg_mcast_mask = 0;
1652 	u32 port_mask;
1653 
1654 	if (priv->data.dual_emac) {
1655 		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1656 
1657 		if (priv->ndev->flags & IFF_ALLMULTI)
1658 			unreg_mcast_mask = port_mask;
1659 	} else {
1660 		port_mask = ALE_ALL_PORTS;
1661 
1662 		if (priv->ndev->flags & IFF_ALLMULTI)
1663 			unreg_mcast_mask = ALE_ALL_PORTS;
1664 		else
1665 			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1666 	}
1667 
1668 	ret = cpsw_ale_add_vlan(priv->ale, vid, port_mask, 0, port_mask,
1669 				unreg_mcast_mask);
1670 	if (ret != 0)
1671 		return ret;
1672 
1673 	ret = cpsw_ale_add_ucast(priv->ale, priv->mac_addr,
1674 				 HOST_PORT_NUM, ALE_VLAN, vid);
1675 	if (ret != 0)
1676 		goto clean_vid;
1677 
1678 	ret = cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1679 				 port_mask, ALE_VLAN, vid, 0);
1680 	if (ret != 0)
1681 		goto clean_vlan_ucast;
1682 	return 0;
1683 
1684 clean_vlan_ucast:
1685 	cpsw_ale_del_ucast(priv->ale, priv->mac_addr,
1686 			   HOST_PORT_NUM, ALE_VLAN, vid);
1687 clean_vid:
1688 	cpsw_ale_del_vlan(priv->ale, vid, 0);
1689 	return ret;
1690 }
1691 
1692 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1693 				    __be16 proto, u16 vid)
1694 {
1695 	struct cpsw_priv *priv = netdev_priv(ndev);
1696 
1697 	if (vid == priv->data.default_vlan)
1698 		return 0;
1699 
1700 	if (priv->data.dual_emac) {
1701 		/* In dual EMAC, reserved VLAN id should not be used for
1702 		 * creating VLAN interfaces as this can break the dual
1703 		 * EMAC port separation
1704 		 */
1705 		int i;
1706 
1707 		for (i = 0; i < priv->data.slaves; i++) {
1708 			if (vid == priv->slaves[i].port_vlan)
1709 				return -EINVAL;
1710 		}
1711 	}
1712 
1713 	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1714 	return cpsw_add_vlan_ale_entry(priv, vid);
1715 }
1716 
1717 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1718 				     __be16 proto, u16 vid)
1719 {
1720 	struct cpsw_priv *priv = netdev_priv(ndev);
1721 	int ret;
1722 
1723 	if (vid == priv->data.default_vlan)
1724 		return 0;
1725 
1726 	if (priv->data.dual_emac) {
1727 		int i;
1728 
1729 		for (i = 0; i < priv->data.slaves; i++) {
1730 			if (vid == priv->slaves[i].port_vlan)
1731 				return -EINVAL;
1732 		}
1733 	}
1734 
1735 	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1736 	ret = cpsw_ale_del_vlan(priv->ale, vid, 0);
1737 	if (ret != 0)
1738 		return ret;
1739 
1740 	ret = cpsw_ale_del_ucast(priv->ale, priv->mac_addr,
1741 				 HOST_PORT_NUM, ALE_VLAN, vid);
1742 	if (ret != 0)
1743 		return ret;
1744 
1745 	return cpsw_ale_del_mcast(priv->ale, priv->ndev->broadcast,
1746 				  0, ALE_VLAN, vid);
1747 }
1748 
1749 static const struct net_device_ops cpsw_netdev_ops = {
1750 	.ndo_open		= cpsw_ndo_open,
1751 	.ndo_stop		= cpsw_ndo_stop,
1752 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
1753 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
1754 	.ndo_do_ioctl		= cpsw_ndo_ioctl,
1755 	.ndo_validate_addr	= eth_validate_addr,
1756 	.ndo_change_mtu		= eth_change_mtu,
1757 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
1758 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
1759 #ifdef CONFIG_NET_POLL_CONTROLLER
1760 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
1761 #endif
1762 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
1763 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
1764 };
1765 
1766 static int cpsw_get_regs_len(struct net_device *ndev)
1767 {
1768 	struct cpsw_priv *priv = netdev_priv(ndev);
1769 
1770 	return priv->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
1771 }
1772 
1773 static void cpsw_get_regs(struct net_device *ndev,
1774 			  struct ethtool_regs *regs, void *p)
1775 {
1776 	struct cpsw_priv *priv = netdev_priv(ndev);
1777 	u32 *reg = p;
1778 
1779 	/* update CPSW IP version */
1780 	regs->version = priv->version;
1781 
1782 	cpsw_ale_dump(priv->ale, reg);
1783 }
1784 
1785 static void cpsw_get_drvinfo(struct net_device *ndev,
1786 			     struct ethtool_drvinfo *info)
1787 {
1788 	struct cpsw_priv *priv = netdev_priv(ndev);
1789 
1790 	strlcpy(info->driver, "cpsw", sizeof(info->driver));
1791 	strlcpy(info->version, "1.0", sizeof(info->version));
1792 	strlcpy(info->bus_info, priv->pdev->name, sizeof(info->bus_info));
1793 }
1794 
1795 static u32 cpsw_get_msglevel(struct net_device *ndev)
1796 {
1797 	struct cpsw_priv *priv = netdev_priv(ndev);
1798 	return priv->msg_enable;
1799 }
1800 
1801 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
1802 {
1803 	struct cpsw_priv *priv = netdev_priv(ndev);
1804 	priv->msg_enable = value;
1805 }
1806 
1807 static int cpsw_get_ts_info(struct net_device *ndev,
1808 			    struct ethtool_ts_info *info)
1809 {
1810 #ifdef CONFIG_TI_CPTS
1811 	struct cpsw_priv *priv = netdev_priv(ndev);
1812 
1813 	info->so_timestamping =
1814 		SOF_TIMESTAMPING_TX_HARDWARE |
1815 		SOF_TIMESTAMPING_TX_SOFTWARE |
1816 		SOF_TIMESTAMPING_RX_HARDWARE |
1817 		SOF_TIMESTAMPING_RX_SOFTWARE |
1818 		SOF_TIMESTAMPING_SOFTWARE |
1819 		SOF_TIMESTAMPING_RAW_HARDWARE;
1820 	info->phc_index = priv->cpts->phc_index;
1821 	info->tx_types =
1822 		(1 << HWTSTAMP_TX_OFF) |
1823 		(1 << HWTSTAMP_TX_ON);
1824 	info->rx_filters =
1825 		(1 << HWTSTAMP_FILTER_NONE) |
1826 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
1827 #else
1828 	info->so_timestamping =
1829 		SOF_TIMESTAMPING_TX_SOFTWARE |
1830 		SOF_TIMESTAMPING_RX_SOFTWARE |
1831 		SOF_TIMESTAMPING_SOFTWARE;
1832 	info->phc_index = -1;
1833 	info->tx_types = 0;
1834 	info->rx_filters = 0;
1835 #endif
1836 	return 0;
1837 }
1838 
1839 static int cpsw_get_settings(struct net_device *ndev,
1840 			     struct ethtool_cmd *ecmd)
1841 {
1842 	struct cpsw_priv *priv = netdev_priv(ndev);
1843 	int slave_no = cpsw_slave_index(priv);
1844 
1845 	if (priv->slaves[slave_no].phy)
1846 		return phy_ethtool_gset(priv->slaves[slave_no].phy, ecmd);
1847 	else
1848 		return -EOPNOTSUPP;
1849 }
1850 
1851 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1852 {
1853 	struct cpsw_priv *priv = netdev_priv(ndev);
1854 	int slave_no = cpsw_slave_index(priv);
1855 
1856 	if (priv->slaves[slave_no].phy)
1857 		return phy_ethtool_sset(priv->slaves[slave_no].phy, ecmd);
1858 	else
1859 		return -EOPNOTSUPP;
1860 }
1861 
1862 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1863 {
1864 	struct cpsw_priv *priv = netdev_priv(ndev);
1865 	int slave_no = cpsw_slave_index(priv);
1866 
1867 	wol->supported = 0;
1868 	wol->wolopts = 0;
1869 
1870 	if (priv->slaves[slave_no].phy)
1871 		phy_ethtool_get_wol(priv->slaves[slave_no].phy, wol);
1872 }
1873 
1874 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1875 {
1876 	struct cpsw_priv *priv = netdev_priv(ndev);
1877 	int slave_no = cpsw_slave_index(priv);
1878 
1879 	if (priv->slaves[slave_no].phy)
1880 		return phy_ethtool_set_wol(priv->slaves[slave_no].phy, wol);
1881 	else
1882 		return -EOPNOTSUPP;
1883 }
1884 
1885 static void cpsw_get_pauseparam(struct net_device *ndev,
1886 				struct ethtool_pauseparam *pause)
1887 {
1888 	struct cpsw_priv *priv = netdev_priv(ndev);
1889 
1890 	pause->autoneg = AUTONEG_DISABLE;
1891 	pause->rx_pause = priv->rx_pause ? true : false;
1892 	pause->tx_pause = priv->tx_pause ? true : false;
1893 }
1894 
1895 static int cpsw_set_pauseparam(struct net_device *ndev,
1896 			       struct ethtool_pauseparam *pause)
1897 {
1898 	struct cpsw_priv *priv = netdev_priv(ndev);
1899 	bool link;
1900 
1901 	priv->rx_pause = pause->rx_pause ? true : false;
1902 	priv->tx_pause = pause->tx_pause ? true : false;
1903 
1904 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1905 
1906 	return 0;
1907 }
1908 
1909 static const struct ethtool_ops cpsw_ethtool_ops = {
1910 	.get_drvinfo	= cpsw_get_drvinfo,
1911 	.get_msglevel	= cpsw_get_msglevel,
1912 	.set_msglevel	= cpsw_set_msglevel,
1913 	.get_link	= ethtool_op_get_link,
1914 	.get_ts_info	= cpsw_get_ts_info,
1915 	.get_settings	= cpsw_get_settings,
1916 	.set_settings	= cpsw_set_settings,
1917 	.get_coalesce	= cpsw_get_coalesce,
1918 	.set_coalesce	= cpsw_set_coalesce,
1919 	.get_sset_count		= cpsw_get_sset_count,
1920 	.get_strings		= cpsw_get_strings,
1921 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
1922 	.get_pauseparam		= cpsw_get_pauseparam,
1923 	.set_pauseparam		= cpsw_set_pauseparam,
1924 	.get_wol	= cpsw_get_wol,
1925 	.set_wol	= cpsw_set_wol,
1926 	.get_regs_len	= cpsw_get_regs_len,
1927 	.get_regs	= cpsw_get_regs,
1928 };
1929 
1930 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv,
1931 			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
1932 {
1933 	void __iomem		*regs = priv->regs;
1934 	int			slave_num = slave->slave_num;
1935 	struct cpsw_slave_data	*data = priv->data.slave_data + slave_num;
1936 
1937 	slave->data	= data;
1938 	slave->regs	= regs + slave_reg_ofs;
1939 	slave->sliver	= regs + sliver_reg_ofs;
1940 	slave->port_vlan = data->dual_emac_res_vlan;
1941 }
1942 
1943 static int cpsw_probe_dt(struct cpsw_platform_data *data,
1944 			 struct platform_device *pdev)
1945 {
1946 	struct device_node *node = pdev->dev.of_node;
1947 	struct device_node *slave_node;
1948 	int i = 0, ret;
1949 	u32 prop;
1950 
1951 	if (!node)
1952 		return -EINVAL;
1953 
1954 	if (of_property_read_u32(node, "slaves", &prop)) {
1955 		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
1956 		return -EINVAL;
1957 	}
1958 	data->slaves = prop;
1959 
1960 	if (of_property_read_u32(node, "active_slave", &prop)) {
1961 		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
1962 		return -EINVAL;
1963 	}
1964 	data->active_slave = prop;
1965 
1966 	if (of_property_read_u32(node, "cpts_clock_mult", &prop)) {
1967 		dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n");
1968 		return -EINVAL;
1969 	}
1970 	data->cpts_clock_mult = prop;
1971 
1972 	if (of_property_read_u32(node, "cpts_clock_shift", &prop)) {
1973 		dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n");
1974 		return -EINVAL;
1975 	}
1976 	data->cpts_clock_shift = prop;
1977 
1978 	data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
1979 					* sizeof(struct cpsw_slave_data),
1980 					GFP_KERNEL);
1981 	if (!data->slave_data)
1982 		return -ENOMEM;
1983 
1984 	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
1985 		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
1986 		return -EINVAL;
1987 	}
1988 	data->channels = prop;
1989 
1990 	if (of_property_read_u32(node, "ale_entries", &prop)) {
1991 		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
1992 		return -EINVAL;
1993 	}
1994 	data->ale_entries = prop;
1995 
1996 	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
1997 		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
1998 		return -EINVAL;
1999 	}
2000 	data->bd_ram_size = prop;
2001 
2002 	if (of_property_read_u32(node, "rx_descs", &prop)) {
2003 		dev_err(&pdev->dev, "Missing rx_descs property in the DT.\n");
2004 		return -EINVAL;
2005 	}
2006 	data->rx_descs = prop;
2007 
2008 	if (of_property_read_u32(node, "mac_control", &prop)) {
2009 		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2010 		return -EINVAL;
2011 	}
2012 	data->mac_control = prop;
2013 
2014 	if (of_property_read_bool(node, "dual_emac"))
2015 		data->dual_emac = 1;
2016 
2017 	/*
2018 	 * Populate all the child nodes here...
2019 	 */
2020 	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2021 	/* We do not want to force this, as in some cases may not have child */
2022 	if (ret)
2023 		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2024 
2025 	for_each_child_of_node(node, slave_node) {
2026 		struct cpsw_slave_data *slave_data = data->slave_data + i;
2027 		const void *mac_addr = NULL;
2028 		int lenp;
2029 		const __be32 *parp;
2030 
2031 		/* This is no slave child node, continue */
2032 		if (strcmp(slave_node->name, "slave"))
2033 			continue;
2034 
2035 		slave_data->phy_node = of_parse_phandle(slave_node,
2036 							"phy-handle", 0);
2037 		parp = of_get_property(slave_node, "phy_id", &lenp);
2038 		if (slave_data->phy_node) {
2039 			dev_dbg(&pdev->dev,
2040 				"slave[%d] using phy-handle=\"%s\"\n",
2041 				i, slave_data->phy_node->full_name);
2042 		} else if (of_phy_is_fixed_link(slave_node)) {
2043 			/* In the case of a fixed PHY, the DT node associated
2044 			 * to the PHY is the Ethernet MAC DT node.
2045 			 */
2046 			ret = of_phy_register_fixed_link(slave_node);
2047 			if (ret)
2048 				return ret;
2049 			slave_data->phy_node = of_node_get(slave_node);
2050 		} else if (parp) {
2051 			u32 phyid;
2052 			struct device_node *mdio_node;
2053 			struct platform_device *mdio;
2054 
2055 			if (lenp != (sizeof(__be32) * 2)) {
2056 				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2057 				goto no_phy_slave;
2058 			}
2059 			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2060 			phyid = be32_to_cpup(parp+1);
2061 			mdio = of_find_device_by_node(mdio_node);
2062 			of_node_put(mdio_node);
2063 			if (!mdio) {
2064 				dev_err(&pdev->dev, "Missing mdio platform device\n");
2065 				return -EINVAL;
2066 			}
2067 			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2068 				 PHY_ID_FMT, mdio->name, phyid);
2069 		} else {
2070 			dev_err(&pdev->dev,
2071 				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2072 				i);
2073 			goto no_phy_slave;
2074 		}
2075 		slave_data->phy_if = of_get_phy_mode(slave_node);
2076 		if (slave_data->phy_if < 0) {
2077 			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2078 				i);
2079 			return slave_data->phy_if;
2080 		}
2081 
2082 no_phy_slave:
2083 		mac_addr = of_get_mac_address(slave_node);
2084 		if (mac_addr) {
2085 			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2086 		} else {
2087 			ret = ti_cm_get_macid(&pdev->dev, i,
2088 					      slave_data->mac_addr);
2089 			if (ret)
2090 				return ret;
2091 		}
2092 		if (data->dual_emac) {
2093 			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2094 						 &prop)) {
2095 				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2096 				slave_data->dual_emac_res_vlan = i+1;
2097 				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2098 					slave_data->dual_emac_res_vlan, i);
2099 			} else {
2100 				slave_data->dual_emac_res_vlan = prop;
2101 			}
2102 		}
2103 
2104 		i++;
2105 		if (i == data->slaves)
2106 			break;
2107 	}
2108 
2109 	return 0;
2110 }
2111 
2112 static int cpsw_probe_dual_emac(struct platform_device *pdev,
2113 				struct cpsw_priv *priv)
2114 {
2115 	struct cpsw_platform_data	*data = &priv->data;
2116 	struct net_device		*ndev;
2117 	struct cpsw_priv		*priv_sl2;
2118 	int ret = 0, i;
2119 
2120 	ndev = alloc_etherdev(sizeof(struct cpsw_priv));
2121 	if (!ndev) {
2122 		dev_err(&pdev->dev, "cpsw: error allocating net_device\n");
2123 		return -ENOMEM;
2124 	}
2125 
2126 	priv_sl2 = netdev_priv(ndev);
2127 	spin_lock_init(&priv_sl2->lock);
2128 	priv_sl2->data = *data;
2129 	priv_sl2->pdev = pdev;
2130 	priv_sl2->ndev = ndev;
2131 	priv_sl2->dev  = &ndev->dev;
2132 	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2133 	priv_sl2->rx_packet_max = max(rx_packet_max, 128);
2134 
2135 	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2136 		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2137 			ETH_ALEN);
2138 		dev_info(&pdev->dev, "cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr);
2139 	} else {
2140 		random_ether_addr(priv_sl2->mac_addr);
2141 		dev_info(&pdev->dev, "cpsw: Random MACID = %pM\n", priv_sl2->mac_addr);
2142 	}
2143 	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2144 
2145 	priv_sl2->slaves = priv->slaves;
2146 	priv_sl2->clk = priv->clk;
2147 
2148 	priv_sl2->coal_intvl = 0;
2149 	priv_sl2->bus_freq_mhz = priv->bus_freq_mhz;
2150 
2151 	priv_sl2->regs = priv->regs;
2152 	priv_sl2->host_port_regs = priv->host_port_regs;
2153 	priv_sl2->wr_regs = priv->wr_regs;
2154 	priv_sl2->hw_stats = priv->hw_stats;
2155 	priv_sl2->dma = priv->dma;
2156 	priv_sl2->txch = priv->txch;
2157 	priv_sl2->rxch = priv->rxch;
2158 	priv_sl2->ale = priv->ale;
2159 	priv_sl2->emac_port = 1;
2160 	priv->slaves[1].ndev = ndev;
2161 	priv_sl2->cpts = priv->cpts;
2162 	priv_sl2->version = priv->version;
2163 
2164 	for (i = 0; i < priv->num_irqs; i++) {
2165 		priv_sl2->irqs_table[i] = priv->irqs_table[i];
2166 		priv_sl2->num_irqs = priv->num_irqs;
2167 	}
2168 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2169 
2170 	ndev->netdev_ops = &cpsw_netdev_ops;
2171 	ndev->ethtool_ops = &cpsw_ethtool_ops;
2172 
2173 	/* register the network device */
2174 	SET_NETDEV_DEV(ndev, &pdev->dev);
2175 	ret = register_netdev(ndev);
2176 	if (ret) {
2177 		dev_err(&pdev->dev, "cpsw: error registering net device\n");
2178 		free_netdev(ndev);
2179 		ret = -ENODEV;
2180 	}
2181 
2182 	return ret;
2183 }
2184 
2185 #define CPSW_QUIRK_IRQ		BIT(0)
2186 
2187 static struct platform_device_id cpsw_devtype[] = {
2188 	{
2189 		/* keep it for existing comaptibles */
2190 		.name = "cpsw",
2191 		.driver_data = CPSW_QUIRK_IRQ,
2192 	}, {
2193 		.name = "am335x-cpsw",
2194 		.driver_data = CPSW_QUIRK_IRQ,
2195 	}, {
2196 		.name = "am4372-cpsw",
2197 		.driver_data = 0,
2198 	}, {
2199 		.name = "dra7-cpsw",
2200 		.driver_data = 0,
2201 	}, {
2202 		/* sentinel */
2203 	}
2204 };
2205 MODULE_DEVICE_TABLE(platform, cpsw_devtype);
2206 
2207 enum ti_cpsw_type {
2208 	CPSW = 0,
2209 	AM335X_CPSW,
2210 	AM4372_CPSW,
2211 	DRA7_CPSW,
2212 };
2213 
2214 static const struct of_device_id cpsw_of_mtable[] = {
2215 	{ .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
2216 	{ .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
2217 	{ .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
2218 	{ .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
2219 	{ /* sentinel */ },
2220 };
2221 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2222 
2223 static int cpsw_probe(struct platform_device *pdev)
2224 {
2225 	struct cpsw_platform_data	*data;
2226 	struct net_device		*ndev;
2227 	struct cpsw_priv		*priv;
2228 	struct cpdma_params		dma_params;
2229 	struct cpsw_ale_params		ale_params;
2230 	void __iomem			*ss_regs;
2231 	struct resource			*res, *ss_res;
2232 	const struct of_device_id	*of_id;
2233 	struct gpio_descs		*mode;
2234 	u32 slave_offset, sliver_offset, slave_size;
2235 	int ret = 0, i;
2236 	int irq;
2237 
2238 	ndev = alloc_etherdev(sizeof(struct cpsw_priv));
2239 	if (!ndev) {
2240 		dev_err(&pdev->dev, "error allocating net_device\n");
2241 		return -ENOMEM;
2242 	}
2243 
2244 	platform_set_drvdata(pdev, ndev);
2245 	priv = netdev_priv(ndev);
2246 	spin_lock_init(&priv->lock);
2247 	priv->pdev = pdev;
2248 	priv->ndev = ndev;
2249 	priv->dev  = &ndev->dev;
2250 	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2251 	priv->rx_packet_max = max(rx_packet_max, 128);
2252 	priv->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL);
2253 	if (!priv->cpts) {
2254 		dev_err(&pdev->dev, "error allocating cpts\n");
2255 		ret = -ENOMEM;
2256 		goto clean_ndev_ret;
2257 	}
2258 
2259 	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
2260 	if (IS_ERR(mode)) {
2261 		ret = PTR_ERR(mode);
2262 		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
2263 		goto clean_ndev_ret;
2264 	}
2265 
2266 	/*
2267 	 * This may be required here for child devices.
2268 	 */
2269 	pm_runtime_enable(&pdev->dev);
2270 
2271 	/* Select default pin state */
2272 	pinctrl_pm_select_default_state(&pdev->dev);
2273 
2274 	if (cpsw_probe_dt(&priv->data, pdev)) {
2275 		dev_err(&pdev->dev, "cpsw: platform data missing\n");
2276 		ret = -ENODEV;
2277 		goto clean_runtime_disable_ret;
2278 	}
2279 	data = &priv->data;
2280 
2281 	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2282 		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2283 		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2284 	} else {
2285 		eth_random_addr(priv->mac_addr);
2286 		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2287 	}
2288 
2289 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2290 
2291 	priv->slaves = devm_kzalloc(&pdev->dev,
2292 				    sizeof(struct cpsw_slave) * data->slaves,
2293 				    GFP_KERNEL);
2294 	if (!priv->slaves) {
2295 		ret = -ENOMEM;
2296 		goto clean_runtime_disable_ret;
2297 	}
2298 	for (i = 0; i < data->slaves; i++)
2299 		priv->slaves[i].slave_num = i;
2300 
2301 	priv->slaves[0].ndev = ndev;
2302 	priv->emac_port = 0;
2303 
2304 	priv->clk = devm_clk_get(&pdev->dev, "fck");
2305 	if (IS_ERR(priv->clk)) {
2306 		dev_err(priv->dev, "fck is not found\n");
2307 		ret = -ENODEV;
2308 		goto clean_runtime_disable_ret;
2309 	}
2310 	priv->coal_intvl = 0;
2311 	priv->bus_freq_mhz = clk_get_rate(priv->clk) / 1000000;
2312 
2313 	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2314 	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
2315 	if (IS_ERR(ss_regs)) {
2316 		ret = PTR_ERR(ss_regs);
2317 		goto clean_runtime_disable_ret;
2318 	}
2319 	priv->regs = ss_regs;
2320 
2321 	/* Need to enable clocks with runtime PM api to access module
2322 	 * registers
2323 	 */
2324 	pm_runtime_get_sync(&pdev->dev);
2325 	priv->version = readl(&priv->regs->id_ver);
2326 	pm_runtime_put_sync(&pdev->dev);
2327 
2328 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2329 	priv->wr_regs = devm_ioremap_resource(&pdev->dev, res);
2330 	if (IS_ERR(priv->wr_regs)) {
2331 		ret = PTR_ERR(priv->wr_regs);
2332 		goto clean_runtime_disable_ret;
2333 	}
2334 
2335 	memset(&dma_params, 0, sizeof(dma_params));
2336 	memset(&ale_params, 0, sizeof(ale_params));
2337 
2338 	switch (priv->version) {
2339 	case CPSW_VERSION_1:
2340 		priv->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2341 		priv->cpts->reg      = ss_regs + CPSW1_CPTS_OFFSET;
2342 		priv->hw_stats	     = ss_regs + CPSW1_HW_STATS;
2343 		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
2344 		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
2345 		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
2346 		slave_offset         = CPSW1_SLAVE_OFFSET;
2347 		slave_size           = CPSW1_SLAVE_SIZE;
2348 		sliver_offset        = CPSW1_SLIVER_OFFSET;
2349 		dma_params.desc_mem_phys = 0;
2350 		break;
2351 	case CPSW_VERSION_2:
2352 	case CPSW_VERSION_3:
2353 	case CPSW_VERSION_4:
2354 		priv->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
2355 		priv->cpts->reg      = ss_regs + CPSW2_CPTS_OFFSET;
2356 		priv->hw_stats	     = ss_regs + CPSW2_HW_STATS;
2357 		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
2358 		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
2359 		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
2360 		slave_offset         = CPSW2_SLAVE_OFFSET;
2361 		slave_size           = CPSW2_SLAVE_SIZE;
2362 		sliver_offset        = CPSW2_SLIVER_OFFSET;
2363 		dma_params.desc_mem_phys =
2364 			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
2365 		break;
2366 	default:
2367 		dev_err(priv->dev, "unknown version 0x%08x\n", priv->version);
2368 		ret = -ENODEV;
2369 		goto clean_runtime_disable_ret;
2370 	}
2371 	for (i = 0; i < priv->data.slaves; i++) {
2372 		struct cpsw_slave *slave = &priv->slaves[i];
2373 		cpsw_slave_init(slave, priv, slave_offset, sliver_offset);
2374 		slave_offset  += slave_size;
2375 		sliver_offset += SLIVER_SIZE;
2376 	}
2377 
2378 	dma_params.dev		= &pdev->dev;
2379 	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
2380 	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
2381 	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
2382 	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
2383 	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
2384 
2385 	dma_params.num_chan		= data->channels;
2386 	dma_params.has_soft_reset	= true;
2387 	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
2388 	dma_params.desc_mem_size	= data->bd_ram_size;
2389 	dma_params.desc_align		= 16;
2390 	dma_params.has_ext_regs		= true;
2391 	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
2392 
2393 	priv->dma = cpdma_ctlr_create(&dma_params);
2394 	if (!priv->dma) {
2395 		dev_err(priv->dev, "error initializing dma\n");
2396 		ret = -ENOMEM;
2397 		goto clean_runtime_disable_ret;
2398 	}
2399 
2400 	priv->txch = cpdma_chan_create(priv->dma, tx_chan_num(0),
2401 				       cpsw_tx_handler);
2402 	priv->rxch = cpdma_chan_create(priv->dma, rx_chan_num(0),
2403 				       cpsw_rx_handler);
2404 
2405 	if (WARN_ON(!priv->txch || !priv->rxch)) {
2406 		dev_err(priv->dev, "error initializing dma channels\n");
2407 		ret = -ENOMEM;
2408 		goto clean_dma_ret;
2409 	}
2410 
2411 	ale_params.dev			= &ndev->dev;
2412 	ale_params.ale_ageout		= ale_ageout;
2413 	ale_params.ale_entries		= data->ale_entries;
2414 	ale_params.ale_ports		= data->slaves;
2415 
2416 	priv->ale = cpsw_ale_create(&ale_params);
2417 	if (!priv->ale) {
2418 		dev_err(priv->dev, "error initializing ale engine\n");
2419 		ret = -ENODEV;
2420 		goto clean_dma_ret;
2421 	}
2422 
2423 	ndev->irq = platform_get_irq(pdev, 1);
2424 	if (ndev->irq < 0) {
2425 		dev_err(priv->dev, "error getting irq resource\n");
2426 		ret = ndev->irq;
2427 		goto clean_ale_ret;
2428 	}
2429 
2430 	of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
2431 	if (of_id) {
2432 		pdev->id_entry = of_id->data;
2433 		if (pdev->id_entry->driver_data)
2434 			priv->quirk_irq = true;
2435 	}
2436 
2437 	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
2438 	 * MISC IRQs which are always kept disabled with this driver so
2439 	 * we will not request them.
2440 	 *
2441 	 * If anyone wants to implement support for those, make sure to
2442 	 * first request and append them to irqs_table array.
2443 	 */
2444 
2445 	/* RX IRQ */
2446 	irq = platform_get_irq(pdev, 1);
2447 	if (irq < 0) {
2448 		ret = irq;
2449 		goto clean_ale_ret;
2450 	}
2451 
2452 	priv->irqs_table[0] = irq;
2453 	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
2454 			       0, dev_name(&pdev->dev), priv);
2455 	if (ret < 0) {
2456 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
2457 		goto clean_ale_ret;
2458 	}
2459 
2460 	/* TX IRQ */
2461 	irq = platform_get_irq(pdev, 2);
2462 	if (irq < 0) {
2463 		ret = irq;
2464 		goto clean_ale_ret;
2465 	}
2466 
2467 	priv->irqs_table[1] = irq;
2468 	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
2469 			       0, dev_name(&pdev->dev), priv);
2470 	if (ret < 0) {
2471 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
2472 		goto clean_ale_ret;
2473 	}
2474 	priv->num_irqs = 2;
2475 
2476 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2477 
2478 	ndev->netdev_ops = &cpsw_netdev_ops;
2479 	ndev->ethtool_ops = &cpsw_ethtool_ops;
2480 	netif_napi_add(ndev, &priv->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
2481 	netif_tx_napi_add(ndev, &priv->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
2482 
2483 	/* register the network device */
2484 	SET_NETDEV_DEV(ndev, &pdev->dev);
2485 	ret = register_netdev(ndev);
2486 	if (ret) {
2487 		dev_err(priv->dev, "error registering net device\n");
2488 		ret = -ENODEV;
2489 		goto clean_ale_ret;
2490 	}
2491 
2492 	cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n",
2493 		    &ss_res->start, ndev->irq);
2494 
2495 	if (priv->data.dual_emac) {
2496 		ret = cpsw_probe_dual_emac(pdev, priv);
2497 		if (ret) {
2498 			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
2499 			goto clean_ale_ret;
2500 		}
2501 	}
2502 
2503 	return 0;
2504 
2505 clean_ale_ret:
2506 	cpsw_ale_destroy(priv->ale);
2507 clean_dma_ret:
2508 	cpdma_chan_destroy(priv->txch);
2509 	cpdma_chan_destroy(priv->rxch);
2510 	cpdma_ctlr_destroy(priv->dma);
2511 clean_runtime_disable_ret:
2512 	pm_runtime_disable(&pdev->dev);
2513 clean_ndev_ret:
2514 	free_netdev(priv->ndev);
2515 	return ret;
2516 }
2517 
2518 static int cpsw_remove_child_device(struct device *dev, void *c)
2519 {
2520 	struct platform_device *pdev = to_platform_device(dev);
2521 
2522 	of_device_unregister(pdev);
2523 
2524 	return 0;
2525 }
2526 
2527 static int cpsw_remove(struct platform_device *pdev)
2528 {
2529 	struct net_device *ndev = platform_get_drvdata(pdev);
2530 	struct cpsw_priv *priv = netdev_priv(ndev);
2531 
2532 	if (priv->data.dual_emac)
2533 		unregister_netdev(cpsw_get_slave_ndev(priv, 1));
2534 	unregister_netdev(ndev);
2535 
2536 	cpsw_ale_destroy(priv->ale);
2537 	cpdma_chan_destroy(priv->txch);
2538 	cpdma_chan_destroy(priv->rxch);
2539 	cpdma_ctlr_destroy(priv->dma);
2540 	pm_runtime_disable(&pdev->dev);
2541 	device_for_each_child(&pdev->dev, NULL, cpsw_remove_child_device);
2542 	if (priv->data.dual_emac)
2543 		free_netdev(cpsw_get_slave_ndev(priv, 1));
2544 	free_netdev(ndev);
2545 	return 0;
2546 }
2547 
2548 #ifdef CONFIG_PM_SLEEP
2549 static int cpsw_suspend(struct device *dev)
2550 {
2551 	struct platform_device	*pdev = to_platform_device(dev);
2552 	struct net_device	*ndev = platform_get_drvdata(pdev);
2553 	struct cpsw_priv	*priv = netdev_priv(ndev);
2554 
2555 	if (priv->data.dual_emac) {
2556 		int i;
2557 
2558 		for (i = 0; i < priv->data.slaves; i++) {
2559 			if (netif_running(priv->slaves[i].ndev))
2560 				cpsw_ndo_stop(priv->slaves[i].ndev);
2561 			soft_reset_slave(priv->slaves + i);
2562 		}
2563 	} else {
2564 		if (netif_running(ndev))
2565 			cpsw_ndo_stop(ndev);
2566 		for_each_slave(priv, soft_reset_slave);
2567 	}
2568 
2569 	pm_runtime_put_sync(&pdev->dev);
2570 
2571 	/* Select sleep pin state */
2572 	pinctrl_pm_select_sleep_state(&pdev->dev);
2573 
2574 	return 0;
2575 }
2576 
2577 static int cpsw_resume(struct device *dev)
2578 {
2579 	struct platform_device	*pdev = to_platform_device(dev);
2580 	struct net_device	*ndev = platform_get_drvdata(pdev);
2581 	struct cpsw_priv	*priv = netdev_priv(ndev);
2582 
2583 	pm_runtime_get_sync(&pdev->dev);
2584 
2585 	/* Select default pin state */
2586 	pinctrl_pm_select_default_state(&pdev->dev);
2587 
2588 	if (priv->data.dual_emac) {
2589 		int i;
2590 
2591 		for (i = 0; i < priv->data.slaves; i++) {
2592 			if (netif_running(priv->slaves[i].ndev))
2593 				cpsw_ndo_open(priv->slaves[i].ndev);
2594 		}
2595 	} else {
2596 		if (netif_running(ndev))
2597 			cpsw_ndo_open(ndev);
2598 	}
2599 	return 0;
2600 }
2601 #endif
2602 
2603 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
2604 
2605 static struct platform_driver cpsw_driver = {
2606 	.driver = {
2607 		.name	 = "cpsw",
2608 		.pm	 = &cpsw_pm_ops,
2609 		.of_match_table = cpsw_of_mtable,
2610 	},
2611 	.probe = cpsw_probe,
2612 	.remove = cpsw_remove,
2613 };
2614 
2615 module_platform_driver(cpsw_driver);
2616 
2617 MODULE_LICENSE("GPL");
2618 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
2619 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
2620 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
2621