1 /* 2 * Tehuti Networks(R) Network Driver 3 * ethtool interface implementation 4 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 */ 11 12 /* 13 * RX HW/SW interaction overview 14 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 15 * There are 2 types of RX communication channels between driver and NIC. 16 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming 17 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds 18 * info about buffer's location, size and ID. An ID field is used to identify a 19 * buffer when it's returned with data via RXD Fifo (see below) 20 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is 21 * filled by HW and is readen by SW. Each descriptor holds status and ID. 22 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data, 23 * via dma moves it into host memory, builds new RXD descriptor with same ID, 24 * pushes it into RXD Fifo and raises interrupt to indicate new RX data. 25 * 26 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos. 27 * One holds 1.5K packets and another - 26K packets. Depending on incoming 28 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is 29 * filled with data, HW builds new RXD descriptor for it and push it into single 30 * RXD Fifo. 31 * 32 * RX SW Data Structures 33 * ~~~~~~~~~~~~~~~~~~~~~ 34 * skb db - used to keep track of all skbs owned by SW and their dma addresses. 35 * For RX case, ownership lasts from allocating new empty skb for RXF until 36 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own 37 * skb db. Implemented as array with bitmask. 38 * fifo - keeps info about fifo's size and location, relevant HW registers, 39 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure. 40 * Implemented as simple struct. 41 * 42 * RX SW Execution Flow 43 * ~~~~~~~~~~~~~~~~~~~~ 44 * Upon initialization (ifconfig up) driver creates RX fifos and initializes 45 * relevant registers. At the end of init phase, driver enables interrupts. 46 * NIC sees that there is no RXF buffers and raises 47 * RD_INTR interrupt, isr fills skbs and Rx begins. 48 * Driver has two receive operation modes: 49 * NAPI - interrupt-driven mixed with polling 50 * interrupt-driven only 51 * 52 * Interrupt-driven only flow is following. When buffer is ready, HW raises 53 * interrupt and isr is called. isr collects all available packets 54 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit. 55 56 * Rx buffer allocation note 57 * ~~~~~~~~~~~~~~~~~~~~~~~~~ 58 * Driver cares to feed such amount of RxF descriptors that respective amount of 59 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of 60 * overflow check in Bordeaux for RxD fifo free/used size. 61 * FIXME: this is NOT fully implemented, more work should be done 62 * 63 */ 64 65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 66 67 #include "tehuti.h" 68 69 static const struct pci_device_id bdx_pci_tbl[] = { 70 { PCI_VDEVICE(TEHUTI, 0x3009), }, 71 { PCI_VDEVICE(TEHUTI, 0x3010), }, 72 { PCI_VDEVICE(TEHUTI, 0x3014), }, 73 { 0 } 74 }; 75 76 MODULE_DEVICE_TABLE(pci, bdx_pci_tbl); 77 78 /* Definitions needed by ISR or NAPI functions */ 79 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f); 80 static void bdx_tx_cleanup(struct bdx_priv *priv); 81 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget); 82 83 /* Definitions needed by FW loading */ 84 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size); 85 86 /* Definitions needed by hw_start */ 87 static int bdx_tx_init(struct bdx_priv *priv); 88 static int bdx_rx_init(struct bdx_priv *priv); 89 90 /* Definitions needed by bdx_close */ 91 static void bdx_rx_free(struct bdx_priv *priv); 92 static void bdx_tx_free(struct bdx_priv *priv); 93 94 /* Definitions needed by bdx_probe */ 95 static void bdx_set_ethtool_ops(struct net_device *netdev); 96 97 /************************************************************************* 98 * Print Info * 99 *************************************************************************/ 100 101 static void print_hw_id(struct pci_dev *pdev) 102 { 103 struct pci_nic *nic = pci_get_drvdata(pdev); 104 u16 pci_link_status = 0; 105 u16 pci_ctrl = 0; 106 107 pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status); 108 pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl); 109 110 pr_info("%s%s\n", BDX_NIC_NAME, 111 nic->port_num == 1 ? "" : ", 2-Port"); 112 pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n", 113 readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF, 114 readl(nic->regs + FPGA_SEED), 115 GET_LINK_STATUS_LANES(pci_link_status), 116 GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl)); 117 } 118 119 static void print_fw_id(struct pci_nic *nic) 120 { 121 pr_info("fw 0x%x\n", readl(nic->regs + FW_VER)); 122 } 123 124 static void print_eth_id(struct net_device *ndev) 125 { 126 netdev_info(ndev, "%s, Port %c\n", 127 BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B'); 128 129 } 130 131 /************************************************************************* 132 * Code * 133 *************************************************************************/ 134 135 #define bdx_enable_interrupts(priv) \ 136 do { WRITE_REG(priv, regIMR, IR_RUN); } while (0) 137 #define bdx_disable_interrupts(priv) \ 138 do { WRITE_REG(priv, regIMR, 0); } while (0) 139 140 /** 141 * bdx_fifo_init - create TX/RX descriptor fifo for host-NIC communication. 142 * @priv: NIC private structure 143 * @f: fifo to initialize 144 * @fsz_type: fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB 145 * @reg_XXX: offsets of registers relative to base address 146 * 147 * 1K extra space is allocated at the end of the fifo to simplify 148 * processing of descriptors that wraps around fifo's end 149 * 150 * Returns 0 on success, negative value on failure 151 * 152 */ 153 static int 154 bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type, 155 u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR) 156 { 157 u16 memsz = FIFO_SIZE * (1 << fsz_type); 158 159 memset(f, 0, sizeof(struct fifo)); 160 /* pci_alloc_consistent gives us 4k-aligned memory */ 161 f->va = pci_alloc_consistent(priv->pdev, 162 memsz + FIFO_EXTRA_SPACE, &f->da); 163 if (!f->va) { 164 pr_err("pci_alloc_consistent failed\n"); 165 RET(-ENOMEM); 166 } 167 f->reg_CFG0 = reg_CFG0; 168 f->reg_CFG1 = reg_CFG1; 169 f->reg_RPTR = reg_RPTR; 170 f->reg_WPTR = reg_WPTR; 171 f->rptr = 0; 172 f->wptr = 0; 173 f->memsz = memsz; 174 f->size_mask = memsz - 1; 175 WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type)); 176 WRITE_REG(priv, reg_CFG1, H32_64(f->da)); 177 178 RET(0); 179 } 180 181 /** 182 * bdx_fifo_free - free all resources used by fifo 183 * @priv: NIC private structure 184 * @f: fifo to release 185 */ 186 static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f) 187 { 188 ENTER; 189 if (f->va) { 190 pci_free_consistent(priv->pdev, 191 f->memsz + FIFO_EXTRA_SPACE, f->va, f->da); 192 f->va = NULL; 193 } 194 RET(); 195 } 196 197 /** 198 * bdx_link_changed - notifies OS about hw link state. 199 * @priv: hw adapter structure 200 */ 201 static void bdx_link_changed(struct bdx_priv *priv) 202 { 203 u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT; 204 205 if (!link) { 206 if (netif_carrier_ok(priv->ndev)) { 207 netif_stop_queue(priv->ndev); 208 netif_carrier_off(priv->ndev); 209 netdev_err(priv->ndev, "Link Down\n"); 210 } 211 } else { 212 if (!netif_carrier_ok(priv->ndev)) { 213 netif_wake_queue(priv->ndev); 214 netif_carrier_on(priv->ndev); 215 netdev_err(priv->ndev, "Link Up\n"); 216 } 217 } 218 } 219 220 static void bdx_isr_extra(struct bdx_priv *priv, u32 isr) 221 { 222 if (isr & IR_RX_FREE_0) { 223 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0); 224 DBG("RX_FREE_0\n"); 225 } 226 227 if (isr & IR_LNKCHG0) 228 bdx_link_changed(priv); 229 230 if (isr & IR_PCIE_LINK) 231 netdev_err(priv->ndev, "PCI-E Link Fault\n"); 232 233 if (isr & IR_PCIE_TOUT) 234 netdev_err(priv->ndev, "PCI-E Time Out\n"); 235 236 } 237 238 /** 239 * bdx_isr_napi - Interrupt Service Routine for Bordeaux NIC 240 * @irq: interrupt number 241 * @dev: network device 242 * 243 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise 244 * 245 * It reads ISR register to know interrupt reasons, and proceed them one by one. 246 * Reasons of interest are: 247 * RX_DESC - new packet has arrived and RXD fifo holds its descriptor 248 * RX_FREE - number of free Rx buffers in RXF fifo gets low 249 * TX_FREE - packet was transmited and RXF fifo holds its descriptor 250 */ 251 252 static irqreturn_t bdx_isr_napi(int irq, void *dev) 253 { 254 struct net_device *ndev = dev; 255 struct bdx_priv *priv = netdev_priv(ndev); 256 u32 isr; 257 258 ENTER; 259 isr = (READ_REG(priv, regISR) & IR_RUN); 260 if (unlikely(!isr)) { 261 bdx_enable_interrupts(priv); 262 return IRQ_NONE; /* Not our interrupt */ 263 } 264 265 if (isr & IR_EXTRA) 266 bdx_isr_extra(priv, isr); 267 268 if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) { 269 if (likely(napi_schedule_prep(&priv->napi))) { 270 __napi_schedule(&priv->napi); 271 RET(IRQ_HANDLED); 272 } else { 273 /* NOTE: we get here if intr has slipped into window 274 * between these lines in bdx_poll: 275 * bdx_enable_interrupts(priv); 276 * return 0; 277 * currently intrs are disabled (since we read ISR), 278 * and we have failed to register next poll. 279 * so we read the regs to trigger chip 280 * and allow further interupts. */ 281 READ_REG(priv, regTXF_WPTR_0); 282 READ_REG(priv, regRXD_WPTR_0); 283 } 284 } 285 286 bdx_enable_interrupts(priv); 287 RET(IRQ_HANDLED); 288 } 289 290 static int bdx_poll(struct napi_struct *napi, int budget) 291 { 292 struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi); 293 int work_done; 294 295 ENTER; 296 bdx_tx_cleanup(priv); 297 work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget); 298 if ((work_done < budget) || 299 (priv->napi_stop++ >= 30)) { 300 DBG("rx poll is done. backing to isr-driven\n"); 301 302 /* from time to time we exit to let NAPI layer release 303 * device lock and allow waiting tasks (eg rmmod) to advance) */ 304 priv->napi_stop = 0; 305 306 napi_complete(napi); 307 bdx_enable_interrupts(priv); 308 } 309 return work_done; 310 } 311 312 /** 313 * bdx_fw_load - loads firmware to NIC 314 * @priv: NIC private structure 315 * 316 * Firmware is loaded via TXD fifo, so it must be initialized first. 317 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC 318 * can have few of them). So all drivers use semaphore register to choose one 319 * that will actually load FW to NIC. 320 */ 321 322 static int bdx_fw_load(struct bdx_priv *priv) 323 { 324 const struct firmware *fw = NULL; 325 int master, i; 326 int rc; 327 328 ENTER; 329 master = READ_REG(priv, regINIT_SEMAPHORE); 330 if (!READ_REG(priv, regINIT_STATUS) && master) { 331 rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev); 332 if (rc) 333 goto out; 334 bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size); 335 mdelay(100); 336 } 337 for (i = 0; i < 200; i++) { 338 if (READ_REG(priv, regINIT_STATUS)) { 339 rc = 0; 340 goto out; 341 } 342 mdelay(2); 343 } 344 rc = -EIO; 345 out: 346 if (master) 347 WRITE_REG(priv, regINIT_SEMAPHORE, 1); 348 349 release_firmware(fw); 350 351 if (rc) { 352 netdev_err(priv->ndev, "firmware loading failed\n"); 353 if (rc == -EIO) 354 DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n", 355 READ_REG(priv, regVPC), 356 READ_REG(priv, regVIC), 357 READ_REG(priv, regINIT_STATUS), i); 358 RET(rc); 359 } else { 360 DBG("%s: firmware loading success\n", priv->ndev->name); 361 RET(0); 362 } 363 } 364 365 static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv) 366 { 367 u32 val; 368 369 ENTER; 370 DBG("mac0=%x mac1=%x mac2=%x\n", 371 READ_REG(priv, regUNC_MAC0_A), 372 READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A)); 373 374 val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]); 375 WRITE_REG(priv, regUNC_MAC2_A, val); 376 val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]); 377 WRITE_REG(priv, regUNC_MAC1_A, val); 378 val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]); 379 WRITE_REG(priv, regUNC_MAC0_A, val); 380 381 DBG("mac0=%x mac1=%x mac2=%x\n", 382 READ_REG(priv, regUNC_MAC0_A), 383 READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A)); 384 RET(); 385 } 386 387 /** 388 * bdx_hw_start - inits registers and starts HW's Rx and Tx engines 389 * @priv: NIC private structure 390 */ 391 static int bdx_hw_start(struct bdx_priv *priv) 392 { 393 int rc = -EIO; 394 struct net_device *ndev = priv->ndev; 395 396 ENTER; 397 bdx_link_changed(priv); 398 399 /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */ 400 WRITE_REG(priv, regFRM_LENGTH, 0X3FE0); 401 WRITE_REG(priv, regPAUSE_QUANT, 0x96); 402 WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010); 403 WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010); 404 WRITE_REG(priv, regRX_FULLNESS, 0); 405 WRITE_REG(priv, regTX_FULLNESS, 0); 406 WRITE_REG(priv, regCTRLST, 407 regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA); 408 409 WRITE_REG(priv, regVGLB, 0); 410 WRITE_REG(priv, regMAX_FRAME_A, 411 priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL); 412 413 DBG("RDINTCM=%08x\n", priv->rdintcm); /*NOTE: test script uses this */ 414 WRITE_REG(priv, regRDINTCM0, priv->rdintcm); 415 WRITE_REG(priv, regRDINTCM2, 0); /*cpu_to_le32(rcm.val)); */ 416 417 DBG("TDINTCM=%08x\n", priv->tdintcm); /*NOTE: test script uses this */ 418 WRITE_REG(priv, regTDINTCM0, priv->tdintcm); /* old val = 0x300064 */ 419 420 /* Enable timer interrupt once in 2 secs. */ 421 /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */ 422 bdx_restore_mac(priv->ndev, priv); 423 424 WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN | 425 GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB); 426 427 #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED) 428 429 rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE, 430 ndev->name, ndev); 431 if (rc) 432 goto err_irq; 433 bdx_enable_interrupts(priv); 434 435 RET(0); 436 437 err_irq: 438 RET(rc); 439 } 440 441 static void bdx_hw_stop(struct bdx_priv *priv) 442 { 443 ENTER; 444 bdx_disable_interrupts(priv); 445 free_irq(priv->pdev->irq, priv->ndev); 446 447 netif_carrier_off(priv->ndev); 448 netif_stop_queue(priv->ndev); 449 450 RET(); 451 } 452 453 static int bdx_hw_reset_direct(void __iomem *regs) 454 { 455 u32 val, i; 456 ENTER; 457 458 /* reset sequences: read, write 1, read, write 0 */ 459 val = readl(regs + regCLKPLL); 460 writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL); 461 udelay(50); 462 val = readl(regs + regCLKPLL); 463 writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL); 464 465 /* check that the PLLs are locked and reset ended */ 466 for (i = 0; i < 70; i++, mdelay(10)) 467 if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) { 468 /* do any PCI-E read transaction */ 469 readl(regs + regRXD_CFG0_0); 470 return 0; 471 } 472 pr_err("HW reset failed\n"); 473 return 1; /* failure */ 474 } 475 476 static int bdx_hw_reset(struct bdx_priv *priv) 477 { 478 u32 val, i; 479 ENTER; 480 481 if (priv->port == 0) { 482 /* reset sequences: read, write 1, read, write 0 */ 483 val = READ_REG(priv, regCLKPLL); 484 WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8); 485 udelay(50); 486 val = READ_REG(priv, regCLKPLL); 487 WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST); 488 } 489 /* check that the PLLs are locked and reset ended */ 490 for (i = 0; i < 70; i++, mdelay(10)) 491 if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) { 492 /* do any PCI-E read transaction */ 493 READ_REG(priv, regRXD_CFG0_0); 494 return 0; 495 } 496 pr_err("HW reset failed\n"); 497 return 1; /* failure */ 498 } 499 500 static int bdx_sw_reset(struct bdx_priv *priv) 501 { 502 int i; 503 504 ENTER; 505 /* 1. load MAC (obsolete) */ 506 /* 2. disable Rx (and Tx) */ 507 WRITE_REG(priv, regGMAC_RXF_A, 0); 508 mdelay(100); 509 /* 3. disable port */ 510 WRITE_REG(priv, regDIS_PORT, 1); 511 /* 4. disable queue */ 512 WRITE_REG(priv, regDIS_QU, 1); 513 /* 5. wait until hw is disabled */ 514 for (i = 0; i < 50; i++) { 515 if (READ_REG(priv, regRST_PORT) & 1) 516 break; 517 mdelay(10); 518 } 519 if (i == 50) 520 netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n"); 521 522 /* 6. disable intrs */ 523 WRITE_REG(priv, regRDINTCM0, 0); 524 WRITE_REG(priv, regTDINTCM0, 0); 525 WRITE_REG(priv, regIMR, 0); 526 READ_REG(priv, regISR); 527 528 /* 7. reset queue */ 529 WRITE_REG(priv, regRST_QU, 1); 530 /* 8. reset port */ 531 WRITE_REG(priv, regRST_PORT, 1); 532 /* 9. zero all read and write pointers */ 533 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10) 534 DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR); 535 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10) 536 WRITE_REG(priv, i, 0); 537 /* 10. unseet port disable */ 538 WRITE_REG(priv, regDIS_PORT, 0); 539 /* 11. unset queue disable */ 540 WRITE_REG(priv, regDIS_QU, 0); 541 /* 12. unset queue reset */ 542 WRITE_REG(priv, regRST_QU, 0); 543 /* 13. unset port reset */ 544 WRITE_REG(priv, regRST_PORT, 0); 545 /* 14. enable Rx */ 546 /* skiped. will be done later */ 547 /* 15. save MAC (obsolete) */ 548 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10) 549 DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR); 550 551 RET(0); 552 } 553 554 /* bdx_reset - performs right type of reset depending on hw type */ 555 static int bdx_reset(struct bdx_priv *priv) 556 { 557 ENTER; 558 RET((priv->pdev->device == 0x3009) 559 ? bdx_hw_reset(priv) 560 : bdx_sw_reset(priv)); 561 } 562 563 /** 564 * bdx_close - Disables a network interface 565 * @netdev: network interface device structure 566 * 567 * Returns 0, this is not allowed to fail 568 * 569 * The close entry point is called when an interface is de-activated 570 * by the OS. The hardware is still under the drivers control, but 571 * needs to be disabled. A global MAC reset is issued to stop the 572 * hardware, and all transmit and receive resources are freed. 573 **/ 574 static int bdx_close(struct net_device *ndev) 575 { 576 struct bdx_priv *priv = NULL; 577 578 ENTER; 579 priv = netdev_priv(ndev); 580 581 napi_disable(&priv->napi); 582 583 bdx_reset(priv); 584 bdx_hw_stop(priv); 585 bdx_rx_free(priv); 586 bdx_tx_free(priv); 587 RET(0); 588 } 589 590 /** 591 * bdx_open - Called when a network interface is made active 592 * @netdev: network interface device structure 593 * 594 * Returns 0 on success, negative value on failure 595 * 596 * The open entry point is called when a network interface is made 597 * active by the system (IFF_UP). At this point all resources needed 598 * for transmit and receive operations are allocated, the interrupt 599 * handler is registered with the OS, the watchdog timer is started, 600 * and the stack is notified that the interface is ready. 601 **/ 602 static int bdx_open(struct net_device *ndev) 603 { 604 struct bdx_priv *priv; 605 int rc; 606 607 ENTER; 608 priv = netdev_priv(ndev); 609 bdx_reset(priv); 610 if (netif_running(ndev)) 611 netif_stop_queue(priv->ndev); 612 613 if ((rc = bdx_tx_init(priv)) || 614 (rc = bdx_rx_init(priv)) || 615 (rc = bdx_fw_load(priv))) 616 goto err; 617 618 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0); 619 620 rc = bdx_hw_start(priv); 621 if (rc) 622 goto err; 623 624 napi_enable(&priv->napi); 625 626 print_fw_id(priv->nic); 627 628 RET(0); 629 630 err: 631 bdx_close(ndev); 632 RET(rc); 633 } 634 635 static int bdx_range_check(struct bdx_priv *priv, u32 offset) 636 { 637 return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ? 638 -EINVAL : 0; 639 } 640 641 static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd) 642 { 643 struct bdx_priv *priv = netdev_priv(ndev); 644 u32 data[3]; 645 int error; 646 647 ENTER; 648 649 DBG("jiffies=%ld cmd=%d\n", jiffies, cmd); 650 if (cmd != SIOCDEVPRIVATE) { 651 error = copy_from_user(data, ifr->ifr_data, sizeof(data)); 652 if (error) { 653 pr_err("can't copy from user\n"); 654 RET(-EFAULT); 655 } 656 DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]); 657 } 658 659 if (!capable(CAP_SYS_RAWIO)) 660 return -EPERM; 661 662 switch (data[0]) { 663 664 case BDX_OP_READ: 665 error = bdx_range_check(priv, data[1]); 666 if (error < 0) 667 return error; 668 data[2] = READ_REG(priv, data[1]); 669 DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2], 670 data[2]); 671 error = copy_to_user(ifr->ifr_data, data, sizeof(data)); 672 if (error) 673 RET(-EFAULT); 674 break; 675 676 case BDX_OP_WRITE: 677 error = bdx_range_check(priv, data[1]); 678 if (error < 0) 679 return error; 680 WRITE_REG(priv, data[1], data[2]); 681 DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]); 682 break; 683 684 default: 685 RET(-EOPNOTSUPP); 686 } 687 return 0; 688 } 689 690 static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd) 691 { 692 ENTER; 693 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 694 RET(bdx_ioctl_priv(ndev, ifr, cmd)); 695 else 696 RET(-EOPNOTSUPP); 697 } 698 699 /** 700 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid 701 * @ndev: network device 702 * @vid: VLAN vid 703 * @op: add or kill operation 704 * 705 * Passes VLAN filter table to hardware 706 */ 707 static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable) 708 { 709 struct bdx_priv *priv = netdev_priv(ndev); 710 u32 reg, bit, val; 711 712 ENTER; 713 DBG2("vid=%d value=%d\n", (int)vid, enable); 714 if (unlikely(vid >= 4096)) { 715 pr_err("invalid VID: %u (> 4096)\n", vid); 716 RET(); 717 } 718 reg = regVLAN_0 + (vid / 32) * 4; 719 bit = 1 << vid % 32; 720 val = READ_REG(priv, reg); 721 DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit); 722 if (enable) 723 val |= bit; 724 else 725 val &= ~bit; 726 DBG2("new val %x\n", val); 727 WRITE_REG(priv, reg, val); 728 RET(); 729 } 730 731 /** 732 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table 733 * @ndev: network device 734 * @vid: VLAN vid to add 735 */ 736 static int bdx_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 737 { 738 __bdx_vlan_rx_vid(ndev, vid, 1); 739 return 0; 740 } 741 742 /** 743 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table 744 * @ndev: network device 745 * @vid: VLAN vid to kill 746 */ 747 static int bdx_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 748 { 749 __bdx_vlan_rx_vid(ndev, vid, 0); 750 return 0; 751 } 752 753 /** 754 * bdx_change_mtu - Change the Maximum Transfer Unit 755 * @netdev: network interface device structure 756 * @new_mtu: new value for maximum frame size 757 * 758 * Returns 0 on success, negative on failure 759 */ 760 static int bdx_change_mtu(struct net_device *ndev, int new_mtu) 761 { 762 ENTER; 763 764 if (new_mtu == ndev->mtu) 765 RET(0); 766 767 /* enforce minimum frame size */ 768 if (new_mtu < ETH_ZLEN) { 769 netdev_err(ndev, "mtu %d is less then minimal %d\n", 770 new_mtu, ETH_ZLEN); 771 RET(-EINVAL); 772 } 773 774 ndev->mtu = new_mtu; 775 if (netif_running(ndev)) { 776 bdx_close(ndev); 777 bdx_open(ndev); 778 } 779 RET(0); 780 } 781 782 static void bdx_setmulti(struct net_device *ndev) 783 { 784 struct bdx_priv *priv = netdev_priv(ndev); 785 786 u32 rxf_val = 787 GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN; 788 int i; 789 790 ENTER; 791 /* IMF - imperfect (hash) rx multicat filter */ 792 /* PMF - perfect rx multicat filter */ 793 794 /* FIXME: RXE(OFF) */ 795 if (ndev->flags & IFF_PROMISC) { 796 rxf_val |= GMAC_RX_FILTER_PRM; 797 } else if (ndev->flags & IFF_ALLMULTI) { 798 /* set IMF to accept all multicast frmaes */ 799 for (i = 0; i < MAC_MCST_HASH_NUM; i++) 800 WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0); 801 } else if (!netdev_mc_empty(ndev)) { 802 u8 hash; 803 struct netdev_hw_addr *ha; 804 u32 reg, val; 805 806 /* set IMF to deny all multicast frames */ 807 for (i = 0; i < MAC_MCST_HASH_NUM; i++) 808 WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0); 809 /* set PMF to deny all multicast frames */ 810 for (i = 0; i < MAC_MCST_NUM; i++) { 811 WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0); 812 WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0); 813 } 814 815 /* use PMF to accept first MAC_MCST_NUM (15) addresses */ 816 /* TBD: sort addresses and write them in ascending order 817 * into RX_MAC_MCST regs. we skip this phase now and accept ALL 818 * multicast frames throu IMF */ 819 /* accept the rest of addresses throu IMF */ 820 netdev_for_each_mc_addr(ha, ndev) { 821 hash = 0; 822 for (i = 0; i < ETH_ALEN; i++) 823 hash ^= ha->addr[i]; 824 reg = regRX_MCST_HASH0 + ((hash >> 5) << 2); 825 val = READ_REG(priv, reg); 826 val |= (1 << (hash % 32)); 827 WRITE_REG(priv, reg, val); 828 } 829 830 } else { 831 DBG("only own mac %d\n", netdev_mc_count(ndev)); 832 rxf_val |= GMAC_RX_FILTER_AB; 833 } 834 WRITE_REG(priv, regGMAC_RXF_A, rxf_val); 835 /* enable RX */ 836 /* FIXME: RXE(ON) */ 837 RET(); 838 } 839 840 static int bdx_set_mac(struct net_device *ndev, void *p) 841 { 842 struct bdx_priv *priv = netdev_priv(ndev); 843 struct sockaddr *addr = p; 844 845 ENTER; 846 /* 847 if (netif_running(dev)) 848 return -EBUSY 849 */ 850 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); 851 bdx_restore_mac(ndev, priv); 852 RET(0); 853 } 854 855 static int bdx_read_mac(struct bdx_priv *priv) 856 { 857 u16 macAddress[3], i; 858 ENTER; 859 860 macAddress[2] = READ_REG(priv, regUNC_MAC0_A); 861 macAddress[2] = READ_REG(priv, regUNC_MAC0_A); 862 macAddress[1] = READ_REG(priv, regUNC_MAC1_A); 863 macAddress[1] = READ_REG(priv, regUNC_MAC1_A); 864 macAddress[0] = READ_REG(priv, regUNC_MAC2_A); 865 macAddress[0] = READ_REG(priv, regUNC_MAC2_A); 866 for (i = 0; i < 3; i++) { 867 priv->ndev->dev_addr[i * 2 + 1] = macAddress[i]; 868 priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8; 869 } 870 RET(0); 871 } 872 873 static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg) 874 { 875 u64 val; 876 877 val = READ_REG(priv, reg); 878 val |= ((u64) READ_REG(priv, reg + 8)) << 32; 879 return val; 880 } 881 882 /*Do the statistics-update work*/ 883 static void bdx_update_stats(struct bdx_priv *priv) 884 { 885 struct bdx_stats *stats = &priv->hw_stats; 886 u64 *stats_vector = (u64 *) stats; 887 int i; 888 int addr; 889 890 /*Fill HW structure */ 891 addr = 0x7200; 892 /*First 12 statistics - 0x7200 - 0x72B0 */ 893 for (i = 0; i < 12; i++) { 894 stats_vector[i] = bdx_read_l2stat(priv, addr); 895 addr += 0x10; 896 } 897 BDX_ASSERT(addr != 0x72C0); 898 /* 0x72C0-0x72E0 RSRV */ 899 addr = 0x72F0; 900 for (; i < 16; i++) { 901 stats_vector[i] = bdx_read_l2stat(priv, addr); 902 addr += 0x10; 903 } 904 BDX_ASSERT(addr != 0x7330); 905 /* 0x7330-0x7360 RSRV */ 906 addr = 0x7370; 907 for (; i < 19; i++) { 908 stats_vector[i] = bdx_read_l2stat(priv, addr); 909 addr += 0x10; 910 } 911 BDX_ASSERT(addr != 0x73A0); 912 /* 0x73A0-0x73B0 RSRV */ 913 addr = 0x73C0; 914 for (; i < 23; i++) { 915 stats_vector[i] = bdx_read_l2stat(priv, addr); 916 addr += 0x10; 917 } 918 BDX_ASSERT(addr != 0x7400); 919 BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i); 920 } 921 922 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len, 923 u16 rxd_vlan); 924 static void print_rxfd(struct rxf_desc *rxfd); 925 926 /************************************************************************* 927 * Rx DB * 928 *************************************************************************/ 929 930 static void bdx_rxdb_destroy(struct rxdb *db) 931 { 932 vfree(db); 933 } 934 935 static struct rxdb *bdx_rxdb_create(int nelem) 936 { 937 struct rxdb *db; 938 int i; 939 940 db = vmalloc(sizeof(struct rxdb) 941 + (nelem * sizeof(int)) 942 + (nelem * sizeof(struct rx_map))); 943 if (likely(db != NULL)) { 944 db->stack = (int *)(db + 1); 945 db->elems = (void *)(db->stack + nelem); 946 db->nelem = nelem; 947 db->top = nelem; 948 for (i = 0; i < nelem; i++) 949 db->stack[i] = nelem - i - 1; /* to make first allocs 950 close to db struct*/ 951 } 952 953 return db; 954 } 955 956 static inline int bdx_rxdb_alloc_elem(struct rxdb *db) 957 { 958 BDX_ASSERT(db->top <= 0); 959 return db->stack[--(db->top)]; 960 } 961 962 static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n) 963 { 964 BDX_ASSERT((n < 0) || (n >= db->nelem)); 965 return db->elems + n; 966 } 967 968 static inline int bdx_rxdb_available(struct rxdb *db) 969 { 970 return db->top; 971 } 972 973 static inline void bdx_rxdb_free_elem(struct rxdb *db, int n) 974 { 975 BDX_ASSERT((n >= db->nelem) || (n < 0)); 976 db->stack[(db->top)++] = n; 977 } 978 979 /************************************************************************* 980 * Rx Init * 981 *************************************************************************/ 982 983 /** 984 * bdx_rx_init - initialize RX all related HW and SW resources 985 * @priv: NIC private structure 986 * 987 * Returns 0 on success, negative value on failure 988 * 989 * It creates rxf and rxd fifos, update relevant HW registers, preallocate 990 * skb for rx. It assumes that Rx is desabled in HW 991 * funcs are grouped for better cache usage 992 * 993 * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be 994 * filled and packets will be dropped by nic without getting into host or 995 * cousing interrupt. Anyway, in that condition, host has no chance to process 996 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles 997 */ 998 999 /* TBD: ensure proper packet size */ 1000 1001 static int bdx_rx_init(struct bdx_priv *priv) 1002 { 1003 ENTER; 1004 1005 if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size, 1006 regRXD_CFG0_0, regRXD_CFG1_0, 1007 regRXD_RPTR_0, regRXD_WPTR_0)) 1008 goto err_mem; 1009 if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size, 1010 regRXF_CFG0_0, regRXF_CFG1_0, 1011 regRXF_RPTR_0, regRXF_WPTR_0)) 1012 goto err_mem; 1013 priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz / 1014 sizeof(struct rxf_desc)); 1015 if (!priv->rxdb) 1016 goto err_mem; 1017 1018 priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN; 1019 return 0; 1020 1021 err_mem: 1022 netdev_err(priv->ndev, "Rx init failed\n"); 1023 return -ENOMEM; 1024 } 1025 1026 /** 1027 * bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo 1028 * @priv: NIC private structure 1029 * @f: RXF fifo 1030 */ 1031 static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f) 1032 { 1033 struct rx_map *dm; 1034 struct rxdb *db = priv->rxdb; 1035 u16 i; 1036 1037 ENTER; 1038 DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db), 1039 db->nelem - bdx_rxdb_available(db)); 1040 while (bdx_rxdb_available(db) > 0) { 1041 i = bdx_rxdb_alloc_elem(db); 1042 dm = bdx_rxdb_addr_elem(db, i); 1043 dm->dma = 0; 1044 } 1045 for (i = 0; i < db->nelem; i++) { 1046 dm = bdx_rxdb_addr_elem(db, i); 1047 if (dm->dma) { 1048 pci_unmap_single(priv->pdev, 1049 dm->dma, f->m.pktsz, 1050 PCI_DMA_FROMDEVICE); 1051 dev_kfree_skb(dm->skb); 1052 } 1053 } 1054 } 1055 1056 /** 1057 * bdx_rx_free - release all Rx resources 1058 * @priv: NIC private structure 1059 * 1060 * It assumes that Rx is desabled in HW 1061 */ 1062 static void bdx_rx_free(struct bdx_priv *priv) 1063 { 1064 ENTER; 1065 if (priv->rxdb) { 1066 bdx_rx_free_skbs(priv, &priv->rxf_fifo0); 1067 bdx_rxdb_destroy(priv->rxdb); 1068 priv->rxdb = NULL; 1069 } 1070 bdx_fifo_free(priv, &priv->rxf_fifo0.m); 1071 bdx_fifo_free(priv, &priv->rxd_fifo0.m); 1072 1073 RET(); 1074 } 1075 1076 /************************************************************************* 1077 * Rx Engine * 1078 *************************************************************************/ 1079 1080 /** 1081 * bdx_rx_alloc_skbs - fill rxf fifo with new skbs 1082 * @priv: nic's private structure 1083 * @f: RXF fifo that needs skbs 1084 * 1085 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo. 1086 * skb's virtual and physical addresses are stored in skb db. 1087 * To calculate free space, func uses cached values of RPTR and WPTR 1088 * When needed, it also updates RPTR and WPTR. 1089 */ 1090 1091 /* TBD: do not update WPTR if no desc were written */ 1092 1093 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f) 1094 { 1095 struct sk_buff *skb; 1096 struct rxf_desc *rxfd; 1097 struct rx_map *dm; 1098 int dno, delta, idx; 1099 struct rxdb *db = priv->rxdb; 1100 1101 ENTER; 1102 dno = bdx_rxdb_available(db) - 1; 1103 while (dno > 0) { 1104 skb = netdev_alloc_skb(priv->ndev, f->m.pktsz + NET_IP_ALIGN); 1105 if (!skb) 1106 break; 1107 1108 skb_reserve(skb, NET_IP_ALIGN); 1109 1110 idx = bdx_rxdb_alloc_elem(db); 1111 dm = bdx_rxdb_addr_elem(db, idx); 1112 dm->dma = pci_map_single(priv->pdev, 1113 skb->data, f->m.pktsz, 1114 PCI_DMA_FROMDEVICE); 1115 dm->skb = skb; 1116 rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr); 1117 rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */ 1118 rxfd->va_lo = idx; 1119 rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma)); 1120 rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma)); 1121 rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz); 1122 print_rxfd(rxfd); 1123 1124 f->m.wptr += sizeof(struct rxf_desc); 1125 delta = f->m.wptr - f->m.memsz; 1126 if (unlikely(delta >= 0)) { 1127 f->m.wptr = delta; 1128 if (delta > 0) { 1129 memcpy(f->m.va, f->m.va + f->m.memsz, delta); 1130 DBG("wrapped descriptor\n"); 1131 } 1132 } 1133 dno--; 1134 } 1135 /*TBD: to do - delayed rxf wptr like in txd */ 1136 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR); 1137 RET(); 1138 } 1139 1140 static inline void 1141 NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan, 1142 struct sk_buff *skb) 1143 { 1144 ENTER; 1145 DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1)); 1146 if (GET_RXD_VTAG(rxd_val1)) { 1147 DBG("%s: vlan rcv vlan '%x' vtag '%x'\n", 1148 priv->ndev->name, 1149 GET_RXD_VLAN_ID(rxd_vlan), 1150 GET_RXD_VTAG(rxd_val1)); 1151 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), GET_RXD_VLAN_TCI(rxd_vlan)); 1152 } 1153 netif_receive_skb(skb); 1154 } 1155 1156 static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd) 1157 { 1158 struct rxf_desc *rxfd; 1159 struct rx_map *dm; 1160 struct rxf_fifo *f; 1161 struct rxdb *db; 1162 struct sk_buff *skb; 1163 int delta; 1164 1165 ENTER; 1166 DBG("priv=%p rxdd=%p\n", priv, rxdd); 1167 f = &priv->rxf_fifo0; 1168 db = priv->rxdb; 1169 DBG("db=%p f=%p\n", db, f); 1170 dm = bdx_rxdb_addr_elem(db, rxdd->va_lo); 1171 DBG("dm=%p\n", dm); 1172 skb = dm->skb; 1173 rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr); 1174 rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */ 1175 rxfd->va_lo = rxdd->va_lo; 1176 rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma)); 1177 rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma)); 1178 rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz); 1179 print_rxfd(rxfd); 1180 1181 f->m.wptr += sizeof(struct rxf_desc); 1182 delta = f->m.wptr - f->m.memsz; 1183 if (unlikely(delta >= 0)) { 1184 f->m.wptr = delta; 1185 if (delta > 0) { 1186 memcpy(f->m.va, f->m.va + f->m.memsz, delta); 1187 DBG("wrapped descriptor\n"); 1188 } 1189 } 1190 RET(); 1191 } 1192 1193 /** 1194 * bdx_rx_receive - receives full packets from RXD fifo and pass them to OS 1195 * NOTE: a special treatment is given to non-continuous descriptors 1196 * that start near the end, wraps around and continue at the beginning. a second 1197 * part is copied right after the first, and then descriptor is interpreted as 1198 * normal. fifo has an extra space to allow such operations 1199 * @priv: nic's private structure 1200 * @f: RXF fifo that needs skbs 1201 * @budget: maximum number of packets to receive 1202 */ 1203 1204 /* TBD: replace memcpy func call by explicite inline asm */ 1205 1206 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget) 1207 { 1208 struct net_device *ndev = priv->ndev; 1209 struct sk_buff *skb, *skb2; 1210 struct rxd_desc *rxdd; 1211 struct rx_map *dm; 1212 struct rxf_fifo *rxf_fifo; 1213 int tmp_len, size; 1214 int done = 0; 1215 int max_done = BDX_MAX_RX_DONE; 1216 struct rxdb *db = NULL; 1217 /* Unmarshalled descriptor - copy of descriptor in host order */ 1218 u32 rxd_val1; 1219 u16 len; 1220 u16 rxd_vlan; 1221 1222 ENTER; 1223 max_done = budget; 1224 1225 f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR; 1226 1227 size = f->m.wptr - f->m.rptr; 1228 if (size < 0) 1229 size = f->m.memsz + size; /* size is negative :-) */ 1230 1231 while (size > 0) { 1232 1233 rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr); 1234 rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1); 1235 1236 len = CPU_CHIP_SWAP16(rxdd->len); 1237 1238 rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan); 1239 1240 print_rxdd(rxdd, rxd_val1, len, rxd_vlan); 1241 1242 tmp_len = GET_RXD_BC(rxd_val1) << 3; 1243 BDX_ASSERT(tmp_len <= 0); 1244 size -= tmp_len; 1245 if (size < 0) /* test for partially arrived descriptor */ 1246 break; 1247 1248 f->m.rptr += tmp_len; 1249 1250 tmp_len = f->m.rptr - f->m.memsz; 1251 if (unlikely(tmp_len >= 0)) { 1252 f->m.rptr = tmp_len; 1253 if (tmp_len > 0) { 1254 DBG("wrapped desc rptr=%d tmp_len=%d\n", 1255 f->m.rptr, tmp_len); 1256 memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len); 1257 } 1258 } 1259 1260 if (unlikely(GET_RXD_ERR(rxd_val1))) { 1261 DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1)); 1262 ndev->stats.rx_errors++; 1263 bdx_recycle_skb(priv, rxdd); 1264 continue; 1265 } 1266 1267 rxf_fifo = &priv->rxf_fifo0; 1268 db = priv->rxdb; 1269 dm = bdx_rxdb_addr_elem(db, rxdd->va_lo); 1270 skb = dm->skb; 1271 1272 if (len < BDX_COPYBREAK && 1273 (skb2 = netdev_alloc_skb(priv->ndev, len + NET_IP_ALIGN))) { 1274 skb_reserve(skb2, NET_IP_ALIGN); 1275 /*skb_put(skb2, len); */ 1276 pci_dma_sync_single_for_cpu(priv->pdev, 1277 dm->dma, rxf_fifo->m.pktsz, 1278 PCI_DMA_FROMDEVICE); 1279 memcpy(skb2->data, skb->data, len); 1280 bdx_recycle_skb(priv, rxdd); 1281 skb = skb2; 1282 } else { 1283 pci_unmap_single(priv->pdev, 1284 dm->dma, rxf_fifo->m.pktsz, 1285 PCI_DMA_FROMDEVICE); 1286 bdx_rxdb_free_elem(db, rxdd->va_lo); 1287 } 1288 1289 ndev->stats.rx_bytes += len; 1290 1291 skb_put(skb, len); 1292 skb->protocol = eth_type_trans(skb, ndev); 1293 1294 /* Non-IP packets aren't checksum-offloaded */ 1295 if (GET_RXD_PKT_ID(rxd_val1) == 0) 1296 skb_checksum_none_assert(skb); 1297 else 1298 skb->ip_summed = CHECKSUM_UNNECESSARY; 1299 1300 NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb); 1301 1302 if (++done >= max_done) 1303 break; 1304 } 1305 1306 ndev->stats.rx_packets += done; 1307 1308 /* FIXME: do smth to minimize pci accesses */ 1309 WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR); 1310 1311 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0); 1312 1313 RET(done); 1314 } 1315 1316 /************************************************************************* 1317 * Debug / Temprorary Code * 1318 *************************************************************************/ 1319 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len, 1320 u16 rxd_vlan) 1321 { 1322 DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n", 1323 GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1), 1324 GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1), 1325 GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1), 1326 GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan), 1327 GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo, 1328 rxdd->va_hi); 1329 } 1330 1331 static void print_rxfd(struct rxf_desc *rxfd) 1332 { 1333 DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n" 1334 "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n", 1335 rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len); 1336 } 1337 1338 /* 1339 * TX HW/SW interaction overview 1340 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1341 * There are 2 types of TX communication channels between driver and NIC. 1342 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets 1343 * 2) TX Data Fifo - TXD - holds descriptors of full buffers. 1344 * 1345 * Currently NIC supports TSO, checksuming and gather DMA 1346 * UFO and IP fragmentation is on the way 1347 * 1348 * RX SW Data Structures 1349 * ~~~~~~~~~~~~~~~~~~~~~ 1350 * txdb - used to keep track of all skbs owned by SW and their dma addresses. 1351 * For TX case, ownership lasts from geting packet via hard_xmit and until HW 1352 * acknowledges sent by TXF descriptors. 1353 * Implemented as cyclic buffer. 1354 * fifo - keeps info about fifo's size and location, relevant HW registers, 1355 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure. 1356 * Implemented as simple struct. 1357 * 1358 * TX SW Execution Flow 1359 * ~~~~~~~~~~~~~~~~~~~~ 1360 * OS calls driver's hard_xmit method with packet to sent. 1361 * Driver creates DMA mappings, builds TXD descriptors and kicks HW 1362 * by updating TXD WPTR. 1363 * When packet is sent, HW write us TXF descriptor and SW frees original skb. 1364 * To prevent TXD fifo overflow without reading HW registers every time, 1365 * SW deploys "tx level" technique. 1366 * Upon strart up, tx level is initialized to TXD fifo length. 1367 * For every sent packet, SW gets its TXD descriptor sizei 1368 * (from precalculated array) and substructs it from tx level. 1369 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of 1370 * original TXD descriptor from txdb and adds it to tx level. 1371 * When Tx level drops under some predefined treshhold, the driver 1372 * stops the TX queue. When TX level rises above that level, 1373 * the tx queue is enabled again. 1374 * 1375 * This technique avoids eccessive reading of RPTR and WPTR registers. 1376 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput. 1377 */ 1378 1379 /************************************************************************* 1380 * Tx DB * 1381 *************************************************************************/ 1382 static inline int bdx_tx_db_size(struct txdb *db) 1383 { 1384 int taken = db->wptr - db->rptr; 1385 if (taken < 0) 1386 taken = db->size + 1 + taken; /* (size + 1) equals memsz */ 1387 1388 return db->size - taken; 1389 } 1390 1391 /** 1392 * __bdx_tx_db_ptr_next - helper function, increment read/write pointer + wrap 1393 * @db: tx data base 1394 * @pptr: read or write pointer 1395 */ 1396 static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr) 1397 { 1398 BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */ 1399 1400 BDX_ASSERT(*pptr != db->rptr && /* expect either read */ 1401 *pptr != db->wptr); /* or write pointer */ 1402 1403 BDX_ASSERT(*pptr < db->start || /* pointer has to be */ 1404 *pptr >= db->end); /* in range */ 1405 1406 ++*pptr; 1407 if (unlikely(*pptr == db->end)) 1408 *pptr = db->start; 1409 } 1410 1411 /** 1412 * bdx_tx_db_inc_rptr - increment read pointer 1413 * @db: tx data base 1414 */ 1415 static inline void bdx_tx_db_inc_rptr(struct txdb *db) 1416 { 1417 BDX_ASSERT(db->rptr == db->wptr); /* can't read from empty db */ 1418 __bdx_tx_db_ptr_next(db, &db->rptr); 1419 } 1420 1421 /** 1422 * bdx_tx_db_inc_wptr - increment write pointer 1423 * @db: tx data base 1424 */ 1425 static inline void bdx_tx_db_inc_wptr(struct txdb *db) 1426 { 1427 __bdx_tx_db_ptr_next(db, &db->wptr); 1428 BDX_ASSERT(db->rptr == db->wptr); /* we can not get empty db as 1429 a result of write */ 1430 } 1431 1432 /** 1433 * bdx_tx_db_init - creates and initializes tx db 1434 * @d: tx data base 1435 * @sz_type: size of tx fifo 1436 * 1437 * Returns 0 on success, error code otherwise 1438 */ 1439 static int bdx_tx_db_init(struct txdb *d, int sz_type) 1440 { 1441 int memsz = FIFO_SIZE * (1 << (sz_type + 1)); 1442 1443 d->start = vmalloc(memsz); 1444 if (!d->start) 1445 return -ENOMEM; 1446 1447 /* 1448 * In order to differentiate between db is empty and db is full 1449 * states at least one element should always be empty in order to 1450 * avoid rptr == wptr which means db is empty 1451 */ 1452 d->size = memsz / sizeof(struct tx_map) - 1; 1453 d->end = d->start + d->size + 1; /* just after last element */ 1454 1455 /* all dbs are created equally empty */ 1456 d->rptr = d->start; 1457 d->wptr = d->start; 1458 1459 return 0; 1460 } 1461 1462 /** 1463 * bdx_tx_db_close - closes tx db and frees all memory 1464 * @d: tx data base 1465 */ 1466 static void bdx_tx_db_close(struct txdb *d) 1467 { 1468 BDX_ASSERT(d == NULL); 1469 1470 vfree(d->start); 1471 d->start = NULL; 1472 } 1473 1474 /************************************************************************* 1475 * Tx Engine * 1476 *************************************************************************/ 1477 1478 /* sizes of tx desc (including padding if needed) as function 1479 * of skb's frag number */ 1480 static struct { 1481 u16 bytes; 1482 u16 qwords; /* qword = 64 bit */ 1483 } txd_sizes[MAX_SKB_FRAGS + 1]; 1484 1485 /** 1486 * bdx_tx_map_skb - creates and stores dma mappings for skb's data blocks 1487 * @priv: NIC private structure 1488 * @skb: socket buffer to map 1489 * @txdd: TX descriptor to use 1490 * 1491 * It makes dma mappings for skb's data blocks and writes them to PBL of 1492 * new tx descriptor. It also stores them in the tx db, so they could be 1493 * unmaped after data was sent. It is reponsibility of a caller to make 1494 * sure that there is enough space in the tx db. Last element holds pointer 1495 * to skb itself and marked with zero length 1496 */ 1497 static inline void 1498 bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb, 1499 struct txd_desc *txdd) 1500 { 1501 struct txdb *db = &priv->txdb; 1502 struct pbl *pbl = &txdd->pbl[0]; 1503 int nr_frags = skb_shinfo(skb)->nr_frags; 1504 int i; 1505 1506 db->wptr->len = skb_headlen(skb); 1507 db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data, 1508 db->wptr->len, PCI_DMA_TODEVICE); 1509 pbl->len = CPU_CHIP_SWAP32(db->wptr->len); 1510 pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma)); 1511 pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma)); 1512 DBG("=== pbl len: 0x%x ================\n", pbl->len); 1513 DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo); 1514 DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi); 1515 bdx_tx_db_inc_wptr(db); 1516 1517 for (i = 0; i < nr_frags; i++) { 1518 const struct skb_frag_struct *frag; 1519 1520 frag = &skb_shinfo(skb)->frags[i]; 1521 db->wptr->len = skb_frag_size(frag); 1522 db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag, 1523 0, skb_frag_size(frag), 1524 DMA_TO_DEVICE); 1525 1526 pbl++; 1527 pbl->len = CPU_CHIP_SWAP32(db->wptr->len); 1528 pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma)); 1529 pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma)); 1530 bdx_tx_db_inc_wptr(db); 1531 } 1532 1533 /* add skb clean up info. */ 1534 db->wptr->len = -txd_sizes[nr_frags].bytes; 1535 db->wptr->addr.skb = skb; 1536 bdx_tx_db_inc_wptr(db); 1537 } 1538 1539 /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags 1540 * number of frags is used as index to fetch correct descriptors size, 1541 * instead of calculating it each time */ 1542 static void __init init_txd_sizes(void) 1543 { 1544 int i, lwords; 1545 1546 /* 7 - is number of lwords in txd with one phys buffer 1547 * 3 - is number of lwords used for every additional phys buffer */ 1548 for (i = 0; i < MAX_SKB_FRAGS + 1; i++) { 1549 lwords = 7 + (i * 3); 1550 if (lwords & 1) 1551 lwords++; /* pad it with 1 lword */ 1552 txd_sizes[i].qwords = lwords >> 1; 1553 txd_sizes[i].bytes = lwords << 2; 1554 } 1555 } 1556 1557 /* bdx_tx_init - initialize all Tx related stuff. 1558 * Namely, TXD and TXF fifos, database etc */ 1559 static int bdx_tx_init(struct bdx_priv *priv) 1560 { 1561 if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size, 1562 regTXD_CFG0_0, 1563 regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0)) 1564 goto err_mem; 1565 if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size, 1566 regTXF_CFG0_0, 1567 regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0)) 1568 goto err_mem; 1569 1570 /* The TX db has to keep mappings for all packets sent (on TxD) 1571 * and not yet reclaimed (on TxF) */ 1572 if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size))) 1573 goto err_mem; 1574 1575 priv->tx_level = BDX_MAX_TX_LEVEL; 1576 #ifdef BDX_DELAY_WPTR 1577 priv->tx_update_mark = priv->tx_level - 1024; 1578 #endif 1579 return 0; 1580 1581 err_mem: 1582 netdev_err(priv->ndev, "Tx init failed\n"); 1583 return -ENOMEM; 1584 } 1585 1586 /** 1587 * bdx_tx_space - calculates available space in TX fifo 1588 * @priv: NIC private structure 1589 * 1590 * Returns available space in TX fifo in bytes 1591 */ 1592 static inline int bdx_tx_space(struct bdx_priv *priv) 1593 { 1594 struct txd_fifo *f = &priv->txd_fifo0; 1595 int fsize; 1596 1597 f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR; 1598 fsize = f->m.rptr - f->m.wptr; 1599 if (fsize <= 0) 1600 fsize = f->m.memsz + fsize; 1601 return fsize; 1602 } 1603 1604 /** 1605 * bdx_tx_transmit - send packet to NIC 1606 * @skb: packet to send 1607 * @ndev: network device assigned to NIC 1608 * Return codes: 1609 * o NETDEV_TX_OK everything ok. 1610 * o NETDEV_TX_BUSY Cannot transmit packet, try later 1611 * Usually a bug, means queue start/stop flow control is broken in 1612 * the driver. Note: the driver must NOT put the skb in its DMA ring. 1613 * o NETDEV_TX_LOCKED Locking failed, please retry quickly. 1614 */ 1615 static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb, 1616 struct net_device *ndev) 1617 { 1618 struct bdx_priv *priv = netdev_priv(ndev); 1619 struct txd_fifo *f = &priv->txd_fifo0; 1620 int txd_checksum = 7; /* full checksum */ 1621 int txd_lgsnd = 0; 1622 int txd_vlan_id = 0; 1623 int txd_vtag = 0; 1624 int txd_mss = 0; 1625 1626 int nr_frags = skb_shinfo(skb)->nr_frags; 1627 struct txd_desc *txdd; 1628 int len; 1629 unsigned long flags; 1630 1631 ENTER; 1632 local_irq_save(flags); 1633 if (!spin_trylock(&priv->tx_lock)) { 1634 local_irq_restore(flags); 1635 DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n", 1636 BDX_DRV_NAME, ndev->name); 1637 return NETDEV_TX_LOCKED; 1638 } 1639 1640 /* build tx descriptor */ 1641 BDX_ASSERT(f->m.wptr >= f->m.memsz); /* started with valid wptr */ 1642 txdd = (struct txd_desc *)(f->m.va + f->m.wptr); 1643 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) 1644 txd_checksum = 0; 1645 1646 if (skb_shinfo(skb)->gso_size) { 1647 txd_mss = skb_shinfo(skb)->gso_size; 1648 txd_lgsnd = 1; 1649 DBG("skb %p skb len %d gso size = %d\n", skb, skb->len, 1650 txd_mss); 1651 } 1652 1653 if (skb_vlan_tag_present(skb)) { 1654 /*Cut VLAN ID to 12 bits */ 1655 txd_vlan_id = skb_vlan_tag_get(skb) & BITS_MASK(12); 1656 txd_vtag = 1; 1657 } 1658 1659 txdd->length = CPU_CHIP_SWAP16(skb->len); 1660 txdd->mss = CPU_CHIP_SWAP16(txd_mss); 1661 txdd->txd_val1 = 1662 CPU_CHIP_SWAP32(TXD_W1_VAL 1663 (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag, 1664 txd_lgsnd, txd_vlan_id)); 1665 DBG("=== TxD desc =====================\n"); 1666 DBG("=== w1: 0x%x ================\n", txdd->txd_val1); 1667 DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length); 1668 1669 bdx_tx_map_skb(priv, skb, txdd); 1670 1671 /* increment TXD write pointer. In case of 1672 fifo wrapping copy reminder of the descriptor 1673 to the beginning */ 1674 f->m.wptr += txd_sizes[nr_frags].bytes; 1675 len = f->m.wptr - f->m.memsz; 1676 if (unlikely(len >= 0)) { 1677 f->m.wptr = len; 1678 if (len > 0) { 1679 BDX_ASSERT(len > f->m.memsz); 1680 memcpy(f->m.va, f->m.va + f->m.memsz, len); 1681 } 1682 } 1683 BDX_ASSERT(f->m.wptr >= f->m.memsz); /* finished with valid wptr */ 1684 1685 priv->tx_level -= txd_sizes[nr_frags].bytes; 1686 BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL); 1687 #ifdef BDX_DELAY_WPTR 1688 if (priv->tx_level > priv->tx_update_mark) { 1689 /* Force memory writes to complete before letting h/w 1690 know there are new descriptors to fetch. 1691 (might be needed on platforms like IA64) 1692 wmb(); */ 1693 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR); 1694 } else { 1695 if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) { 1696 priv->tx_noupd = 0; 1697 WRITE_REG(priv, f->m.reg_WPTR, 1698 f->m.wptr & TXF_WPTR_WR_PTR); 1699 } 1700 } 1701 #else 1702 /* Force memory writes to complete before letting h/w 1703 know there are new descriptors to fetch. 1704 (might be needed on platforms like IA64) 1705 wmb(); */ 1706 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR); 1707 1708 #endif 1709 #ifdef BDX_LLTX 1710 ndev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */ 1711 #endif 1712 ndev->stats.tx_packets++; 1713 ndev->stats.tx_bytes += skb->len; 1714 1715 if (priv->tx_level < BDX_MIN_TX_LEVEL) { 1716 DBG("%s: %s: TX Q STOP level %d\n", 1717 BDX_DRV_NAME, ndev->name, priv->tx_level); 1718 netif_stop_queue(ndev); 1719 } 1720 1721 spin_unlock_irqrestore(&priv->tx_lock, flags); 1722 return NETDEV_TX_OK; 1723 } 1724 1725 /** 1726 * bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ. 1727 * @priv: bdx adapter 1728 * 1729 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS 1730 * that those packets were sent 1731 */ 1732 static void bdx_tx_cleanup(struct bdx_priv *priv) 1733 { 1734 struct txf_fifo *f = &priv->txf_fifo0; 1735 struct txdb *db = &priv->txdb; 1736 int tx_level = 0; 1737 1738 ENTER; 1739 f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK; 1740 BDX_ASSERT(f->m.rptr >= f->m.memsz); /* started with valid rptr */ 1741 1742 while (f->m.wptr != f->m.rptr) { 1743 f->m.rptr += BDX_TXF_DESC_SZ; 1744 f->m.rptr &= f->m.size_mask; 1745 1746 /* unmap all the fragments */ 1747 /* first has to come tx_maps containing dma */ 1748 BDX_ASSERT(db->rptr->len == 0); 1749 do { 1750 BDX_ASSERT(db->rptr->addr.dma == 0); 1751 pci_unmap_page(priv->pdev, db->rptr->addr.dma, 1752 db->rptr->len, PCI_DMA_TODEVICE); 1753 bdx_tx_db_inc_rptr(db); 1754 } while (db->rptr->len > 0); 1755 tx_level -= db->rptr->len; /* '-' koz len is negative */ 1756 1757 /* now should come skb pointer - free it */ 1758 dev_kfree_skb_irq(db->rptr->addr.skb); 1759 bdx_tx_db_inc_rptr(db); 1760 } 1761 1762 /* let h/w know which TXF descriptors were cleaned */ 1763 BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz); 1764 WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR); 1765 1766 /* We reclaimed resources, so in case the Q is stopped by xmit callback, 1767 * we resume the transmission and use tx_lock to synchronize with xmit.*/ 1768 spin_lock(&priv->tx_lock); 1769 priv->tx_level += tx_level; 1770 BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL); 1771 #ifdef BDX_DELAY_WPTR 1772 if (priv->tx_noupd) { 1773 priv->tx_noupd = 0; 1774 WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR, 1775 priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR); 1776 } 1777 #endif 1778 1779 if (unlikely(netif_queue_stopped(priv->ndev) && 1780 netif_carrier_ok(priv->ndev) && 1781 (priv->tx_level >= BDX_MIN_TX_LEVEL))) { 1782 DBG("%s: %s: TX Q WAKE level %d\n", 1783 BDX_DRV_NAME, priv->ndev->name, priv->tx_level); 1784 netif_wake_queue(priv->ndev); 1785 } 1786 spin_unlock(&priv->tx_lock); 1787 } 1788 1789 /** 1790 * bdx_tx_free_skbs - frees all skbs from TXD fifo. 1791 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod 1792 */ 1793 static void bdx_tx_free_skbs(struct bdx_priv *priv) 1794 { 1795 struct txdb *db = &priv->txdb; 1796 1797 ENTER; 1798 while (db->rptr != db->wptr) { 1799 if (likely(db->rptr->len)) 1800 pci_unmap_page(priv->pdev, db->rptr->addr.dma, 1801 db->rptr->len, PCI_DMA_TODEVICE); 1802 else 1803 dev_kfree_skb(db->rptr->addr.skb); 1804 bdx_tx_db_inc_rptr(db); 1805 } 1806 RET(); 1807 } 1808 1809 /* bdx_tx_free - frees all Tx resources */ 1810 static void bdx_tx_free(struct bdx_priv *priv) 1811 { 1812 ENTER; 1813 bdx_tx_free_skbs(priv); 1814 bdx_fifo_free(priv, &priv->txd_fifo0.m); 1815 bdx_fifo_free(priv, &priv->txf_fifo0.m); 1816 bdx_tx_db_close(&priv->txdb); 1817 } 1818 1819 /** 1820 * bdx_tx_push_desc - push descriptor to TxD fifo 1821 * @priv: NIC private structure 1822 * @data: desc's data 1823 * @size: desc's size 1824 * 1825 * Pushes desc to TxD fifo and overlaps it if needed. 1826 * NOTE: this func does not check for available space. this is responsibility 1827 * of the caller. Neither does it check that data size is smaller than 1828 * fifo size. 1829 */ 1830 static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size) 1831 { 1832 struct txd_fifo *f = &priv->txd_fifo0; 1833 int i = f->m.memsz - f->m.wptr; 1834 1835 if (size == 0) 1836 return; 1837 1838 if (i > size) { 1839 memcpy(f->m.va + f->m.wptr, data, size); 1840 f->m.wptr += size; 1841 } else { 1842 memcpy(f->m.va + f->m.wptr, data, i); 1843 f->m.wptr = size - i; 1844 memcpy(f->m.va, data + i, f->m.wptr); 1845 } 1846 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR); 1847 } 1848 1849 /** 1850 * bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way 1851 * @priv: NIC private structure 1852 * @data: desc's data 1853 * @size: desc's size 1854 * 1855 * NOTE: this func does check for available space and, if necessary, waits for 1856 * NIC to read existing data before writing new one. 1857 */ 1858 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size) 1859 { 1860 int timer = 0; 1861 ENTER; 1862 1863 while (size > 0) { 1864 /* we substruct 8 because when fifo is full rptr == wptr 1865 which also means that fifo is empty, we can understand 1866 the difference, but could hw do the same ??? :) */ 1867 int avail = bdx_tx_space(priv) - 8; 1868 if (avail <= 0) { 1869 if (timer++ > 300) { /* prevent endless loop */ 1870 DBG("timeout while writing desc to TxD fifo\n"); 1871 break; 1872 } 1873 udelay(50); /* give hw a chance to clean fifo */ 1874 continue; 1875 } 1876 avail = min(avail, size); 1877 DBG("about to push %d bytes starting %p size %d\n", avail, 1878 data, size); 1879 bdx_tx_push_desc(priv, data, avail); 1880 size -= avail; 1881 data += avail; 1882 } 1883 RET(); 1884 } 1885 1886 static const struct net_device_ops bdx_netdev_ops = { 1887 .ndo_open = bdx_open, 1888 .ndo_stop = bdx_close, 1889 .ndo_start_xmit = bdx_tx_transmit, 1890 .ndo_validate_addr = eth_validate_addr, 1891 .ndo_do_ioctl = bdx_ioctl, 1892 .ndo_set_rx_mode = bdx_setmulti, 1893 .ndo_change_mtu = bdx_change_mtu, 1894 .ndo_set_mac_address = bdx_set_mac, 1895 .ndo_vlan_rx_add_vid = bdx_vlan_rx_add_vid, 1896 .ndo_vlan_rx_kill_vid = bdx_vlan_rx_kill_vid, 1897 }; 1898 1899 /** 1900 * bdx_probe - Device Initialization Routine 1901 * @pdev: PCI device information struct 1902 * @ent: entry in bdx_pci_tbl 1903 * 1904 * Returns 0 on success, negative on failure 1905 * 1906 * bdx_probe initializes an adapter identified by a pci_dev structure. 1907 * The OS initialization, configuring of the adapter private structure, 1908 * and a hardware reset occur. 1909 * 1910 * functions and their order used as explained in 1911 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt 1912 * 1913 */ 1914 1915 /* TBD: netif_msg should be checked and implemented. I disable it for now */ 1916 static int 1917 bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1918 { 1919 struct net_device *ndev; 1920 struct bdx_priv *priv; 1921 int err, pci_using_dac, port; 1922 unsigned long pciaddr; 1923 u32 regionSize; 1924 struct pci_nic *nic; 1925 1926 ENTER; 1927 1928 nic = vmalloc(sizeof(*nic)); 1929 if (!nic) 1930 RET(-ENOMEM); 1931 1932 /************** pci *****************/ 1933 err = pci_enable_device(pdev); 1934 if (err) /* it triggers interrupt, dunno why. */ 1935 goto err_pci; /* it's not a problem though */ 1936 1937 if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) && 1938 !(err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))) { 1939 pci_using_dac = 1; 1940 } else { 1941 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) || 1942 (err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))) { 1943 pr_err("No usable DMA configuration, aborting\n"); 1944 goto err_dma; 1945 } 1946 pci_using_dac = 0; 1947 } 1948 1949 err = pci_request_regions(pdev, BDX_DRV_NAME); 1950 if (err) 1951 goto err_dma; 1952 1953 pci_set_master(pdev); 1954 1955 pciaddr = pci_resource_start(pdev, 0); 1956 if (!pciaddr) { 1957 err = -EIO; 1958 pr_err("no MMIO resource\n"); 1959 goto err_out_res; 1960 } 1961 regionSize = pci_resource_len(pdev, 0); 1962 if (regionSize < BDX_REGS_SIZE) { 1963 err = -EIO; 1964 pr_err("MMIO resource (%x) too small\n", regionSize); 1965 goto err_out_res; 1966 } 1967 1968 nic->regs = ioremap(pciaddr, regionSize); 1969 if (!nic->regs) { 1970 err = -EIO; 1971 pr_err("ioremap failed\n"); 1972 goto err_out_res; 1973 } 1974 1975 if (pdev->irq < 2) { 1976 err = -EIO; 1977 pr_err("invalid irq (%d)\n", pdev->irq); 1978 goto err_out_iomap; 1979 } 1980 pci_set_drvdata(pdev, nic); 1981 1982 if (pdev->device == 0x3014) 1983 nic->port_num = 2; 1984 else 1985 nic->port_num = 1; 1986 1987 print_hw_id(pdev); 1988 1989 bdx_hw_reset_direct(nic->regs); 1990 1991 nic->irq_type = IRQ_INTX; 1992 #ifdef BDX_MSI 1993 if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) { 1994 err = pci_enable_msi(pdev); 1995 if (err) 1996 pr_err("Can't eneble msi. error is %d\n", err); 1997 else 1998 nic->irq_type = IRQ_MSI; 1999 } else 2000 DBG("HW does not support MSI\n"); 2001 #endif 2002 2003 /************** netdev **************/ 2004 for (port = 0; port < nic->port_num; port++) { 2005 ndev = alloc_etherdev(sizeof(struct bdx_priv)); 2006 if (!ndev) { 2007 err = -ENOMEM; 2008 goto err_out_iomap; 2009 } 2010 2011 ndev->netdev_ops = &bdx_netdev_ops; 2012 ndev->tx_queue_len = BDX_NDEV_TXQ_LEN; 2013 2014 bdx_set_ethtool_ops(ndev); /* ethtool interface */ 2015 2016 /* these fields are used for info purposes only 2017 * so we can have them same for all ports of the board */ 2018 ndev->if_port = port; 2019 ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO 2020 | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 2021 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_RXCSUM 2022 ; 2023 ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 2024 NETIF_F_TSO | NETIF_F_HW_VLAN_CTAG_TX; 2025 2026 if (pci_using_dac) 2027 ndev->features |= NETIF_F_HIGHDMA; 2028 2029 /************** priv ****************/ 2030 priv = nic->priv[port] = netdev_priv(ndev); 2031 2032 priv->pBdxRegs = nic->regs + port * 0x8000; 2033 priv->port = port; 2034 priv->pdev = pdev; 2035 priv->ndev = ndev; 2036 priv->nic = nic; 2037 priv->msg_enable = BDX_DEF_MSG_ENABLE; 2038 2039 netif_napi_add(ndev, &priv->napi, bdx_poll, 64); 2040 2041 if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) { 2042 DBG("HW statistics not supported\n"); 2043 priv->stats_flag = 0; 2044 } else { 2045 priv->stats_flag = 1; 2046 } 2047 2048 /* Initialize fifo sizes. */ 2049 priv->txd_size = 2; 2050 priv->txf_size = 2; 2051 priv->rxd_size = 2; 2052 priv->rxf_size = 3; 2053 2054 /* Initialize the initial coalescing registers. */ 2055 priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12); 2056 priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12); 2057 2058 /* ndev->xmit_lock spinlock is not used. 2059 * Private priv->tx_lock is used for synchronization 2060 * between transmit and TX irq cleanup. In addition 2061 * set multicast list callback has to use priv->tx_lock. 2062 */ 2063 #ifdef BDX_LLTX 2064 ndev->features |= NETIF_F_LLTX; 2065 #endif 2066 spin_lock_init(&priv->tx_lock); 2067 2068 /*bdx_hw_reset(priv); */ 2069 if (bdx_read_mac(priv)) { 2070 pr_err("load MAC address failed\n"); 2071 goto err_out_iomap; 2072 } 2073 SET_NETDEV_DEV(ndev, &pdev->dev); 2074 err = register_netdev(ndev); 2075 if (err) { 2076 pr_err("register_netdev failed\n"); 2077 goto err_out_free; 2078 } 2079 netif_carrier_off(ndev); 2080 netif_stop_queue(ndev); 2081 2082 print_eth_id(ndev); 2083 } 2084 RET(0); 2085 2086 err_out_free: 2087 free_netdev(ndev); 2088 err_out_iomap: 2089 iounmap(nic->regs); 2090 err_out_res: 2091 pci_release_regions(pdev); 2092 err_dma: 2093 pci_disable_device(pdev); 2094 err_pci: 2095 vfree(nic); 2096 2097 RET(err); 2098 } 2099 2100 /****************** Ethtool interface *********************/ 2101 /* get strings for statistics counters */ 2102 static const char 2103 bdx_stat_names[][ETH_GSTRING_LEN] = { 2104 "InUCast", /* 0x7200 */ 2105 "InMCast", /* 0x7210 */ 2106 "InBCast", /* 0x7220 */ 2107 "InPkts", /* 0x7230 */ 2108 "InErrors", /* 0x7240 */ 2109 "InDropped", /* 0x7250 */ 2110 "FrameTooLong", /* 0x7260 */ 2111 "FrameSequenceErrors", /* 0x7270 */ 2112 "InVLAN", /* 0x7280 */ 2113 "InDroppedDFE", /* 0x7290 */ 2114 "InDroppedIntFull", /* 0x72A0 */ 2115 "InFrameAlignErrors", /* 0x72B0 */ 2116 2117 /* 0x72C0-0x72E0 RSRV */ 2118 2119 "OutUCast", /* 0x72F0 */ 2120 "OutMCast", /* 0x7300 */ 2121 "OutBCast", /* 0x7310 */ 2122 "OutPkts", /* 0x7320 */ 2123 2124 /* 0x7330-0x7360 RSRV */ 2125 2126 "OutVLAN", /* 0x7370 */ 2127 "InUCastOctects", /* 0x7380 */ 2128 "OutUCastOctects", /* 0x7390 */ 2129 2130 /* 0x73A0-0x73B0 RSRV */ 2131 2132 "InBCastOctects", /* 0x73C0 */ 2133 "OutBCastOctects", /* 0x73D0 */ 2134 "InOctects", /* 0x73E0 */ 2135 "OutOctects", /* 0x73F0 */ 2136 }; 2137 2138 /* 2139 * bdx_get_settings - get device-specific settings 2140 * @netdev 2141 * @ecmd 2142 */ 2143 static int bdx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) 2144 { 2145 u32 rdintcm; 2146 u32 tdintcm; 2147 struct bdx_priv *priv = netdev_priv(netdev); 2148 2149 rdintcm = priv->rdintcm; 2150 tdintcm = priv->tdintcm; 2151 2152 ecmd->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); 2153 ecmd->advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 2154 ethtool_cmd_speed_set(ecmd, SPEED_10000); 2155 ecmd->duplex = DUPLEX_FULL; 2156 ecmd->port = PORT_FIBRE; 2157 ecmd->transceiver = XCVR_EXTERNAL; /* what does it mean? */ 2158 ecmd->autoneg = AUTONEG_DISABLE; 2159 2160 /* PCK_TH measures in multiples of FIFO bytes 2161 We translate to packets */ 2162 ecmd->maxtxpkt = 2163 ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ); 2164 ecmd->maxrxpkt = 2165 ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc)); 2166 2167 return 0; 2168 } 2169 2170 /* 2171 * bdx_get_drvinfo - report driver information 2172 * @netdev 2173 * @drvinfo 2174 */ 2175 static void 2176 bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo) 2177 { 2178 struct bdx_priv *priv = netdev_priv(netdev); 2179 2180 strlcpy(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver)); 2181 strlcpy(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version)); 2182 strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version)); 2183 strlcpy(drvinfo->bus_info, pci_name(priv->pdev), 2184 sizeof(drvinfo->bus_info)); 2185 2186 drvinfo->n_stats = ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0); 2187 drvinfo->testinfo_len = 0; 2188 drvinfo->regdump_len = 0; 2189 drvinfo->eedump_len = 0; 2190 } 2191 2192 /* 2193 * bdx_get_coalesce - get interrupt coalescing parameters 2194 * @netdev 2195 * @ecoal 2196 */ 2197 static int 2198 bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal) 2199 { 2200 u32 rdintcm; 2201 u32 tdintcm; 2202 struct bdx_priv *priv = netdev_priv(netdev); 2203 2204 rdintcm = priv->rdintcm; 2205 tdintcm = priv->tdintcm; 2206 2207 /* PCK_TH measures in multiples of FIFO bytes 2208 We translate to packets */ 2209 ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT; 2210 ecoal->rx_max_coalesced_frames = 2211 ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc)); 2212 2213 ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT; 2214 ecoal->tx_max_coalesced_frames = 2215 ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ); 2216 2217 /* adaptive parameters ignored */ 2218 return 0; 2219 } 2220 2221 /* 2222 * bdx_set_coalesce - set interrupt coalescing parameters 2223 * @netdev 2224 * @ecoal 2225 */ 2226 static int 2227 bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal) 2228 { 2229 u32 rdintcm; 2230 u32 tdintcm; 2231 struct bdx_priv *priv = netdev_priv(netdev); 2232 int rx_coal; 2233 int tx_coal; 2234 int rx_max_coal; 2235 int tx_max_coal; 2236 2237 /* Check for valid input */ 2238 rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT; 2239 tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT; 2240 rx_max_coal = ecoal->rx_max_coalesced_frames; 2241 tx_max_coal = ecoal->tx_max_coalesced_frames; 2242 2243 /* Translate from packets to multiples of FIFO bytes */ 2244 rx_max_coal = 2245 (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1) 2246 / PCK_TH_MULT); 2247 tx_max_coal = 2248 (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1) 2249 / PCK_TH_MULT); 2250 2251 if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) || 2252 (rx_max_coal > 0xF) || (tx_max_coal > 0xF)) 2253 return -EINVAL; 2254 2255 rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm), 2256 GET_RXF_TH(priv->rdintcm), rx_max_coal); 2257 tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0, 2258 tx_max_coal); 2259 2260 priv->rdintcm = rdintcm; 2261 priv->tdintcm = tdintcm; 2262 2263 WRITE_REG(priv, regRDINTCM0, rdintcm); 2264 WRITE_REG(priv, regTDINTCM0, tdintcm); 2265 2266 return 0; 2267 } 2268 2269 /* Convert RX fifo size to number of pending packets */ 2270 static inline int bdx_rx_fifo_size_to_packets(int rx_size) 2271 { 2272 return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc); 2273 } 2274 2275 /* Convert TX fifo size to number of pending packets */ 2276 static inline int bdx_tx_fifo_size_to_packets(int tx_size) 2277 { 2278 return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ; 2279 } 2280 2281 /* 2282 * bdx_get_ringparam - report ring sizes 2283 * @netdev 2284 * @ring 2285 */ 2286 static void 2287 bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring) 2288 { 2289 struct bdx_priv *priv = netdev_priv(netdev); 2290 2291 /*max_pending - the maximum-sized FIFO we allow */ 2292 ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3); 2293 ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3); 2294 ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size); 2295 ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size); 2296 } 2297 2298 /* 2299 * bdx_set_ringparam - set ring sizes 2300 * @netdev 2301 * @ring 2302 */ 2303 static int 2304 bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring) 2305 { 2306 struct bdx_priv *priv = netdev_priv(netdev); 2307 int rx_size = 0; 2308 int tx_size = 0; 2309 2310 for (; rx_size < 4; rx_size++) { 2311 if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending) 2312 break; 2313 } 2314 if (rx_size == 4) 2315 rx_size = 3; 2316 2317 for (; tx_size < 4; tx_size++) { 2318 if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending) 2319 break; 2320 } 2321 if (tx_size == 4) 2322 tx_size = 3; 2323 2324 /*Is there anything to do? */ 2325 if ((rx_size == priv->rxf_size) && 2326 (tx_size == priv->txd_size)) 2327 return 0; 2328 2329 priv->rxf_size = rx_size; 2330 if (rx_size > 1) 2331 priv->rxd_size = rx_size - 1; 2332 else 2333 priv->rxd_size = rx_size; 2334 2335 priv->txf_size = priv->txd_size = tx_size; 2336 2337 if (netif_running(netdev)) { 2338 bdx_close(netdev); 2339 bdx_open(netdev); 2340 } 2341 return 0; 2342 } 2343 2344 /* 2345 * bdx_get_strings - return a set of strings that describe the requested objects 2346 * @netdev 2347 * @data 2348 */ 2349 static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2350 { 2351 switch (stringset) { 2352 case ETH_SS_STATS: 2353 memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names)); 2354 break; 2355 } 2356 } 2357 2358 /* 2359 * bdx_get_sset_count - return number of statistics or tests 2360 * @netdev 2361 */ 2362 static int bdx_get_sset_count(struct net_device *netdev, int stringset) 2363 { 2364 struct bdx_priv *priv = netdev_priv(netdev); 2365 2366 switch (stringset) { 2367 case ETH_SS_STATS: 2368 BDX_ASSERT(ARRAY_SIZE(bdx_stat_names) 2369 != sizeof(struct bdx_stats) / sizeof(u64)); 2370 return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0; 2371 } 2372 2373 return -EINVAL; 2374 } 2375 2376 /* 2377 * bdx_get_ethtool_stats - return device's hardware L2 statistics 2378 * @netdev 2379 * @stats 2380 * @data 2381 */ 2382 static void bdx_get_ethtool_stats(struct net_device *netdev, 2383 struct ethtool_stats *stats, u64 *data) 2384 { 2385 struct bdx_priv *priv = netdev_priv(netdev); 2386 2387 if (priv->stats_flag) { 2388 2389 /* Update stats from HW */ 2390 bdx_update_stats(priv); 2391 2392 /* Copy data to user buffer */ 2393 memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats)); 2394 } 2395 } 2396 2397 /* 2398 * bdx_set_ethtool_ops - ethtool interface implementation 2399 * @netdev 2400 */ 2401 static void bdx_set_ethtool_ops(struct net_device *netdev) 2402 { 2403 static const struct ethtool_ops bdx_ethtool_ops = { 2404 .get_settings = bdx_get_settings, 2405 .get_drvinfo = bdx_get_drvinfo, 2406 .get_link = ethtool_op_get_link, 2407 .get_coalesce = bdx_get_coalesce, 2408 .set_coalesce = bdx_set_coalesce, 2409 .get_ringparam = bdx_get_ringparam, 2410 .set_ringparam = bdx_set_ringparam, 2411 .get_strings = bdx_get_strings, 2412 .get_sset_count = bdx_get_sset_count, 2413 .get_ethtool_stats = bdx_get_ethtool_stats, 2414 }; 2415 2416 netdev->ethtool_ops = &bdx_ethtool_ops; 2417 } 2418 2419 /** 2420 * bdx_remove - Device Removal Routine 2421 * @pdev: PCI device information struct 2422 * 2423 * bdx_remove is called by the PCI subsystem to alert the driver 2424 * that it should release a PCI device. The could be caused by a 2425 * Hot-Plug event, or because the driver is going to be removed from 2426 * memory. 2427 **/ 2428 static void bdx_remove(struct pci_dev *pdev) 2429 { 2430 struct pci_nic *nic = pci_get_drvdata(pdev); 2431 struct net_device *ndev; 2432 int port; 2433 2434 for (port = 0; port < nic->port_num; port++) { 2435 ndev = nic->priv[port]->ndev; 2436 unregister_netdev(ndev); 2437 free_netdev(ndev); 2438 } 2439 2440 /*bdx_hw_reset_direct(nic->regs); */ 2441 #ifdef BDX_MSI 2442 if (nic->irq_type == IRQ_MSI) 2443 pci_disable_msi(pdev); 2444 #endif 2445 2446 iounmap(nic->regs); 2447 pci_release_regions(pdev); 2448 pci_disable_device(pdev); 2449 vfree(nic); 2450 2451 RET(); 2452 } 2453 2454 static struct pci_driver bdx_pci_driver = { 2455 .name = BDX_DRV_NAME, 2456 .id_table = bdx_pci_tbl, 2457 .probe = bdx_probe, 2458 .remove = bdx_remove, 2459 }; 2460 2461 /* 2462 * print_driver_id - print parameters of the driver build 2463 */ 2464 static void __init print_driver_id(void) 2465 { 2466 pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION); 2467 pr_info("Options: hw_csum %s\n", BDX_MSI_STRING); 2468 } 2469 2470 static int __init bdx_module_init(void) 2471 { 2472 ENTER; 2473 init_txd_sizes(); 2474 print_driver_id(); 2475 RET(pci_register_driver(&bdx_pci_driver)); 2476 } 2477 2478 module_init(bdx_module_init); 2479 2480 static void __exit bdx_module_exit(void) 2481 { 2482 ENTER; 2483 pci_unregister_driver(&bdx_pci_driver); 2484 RET(); 2485 } 2486 2487 module_exit(bdx_module_exit); 2488 2489 MODULE_LICENSE("GPL"); 2490 MODULE_AUTHOR(DRIVER_AUTHOR); 2491 MODULE_DESCRIPTION(BDX_DRV_DESC); 2492 MODULE_FIRMWARE("tehuti/bdx.bin"); 2493