1 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching, 2 * auto carrier detecting ethernet driver. Also known as the 3 * "Happy Meal Ethernet" found on SunSwift SBUS cards. 4 * 5 * Copyright (C) 1996, 1998, 1999, 2002, 2003, 6 * 2006, 2008 David S. Miller (davem@davemloft.net) 7 * 8 * Changes : 9 * 2000/11/11 Willy Tarreau <willy AT meta-x.org> 10 * - port to non-sparc architectures. Tested only on x86 and 11 * only currently works with QFE PCI cards. 12 * - ability to specify the MAC address at module load time by passing this 13 * argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50 14 */ 15 16 #include <linux/module.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/fcntl.h> 20 #include <linux/interrupt.h> 21 #include <linux/ioport.h> 22 #include <linux/in.h> 23 #include <linux/slab.h> 24 #include <linux/string.h> 25 #include <linux/delay.h> 26 #include <linux/init.h> 27 #include <linux/ethtool.h> 28 #include <linux/mii.h> 29 #include <linux/crc32.h> 30 #include <linux/random.h> 31 #include <linux/errno.h> 32 #include <linux/netdevice.h> 33 #include <linux/etherdevice.h> 34 #include <linux/skbuff.h> 35 #include <linux/mm.h> 36 #include <linux/bitops.h> 37 #include <linux/dma-mapping.h> 38 39 #include <asm/io.h> 40 #include <asm/dma.h> 41 #include <asm/byteorder.h> 42 43 #ifdef CONFIG_SPARC 44 #include <linux/of.h> 45 #include <linux/of_device.h> 46 #include <asm/idprom.h> 47 #include <asm/openprom.h> 48 #include <asm/oplib.h> 49 #include <asm/prom.h> 50 #include <asm/auxio.h> 51 #endif 52 #include <asm/uaccess.h> 53 54 #include <asm/pgtable.h> 55 #include <asm/irq.h> 56 57 #ifdef CONFIG_PCI 58 #include <linux/pci.h> 59 #endif 60 61 #include "sunhme.h" 62 63 #define DRV_NAME "sunhme" 64 #define DRV_VERSION "3.10" 65 #define DRV_RELDATE "August 26, 2008" 66 #define DRV_AUTHOR "David S. Miller (davem@davemloft.net)" 67 68 static char version[] = 69 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n"; 70 71 MODULE_VERSION(DRV_VERSION); 72 MODULE_AUTHOR(DRV_AUTHOR); 73 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver"); 74 MODULE_LICENSE("GPL"); 75 76 static int macaddr[6]; 77 78 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */ 79 module_param_array(macaddr, int, NULL, 0); 80 MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set"); 81 82 #ifdef CONFIG_SBUS 83 static struct quattro *qfe_sbus_list; 84 #endif 85 86 #ifdef CONFIG_PCI 87 static struct quattro *qfe_pci_list; 88 #endif 89 90 #undef HMEDEBUG 91 #undef SXDEBUG 92 #undef RXDEBUG 93 #undef TXDEBUG 94 #undef TXLOGGING 95 96 #ifdef TXLOGGING 97 struct hme_tx_logent { 98 unsigned int tstamp; 99 int tx_new, tx_old; 100 unsigned int action; 101 #define TXLOG_ACTION_IRQ 0x01 102 #define TXLOG_ACTION_TXMIT 0x02 103 #define TXLOG_ACTION_TBUSY 0x04 104 #define TXLOG_ACTION_NBUFS 0x08 105 unsigned int status; 106 }; 107 #define TX_LOG_LEN 128 108 static struct hme_tx_logent tx_log[TX_LOG_LEN]; 109 static int txlog_cur_entry; 110 static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s) 111 { 112 struct hme_tx_logent *tlp; 113 unsigned long flags; 114 115 local_irq_save(flags); 116 tlp = &tx_log[txlog_cur_entry]; 117 tlp->tstamp = (unsigned int)jiffies; 118 tlp->tx_new = hp->tx_new; 119 tlp->tx_old = hp->tx_old; 120 tlp->action = a; 121 tlp->status = s; 122 txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1); 123 local_irq_restore(flags); 124 } 125 static __inline__ void tx_dump_log(void) 126 { 127 int i, this; 128 129 this = txlog_cur_entry; 130 for (i = 0; i < TX_LOG_LEN; i++) { 131 printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i, 132 tx_log[this].tstamp, 133 tx_log[this].tx_new, tx_log[this].tx_old, 134 tx_log[this].action, tx_log[this].status); 135 this = (this + 1) & (TX_LOG_LEN - 1); 136 } 137 } 138 static __inline__ void tx_dump_ring(struct happy_meal *hp) 139 { 140 struct hmeal_init_block *hb = hp->happy_block; 141 struct happy_meal_txd *tp = &hb->happy_meal_txd[0]; 142 int i; 143 144 for (i = 0; i < TX_RING_SIZE; i+=4) { 145 printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n", 146 i, i + 4, 147 le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr), 148 le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr), 149 le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr), 150 le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr)); 151 } 152 } 153 #else 154 #define tx_add_log(hp, a, s) do { } while(0) 155 #define tx_dump_log() do { } while(0) 156 #define tx_dump_ring(hp) do { } while(0) 157 #endif 158 159 #ifdef HMEDEBUG 160 #define HMD(x) printk x 161 #else 162 #define HMD(x) 163 #endif 164 165 /* #define AUTO_SWITCH_DEBUG */ 166 167 #ifdef AUTO_SWITCH_DEBUG 168 #define ASD(x) printk x 169 #else 170 #define ASD(x) 171 #endif 172 173 #define DEFAULT_IPG0 16 /* For lance-mode only */ 174 #define DEFAULT_IPG1 8 /* For all modes */ 175 #define DEFAULT_IPG2 4 /* For all modes */ 176 #define DEFAULT_JAMSIZE 4 /* Toe jam */ 177 178 /* NOTE: In the descriptor writes one _must_ write the address 179 * member _first_. The card must not be allowed to see 180 * the updated descriptor flags until the address is 181 * correct. I've added a write memory barrier between 182 * the two stores so that I can sleep well at night... -DaveM 183 */ 184 185 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI) 186 static void sbus_hme_write32(void __iomem *reg, u32 val) 187 { 188 sbus_writel(val, reg); 189 } 190 191 static u32 sbus_hme_read32(void __iomem *reg) 192 { 193 return sbus_readl(reg); 194 } 195 196 static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr) 197 { 198 rxd->rx_addr = (__force hme32)addr; 199 wmb(); 200 rxd->rx_flags = (__force hme32)flags; 201 } 202 203 static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr) 204 { 205 txd->tx_addr = (__force hme32)addr; 206 wmb(); 207 txd->tx_flags = (__force hme32)flags; 208 } 209 210 static u32 sbus_hme_read_desc32(hme32 *p) 211 { 212 return (__force u32)*p; 213 } 214 215 static void pci_hme_write32(void __iomem *reg, u32 val) 216 { 217 writel(val, reg); 218 } 219 220 static u32 pci_hme_read32(void __iomem *reg) 221 { 222 return readl(reg); 223 } 224 225 static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr) 226 { 227 rxd->rx_addr = (__force hme32)cpu_to_le32(addr); 228 wmb(); 229 rxd->rx_flags = (__force hme32)cpu_to_le32(flags); 230 } 231 232 static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr) 233 { 234 txd->tx_addr = (__force hme32)cpu_to_le32(addr); 235 wmb(); 236 txd->tx_flags = (__force hme32)cpu_to_le32(flags); 237 } 238 239 static u32 pci_hme_read_desc32(hme32 *p) 240 { 241 return le32_to_cpup((__le32 *)p); 242 } 243 244 #define hme_write32(__hp, __reg, __val) \ 245 ((__hp)->write32((__reg), (__val))) 246 #define hme_read32(__hp, __reg) \ 247 ((__hp)->read32(__reg)) 248 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \ 249 ((__hp)->write_rxd((__rxd), (__flags), (__addr))) 250 #define hme_write_txd(__hp, __txd, __flags, __addr) \ 251 ((__hp)->write_txd((__txd), (__flags), (__addr))) 252 #define hme_read_desc32(__hp, __p) \ 253 ((__hp)->read_desc32(__p)) 254 #define hme_dma_map(__hp, __ptr, __size, __dir) \ 255 ((__hp)->dma_map((__hp)->dma_dev, (__ptr), (__size), (__dir))) 256 #define hme_dma_unmap(__hp, __addr, __size, __dir) \ 257 ((__hp)->dma_unmap((__hp)->dma_dev, (__addr), (__size), (__dir))) 258 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \ 259 ((__hp)->dma_sync_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))) 260 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \ 261 ((__hp)->dma_sync_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))) 262 #else 263 #ifdef CONFIG_SBUS 264 /* SBUS only compilation */ 265 #define hme_write32(__hp, __reg, __val) \ 266 sbus_writel((__val), (__reg)) 267 #define hme_read32(__hp, __reg) \ 268 sbus_readl(__reg) 269 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \ 270 do { (__rxd)->rx_addr = (__force hme32)(u32)(__addr); \ 271 wmb(); \ 272 (__rxd)->rx_flags = (__force hme32)(u32)(__flags); \ 273 } while(0) 274 #define hme_write_txd(__hp, __txd, __flags, __addr) \ 275 do { (__txd)->tx_addr = (__force hme32)(u32)(__addr); \ 276 wmb(); \ 277 (__txd)->tx_flags = (__force hme32)(u32)(__flags); \ 278 } while(0) 279 #define hme_read_desc32(__hp, __p) ((__force u32)(hme32)*(__p)) 280 #define hme_dma_map(__hp, __ptr, __size, __dir) \ 281 dma_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir)) 282 #define hme_dma_unmap(__hp, __addr, __size, __dir) \ 283 dma_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir)) 284 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \ 285 dma_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir)) 286 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \ 287 dma_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir)) 288 #else 289 /* PCI only compilation */ 290 #define hme_write32(__hp, __reg, __val) \ 291 writel((__val), (__reg)) 292 #define hme_read32(__hp, __reg) \ 293 readl(__reg) 294 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \ 295 do { (__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \ 296 wmb(); \ 297 (__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \ 298 } while(0) 299 #define hme_write_txd(__hp, __txd, __flags, __addr) \ 300 do { (__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \ 301 wmb(); \ 302 (__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \ 303 } while(0) 304 static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p) 305 { 306 return le32_to_cpup((__le32 *)p); 307 } 308 #define hme_dma_map(__hp, __ptr, __size, __dir) \ 309 pci_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir)) 310 #define hme_dma_unmap(__hp, __addr, __size, __dir) \ 311 pci_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir)) 312 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \ 313 pci_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir)) 314 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \ 315 pci_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir)) 316 #endif 317 #endif 318 319 320 /* Oh yes, the MIF BitBang is mighty fun to program. BitBucket is more like it. */ 321 static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit) 322 { 323 hme_write32(hp, tregs + TCVR_BBDATA, bit); 324 hme_write32(hp, tregs + TCVR_BBCLOCK, 0); 325 hme_write32(hp, tregs + TCVR_BBCLOCK, 1); 326 } 327 328 #if 0 329 static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal) 330 { 331 u32 ret; 332 333 hme_write32(hp, tregs + TCVR_BBCLOCK, 0); 334 hme_write32(hp, tregs + TCVR_BBCLOCK, 1); 335 ret = hme_read32(hp, tregs + TCVR_CFG); 336 if (internal) 337 ret &= TCV_CFG_MDIO0; 338 else 339 ret &= TCV_CFG_MDIO1; 340 341 return ret; 342 } 343 #endif 344 345 static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal) 346 { 347 u32 retval; 348 349 hme_write32(hp, tregs + TCVR_BBCLOCK, 0); 350 udelay(1); 351 retval = hme_read32(hp, tregs + TCVR_CFG); 352 if (internal) 353 retval &= TCV_CFG_MDIO0; 354 else 355 retval &= TCV_CFG_MDIO1; 356 hme_write32(hp, tregs + TCVR_BBCLOCK, 1); 357 358 return retval; 359 } 360 361 #define TCVR_FAILURE 0x80000000 /* Impossible MIF read value */ 362 363 static int happy_meal_bb_read(struct happy_meal *hp, 364 void __iomem *tregs, int reg) 365 { 366 u32 tmp; 367 int retval = 0; 368 int i; 369 370 ASD(("happy_meal_bb_read: reg=%d ", reg)); 371 372 /* Enable the MIF BitBang outputs. */ 373 hme_write32(hp, tregs + TCVR_BBOENAB, 1); 374 375 /* Force BitBang into the idle state. */ 376 for (i = 0; i < 32; i++) 377 BB_PUT_BIT(hp, tregs, 1); 378 379 /* Give it the read sequence. */ 380 BB_PUT_BIT(hp, tregs, 0); 381 BB_PUT_BIT(hp, tregs, 1); 382 BB_PUT_BIT(hp, tregs, 1); 383 BB_PUT_BIT(hp, tregs, 0); 384 385 /* Give it the PHY address. */ 386 tmp = hp->paddr & 0xff; 387 for (i = 4; i >= 0; i--) 388 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); 389 390 /* Tell it what register we want to read. */ 391 tmp = (reg & 0xff); 392 for (i = 4; i >= 0; i--) 393 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); 394 395 /* Close down the MIF BitBang outputs. */ 396 hme_write32(hp, tregs + TCVR_BBOENAB, 0); 397 398 /* Now read in the value. */ 399 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); 400 for (i = 15; i >= 0; i--) 401 retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); 402 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); 403 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); 404 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); 405 ASD(("value=%x\n", retval)); 406 return retval; 407 } 408 409 static void happy_meal_bb_write(struct happy_meal *hp, 410 void __iomem *tregs, int reg, 411 unsigned short value) 412 { 413 u32 tmp; 414 int i; 415 416 ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value)); 417 418 /* Enable the MIF BitBang outputs. */ 419 hme_write32(hp, tregs + TCVR_BBOENAB, 1); 420 421 /* Force BitBang into the idle state. */ 422 for (i = 0; i < 32; i++) 423 BB_PUT_BIT(hp, tregs, 1); 424 425 /* Give it write sequence. */ 426 BB_PUT_BIT(hp, tregs, 0); 427 BB_PUT_BIT(hp, tregs, 1); 428 BB_PUT_BIT(hp, tregs, 0); 429 BB_PUT_BIT(hp, tregs, 1); 430 431 /* Give it the PHY address. */ 432 tmp = (hp->paddr & 0xff); 433 for (i = 4; i >= 0; i--) 434 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); 435 436 /* Tell it what register we will be writing. */ 437 tmp = (reg & 0xff); 438 for (i = 4; i >= 0; i--) 439 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); 440 441 /* Tell it to become ready for the bits. */ 442 BB_PUT_BIT(hp, tregs, 1); 443 BB_PUT_BIT(hp, tregs, 0); 444 445 for (i = 15; i >= 0; i--) 446 BB_PUT_BIT(hp, tregs, ((value >> i) & 1)); 447 448 /* Close down the MIF BitBang outputs. */ 449 hme_write32(hp, tregs + TCVR_BBOENAB, 0); 450 } 451 452 #define TCVR_READ_TRIES 16 453 454 static int happy_meal_tcvr_read(struct happy_meal *hp, 455 void __iomem *tregs, int reg) 456 { 457 int tries = TCVR_READ_TRIES; 458 int retval; 459 460 ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg)); 461 if (hp->tcvr_type == none) { 462 ASD(("no transceiver, value=TCVR_FAILURE\n")); 463 return TCVR_FAILURE; 464 } 465 466 if (!(hp->happy_flags & HFLAG_FENABLE)) { 467 ASD(("doing bit bang\n")); 468 return happy_meal_bb_read(hp, tregs, reg); 469 } 470 471 hme_write32(hp, tregs + TCVR_FRAME, 472 (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18))); 473 while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries) 474 udelay(20); 475 if (!tries) { 476 printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n"); 477 return TCVR_FAILURE; 478 } 479 retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff; 480 ASD(("value=%04x\n", retval)); 481 return retval; 482 } 483 484 #define TCVR_WRITE_TRIES 16 485 486 static void happy_meal_tcvr_write(struct happy_meal *hp, 487 void __iomem *tregs, int reg, 488 unsigned short value) 489 { 490 int tries = TCVR_WRITE_TRIES; 491 492 ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value)); 493 494 /* Welcome to Sun Microsystems, can I take your order please? */ 495 if (!(hp->happy_flags & HFLAG_FENABLE)) { 496 happy_meal_bb_write(hp, tregs, reg, value); 497 return; 498 } 499 500 /* Would you like fries with that? */ 501 hme_write32(hp, tregs + TCVR_FRAME, 502 (FRAME_WRITE | (hp->paddr << 23) | 503 ((reg & 0xff) << 18) | (value & 0xffff))); 504 while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries) 505 udelay(20); 506 507 /* Anything else? */ 508 if (!tries) 509 printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n"); 510 511 /* Fifty-two cents is your change, have a nice day. */ 512 } 513 514 /* Auto negotiation. The scheme is very simple. We have a timer routine 515 * that keeps watching the auto negotiation process as it progresses. 516 * The DP83840 is first told to start doing it's thing, we set up the time 517 * and place the timer state machine in it's initial state. 518 * 519 * Here the timer peeks at the DP83840 status registers at each click to see 520 * if the auto negotiation has completed, we assume here that the DP83840 PHY 521 * will time out at some point and just tell us what (didn't) happen. For 522 * complete coverage we only allow so many of the ticks at this level to run, 523 * when this has expired we print a warning message and try another strategy. 524 * This "other" strategy is to force the interface into various speed/duplex 525 * configurations and we stop when we see a link-up condition before the 526 * maximum number of "peek" ticks have occurred. 527 * 528 * Once a valid link status has been detected we configure the BigMAC and 529 * the rest of the Happy Meal to speak the most efficient protocol we could 530 * get a clean link for. The priority for link configurations, highest first 531 * is: 532 * 100 Base-T Full Duplex 533 * 100 Base-T Half Duplex 534 * 10 Base-T Full Duplex 535 * 10 Base-T Half Duplex 536 * 537 * We start a new timer now, after a successful auto negotiation status has 538 * been detected. This timer just waits for the link-up bit to get set in 539 * the BMCR of the DP83840. When this occurs we print a kernel log message 540 * describing the link type in use and the fact that it is up. 541 * 542 * If a fatal error of some sort is signalled and detected in the interrupt 543 * service routine, and the chip is reset, or the link is ifconfig'd down 544 * and then back up, this entire process repeats itself all over again. 545 */ 546 static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs) 547 { 548 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); 549 550 /* Downgrade from full to half duplex. Only possible 551 * via ethtool. 552 */ 553 if (hp->sw_bmcr & BMCR_FULLDPLX) { 554 hp->sw_bmcr &= ~(BMCR_FULLDPLX); 555 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); 556 return 0; 557 } 558 559 /* Downgrade from 100 to 10. */ 560 if (hp->sw_bmcr & BMCR_SPEED100) { 561 hp->sw_bmcr &= ~(BMCR_SPEED100); 562 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); 563 return 0; 564 } 565 566 /* We've tried everything. */ 567 return -1; 568 } 569 570 static void display_link_mode(struct happy_meal *hp, void __iomem *tregs) 571 { 572 printk(KERN_INFO "%s: Link is up using ", hp->dev->name); 573 if (hp->tcvr_type == external) 574 printk("external "); 575 else 576 printk("internal "); 577 printk("transceiver at "); 578 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA); 579 if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) { 580 if (hp->sw_lpa & LPA_100FULL) 581 printk("100Mb/s, Full Duplex.\n"); 582 else 583 printk("100Mb/s, Half Duplex.\n"); 584 } else { 585 if (hp->sw_lpa & LPA_10FULL) 586 printk("10Mb/s, Full Duplex.\n"); 587 else 588 printk("10Mb/s, Half Duplex.\n"); 589 } 590 } 591 592 static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs) 593 { 594 printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name); 595 if (hp->tcvr_type == external) 596 printk("external "); 597 else 598 printk("internal "); 599 printk("transceiver at "); 600 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); 601 if (hp->sw_bmcr & BMCR_SPEED100) 602 printk("100Mb/s, "); 603 else 604 printk("10Mb/s, "); 605 if (hp->sw_bmcr & BMCR_FULLDPLX) 606 printk("Full Duplex.\n"); 607 else 608 printk("Half Duplex.\n"); 609 } 610 611 static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs) 612 { 613 int full; 614 615 /* All we care about is making sure the bigmac tx_cfg has a 616 * proper duplex setting. 617 */ 618 if (hp->timer_state == arbwait) { 619 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA); 620 if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL))) 621 goto no_response; 622 if (hp->sw_lpa & LPA_100FULL) 623 full = 1; 624 else if (hp->sw_lpa & LPA_100HALF) 625 full = 0; 626 else if (hp->sw_lpa & LPA_10FULL) 627 full = 1; 628 else 629 full = 0; 630 } else { 631 /* Forcing a link mode. */ 632 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); 633 if (hp->sw_bmcr & BMCR_FULLDPLX) 634 full = 1; 635 else 636 full = 0; 637 } 638 639 /* Before changing other bits in the tx_cfg register, and in 640 * general any of other the TX config registers too, you 641 * must: 642 * 1) Clear Enable 643 * 2) Poll with reads until that bit reads back as zero 644 * 3) Make TX configuration changes 645 * 4) Set Enable once more 646 */ 647 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG, 648 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & 649 ~(BIGMAC_TXCFG_ENABLE)); 650 while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE) 651 barrier(); 652 if (full) { 653 hp->happy_flags |= HFLAG_FULL; 654 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG, 655 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) | 656 BIGMAC_TXCFG_FULLDPLX); 657 } else { 658 hp->happy_flags &= ~(HFLAG_FULL); 659 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG, 660 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & 661 ~(BIGMAC_TXCFG_FULLDPLX)); 662 } 663 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG, 664 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) | 665 BIGMAC_TXCFG_ENABLE); 666 return 0; 667 no_response: 668 return 1; 669 } 670 671 static int happy_meal_init(struct happy_meal *hp); 672 673 static int is_lucent_phy(struct happy_meal *hp) 674 { 675 void __iomem *tregs = hp->tcvregs; 676 unsigned short mr2, mr3; 677 int ret = 0; 678 679 mr2 = happy_meal_tcvr_read(hp, tregs, 2); 680 mr3 = happy_meal_tcvr_read(hp, tregs, 3); 681 if ((mr2 & 0xffff) == 0x0180 && 682 ((mr3 & 0xffff) >> 10) == 0x1d) 683 ret = 1; 684 685 return ret; 686 } 687 688 static void happy_meal_timer(unsigned long data) 689 { 690 struct happy_meal *hp = (struct happy_meal *) data; 691 void __iomem *tregs = hp->tcvregs; 692 int restart_timer = 0; 693 694 spin_lock_irq(&hp->happy_lock); 695 696 hp->timer_ticks++; 697 switch(hp->timer_state) { 698 case arbwait: 699 /* Only allow for 5 ticks, thats 10 seconds and much too 700 * long to wait for arbitration to complete. 701 */ 702 if (hp->timer_ticks >= 10) { 703 /* Enter force mode. */ 704 do_force_mode: 705 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); 706 printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n", 707 hp->dev->name); 708 hp->sw_bmcr = BMCR_SPEED100; 709 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); 710 711 if (!is_lucent_phy(hp)) { 712 /* OK, seems we need do disable the transceiver for the first 713 * tick to make sure we get an accurate link state at the 714 * second tick. 715 */ 716 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG); 717 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB); 718 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig); 719 } 720 hp->timer_state = ltrywait; 721 hp->timer_ticks = 0; 722 restart_timer = 1; 723 } else { 724 /* Anything interesting happen? */ 725 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); 726 if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) { 727 int ret; 728 729 /* Just what we've been waiting for... */ 730 ret = set_happy_link_modes(hp, tregs); 731 if (ret) { 732 /* Ooops, something bad happened, go to force 733 * mode. 734 * 735 * XXX Broken hubs which don't support 802.3u 736 * XXX auto-negotiation make this happen as well. 737 */ 738 goto do_force_mode; 739 } 740 741 /* Success, at least so far, advance our state engine. */ 742 hp->timer_state = lupwait; 743 restart_timer = 1; 744 } else { 745 restart_timer = 1; 746 } 747 } 748 break; 749 750 case lupwait: 751 /* Auto negotiation was successful and we are awaiting a 752 * link up status. I have decided to let this timer run 753 * forever until some sort of error is signalled, reporting 754 * a message to the user at 10 second intervals. 755 */ 756 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); 757 if (hp->sw_bmsr & BMSR_LSTATUS) { 758 /* Wheee, it's up, display the link mode in use and put 759 * the timer to sleep. 760 */ 761 display_link_mode(hp, tregs); 762 hp->timer_state = asleep; 763 restart_timer = 0; 764 } else { 765 if (hp->timer_ticks >= 10) { 766 printk(KERN_NOTICE "%s: Auto negotiation successful, link still " 767 "not completely up.\n", hp->dev->name); 768 hp->timer_ticks = 0; 769 restart_timer = 1; 770 } else { 771 restart_timer = 1; 772 } 773 } 774 break; 775 776 case ltrywait: 777 /* Making the timeout here too long can make it take 778 * annoyingly long to attempt all of the link mode 779 * permutations, but then again this is essentially 780 * error recovery code for the most part. 781 */ 782 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); 783 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG); 784 if (hp->timer_ticks == 1) { 785 if (!is_lucent_phy(hp)) { 786 /* Re-enable transceiver, we'll re-enable the transceiver next 787 * tick, then check link state on the following tick. 788 */ 789 hp->sw_csconfig |= CSCONFIG_TCVDISAB; 790 happy_meal_tcvr_write(hp, tregs, 791 DP83840_CSCONFIG, hp->sw_csconfig); 792 } 793 restart_timer = 1; 794 break; 795 } 796 if (hp->timer_ticks == 2) { 797 if (!is_lucent_phy(hp)) { 798 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB); 799 happy_meal_tcvr_write(hp, tregs, 800 DP83840_CSCONFIG, hp->sw_csconfig); 801 } 802 restart_timer = 1; 803 break; 804 } 805 if (hp->sw_bmsr & BMSR_LSTATUS) { 806 /* Force mode selection success. */ 807 display_forced_link_mode(hp, tregs); 808 set_happy_link_modes(hp, tregs); /* XXX error? then what? */ 809 hp->timer_state = asleep; 810 restart_timer = 0; 811 } else { 812 if (hp->timer_ticks >= 4) { /* 6 seconds or so... */ 813 int ret; 814 815 ret = try_next_permutation(hp, tregs); 816 if (ret == -1) { 817 /* Aieee, tried them all, reset the 818 * chip and try all over again. 819 */ 820 821 /* Let the user know... */ 822 printk(KERN_NOTICE "%s: Link down, cable problem?\n", 823 hp->dev->name); 824 825 ret = happy_meal_init(hp); 826 if (ret) { 827 /* ho hum... */ 828 printk(KERN_ERR "%s: Error, cannot re-init the " 829 "Happy Meal.\n", hp->dev->name); 830 } 831 goto out; 832 } 833 if (!is_lucent_phy(hp)) { 834 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, 835 DP83840_CSCONFIG); 836 hp->sw_csconfig |= CSCONFIG_TCVDISAB; 837 happy_meal_tcvr_write(hp, tregs, 838 DP83840_CSCONFIG, hp->sw_csconfig); 839 } 840 hp->timer_ticks = 0; 841 restart_timer = 1; 842 } else { 843 restart_timer = 1; 844 } 845 } 846 break; 847 848 case asleep: 849 default: 850 /* Can't happens.... */ 851 printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n", 852 hp->dev->name); 853 restart_timer = 0; 854 hp->timer_ticks = 0; 855 hp->timer_state = asleep; /* foo on you */ 856 break; 857 } 858 859 if (restart_timer) { 860 hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */ 861 add_timer(&hp->happy_timer); 862 } 863 864 out: 865 spin_unlock_irq(&hp->happy_lock); 866 } 867 868 #define TX_RESET_TRIES 32 869 #define RX_RESET_TRIES 32 870 871 /* hp->happy_lock must be held */ 872 static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs) 873 { 874 int tries = TX_RESET_TRIES; 875 876 HMD(("happy_meal_tx_reset: reset, ")); 877 878 /* Would you like to try our SMCC Delux? */ 879 hme_write32(hp, bregs + BMAC_TXSWRESET, 0); 880 while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries) 881 udelay(20); 882 883 /* Lettuce, tomato, buggy hardware (no extra charge)? */ 884 if (!tries) 885 printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!"); 886 887 /* Take care. */ 888 HMD(("done\n")); 889 } 890 891 /* hp->happy_lock must be held */ 892 static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs) 893 { 894 int tries = RX_RESET_TRIES; 895 896 HMD(("happy_meal_rx_reset: reset, ")); 897 898 /* We have a special on GNU/Viking hardware bugs today. */ 899 hme_write32(hp, bregs + BMAC_RXSWRESET, 0); 900 while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries) 901 udelay(20); 902 903 /* Will that be all? */ 904 if (!tries) 905 printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!"); 906 907 /* Don't forget your vik_1137125_wa. Have a nice day. */ 908 HMD(("done\n")); 909 } 910 911 #define STOP_TRIES 16 912 913 /* hp->happy_lock must be held */ 914 static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs) 915 { 916 int tries = STOP_TRIES; 917 918 HMD(("happy_meal_stop: reset, ")); 919 920 /* We're consolidating our STB products, it's your lucky day. */ 921 hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL); 922 while (hme_read32(hp, gregs + GREG_SWRESET) && --tries) 923 udelay(20); 924 925 /* Come back next week when we are "Sun Microelectronics". */ 926 if (!tries) 927 printk(KERN_ERR "happy meal: Fry guys."); 928 929 /* Remember: "Different name, same old buggy as shit hardware." */ 930 HMD(("done\n")); 931 } 932 933 /* hp->happy_lock must be held */ 934 static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs) 935 { 936 struct net_device_stats *stats = &hp->net_stats; 937 938 stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR); 939 hme_write32(hp, bregs + BMAC_RCRCECTR, 0); 940 941 stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR); 942 hme_write32(hp, bregs + BMAC_UNALECTR, 0); 943 944 stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR); 945 hme_write32(hp, bregs + BMAC_GLECTR, 0); 946 947 stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR); 948 949 stats->collisions += 950 (hme_read32(hp, bregs + BMAC_EXCTR) + 951 hme_read32(hp, bregs + BMAC_LTCTR)); 952 hme_write32(hp, bregs + BMAC_EXCTR, 0); 953 hme_write32(hp, bregs + BMAC_LTCTR, 0); 954 } 955 956 /* hp->happy_lock must be held */ 957 static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs) 958 { 959 ASD(("happy_meal_poll_stop: ")); 960 961 /* If polling disabled or not polling already, nothing to do. */ 962 if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) != 963 (HFLAG_POLLENABLE | HFLAG_POLL)) { 964 HMD(("not polling, return\n")); 965 return; 966 } 967 968 /* Shut up the MIF. */ 969 ASD(("were polling, mif ints off, ")); 970 hme_write32(hp, tregs + TCVR_IMASK, 0xffff); 971 972 /* Turn off polling. */ 973 ASD(("polling off, ")); 974 hme_write32(hp, tregs + TCVR_CFG, 975 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE)); 976 977 /* We are no longer polling. */ 978 hp->happy_flags &= ~(HFLAG_POLL); 979 980 /* Let the bits set. */ 981 udelay(200); 982 ASD(("done\n")); 983 } 984 985 /* Only Sun can take such nice parts and fuck up the programming interface 986 * like this. Good job guys... 987 */ 988 #define TCVR_RESET_TRIES 16 /* It should reset quickly */ 989 #define TCVR_UNISOLATE_TRIES 32 /* Dis-isolation can take longer. */ 990 991 /* hp->happy_lock must be held */ 992 static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs) 993 { 994 u32 tconfig; 995 int result, tries = TCVR_RESET_TRIES; 996 997 tconfig = hme_read32(hp, tregs + TCVR_CFG); 998 ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig)); 999 if (hp->tcvr_type == external) { 1000 ASD(("external<")); 1001 hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT)); 1002 hp->tcvr_type = internal; 1003 hp->paddr = TCV_PADDR_ITX; 1004 ASD(("ISOLATE,")); 1005 happy_meal_tcvr_write(hp, tregs, MII_BMCR, 1006 (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE)); 1007 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR); 1008 if (result == TCVR_FAILURE) { 1009 ASD(("phyread_fail>\n")); 1010 return -1; 1011 } 1012 ASD(("phyread_ok,PSELECT>")); 1013 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT); 1014 hp->tcvr_type = external; 1015 hp->paddr = TCV_PADDR_ETX; 1016 } else { 1017 if (tconfig & TCV_CFG_MDIO1) { 1018 ASD(("internal<PSELECT,")); 1019 hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT)); 1020 ASD(("ISOLATE,")); 1021 happy_meal_tcvr_write(hp, tregs, MII_BMCR, 1022 (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE)); 1023 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR); 1024 if (result == TCVR_FAILURE) { 1025 ASD(("phyread_fail>\n")); 1026 return -1; 1027 } 1028 ASD(("phyread_ok,~PSELECT>")); 1029 hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT))); 1030 hp->tcvr_type = internal; 1031 hp->paddr = TCV_PADDR_ITX; 1032 } 1033 } 1034 1035 ASD(("BMCR_RESET ")); 1036 happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET); 1037 1038 while (--tries) { 1039 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR); 1040 if (result == TCVR_FAILURE) 1041 return -1; 1042 hp->sw_bmcr = result; 1043 if (!(result & BMCR_RESET)) 1044 break; 1045 udelay(20); 1046 } 1047 if (!tries) { 1048 ASD(("BMCR RESET FAILED!\n")); 1049 return -1; 1050 } 1051 ASD(("RESET_OK\n")); 1052 1053 /* Get fresh copies of the PHY registers. */ 1054 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); 1055 hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1); 1056 hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2); 1057 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE); 1058 1059 ASD(("UNISOLATE")); 1060 hp->sw_bmcr &= ~(BMCR_ISOLATE); 1061 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); 1062 1063 tries = TCVR_UNISOLATE_TRIES; 1064 while (--tries) { 1065 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR); 1066 if (result == TCVR_FAILURE) 1067 return -1; 1068 if (!(result & BMCR_ISOLATE)) 1069 break; 1070 udelay(20); 1071 } 1072 if (!tries) { 1073 ASD((" FAILED!\n")); 1074 return -1; 1075 } 1076 ASD((" SUCCESS and CSCONFIG_DFBYPASS\n")); 1077 if (!is_lucent_phy(hp)) { 1078 result = happy_meal_tcvr_read(hp, tregs, 1079 DP83840_CSCONFIG); 1080 happy_meal_tcvr_write(hp, tregs, 1081 DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS)); 1082 } 1083 return 0; 1084 } 1085 1086 /* Figure out whether we have an internal or external transceiver. 1087 * 1088 * hp->happy_lock must be held 1089 */ 1090 static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs) 1091 { 1092 unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG); 1093 1094 ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig)); 1095 if (hp->happy_flags & HFLAG_POLL) { 1096 /* If we are polling, we must stop to get the transceiver type. */ 1097 ASD(("<polling> ")); 1098 if (hp->tcvr_type == internal) { 1099 if (tconfig & TCV_CFG_MDIO1) { 1100 ASD(("<internal> <poll stop> ")); 1101 happy_meal_poll_stop(hp, tregs); 1102 hp->paddr = TCV_PADDR_ETX; 1103 hp->tcvr_type = external; 1104 ASD(("<external>\n")); 1105 tconfig &= ~(TCV_CFG_PENABLE); 1106 tconfig |= TCV_CFG_PSELECT; 1107 hme_write32(hp, tregs + TCVR_CFG, tconfig); 1108 } 1109 } else { 1110 if (hp->tcvr_type == external) { 1111 ASD(("<external> ")); 1112 if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) { 1113 ASD(("<poll stop> ")); 1114 happy_meal_poll_stop(hp, tregs); 1115 hp->paddr = TCV_PADDR_ITX; 1116 hp->tcvr_type = internal; 1117 ASD(("<internal>\n")); 1118 hme_write32(hp, tregs + TCVR_CFG, 1119 hme_read32(hp, tregs + TCVR_CFG) & 1120 ~(TCV_CFG_PSELECT)); 1121 } 1122 ASD(("\n")); 1123 } else { 1124 ASD(("<none>\n")); 1125 } 1126 } 1127 } else { 1128 u32 reread = hme_read32(hp, tregs + TCVR_CFG); 1129 1130 /* Else we can just work off of the MDIO bits. */ 1131 ASD(("<not polling> ")); 1132 if (reread & TCV_CFG_MDIO1) { 1133 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT); 1134 hp->paddr = TCV_PADDR_ETX; 1135 hp->tcvr_type = external; 1136 ASD(("<external>\n")); 1137 } else { 1138 if (reread & TCV_CFG_MDIO0) { 1139 hme_write32(hp, tregs + TCVR_CFG, 1140 tconfig & ~(TCV_CFG_PSELECT)); 1141 hp->paddr = TCV_PADDR_ITX; 1142 hp->tcvr_type = internal; 1143 ASD(("<internal>\n")); 1144 } else { 1145 printk(KERN_ERR "happy meal: Transceiver and a coke please."); 1146 hp->tcvr_type = none; /* Grrr... */ 1147 ASD(("<none>\n")); 1148 } 1149 } 1150 } 1151 } 1152 1153 /* The receive ring buffers are a bit tricky to get right. Here goes... 1154 * 1155 * The buffers we dma into must be 64 byte aligned. So we use a special 1156 * alloc_skb() routine for the happy meal to allocate 64 bytes more than 1157 * we really need. 1158 * 1159 * We use skb_reserve() to align the data block we get in the skb. We 1160 * also program the etxregs->cfg register to use an offset of 2. This 1161 * imperical constant plus the ethernet header size will always leave 1162 * us with a nicely aligned ip header once we pass things up to the 1163 * protocol layers. 1164 * 1165 * The numbers work out to: 1166 * 1167 * Max ethernet frame size 1518 1168 * Ethernet header size 14 1169 * Happy Meal base offset 2 1170 * 1171 * Say a skb data area is at 0xf001b010, and its size alloced is 1172 * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes. 1173 * 1174 * First our alloc_skb() routine aligns the data base to a 64 byte 1175 * boundary. We now have 0xf001b040 as our skb data address. We 1176 * plug this into the receive descriptor address. 1177 * 1178 * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset. 1179 * So now the data we will end up looking at starts at 0xf001b042. When 1180 * the packet arrives, we will check out the size received and subtract 1181 * this from the skb->length. Then we just pass the packet up to the 1182 * protocols as is, and allocate a new skb to replace this slot we have 1183 * just received from. 1184 * 1185 * The ethernet layer will strip the ether header from the front of the 1186 * skb we just sent to it, this leaves us with the ip header sitting 1187 * nicely aligned at 0xf001b050. Also, for tcp and udp packets the 1188 * Happy Meal has even checksummed the tcp/udp data for us. The 16 1189 * bit checksum is obtained from the low bits of the receive descriptor 1190 * flags, thus: 1191 * 1192 * skb->csum = rxd->rx_flags & 0xffff; 1193 * skb->ip_summed = CHECKSUM_COMPLETE; 1194 * 1195 * before sending off the skb to the protocols, and we are good as gold. 1196 */ 1197 static void happy_meal_clean_rings(struct happy_meal *hp) 1198 { 1199 int i; 1200 1201 for (i = 0; i < RX_RING_SIZE; i++) { 1202 if (hp->rx_skbs[i] != NULL) { 1203 struct sk_buff *skb = hp->rx_skbs[i]; 1204 struct happy_meal_rxd *rxd; 1205 u32 dma_addr; 1206 1207 rxd = &hp->happy_block->happy_meal_rxd[i]; 1208 dma_addr = hme_read_desc32(hp, &rxd->rx_addr); 1209 dma_unmap_single(hp->dma_dev, dma_addr, 1210 RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE); 1211 dev_kfree_skb_any(skb); 1212 hp->rx_skbs[i] = NULL; 1213 } 1214 } 1215 1216 for (i = 0; i < TX_RING_SIZE; i++) { 1217 if (hp->tx_skbs[i] != NULL) { 1218 struct sk_buff *skb = hp->tx_skbs[i]; 1219 struct happy_meal_txd *txd; 1220 u32 dma_addr; 1221 int frag; 1222 1223 hp->tx_skbs[i] = NULL; 1224 1225 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 1226 txd = &hp->happy_block->happy_meal_txd[i]; 1227 dma_addr = hme_read_desc32(hp, &txd->tx_addr); 1228 if (!frag) 1229 dma_unmap_single(hp->dma_dev, dma_addr, 1230 (hme_read_desc32(hp, &txd->tx_flags) 1231 & TXFLAG_SIZE), 1232 DMA_TO_DEVICE); 1233 else 1234 dma_unmap_page(hp->dma_dev, dma_addr, 1235 (hme_read_desc32(hp, &txd->tx_flags) 1236 & TXFLAG_SIZE), 1237 DMA_TO_DEVICE); 1238 1239 if (frag != skb_shinfo(skb)->nr_frags) 1240 i++; 1241 } 1242 1243 dev_kfree_skb_any(skb); 1244 } 1245 } 1246 } 1247 1248 /* hp->happy_lock must be held */ 1249 static void happy_meal_init_rings(struct happy_meal *hp) 1250 { 1251 struct hmeal_init_block *hb = hp->happy_block; 1252 int i; 1253 1254 HMD(("happy_meal_init_rings: counters to zero, ")); 1255 hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0; 1256 1257 /* Free any skippy bufs left around in the rings. */ 1258 HMD(("clean, ")); 1259 happy_meal_clean_rings(hp); 1260 1261 /* Now get new skippy bufs for the receive ring. */ 1262 HMD(("init rxring, ")); 1263 for (i = 0; i < RX_RING_SIZE; i++) { 1264 struct sk_buff *skb; 1265 u32 mapping; 1266 1267 skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC); 1268 if (!skb) { 1269 hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0); 1270 continue; 1271 } 1272 hp->rx_skbs[i] = skb; 1273 1274 /* Because we reserve afterwards. */ 1275 skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4)); 1276 mapping = dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE, 1277 DMA_FROM_DEVICE); 1278 if (dma_mapping_error(hp->dma_dev, mapping)) { 1279 dev_kfree_skb_any(skb); 1280 hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0); 1281 continue; 1282 } 1283 hme_write_rxd(hp, &hb->happy_meal_rxd[i], 1284 (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)), 1285 mapping); 1286 skb_reserve(skb, RX_OFFSET); 1287 } 1288 1289 HMD(("init txring, ")); 1290 for (i = 0; i < TX_RING_SIZE; i++) 1291 hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0); 1292 1293 HMD(("done\n")); 1294 } 1295 1296 /* hp->happy_lock must be held */ 1297 static void happy_meal_begin_auto_negotiation(struct happy_meal *hp, 1298 void __iomem *tregs, 1299 struct ethtool_cmd *ep) 1300 { 1301 int timeout; 1302 1303 /* Read all of the registers we are interested in now. */ 1304 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); 1305 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); 1306 hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1); 1307 hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2); 1308 1309 /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */ 1310 1311 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE); 1312 if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) { 1313 /* Advertise everything we can support. */ 1314 if (hp->sw_bmsr & BMSR_10HALF) 1315 hp->sw_advertise |= (ADVERTISE_10HALF); 1316 else 1317 hp->sw_advertise &= ~(ADVERTISE_10HALF); 1318 1319 if (hp->sw_bmsr & BMSR_10FULL) 1320 hp->sw_advertise |= (ADVERTISE_10FULL); 1321 else 1322 hp->sw_advertise &= ~(ADVERTISE_10FULL); 1323 if (hp->sw_bmsr & BMSR_100HALF) 1324 hp->sw_advertise |= (ADVERTISE_100HALF); 1325 else 1326 hp->sw_advertise &= ~(ADVERTISE_100HALF); 1327 if (hp->sw_bmsr & BMSR_100FULL) 1328 hp->sw_advertise |= (ADVERTISE_100FULL); 1329 else 1330 hp->sw_advertise &= ~(ADVERTISE_100FULL); 1331 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise); 1332 1333 /* XXX Currently no Happy Meal cards I know off support 100BaseT4, 1334 * XXX and this is because the DP83840 does not support it, changes 1335 * XXX would need to be made to the tx/rx logic in the driver as well 1336 * XXX so I completely skip checking for it in the BMSR for now. 1337 */ 1338 1339 #ifdef AUTO_SWITCH_DEBUG 1340 ASD(("%s: Advertising [ ", hp->dev->name)); 1341 if (hp->sw_advertise & ADVERTISE_10HALF) 1342 ASD(("10H ")); 1343 if (hp->sw_advertise & ADVERTISE_10FULL) 1344 ASD(("10F ")); 1345 if (hp->sw_advertise & ADVERTISE_100HALF) 1346 ASD(("100H ")); 1347 if (hp->sw_advertise & ADVERTISE_100FULL) 1348 ASD(("100F ")); 1349 #endif 1350 1351 /* Enable Auto-Negotiation, this is usually on already... */ 1352 hp->sw_bmcr |= BMCR_ANENABLE; 1353 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); 1354 1355 /* Restart it to make sure it is going. */ 1356 hp->sw_bmcr |= BMCR_ANRESTART; 1357 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); 1358 1359 /* BMCR_ANRESTART self clears when the process has begun. */ 1360 1361 timeout = 64; /* More than enough. */ 1362 while (--timeout) { 1363 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); 1364 if (!(hp->sw_bmcr & BMCR_ANRESTART)) 1365 break; /* got it. */ 1366 udelay(10); 1367 } 1368 if (!timeout) { 1369 printk(KERN_ERR "%s: Happy Meal would not start auto negotiation " 1370 "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr); 1371 printk(KERN_NOTICE "%s: Performing force link detection.\n", 1372 hp->dev->name); 1373 goto force_link; 1374 } else { 1375 hp->timer_state = arbwait; 1376 } 1377 } else { 1378 force_link: 1379 /* Force the link up, trying first a particular mode. 1380 * Either we are here at the request of ethtool or 1381 * because the Happy Meal would not start to autoneg. 1382 */ 1383 1384 /* Disable auto-negotiation in BMCR, enable the duplex and 1385 * speed setting, init the timer state machine, and fire it off. 1386 */ 1387 if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) { 1388 hp->sw_bmcr = BMCR_SPEED100; 1389 } else { 1390 if (ethtool_cmd_speed(ep) == SPEED_100) 1391 hp->sw_bmcr = BMCR_SPEED100; 1392 else 1393 hp->sw_bmcr = 0; 1394 if (ep->duplex == DUPLEX_FULL) 1395 hp->sw_bmcr |= BMCR_FULLDPLX; 1396 } 1397 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); 1398 1399 if (!is_lucent_phy(hp)) { 1400 /* OK, seems we need do disable the transceiver for the first 1401 * tick to make sure we get an accurate link state at the 1402 * second tick. 1403 */ 1404 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, 1405 DP83840_CSCONFIG); 1406 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB); 1407 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, 1408 hp->sw_csconfig); 1409 } 1410 hp->timer_state = ltrywait; 1411 } 1412 1413 hp->timer_ticks = 0; 1414 hp->happy_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */ 1415 hp->happy_timer.data = (unsigned long) hp; 1416 hp->happy_timer.function = happy_meal_timer; 1417 add_timer(&hp->happy_timer); 1418 } 1419 1420 /* hp->happy_lock must be held */ 1421 static int happy_meal_init(struct happy_meal *hp) 1422 { 1423 void __iomem *gregs = hp->gregs; 1424 void __iomem *etxregs = hp->etxregs; 1425 void __iomem *erxregs = hp->erxregs; 1426 void __iomem *bregs = hp->bigmacregs; 1427 void __iomem *tregs = hp->tcvregs; 1428 u32 regtmp, rxcfg; 1429 unsigned char *e = &hp->dev->dev_addr[0]; 1430 1431 /* If auto-negotiation timer is running, kill it. */ 1432 del_timer(&hp->happy_timer); 1433 1434 HMD(("happy_meal_init: happy_flags[%08x] ", 1435 hp->happy_flags)); 1436 if (!(hp->happy_flags & HFLAG_INIT)) { 1437 HMD(("set HFLAG_INIT, ")); 1438 hp->happy_flags |= HFLAG_INIT; 1439 happy_meal_get_counters(hp, bregs); 1440 } 1441 1442 /* Stop polling. */ 1443 HMD(("to happy_meal_poll_stop\n")); 1444 happy_meal_poll_stop(hp, tregs); 1445 1446 /* Stop transmitter and receiver. */ 1447 HMD(("happy_meal_init: to happy_meal_stop\n")); 1448 happy_meal_stop(hp, gregs); 1449 1450 /* Alloc and reset the tx/rx descriptor chains. */ 1451 HMD(("happy_meal_init: to happy_meal_init_rings\n")); 1452 happy_meal_init_rings(hp); 1453 1454 /* Shut up the MIF. */ 1455 HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ", 1456 hme_read32(hp, tregs + TCVR_IMASK))); 1457 hme_write32(hp, tregs + TCVR_IMASK, 0xffff); 1458 1459 /* See if we can enable the MIF frame on this card to speak to the DP83840. */ 1460 if (hp->happy_flags & HFLAG_FENABLE) { 1461 HMD(("use frame old[%08x], ", 1462 hme_read32(hp, tregs + TCVR_CFG))); 1463 hme_write32(hp, tregs + TCVR_CFG, 1464 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE)); 1465 } else { 1466 HMD(("use bitbang old[%08x], ", 1467 hme_read32(hp, tregs + TCVR_CFG))); 1468 hme_write32(hp, tregs + TCVR_CFG, 1469 hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE); 1470 } 1471 1472 /* Check the state of the transceiver. */ 1473 HMD(("to happy_meal_transceiver_check\n")); 1474 happy_meal_transceiver_check(hp, tregs); 1475 1476 /* Put the Big Mac into a sane state. */ 1477 HMD(("happy_meal_init: ")); 1478 switch(hp->tcvr_type) { 1479 case none: 1480 /* Cannot operate if we don't know the transceiver type! */ 1481 HMD(("AAIEEE no transceiver type, EAGAIN")); 1482 return -EAGAIN; 1483 1484 case internal: 1485 /* Using the MII buffers. */ 1486 HMD(("internal, using MII, ")); 1487 hme_write32(hp, bregs + BMAC_XIFCFG, 0); 1488 break; 1489 1490 case external: 1491 /* Not using the MII, disable it. */ 1492 HMD(("external, disable MII, ")); 1493 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB); 1494 break; 1495 } 1496 1497 if (happy_meal_tcvr_reset(hp, tregs)) 1498 return -EAGAIN; 1499 1500 /* Reset the Happy Meal Big Mac transceiver and the receiver. */ 1501 HMD(("tx/rx reset, ")); 1502 happy_meal_tx_reset(hp, bregs); 1503 happy_meal_rx_reset(hp, bregs); 1504 1505 /* Set jam size and inter-packet gaps to reasonable defaults. */ 1506 HMD(("jsize/ipg1/ipg2, ")); 1507 hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE); 1508 hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1); 1509 hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2); 1510 1511 /* Load up the MAC address and random seed. */ 1512 HMD(("rseed/macaddr, ")); 1513 1514 /* The docs recommend to use the 10LSB of our MAC here. */ 1515 hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff)); 1516 1517 hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5])); 1518 hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3])); 1519 hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1])); 1520 1521 HMD(("htable, ")); 1522 if ((hp->dev->flags & IFF_ALLMULTI) || 1523 (netdev_mc_count(hp->dev) > 64)) { 1524 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff); 1525 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff); 1526 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff); 1527 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff); 1528 } else if ((hp->dev->flags & IFF_PROMISC) == 0) { 1529 u16 hash_table[4]; 1530 struct netdev_hw_addr *ha; 1531 u32 crc; 1532 1533 memset(hash_table, 0, sizeof(hash_table)); 1534 netdev_for_each_mc_addr(ha, hp->dev) { 1535 crc = ether_crc_le(6, ha->addr); 1536 crc >>= 26; 1537 hash_table[crc >> 4] |= 1 << (crc & 0xf); 1538 } 1539 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]); 1540 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]); 1541 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]); 1542 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]); 1543 } else { 1544 hme_write32(hp, bregs + BMAC_HTABLE3, 0); 1545 hme_write32(hp, bregs + BMAC_HTABLE2, 0); 1546 hme_write32(hp, bregs + BMAC_HTABLE1, 0); 1547 hme_write32(hp, bregs + BMAC_HTABLE0, 0); 1548 } 1549 1550 /* Set the RX and TX ring ptrs. */ 1551 HMD(("ring ptrs rxr[%08x] txr[%08x]\n", 1552 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)), 1553 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)))); 1554 hme_write32(hp, erxregs + ERX_RING, 1555 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))); 1556 hme_write32(hp, etxregs + ETX_RING, 1557 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))); 1558 1559 /* Parity issues in the ERX unit of some HME revisions can cause some 1560 * registers to not be written unless their parity is even. Detect such 1561 * lost writes and simply rewrite with a low bit set (which will be ignored 1562 * since the rxring needs to be 2K aligned). 1563 */ 1564 if (hme_read32(hp, erxregs + ERX_RING) != 1565 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))) 1566 hme_write32(hp, erxregs + ERX_RING, 1567 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)) 1568 | 0x4); 1569 1570 /* Set the supported burst sizes. */ 1571 HMD(("happy_meal_init: old[%08x] bursts<", 1572 hme_read32(hp, gregs + GREG_CFG))); 1573 1574 #ifndef CONFIG_SPARC 1575 /* It is always PCI and can handle 64byte bursts. */ 1576 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64); 1577 #else 1578 if ((hp->happy_bursts & DMA_BURST64) && 1579 ((hp->happy_flags & HFLAG_PCI) != 0 1580 #ifdef CONFIG_SBUS 1581 || sbus_can_burst64() 1582 #endif 1583 || 0)) { 1584 u32 gcfg = GREG_CFG_BURST64; 1585 1586 /* I have no idea if I should set the extended 1587 * transfer mode bit for Cheerio, so for now I 1588 * do not. -DaveM 1589 */ 1590 #ifdef CONFIG_SBUS 1591 if ((hp->happy_flags & HFLAG_PCI) == 0) { 1592 struct platform_device *op = hp->happy_dev; 1593 if (sbus_can_dma_64bit()) { 1594 sbus_set_sbus64(&op->dev, 1595 hp->happy_bursts); 1596 gcfg |= GREG_CFG_64BIT; 1597 } 1598 } 1599 #endif 1600 1601 HMD(("64>")); 1602 hme_write32(hp, gregs + GREG_CFG, gcfg); 1603 } else if (hp->happy_bursts & DMA_BURST32) { 1604 HMD(("32>")); 1605 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32); 1606 } else if (hp->happy_bursts & DMA_BURST16) { 1607 HMD(("16>")); 1608 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16); 1609 } else { 1610 HMD(("XXX>")); 1611 hme_write32(hp, gregs + GREG_CFG, 0); 1612 } 1613 #endif /* CONFIG_SPARC */ 1614 1615 /* Turn off interrupts we do not want to hear. */ 1616 HMD((", enable global interrupts, ")); 1617 hme_write32(hp, gregs + GREG_IMASK, 1618 (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP | 1619 GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR)); 1620 1621 /* Set the transmit ring buffer size. */ 1622 HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE, 1623 hme_read32(hp, etxregs + ETX_RSIZE))); 1624 hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1); 1625 1626 /* Enable transmitter DVMA. */ 1627 HMD(("tx dma enable old[%08x], ", 1628 hme_read32(hp, etxregs + ETX_CFG))); 1629 hme_write32(hp, etxregs + ETX_CFG, 1630 hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE); 1631 1632 /* This chip really rots, for the receiver sometimes when you 1633 * write to its control registers not all the bits get there 1634 * properly. I cannot think of a sane way to provide complete 1635 * coverage for this hardware bug yet. 1636 */ 1637 HMD(("erx regs bug old[%08x]\n", 1638 hme_read32(hp, erxregs + ERX_CFG))); 1639 hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET)); 1640 regtmp = hme_read32(hp, erxregs + ERX_CFG); 1641 hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET)); 1642 if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) { 1643 printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n"); 1644 printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n", 1645 ERX_CFG_DEFAULT(RX_OFFSET), regtmp); 1646 /* XXX Should return failure here... */ 1647 } 1648 1649 /* Enable Big Mac hash table filter. */ 1650 HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ", 1651 hme_read32(hp, bregs + BMAC_RXCFG))); 1652 rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME; 1653 if (hp->dev->flags & IFF_PROMISC) 1654 rxcfg |= BIGMAC_RXCFG_PMISC; 1655 hme_write32(hp, bregs + BMAC_RXCFG, rxcfg); 1656 1657 /* Let the bits settle in the chip. */ 1658 udelay(10); 1659 1660 /* Ok, configure the Big Mac transmitter. */ 1661 HMD(("BIGMAC init, ")); 1662 regtmp = 0; 1663 if (hp->happy_flags & HFLAG_FULL) 1664 regtmp |= BIGMAC_TXCFG_FULLDPLX; 1665 1666 /* Don't turn on the "don't give up" bit for now. It could cause hme 1667 * to deadlock with the PHY if a Jabber occurs. 1668 */ 1669 hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/); 1670 1671 /* Give up after 16 TX attempts. */ 1672 hme_write32(hp, bregs + BMAC_ALIMIT, 16); 1673 1674 /* Enable the output drivers no matter what. */ 1675 regtmp = BIGMAC_XCFG_ODENABLE; 1676 1677 /* If card can do lance mode, enable it. */ 1678 if (hp->happy_flags & HFLAG_LANCE) 1679 regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE; 1680 1681 /* Disable the MII buffers if using external transceiver. */ 1682 if (hp->tcvr_type == external) 1683 regtmp |= BIGMAC_XCFG_MIIDISAB; 1684 1685 HMD(("XIF config old[%08x], ", 1686 hme_read32(hp, bregs + BMAC_XIFCFG))); 1687 hme_write32(hp, bregs + BMAC_XIFCFG, regtmp); 1688 1689 /* Start things up. */ 1690 HMD(("tx old[%08x] and rx [%08x] ON!\n", 1691 hme_read32(hp, bregs + BMAC_TXCFG), 1692 hme_read32(hp, bregs + BMAC_RXCFG))); 1693 1694 /* Set larger TX/RX size to allow for 802.1q */ 1695 hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8); 1696 hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8); 1697 1698 hme_write32(hp, bregs + BMAC_TXCFG, 1699 hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE); 1700 hme_write32(hp, bregs + BMAC_RXCFG, 1701 hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE); 1702 1703 /* Get the autonegotiation started, and the watch timer ticking. */ 1704 happy_meal_begin_auto_negotiation(hp, tregs, NULL); 1705 1706 /* Success. */ 1707 return 0; 1708 } 1709 1710 /* hp->happy_lock must be held */ 1711 static void happy_meal_set_initial_advertisement(struct happy_meal *hp) 1712 { 1713 void __iomem *tregs = hp->tcvregs; 1714 void __iomem *bregs = hp->bigmacregs; 1715 void __iomem *gregs = hp->gregs; 1716 1717 happy_meal_stop(hp, gregs); 1718 hme_write32(hp, tregs + TCVR_IMASK, 0xffff); 1719 if (hp->happy_flags & HFLAG_FENABLE) 1720 hme_write32(hp, tregs + TCVR_CFG, 1721 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE)); 1722 else 1723 hme_write32(hp, tregs + TCVR_CFG, 1724 hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE); 1725 happy_meal_transceiver_check(hp, tregs); 1726 switch(hp->tcvr_type) { 1727 case none: 1728 return; 1729 case internal: 1730 hme_write32(hp, bregs + BMAC_XIFCFG, 0); 1731 break; 1732 case external: 1733 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB); 1734 break; 1735 } 1736 if (happy_meal_tcvr_reset(hp, tregs)) 1737 return; 1738 1739 /* Latch PHY registers as of now. */ 1740 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); 1741 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE); 1742 1743 /* Advertise everything we can support. */ 1744 if (hp->sw_bmsr & BMSR_10HALF) 1745 hp->sw_advertise |= (ADVERTISE_10HALF); 1746 else 1747 hp->sw_advertise &= ~(ADVERTISE_10HALF); 1748 1749 if (hp->sw_bmsr & BMSR_10FULL) 1750 hp->sw_advertise |= (ADVERTISE_10FULL); 1751 else 1752 hp->sw_advertise &= ~(ADVERTISE_10FULL); 1753 if (hp->sw_bmsr & BMSR_100HALF) 1754 hp->sw_advertise |= (ADVERTISE_100HALF); 1755 else 1756 hp->sw_advertise &= ~(ADVERTISE_100HALF); 1757 if (hp->sw_bmsr & BMSR_100FULL) 1758 hp->sw_advertise |= (ADVERTISE_100FULL); 1759 else 1760 hp->sw_advertise &= ~(ADVERTISE_100FULL); 1761 1762 /* Update the PHY advertisement register. */ 1763 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise); 1764 } 1765 1766 /* Once status is latched (by happy_meal_interrupt) it is cleared by 1767 * the hardware, so we cannot re-read it and get a correct value. 1768 * 1769 * hp->happy_lock must be held 1770 */ 1771 static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status) 1772 { 1773 int reset = 0; 1774 1775 /* Only print messages for non-counter related interrupts. */ 1776 if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND | 1777 GREG_STAT_MAXPKTERR | GREG_STAT_RXERR | 1778 GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR | 1779 GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR | 1780 GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR | 1781 GREG_STAT_SLVPERR)) 1782 printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n", 1783 hp->dev->name, status); 1784 1785 if (status & GREG_STAT_RFIFOVF) { 1786 /* Receive FIFO overflow is harmless and the hardware will take 1787 care of it, just some packets are lost. Who cares. */ 1788 printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name); 1789 } 1790 1791 if (status & GREG_STAT_STSTERR) { 1792 /* BigMAC SQE link test failed. */ 1793 printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name); 1794 reset = 1; 1795 } 1796 1797 if (status & GREG_STAT_TFIFO_UND) { 1798 /* Transmit FIFO underrun, again DMA error likely. */ 1799 printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n", 1800 hp->dev->name); 1801 reset = 1; 1802 } 1803 1804 if (status & GREG_STAT_MAXPKTERR) { 1805 /* Driver error, tried to transmit something larger 1806 * than ethernet max mtu. 1807 */ 1808 printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name); 1809 reset = 1; 1810 } 1811 1812 if (status & GREG_STAT_NORXD) { 1813 /* This is harmless, it just means the system is 1814 * quite loaded and the incoming packet rate was 1815 * faster than the interrupt handler could keep up 1816 * with. 1817 */ 1818 printk(KERN_INFO "%s: Happy Meal out of receive " 1819 "descriptors, packet dropped.\n", 1820 hp->dev->name); 1821 } 1822 1823 if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) { 1824 /* All sorts of DMA receive errors. */ 1825 printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name); 1826 if (status & GREG_STAT_RXERR) 1827 printk("GenericError "); 1828 if (status & GREG_STAT_RXPERR) 1829 printk("ParityError "); 1830 if (status & GREG_STAT_RXTERR) 1831 printk("RxTagBotch "); 1832 printk("]\n"); 1833 reset = 1; 1834 } 1835 1836 if (status & GREG_STAT_EOPERR) { 1837 /* Driver bug, didn't set EOP bit in tx descriptor given 1838 * to the happy meal. 1839 */ 1840 printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n", 1841 hp->dev->name); 1842 reset = 1; 1843 } 1844 1845 if (status & GREG_STAT_MIFIRQ) { 1846 /* MIF signalled an interrupt, were we polling it? */ 1847 printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name); 1848 } 1849 1850 if (status & 1851 (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) { 1852 /* All sorts of transmit DMA errors. */ 1853 printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name); 1854 if (status & GREG_STAT_TXEACK) 1855 printk("GenericError "); 1856 if (status & GREG_STAT_TXLERR) 1857 printk("LateError "); 1858 if (status & GREG_STAT_TXPERR) 1859 printk("ParityErro "); 1860 if (status & GREG_STAT_TXTERR) 1861 printk("TagBotch "); 1862 printk("]\n"); 1863 reset = 1; 1864 } 1865 1866 if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) { 1867 /* Bus or parity error when cpu accessed happy meal registers 1868 * or it's internal FIFO's. Should never see this. 1869 */ 1870 printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n", 1871 hp->dev->name, 1872 (status & GREG_STAT_SLVPERR) ? "parity" : "generic"); 1873 reset = 1; 1874 } 1875 1876 if (reset) { 1877 printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name); 1878 happy_meal_init(hp); 1879 return 1; 1880 } 1881 return 0; 1882 } 1883 1884 /* hp->happy_lock must be held */ 1885 static void happy_meal_mif_interrupt(struct happy_meal *hp) 1886 { 1887 void __iomem *tregs = hp->tcvregs; 1888 1889 printk(KERN_INFO "%s: Link status change.\n", hp->dev->name); 1890 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); 1891 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA); 1892 1893 /* Use the fastest transmission protocol possible. */ 1894 if (hp->sw_lpa & LPA_100FULL) { 1895 printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name); 1896 hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100); 1897 } else if (hp->sw_lpa & LPA_100HALF) { 1898 printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name); 1899 hp->sw_bmcr |= BMCR_SPEED100; 1900 } else if (hp->sw_lpa & LPA_10FULL) { 1901 printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name); 1902 hp->sw_bmcr |= BMCR_FULLDPLX; 1903 } else { 1904 printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name); 1905 } 1906 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); 1907 1908 /* Finally stop polling and shut up the MIF. */ 1909 happy_meal_poll_stop(hp, tregs); 1910 } 1911 1912 #ifdef TXDEBUG 1913 #define TXD(x) printk x 1914 #else 1915 #define TXD(x) 1916 #endif 1917 1918 /* hp->happy_lock must be held */ 1919 static void happy_meal_tx(struct happy_meal *hp) 1920 { 1921 struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0]; 1922 struct happy_meal_txd *this; 1923 struct net_device *dev = hp->dev; 1924 int elem; 1925 1926 elem = hp->tx_old; 1927 TXD(("TX<")); 1928 while (elem != hp->tx_new) { 1929 struct sk_buff *skb; 1930 u32 flags, dma_addr, dma_len; 1931 int frag; 1932 1933 TXD(("[%d]", elem)); 1934 this = &txbase[elem]; 1935 flags = hme_read_desc32(hp, &this->tx_flags); 1936 if (flags & TXFLAG_OWN) 1937 break; 1938 skb = hp->tx_skbs[elem]; 1939 if (skb_shinfo(skb)->nr_frags) { 1940 int last; 1941 1942 last = elem + skb_shinfo(skb)->nr_frags; 1943 last &= (TX_RING_SIZE - 1); 1944 flags = hme_read_desc32(hp, &txbase[last].tx_flags); 1945 if (flags & TXFLAG_OWN) 1946 break; 1947 } 1948 hp->tx_skbs[elem] = NULL; 1949 hp->net_stats.tx_bytes += skb->len; 1950 1951 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 1952 dma_addr = hme_read_desc32(hp, &this->tx_addr); 1953 dma_len = hme_read_desc32(hp, &this->tx_flags); 1954 1955 dma_len &= TXFLAG_SIZE; 1956 if (!frag) 1957 dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE); 1958 else 1959 dma_unmap_page(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE); 1960 1961 elem = NEXT_TX(elem); 1962 this = &txbase[elem]; 1963 } 1964 1965 dev_kfree_skb_irq(skb); 1966 hp->net_stats.tx_packets++; 1967 } 1968 hp->tx_old = elem; 1969 TXD((">")); 1970 1971 if (netif_queue_stopped(dev) && 1972 TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1)) 1973 netif_wake_queue(dev); 1974 } 1975 1976 #ifdef RXDEBUG 1977 #define RXD(x) printk x 1978 #else 1979 #define RXD(x) 1980 #endif 1981 1982 /* Originally I used to handle the allocation failure by just giving back just 1983 * that one ring buffer to the happy meal. Problem is that usually when that 1984 * condition is triggered, the happy meal expects you to do something reasonable 1985 * with all of the packets it has DMA'd in. So now I just drop the entire 1986 * ring when we cannot get a new skb and give them all back to the happy meal, 1987 * maybe things will be "happier" now. 1988 * 1989 * hp->happy_lock must be held 1990 */ 1991 static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev) 1992 { 1993 struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0]; 1994 struct happy_meal_rxd *this; 1995 int elem = hp->rx_new, drops = 0; 1996 u32 flags; 1997 1998 RXD(("RX<")); 1999 this = &rxbase[elem]; 2000 while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) { 2001 struct sk_buff *skb; 2002 int len = flags >> 16; 2003 u16 csum = flags & RXFLAG_CSUM; 2004 u32 dma_addr = hme_read_desc32(hp, &this->rx_addr); 2005 2006 RXD(("[%d ", elem)); 2007 2008 /* Check for errors. */ 2009 if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) { 2010 RXD(("ERR(%08x)]", flags)); 2011 hp->net_stats.rx_errors++; 2012 if (len < ETH_ZLEN) 2013 hp->net_stats.rx_length_errors++; 2014 if (len & (RXFLAG_OVERFLOW >> 16)) { 2015 hp->net_stats.rx_over_errors++; 2016 hp->net_stats.rx_fifo_errors++; 2017 } 2018 2019 /* Return it to the Happy meal. */ 2020 drop_it: 2021 hp->net_stats.rx_dropped++; 2022 hme_write_rxd(hp, this, 2023 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)), 2024 dma_addr); 2025 goto next; 2026 } 2027 skb = hp->rx_skbs[elem]; 2028 if (len > RX_COPY_THRESHOLD) { 2029 struct sk_buff *new_skb; 2030 u32 mapping; 2031 2032 /* Now refill the entry, if we can. */ 2033 new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC); 2034 if (new_skb == NULL) { 2035 drops++; 2036 goto drop_it; 2037 } 2038 skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4)); 2039 mapping = dma_map_single(hp->dma_dev, new_skb->data, 2040 RX_BUF_ALLOC_SIZE, 2041 DMA_FROM_DEVICE); 2042 if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) { 2043 dev_kfree_skb_any(new_skb); 2044 drops++; 2045 goto drop_it; 2046 } 2047 2048 dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE); 2049 hp->rx_skbs[elem] = new_skb; 2050 hme_write_rxd(hp, this, 2051 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)), 2052 mapping); 2053 skb_reserve(new_skb, RX_OFFSET); 2054 2055 /* Trim the original skb for the netif. */ 2056 skb_trim(skb, len); 2057 } else { 2058 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2); 2059 2060 if (copy_skb == NULL) { 2061 drops++; 2062 goto drop_it; 2063 } 2064 2065 skb_reserve(copy_skb, 2); 2066 skb_put(copy_skb, len); 2067 dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE); 2068 skb_copy_from_linear_data(skb, copy_skb->data, len); 2069 dma_sync_single_for_device(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE); 2070 /* Reuse original ring buffer. */ 2071 hme_write_rxd(hp, this, 2072 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)), 2073 dma_addr); 2074 2075 skb = copy_skb; 2076 } 2077 2078 /* This card is _fucking_ hot... */ 2079 skb->csum = csum_unfold(~(__force __sum16)htons(csum)); 2080 skb->ip_summed = CHECKSUM_COMPLETE; 2081 2082 RXD(("len=%d csum=%4x]", len, csum)); 2083 skb->protocol = eth_type_trans(skb, dev); 2084 netif_rx(skb); 2085 2086 hp->net_stats.rx_packets++; 2087 hp->net_stats.rx_bytes += len; 2088 next: 2089 elem = NEXT_RX(elem); 2090 this = &rxbase[elem]; 2091 } 2092 hp->rx_new = elem; 2093 if (drops) 2094 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name); 2095 RXD((">")); 2096 } 2097 2098 static irqreturn_t happy_meal_interrupt(int irq, void *dev_id) 2099 { 2100 struct net_device *dev = dev_id; 2101 struct happy_meal *hp = netdev_priv(dev); 2102 u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT); 2103 2104 HMD(("happy_meal_interrupt: status=%08x ", happy_status)); 2105 2106 spin_lock(&hp->happy_lock); 2107 2108 if (happy_status & GREG_STAT_ERRORS) { 2109 HMD(("ERRORS ")); 2110 if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status)) 2111 goto out; 2112 } 2113 2114 if (happy_status & GREG_STAT_MIFIRQ) { 2115 HMD(("MIFIRQ ")); 2116 happy_meal_mif_interrupt(hp); 2117 } 2118 2119 if (happy_status & GREG_STAT_TXALL) { 2120 HMD(("TXALL ")); 2121 happy_meal_tx(hp); 2122 } 2123 2124 if (happy_status & GREG_STAT_RXTOHOST) { 2125 HMD(("RXTOHOST ")); 2126 happy_meal_rx(hp, dev); 2127 } 2128 2129 HMD(("done\n")); 2130 out: 2131 spin_unlock(&hp->happy_lock); 2132 2133 return IRQ_HANDLED; 2134 } 2135 2136 #ifdef CONFIG_SBUS 2137 static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie) 2138 { 2139 struct quattro *qp = (struct quattro *) cookie; 2140 int i; 2141 2142 for (i = 0; i < 4; i++) { 2143 struct net_device *dev = qp->happy_meals[i]; 2144 struct happy_meal *hp = netdev_priv(dev); 2145 u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT); 2146 2147 HMD(("quattro_interrupt: status=%08x ", happy_status)); 2148 2149 if (!(happy_status & (GREG_STAT_ERRORS | 2150 GREG_STAT_MIFIRQ | 2151 GREG_STAT_TXALL | 2152 GREG_STAT_RXTOHOST))) 2153 continue; 2154 2155 spin_lock(&hp->happy_lock); 2156 2157 if (happy_status & GREG_STAT_ERRORS) { 2158 HMD(("ERRORS ")); 2159 if (happy_meal_is_not_so_happy(hp, happy_status)) 2160 goto next; 2161 } 2162 2163 if (happy_status & GREG_STAT_MIFIRQ) { 2164 HMD(("MIFIRQ ")); 2165 happy_meal_mif_interrupt(hp); 2166 } 2167 2168 if (happy_status & GREG_STAT_TXALL) { 2169 HMD(("TXALL ")); 2170 happy_meal_tx(hp); 2171 } 2172 2173 if (happy_status & GREG_STAT_RXTOHOST) { 2174 HMD(("RXTOHOST ")); 2175 happy_meal_rx(hp, dev); 2176 } 2177 2178 next: 2179 spin_unlock(&hp->happy_lock); 2180 } 2181 HMD(("done\n")); 2182 2183 return IRQ_HANDLED; 2184 } 2185 #endif 2186 2187 static int happy_meal_open(struct net_device *dev) 2188 { 2189 struct happy_meal *hp = netdev_priv(dev); 2190 int res; 2191 2192 HMD(("happy_meal_open: ")); 2193 2194 /* On SBUS Quattro QFE cards, all hme interrupts are concentrated 2195 * into a single source which we register handling at probe time. 2196 */ 2197 if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) { 2198 res = request_irq(hp->irq, happy_meal_interrupt, IRQF_SHARED, 2199 dev->name, dev); 2200 if (res) { 2201 HMD(("EAGAIN\n")); 2202 printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n", 2203 hp->irq); 2204 2205 return -EAGAIN; 2206 } 2207 } 2208 2209 HMD(("to happy_meal_init\n")); 2210 2211 spin_lock_irq(&hp->happy_lock); 2212 res = happy_meal_init(hp); 2213 spin_unlock_irq(&hp->happy_lock); 2214 2215 if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)) 2216 free_irq(hp->irq, dev); 2217 return res; 2218 } 2219 2220 static int happy_meal_close(struct net_device *dev) 2221 { 2222 struct happy_meal *hp = netdev_priv(dev); 2223 2224 spin_lock_irq(&hp->happy_lock); 2225 happy_meal_stop(hp, hp->gregs); 2226 happy_meal_clean_rings(hp); 2227 2228 /* If auto-negotiation timer is running, kill it. */ 2229 del_timer(&hp->happy_timer); 2230 2231 spin_unlock_irq(&hp->happy_lock); 2232 2233 /* On Quattro QFE cards, all hme interrupts are concentrated 2234 * into a single source which we register handling at probe 2235 * time and never unregister. 2236 */ 2237 if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) 2238 free_irq(hp->irq, dev); 2239 2240 return 0; 2241 } 2242 2243 #ifdef SXDEBUG 2244 #define SXD(x) printk x 2245 #else 2246 #define SXD(x) 2247 #endif 2248 2249 static void happy_meal_tx_timeout(struct net_device *dev) 2250 { 2251 struct happy_meal *hp = netdev_priv(dev); 2252 2253 printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name); 2254 tx_dump_log(); 2255 printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name, 2256 hme_read32(hp, hp->gregs + GREG_STAT), 2257 hme_read32(hp, hp->etxregs + ETX_CFG), 2258 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG)); 2259 2260 spin_lock_irq(&hp->happy_lock); 2261 happy_meal_init(hp); 2262 spin_unlock_irq(&hp->happy_lock); 2263 2264 netif_wake_queue(dev); 2265 } 2266 2267 static void unmap_partial_tx_skb(struct happy_meal *hp, u32 first_mapping, 2268 u32 first_len, u32 first_entry, u32 entry) 2269 { 2270 struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0]; 2271 2272 dma_unmap_single(hp->dma_dev, first_mapping, first_len, DMA_TO_DEVICE); 2273 2274 first_entry = NEXT_TX(first_entry); 2275 while (first_entry != entry) { 2276 struct happy_meal_txd *this = &txbase[first_entry]; 2277 u32 addr, len; 2278 2279 addr = hme_read_desc32(hp, &this->tx_addr); 2280 len = hme_read_desc32(hp, &this->tx_flags); 2281 len &= TXFLAG_SIZE; 2282 dma_unmap_page(hp->dma_dev, addr, len, DMA_TO_DEVICE); 2283 } 2284 } 2285 2286 static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb, 2287 struct net_device *dev) 2288 { 2289 struct happy_meal *hp = netdev_priv(dev); 2290 int entry; 2291 u32 tx_flags; 2292 2293 tx_flags = TXFLAG_OWN; 2294 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2295 const u32 csum_start_off = skb_checksum_start_offset(skb); 2296 const u32 csum_stuff_off = csum_start_off + skb->csum_offset; 2297 2298 tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE | 2299 ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) | 2300 ((csum_stuff_off << 20) & TXFLAG_CSLOCATION)); 2301 } 2302 2303 spin_lock_irq(&hp->happy_lock); 2304 2305 if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) { 2306 netif_stop_queue(dev); 2307 spin_unlock_irq(&hp->happy_lock); 2308 printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n", 2309 dev->name); 2310 return NETDEV_TX_BUSY; 2311 } 2312 2313 entry = hp->tx_new; 2314 SXD(("SX<l[%d]e[%d]>", len, entry)); 2315 hp->tx_skbs[entry] = skb; 2316 2317 if (skb_shinfo(skb)->nr_frags == 0) { 2318 u32 mapping, len; 2319 2320 len = skb->len; 2321 mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE); 2322 if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) 2323 goto out_dma_error; 2324 tx_flags |= (TXFLAG_SOP | TXFLAG_EOP); 2325 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry], 2326 (tx_flags | (len & TXFLAG_SIZE)), 2327 mapping); 2328 entry = NEXT_TX(entry); 2329 } else { 2330 u32 first_len, first_mapping; 2331 int frag, first_entry = entry; 2332 2333 /* We must give this initial chunk to the device last. 2334 * Otherwise we could race with the device. 2335 */ 2336 first_len = skb_headlen(skb); 2337 first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len, 2338 DMA_TO_DEVICE); 2339 if (unlikely(dma_mapping_error(hp->dma_dev, first_mapping))) 2340 goto out_dma_error; 2341 entry = NEXT_TX(entry); 2342 2343 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) { 2344 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag]; 2345 u32 len, mapping, this_txflags; 2346 2347 len = skb_frag_size(this_frag); 2348 mapping = skb_frag_dma_map(hp->dma_dev, this_frag, 2349 0, len, DMA_TO_DEVICE); 2350 if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) { 2351 unmap_partial_tx_skb(hp, first_mapping, first_len, 2352 first_entry, entry); 2353 goto out_dma_error; 2354 } 2355 this_txflags = tx_flags; 2356 if (frag == skb_shinfo(skb)->nr_frags - 1) 2357 this_txflags |= TXFLAG_EOP; 2358 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry], 2359 (this_txflags | (len & TXFLAG_SIZE)), 2360 mapping); 2361 entry = NEXT_TX(entry); 2362 } 2363 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry], 2364 (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)), 2365 first_mapping); 2366 } 2367 2368 hp->tx_new = entry; 2369 2370 if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1)) 2371 netif_stop_queue(dev); 2372 2373 /* Get it going. */ 2374 hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP); 2375 2376 spin_unlock_irq(&hp->happy_lock); 2377 2378 tx_add_log(hp, TXLOG_ACTION_TXMIT, 0); 2379 return NETDEV_TX_OK; 2380 2381 out_dma_error: 2382 hp->tx_skbs[hp->tx_new] = NULL; 2383 spin_unlock_irq(&hp->happy_lock); 2384 2385 dev_kfree_skb_any(skb); 2386 dev->stats.tx_dropped++; 2387 return NETDEV_TX_OK; 2388 } 2389 2390 static struct net_device_stats *happy_meal_get_stats(struct net_device *dev) 2391 { 2392 struct happy_meal *hp = netdev_priv(dev); 2393 2394 spin_lock_irq(&hp->happy_lock); 2395 happy_meal_get_counters(hp, hp->bigmacregs); 2396 spin_unlock_irq(&hp->happy_lock); 2397 2398 return &hp->net_stats; 2399 } 2400 2401 static void happy_meal_set_multicast(struct net_device *dev) 2402 { 2403 struct happy_meal *hp = netdev_priv(dev); 2404 void __iomem *bregs = hp->bigmacregs; 2405 struct netdev_hw_addr *ha; 2406 u32 crc; 2407 2408 spin_lock_irq(&hp->happy_lock); 2409 2410 if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) { 2411 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff); 2412 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff); 2413 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff); 2414 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff); 2415 } else if (dev->flags & IFF_PROMISC) { 2416 hme_write32(hp, bregs + BMAC_RXCFG, 2417 hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC); 2418 } else { 2419 u16 hash_table[4]; 2420 2421 memset(hash_table, 0, sizeof(hash_table)); 2422 netdev_for_each_mc_addr(ha, dev) { 2423 crc = ether_crc_le(6, ha->addr); 2424 crc >>= 26; 2425 hash_table[crc >> 4] |= 1 << (crc & 0xf); 2426 } 2427 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]); 2428 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]); 2429 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]); 2430 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]); 2431 } 2432 2433 spin_unlock_irq(&hp->happy_lock); 2434 } 2435 2436 /* Ethtool support... */ 2437 static int hme_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2438 { 2439 struct happy_meal *hp = netdev_priv(dev); 2440 u32 speed; 2441 2442 cmd->supported = 2443 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 2444 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 2445 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII); 2446 2447 /* XXX hardcoded stuff for now */ 2448 cmd->port = PORT_TP; /* XXX no MII support */ 2449 cmd->transceiver = XCVR_INTERNAL; /* XXX no external xcvr support */ 2450 cmd->phy_address = 0; /* XXX fixed PHYAD */ 2451 2452 /* Record PHY settings. */ 2453 spin_lock_irq(&hp->happy_lock); 2454 hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR); 2455 hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA); 2456 spin_unlock_irq(&hp->happy_lock); 2457 2458 if (hp->sw_bmcr & BMCR_ANENABLE) { 2459 cmd->autoneg = AUTONEG_ENABLE; 2460 speed = ((hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ? 2461 SPEED_100 : SPEED_10); 2462 if (speed == SPEED_100) 2463 cmd->duplex = 2464 (hp->sw_lpa & (LPA_100FULL)) ? 2465 DUPLEX_FULL : DUPLEX_HALF; 2466 else 2467 cmd->duplex = 2468 (hp->sw_lpa & (LPA_10FULL)) ? 2469 DUPLEX_FULL : DUPLEX_HALF; 2470 } else { 2471 cmd->autoneg = AUTONEG_DISABLE; 2472 speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10; 2473 cmd->duplex = 2474 (hp->sw_bmcr & BMCR_FULLDPLX) ? 2475 DUPLEX_FULL : DUPLEX_HALF; 2476 } 2477 ethtool_cmd_speed_set(cmd, speed); 2478 return 0; 2479 } 2480 2481 static int hme_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2482 { 2483 struct happy_meal *hp = netdev_priv(dev); 2484 2485 /* Verify the settings we care about. */ 2486 if (cmd->autoneg != AUTONEG_ENABLE && 2487 cmd->autoneg != AUTONEG_DISABLE) 2488 return -EINVAL; 2489 if (cmd->autoneg == AUTONEG_DISABLE && 2490 ((ethtool_cmd_speed(cmd) != SPEED_100 && 2491 ethtool_cmd_speed(cmd) != SPEED_10) || 2492 (cmd->duplex != DUPLEX_HALF && 2493 cmd->duplex != DUPLEX_FULL))) 2494 return -EINVAL; 2495 2496 /* Ok, do it to it. */ 2497 spin_lock_irq(&hp->happy_lock); 2498 del_timer(&hp->happy_timer); 2499 happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd); 2500 spin_unlock_irq(&hp->happy_lock); 2501 2502 return 0; 2503 } 2504 2505 static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2506 { 2507 struct happy_meal *hp = netdev_priv(dev); 2508 2509 strlcpy(info->driver, "sunhme", sizeof(info->driver)); 2510 strlcpy(info->version, "2.02", sizeof(info->version)); 2511 if (hp->happy_flags & HFLAG_PCI) { 2512 struct pci_dev *pdev = hp->happy_dev; 2513 strlcpy(info->bus_info, pci_name(pdev), sizeof(info->bus_info)); 2514 } 2515 #ifdef CONFIG_SBUS 2516 else { 2517 const struct linux_prom_registers *regs; 2518 struct platform_device *op = hp->happy_dev; 2519 regs = of_get_property(op->dev.of_node, "regs", NULL); 2520 if (regs) 2521 snprintf(info->bus_info, sizeof(info->bus_info), 2522 "SBUS:%d", 2523 regs->which_io); 2524 } 2525 #endif 2526 } 2527 2528 static u32 hme_get_link(struct net_device *dev) 2529 { 2530 struct happy_meal *hp = netdev_priv(dev); 2531 2532 spin_lock_irq(&hp->happy_lock); 2533 hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR); 2534 spin_unlock_irq(&hp->happy_lock); 2535 2536 return hp->sw_bmsr & BMSR_LSTATUS; 2537 } 2538 2539 static const struct ethtool_ops hme_ethtool_ops = { 2540 .get_settings = hme_get_settings, 2541 .set_settings = hme_set_settings, 2542 .get_drvinfo = hme_get_drvinfo, 2543 .get_link = hme_get_link, 2544 }; 2545 2546 static int hme_version_printed; 2547 2548 #ifdef CONFIG_SBUS 2549 /* Given a happy meal sbus device, find it's quattro parent. 2550 * If none exist, allocate and return a new one. 2551 * 2552 * Return NULL on failure. 2553 */ 2554 static struct quattro *quattro_sbus_find(struct platform_device *child) 2555 { 2556 struct device *parent = child->dev.parent; 2557 struct platform_device *op; 2558 struct quattro *qp; 2559 2560 op = to_platform_device(parent); 2561 qp = platform_get_drvdata(op); 2562 if (qp) 2563 return qp; 2564 2565 qp = kmalloc(sizeof(struct quattro), GFP_KERNEL); 2566 if (qp != NULL) { 2567 int i; 2568 2569 for (i = 0; i < 4; i++) 2570 qp->happy_meals[i] = NULL; 2571 2572 qp->quattro_dev = child; 2573 qp->next = qfe_sbus_list; 2574 qfe_sbus_list = qp; 2575 2576 platform_set_drvdata(op, qp); 2577 } 2578 return qp; 2579 } 2580 2581 /* After all quattro cards have been probed, we call these functions 2582 * to register the IRQ handlers for the cards that have been 2583 * successfully probed and skip the cards that failed to initialize 2584 */ 2585 static int __init quattro_sbus_register_irqs(void) 2586 { 2587 struct quattro *qp; 2588 2589 for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) { 2590 struct platform_device *op = qp->quattro_dev; 2591 int err, qfe_slot, skip = 0; 2592 2593 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) { 2594 if (!qp->happy_meals[qfe_slot]) 2595 skip = 1; 2596 } 2597 if (skip) 2598 continue; 2599 2600 err = request_irq(op->archdata.irqs[0], 2601 quattro_sbus_interrupt, 2602 IRQF_SHARED, "Quattro", 2603 qp); 2604 if (err != 0) { 2605 printk(KERN_ERR "Quattro HME: IRQ registration " 2606 "error %d.\n", err); 2607 return err; 2608 } 2609 } 2610 2611 return 0; 2612 } 2613 2614 static void quattro_sbus_free_irqs(void) 2615 { 2616 struct quattro *qp; 2617 2618 for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) { 2619 struct platform_device *op = qp->quattro_dev; 2620 int qfe_slot, skip = 0; 2621 2622 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) { 2623 if (!qp->happy_meals[qfe_slot]) 2624 skip = 1; 2625 } 2626 if (skip) 2627 continue; 2628 2629 free_irq(op->archdata.irqs[0], qp); 2630 } 2631 } 2632 #endif /* CONFIG_SBUS */ 2633 2634 #ifdef CONFIG_PCI 2635 static struct quattro *quattro_pci_find(struct pci_dev *pdev) 2636 { 2637 struct pci_dev *bdev = pdev->bus->self; 2638 struct quattro *qp; 2639 2640 if (!bdev) return NULL; 2641 for (qp = qfe_pci_list; qp != NULL; qp = qp->next) { 2642 struct pci_dev *qpdev = qp->quattro_dev; 2643 2644 if (qpdev == bdev) 2645 return qp; 2646 } 2647 qp = kmalloc(sizeof(struct quattro), GFP_KERNEL); 2648 if (qp != NULL) { 2649 int i; 2650 2651 for (i = 0; i < 4; i++) 2652 qp->happy_meals[i] = NULL; 2653 2654 qp->quattro_dev = bdev; 2655 qp->next = qfe_pci_list; 2656 qfe_pci_list = qp; 2657 2658 /* No range tricks necessary on PCI. */ 2659 qp->nranges = 0; 2660 } 2661 return qp; 2662 } 2663 #endif /* CONFIG_PCI */ 2664 2665 static const struct net_device_ops hme_netdev_ops = { 2666 .ndo_open = happy_meal_open, 2667 .ndo_stop = happy_meal_close, 2668 .ndo_start_xmit = happy_meal_start_xmit, 2669 .ndo_tx_timeout = happy_meal_tx_timeout, 2670 .ndo_get_stats = happy_meal_get_stats, 2671 .ndo_set_rx_mode = happy_meal_set_multicast, 2672 .ndo_change_mtu = eth_change_mtu, 2673 .ndo_set_mac_address = eth_mac_addr, 2674 .ndo_validate_addr = eth_validate_addr, 2675 }; 2676 2677 #ifdef CONFIG_SBUS 2678 static int happy_meal_sbus_probe_one(struct platform_device *op, int is_qfe) 2679 { 2680 struct device_node *dp = op->dev.of_node, *sbus_dp; 2681 struct quattro *qp = NULL; 2682 struct happy_meal *hp; 2683 struct net_device *dev; 2684 int i, qfe_slot = -1; 2685 int err = -ENODEV; 2686 2687 sbus_dp = op->dev.parent->of_node; 2688 2689 /* We can match PCI devices too, do not accept those here. */ 2690 if (strcmp(sbus_dp->name, "sbus") && strcmp(sbus_dp->name, "sbi")) 2691 return err; 2692 2693 if (is_qfe) { 2694 qp = quattro_sbus_find(op); 2695 if (qp == NULL) 2696 goto err_out; 2697 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) 2698 if (qp->happy_meals[qfe_slot] == NULL) 2699 break; 2700 if (qfe_slot == 4) 2701 goto err_out; 2702 } 2703 2704 err = -ENOMEM; 2705 dev = alloc_etherdev(sizeof(struct happy_meal)); 2706 if (!dev) 2707 goto err_out; 2708 SET_NETDEV_DEV(dev, &op->dev); 2709 2710 if (hme_version_printed++ == 0) 2711 printk(KERN_INFO "%s", version); 2712 2713 /* If user did not specify a MAC address specifically, use 2714 * the Quattro local-mac-address property... 2715 */ 2716 for (i = 0; i < 6; i++) { 2717 if (macaddr[i] != 0) 2718 break; 2719 } 2720 if (i < 6) { /* a mac address was given */ 2721 for (i = 0; i < 6; i++) 2722 dev->dev_addr[i] = macaddr[i]; 2723 macaddr[5]++; 2724 } else { 2725 const unsigned char *addr; 2726 int len; 2727 2728 addr = of_get_property(dp, "local-mac-address", &len); 2729 2730 if (qfe_slot != -1 && addr && len == ETH_ALEN) 2731 memcpy(dev->dev_addr, addr, ETH_ALEN); 2732 else 2733 memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN); 2734 } 2735 2736 hp = netdev_priv(dev); 2737 2738 hp->happy_dev = op; 2739 hp->dma_dev = &op->dev; 2740 2741 spin_lock_init(&hp->happy_lock); 2742 2743 err = -ENODEV; 2744 if (qp != NULL) { 2745 hp->qfe_parent = qp; 2746 hp->qfe_ent = qfe_slot; 2747 qp->happy_meals[qfe_slot] = dev; 2748 } 2749 2750 hp->gregs = of_ioremap(&op->resource[0], 0, 2751 GREG_REG_SIZE, "HME Global Regs"); 2752 if (!hp->gregs) { 2753 printk(KERN_ERR "happymeal: Cannot map global registers.\n"); 2754 goto err_out_free_netdev; 2755 } 2756 2757 hp->etxregs = of_ioremap(&op->resource[1], 0, 2758 ETX_REG_SIZE, "HME TX Regs"); 2759 if (!hp->etxregs) { 2760 printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n"); 2761 goto err_out_iounmap; 2762 } 2763 2764 hp->erxregs = of_ioremap(&op->resource[2], 0, 2765 ERX_REG_SIZE, "HME RX Regs"); 2766 if (!hp->erxregs) { 2767 printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n"); 2768 goto err_out_iounmap; 2769 } 2770 2771 hp->bigmacregs = of_ioremap(&op->resource[3], 0, 2772 BMAC_REG_SIZE, "HME BIGMAC Regs"); 2773 if (!hp->bigmacregs) { 2774 printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n"); 2775 goto err_out_iounmap; 2776 } 2777 2778 hp->tcvregs = of_ioremap(&op->resource[4], 0, 2779 TCVR_REG_SIZE, "HME Tranceiver Regs"); 2780 if (!hp->tcvregs) { 2781 printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n"); 2782 goto err_out_iounmap; 2783 } 2784 2785 hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff); 2786 if (hp->hm_revision == 0xff) 2787 hp->hm_revision = 0xa0; 2788 2789 /* Now enable the feature flags we can. */ 2790 if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21) 2791 hp->happy_flags = HFLAG_20_21; 2792 else if (hp->hm_revision != 0xa0) 2793 hp->happy_flags = HFLAG_NOT_A0; 2794 2795 if (qp != NULL) 2796 hp->happy_flags |= HFLAG_QUATTRO; 2797 2798 /* Get the supported DVMA burst sizes from our Happy SBUS. */ 2799 hp->happy_bursts = of_getintprop_default(sbus_dp, 2800 "burst-sizes", 0x00); 2801 2802 hp->happy_block = dma_alloc_coherent(hp->dma_dev, 2803 PAGE_SIZE, 2804 &hp->hblock_dvma, 2805 GFP_ATOMIC); 2806 err = -ENOMEM; 2807 if (!hp->happy_block) 2808 goto err_out_iounmap; 2809 2810 /* Force check of the link first time we are brought up. */ 2811 hp->linkcheck = 0; 2812 2813 /* Force timer state to 'asleep' with count of zero. */ 2814 hp->timer_state = asleep; 2815 hp->timer_ticks = 0; 2816 2817 init_timer(&hp->happy_timer); 2818 2819 hp->dev = dev; 2820 dev->netdev_ops = &hme_netdev_ops; 2821 dev->watchdog_timeo = 5*HZ; 2822 dev->ethtool_ops = &hme_ethtool_ops; 2823 2824 /* Happy Meal can do it all... */ 2825 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM; 2826 dev->features |= dev->hw_features | NETIF_F_RXCSUM; 2827 2828 hp->irq = op->archdata.irqs[0]; 2829 2830 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI) 2831 /* Hook up SBUS register/descriptor accessors. */ 2832 hp->read_desc32 = sbus_hme_read_desc32; 2833 hp->write_txd = sbus_hme_write_txd; 2834 hp->write_rxd = sbus_hme_write_rxd; 2835 hp->read32 = sbus_hme_read32; 2836 hp->write32 = sbus_hme_write32; 2837 #endif 2838 2839 /* Grrr, Happy Meal comes up by default not advertising 2840 * full duplex 100baseT capabilities, fix this. 2841 */ 2842 spin_lock_irq(&hp->happy_lock); 2843 happy_meal_set_initial_advertisement(hp); 2844 spin_unlock_irq(&hp->happy_lock); 2845 2846 err = register_netdev(hp->dev); 2847 if (err) { 2848 printk(KERN_ERR "happymeal: Cannot register net device, " 2849 "aborting.\n"); 2850 goto err_out_free_coherent; 2851 } 2852 2853 platform_set_drvdata(op, hp); 2854 2855 if (qfe_slot != -1) 2856 printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ", 2857 dev->name, qfe_slot); 2858 else 2859 printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ", 2860 dev->name); 2861 2862 printk("%pM\n", dev->dev_addr); 2863 2864 return 0; 2865 2866 err_out_free_coherent: 2867 dma_free_coherent(hp->dma_dev, 2868 PAGE_SIZE, 2869 hp->happy_block, 2870 hp->hblock_dvma); 2871 2872 err_out_iounmap: 2873 if (hp->gregs) 2874 of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE); 2875 if (hp->etxregs) 2876 of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE); 2877 if (hp->erxregs) 2878 of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE); 2879 if (hp->bigmacregs) 2880 of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE); 2881 if (hp->tcvregs) 2882 of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE); 2883 2884 if (qp) 2885 qp->happy_meals[qfe_slot] = NULL; 2886 2887 err_out_free_netdev: 2888 free_netdev(dev); 2889 2890 err_out: 2891 return err; 2892 } 2893 #endif 2894 2895 #ifdef CONFIG_PCI 2896 #ifndef CONFIG_SPARC 2897 static int is_quattro_p(struct pci_dev *pdev) 2898 { 2899 struct pci_dev *busdev = pdev->bus->self; 2900 struct pci_dev *this_pdev; 2901 int n_hmes; 2902 2903 if (busdev == NULL || 2904 busdev->vendor != PCI_VENDOR_ID_DEC || 2905 busdev->device != PCI_DEVICE_ID_DEC_21153) 2906 return 0; 2907 2908 n_hmes = 0; 2909 list_for_each_entry(this_pdev, &pdev->bus->devices, bus_list) { 2910 if (this_pdev->vendor == PCI_VENDOR_ID_SUN && 2911 this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL) 2912 n_hmes++; 2913 } 2914 2915 if (n_hmes != 4) 2916 return 0; 2917 2918 return 1; 2919 } 2920 2921 /* Fetch MAC address from vital product data of PCI ROM. */ 2922 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr) 2923 { 2924 int this_offset; 2925 2926 for (this_offset = 0x20; this_offset < len; this_offset++) { 2927 void __iomem *p = rom_base + this_offset; 2928 2929 if (readb(p + 0) != 0x90 || 2930 readb(p + 1) != 0x00 || 2931 readb(p + 2) != 0x09 || 2932 readb(p + 3) != 0x4e || 2933 readb(p + 4) != 0x41 || 2934 readb(p + 5) != 0x06) 2935 continue; 2936 2937 this_offset += 6; 2938 p += 6; 2939 2940 if (index == 0) { 2941 int i; 2942 2943 for (i = 0; i < 6; i++) 2944 dev_addr[i] = readb(p + i); 2945 return 1; 2946 } 2947 index--; 2948 } 2949 return 0; 2950 } 2951 2952 static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr) 2953 { 2954 size_t size; 2955 void __iomem *p = pci_map_rom(pdev, &size); 2956 2957 if (p) { 2958 int index = 0; 2959 int found; 2960 2961 if (is_quattro_p(pdev)) 2962 index = PCI_SLOT(pdev->devfn); 2963 2964 found = readb(p) == 0x55 && 2965 readb(p + 1) == 0xaa && 2966 find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr); 2967 pci_unmap_rom(pdev, p); 2968 if (found) 2969 return; 2970 } 2971 2972 /* Sun MAC prefix then 3 random bytes. */ 2973 dev_addr[0] = 0x08; 2974 dev_addr[1] = 0x00; 2975 dev_addr[2] = 0x20; 2976 get_random_bytes(&dev_addr[3], 3); 2977 } 2978 #endif /* !(CONFIG_SPARC) */ 2979 2980 static int happy_meal_pci_probe(struct pci_dev *pdev, 2981 const struct pci_device_id *ent) 2982 { 2983 struct quattro *qp = NULL; 2984 #ifdef CONFIG_SPARC 2985 struct device_node *dp; 2986 #endif 2987 struct happy_meal *hp; 2988 struct net_device *dev; 2989 void __iomem *hpreg_base; 2990 unsigned long hpreg_res; 2991 int i, qfe_slot = -1; 2992 char prom_name[64]; 2993 int err; 2994 2995 /* Now make sure pci_dev cookie is there. */ 2996 #ifdef CONFIG_SPARC 2997 dp = pci_device_to_OF_node(pdev); 2998 strcpy(prom_name, dp->name); 2999 #else 3000 if (is_quattro_p(pdev)) 3001 strcpy(prom_name, "SUNW,qfe"); 3002 else 3003 strcpy(prom_name, "SUNW,hme"); 3004 #endif 3005 3006 err = -ENODEV; 3007 3008 if (pci_enable_device(pdev)) 3009 goto err_out; 3010 pci_set_master(pdev); 3011 3012 if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) { 3013 qp = quattro_pci_find(pdev); 3014 if (qp == NULL) 3015 goto err_out; 3016 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) 3017 if (qp->happy_meals[qfe_slot] == NULL) 3018 break; 3019 if (qfe_slot == 4) 3020 goto err_out; 3021 } 3022 3023 dev = alloc_etherdev(sizeof(struct happy_meal)); 3024 err = -ENOMEM; 3025 if (!dev) 3026 goto err_out; 3027 SET_NETDEV_DEV(dev, &pdev->dev); 3028 3029 if (hme_version_printed++ == 0) 3030 printk(KERN_INFO "%s", version); 3031 3032 hp = netdev_priv(dev); 3033 3034 hp->happy_dev = pdev; 3035 hp->dma_dev = &pdev->dev; 3036 3037 spin_lock_init(&hp->happy_lock); 3038 3039 if (qp != NULL) { 3040 hp->qfe_parent = qp; 3041 hp->qfe_ent = qfe_slot; 3042 qp->happy_meals[qfe_slot] = dev; 3043 } 3044 3045 hpreg_res = pci_resource_start(pdev, 0); 3046 err = -ENODEV; 3047 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) { 3048 printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n"); 3049 goto err_out_clear_quattro; 3050 } 3051 if (pci_request_regions(pdev, DRV_NAME)) { 3052 printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, " 3053 "aborting.\n"); 3054 goto err_out_clear_quattro; 3055 } 3056 3057 if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == NULL) { 3058 printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n"); 3059 goto err_out_free_res; 3060 } 3061 3062 for (i = 0; i < 6; i++) { 3063 if (macaddr[i] != 0) 3064 break; 3065 } 3066 if (i < 6) { /* a mac address was given */ 3067 for (i = 0; i < 6; i++) 3068 dev->dev_addr[i] = macaddr[i]; 3069 macaddr[5]++; 3070 } else { 3071 #ifdef CONFIG_SPARC 3072 const unsigned char *addr; 3073 int len; 3074 3075 if (qfe_slot != -1 && 3076 (addr = of_get_property(dp, "local-mac-address", &len)) 3077 != NULL && 3078 len == 6) { 3079 memcpy(dev->dev_addr, addr, ETH_ALEN); 3080 } else { 3081 memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN); 3082 } 3083 #else 3084 get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]); 3085 #endif 3086 } 3087 3088 /* Layout registers. */ 3089 hp->gregs = (hpreg_base + 0x0000UL); 3090 hp->etxregs = (hpreg_base + 0x2000UL); 3091 hp->erxregs = (hpreg_base + 0x4000UL); 3092 hp->bigmacregs = (hpreg_base + 0x6000UL); 3093 hp->tcvregs = (hpreg_base + 0x7000UL); 3094 3095 #ifdef CONFIG_SPARC 3096 hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff); 3097 if (hp->hm_revision == 0xff) 3098 hp->hm_revision = 0xc0 | (pdev->revision & 0x0f); 3099 #else 3100 /* works with this on non-sparc hosts */ 3101 hp->hm_revision = 0x20; 3102 #endif 3103 3104 /* Now enable the feature flags we can. */ 3105 if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21) 3106 hp->happy_flags = HFLAG_20_21; 3107 else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0) 3108 hp->happy_flags = HFLAG_NOT_A0; 3109 3110 if (qp != NULL) 3111 hp->happy_flags |= HFLAG_QUATTRO; 3112 3113 /* And of course, indicate this is PCI. */ 3114 hp->happy_flags |= HFLAG_PCI; 3115 3116 #ifdef CONFIG_SPARC 3117 /* Assume PCI happy meals can handle all burst sizes. */ 3118 hp->happy_bursts = DMA_BURSTBITS; 3119 #endif 3120 3121 hp->happy_block = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, 3122 &hp->hblock_dvma, GFP_KERNEL); 3123 err = -ENODEV; 3124 if (!hp->happy_block) 3125 goto err_out_iounmap; 3126 3127 hp->linkcheck = 0; 3128 hp->timer_state = asleep; 3129 hp->timer_ticks = 0; 3130 3131 init_timer(&hp->happy_timer); 3132 3133 hp->irq = pdev->irq; 3134 hp->dev = dev; 3135 dev->netdev_ops = &hme_netdev_ops; 3136 dev->watchdog_timeo = 5*HZ; 3137 dev->ethtool_ops = &hme_ethtool_ops; 3138 3139 /* Happy Meal can do it all... */ 3140 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM; 3141 dev->features |= dev->hw_features | NETIF_F_RXCSUM; 3142 3143 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI) 3144 /* Hook up PCI register/descriptor accessors. */ 3145 hp->read_desc32 = pci_hme_read_desc32; 3146 hp->write_txd = pci_hme_write_txd; 3147 hp->write_rxd = pci_hme_write_rxd; 3148 hp->read32 = pci_hme_read32; 3149 hp->write32 = pci_hme_write32; 3150 #endif 3151 3152 /* Grrr, Happy Meal comes up by default not advertising 3153 * full duplex 100baseT capabilities, fix this. 3154 */ 3155 spin_lock_irq(&hp->happy_lock); 3156 happy_meal_set_initial_advertisement(hp); 3157 spin_unlock_irq(&hp->happy_lock); 3158 3159 err = register_netdev(hp->dev); 3160 if (err) { 3161 printk(KERN_ERR "happymeal(PCI): Cannot register net device, " 3162 "aborting.\n"); 3163 goto err_out_iounmap; 3164 } 3165 3166 pci_set_drvdata(pdev, hp); 3167 3168 if (!qfe_slot) { 3169 struct pci_dev *qpdev = qp->quattro_dev; 3170 3171 prom_name[0] = 0; 3172 if (!strncmp(dev->name, "eth", 3)) { 3173 int i = simple_strtoul(dev->name + 3, NULL, 10); 3174 sprintf(prom_name, "-%d", i + 3); 3175 } 3176 printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name); 3177 if (qpdev->vendor == PCI_VENDOR_ID_DEC && 3178 qpdev->device == PCI_DEVICE_ID_DEC_21153) 3179 printk("DEC 21153 PCI Bridge\n"); 3180 else 3181 printk("unknown bridge %04x.%04x\n", 3182 qpdev->vendor, qpdev->device); 3183 } 3184 3185 if (qfe_slot != -1) 3186 printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ", 3187 dev->name, qfe_slot); 3188 else 3189 printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ", 3190 dev->name); 3191 3192 printk("%pM\n", dev->dev_addr); 3193 3194 return 0; 3195 3196 err_out_iounmap: 3197 iounmap(hp->gregs); 3198 3199 err_out_free_res: 3200 pci_release_regions(pdev); 3201 3202 err_out_clear_quattro: 3203 if (qp != NULL) 3204 qp->happy_meals[qfe_slot] = NULL; 3205 3206 free_netdev(dev); 3207 3208 err_out: 3209 return err; 3210 } 3211 3212 static void happy_meal_pci_remove(struct pci_dev *pdev) 3213 { 3214 struct happy_meal *hp = pci_get_drvdata(pdev); 3215 struct net_device *net_dev = hp->dev; 3216 3217 unregister_netdev(net_dev); 3218 3219 dma_free_coherent(hp->dma_dev, PAGE_SIZE, 3220 hp->happy_block, hp->hblock_dvma); 3221 iounmap(hp->gregs); 3222 pci_release_regions(hp->happy_dev); 3223 3224 free_netdev(net_dev); 3225 } 3226 3227 static const struct pci_device_id happymeal_pci_ids[] = { 3228 { PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) }, 3229 { } /* Terminating entry */ 3230 }; 3231 3232 MODULE_DEVICE_TABLE(pci, happymeal_pci_ids); 3233 3234 static struct pci_driver hme_pci_driver = { 3235 .name = "hme", 3236 .id_table = happymeal_pci_ids, 3237 .probe = happy_meal_pci_probe, 3238 .remove = happy_meal_pci_remove, 3239 }; 3240 3241 static int __init happy_meal_pci_init(void) 3242 { 3243 return pci_register_driver(&hme_pci_driver); 3244 } 3245 3246 static void happy_meal_pci_exit(void) 3247 { 3248 pci_unregister_driver(&hme_pci_driver); 3249 3250 while (qfe_pci_list) { 3251 struct quattro *qfe = qfe_pci_list; 3252 struct quattro *next = qfe->next; 3253 3254 kfree(qfe); 3255 3256 qfe_pci_list = next; 3257 } 3258 } 3259 3260 #endif 3261 3262 #ifdef CONFIG_SBUS 3263 static const struct of_device_id hme_sbus_match[]; 3264 static int hme_sbus_probe(struct platform_device *op) 3265 { 3266 const struct of_device_id *match; 3267 struct device_node *dp = op->dev.of_node; 3268 const char *model = of_get_property(dp, "model", NULL); 3269 int is_qfe; 3270 3271 match = of_match_device(hme_sbus_match, &op->dev); 3272 if (!match) 3273 return -EINVAL; 3274 is_qfe = (match->data != NULL); 3275 3276 if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe")) 3277 is_qfe = 1; 3278 3279 return happy_meal_sbus_probe_one(op, is_qfe); 3280 } 3281 3282 static int hme_sbus_remove(struct platform_device *op) 3283 { 3284 struct happy_meal *hp = platform_get_drvdata(op); 3285 struct net_device *net_dev = hp->dev; 3286 3287 unregister_netdev(net_dev); 3288 3289 /* XXX qfe parent interrupt... */ 3290 3291 of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE); 3292 of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE); 3293 of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE); 3294 of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE); 3295 of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE); 3296 dma_free_coherent(hp->dma_dev, 3297 PAGE_SIZE, 3298 hp->happy_block, 3299 hp->hblock_dvma); 3300 3301 free_netdev(net_dev); 3302 3303 return 0; 3304 } 3305 3306 static const struct of_device_id hme_sbus_match[] = { 3307 { 3308 .name = "SUNW,hme", 3309 }, 3310 { 3311 .name = "SUNW,qfe", 3312 .data = (void *) 1, 3313 }, 3314 { 3315 .name = "qfe", 3316 .data = (void *) 1, 3317 }, 3318 {}, 3319 }; 3320 3321 MODULE_DEVICE_TABLE(of, hme_sbus_match); 3322 3323 static struct platform_driver hme_sbus_driver = { 3324 .driver = { 3325 .name = "hme", 3326 .of_match_table = hme_sbus_match, 3327 }, 3328 .probe = hme_sbus_probe, 3329 .remove = hme_sbus_remove, 3330 }; 3331 3332 static int __init happy_meal_sbus_init(void) 3333 { 3334 int err; 3335 3336 err = platform_driver_register(&hme_sbus_driver); 3337 if (!err) 3338 err = quattro_sbus_register_irqs(); 3339 3340 return err; 3341 } 3342 3343 static void happy_meal_sbus_exit(void) 3344 { 3345 platform_driver_unregister(&hme_sbus_driver); 3346 quattro_sbus_free_irqs(); 3347 3348 while (qfe_sbus_list) { 3349 struct quattro *qfe = qfe_sbus_list; 3350 struct quattro *next = qfe->next; 3351 3352 kfree(qfe); 3353 3354 qfe_sbus_list = next; 3355 } 3356 } 3357 #endif 3358 3359 static int __init happy_meal_probe(void) 3360 { 3361 int err = 0; 3362 3363 #ifdef CONFIG_SBUS 3364 err = happy_meal_sbus_init(); 3365 #endif 3366 #ifdef CONFIG_PCI 3367 if (!err) { 3368 err = happy_meal_pci_init(); 3369 #ifdef CONFIG_SBUS 3370 if (err) 3371 happy_meal_sbus_exit(); 3372 #endif 3373 } 3374 #endif 3375 3376 return err; 3377 } 3378 3379 3380 static void __exit happy_meal_exit(void) 3381 { 3382 #ifdef CONFIG_SBUS 3383 happy_meal_sbus_exit(); 3384 #endif 3385 #ifdef CONFIG_PCI 3386 happy_meal_pci_exit(); 3387 #endif 3388 } 3389 3390 module_init(happy_meal_probe); 3391 module_exit(happy_meal_exit); 3392