xref: /linux/drivers/net/ethernet/ti/cpsw.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * Texas Instruments Ethernet Switch Driver
3  *
4  * Copyright (C) 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38 
39 #include <linux/pinctrl/consumer.h>
40 
41 #include "cpsw.h"
42 #include "cpsw_ale.h"
43 #include "cpts.h"
44 #include "davinci_cpdma.h"
45 
46 #define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
47 			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
48 			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
49 			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
50 			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
51 			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
52 			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
53 			 NETIF_MSG_RX_STATUS)
54 
55 #define cpsw_info(priv, type, format, ...)		\
56 do {								\
57 	if (netif_msg_##type(priv) && net_ratelimit())		\
58 		dev_info(priv->dev, format, ## __VA_ARGS__);	\
59 } while (0)
60 
61 #define cpsw_err(priv, type, format, ...)		\
62 do {								\
63 	if (netif_msg_##type(priv) && net_ratelimit())		\
64 		dev_err(priv->dev, format, ## __VA_ARGS__);	\
65 } while (0)
66 
67 #define cpsw_dbg(priv, type, format, ...)		\
68 do {								\
69 	if (netif_msg_##type(priv) && net_ratelimit())		\
70 		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
71 } while (0)
72 
73 #define cpsw_notice(priv, type, format, ...)		\
74 do {								\
75 	if (netif_msg_##type(priv) && net_ratelimit())		\
76 		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
77 } while (0)
78 
79 #define ALE_ALL_PORTS		0x7
80 
81 #define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
82 #define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
83 #define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)
84 
85 #define CPSW_VERSION_1		0x19010a
86 #define CPSW_VERSION_2		0x19010c
87 #define CPSW_VERSION_3		0x19010f
88 #define CPSW_VERSION_4		0x190112
89 
90 #define HOST_PORT_NUM		0
91 #define SLIVER_SIZE		0x40
92 
93 #define CPSW1_HOST_PORT_OFFSET	0x028
94 #define CPSW1_SLAVE_OFFSET	0x050
95 #define CPSW1_SLAVE_SIZE	0x040
96 #define CPSW1_CPDMA_OFFSET	0x100
97 #define CPSW1_STATERAM_OFFSET	0x200
98 #define CPSW1_HW_STATS		0x400
99 #define CPSW1_CPTS_OFFSET	0x500
100 #define CPSW1_ALE_OFFSET	0x600
101 #define CPSW1_SLIVER_OFFSET	0x700
102 
103 #define CPSW2_HOST_PORT_OFFSET	0x108
104 #define CPSW2_SLAVE_OFFSET	0x200
105 #define CPSW2_SLAVE_SIZE	0x100
106 #define CPSW2_CPDMA_OFFSET	0x800
107 #define CPSW2_HW_STATS		0x900
108 #define CPSW2_STATERAM_OFFSET	0xa00
109 #define CPSW2_CPTS_OFFSET	0xc00
110 #define CPSW2_ALE_OFFSET	0xd00
111 #define CPSW2_SLIVER_OFFSET	0xd80
112 #define CPSW2_BD_OFFSET		0x2000
113 
114 #define CPDMA_RXTHRESH		0x0c0
115 #define CPDMA_RXFREE		0x0e0
116 #define CPDMA_TXHDP		0x00
117 #define CPDMA_RXHDP		0x20
118 #define CPDMA_TXCP		0x40
119 #define CPDMA_RXCP		0x60
120 
121 #define CPSW_POLL_WEIGHT	64
122 #define CPSW_MIN_PACKET_SIZE	60
123 #define CPSW_MAX_PACKET_SIZE	(1500 + 14 + 4 + 4)
124 
125 #define RX_PRIORITY_MAPPING	0x76543210
126 #define TX_PRIORITY_MAPPING	0x33221100
127 #define CPDMA_TX_PRIORITY_MAP	0x76543210
128 
129 #define CPSW_VLAN_AWARE		BIT(1)
130 #define CPSW_ALE_VLAN_AWARE	1
131 
132 #define CPSW_FIFO_NORMAL_MODE		(0 << 16)
133 #define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
134 #define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
135 
136 #define CPSW_INTPACEEN		(0x3f << 16)
137 #define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
138 #define CPSW_CMINTMAX_CNT	63
139 #define CPSW_CMINTMIN_CNT	2
140 #define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
141 #define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)
142 
143 #define cpsw_slave_index(priv)				\
144 		((priv->data.dual_emac) ? priv->emac_port :	\
145 		priv->data.active_slave)
146 
147 static int debug_level;
148 module_param(debug_level, int, 0);
149 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
150 
151 static int ale_ageout = 10;
152 module_param(ale_ageout, int, 0);
153 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
154 
155 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
156 module_param(rx_packet_max, int, 0);
157 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
158 
159 struct cpsw_wr_regs {
160 	u32	id_ver;
161 	u32	soft_reset;
162 	u32	control;
163 	u32	int_control;
164 	u32	rx_thresh_en;
165 	u32	rx_en;
166 	u32	tx_en;
167 	u32	misc_en;
168 	u32	mem_allign1[8];
169 	u32	rx_thresh_stat;
170 	u32	rx_stat;
171 	u32	tx_stat;
172 	u32	misc_stat;
173 	u32	mem_allign2[8];
174 	u32	rx_imax;
175 	u32	tx_imax;
176 
177 };
178 
179 struct cpsw_ss_regs {
180 	u32	id_ver;
181 	u32	control;
182 	u32	soft_reset;
183 	u32	stat_port_en;
184 	u32	ptype;
185 	u32	soft_idle;
186 	u32	thru_rate;
187 	u32	gap_thresh;
188 	u32	tx_start_wds;
189 	u32	flow_control;
190 	u32	vlan_ltype;
191 	u32	ts_ltype;
192 	u32	dlr_ltype;
193 };
194 
195 /* CPSW_PORT_V1 */
196 #define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
197 #define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
198 #define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
199 #define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
200 #define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
201 #define CPSW1_TS_CTL        0x14 /* Time Sync Control */
202 #define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
203 #define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */
204 
205 /* CPSW_PORT_V2 */
206 #define CPSW2_CONTROL       0x00 /* Control Register */
207 #define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
208 #define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
209 #define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
210 #define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
211 #define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
212 #define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */
213 
214 /* CPSW_PORT_V1 and V2 */
215 #define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
216 #define SA_HI               0x24 /* CPGMAC_SL Source Address High */
217 #define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */
218 
219 /* CPSW_PORT_V2 only */
220 #define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
221 #define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
222 #define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
223 #define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
224 #define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
225 #define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
226 #define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
227 #define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */
228 
229 /* Bit definitions for the CPSW2_CONTROL register */
230 #define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
231 #define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
232 #define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
233 #define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
234 #define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
235 #define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
236 #define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
237 #define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
238 #define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
239 #define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
240 #define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
241 #define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
242 #define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
243 #define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
244 #define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
245 #define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
246 #define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */
247 
248 #define CTRL_V2_TS_BITS \
249 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
250 	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
251 
252 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
253 #define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
254 #define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)
255 
256 
257 #define CTRL_V3_TS_BITS \
258 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
259 	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
260 	 TS_LTYPE1_EN)
261 
262 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
263 #define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
264 #define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
265 
266 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
267 #define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
268 #define TS_SEQ_ID_OFFSET_MASK    (0x3f)
269 #define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
270 #define TS_MSG_TYPE_EN_MASK      (0xffff)
271 
272 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
273 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
274 
275 /* Bit definitions for the CPSW1_TS_CTL register */
276 #define CPSW_V1_TS_RX_EN		BIT(0)
277 #define CPSW_V1_TS_TX_EN		BIT(4)
278 #define CPSW_V1_MSG_TYPE_OFS		16
279 
280 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
281 #define CPSW_V1_SEQ_ID_OFS_SHIFT	16
282 
283 struct cpsw_host_regs {
284 	u32	max_blks;
285 	u32	blk_cnt;
286 	u32	tx_in_ctl;
287 	u32	port_vlan;
288 	u32	tx_pri_map;
289 	u32	cpdma_tx_pri_map;
290 	u32	cpdma_rx_chan_map;
291 };
292 
293 struct cpsw_sliver_regs {
294 	u32	id_ver;
295 	u32	mac_control;
296 	u32	mac_status;
297 	u32	soft_reset;
298 	u32	rx_maxlen;
299 	u32	__reserved_0;
300 	u32	rx_pause;
301 	u32	tx_pause;
302 	u32	__reserved_1;
303 	u32	rx_pri_map;
304 };
305 
306 struct cpsw_hw_stats {
307 	u32	rxgoodframes;
308 	u32	rxbroadcastframes;
309 	u32	rxmulticastframes;
310 	u32	rxpauseframes;
311 	u32	rxcrcerrors;
312 	u32	rxaligncodeerrors;
313 	u32	rxoversizedframes;
314 	u32	rxjabberframes;
315 	u32	rxundersizedframes;
316 	u32	rxfragments;
317 	u32	__pad_0[2];
318 	u32	rxoctets;
319 	u32	txgoodframes;
320 	u32	txbroadcastframes;
321 	u32	txmulticastframes;
322 	u32	txpauseframes;
323 	u32	txdeferredframes;
324 	u32	txcollisionframes;
325 	u32	txsinglecollframes;
326 	u32	txmultcollframes;
327 	u32	txexcessivecollisions;
328 	u32	txlatecollisions;
329 	u32	txunderrun;
330 	u32	txcarriersenseerrors;
331 	u32	txoctets;
332 	u32	octetframes64;
333 	u32	octetframes65t127;
334 	u32	octetframes128t255;
335 	u32	octetframes256t511;
336 	u32	octetframes512t1023;
337 	u32	octetframes1024tup;
338 	u32	netoctets;
339 	u32	rxsofoverruns;
340 	u32	rxmofoverruns;
341 	u32	rxdmaoverruns;
342 };
343 
344 struct cpsw_slave {
345 	void __iomem			*regs;
346 	struct cpsw_sliver_regs __iomem	*sliver;
347 	int				slave_num;
348 	u32				mac_control;
349 	struct cpsw_slave_data		*data;
350 	struct phy_device		*phy;
351 	struct net_device		*ndev;
352 	u32				port_vlan;
353 	u32				open_stat;
354 };
355 
356 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
357 {
358 	return __raw_readl(slave->regs + offset);
359 }
360 
361 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
362 {
363 	__raw_writel(val, slave->regs + offset);
364 }
365 
366 struct cpsw_priv {
367 	struct platform_device		*pdev;
368 	struct net_device		*ndev;
369 	struct napi_struct		napi_rx;
370 	struct napi_struct		napi_tx;
371 	struct device			*dev;
372 	struct cpsw_platform_data	data;
373 	struct cpsw_ss_regs __iomem	*regs;
374 	struct cpsw_wr_regs __iomem	*wr_regs;
375 	u8 __iomem			*hw_stats;
376 	struct cpsw_host_regs __iomem	*host_port_regs;
377 	u32				msg_enable;
378 	u32				version;
379 	u32				coal_intvl;
380 	u32				bus_freq_mhz;
381 	int				rx_packet_max;
382 	struct clk			*clk;
383 	u8				mac_addr[ETH_ALEN];
384 	struct cpsw_slave		*slaves;
385 	struct cpdma_ctlr		*dma;
386 	struct cpdma_chan		*txch, *rxch;
387 	struct cpsw_ale			*ale;
388 	bool				rx_pause;
389 	bool				tx_pause;
390 	bool				quirk_irq;
391 	bool				rx_irq_disabled;
392 	bool				tx_irq_disabled;
393 	/* snapshot of IRQ numbers */
394 	u32 irqs_table[4];
395 	u32 num_irqs;
396 	struct cpts *cpts;
397 	u32 emac_port;
398 };
399 
400 struct cpsw_stats {
401 	char stat_string[ETH_GSTRING_LEN];
402 	int type;
403 	int sizeof_stat;
404 	int stat_offset;
405 };
406 
407 enum {
408 	CPSW_STATS,
409 	CPDMA_RX_STATS,
410 	CPDMA_TX_STATS,
411 };
412 
413 #define CPSW_STAT(m)		CPSW_STATS,				\
414 				sizeof(((struct cpsw_hw_stats *)0)->m), \
415 				offsetof(struct cpsw_hw_stats, m)
416 #define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
417 				sizeof(((struct cpdma_chan_stats *)0)->m), \
418 				offsetof(struct cpdma_chan_stats, m)
419 #define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
420 				sizeof(((struct cpdma_chan_stats *)0)->m), \
421 				offsetof(struct cpdma_chan_stats, m)
422 
423 static const struct cpsw_stats cpsw_gstrings_stats[] = {
424 	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
425 	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
426 	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
427 	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
428 	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
429 	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
430 	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
431 	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
432 	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
433 	{ "Rx Fragments", CPSW_STAT(rxfragments) },
434 	{ "Rx Octets", CPSW_STAT(rxoctets) },
435 	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
436 	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
437 	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
438 	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
439 	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
440 	{ "Collisions", CPSW_STAT(txcollisionframes) },
441 	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
442 	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
443 	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
444 	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
445 	{ "Tx Underrun", CPSW_STAT(txunderrun) },
446 	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
447 	{ "Tx Octets", CPSW_STAT(txoctets) },
448 	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
449 	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
450 	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
451 	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
452 	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
453 	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
454 	{ "Net Octets", CPSW_STAT(netoctets) },
455 	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
456 	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
457 	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
458 	{ "Rx DMA chan: head_enqueue", CPDMA_RX_STAT(head_enqueue) },
459 	{ "Rx DMA chan: tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
460 	{ "Rx DMA chan: pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
461 	{ "Rx DMA chan: misqueued", CPDMA_RX_STAT(misqueued) },
462 	{ "Rx DMA chan: desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
463 	{ "Rx DMA chan: pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
464 	{ "Rx DMA chan: runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
465 	{ "Rx DMA chan: runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
466 	{ "Rx DMA chan: empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
467 	{ "Rx DMA chan: busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
468 	{ "Rx DMA chan: good_dequeue", CPDMA_RX_STAT(good_dequeue) },
469 	{ "Rx DMA chan: requeue", CPDMA_RX_STAT(requeue) },
470 	{ "Rx DMA chan: teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
471 	{ "Tx DMA chan: head_enqueue", CPDMA_TX_STAT(head_enqueue) },
472 	{ "Tx DMA chan: tail_enqueue", CPDMA_TX_STAT(tail_enqueue) },
473 	{ "Tx DMA chan: pad_enqueue", CPDMA_TX_STAT(pad_enqueue) },
474 	{ "Tx DMA chan: misqueued", CPDMA_TX_STAT(misqueued) },
475 	{ "Tx DMA chan: desc_alloc_fail", CPDMA_TX_STAT(desc_alloc_fail) },
476 	{ "Tx DMA chan: pad_alloc_fail", CPDMA_TX_STAT(pad_alloc_fail) },
477 	{ "Tx DMA chan: runt_receive_buf", CPDMA_TX_STAT(runt_receive_buff) },
478 	{ "Tx DMA chan: runt_transmit_buf", CPDMA_TX_STAT(runt_transmit_buff) },
479 	{ "Tx DMA chan: empty_dequeue", CPDMA_TX_STAT(empty_dequeue) },
480 	{ "Tx DMA chan: busy_dequeue", CPDMA_TX_STAT(busy_dequeue) },
481 	{ "Tx DMA chan: good_dequeue", CPDMA_TX_STAT(good_dequeue) },
482 	{ "Tx DMA chan: requeue", CPDMA_TX_STAT(requeue) },
483 	{ "Tx DMA chan: teardown_dequeue", CPDMA_TX_STAT(teardown_dequeue) },
484 };
485 
486 #define CPSW_STATS_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
487 
488 #define napi_to_priv(napi)	container_of(napi, struct cpsw_priv, napi)
489 #define for_each_slave(priv, func, arg...)				\
490 	do {								\
491 		struct cpsw_slave *slave;				\
492 		int n;							\
493 		if (priv->data.dual_emac)				\
494 			(func)((priv)->slaves + priv->emac_port, ##arg);\
495 		else							\
496 			for (n = (priv)->data.slaves,			\
497 					slave = (priv)->slaves;		\
498 					n; n--)				\
499 				(func)(slave++, ##arg);			\
500 	} while (0)
501 #define cpsw_get_slave_ndev(priv, __slave_no__)				\
502 	((__slave_no__ < priv->data.slaves) ?				\
503 		priv->slaves[__slave_no__].ndev : NULL)
504 #define cpsw_get_slave_priv(priv, __slave_no__)				\
505 	(((__slave_no__ < priv->data.slaves) &&				\
506 		(priv->slaves[__slave_no__].ndev)) ?			\
507 		netdev_priv(priv->slaves[__slave_no__].ndev) : NULL)	\
508 
509 #define cpsw_dual_emac_src_port_detect(status, priv, ndev, skb)		\
510 	do {								\
511 		if (!priv->data.dual_emac)				\
512 			break;						\
513 		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
514 			ndev = cpsw_get_slave_ndev(priv, 0);		\
515 			priv = netdev_priv(ndev);			\
516 			skb->dev = ndev;				\
517 		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
518 			ndev = cpsw_get_slave_ndev(priv, 1);		\
519 			priv = netdev_priv(ndev);			\
520 			skb->dev = ndev;				\
521 		}							\
522 	} while (0)
523 #define cpsw_add_mcast(priv, addr)					\
524 	do {								\
525 		if (priv->data.dual_emac) {				\
526 			struct cpsw_slave *slave = priv->slaves +	\
527 						priv->emac_port;	\
528 			int slave_port = cpsw_get_slave_port(priv,	\
529 						slave->slave_num);	\
530 			cpsw_ale_add_mcast(priv->ale, addr,		\
531 				1 << slave_port | ALE_PORT_HOST,	\
532 				ALE_VLAN, slave->port_vlan, 0);		\
533 		} else {						\
534 			cpsw_ale_add_mcast(priv->ale, addr,		\
535 				ALE_ALL_PORTS,				\
536 				0, 0, 0);				\
537 		}							\
538 	} while (0)
539 
540 static inline int cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
541 {
542 	return slave_num + 1;
543 }
544 
545 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
546 {
547 	struct cpsw_priv *priv = netdev_priv(ndev);
548 	struct cpsw_ale *ale = priv->ale;
549 	int i;
550 
551 	if (priv->data.dual_emac) {
552 		bool flag = false;
553 
554 		/* Enabling promiscuous mode for one interface will be
555 		 * common for both the interface as the interface shares
556 		 * the same hardware resource.
557 		 */
558 		for (i = 0; i < priv->data.slaves; i++)
559 			if (priv->slaves[i].ndev->flags & IFF_PROMISC)
560 				flag = true;
561 
562 		if (!enable && flag) {
563 			enable = true;
564 			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
565 		}
566 
567 		if (enable) {
568 			/* Enable Bypass */
569 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
570 
571 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
572 		} else {
573 			/* Disable Bypass */
574 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
575 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
576 		}
577 	} else {
578 		if (enable) {
579 			unsigned long timeout = jiffies + HZ;
580 
581 			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
582 			for (i = 0; i <= priv->data.slaves; i++) {
583 				cpsw_ale_control_set(ale, i,
584 						     ALE_PORT_NOLEARN, 1);
585 				cpsw_ale_control_set(ale, i,
586 						     ALE_PORT_NO_SA_UPDATE, 1);
587 			}
588 
589 			/* Clear All Untouched entries */
590 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
591 			do {
592 				cpu_relax();
593 				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
594 					break;
595 			} while (time_after(timeout, jiffies));
596 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
597 
598 			/* Clear all mcast from ALE */
599 			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
600 
601 			/* Flood All Unicast Packets to Host port */
602 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
603 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
604 		} else {
605 			/* Don't Flood All Unicast Packets to Host port */
606 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
607 
608 			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
609 			for (i = 0; i <= priv->data.slaves; i++) {
610 				cpsw_ale_control_set(ale, i,
611 						     ALE_PORT_NOLEARN, 0);
612 				cpsw_ale_control_set(ale, i,
613 						     ALE_PORT_NO_SA_UPDATE, 0);
614 			}
615 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
616 		}
617 	}
618 }
619 
620 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
621 {
622 	struct cpsw_priv *priv = netdev_priv(ndev);
623 	int vid;
624 
625 	if (priv->data.dual_emac)
626 		vid = priv->slaves[priv->emac_port].port_vlan;
627 	else
628 		vid = priv->data.default_vlan;
629 
630 	if (ndev->flags & IFF_PROMISC) {
631 		/* Enable promiscuous mode */
632 		cpsw_set_promiscious(ndev, true);
633 		cpsw_ale_set_allmulti(priv->ale, IFF_ALLMULTI);
634 		return;
635 	} else {
636 		/* Disable promiscuous mode */
637 		cpsw_set_promiscious(ndev, false);
638 	}
639 
640 	/* Restore allmulti on vlans if necessary */
641 	cpsw_ale_set_allmulti(priv->ale, priv->ndev->flags & IFF_ALLMULTI);
642 
643 	/* Clear all mcast from ALE */
644 	cpsw_ale_flush_multicast(priv->ale, ALE_ALL_PORTS, vid);
645 
646 	if (!netdev_mc_empty(ndev)) {
647 		struct netdev_hw_addr *ha;
648 
649 		/* program multicast address list into ALE register */
650 		netdev_for_each_mc_addr(ha, ndev) {
651 			cpsw_add_mcast(priv, (u8 *)ha->addr);
652 		}
653 	}
654 }
655 
656 static void cpsw_intr_enable(struct cpsw_priv *priv)
657 {
658 	__raw_writel(0xFF, &priv->wr_regs->tx_en);
659 	__raw_writel(0xFF, &priv->wr_regs->rx_en);
660 
661 	cpdma_ctlr_int_ctrl(priv->dma, true);
662 	return;
663 }
664 
665 static void cpsw_intr_disable(struct cpsw_priv *priv)
666 {
667 	__raw_writel(0, &priv->wr_regs->tx_en);
668 	__raw_writel(0, &priv->wr_regs->rx_en);
669 
670 	cpdma_ctlr_int_ctrl(priv->dma, false);
671 	return;
672 }
673 
674 static void cpsw_tx_handler(void *token, int len, int status)
675 {
676 	struct sk_buff		*skb = token;
677 	struct net_device	*ndev = skb->dev;
678 	struct cpsw_priv	*priv = netdev_priv(ndev);
679 
680 	/* Check whether the queue is stopped due to stalled tx dma, if the
681 	 * queue is stopped then start the queue as we have free desc for tx
682 	 */
683 	if (unlikely(netif_queue_stopped(ndev)))
684 		netif_wake_queue(ndev);
685 	cpts_tx_timestamp(priv->cpts, skb);
686 	ndev->stats.tx_packets++;
687 	ndev->stats.tx_bytes += len;
688 	dev_kfree_skb_any(skb);
689 }
690 
691 static void cpsw_rx_handler(void *token, int len, int status)
692 {
693 	struct sk_buff		*skb = token;
694 	struct sk_buff		*new_skb;
695 	struct net_device	*ndev = skb->dev;
696 	struct cpsw_priv	*priv = netdev_priv(ndev);
697 	int			ret = 0;
698 
699 	cpsw_dual_emac_src_port_detect(status, priv, ndev, skb);
700 
701 	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
702 		bool ndev_status = false;
703 		struct cpsw_slave *slave = priv->slaves;
704 		int n;
705 
706 		if (priv->data.dual_emac) {
707 			/* In dual emac mode check for all interfaces */
708 			for (n = priv->data.slaves; n; n--, slave++)
709 				if (netif_running(slave->ndev))
710 					ndev_status = true;
711 		}
712 
713 		if (ndev_status && (status >= 0)) {
714 			/* The packet received is for the interface which
715 			 * is already down and the other interface is up
716 			 * and running, instead of freeing which results
717 			 * in reducing of the number of rx descriptor in
718 			 * DMA engine, requeue skb back to cpdma.
719 			 */
720 			new_skb = skb;
721 			goto requeue;
722 		}
723 
724 		/* the interface is going down, skbs are purged */
725 		dev_kfree_skb_any(skb);
726 		return;
727 	}
728 
729 	new_skb = netdev_alloc_skb_ip_align(ndev, priv->rx_packet_max);
730 	if (new_skb) {
731 		skb_put(skb, len);
732 		cpts_rx_timestamp(priv->cpts, skb);
733 		skb->protocol = eth_type_trans(skb, ndev);
734 		netif_receive_skb(skb);
735 		ndev->stats.rx_bytes += len;
736 		ndev->stats.rx_packets++;
737 	} else {
738 		ndev->stats.rx_dropped++;
739 		new_skb = skb;
740 	}
741 
742 requeue:
743 	ret = cpdma_chan_submit(priv->rxch, new_skb, new_skb->data,
744 			skb_tailroom(new_skb), 0);
745 	if (WARN_ON(ret < 0))
746 		dev_kfree_skb_any(new_skb);
747 }
748 
749 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
750 {
751 	struct cpsw_priv *priv = dev_id;
752 
753 	writel(0, &priv->wr_regs->tx_en);
754 	cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX);
755 
756 	if (priv->quirk_irq) {
757 		disable_irq_nosync(priv->irqs_table[1]);
758 		priv->tx_irq_disabled = true;
759 	}
760 
761 	napi_schedule(&priv->napi_tx);
762 	return IRQ_HANDLED;
763 }
764 
765 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
766 {
767 	struct cpsw_priv *priv = dev_id;
768 
769 	cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX);
770 	writel(0, &priv->wr_regs->rx_en);
771 
772 	if (priv->quirk_irq) {
773 		disable_irq_nosync(priv->irqs_table[0]);
774 		priv->rx_irq_disabled = true;
775 	}
776 
777 	napi_schedule(&priv->napi_rx);
778 	return IRQ_HANDLED;
779 }
780 
781 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
782 {
783 	struct cpsw_priv	*priv = napi_to_priv(napi_tx);
784 	int			num_tx;
785 
786 	num_tx = cpdma_chan_process(priv->txch, budget);
787 	if (num_tx < budget) {
788 		napi_complete(napi_tx);
789 		writel(0xff, &priv->wr_regs->tx_en);
790 		if (priv->quirk_irq && priv->tx_irq_disabled) {
791 			priv->tx_irq_disabled = false;
792 			enable_irq(priv->irqs_table[1]);
793 		}
794 	}
795 
796 	if (num_tx)
797 		cpsw_dbg(priv, intr, "poll %d tx pkts\n", num_tx);
798 
799 	return num_tx;
800 }
801 
802 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
803 {
804 	struct cpsw_priv	*priv = napi_to_priv(napi_rx);
805 	int			num_rx;
806 
807 	num_rx = cpdma_chan_process(priv->rxch, budget);
808 	if (num_rx < budget) {
809 		napi_complete(napi_rx);
810 		writel(0xff, &priv->wr_regs->rx_en);
811 		if (priv->quirk_irq && priv->rx_irq_disabled) {
812 			priv->rx_irq_disabled = false;
813 			enable_irq(priv->irqs_table[0]);
814 		}
815 	}
816 
817 	if (num_rx)
818 		cpsw_dbg(priv, intr, "poll %d rx pkts\n", num_rx);
819 
820 	return num_rx;
821 }
822 
823 static inline void soft_reset(const char *module, void __iomem *reg)
824 {
825 	unsigned long timeout = jiffies + HZ;
826 
827 	__raw_writel(1, reg);
828 	do {
829 		cpu_relax();
830 	} while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));
831 
832 	WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
833 }
834 
835 #define mac_hi(mac)	(((mac)[0] << 0) | ((mac)[1] << 8) |	\
836 			 ((mac)[2] << 16) | ((mac)[3] << 24))
837 #define mac_lo(mac)	(((mac)[4] << 0) | ((mac)[5] << 8))
838 
839 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
840 			       struct cpsw_priv *priv)
841 {
842 	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
843 	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
844 }
845 
846 static void _cpsw_adjust_link(struct cpsw_slave *slave,
847 			      struct cpsw_priv *priv, bool *link)
848 {
849 	struct phy_device	*phy = slave->phy;
850 	u32			mac_control = 0;
851 	u32			slave_port;
852 
853 	if (!phy)
854 		return;
855 
856 	slave_port = cpsw_get_slave_port(priv, slave->slave_num);
857 
858 	if (phy->link) {
859 		mac_control = priv->data.mac_control;
860 
861 		/* enable forwarding */
862 		cpsw_ale_control_set(priv->ale, slave_port,
863 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
864 
865 		if (phy->speed == 1000)
866 			mac_control |= BIT(7);	/* GIGABITEN	*/
867 		if (phy->duplex)
868 			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
869 
870 		/* set speed_in input in case RMII mode is used in 100Mbps */
871 		if (phy->speed == 100)
872 			mac_control |= BIT(15);
873 		else if (phy->speed == 10)
874 			mac_control |= BIT(18); /* In Band mode */
875 
876 		if (priv->rx_pause)
877 			mac_control |= BIT(3);
878 
879 		if (priv->tx_pause)
880 			mac_control |= BIT(4);
881 
882 		*link = true;
883 	} else {
884 		mac_control = 0;
885 		/* disable forwarding */
886 		cpsw_ale_control_set(priv->ale, slave_port,
887 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
888 	}
889 
890 	if (mac_control != slave->mac_control) {
891 		phy_print_status(phy);
892 		__raw_writel(mac_control, &slave->sliver->mac_control);
893 	}
894 
895 	slave->mac_control = mac_control;
896 }
897 
898 static void cpsw_adjust_link(struct net_device *ndev)
899 {
900 	struct cpsw_priv	*priv = netdev_priv(ndev);
901 	bool			link = false;
902 
903 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
904 
905 	if (link) {
906 		netif_carrier_on(ndev);
907 		if (netif_running(ndev))
908 			netif_wake_queue(ndev);
909 	} else {
910 		netif_carrier_off(ndev);
911 		netif_stop_queue(ndev);
912 	}
913 }
914 
915 static int cpsw_get_coalesce(struct net_device *ndev,
916 				struct ethtool_coalesce *coal)
917 {
918 	struct cpsw_priv *priv = netdev_priv(ndev);
919 
920 	coal->rx_coalesce_usecs = priv->coal_intvl;
921 	return 0;
922 }
923 
924 static int cpsw_set_coalesce(struct net_device *ndev,
925 				struct ethtool_coalesce *coal)
926 {
927 	struct cpsw_priv *priv = netdev_priv(ndev);
928 	u32 int_ctrl;
929 	u32 num_interrupts = 0;
930 	u32 prescale = 0;
931 	u32 addnl_dvdr = 1;
932 	u32 coal_intvl = 0;
933 
934 	coal_intvl = coal->rx_coalesce_usecs;
935 
936 	int_ctrl =  readl(&priv->wr_regs->int_control);
937 	prescale = priv->bus_freq_mhz * 4;
938 
939 	if (!coal->rx_coalesce_usecs) {
940 		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
941 		goto update_return;
942 	}
943 
944 	if (coal_intvl < CPSW_CMINTMIN_INTVL)
945 		coal_intvl = CPSW_CMINTMIN_INTVL;
946 
947 	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
948 		/* Interrupt pacer works with 4us Pulse, we can
949 		 * throttle further by dilating the 4us pulse.
950 		 */
951 		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
952 
953 		if (addnl_dvdr > 1) {
954 			prescale *= addnl_dvdr;
955 			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
956 				coal_intvl = (CPSW_CMINTMAX_INTVL
957 						* addnl_dvdr);
958 		} else {
959 			addnl_dvdr = 1;
960 			coal_intvl = CPSW_CMINTMAX_INTVL;
961 		}
962 	}
963 
964 	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
965 	writel(num_interrupts, &priv->wr_regs->rx_imax);
966 	writel(num_interrupts, &priv->wr_regs->tx_imax);
967 
968 	int_ctrl |= CPSW_INTPACEEN;
969 	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
970 	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
971 
972 update_return:
973 	writel(int_ctrl, &priv->wr_regs->int_control);
974 
975 	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
976 	if (priv->data.dual_emac) {
977 		int i;
978 
979 		for (i = 0; i < priv->data.slaves; i++) {
980 			priv = netdev_priv(priv->slaves[i].ndev);
981 			priv->coal_intvl = coal_intvl;
982 		}
983 	} else {
984 		priv->coal_intvl = coal_intvl;
985 	}
986 
987 	return 0;
988 }
989 
990 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
991 {
992 	switch (sset) {
993 	case ETH_SS_STATS:
994 		return CPSW_STATS_LEN;
995 	default:
996 		return -EOPNOTSUPP;
997 	}
998 }
999 
1000 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1001 {
1002 	u8 *p = data;
1003 	int i;
1004 
1005 	switch (stringset) {
1006 	case ETH_SS_STATS:
1007 		for (i = 0; i < CPSW_STATS_LEN; i++) {
1008 			memcpy(p, cpsw_gstrings_stats[i].stat_string,
1009 			       ETH_GSTRING_LEN);
1010 			p += ETH_GSTRING_LEN;
1011 		}
1012 		break;
1013 	}
1014 }
1015 
1016 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1017 				    struct ethtool_stats *stats, u64 *data)
1018 {
1019 	struct cpsw_priv *priv = netdev_priv(ndev);
1020 	struct cpdma_chan_stats rx_stats;
1021 	struct cpdma_chan_stats tx_stats;
1022 	u32 val;
1023 	u8 *p;
1024 	int i;
1025 
1026 	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1027 	cpdma_chan_get_stats(priv->rxch, &rx_stats);
1028 	cpdma_chan_get_stats(priv->txch, &tx_stats);
1029 
1030 	for (i = 0; i < CPSW_STATS_LEN; i++) {
1031 		switch (cpsw_gstrings_stats[i].type) {
1032 		case CPSW_STATS:
1033 			val = readl(priv->hw_stats +
1034 				    cpsw_gstrings_stats[i].stat_offset);
1035 			data[i] = val;
1036 			break;
1037 
1038 		case CPDMA_RX_STATS:
1039 			p = (u8 *)&rx_stats +
1040 				cpsw_gstrings_stats[i].stat_offset;
1041 			data[i] = *(u32 *)p;
1042 			break;
1043 
1044 		case CPDMA_TX_STATS:
1045 			p = (u8 *)&tx_stats +
1046 				cpsw_gstrings_stats[i].stat_offset;
1047 			data[i] = *(u32 *)p;
1048 			break;
1049 		}
1050 	}
1051 }
1052 
1053 static int cpsw_common_res_usage_state(struct cpsw_priv *priv)
1054 {
1055 	u32 i;
1056 	u32 usage_count = 0;
1057 
1058 	if (!priv->data.dual_emac)
1059 		return 0;
1060 
1061 	for (i = 0; i < priv->data.slaves; i++)
1062 		if (priv->slaves[i].open_stat)
1063 			usage_count++;
1064 
1065 	return usage_count;
1066 }
1067 
1068 static inline int cpsw_tx_packet_submit(struct net_device *ndev,
1069 			struct cpsw_priv *priv, struct sk_buff *skb)
1070 {
1071 	if (!priv->data.dual_emac)
1072 		return cpdma_chan_submit(priv->txch, skb, skb->data,
1073 				  skb->len, 0);
1074 
1075 	if (ndev == cpsw_get_slave_ndev(priv, 0))
1076 		return cpdma_chan_submit(priv->txch, skb, skb->data,
1077 				  skb->len, 1);
1078 	else
1079 		return cpdma_chan_submit(priv->txch, skb, skb->data,
1080 				  skb->len, 2);
1081 }
1082 
1083 static inline void cpsw_add_dual_emac_def_ale_entries(
1084 		struct cpsw_priv *priv, struct cpsw_slave *slave,
1085 		u32 slave_port)
1086 {
1087 	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1088 
1089 	if (priv->version == CPSW_VERSION_1)
1090 		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1091 	else
1092 		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1093 	cpsw_ale_add_vlan(priv->ale, slave->port_vlan, port_mask,
1094 			  port_mask, port_mask, 0);
1095 	cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1096 			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1097 	cpsw_ale_add_ucast(priv->ale, priv->mac_addr,
1098 		HOST_PORT_NUM, ALE_VLAN | ALE_SECURE, slave->port_vlan);
1099 }
1100 
1101 static void soft_reset_slave(struct cpsw_slave *slave)
1102 {
1103 	char name[32];
1104 
1105 	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1106 	soft_reset(name, &slave->sliver->soft_reset);
1107 }
1108 
1109 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1110 {
1111 	u32 slave_port;
1112 
1113 	soft_reset_slave(slave);
1114 
1115 	/* setup priority mapping */
1116 	__raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1117 
1118 	switch (priv->version) {
1119 	case CPSW_VERSION_1:
1120 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1121 		break;
1122 	case CPSW_VERSION_2:
1123 	case CPSW_VERSION_3:
1124 	case CPSW_VERSION_4:
1125 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1126 		break;
1127 	}
1128 
1129 	/* setup max packet size, and mac address */
1130 	__raw_writel(priv->rx_packet_max, &slave->sliver->rx_maxlen);
1131 	cpsw_set_slave_mac(slave, priv);
1132 
1133 	slave->mac_control = 0;	/* no link yet */
1134 
1135 	slave_port = cpsw_get_slave_port(priv, slave->slave_num);
1136 
1137 	if (priv->data.dual_emac)
1138 		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1139 	else
1140 		cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1141 				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1142 
1143 	if (slave->data->phy_node) {
1144 		slave->phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1145 				 &cpsw_adjust_link, 0, slave->data->phy_if);
1146 		if (!slave->phy) {
1147 			dev_err(priv->dev, "phy \"%s\" not found on slave %d\n",
1148 				slave->data->phy_node->full_name,
1149 				slave->slave_num);
1150 			return;
1151 		}
1152 	} else {
1153 		slave->phy = phy_connect(priv->ndev, slave->data->phy_id,
1154 				 &cpsw_adjust_link, slave->data->phy_if);
1155 		if (IS_ERR(slave->phy)) {
1156 			dev_err(priv->dev,
1157 				"phy \"%s\" not found on slave %d, err %ld\n",
1158 				slave->data->phy_id, slave->slave_num,
1159 				PTR_ERR(slave->phy));
1160 			slave->phy = NULL;
1161 			return;
1162 		}
1163 	}
1164 
1165 	phy_attached_info(slave->phy);
1166 
1167 	phy_start(slave->phy);
1168 
1169 	/* Configure GMII_SEL register */
1170 	cpsw_phy_sel(&priv->pdev->dev, slave->phy->interface, slave->slave_num);
1171 }
1172 
1173 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1174 {
1175 	const int vlan = priv->data.default_vlan;
1176 	u32 reg;
1177 	int i;
1178 	int unreg_mcast_mask;
1179 
1180 	reg = (priv->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1181 	       CPSW2_PORT_VLAN;
1182 
1183 	writel(vlan, &priv->host_port_regs->port_vlan);
1184 
1185 	for (i = 0; i < priv->data.slaves; i++)
1186 		slave_write(priv->slaves + i, vlan, reg);
1187 
1188 	if (priv->ndev->flags & IFF_ALLMULTI)
1189 		unreg_mcast_mask = ALE_ALL_PORTS;
1190 	else
1191 		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1192 
1193 	cpsw_ale_add_vlan(priv->ale, vlan, ALE_ALL_PORTS,
1194 			  ALE_ALL_PORTS, ALE_ALL_PORTS,
1195 			  unreg_mcast_mask);
1196 }
1197 
1198 static void cpsw_init_host_port(struct cpsw_priv *priv)
1199 {
1200 	u32 control_reg;
1201 	u32 fifo_mode;
1202 
1203 	/* soft reset the controller and initialize ale */
1204 	soft_reset("cpsw", &priv->regs->soft_reset);
1205 	cpsw_ale_start(priv->ale);
1206 
1207 	/* switch to vlan unaware mode */
1208 	cpsw_ale_control_set(priv->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1209 			     CPSW_ALE_VLAN_AWARE);
1210 	control_reg = readl(&priv->regs->control);
1211 	control_reg |= CPSW_VLAN_AWARE;
1212 	writel(control_reg, &priv->regs->control);
1213 	fifo_mode = (priv->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1214 		     CPSW_FIFO_NORMAL_MODE;
1215 	writel(fifo_mode, &priv->host_port_regs->tx_in_ctl);
1216 
1217 	/* setup host port priority mapping */
1218 	__raw_writel(CPDMA_TX_PRIORITY_MAP,
1219 		     &priv->host_port_regs->cpdma_tx_pri_map);
1220 	__raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
1221 
1222 	cpsw_ale_control_set(priv->ale, HOST_PORT_NUM,
1223 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1224 
1225 	if (!priv->data.dual_emac) {
1226 		cpsw_ale_add_ucast(priv->ale, priv->mac_addr, HOST_PORT_NUM,
1227 				   0, 0);
1228 		cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1229 				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1230 	}
1231 }
1232 
1233 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_priv *priv)
1234 {
1235 	u32 slave_port;
1236 
1237 	slave_port = cpsw_get_slave_port(priv, slave->slave_num);
1238 
1239 	if (!slave->phy)
1240 		return;
1241 	phy_stop(slave->phy);
1242 	phy_disconnect(slave->phy);
1243 	slave->phy = NULL;
1244 	cpsw_ale_control_set(priv->ale, slave_port,
1245 			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1246 	soft_reset_slave(slave);
1247 }
1248 
1249 static int cpsw_ndo_open(struct net_device *ndev)
1250 {
1251 	struct cpsw_priv *priv = netdev_priv(ndev);
1252 	int i, ret;
1253 	u32 reg;
1254 
1255 	ret = pm_runtime_get_sync(&priv->pdev->dev);
1256 	if (ret < 0) {
1257 		pm_runtime_put_noidle(&priv->pdev->dev);
1258 		return ret;
1259 	}
1260 
1261 	if (!cpsw_common_res_usage_state(priv))
1262 		cpsw_intr_disable(priv);
1263 	netif_carrier_off(ndev);
1264 
1265 	reg = priv->version;
1266 
1267 	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1268 		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1269 		 CPSW_RTL_VERSION(reg));
1270 
1271 	/* initialize host and slave ports */
1272 	if (!cpsw_common_res_usage_state(priv))
1273 		cpsw_init_host_port(priv);
1274 	for_each_slave(priv, cpsw_slave_open, priv);
1275 
1276 	/* Add default VLAN */
1277 	if (!priv->data.dual_emac)
1278 		cpsw_add_default_vlan(priv);
1279 	else
1280 		cpsw_ale_add_vlan(priv->ale, priv->data.default_vlan,
1281 				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1282 
1283 	if (!cpsw_common_res_usage_state(priv)) {
1284 		struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0);
1285 		int buf_num;
1286 
1287 		/* setup tx dma to fixed prio and zero offset */
1288 		cpdma_control_set(priv->dma, CPDMA_TX_PRIO_FIXED, 1);
1289 		cpdma_control_set(priv->dma, CPDMA_RX_BUFFER_OFFSET, 0);
1290 
1291 		/* disable priority elevation */
1292 		__raw_writel(0, &priv->regs->ptype);
1293 
1294 		/* enable statistics collection only on all ports */
1295 		__raw_writel(0x7, &priv->regs->stat_port_en);
1296 
1297 		/* Enable internal fifo flow control */
1298 		writel(0x7, &priv->regs->flow_control);
1299 
1300 		napi_enable(&priv_sl0->napi_rx);
1301 		napi_enable(&priv_sl0->napi_tx);
1302 
1303 		if (priv_sl0->tx_irq_disabled) {
1304 			priv_sl0->tx_irq_disabled = false;
1305 			enable_irq(priv->irqs_table[1]);
1306 		}
1307 
1308 		if (priv_sl0->rx_irq_disabled) {
1309 			priv_sl0->rx_irq_disabled = false;
1310 			enable_irq(priv->irqs_table[0]);
1311 		}
1312 
1313 		buf_num = cpdma_chan_get_rx_buf_num(priv->dma);
1314 		for (i = 0; i < buf_num; i++) {
1315 			struct sk_buff *skb;
1316 
1317 			ret = -ENOMEM;
1318 			skb = __netdev_alloc_skb_ip_align(priv->ndev,
1319 					priv->rx_packet_max, GFP_KERNEL);
1320 			if (!skb)
1321 				goto err_cleanup;
1322 			ret = cpdma_chan_submit(priv->rxch, skb, skb->data,
1323 					skb_tailroom(skb), 0);
1324 			if (ret < 0) {
1325 				kfree_skb(skb);
1326 				goto err_cleanup;
1327 			}
1328 		}
1329 		/* continue even if we didn't manage to submit all
1330 		 * receive descs
1331 		 */
1332 		cpsw_info(priv, ifup, "submitted %d rx descriptors\n", i);
1333 
1334 		if (cpts_register(&priv->pdev->dev, priv->cpts,
1335 				  priv->data.cpts_clock_mult,
1336 				  priv->data.cpts_clock_shift))
1337 			dev_err(priv->dev, "error registering cpts device\n");
1338 
1339 	}
1340 
1341 	/* Enable Interrupt pacing if configured */
1342 	if (priv->coal_intvl != 0) {
1343 		struct ethtool_coalesce coal;
1344 
1345 		coal.rx_coalesce_usecs = priv->coal_intvl;
1346 		cpsw_set_coalesce(ndev, &coal);
1347 	}
1348 
1349 	cpdma_ctlr_start(priv->dma);
1350 	cpsw_intr_enable(priv);
1351 
1352 	if (priv->data.dual_emac)
1353 		priv->slaves[priv->emac_port].open_stat = true;
1354 	return 0;
1355 
1356 err_cleanup:
1357 	cpdma_ctlr_stop(priv->dma);
1358 	for_each_slave(priv, cpsw_slave_stop, priv);
1359 	pm_runtime_put_sync(&priv->pdev->dev);
1360 	netif_carrier_off(priv->ndev);
1361 	return ret;
1362 }
1363 
1364 static int cpsw_ndo_stop(struct net_device *ndev)
1365 {
1366 	struct cpsw_priv *priv = netdev_priv(ndev);
1367 
1368 	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1369 	netif_stop_queue(priv->ndev);
1370 	netif_carrier_off(priv->ndev);
1371 
1372 	if (cpsw_common_res_usage_state(priv) <= 1) {
1373 		struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0);
1374 
1375 		napi_disable(&priv_sl0->napi_rx);
1376 		napi_disable(&priv_sl0->napi_tx);
1377 		cpts_unregister(priv->cpts);
1378 		cpsw_intr_disable(priv);
1379 		cpdma_ctlr_stop(priv->dma);
1380 		cpsw_ale_stop(priv->ale);
1381 	}
1382 	for_each_slave(priv, cpsw_slave_stop, priv);
1383 	pm_runtime_put_sync(&priv->pdev->dev);
1384 	if (priv->data.dual_emac)
1385 		priv->slaves[priv->emac_port].open_stat = false;
1386 	return 0;
1387 }
1388 
1389 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1390 				       struct net_device *ndev)
1391 {
1392 	struct cpsw_priv *priv = netdev_priv(ndev);
1393 	int ret;
1394 
1395 	netif_trans_update(ndev);
1396 
1397 	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1398 		cpsw_err(priv, tx_err, "packet pad failed\n");
1399 		ndev->stats.tx_dropped++;
1400 		return NETDEV_TX_OK;
1401 	}
1402 
1403 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1404 				priv->cpts->tx_enable)
1405 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1406 
1407 	skb_tx_timestamp(skb);
1408 
1409 	ret = cpsw_tx_packet_submit(ndev, priv, skb);
1410 	if (unlikely(ret != 0)) {
1411 		cpsw_err(priv, tx_err, "desc submit failed\n");
1412 		goto fail;
1413 	}
1414 
1415 	/* If there is no more tx desc left free then we need to
1416 	 * tell the kernel to stop sending us tx frames.
1417 	 */
1418 	if (unlikely(!cpdma_check_free_tx_desc(priv->txch)))
1419 		netif_stop_queue(ndev);
1420 
1421 	return NETDEV_TX_OK;
1422 fail:
1423 	ndev->stats.tx_dropped++;
1424 	netif_stop_queue(ndev);
1425 	return NETDEV_TX_BUSY;
1426 }
1427 
1428 #ifdef CONFIG_TI_CPTS
1429 
1430 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv)
1431 {
1432 	struct cpsw_slave *slave = &priv->slaves[priv->data.active_slave];
1433 	u32 ts_en, seq_id;
1434 
1435 	if (!priv->cpts->tx_enable && !priv->cpts->rx_enable) {
1436 		slave_write(slave, 0, CPSW1_TS_CTL);
1437 		return;
1438 	}
1439 
1440 	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1441 	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1442 
1443 	if (priv->cpts->tx_enable)
1444 		ts_en |= CPSW_V1_TS_TX_EN;
1445 
1446 	if (priv->cpts->rx_enable)
1447 		ts_en |= CPSW_V1_TS_RX_EN;
1448 
1449 	slave_write(slave, ts_en, CPSW1_TS_CTL);
1450 	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1451 }
1452 
1453 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1454 {
1455 	struct cpsw_slave *slave;
1456 	u32 ctrl, mtype;
1457 
1458 	if (priv->data.dual_emac)
1459 		slave = &priv->slaves[priv->emac_port];
1460 	else
1461 		slave = &priv->slaves[priv->data.active_slave];
1462 
1463 	ctrl = slave_read(slave, CPSW2_CONTROL);
1464 	switch (priv->version) {
1465 	case CPSW_VERSION_2:
1466 		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1467 
1468 		if (priv->cpts->tx_enable)
1469 			ctrl |= CTRL_V2_TX_TS_BITS;
1470 
1471 		if (priv->cpts->rx_enable)
1472 			ctrl |= CTRL_V2_RX_TS_BITS;
1473 		break;
1474 	case CPSW_VERSION_3:
1475 	default:
1476 		ctrl &= ~CTRL_V3_ALL_TS_MASK;
1477 
1478 		if (priv->cpts->tx_enable)
1479 			ctrl |= CTRL_V3_TX_TS_BITS;
1480 
1481 		if (priv->cpts->rx_enable)
1482 			ctrl |= CTRL_V3_RX_TS_BITS;
1483 		break;
1484 	}
1485 
1486 	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1487 
1488 	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1489 	slave_write(slave, ctrl, CPSW2_CONTROL);
1490 	__raw_writel(ETH_P_1588, &priv->regs->ts_ltype);
1491 }
1492 
1493 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1494 {
1495 	struct cpsw_priv *priv = netdev_priv(dev);
1496 	struct cpts *cpts = priv->cpts;
1497 	struct hwtstamp_config cfg;
1498 
1499 	if (priv->version != CPSW_VERSION_1 &&
1500 	    priv->version != CPSW_VERSION_2 &&
1501 	    priv->version != CPSW_VERSION_3)
1502 		return -EOPNOTSUPP;
1503 
1504 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1505 		return -EFAULT;
1506 
1507 	/* reserved for future extensions */
1508 	if (cfg.flags)
1509 		return -EINVAL;
1510 
1511 	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1512 		return -ERANGE;
1513 
1514 	switch (cfg.rx_filter) {
1515 	case HWTSTAMP_FILTER_NONE:
1516 		cpts->rx_enable = 0;
1517 		break;
1518 	case HWTSTAMP_FILTER_ALL:
1519 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1520 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1521 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1522 		return -ERANGE;
1523 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1524 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1525 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1526 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1527 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1528 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1529 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1530 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1531 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1532 		cpts->rx_enable = 1;
1533 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1534 		break;
1535 	default:
1536 		return -ERANGE;
1537 	}
1538 
1539 	cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON;
1540 
1541 	switch (priv->version) {
1542 	case CPSW_VERSION_1:
1543 		cpsw_hwtstamp_v1(priv);
1544 		break;
1545 	case CPSW_VERSION_2:
1546 	case CPSW_VERSION_3:
1547 		cpsw_hwtstamp_v2(priv);
1548 		break;
1549 	default:
1550 		WARN_ON(1);
1551 	}
1552 
1553 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1554 }
1555 
1556 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1557 {
1558 	struct cpsw_priv *priv = netdev_priv(dev);
1559 	struct cpts *cpts = priv->cpts;
1560 	struct hwtstamp_config cfg;
1561 
1562 	if (priv->version != CPSW_VERSION_1 &&
1563 	    priv->version != CPSW_VERSION_2 &&
1564 	    priv->version != CPSW_VERSION_3)
1565 		return -EOPNOTSUPP;
1566 
1567 	cfg.flags = 0;
1568 	cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1569 	cfg.rx_filter = (cpts->rx_enable ?
1570 			 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE);
1571 
1572 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1573 }
1574 
1575 #endif /*CONFIG_TI_CPTS*/
1576 
1577 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1578 {
1579 	struct cpsw_priv *priv = netdev_priv(dev);
1580 	int slave_no = cpsw_slave_index(priv);
1581 
1582 	if (!netif_running(dev))
1583 		return -EINVAL;
1584 
1585 	switch (cmd) {
1586 #ifdef CONFIG_TI_CPTS
1587 	case SIOCSHWTSTAMP:
1588 		return cpsw_hwtstamp_set(dev, req);
1589 	case SIOCGHWTSTAMP:
1590 		return cpsw_hwtstamp_get(dev, req);
1591 #endif
1592 	}
1593 
1594 	if (!priv->slaves[slave_no].phy)
1595 		return -EOPNOTSUPP;
1596 	return phy_mii_ioctl(priv->slaves[slave_no].phy, req, cmd);
1597 }
1598 
1599 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1600 {
1601 	struct cpsw_priv *priv = netdev_priv(ndev);
1602 
1603 	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1604 	ndev->stats.tx_errors++;
1605 	cpsw_intr_disable(priv);
1606 	cpdma_chan_stop(priv->txch);
1607 	cpdma_chan_start(priv->txch);
1608 	cpsw_intr_enable(priv);
1609 }
1610 
1611 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1612 {
1613 	struct cpsw_priv *priv = netdev_priv(ndev);
1614 	struct sockaddr *addr = (struct sockaddr *)p;
1615 	int flags = 0;
1616 	u16 vid = 0;
1617 	int ret;
1618 
1619 	if (!is_valid_ether_addr(addr->sa_data))
1620 		return -EADDRNOTAVAIL;
1621 
1622 	ret = pm_runtime_get_sync(&priv->pdev->dev);
1623 	if (ret < 0) {
1624 		pm_runtime_put_noidle(&priv->pdev->dev);
1625 		return ret;
1626 	}
1627 
1628 	if (priv->data.dual_emac) {
1629 		vid = priv->slaves[priv->emac_port].port_vlan;
1630 		flags = ALE_VLAN;
1631 	}
1632 
1633 	cpsw_ale_del_ucast(priv->ale, priv->mac_addr, HOST_PORT_NUM,
1634 			   flags, vid);
1635 	cpsw_ale_add_ucast(priv->ale, addr->sa_data, HOST_PORT_NUM,
1636 			   flags, vid);
1637 
1638 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1639 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1640 	for_each_slave(priv, cpsw_set_slave_mac, priv);
1641 
1642 	pm_runtime_put(&priv->pdev->dev);
1643 
1644 	return 0;
1645 }
1646 
1647 #ifdef CONFIG_NET_POLL_CONTROLLER
1648 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1649 {
1650 	struct cpsw_priv *priv = netdev_priv(ndev);
1651 
1652 	cpsw_intr_disable(priv);
1653 	cpsw_rx_interrupt(priv->irqs_table[0], priv);
1654 	cpsw_tx_interrupt(priv->irqs_table[1], priv);
1655 	cpsw_intr_enable(priv);
1656 }
1657 #endif
1658 
1659 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1660 				unsigned short vid)
1661 {
1662 	int ret;
1663 	int unreg_mcast_mask = 0;
1664 	u32 port_mask;
1665 
1666 	if (priv->data.dual_emac) {
1667 		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1668 
1669 		if (priv->ndev->flags & IFF_ALLMULTI)
1670 			unreg_mcast_mask = port_mask;
1671 	} else {
1672 		port_mask = ALE_ALL_PORTS;
1673 
1674 		if (priv->ndev->flags & IFF_ALLMULTI)
1675 			unreg_mcast_mask = ALE_ALL_PORTS;
1676 		else
1677 			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1678 	}
1679 
1680 	ret = cpsw_ale_add_vlan(priv->ale, vid, port_mask, 0, port_mask,
1681 				unreg_mcast_mask);
1682 	if (ret != 0)
1683 		return ret;
1684 
1685 	ret = cpsw_ale_add_ucast(priv->ale, priv->mac_addr,
1686 				 HOST_PORT_NUM, ALE_VLAN, vid);
1687 	if (ret != 0)
1688 		goto clean_vid;
1689 
1690 	ret = cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1691 				 port_mask, ALE_VLAN, vid, 0);
1692 	if (ret != 0)
1693 		goto clean_vlan_ucast;
1694 	return 0;
1695 
1696 clean_vlan_ucast:
1697 	cpsw_ale_del_ucast(priv->ale, priv->mac_addr,
1698 			   HOST_PORT_NUM, ALE_VLAN, vid);
1699 clean_vid:
1700 	cpsw_ale_del_vlan(priv->ale, vid, 0);
1701 	return ret;
1702 }
1703 
1704 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1705 				    __be16 proto, u16 vid)
1706 {
1707 	struct cpsw_priv *priv = netdev_priv(ndev);
1708 	int ret;
1709 
1710 	if (vid == priv->data.default_vlan)
1711 		return 0;
1712 
1713 	ret = pm_runtime_get_sync(&priv->pdev->dev);
1714 	if (ret < 0) {
1715 		pm_runtime_put_noidle(&priv->pdev->dev);
1716 		return ret;
1717 	}
1718 
1719 	if (priv->data.dual_emac) {
1720 		/* In dual EMAC, reserved VLAN id should not be used for
1721 		 * creating VLAN interfaces as this can break the dual
1722 		 * EMAC port separation
1723 		 */
1724 		int i;
1725 
1726 		for (i = 0; i < priv->data.slaves; i++) {
1727 			if (vid == priv->slaves[i].port_vlan)
1728 				return -EINVAL;
1729 		}
1730 	}
1731 
1732 	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1733 	ret = cpsw_add_vlan_ale_entry(priv, vid);
1734 
1735 	pm_runtime_put(&priv->pdev->dev);
1736 	return ret;
1737 }
1738 
1739 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1740 				     __be16 proto, u16 vid)
1741 {
1742 	struct cpsw_priv *priv = netdev_priv(ndev);
1743 	int ret;
1744 
1745 	if (vid == priv->data.default_vlan)
1746 		return 0;
1747 
1748 	ret = pm_runtime_get_sync(&priv->pdev->dev);
1749 	if (ret < 0) {
1750 		pm_runtime_put_noidle(&priv->pdev->dev);
1751 		return ret;
1752 	}
1753 
1754 	if (priv->data.dual_emac) {
1755 		int i;
1756 
1757 		for (i = 0; i < priv->data.slaves; i++) {
1758 			if (vid == priv->slaves[i].port_vlan)
1759 				return -EINVAL;
1760 		}
1761 	}
1762 
1763 	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1764 	ret = cpsw_ale_del_vlan(priv->ale, vid, 0);
1765 	if (ret != 0)
1766 		return ret;
1767 
1768 	ret = cpsw_ale_del_ucast(priv->ale, priv->mac_addr,
1769 				 HOST_PORT_NUM, ALE_VLAN, vid);
1770 	if (ret != 0)
1771 		return ret;
1772 
1773 	ret = cpsw_ale_del_mcast(priv->ale, priv->ndev->broadcast,
1774 				 0, ALE_VLAN, vid);
1775 	pm_runtime_put(&priv->pdev->dev);
1776 	return ret;
1777 }
1778 
1779 static const struct net_device_ops cpsw_netdev_ops = {
1780 	.ndo_open		= cpsw_ndo_open,
1781 	.ndo_stop		= cpsw_ndo_stop,
1782 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
1783 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
1784 	.ndo_do_ioctl		= cpsw_ndo_ioctl,
1785 	.ndo_validate_addr	= eth_validate_addr,
1786 	.ndo_change_mtu		= eth_change_mtu,
1787 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
1788 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
1789 #ifdef CONFIG_NET_POLL_CONTROLLER
1790 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
1791 #endif
1792 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
1793 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
1794 };
1795 
1796 static int cpsw_get_regs_len(struct net_device *ndev)
1797 {
1798 	struct cpsw_priv *priv = netdev_priv(ndev);
1799 
1800 	return priv->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
1801 }
1802 
1803 static void cpsw_get_regs(struct net_device *ndev,
1804 			  struct ethtool_regs *regs, void *p)
1805 {
1806 	struct cpsw_priv *priv = netdev_priv(ndev);
1807 	u32 *reg = p;
1808 
1809 	/* update CPSW IP version */
1810 	regs->version = priv->version;
1811 
1812 	cpsw_ale_dump(priv->ale, reg);
1813 }
1814 
1815 static void cpsw_get_drvinfo(struct net_device *ndev,
1816 			     struct ethtool_drvinfo *info)
1817 {
1818 	struct cpsw_priv *priv = netdev_priv(ndev);
1819 
1820 	strlcpy(info->driver, "cpsw", sizeof(info->driver));
1821 	strlcpy(info->version, "1.0", sizeof(info->version));
1822 	strlcpy(info->bus_info, priv->pdev->name, sizeof(info->bus_info));
1823 }
1824 
1825 static u32 cpsw_get_msglevel(struct net_device *ndev)
1826 {
1827 	struct cpsw_priv *priv = netdev_priv(ndev);
1828 	return priv->msg_enable;
1829 }
1830 
1831 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
1832 {
1833 	struct cpsw_priv *priv = netdev_priv(ndev);
1834 	priv->msg_enable = value;
1835 }
1836 
1837 static int cpsw_get_ts_info(struct net_device *ndev,
1838 			    struct ethtool_ts_info *info)
1839 {
1840 #ifdef CONFIG_TI_CPTS
1841 	struct cpsw_priv *priv = netdev_priv(ndev);
1842 
1843 	info->so_timestamping =
1844 		SOF_TIMESTAMPING_TX_HARDWARE |
1845 		SOF_TIMESTAMPING_TX_SOFTWARE |
1846 		SOF_TIMESTAMPING_RX_HARDWARE |
1847 		SOF_TIMESTAMPING_RX_SOFTWARE |
1848 		SOF_TIMESTAMPING_SOFTWARE |
1849 		SOF_TIMESTAMPING_RAW_HARDWARE;
1850 	info->phc_index = priv->cpts->phc_index;
1851 	info->tx_types =
1852 		(1 << HWTSTAMP_TX_OFF) |
1853 		(1 << HWTSTAMP_TX_ON);
1854 	info->rx_filters =
1855 		(1 << HWTSTAMP_FILTER_NONE) |
1856 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
1857 #else
1858 	info->so_timestamping =
1859 		SOF_TIMESTAMPING_TX_SOFTWARE |
1860 		SOF_TIMESTAMPING_RX_SOFTWARE |
1861 		SOF_TIMESTAMPING_SOFTWARE;
1862 	info->phc_index = -1;
1863 	info->tx_types = 0;
1864 	info->rx_filters = 0;
1865 #endif
1866 	return 0;
1867 }
1868 
1869 static int cpsw_get_settings(struct net_device *ndev,
1870 			     struct ethtool_cmd *ecmd)
1871 {
1872 	struct cpsw_priv *priv = netdev_priv(ndev);
1873 	int slave_no = cpsw_slave_index(priv);
1874 
1875 	if (priv->slaves[slave_no].phy)
1876 		return phy_ethtool_gset(priv->slaves[slave_no].phy, ecmd);
1877 	else
1878 		return -EOPNOTSUPP;
1879 }
1880 
1881 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1882 {
1883 	struct cpsw_priv *priv = netdev_priv(ndev);
1884 	int slave_no = cpsw_slave_index(priv);
1885 
1886 	if (priv->slaves[slave_no].phy)
1887 		return phy_ethtool_sset(priv->slaves[slave_no].phy, ecmd);
1888 	else
1889 		return -EOPNOTSUPP;
1890 }
1891 
1892 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1893 {
1894 	struct cpsw_priv *priv = netdev_priv(ndev);
1895 	int slave_no = cpsw_slave_index(priv);
1896 
1897 	wol->supported = 0;
1898 	wol->wolopts = 0;
1899 
1900 	if (priv->slaves[slave_no].phy)
1901 		phy_ethtool_get_wol(priv->slaves[slave_no].phy, wol);
1902 }
1903 
1904 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1905 {
1906 	struct cpsw_priv *priv = netdev_priv(ndev);
1907 	int slave_no = cpsw_slave_index(priv);
1908 
1909 	if (priv->slaves[slave_no].phy)
1910 		return phy_ethtool_set_wol(priv->slaves[slave_no].phy, wol);
1911 	else
1912 		return -EOPNOTSUPP;
1913 }
1914 
1915 static void cpsw_get_pauseparam(struct net_device *ndev,
1916 				struct ethtool_pauseparam *pause)
1917 {
1918 	struct cpsw_priv *priv = netdev_priv(ndev);
1919 
1920 	pause->autoneg = AUTONEG_DISABLE;
1921 	pause->rx_pause = priv->rx_pause ? true : false;
1922 	pause->tx_pause = priv->tx_pause ? true : false;
1923 }
1924 
1925 static int cpsw_set_pauseparam(struct net_device *ndev,
1926 			       struct ethtool_pauseparam *pause)
1927 {
1928 	struct cpsw_priv *priv = netdev_priv(ndev);
1929 	bool link;
1930 
1931 	priv->rx_pause = pause->rx_pause ? true : false;
1932 	priv->tx_pause = pause->tx_pause ? true : false;
1933 
1934 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1935 	return 0;
1936 }
1937 
1938 static int cpsw_ethtool_op_begin(struct net_device *ndev)
1939 {
1940 	struct cpsw_priv *priv = netdev_priv(ndev);
1941 	int ret;
1942 
1943 	ret = pm_runtime_get_sync(&priv->pdev->dev);
1944 	if (ret < 0) {
1945 		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
1946 		pm_runtime_put_noidle(&priv->pdev->dev);
1947 	}
1948 
1949 	return ret;
1950 }
1951 
1952 static void cpsw_ethtool_op_complete(struct net_device *ndev)
1953 {
1954 	struct cpsw_priv *priv = netdev_priv(ndev);
1955 	int ret;
1956 
1957 	ret = pm_runtime_put(&priv->pdev->dev);
1958 	if (ret < 0)
1959 		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
1960 }
1961 
1962 static const struct ethtool_ops cpsw_ethtool_ops = {
1963 	.get_drvinfo	= cpsw_get_drvinfo,
1964 	.get_msglevel	= cpsw_get_msglevel,
1965 	.set_msglevel	= cpsw_set_msglevel,
1966 	.get_link	= ethtool_op_get_link,
1967 	.get_ts_info	= cpsw_get_ts_info,
1968 	.get_settings	= cpsw_get_settings,
1969 	.set_settings	= cpsw_set_settings,
1970 	.get_coalesce	= cpsw_get_coalesce,
1971 	.set_coalesce	= cpsw_set_coalesce,
1972 	.get_sset_count		= cpsw_get_sset_count,
1973 	.get_strings		= cpsw_get_strings,
1974 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
1975 	.get_pauseparam		= cpsw_get_pauseparam,
1976 	.set_pauseparam		= cpsw_set_pauseparam,
1977 	.get_wol	= cpsw_get_wol,
1978 	.set_wol	= cpsw_set_wol,
1979 	.get_regs_len	= cpsw_get_regs_len,
1980 	.get_regs	= cpsw_get_regs,
1981 	.begin		= cpsw_ethtool_op_begin,
1982 	.complete	= cpsw_ethtool_op_complete,
1983 };
1984 
1985 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv,
1986 			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
1987 {
1988 	void __iomem		*regs = priv->regs;
1989 	int			slave_num = slave->slave_num;
1990 	struct cpsw_slave_data	*data = priv->data.slave_data + slave_num;
1991 
1992 	slave->data	= data;
1993 	slave->regs	= regs + slave_reg_ofs;
1994 	slave->sliver	= regs + sliver_reg_ofs;
1995 	slave->port_vlan = data->dual_emac_res_vlan;
1996 }
1997 
1998 static int cpsw_probe_dt(struct cpsw_platform_data *data,
1999 			 struct platform_device *pdev)
2000 {
2001 	struct device_node *node = pdev->dev.of_node;
2002 	struct device_node *slave_node;
2003 	int i = 0, ret;
2004 	u32 prop;
2005 
2006 	if (!node)
2007 		return -EINVAL;
2008 
2009 	if (of_property_read_u32(node, "slaves", &prop)) {
2010 		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2011 		return -EINVAL;
2012 	}
2013 	data->slaves = prop;
2014 
2015 	if (of_property_read_u32(node, "active_slave", &prop)) {
2016 		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2017 		return -EINVAL;
2018 	}
2019 	data->active_slave = prop;
2020 
2021 	if (of_property_read_u32(node, "cpts_clock_mult", &prop)) {
2022 		dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n");
2023 		return -EINVAL;
2024 	}
2025 	data->cpts_clock_mult = prop;
2026 
2027 	if (of_property_read_u32(node, "cpts_clock_shift", &prop)) {
2028 		dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n");
2029 		return -EINVAL;
2030 	}
2031 	data->cpts_clock_shift = prop;
2032 
2033 	data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
2034 					* sizeof(struct cpsw_slave_data),
2035 					GFP_KERNEL);
2036 	if (!data->slave_data)
2037 		return -ENOMEM;
2038 
2039 	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2040 		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2041 		return -EINVAL;
2042 	}
2043 	data->channels = prop;
2044 
2045 	if (of_property_read_u32(node, "ale_entries", &prop)) {
2046 		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2047 		return -EINVAL;
2048 	}
2049 	data->ale_entries = prop;
2050 
2051 	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2052 		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2053 		return -EINVAL;
2054 	}
2055 	data->bd_ram_size = prop;
2056 
2057 	if (of_property_read_u32(node, "mac_control", &prop)) {
2058 		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2059 		return -EINVAL;
2060 	}
2061 	data->mac_control = prop;
2062 
2063 	if (of_property_read_bool(node, "dual_emac"))
2064 		data->dual_emac = 1;
2065 
2066 	/*
2067 	 * Populate all the child nodes here...
2068 	 */
2069 	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2070 	/* We do not want to force this, as in some cases may not have child */
2071 	if (ret)
2072 		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2073 
2074 	for_each_available_child_of_node(node, slave_node) {
2075 		struct cpsw_slave_data *slave_data = data->slave_data + i;
2076 		const void *mac_addr = NULL;
2077 		int lenp;
2078 		const __be32 *parp;
2079 
2080 		/* This is no slave child node, continue */
2081 		if (strcmp(slave_node->name, "slave"))
2082 			continue;
2083 
2084 		slave_data->phy_node = of_parse_phandle(slave_node,
2085 							"phy-handle", 0);
2086 		parp = of_get_property(slave_node, "phy_id", &lenp);
2087 		if (slave_data->phy_node) {
2088 			dev_dbg(&pdev->dev,
2089 				"slave[%d] using phy-handle=\"%s\"\n",
2090 				i, slave_data->phy_node->full_name);
2091 		} else if (of_phy_is_fixed_link(slave_node)) {
2092 			/* In the case of a fixed PHY, the DT node associated
2093 			 * to the PHY is the Ethernet MAC DT node.
2094 			 */
2095 			ret = of_phy_register_fixed_link(slave_node);
2096 			if (ret)
2097 				return ret;
2098 			slave_data->phy_node = of_node_get(slave_node);
2099 		} else if (parp) {
2100 			u32 phyid;
2101 			struct device_node *mdio_node;
2102 			struct platform_device *mdio;
2103 
2104 			if (lenp != (sizeof(__be32) * 2)) {
2105 				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2106 				goto no_phy_slave;
2107 			}
2108 			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2109 			phyid = be32_to_cpup(parp+1);
2110 			mdio = of_find_device_by_node(mdio_node);
2111 			of_node_put(mdio_node);
2112 			if (!mdio) {
2113 				dev_err(&pdev->dev, "Missing mdio platform device\n");
2114 				return -EINVAL;
2115 			}
2116 			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2117 				 PHY_ID_FMT, mdio->name, phyid);
2118 		} else {
2119 			dev_err(&pdev->dev,
2120 				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2121 				i);
2122 			goto no_phy_slave;
2123 		}
2124 		slave_data->phy_if = of_get_phy_mode(slave_node);
2125 		if (slave_data->phy_if < 0) {
2126 			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2127 				i);
2128 			return slave_data->phy_if;
2129 		}
2130 
2131 no_phy_slave:
2132 		mac_addr = of_get_mac_address(slave_node);
2133 		if (mac_addr) {
2134 			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2135 		} else {
2136 			ret = ti_cm_get_macid(&pdev->dev, i,
2137 					      slave_data->mac_addr);
2138 			if (ret)
2139 				return ret;
2140 		}
2141 		if (data->dual_emac) {
2142 			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2143 						 &prop)) {
2144 				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2145 				slave_data->dual_emac_res_vlan = i+1;
2146 				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2147 					slave_data->dual_emac_res_vlan, i);
2148 			} else {
2149 				slave_data->dual_emac_res_vlan = prop;
2150 			}
2151 		}
2152 
2153 		i++;
2154 		if (i == data->slaves)
2155 			break;
2156 	}
2157 
2158 	return 0;
2159 }
2160 
2161 static int cpsw_probe_dual_emac(struct platform_device *pdev,
2162 				struct cpsw_priv *priv)
2163 {
2164 	struct cpsw_platform_data	*data = &priv->data;
2165 	struct net_device		*ndev;
2166 	struct cpsw_priv		*priv_sl2;
2167 	int ret = 0, i;
2168 
2169 	ndev = alloc_etherdev(sizeof(struct cpsw_priv));
2170 	if (!ndev) {
2171 		dev_err(&pdev->dev, "cpsw: error allocating net_device\n");
2172 		return -ENOMEM;
2173 	}
2174 
2175 	priv_sl2 = netdev_priv(ndev);
2176 	priv_sl2->data = *data;
2177 	priv_sl2->pdev = pdev;
2178 	priv_sl2->ndev = ndev;
2179 	priv_sl2->dev  = &ndev->dev;
2180 	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2181 	priv_sl2->rx_packet_max = max(rx_packet_max, 128);
2182 
2183 	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2184 		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2185 			ETH_ALEN);
2186 		dev_info(&pdev->dev, "cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr);
2187 	} else {
2188 		random_ether_addr(priv_sl2->mac_addr);
2189 		dev_info(&pdev->dev, "cpsw: Random MACID = %pM\n", priv_sl2->mac_addr);
2190 	}
2191 	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2192 
2193 	priv_sl2->slaves = priv->slaves;
2194 	priv_sl2->clk = priv->clk;
2195 
2196 	priv_sl2->coal_intvl = 0;
2197 	priv_sl2->bus_freq_mhz = priv->bus_freq_mhz;
2198 
2199 	priv_sl2->regs = priv->regs;
2200 	priv_sl2->host_port_regs = priv->host_port_regs;
2201 	priv_sl2->wr_regs = priv->wr_regs;
2202 	priv_sl2->hw_stats = priv->hw_stats;
2203 	priv_sl2->dma = priv->dma;
2204 	priv_sl2->txch = priv->txch;
2205 	priv_sl2->rxch = priv->rxch;
2206 	priv_sl2->ale = priv->ale;
2207 	priv_sl2->emac_port = 1;
2208 	priv->slaves[1].ndev = ndev;
2209 	priv_sl2->cpts = priv->cpts;
2210 	priv_sl2->version = priv->version;
2211 
2212 	for (i = 0; i < priv->num_irqs; i++) {
2213 		priv_sl2->irqs_table[i] = priv->irqs_table[i];
2214 		priv_sl2->num_irqs = priv->num_irqs;
2215 	}
2216 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2217 
2218 	ndev->netdev_ops = &cpsw_netdev_ops;
2219 	ndev->ethtool_ops = &cpsw_ethtool_ops;
2220 
2221 	/* register the network device */
2222 	SET_NETDEV_DEV(ndev, &pdev->dev);
2223 	ret = register_netdev(ndev);
2224 	if (ret) {
2225 		dev_err(&pdev->dev, "cpsw: error registering net device\n");
2226 		free_netdev(ndev);
2227 		ret = -ENODEV;
2228 	}
2229 
2230 	return ret;
2231 }
2232 
2233 #define CPSW_QUIRK_IRQ		BIT(0)
2234 
2235 static struct platform_device_id cpsw_devtype[] = {
2236 	{
2237 		/* keep it for existing comaptibles */
2238 		.name = "cpsw",
2239 		.driver_data = CPSW_QUIRK_IRQ,
2240 	}, {
2241 		.name = "am335x-cpsw",
2242 		.driver_data = CPSW_QUIRK_IRQ,
2243 	}, {
2244 		.name = "am4372-cpsw",
2245 		.driver_data = 0,
2246 	}, {
2247 		.name = "dra7-cpsw",
2248 		.driver_data = 0,
2249 	}, {
2250 		/* sentinel */
2251 	}
2252 };
2253 MODULE_DEVICE_TABLE(platform, cpsw_devtype);
2254 
2255 enum ti_cpsw_type {
2256 	CPSW = 0,
2257 	AM335X_CPSW,
2258 	AM4372_CPSW,
2259 	DRA7_CPSW,
2260 };
2261 
2262 static const struct of_device_id cpsw_of_mtable[] = {
2263 	{ .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
2264 	{ .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
2265 	{ .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
2266 	{ .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
2267 	{ /* sentinel */ },
2268 };
2269 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2270 
2271 static int cpsw_probe(struct platform_device *pdev)
2272 {
2273 	struct cpsw_platform_data	*data;
2274 	struct net_device		*ndev;
2275 	struct cpsw_priv		*priv;
2276 	struct cpdma_params		dma_params;
2277 	struct cpsw_ale_params		ale_params;
2278 	void __iomem			*ss_regs;
2279 	struct resource			*res, *ss_res;
2280 	const struct of_device_id	*of_id;
2281 	struct gpio_descs		*mode;
2282 	u32 slave_offset, sliver_offset, slave_size;
2283 	int ret = 0, i;
2284 	int irq;
2285 
2286 	ndev = alloc_etherdev(sizeof(struct cpsw_priv));
2287 	if (!ndev) {
2288 		dev_err(&pdev->dev, "error allocating net_device\n");
2289 		return -ENOMEM;
2290 	}
2291 
2292 	platform_set_drvdata(pdev, ndev);
2293 	priv = netdev_priv(ndev);
2294 	priv->pdev = pdev;
2295 	priv->ndev = ndev;
2296 	priv->dev  = &ndev->dev;
2297 	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2298 	priv->rx_packet_max = max(rx_packet_max, 128);
2299 	priv->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL);
2300 	if (!priv->cpts) {
2301 		dev_err(&pdev->dev, "error allocating cpts\n");
2302 		ret = -ENOMEM;
2303 		goto clean_ndev_ret;
2304 	}
2305 
2306 	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
2307 	if (IS_ERR(mode)) {
2308 		ret = PTR_ERR(mode);
2309 		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
2310 		goto clean_ndev_ret;
2311 	}
2312 
2313 	/*
2314 	 * This may be required here for child devices.
2315 	 */
2316 	pm_runtime_enable(&pdev->dev);
2317 
2318 	/* Select default pin state */
2319 	pinctrl_pm_select_default_state(&pdev->dev);
2320 
2321 	if (cpsw_probe_dt(&priv->data, pdev)) {
2322 		dev_err(&pdev->dev, "cpsw: platform data missing\n");
2323 		ret = -ENODEV;
2324 		goto clean_runtime_disable_ret;
2325 	}
2326 	data = &priv->data;
2327 
2328 	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2329 		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2330 		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2331 	} else {
2332 		eth_random_addr(priv->mac_addr);
2333 		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2334 	}
2335 
2336 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2337 
2338 	priv->slaves = devm_kzalloc(&pdev->dev,
2339 				    sizeof(struct cpsw_slave) * data->slaves,
2340 				    GFP_KERNEL);
2341 	if (!priv->slaves) {
2342 		ret = -ENOMEM;
2343 		goto clean_runtime_disable_ret;
2344 	}
2345 	for (i = 0; i < data->slaves; i++)
2346 		priv->slaves[i].slave_num = i;
2347 
2348 	priv->slaves[0].ndev = ndev;
2349 	priv->emac_port = 0;
2350 
2351 	priv->clk = devm_clk_get(&pdev->dev, "fck");
2352 	if (IS_ERR(priv->clk)) {
2353 		dev_err(priv->dev, "fck is not found\n");
2354 		ret = -ENODEV;
2355 		goto clean_runtime_disable_ret;
2356 	}
2357 	priv->coal_intvl = 0;
2358 	priv->bus_freq_mhz = clk_get_rate(priv->clk) / 1000000;
2359 
2360 	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2361 	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
2362 	if (IS_ERR(ss_regs)) {
2363 		ret = PTR_ERR(ss_regs);
2364 		goto clean_runtime_disable_ret;
2365 	}
2366 	priv->regs = ss_regs;
2367 
2368 	/* Need to enable clocks with runtime PM api to access module
2369 	 * registers
2370 	 */
2371 	ret = pm_runtime_get_sync(&pdev->dev);
2372 	if (ret < 0) {
2373 		pm_runtime_put_noidle(&pdev->dev);
2374 		goto clean_runtime_disable_ret;
2375 	}
2376 	priv->version = readl(&priv->regs->id_ver);
2377 	pm_runtime_put_sync(&pdev->dev);
2378 
2379 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2380 	priv->wr_regs = devm_ioremap_resource(&pdev->dev, res);
2381 	if (IS_ERR(priv->wr_regs)) {
2382 		ret = PTR_ERR(priv->wr_regs);
2383 		goto clean_runtime_disable_ret;
2384 	}
2385 
2386 	memset(&dma_params, 0, sizeof(dma_params));
2387 	memset(&ale_params, 0, sizeof(ale_params));
2388 
2389 	switch (priv->version) {
2390 	case CPSW_VERSION_1:
2391 		priv->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2392 		priv->cpts->reg      = ss_regs + CPSW1_CPTS_OFFSET;
2393 		priv->hw_stats	     = ss_regs + CPSW1_HW_STATS;
2394 		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
2395 		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
2396 		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
2397 		slave_offset         = CPSW1_SLAVE_OFFSET;
2398 		slave_size           = CPSW1_SLAVE_SIZE;
2399 		sliver_offset        = CPSW1_SLIVER_OFFSET;
2400 		dma_params.desc_mem_phys = 0;
2401 		break;
2402 	case CPSW_VERSION_2:
2403 	case CPSW_VERSION_3:
2404 	case CPSW_VERSION_4:
2405 		priv->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
2406 		priv->cpts->reg      = ss_regs + CPSW2_CPTS_OFFSET;
2407 		priv->hw_stats	     = ss_regs + CPSW2_HW_STATS;
2408 		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
2409 		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
2410 		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
2411 		slave_offset         = CPSW2_SLAVE_OFFSET;
2412 		slave_size           = CPSW2_SLAVE_SIZE;
2413 		sliver_offset        = CPSW2_SLIVER_OFFSET;
2414 		dma_params.desc_mem_phys =
2415 			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
2416 		break;
2417 	default:
2418 		dev_err(priv->dev, "unknown version 0x%08x\n", priv->version);
2419 		ret = -ENODEV;
2420 		goto clean_runtime_disable_ret;
2421 	}
2422 	for (i = 0; i < priv->data.slaves; i++) {
2423 		struct cpsw_slave *slave = &priv->slaves[i];
2424 		cpsw_slave_init(slave, priv, slave_offset, sliver_offset);
2425 		slave_offset  += slave_size;
2426 		sliver_offset += SLIVER_SIZE;
2427 	}
2428 
2429 	dma_params.dev		= &pdev->dev;
2430 	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
2431 	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
2432 	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
2433 	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
2434 	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
2435 
2436 	dma_params.num_chan		= data->channels;
2437 	dma_params.has_soft_reset	= true;
2438 	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
2439 	dma_params.desc_mem_size	= data->bd_ram_size;
2440 	dma_params.desc_align		= 16;
2441 	dma_params.has_ext_regs		= true;
2442 	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
2443 
2444 	priv->dma = cpdma_ctlr_create(&dma_params);
2445 	if (!priv->dma) {
2446 		dev_err(priv->dev, "error initializing dma\n");
2447 		ret = -ENOMEM;
2448 		goto clean_runtime_disable_ret;
2449 	}
2450 
2451 	priv->txch = cpdma_chan_create(priv->dma, tx_chan_num(0),
2452 				       cpsw_tx_handler);
2453 	priv->rxch = cpdma_chan_create(priv->dma, rx_chan_num(0),
2454 				       cpsw_rx_handler);
2455 
2456 	if (WARN_ON(!priv->txch || !priv->rxch)) {
2457 		dev_err(priv->dev, "error initializing dma channels\n");
2458 		ret = -ENOMEM;
2459 		goto clean_dma_ret;
2460 	}
2461 
2462 	ale_params.dev			= &ndev->dev;
2463 	ale_params.ale_ageout		= ale_ageout;
2464 	ale_params.ale_entries		= data->ale_entries;
2465 	ale_params.ale_ports		= data->slaves;
2466 
2467 	priv->ale = cpsw_ale_create(&ale_params);
2468 	if (!priv->ale) {
2469 		dev_err(priv->dev, "error initializing ale engine\n");
2470 		ret = -ENODEV;
2471 		goto clean_dma_ret;
2472 	}
2473 
2474 	ndev->irq = platform_get_irq(pdev, 1);
2475 	if (ndev->irq < 0) {
2476 		dev_err(priv->dev, "error getting irq resource\n");
2477 		ret = ndev->irq;
2478 		goto clean_ale_ret;
2479 	}
2480 
2481 	of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
2482 	if (of_id) {
2483 		pdev->id_entry = of_id->data;
2484 		if (pdev->id_entry->driver_data)
2485 			priv->quirk_irq = true;
2486 	}
2487 
2488 	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
2489 	 * MISC IRQs which are always kept disabled with this driver so
2490 	 * we will not request them.
2491 	 *
2492 	 * If anyone wants to implement support for those, make sure to
2493 	 * first request and append them to irqs_table array.
2494 	 */
2495 
2496 	/* RX IRQ */
2497 	irq = platform_get_irq(pdev, 1);
2498 	if (irq < 0) {
2499 		ret = irq;
2500 		goto clean_ale_ret;
2501 	}
2502 
2503 	priv->irqs_table[0] = irq;
2504 	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
2505 			       0, dev_name(&pdev->dev), priv);
2506 	if (ret < 0) {
2507 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
2508 		goto clean_ale_ret;
2509 	}
2510 
2511 	/* TX IRQ */
2512 	irq = platform_get_irq(pdev, 2);
2513 	if (irq < 0) {
2514 		ret = irq;
2515 		goto clean_ale_ret;
2516 	}
2517 
2518 	priv->irqs_table[1] = irq;
2519 	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
2520 			       0, dev_name(&pdev->dev), priv);
2521 	if (ret < 0) {
2522 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
2523 		goto clean_ale_ret;
2524 	}
2525 	priv->num_irqs = 2;
2526 
2527 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2528 
2529 	ndev->netdev_ops = &cpsw_netdev_ops;
2530 	ndev->ethtool_ops = &cpsw_ethtool_ops;
2531 	netif_napi_add(ndev, &priv->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
2532 	netif_tx_napi_add(ndev, &priv->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
2533 
2534 	/* register the network device */
2535 	SET_NETDEV_DEV(ndev, &pdev->dev);
2536 	ret = register_netdev(ndev);
2537 	if (ret) {
2538 		dev_err(priv->dev, "error registering net device\n");
2539 		ret = -ENODEV;
2540 		goto clean_ale_ret;
2541 	}
2542 
2543 	cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n",
2544 		    &ss_res->start, ndev->irq);
2545 
2546 	if (priv->data.dual_emac) {
2547 		ret = cpsw_probe_dual_emac(pdev, priv);
2548 		if (ret) {
2549 			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
2550 			goto clean_ale_ret;
2551 		}
2552 	}
2553 
2554 	return 0;
2555 
2556 clean_ale_ret:
2557 	cpsw_ale_destroy(priv->ale);
2558 clean_dma_ret:
2559 	cpdma_ctlr_destroy(priv->dma);
2560 clean_runtime_disable_ret:
2561 	pm_runtime_disable(&pdev->dev);
2562 clean_ndev_ret:
2563 	free_netdev(priv->ndev);
2564 	return ret;
2565 }
2566 
2567 static int cpsw_remove(struct platform_device *pdev)
2568 {
2569 	struct net_device *ndev = platform_get_drvdata(pdev);
2570 	struct cpsw_priv *priv = netdev_priv(ndev);
2571 	int ret;
2572 
2573 	ret = pm_runtime_get_sync(&pdev->dev);
2574 	if (ret < 0) {
2575 		pm_runtime_put_noidle(&pdev->dev);
2576 		return ret;
2577 	}
2578 
2579 	if (priv->data.dual_emac)
2580 		unregister_netdev(cpsw_get_slave_ndev(priv, 1));
2581 	unregister_netdev(ndev);
2582 
2583 	cpsw_ale_destroy(priv->ale);
2584 	cpdma_ctlr_destroy(priv->dma);
2585 	of_platform_depopulate(&pdev->dev);
2586 	pm_runtime_put_sync(&pdev->dev);
2587 	pm_runtime_disable(&pdev->dev);
2588 	if (priv->data.dual_emac)
2589 		free_netdev(cpsw_get_slave_ndev(priv, 1));
2590 	free_netdev(ndev);
2591 	return 0;
2592 }
2593 
2594 #ifdef CONFIG_PM_SLEEP
2595 static int cpsw_suspend(struct device *dev)
2596 {
2597 	struct platform_device	*pdev = to_platform_device(dev);
2598 	struct net_device	*ndev = platform_get_drvdata(pdev);
2599 	struct cpsw_priv	*priv = netdev_priv(ndev);
2600 
2601 	if (priv->data.dual_emac) {
2602 		int i;
2603 
2604 		for (i = 0; i < priv->data.slaves; i++) {
2605 			if (netif_running(priv->slaves[i].ndev))
2606 				cpsw_ndo_stop(priv->slaves[i].ndev);
2607 		}
2608 	} else {
2609 		if (netif_running(ndev))
2610 			cpsw_ndo_stop(ndev);
2611 	}
2612 
2613 	/* Select sleep pin state */
2614 	pinctrl_pm_select_sleep_state(&pdev->dev);
2615 
2616 	return 0;
2617 }
2618 
2619 static int cpsw_resume(struct device *dev)
2620 {
2621 	struct platform_device	*pdev = to_platform_device(dev);
2622 	struct net_device	*ndev = platform_get_drvdata(pdev);
2623 	struct cpsw_priv	*priv = netdev_priv(ndev);
2624 
2625 	/* Select default pin state */
2626 	pinctrl_pm_select_default_state(&pdev->dev);
2627 
2628 	if (priv->data.dual_emac) {
2629 		int i;
2630 
2631 		for (i = 0; i < priv->data.slaves; i++) {
2632 			if (netif_running(priv->slaves[i].ndev))
2633 				cpsw_ndo_open(priv->slaves[i].ndev);
2634 		}
2635 	} else {
2636 		if (netif_running(ndev))
2637 			cpsw_ndo_open(ndev);
2638 	}
2639 	return 0;
2640 }
2641 #endif
2642 
2643 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
2644 
2645 static struct platform_driver cpsw_driver = {
2646 	.driver = {
2647 		.name	 = "cpsw",
2648 		.pm	 = &cpsw_pm_ops,
2649 		.of_match_table = cpsw_of_mtable,
2650 	},
2651 	.probe = cpsw_probe,
2652 	.remove = cpsw_remove,
2653 };
2654 
2655 module_platform_driver(cpsw_driver);
2656 
2657 MODULE_LICENSE("GPL");
2658 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
2659 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
2660 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
2661