xref: /linux/drivers/net/ethernet/sun/sunhme.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
3  *           auto carrier detecting ethernet driver.  Also known as the
4  *           "Happy Meal Ethernet" found on SunSwift SBUS cards.
5  *
6  * Copyright (C) 1996, 1998, 1999, 2002, 2003,
7  *		2006, 2008 David S. Miller (davem@davemloft.net)
8  *
9  * Changes :
10  * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
11  *   - port to non-sparc architectures. Tested only on x86 and
12  *     only currently works with QFE PCI cards.
13  *   - ability to specify the MAC address at module load time by passing this
14  *     argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
15  */
16 
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/fcntl.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/in.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/ethtool.h>
29 #include <linux/mii.h>
30 #include <linux/crc32.h>
31 #include <linux/random.h>
32 #include <linux/errno.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/mm.h>
37 #include <linux/bitops.h>
38 #include <linux/dma-mapping.h>
39 
40 #include <asm/io.h>
41 #include <asm/dma.h>
42 #include <asm/byteorder.h>
43 
44 #ifdef CONFIG_SPARC
45 #include <linux/of.h>
46 #include <linux/of_device.h>
47 #include <asm/idprom.h>
48 #include <asm/openprom.h>
49 #include <asm/oplib.h>
50 #include <asm/prom.h>
51 #include <asm/auxio.h>
52 #endif
53 #include <linux/uaccess.h>
54 
55 #include <asm/irq.h>
56 
57 #ifdef CONFIG_PCI
58 #include <linux/pci.h>
59 #endif
60 
61 #include "sunhme.h"
62 
63 #define DRV_NAME	"sunhme"
64 #define DRV_VERSION	"3.10"
65 #define DRV_RELDATE	"August 26, 2008"
66 #define DRV_AUTHOR	"David S. Miller (davem@davemloft.net)"
67 
68 static char version[] =
69 	DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
70 
71 MODULE_VERSION(DRV_VERSION);
72 MODULE_AUTHOR(DRV_AUTHOR);
73 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
74 MODULE_LICENSE("GPL");
75 
76 static int macaddr[6];
77 
78 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
79 module_param_array(macaddr, int, NULL, 0);
80 MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
81 
82 #ifdef CONFIG_SBUS
83 static struct quattro *qfe_sbus_list;
84 #endif
85 
86 #ifdef CONFIG_PCI
87 static struct quattro *qfe_pci_list;
88 #endif
89 
90 #undef HMEDEBUG
91 #undef SXDEBUG
92 #undef RXDEBUG
93 #undef TXDEBUG
94 #undef TXLOGGING
95 
96 #ifdef TXLOGGING
97 struct hme_tx_logent {
98 	unsigned int tstamp;
99 	int tx_new, tx_old;
100 	unsigned int action;
101 #define TXLOG_ACTION_IRQ	0x01
102 #define TXLOG_ACTION_TXMIT	0x02
103 #define TXLOG_ACTION_TBUSY	0x04
104 #define TXLOG_ACTION_NBUFS	0x08
105 	unsigned int status;
106 };
107 #define TX_LOG_LEN	128
108 static struct hme_tx_logent tx_log[TX_LOG_LEN];
109 static int txlog_cur_entry;
110 static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
111 {
112 	struct hme_tx_logent *tlp;
113 	unsigned long flags;
114 
115 	local_irq_save(flags);
116 	tlp = &tx_log[txlog_cur_entry];
117 	tlp->tstamp = (unsigned int)jiffies;
118 	tlp->tx_new = hp->tx_new;
119 	tlp->tx_old = hp->tx_old;
120 	tlp->action = a;
121 	tlp->status = s;
122 	txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
123 	local_irq_restore(flags);
124 }
125 static __inline__ void tx_dump_log(void)
126 {
127 	int i, this;
128 
129 	this = txlog_cur_entry;
130 	for (i = 0; i < TX_LOG_LEN; i++) {
131 		printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
132 		       tx_log[this].tstamp,
133 		       tx_log[this].tx_new, tx_log[this].tx_old,
134 		       tx_log[this].action, tx_log[this].status);
135 		this = (this + 1) & (TX_LOG_LEN - 1);
136 	}
137 }
138 static __inline__ void tx_dump_ring(struct happy_meal *hp)
139 {
140 	struct hmeal_init_block *hb = hp->happy_block;
141 	struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
142 	int i;
143 
144 	for (i = 0; i < TX_RING_SIZE; i+=4) {
145 		printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
146 		       i, i + 4,
147 		       le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
148 		       le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
149 		       le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
150 		       le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
151 	}
152 }
153 #else
154 #define tx_add_log(hp, a, s)		do { } while(0)
155 #define tx_dump_log()			do { } while(0)
156 #define tx_dump_ring(hp)		do { } while(0)
157 #endif
158 
159 #ifdef HMEDEBUG
160 #define HMD(x)  printk x
161 #else
162 #define HMD(x)
163 #endif
164 
165 /* #define AUTO_SWITCH_DEBUG */
166 
167 #ifdef AUTO_SWITCH_DEBUG
168 #define ASD(x)  printk x
169 #else
170 #define ASD(x)
171 #endif
172 
173 #define DEFAULT_IPG0      16 /* For lance-mode only */
174 #define DEFAULT_IPG1       8 /* For all modes */
175 #define DEFAULT_IPG2       4 /* For all modes */
176 #define DEFAULT_JAMSIZE    4 /* Toe jam */
177 
178 /* NOTE: In the descriptor writes one _must_ write the address
179  *	 member _first_.  The card must not be allowed to see
180  *	 the updated descriptor flags until the address is
181  *	 correct.  I've added a write memory barrier between
182  *	 the two stores so that I can sleep well at night... -DaveM
183  */
184 
185 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
186 static void sbus_hme_write32(void __iomem *reg, u32 val)
187 {
188 	sbus_writel(val, reg);
189 }
190 
191 static u32 sbus_hme_read32(void __iomem *reg)
192 {
193 	return sbus_readl(reg);
194 }
195 
196 static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
197 {
198 	rxd->rx_addr = (__force hme32)addr;
199 	dma_wmb();
200 	rxd->rx_flags = (__force hme32)flags;
201 }
202 
203 static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
204 {
205 	txd->tx_addr = (__force hme32)addr;
206 	dma_wmb();
207 	txd->tx_flags = (__force hme32)flags;
208 }
209 
210 static u32 sbus_hme_read_desc32(hme32 *p)
211 {
212 	return (__force u32)*p;
213 }
214 
215 static void pci_hme_write32(void __iomem *reg, u32 val)
216 {
217 	writel(val, reg);
218 }
219 
220 static u32 pci_hme_read32(void __iomem *reg)
221 {
222 	return readl(reg);
223 }
224 
225 static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
226 {
227 	rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
228 	dma_wmb();
229 	rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
230 }
231 
232 static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
233 {
234 	txd->tx_addr = (__force hme32)cpu_to_le32(addr);
235 	dma_wmb();
236 	txd->tx_flags = (__force hme32)cpu_to_le32(flags);
237 }
238 
239 static u32 pci_hme_read_desc32(hme32 *p)
240 {
241 	return le32_to_cpup((__le32 *)p);
242 }
243 
244 #define hme_write32(__hp, __reg, __val) \
245 	((__hp)->write32((__reg), (__val)))
246 #define hme_read32(__hp, __reg) \
247 	((__hp)->read32(__reg))
248 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
249 	((__hp)->write_rxd((__rxd), (__flags), (__addr)))
250 #define hme_write_txd(__hp, __txd, __flags, __addr) \
251 	((__hp)->write_txd((__txd), (__flags), (__addr)))
252 #define hme_read_desc32(__hp, __p) \
253 	((__hp)->read_desc32(__p))
254 #else
255 #ifdef CONFIG_SBUS
256 /* SBUS only compilation */
257 #define hme_write32(__hp, __reg, __val) \
258 	sbus_writel((__val), (__reg))
259 #define hme_read32(__hp, __reg) \
260 	sbus_readl(__reg)
261 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
262 do {	(__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
263 	dma_wmb(); \
264 	(__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
265 } while(0)
266 #define hme_write_txd(__hp, __txd, __flags, __addr) \
267 do {	(__txd)->tx_addr = (__force hme32)(u32)(__addr); \
268 	dma_wmb(); \
269 	(__txd)->tx_flags = (__force hme32)(u32)(__flags); \
270 } while(0)
271 #define hme_read_desc32(__hp, __p)	((__force u32)(hme32)*(__p))
272 #else
273 /* PCI only compilation */
274 #define hme_write32(__hp, __reg, __val) \
275 	writel((__val), (__reg))
276 #define hme_read32(__hp, __reg) \
277 	readl(__reg)
278 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
279 do {	(__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
280 	dma_wmb(); \
281 	(__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
282 } while(0)
283 #define hme_write_txd(__hp, __txd, __flags, __addr) \
284 do {	(__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
285 	dma_wmb(); \
286 	(__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
287 } while(0)
288 static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
289 {
290 	return le32_to_cpup((__le32 *)p);
291 }
292 #endif
293 #endif
294 
295 
296 /* Oh yes, the MIF BitBang is mighty fun to program.  BitBucket is more like it. */
297 static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
298 {
299 	hme_write32(hp, tregs + TCVR_BBDATA, bit);
300 	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
301 	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
302 }
303 
304 #if 0
305 static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
306 {
307 	u32 ret;
308 
309 	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
310 	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
311 	ret = hme_read32(hp, tregs + TCVR_CFG);
312 	if (internal)
313 		ret &= TCV_CFG_MDIO0;
314 	else
315 		ret &= TCV_CFG_MDIO1;
316 
317 	return ret;
318 }
319 #endif
320 
321 static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
322 {
323 	u32 retval;
324 
325 	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
326 	udelay(1);
327 	retval = hme_read32(hp, tregs + TCVR_CFG);
328 	if (internal)
329 		retval &= TCV_CFG_MDIO0;
330 	else
331 		retval &= TCV_CFG_MDIO1;
332 	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
333 
334 	return retval;
335 }
336 
337 #define TCVR_FAILURE      0x80000000     /* Impossible MIF read value */
338 
339 static int happy_meal_bb_read(struct happy_meal *hp,
340 			      void __iomem *tregs, int reg)
341 {
342 	u32 tmp;
343 	int retval = 0;
344 	int i;
345 
346 	ASD(("happy_meal_bb_read: reg=%d ", reg));
347 
348 	/* Enable the MIF BitBang outputs. */
349 	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
350 
351 	/* Force BitBang into the idle state. */
352 	for (i = 0; i < 32; i++)
353 		BB_PUT_BIT(hp, tregs, 1);
354 
355 	/* Give it the read sequence. */
356 	BB_PUT_BIT(hp, tregs, 0);
357 	BB_PUT_BIT(hp, tregs, 1);
358 	BB_PUT_BIT(hp, tregs, 1);
359 	BB_PUT_BIT(hp, tregs, 0);
360 
361 	/* Give it the PHY address. */
362 	tmp = hp->paddr & 0xff;
363 	for (i = 4; i >= 0; i--)
364 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
365 
366 	/* Tell it what register we want to read. */
367 	tmp = (reg & 0xff);
368 	for (i = 4; i >= 0; i--)
369 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
370 
371 	/* Close down the MIF BitBang outputs. */
372 	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
373 
374 	/* Now read in the value. */
375 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
376 	for (i = 15; i >= 0; i--)
377 		retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
378 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
379 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
380 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
381 	ASD(("value=%x\n", retval));
382 	return retval;
383 }
384 
385 static void happy_meal_bb_write(struct happy_meal *hp,
386 				void __iomem *tregs, int reg,
387 				unsigned short value)
388 {
389 	u32 tmp;
390 	int i;
391 
392 	ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
393 
394 	/* Enable the MIF BitBang outputs. */
395 	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
396 
397 	/* Force BitBang into the idle state. */
398 	for (i = 0; i < 32; i++)
399 		BB_PUT_BIT(hp, tregs, 1);
400 
401 	/* Give it write sequence. */
402 	BB_PUT_BIT(hp, tregs, 0);
403 	BB_PUT_BIT(hp, tregs, 1);
404 	BB_PUT_BIT(hp, tregs, 0);
405 	BB_PUT_BIT(hp, tregs, 1);
406 
407 	/* Give it the PHY address. */
408 	tmp = (hp->paddr & 0xff);
409 	for (i = 4; i >= 0; i--)
410 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
411 
412 	/* Tell it what register we will be writing. */
413 	tmp = (reg & 0xff);
414 	for (i = 4; i >= 0; i--)
415 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
416 
417 	/* Tell it to become ready for the bits. */
418 	BB_PUT_BIT(hp, tregs, 1);
419 	BB_PUT_BIT(hp, tregs, 0);
420 
421 	for (i = 15; i >= 0; i--)
422 		BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
423 
424 	/* Close down the MIF BitBang outputs. */
425 	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
426 }
427 
428 #define TCVR_READ_TRIES   16
429 
430 static int happy_meal_tcvr_read(struct happy_meal *hp,
431 				void __iomem *tregs, int reg)
432 {
433 	int tries = TCVR_READ_TRIES;
434 	int retval;
435 
436 	ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
437 	if (hp->tcvr_type == none) {
438 		ASD(("no transceiver, value=TCVR_FAILURE\n"));
439 		return TCVR_FAILURE;
440 	}
441 
442 	if (!(hp->happy_flags & HFLAG_FENABLE)) {
443 		ASD(("doing bit bang\n"));
444 		return happy_meal_bb_read(hp, tregs, reg);
445 	}
446 
447 	hme_write32(hp, tregs + TCVR_FRAME,
448 		    (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
449 	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
450 		udelay(20);
451 	if (!tries) {
452 		printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
453 		return TCVR_FAILURE;
454 	}
455 	retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
456 	ASD(("value=%04x\n", retval));
457 	return retval;
458 }
459 
460 #define TCVR_WRITE_TRIES  16
461 
462 static void happy_meal_tcvr_write(struct happy_meal *hp,
463 				  void __iomem *tregs, int reg,
464 				  unsigned short value)
465 {
466 	int tries = TCVR_WRITE_TRIES;
467 
468 	ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
469 
470 	/* Welcome to Sun Microsystems, can I take your order please? */
471 	if (!(hp->happy_flags & HFLAG_FENABLE)) {
472 		happy_meal_bb_write(hp, tregs, reg, value);
473 		return;
474 	}
475 
476 	/* Would you like fries with that? */
477 	hme_write32(hp, tregs + TCVR_FRAME,
478 		    (FRAME_WRITE | (hp->paddr << 23) |
479 		     ((reg & 0xff) << 18) | (value & 0xffff)));
480 	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
481 		udelay(20);
482 
483 	/* Anything else? */
484 	if (!tries)
485 		printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
486 
487 	/* Fifty-two cents is your change, have a nice day. */
488 }
489 
490 /* Auto negotiation.  The scheme is very simple.  We have a timer routine
491  * that keeps watching the auto negotiation process as it progresses.
492  * The DP83840 is first told to start doing it's thing, we set up the time
493  * and place the timer state machine in it's initial state.
494  *
495  * Here the timer peeks at the DP83840 status registers at each click to see
496  * if the auto negotiation has completed, we assume here that the DP83840 PHY
497  * will time out at some point and just tell us what (didn't) happen.  For
498  * complete coverage we only allow so many of the ticks at this level to run,
499  * when this has expired we print a warning message and try another strategy.
500  * This "other" strategy is to force the interface into various speed/duplex
501  * configurations and we stop when we see a link-up condition before the
502  * maximum number of "peek" ticks have occurred.
503  *
504  * Once a valid link status has been detected we configure the BigMAC and
505  * the rest of the Happy Meal to speak the most efficient protocol we could
506  * get a clean link for.  The priority for link configurations, highest first
507  * is:
508  *                 100 Base-T Full Duplex
509  *                 100 Base-T Half Duplex
510  *                 10 Base-T Full Duplex
511  *                 10 Base-T Half Duplex
512  *
513  * We start a new timer now, after a successful auto negotiation status has
514  * been detected.  This timer just waits for the link-up bit to get set in
515  * the BMCR of the DP83840.  When this occurs we print a kernel log message
516  * describing the link type in use and the fact that it is up.
517  *
518  * If a fatal error of some sort is signalled and detected in the interrupt
519  * service routine, and the chip is reset, or the link is ifconfig'd down
520  * and then back up, this entire process repeats itself all over again.
521  */
522 static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
523 {
524 	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
525 
526 	/* Downgrade from full to half duplex.  Only possible
527 	 * via ethtool.
528 	 */
529 	if (hp->sw_bmcr & BMCR_FULLDPLX) {
530 		hp->sw_bmcr &= ~(BMCR_FULLDPLX);
531 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
532 		return 0;
533 	}
534 
535 	/* Downgrade from 100 to 10. */
536 	if (hp->sw_bmcr & BMCR_SPEED100) {
537 		hp->sw_bmcr &= ~(BMCR_SPEED100);
538 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
539 		return 0;
540 	}
541 
542 	/* We've tried everything. */
543 	return -1;
544 }
545 
546 static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
547 {
548 	printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
549 	if (hp->tcvr_type == external)
550 		printk("external ");
551 	else
552 		printk("internal ");
553 	printk("transceiver at ");
554 	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
555 	if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
556 		if (hp->sw_lpa & LPA_100FULL)
557 			printk("100Mb/s, Full Duplex.\n");
558 		else
559 			printk("100Mb/s, Half Duplex.\n");
560 	} else {
561 		if (hp->sw_lpa & LPA_10FULL)
562 			printk("10Mb/s, Full Duplex.\n");
563 		else
564 			printk("10Mb/s, Half Duplex.\n");
565 	}
566 }
567 
568 static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
569 {
570 	printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
571 	if (hp->tcvr_type == external)
572 		printk("external ");
573 	else
574 		printk("internal ");
575 	printk("transceiver at ");
576 	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
577 	if (hp->sw_bmcr & BMCR_SPEED100)
578 		printk("100Mb/s, ");
579 	else
580 		printk("10Mb/s, ");
581 	if (hp->sw_bmcr & BMCR_FULLDPLX)
582 		printk("Full Duplex.\n");
583 	else
584 		printk("Half Duplex.\n");
585 }
586 
587 static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
588 {
589 	int full;
590 
591 	/* All we care about is making sure the bigmac tx_cfg has a
592 	 * proper duplex setting.
593 	 */
594 	if (hp->timer_state == arbwait) {
595 		hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
596 		if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
597 			goto no_response;
598 		if (hp->sw_lpa & LPA_100FULL)
599 			full = 1;
600 		else if (hp->sw_lpa & LPA_100HALF)
601 			full = 0;
602 		else if (hp->sw_lpa & LPA_10FULL)
603 			full = 1;
604 		else
605 			full = 0;
606 	} else {
607 		/* Forcing a link mode. */
608 		hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
609 		if (hp->sw_bmcr & BMCR_FULLDPLX)
610 			full = 1;
611 		else
612 			full = 0;
613 	}
614 
615 	/* Before changing other bits in the tx_cfg register, and in
616 	 * general any of other the TX config registers too, you
617 	 * must:
618 	 * 1) Clear Enable
619 	 * 2) Poll with reads until that bit reads back as zero
620 	 * 3) Make TX configuration changes
621 	 * 4) Set Enable once more
622 	 */
623 	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
624 		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
625 		    ~(BIGMAC_TXCFG_ENABLE));
626 	while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
627 		barrier();
628 	if (full) {
629 		hp->happy_flags |= HFLAG_FULL;
630 		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
631 			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
632 			    BIGMAC_TXCFG_FULLDPLX);
633 	} else {
634 		hp->happy_flags &= ~(HFLAG_FULL);
635 		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
636 			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
637 			    ~(BIGMAC_TXCFG_FULLDPLX));
638 	}
639 	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
640 		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
641 		    BIGMAC_TXCFG_ENABLE);
642 	return 0;
643 no_response:
644 	return 1;
645 }
646 
647 static int happy_meal_init(struct happy_meal *hp);
648 
649 static int is_lucent_phy(struct happy_meal *hp)
650 {
651 	void __iomem *tregs = hp->tcvregs;
652 	unsigned short mr2, mr3;
653 	int ret = 0;
654 
655 	mr2 = happy_meal_tcvr_read(hp, tregs, 2);
656 	mr3 = happy_meal_tcvr_read(hp, tregs, 3);
657 	if ((mr2 & 0xffff) == 0x0180 &&
658 	    ((mr3 & 0xffff) >> 10) == 0x1d)
659 		ret = 1;
660 
661 	return ret;
662 }
663 
664 static void happy_meal_timer(struct timer_list *t)
665 {
666 	struct happy_meal *hp = from_timer(hp, t, happy_timer);
667 	void __iomem *tregs = hp->tcvregs;
668 	int restart_timer = 0;
669 
670 	spin_lock_irq(&hp->happy_lock);
671 
672 	hp->timer_ticks++;
673 	switch(hp->timer_state) {
674 	case arbwait:
675 		/* Only allow for 5 ticks, thats 10 seconds and much too
676 		 * long to wait for arbitration to complete.
677 		 */
678 		if (hp->timer_ticks >= 10) {
679 			/* Enter force mode. */
680 	do_force_mode:
681 			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
682 			printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
683 			       hp->dev->name);
684 			hp->sw_bmcr = BMCR_SPEED100;
685 			happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
686 
687 			if (!is_lucent_phy(hp)) {
688 				/* OK, seems we need do disable the transceiver for the first
689 				 * tick to make sure we get an accurate link state at the
690 				 * second tick.
691 				 */
692 				hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
693 				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
694 				happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
695 			}
696 			hp->timer_state = ltrywait;
697 			hp->timer_ticks = 0;
698 			restart_timer = 1;
699 		} else {
700 			/* Anything interesting happen? */
701 			hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
702 			if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
703 				int ret;
704 
705 				/* Just what we've been waiting for... */
706 				ret = set_happy_link_modes(hp, tregs);
707 				if (ret) {
708 					/* Ooops, something bad happened, go to force
709 					 * mode.
710 					 *
711 					 * XXX Broken hubs which don't support 802.3u
712 					 * XXX auto-negotiation make this happen as well.
713 					 */
714 					goto do_force_mode;
715 				}
716 
717 				/* Success, at least so far, advance our state engine. */
718 				hp->timer_state = lupwait;
719 				restart_timer = 1;
720 			} else {
721 				restart_timer = 1;
722 			}
723 		}
724 		break;
725 
726 	case lupwait:
727 		/* Auto negotiation was successful and we are awaiting a
728 		 * link up status.  I have decided to let this timer run
729 		 * forever until some sort of error is signalled, reporting
730 		 * a message to the user at 10 second intervals.
731 		 */
732 		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
733 		if (hp->sw_bmsr & BMSR_LSTATUS) {
734 			/* Wheee, it's up, display the link mode in use and put
735 			 * the timer to sleep.
736 			 */
737 			display_link_mode(hp, tregs);
738 			hp->timer_state = asleep;
739 			restart_timer = 0;
740 		} else {
741 			if (hp->timer_ticks >= 10) {
742 				printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
743 				       "not completely up.\n", hp->dev->name);
744 				hp->timer_ticks = 0;
745 				restart_timer = 1;
746 			} else {
747 				restart_timer = 1;
748 			}
749 		}
750 		break;
751 
752 	case ltrywait:
753 		/* Making the timeout here too long can make it take
754 		 * annoyingly long to attempt all of the link mode
755 		 * permutations, but then again this is essentially
756 		 * error recovery code for the most part.
757 		 */
758 		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
759 		hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
760 		if (hp->timer_ticks == 1) {
761 			if (!is_lucent_phy(hp)) {
762 				/* Re-enable transceiver, we'll re-enable the transceiver next
763 				 * tick, then check link state on the following tick.
764 				 */
765 				hp->sw_csconfig |= CSCONFIG_TCVDISAB;
766 				happy_meal_tcvr_write(hp, tregs,
767 						      DP83840_CSCONFIG, hp->sw_csconfig);
768 			}
769 			restart_timer = 1;
770 			break;
771 		}
772 		if (hp->timer_ticks == 2) {
773 			if (!is_lucent_phy(hp)) {
774 				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
775 				happy_meal_tcvr_write(hp, tregs,
776 						      DP83840_CSCONFIG, hp->sw_csconfig);
777 			}
778 			restart_timer = 1;
779 			break;
780 		}
781 		if (hp->sw_bmsr & BMSR_LSTATUS) {
782 			/* Force mode selection success. */
783 			display_forced_link_mode(hp, tregs);
784 			set_happy_link_modes(hp, tregs); /* XXX error? then what? */
785 			hp->timer_state = asleep;
786 			restart_timer = 0;
787 		} else {
788 			if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
789 				int ret;
790 
791 				ret = try_next_permutation(hp, tregs);
792 				if (ret == -1) {
793 					/* Aieee, tried them all, reset the
794 					 * chip and try all over again.
795 					 */
796 
797 					/* Let the user know... */
798 					printk(KERN_NOTICE "%s: Link down, cable problem?\n",
799 					       hp->dev->name);
800 
801 					ret = happy_meal_init(hp);
802 					if (ret) {
803 						/* ho hum... */
804 						printk(KERN_ERR "%s: Error, cannot re-init the "
805 						       "Happy Meal.\n", hp->dev->name);
806 					}
807 					goto out;
808 				}
809 				if (!is_lucent_phy(hp)) {
810 					hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
811 									       DP83840_CSCONFIG);
812 					hp->sw_csconfig |= CSCONFIG_TCVDISAB;
813 					happy_meal_tcvr_write(hp, tregs,
814 							      DP83840_CSCONFIG, hp->sw_csconfig);
815 				}
816 				hp->timer_ticks = 0;
817 				restart_timer = 1;
818 			} else {
819 				restart_timer = 1;
820 			}
821 		}
822 		break;
823 
824 	case asleep:
825 	default:
826 		/* Can't happens.... */
827 		printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
828 		       hp->dev->name);
829 		restart_timer = 0;
830 		hp->timer_ticks = 0;
831 		hp->timer_state = asleep; /* foo on you */
832 		break;
833 	}
834 
835 	if (restart_timer) {
836 		hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
837 		add_timer(&hp->happy_timer);
838 	}
839 
840 out:
841 	spin_unlock_irq(&hp->happy_lock);
842 }
843 
844 #define TX_RESET_TRIES     32
845 #define RX_RESET_TRIES     32
846 
847 /* hp->happy_lock must be held */
848 static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
849 {
850 	int tries = TX_RESET_TRIES;
851 
852 	HMD(("happy_meal_tx_reset: reset, "));
853 
854 	/* Would you like to try our SMCC Delux? */
855 	hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
856 	while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
857 		udelay(20);
858 
859 	/* Lettuce, tomato, buggy hardware (no extra charge)? */
860 	if (!tries)
861 		printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
862 
863 	/* Take care. */
864 	HMD(("done\n"));
865 }
866 
867 /* hp->happy_lock must be held */
868 static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
869 {
870 	int tries = RX_RESET_TRIES;
871 
872 	HMD(("happy_meal_rx_reset: reset, "));
873 
874 	/* We have a special on GNU/Viking hardware bugs today. */
875 	hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
876 	while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
877 		udelay(20);
878 
879 	/* Will that be all? */
880 	if (!tries)
881 		printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
882 
883 	/* Don't forget your vik_1137125_wa.  Have a nice day. */
884 	HMD(("done\n"));
885 }
886 
887 #define STOP_TRIES         16
888 
889 /* hp->happy_lock must be held */
890 static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
891 {
892 	int tries = STOP_TRIES;
893 
894 	HMD(("happy_meal_stop: reset, "));
895 
896 	/* We're consolidating our STB products, it's your lucky day. */
897 	hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
898 	while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
899 		udelay(20);
900 
901 	/* Come back next week when we are "Sun Microelectronics". */
902 	if (!tries)
903 		printk(KERN_ERR "happy meal: Fry guys.");
904 
905 	/* Remember: "Different name, same old buggy as shit hardware." */
906 	HMD(("done\n"));
907 }
908 
909 /* hp->happy_lock must be held */
910 static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
911 {
912 	struct net_device_stats *stats = &hp->dev->stats;
913 
914 	stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
915 	hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
916 
917 	stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
918 	hme_write32(hp, bregs + BMAC_UNALECTR, 0);
919 
920 	stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
921 	hme_write32(hp, bregs + BMAC_GLECTR, 0);
922 
923 	stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
924 
925 	stats->collisions +=
926 		(hme_read32(hp, bregs + BMAC_EXCTR) +
927 		 hme_read32(hp, bregs + BMAC_LTCTR));
928 	hme_write32(hp, bregs + BMAC_EXCTR, 0);
929 	hme_write32(hp, bregs + BMAC_LTCTR, 0);
930 }
931 
932 /* hp->happy_lock must be held */
933 static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
934 {
935 	ASD(("happy_meal_poll_stop: "));
936 
937 	/* If polling disabled or not polling already, nothing to do. */
938 	if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
939 	   (HFLAG_POLLENABLE | HFLAG_POLL)) {
940 		HMD(("not polling, return\n"));
941 		return;
942 	}
943 
944 	/* Shut up the MIF. */
945 	ASD(("were polling, mif ints off, "));
946 	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
947 
948 	/* Turn off polling. */
949 	ASD(("polling off, "));
950 	hme_write32(hp, tregs + TCVR_CFG,
951 		    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
952 
953 	/* We are no longer polling. */
954 	hp->happy_flags &= ~(HFLAG_POLL);
955 
956 	/* Let the bits set. */
957 	udelay(200);
958 	ASD(("done\n"));
959 }
960 
961 /* Only Sun can take such nice parts and fuck up the programming interface
962  * like this.  Good job guys...
963  */
964 #define TCVR_RESET_TRIES       16 /* It should reset quickly        */
965 #define TCVR_UNISOLATE_TRIES   32 /* Dis-isolation can take longer. */
966 
967 /* hp->happy_lock must be held */
968 static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
969 {
970 	u32 tconfig;
971 	int result, tries = TCVR_RESET_TRIES;
972 
973 	tconfig = hme_read32(hp, tregs + TCVR_CFG);
974 	ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
975 	if (hp->tcvr_type == external) {
976 		ASD(("external<"));
977 		hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
978 		hp->tcvr_type = internal;
979 		hp->paddr = TCV_PADDR_ITX;
980 		ASD(("ISOLATE,"));
981 		happy_meal_tcvr_write(hp, tregs, MII_BMCR,
982 				      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
983 		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
984 		if (result == TCVR_FAILURE) {
985 			ASD(("phyread_fail>\n"));
986 			return -1;
987 		}
988 		ASD(("phyread_ok,PSELECT>"));
989 		hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
990 		hp->tcvr_type = external;
991 		hp->paddr = TCV_PADDR_ETX;
992 	} else {
993 		if (tconfig & TCV_CFG_MDIO1) {
994 			ASD(("internal<PSELECT,"));
995 			hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
996 			ASD(("ISOLATE,"));
997 			happy_meal_tcvr_write(hp, tregs, MII_BMCR,
998 					      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
999 			result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1000 			if (result == TCVR_FAILURE) {
1001 				ASD(("phyread_fail>\n"));
1002 				return -1;
1003 			}
1004 			ASD(("phyread_ok,~PSELECT>"));
1005 			hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1006 			hp->tcvr_type = internal;
1007 			hp->paddr = TCV_PADDR_ITX;
1008 		}
1009 	}
1010 
1011 	ASD(("BMCR_RESET "));
1012 	happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1013 
1014 	while (--tries) {
1015 		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1016 		if (result == TCVR_FAILURE)
1017 			return -1;
1018 		hp->sw_bmcr = result;
1019 		if (!(result & BMCR_RESET))
1020 			break;
1021 		udelay(20);
1022 	}
1023 	if (!tries) {
1024 		ASD(("BMCR RESET FAILED!\n"));
1025 		return -1;
1026 	}
1027 	ASD(("RESET_OK\n"));
1028 
1029 	/* Get fresh copies of the PHY registers. */
1030 	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1031 	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1032 	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1033 	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1034 
1035 	ASD(("UNISOLATE"));
1036 	hp->sw_bmcr &= ~(BMCR_ISOLATE);
1037 	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1038 
1039 	tries = TCVR_UNISOLATE_TRIES;
1040 	while (--tries) {
1041 		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1042 		if (result == TCVR_FAILURE)
1043 			return -1;
1044 		if (!(result & BMCR_ISOLATE))
1045 			break;
1046 		udelay(20);
1047 	}
1048 	if (!tries) {
1049 		ASD((" FAILED!\n"));
1050 		return -1;
1051 	}
1052 	ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1053 	if (!is_lucent_phy(hp)) {
1054 		result = happy_meal_tcvr_read(hp, tregs,
1055 					      DP83840_CSCONFIG);
1056 		happy_meal_tcvr_write(hp, tregs,
1057 				      DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1058 	}
1059 	return 0;
1060 }
1061 
1062 /* Figure out whether we have an internal or external transceiver.
1063  *
1064  * hp->happy_lock must be held
1065  */
1066 static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1067 {
1068 	unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1069 
1070 	ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1071 	if (hp->happy_flags & HFLAG_POLL) {
1072 		/* If we are polling, we must stop to get the transceiver type. */
1073 		ASD(("<polling> "));
1074 		if (hp->tcvr_type == internal) {
1075 			if (tconfig & TCV_CFG_MDIO1) {
1076 				ASD(("<internal> <poll stop> "));
1077 				happy_meal_poll_stop(hp, tregs);
1078 				hp->paddr = TCV_PADDR_ETX;
1079 				hp->tcvr_type = external;
1080 				ASD(("<external>\n"));
1081 				tconfig &= ~(TCV_CFG_PENABLE);
1082 				tconfig |= TCV_CFG_PSELECT;
1083 				hme_write32(hp, tregs + TCVR_CFG, tconfig);
1084 			}
1085 		} else {
1086 			if (hp->tcvr_type == external) {
1087 				ASD(("<external> "));
1088 				if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1089 					ASD(("<poll stop> "));
1090 					happy_meal_poll_stop(hp, tregs);
1091 					hp->paddr = TCV_PADDR_ITX;
1092 					hp->tcvr_type = internal;
1093 					ASD(("<internal>\n"));
1094 					hme_write32(hp, tregs + TCVR_CFG,
1095 						    hme_read32(hp, tregs + TCVR_CFG) &
1096 						    ~(TCV_CFG_PSELECT));
1097 				}
1098 				ASD(("\n"));
1099 			} else {
1100 				ASD(("<none>\n"));
1101 			}
1102 		}
1103 	} else {
1104 		u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1105 
1106 		/* Else we can just work off of the MDIO bits. */
1107 		ASD(("<not polling> "));
1108 		if (reread & TCV_CFG_MDIO1) {
1109 			hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1110 			hp->paddr = TCV_PADDR_ETX;
1111 			hp->tcvr_type = external;
1112 			ASD(("<external>\n"));
1113 		} else {
1114 			if (reread & TCV_CFG_MDIO0) {
1115 				hme_write32(hp, tregs + TCVR_CFG,
1116 					    tconfig & ~(TCV_CFG_PSELECT));
1117 				hp->paddr = TCV_PADDR_ITX;
1118 				hp->tcvr_type = internal;
1119 				ASD(("<internal>\n"));
1120 			} else {
1121 				printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1122 				hp->tcvr_type = none; /* Grrr... */
1123 				ASD(("<none>\n"));
1124 			}
1125 		}
1126 	}
1127 }
1128 
1129 /* The receive ring buffers are a bit tricky to get right.  Here goes...
1130  *
1131  * The buffers we dma into must be 64 byte aligned.  So we use a special
1132  * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1133  * we really need.
1134  *
1135  * We use skb_reserve() to align the data block we get in the skb.  We
1136  * also program the etxregs->cfg register to use an offset of 2.  This
1137  * imperical constant plus the ethernet header size will always leave
1138  * us with a nicely aligned ip header once we pass things up to the
1139  * protocol layers.
1140  *
1141  * The numbers work out to:
1142  *
1143  *         Max ethernet frame size         1518
1144  *         Ethernet header size              14
1145  *         Happy Meal base offset             2
1146  *
1147  * Say a skb data area is at 0xf001b010, and its size alloced is
1148  * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1149  *
1150  * First our alloc_skb() routine aligns the data base to a 64 byte
1151  * boundary.  We now have 0xf001b040 as our skb data address.  We
1152  * plug this into the receive descriptor address.
1153  *
1154  * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1155  * So now the data we will end up looking at starts at 0xf001b042.  When
1156  * the packet arrives, we will check out the size received and subtract
1157  * this from the skb->length.  Then we just pass the packet up to the
1158  * protocols as is, and allocate a new skb to replace this slot we have
1159  * just received from.
1160  *
1161  * The ethernet layer will strip the ether header from the front of the
1162  * skb we just sent to it, this leaves us with the ip header sitting
1163  * nicely aligned at 0xf001b050.  Also, for tcp and udp packets the
1164  * Happy Meal has even checksummed the tcp/udp data for us.  The 16
1165  * bit checksum is obtained from the low bits of the receive descriptor
1166  * flags, thus:
1167  *
1168  * 	skb->csum = rxd->rx_flags & 0xffff;
1169  * 	skb->ip_summed = CHECKSUM_COMPLETE;
1170  *
1171  * before sending off the skb to the protocols, and we are good as gold.
1172  */
1173 static void happy_meal_clean_rings(struct happy_meal *hp)
1174 {
1175 	int i;
1176 
1177 	for (i = 0; i < RX_RING_SIZE; i++) {
1178 		if (hp->rx_skbs[i] != NULL) {
1179 			struct sk_buff *skb = hp->rx_skbs[i];
1180 			struct happy_meal_rxd *rxd;
1181 			u32 dma_addr;
1182 
1183 			rxd = &hp->happy_block->happy_meal_rxd[i];
1184 			dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1185 			dma_unmap_single(hp->dma_dev, dma_addr,
1186 					 RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1187 			dev_kfree_skb_any(skb);
1188 			hp->rx_skbs[i] = NULL;
1189 		}
1190 	}
1191 
1192 	for (i = 0; i < TX_RING_SIZE; i++) {
1193 		if (hp->tx_skbs[i] != NULL) {
1194 			struct sk_buff *skb = hp->tx_skbs[i];
1195 			struct happy_meal_txd *txd;
1196 			u32 dma_addr;
1197 			int frag;
1198 
1199 			hp->tx_skbs[i] = NULL;
1200 
1201 			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1202 				txd = &hp->happy_block->happy_meal_txd[i];
1203 				dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1204 				if (!frag)
1205 					dma_unmap_single(hp->dma_dev, dma_addr,
1206 							 (hme_read_desc32(hp, &txd->tx_flags)
1207 							  & TXFLAG_SIZE),
1208 							 DMA_TO_DEVICE);
1209 				else
1210 					dma_unmap_page(hp->dma_dev, dma_addr,
1211 							 (hme_read_desc32(hp, &txd->tx_flags)
1212 							  & TXFLAG_SIZE),
1213 							 DMA_TO_DEVICE);
1214 
1215 				if (frag != skb_shinfo(skb)->nr_frags)
1216 					i++;
1217 			}
1218 
1219 			dev_kfree_skb_any(skb);
1220 		}
1221 	}
1222 }
1223 
1224 /* hp->happy_lock must be held */
1225 static void happy_meal_init_rings(struct happy_meal *hp)
1226 {
1227 	struct hmeal_init_block *hb = hp->happy_block;
1228 	int i;
1229 
1230 	HMD(("happy_meal_init_rings: counters to zero, "));
1231 	hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1232 
1233 	/* Free any skippy bufs left around in the rings. */
1234 	HMD(("clean, "));
1235 	happy_meal_clean_rings(hp);
1236 
1237 	/* Now get new skippy bufs for the receive ring. */
1238 	HMD(("init rxring, "));
1239 	for (i = 0; i < RX_RING_SIZE; i++) {
1240 		struct sk_buff *skb;
1241 		u32 mapping;
1242 
1243 		skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1244 		if (!skb) {
1245 			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1246 			continue;
1247 		}
1248 		hp->rx_skbs[i] = skb;
1249 
1250 		/* Because we reserve afterwards. */
1251 		skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1252 		mapping = dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE,
1253 					 DMA_FROM_DEVICE);
1254 		if (dma_mapping_error(hp->dma_dev, mapping)) {
1255 			dev_kfree_skb_any(skb);
1256 			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1257 			continue;
1258 		}
1259 		hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1260 			      (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1261 			      mapping);
1262 		skb_reserve(skb, RX_OFFSET);
1263 	}
1264 
1265 	HMD(("init txring, "));
1266 	for (i = 0; i < TX_RING_SIZE; i++)
1267 		hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1268 
1269 	HMD(("done\n"));
1270 }
1271 
1272 /* hp->happy_lock must be held */
1273 static void
1274 happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1275 				  void __iomem *tregs,
1276 				  const struct ethtool_link_ksettings *ep)
1277 {
1278 	int timeout;
1279 
1280 	/* Read all of the registers we are interested in now. */
1281 	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1282 	hp->sw_bmcr      = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1283 	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1284 	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1285 
1286 	/* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1287 
1288 	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1289 	if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1290 		/* Advertise everything we can support. */
1291 		if (hp->sw_bmsr & BMSR_10HALF)
1292 			hp->sw_advertise |= (ADVERTISE_10HALF);
1293 		else
1294 			hp->sw_advertise &= ~(ADVERTISE_10HALF);
1295 
1296 		if (hp->sw_bmsr & BMSR_10FULL)
1297 			hp->sw_advertise |= (ADVERTISE_10FULL);
1298 		else
1299 			hp->sw_advertise &= ~(ADVERTISE_10FULL);
1300 		if (hp->sw_bmsr & BMSR_100HALF)
1301 			hp->sw_advertise |= (ADVERTISE_100HALF);
1302 		else
1303 			hp->sw_advertise &= ~(ADVERTISE_100HALF);
1304 		if (hp->sw_bmsr & BMSR_100FULL)
1305 			hp->sw_advertise |= (ADVERTISE_100FULL);
1306 		else
1307 			hp->sw_advertise &= ~(ADVERTISE_100FULL);
1308 		happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1309 
1310 		/* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1311 		 * XXX and this is because the DP83840 does not support it, changes
1312 		 * XXX would need to be made to the tx/rx logic in the driver as well
1313 		 * XXX so I completely skip checking for it in the BMSR for now.
1314 		 */
1315 
1316 #ifdef AUTO_SWITCH_DEBUG
1317 		ASD(("%s: Advertising [ ", hp->dev->name));
1318 		if (hp->sw_advertise & ADVERTISE_10HALF)
1319 			ASD(("10H "));
1320 		if (hp->sw_advertise & ADVERTISE_10FULL)
1321 			ASD(("10F "));
1322 		if (hp->sw_advertise & ADVERTISE_100HALF)
1323 			ASD(("100H "));
1324 		if (hp->sw_advertise & ADVERTISE_100FULL)
1325 			ASD(("100F "));
1326 #endif
1327 
1328 		/* Enable Auto-Negotiation, this is usually on already... */
1329 		hp->sw_bmcr |= BMCR_ANENABLE;
1330 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1331 
1332 		/* Restart it to make sure it is going. */
1333 		hp->sw_bmcr |= BMCR_ANRESTART;
1334 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1335 
1336 		/* BMCR_ANRESTART self clears when the process has begun. */
1337 
1338 		timeout = 64;  /* More than enough. */
1339 		while (--timeout) {
1340 			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1341 			if (!(hp->sw_bmcr & BMCR_ANRESTART))
1342 				break; /* got it. */
1343 			udelay(10);
1344 		}
1345 		if (!timeout) {
1346 			printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1347 			       "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1348 			printk(KERN_NOTICE "%s: Performing force link detection.\n",
1349 			       hp->dev->name);
1350 			goto force_link;
1351 		} else {
1352 			hp->timer_state = arbwait;
1353 		}
1354 	} else {
1355 force_link:
1356 		/* Force the link up, trying first a particular mode.
1357 		 * Either we are here at the request of ethtool or
1358 		 * because the Happy Meal would not start to autoneg.
1359 		 */
1360 
1361 		/* Disable auto-negotiation in BMCR, enable the duplex and
1362 		 * speed setting, init the timer state machine, and fire it off.
1363 		 */
1364 		if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1365 			hp->sw_bmcr = BMCR_SPEED100;
1366 		} else {
1367 			if (ep->base.speed == SPEED_100)
1368 				hp->sw_bmcr = BMCR_SPEED100;
1369 			else
1370 				hp->sw_bmcr = 0;
1371 			if (ep->base.duplex == DUPLEX_FULL)
1372 				hp->sw_bmcr |= BMCR_FULLDPLX;
1373 		}
1374 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1375 
1376 		if (!is_lucent_phy(hp)) {
1377 			/* OK, seems we need do disable the transceiver for the first
1378 			 * tick to make sure we get an accurate link state at the
1379 			 * second tick.
1380 			 */
1381 			hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1382 							       DP83840_CSCONFIG);
1383 			hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1384 			happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1385 					      hp->sw_csconfig);
1386 		}
1387 		hp->timer_state = ltrywait;
1388 	}
1389 
1390 	hp->timer_ticks = 0;
1391 	hp->happy_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
1392 	add_timer(&hp->happy_timer);
1393 }
1394 
1395 /* hp->happy_lock must be held */
1396 static int happy_meal_init(struct happy_meal *hp)
1397 {
1398 	const unsigned char *e = &hp->dev->dev_addr[0];
1399 	void __iomem *gregs        = hp->gregs;
1400 	void __iomem *etxregs      = hp->etxregs;
1401 	void __iomem *erxregs      = hp->erxregs;
1402 	void __iomem *bregs        = hp->bigmacregs;
1403 	void __iomem *tregs        = hp->tcvregs;
1404 	u32 regtmp, rxcfg;
1405 
1406 	/* If auto-negotiation timer is running, kill it. */
1407 	del_timer(&hp->happy_timer);
1408 
1409 	HMD(("happy_meal_init: happy_flags[%08x] ",
1410 	     hp->happy_flags));
1411 	if (!(hp->happy_flags & HFLAG_INIT)) {
1412 		HMD(("set HFLAG_INIT, "));
1413 		hp->happy_flags |= HFLAG_INIT;
1414 		happy_meal_get_counters(hp, bregs);
1415 	}
1416 
1417 	/* Stop polling. */
1418 	HMD(("to happy_meal_poll_stop\n"));
1419 	happy_meal_poll_stop(hp, tregs);
1420 
1421 	/* Stop transmitter and receiver. */
1422 	HMD(("happy_meal_init: to happy_meal_stop\n"));
1423 	happy_meal_stop(hp, gregs);
1424 
1425 	/* Alloc and reset the tx/rx descriptor chains. */
1426 	HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1427 	happy_meal_init_rings(hp);
1428 
1429 	/* Shut up the MIF. */
1430 	HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1431 	     hme_read32(hp, tregs + TCVR_IMASK)));
1432 	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1433 
1434 	/* See if we can enable the MIF frame on this card to speak to the DP83840. */
1435 	if (hp->happy_flags & HFLAG_FENABLE) {
1436 		HMD(("use frame old[%08x], ",
1437 		     hme_read32(hp, tregs + TCVR_CFG)));
1438 		hme_write32(hp, tregs + TCVR_CFG,
1439 			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1440 	} else {
1441 		HMD(("use bitbang old[%08x], ",
1442 		     hme_read32(hp, tregs + TCVR_CFG)));
1443 		hme_write32(hp, tregs + TCVR_CFG,
1444 			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1445 	}
1446 
1447 	/* Check the state of the transceiver. */
1448 	HMD(("to happy_meal_transceiver_check\n"));
1449 	happy_meal_transceiver_check(hp, tregs);
1450 
1451 	/* Put the Big Mac into a sane state. */
1452 	HMD(("happy_meal_init: "));
1453 	switch(hp->tcvr_type) {
1454 	case none:
1455 		/* Cannot operate if we don't know the transceiver type! */
1456 		HMD(("AAIEEE no transceiver type, EAGAIN"));
1457 		return -EAGAIN;
1458 
1459 	case internal:
1460 		/* Using the MII buffers. */
1461 		HMD(("internal, using MII, "));
1462 		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1463 		break;
1464 
1465 	case external:
1466 		/* Not using the MII, disable it. */
1467 		HMD(("external, disable MII, "));
1468 		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1469 		break;
1470 	}
1471 
1472 	if (happy_meal_tcvr_reset(hp, tregs))
1473 		return -EAGAIN;
1474 
1475 	/* Reset the Happy Meal Big Mac transceiver and the receiver. */
1476 	HMD(("tx/rx reset, "));
1477 	happy_meal_tx_reset(hp, bregs);
1478 	happy_meal_rx_reset(hp, bregs);
1479 
1480 	/* Set jam size and inter-packet gaps to reasonable defaults. */
1481 	HMD(("jsize/ipg1/ipg2, "));
1482 	hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1483 	hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1484 	hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1485 
1486 	/* Load up the MAC address and random seed. */
1487 	HMD(("rseed/macaddr, "));
1488 
1489 	/* The docs recommend to use the 10LSB of our MAC here. */
1490 	hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1491 
1492 	hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1493 	hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1494 	hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1495 
1496 	HMD(("htable, "));
1497 	if ((hp->dev->flags & IFF_ALLMULTI) ||
1498 	    (netdev_mc_count(hp->dev) > 64)) {
1499 		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1500 		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1501 		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1502 		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1503 	} else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1504 		u16 hash_table[4];
1505 		struct netdev_hw_addr *ha;
1506 		u32 crc;
1507 
1508 		memset(hash_table, 0, sizeof(hash_table));
1509 		netdev_for_each_mc_addr(ha, hp->dev) {
1510 			crc = ether_crc_le(6, ha->addr);
1511 			crc >>= 26;
1512 			hash_table[crc >> 4] |= 1 << (crc & 0xf);
1513 		}
1514 		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1515 		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1516 		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1517 		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1518 	} else {
1519 		hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1520 		hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1521 		hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1522 		hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1523 	}
1524 
1525 	/* Set the RX and TX ring ptrs. */
1526 	HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1527 	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1528 	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1529 	hme_write32(hp, erxregs + ERX_RING,
1530 		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1531 	hme_write32(hp, etxregs + ETX_RING,
1532 		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1533 
1534 	/* Parity issues in the ERX unit of some HME revisions can cause some
1535 	 * registers to not be written unless their parity is even.  Detect such
1536 	 * lost writes and simply rewrite with a low bit set (which will be ignored
1537 	 * since the rxring needs to be 2K aligned).
1538 	 */
1539 	if (hme_read32(hp, erxregs + ERX_RING) !=
1540 	    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1541 		hme_write32(hp, erxregs + ERX_RING,
1542 			    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1543 			    | 0x4);
1544 
1545 	/* Set the supported burst sizes. */
1546 	HMD(("happy_meal_init: old[%08x] bursts<",
1547 	     hme_read32(hp, gregs + GREG_CFG)));
1548 
1549 #ifndef CONFIG_SPARC
1550 	/* It is always PCI and can handle 64byte bursts. */
1551 	hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1552 #else
1553 	if ((hp->happy_bursts & DMA_BURST64) &&
1554 	    ((hp->happy_flags & HFLAG_PCI) != 0
1555 #ifdef CONFIG_SBUS
1556 	     || sbus_can_burst64()
1557 #endif
1558 	     || 0)) {
1559 		u32 gcfg = GREG_CFG_BURST64;
1560 
1561 		/* I have no idea if I should set the extended
1562 		 * transfer mode bit for Cheerio, so for now I
1563 		 * do not.  -DaveM
1564 		 */
1565 #ifdef CONFIG_SBUS
1566 		if ((hp->happy_flags & HFLAG_PCI) == 0) {
1567 			struct platform_device *op = hp->happy_dev;
1568 			if (sbus_can_dma_64bit()) {
1569 				sbus_set_sbus64(&op->dev,
1570 						hp->happy_bursts);
1571 				gcfg |= GREG_CFG_64BIT;
1572 			}
1573 		}
1574 #endif
1575 
1576 		HMD(("64>"));
1577 		hme_write32(hp, gregs + GREG_CFG, gcfg);
1578 	} else if (hp->happy_bursts & DMA_BURST32) {
1579 		HMD(("32>"));
1580 		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1581 	} else if (hp->happy_bursts & DMA_BURST16) {
1582 		HMD(("16>"));
1583 		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1584 	} else {
1585 		HMD(("XXX>"));
1586 		hme_write32(hp, gregs + GREG_CFG, 0);
1587 	}
1588 #endif /* CONFIG_SPARC */
1589 
1590 	/* Turn off interrupts we do not want to hear. */
1591 	HMD((", enable global interrupts, "));
1592 	hme_write32(hp, gregs + GREG_IMASK,
1593 		    (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1594 		     GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1595 
1596 	/* Set the transmit ring buffer size. */
1597 	HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1598 	     hme_read32(hp, etxregs + ETX_RSIZE)));
1599 	hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1600 
1601 	/* Enable transmitter DVMA. */
1602 	HMD(("tx dma enable old[%08x], ",
1603 	     hme_read32(hp, etxregs + ETX_CFG)));
1604 	hme_write32(hp, etxregs + ETX_CFG,
1605 		    hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1606 
1607 	/* This chip really rots, for the receiver sometimes when you
1608 	 * write to its control registers not all the bits get there
1609 	 * properly.  I cannot think of a sane way to provide complete
1610 	 * coverage for this hardware bug yet.
1611 	 */
1612 	HMD(("erx regs bug old[%08x]\n",
1613 	     hme_read32(hp, erxregs + ERX_CFG)));
1614 	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1615 	regtmp = hme_read32(hp, erxregs + ERX_CFG);
1616 	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1617 	if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1618 		printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1619 		printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1620 		       ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1621 		/* XXX Should return failure here... */
1622 	}
1623 
1624 	/* Enable Big Mac hash table filter. */
1625 	HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1626 	     hme_read32(hp, bregs + BMAC_RXCFG)));
1627 	rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1628 	if (hp->dev->flags & IFF_PROMISC)
1629 		rxcfg |= BIGMAC_RXCFG_PMISC;
1630 	hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1631 
1632 	/* Let the bits settle in the chip. */
1633 	udelay(10);
1634 
1635 	/* Ok, configure the Big Mac transmitter. */
1636 	HMD(("BIGMAC init, "));
1637 	regtmp = 0;
1638 	if (hp->happy_flags & HFLAG_FULL)
1639 		regtmp |= BIGMAC_TXCFG_FULLDPLX;
1640 
1641 	/* Don't turn on the "don't give up" bit for now.  It could cause hme
1642 	 * to deadlock with the PHY if a Jabber occurs.
1643 	 */
1644 	hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1645 
1646 	/* Give up after 16 TX attempts. */
1647 	hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1648 
1649 	/* Enable the output drivers no matter what. */
1650 	regtmp = BIGMAC_XCFG_ODENABLE;
1651 
1652 	/* If card can do lance mode, enable it. */
1653 	if (hp->happy_flags & HFLAG_LANCE)
1654 		regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1655 
1656 	/* Disable the MII buffers if using external transceiver. */
1657 	if (hp->tcvr_type == external)
1658 		regtmp |= BIGMAC_XCFG_MIIDISAB;
1659 
1660 	HMD(("XIF config old[%08x], ",
1661 	     hme_read32(hp, bregs + BMAC_XIFCFG)));
1662 	hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1663 
1664 	/* Start things up. */
1665 	HMD(("tx old[%08x] and rx [%08x] ON!\n",
1666 	     hme_read32(hp, bregs + BMAC_TXCFG),
1667 	     hme_read32(hp, bregs + BMAC_RXCFG)));
1668 
1669 	/* Set larger TX/RX size to allow for 802.1q */
1670 	hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1671 	hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1672 
1673 	hme_write32(hp, bregs + BMAC_TXCFG,
1674 		    hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1675 	hme_write32(hp, bregs + BMAC_RXCFG,
1676 		    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1677 
1678 	/* Get the autonegotiation started, and the watch timer ticking. */
1679 	happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1680 
1681 	/* Success. */
1682 	return 0;
1683 }
1684 
1685 /* hp->happy_lock must be held */
1686 static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1687 {
1688 	void __iomem *tregs	= hp->tcvregs;
1689 	void __iomem *bregs	= hp->bigmacregs;
1690 	void __iomem *gregs	= hp->gregs;
1691 
1692 	happy_meal_stop(hp, gregs);
1693 	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1694 	if (hp->happy_flags & HFLAG_FENABLE)
1695 		hme_write32(hp, tregs + TCVR_CFG,
1696 			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1697 	else
1698 		hme_write32(hp, tregs + TCVR_CFG,
1699 			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1700 	happy_meal_transceiver_check(hp, tregs);
1701 	switch(hp->tcvr_type) {
1702 	case none:
1703 		return;
1704 	case internal:
1705 		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1706 		break;
1707 	case external:
1708 		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1709 		break;
1710 	}
1711 	if (happy_meal_tcvr_reset(hp, tregs))
1712 		return;
1713 
1714 	/* Latch PHY registers as of now. */
1715 	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1716 	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1717 
1718 	/* Advertise everything we can support. */
1719 	if (hp->sw_bmsr & BMSR_10HALF)
1720 		hp->sw_advertise |= (ADVERTISE_10HALF);
1721 	else
1722 		hp->sw_advertise &= ~(ADVERTISE_10HALF);
1723 
1724 	if (hp->sw_bmsr & BMSR_10FULL)
1725 		hp->sw_advertise |= (ADVERTISE_10FULL);
1726 	else
1727 		hp->sw_advertise &= ~(ADVERTISE_10FULL);
1728 	if (hp->sw_bmsr & BMSR_100HALF)
1729 		hp->sw_advertise |= (ADVERTISE_100HALF);
1730 	else
1731 		hp->sw_advertise &= ~(ADVERTISE_100HALF);
1732 	if (hp->sw_bmsr & BMSR_100FULL)
1733 		hp->sw_advertise |= (ADVERTISE_100FULL);
1734 	else
1735 		hp->sw_advertise &= ~(ADVERTISE_100FULL);
1736 
1737 	/* Update the PHY advertisement register. */
1738 	happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1739 }
1740 
1741 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1742  * the hardware, so we cannot re-read it and get a correct value.
1743  *
1744  * hp->happy_lock must be held
1745  */
1746 static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1747 {
1748 	int reset = 0;
1749 
1750 	/* Only print messages for non-counter related interrupts. */
1751 	if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1752 		      GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1753 		      GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1754 		      GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1755 		      GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1756 		      GREG_STAT_SLVPERR))
1757 		printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1758 		       hp->dev->name, status);
1759 
1760 	if (status & GREG_STAT_RFIFOVF) {
1761 		/* Receive FIFO overflow is harmless and the hardware will take
1762 		   care of it, just some packets are lost. Who cares. */
1763 		printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1764 	}
1765 
1766 	if (status & GREG_STAT_STSTERR) {
1767 		/* BigMAC SQE link test failed. */
1768 		printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1769 		reset = 1;
1770 	}
1771 
1772 	if (status & GREG_STAT_TFIFO_UND) {
1773 		/* Transmit FIFO underrun, again DMA error likely. */
1774 		printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1775 		       hp->dev->name);
1776 		reset = 1;
1777 	}
1778 
1779 	if (status & GREG_STAT_MAXPKTERR) {
1780 		/* Driver error, tried to transmit something larger
1781 		 * than ethernet max mtu.
1782 		 */
1783 		printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1784 		reset = 1;
1785 	}
1786 
1787 	if (status & GREG_STAT_NORXD) {
1788 		/* This is harmless, it just means the system is
1789 		 * quite loaded and the incoming packet rate was
1790 		 * faster than the interrupt handler could keep up
1791 		 * with.
1792 		 */
1793 		printk(KERN_INFO "%s: Happy Meal out of receive "
1794 		       "descriptors, packet dropped.\n",
1795 		       hp->dev->name);
1796 	}
1797 
1798 	if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1799 		/* All sorts of DMA receive errors. */
1800 		printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1801 		if (status & GREG_STAT_RXERR)
1802 			printk("GenericError ");
1803 		if (status & GREG_STAT_RXPERR)
1804 			printk("ParityError ");
1805 		if (status & GREG_STAT_RXTERR)
1806 			printk("RxTagBotch ");
1807 		printk("]\n");
1808 		reset = 1;
1809 	}
1810 
1811 	if (status & GREG_STAT_EOPERR) {
1812 		/* Driver bug, didn't set EOP bit in tx descriptor given
1813 		 * to the happy meal.
1814 		 */
1815 		printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1816 		       hp->dev->name);
1817 		reset = 1;
1818 	}
1819 
1820 	if (status & GREG_STAT_MIFIRQ) {
1821 		/* MIF signalled an interrupt, were we polling it? */
1822 		printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1823 	}
1824 
1825 	if (status &
1826 	    (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1827 		/* All sorts of transmit DMA errors. */
1828 		printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1829 		if (status & GREG_STAT_TXEACK)
1830 			printk("GenericError ");
1831 		if (status & GREG_STAT_TXLERR)
1832 			printk("LateError ");
1833 		if (status & GREG_STAT_TXPERR)
1834 			printk("ParityError ");
1835 		if (status & GREG_STAT_TXTERR)
1836 			printk("TagBotch ");
1837 		printk("]\n");
1838 		reset = 1;
1839 	}
1840 
1841 	if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1842 		/* Bus or parity error when cpu accessed happy meal registers
1843 		 * or it's internal FIFO's.  Should never see this.
1844 		 */
1845 		printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1846 		       hp->dev->name,
1847 		       (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1848 		reset = 1;
1849 	}
1850 
1851 	if (reset) {
1852 		printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1853 		happy_meal_init(hp);
1854 		return 1;
1855 	}
1856 	return 0;
1857 }
1858 
1859 /* hp->happy_lock must be held */
1860 static void happy_meal_mif_interrupt(struct happy_meal *hp)
1861 {
1862 	void __iomem *tregs = hp->tcvregs;
1863 
1864 	printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1865 	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1866 	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1867 
1868 	/* Use the fastest transmission protocol possible. */
1869 	if (hp->sw_lpa & LPA_100FULL) {
1870 		printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1871 		hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1872 	} else if (hp->sw_lpa & LPA_100HALF) {
1873 		printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1874 		hp->sw_bmcr |= BMCR_SPEED100;
1875 	} else if (hp->sw_lpa & LPA_10FULL) {
1876 		printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1877 		hp->sw_bmcr |= BMCR_FULLDPLX;
1878 	} else {
1879 		printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1880 	}
1881 	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1882 
1883 	/* Finally stop polling and shut up the MIF. */
1884 	happy_meal_poll_stop(hp, tregs);
1885 }
1886 
1887 #ifdef TXDEBUG
1888 #define TXD(x) printk x
1889 #else
1890 #define TXD(x)
1891 #endif
1892 
1893 /* hp->happy_lock must be held */
1894 static void happy_meal_tx(struct happy_meal *hp)
1895 {
1896 	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1897 	struct happy_meal_txd *this;
1898 	struct net_device *dev = hp->dev;
1899 	int elem;
1900 
1901 	elem = hp->tx_old;
1902 	TXD(("TX<"));
1903 	while (elem != hp->tx_new) {
1904 		struct sk_buff *skb;
1905 		u32 flags, dma_addr, dma_len;
1906 		int frag;
1907 
1908 		TXD(("[%d]", elem));
1909 		this = &txbase[elem];
1910 		flags = hme_read_desc32(hp, &this->tx_flags);
1911 		if (flags & TXFLAG_OWN)
1912 			break;
1913 		skb = hp->tx_skbs[elem];
1914 		if (skb_shinfo(skb)->nr_frags) {
1915 			int last;
1916 
1917 			last = elem + skb_shinfo(skb)->nr_frags;
1918 			last &= (TX_RING_SIZE - 1);
1919 			flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1920 			if (flags & TXFLAG_OWN)
1921 				break;
1922 		}
1923 		hp->tx_skbs[elem] = NULL;
1924 		dev->stats.tx_bytes += skb->len;
1925 
1926 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1927 			dma_addr = hme_read_desc32(hp, &this->tx_addr);
1928 			dma_len = hme_read_desc32(hp, &this->tx_flags);
1929 
1930 			dma_len &= TXFLAG_SIZE;
1931 			if (!frag)
1932 				dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1933 			else
1934 				dma_unmap_page(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1935 
1936 			elem = NEXT_TX(elem);
1937 			this = &txbase[elem];
1938 		}
1939 
1940 		dev_consume_skb_irq(skb);
1941 		dev->stats.tx_packets++;
1942 	}
1943 	hp->tx_old = elem;
1944 	TXD((">"));
1945 
1946 	if (netif_queue_stopped(dev) &&
1947 	    TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1948 		netif_wake_queue(dev);
1949 }
1950 
1951 #ifdef RXDEBUG
1952 #define RXD(x) printk x
1953 #else
1954 #define RXD(x)
1955 #endif
1956 
1957 /* Originally I used to handle the allocation failure by just giving back just
1958  * that one ring buffer to the happy meal.  Problem is that usually when that
1959  * condition is triggered, the happy meal expects you to do something reasonable
1960  * with all of the packets it has DMA'd in.  So now I just drop the entire
1961  * ring when we cannot get a new skb and give them all back to the happy meal,
1962  * maybe things will be "happier" now.
1963  *
1964  * hp->happy_lock must be held
1965  */
1966 static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1967 {
1968 	struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1969 	struct happy_meal_rxd *this;
1970 	int elem = hp->rx_new, drops = 0;
1971 	u32 flags;
1972 
1973 	RXD(("RX<"));
1974 	this = &rxbase[elem];
1975 	while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
1976 		struct sk_buff *skb;
1977 		int len = flags >> 16;
1978 		u16 csum = flags & RXFLAG_CSUM;
1979 		u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
1980 
1981 		RXD(("[%d ", elem));
1982 
1983 		/* Check for errors. */
1984 		if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
1985 			RXD(("ERR(%08x)]", flags));
1986 			dev->stats.rx_errors++;
1987 			if (len < ETH_ZLEN)
1988 				dev->stats.rx_length_errors++;
1989 			if (len & (RXFLAG_OVERFLOW >> 16)) {
1990 				dev->stats.rx_over_errors++;
1991 				dev->stats.rx_fifo_errors++;
1992 			}
1993 
1994 			/* Return it to the Happy meal. */
1995 	drop_it:
1996 			dev->stats.rx_dropped++;
1997 			hme_write_rxd(hp, this,
1998 				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
1999 				      dma_addr);
2000 			goto next;
2001 		}
2002 		skb = hp->rx_skbs[elem];
2003 		if (len > RX_COPY_THRESHOLD) {
2004 			struct sk_buff *new_skb;
2005 			u32 mapping;
2006 
2007 			/* Now refill the entry, if we can. */
2008 			new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
2009 			if (new_skb == NULL) {
2010 				drops++;
2011 				goto drop_it;
2012 			}
2013 			skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
2014 			mapping = dma_map_single(hp->dma_dev, new_skb->data,
2015 						 RX_BUF_ALLOC_SIZE,
2016 						 DMA_FROM_DEVICE);
2017 			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2018 				dev_kfree_skb_any(new_skb);
2019 				drops++;
2020 				goto drop_it;
2021 			}
2022 
2023 			dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
2024 			hp->rx_skbs[elem] = new_skb;
2025 			hme_write_rxd(hp, this,
2026 				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2027 				      mapping);
2028 			skb_reserve(new_skb, RX_OFFSET);
2029 
2030 			/* Trim the original skb for the netif. */
2031 			skb_trim(skb, len);
2032 		} else {
2033 			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
2034 
2035 			if (copy_skb == NULL) {
2036 				drops++;
2037 				goto drop_it;
2038 			}
2039 
2040 			skb_reserve(copy_skb, 2);
2041 			skb_put(copy_skb, len);
2042 			dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2043 			skb_copy_from_linear_data(skb, copy_skb->data, len);
2044 			dma_sync_single_for_device(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2045 			/* Reuse original ring buffer. */
2046 			hme_write_rxd(hp, this,
2047 				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2048 				      dma_addr);
2049 
2050 			skb = copy_skb;
2051 		}
2052 
2053 		/* This card is _fucking_ hot... */
2054 		skb->csum = csum_unfold(~(__force __sum16)htons(csum));
2055 		skb->ip_summed = CHECKSUM_COMPLETE;
2056 
2057 		RXD(("len=%d csum=%4x]", len, csum));
2058 		skb->protocol = eth_type_trans(skb, dev);
2059 		netif_rx(skb);
2060 
2061 		dev->stats.rx_packets++;
2062 		dev->stats.rx_bytes += len;
2063 	next:
2064 		elem = NEXT_RX(elem);
2065 		this = &rxbase[elem];
2066 	}
2067 	hp->rx_new = elem;
2068 	if (drops)
2069 		printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2070 	RXD((">"));
2071 }
2072 
2073 static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
2074 {
2075 	struct net_device *dev = dev_id;
2076 	struct happy_meal *hp  = netdev_priv(dev);
2077 	u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2078 
2079 	HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2080 
2081 	spin_lock(&hp->happy_lock);
2082 
2083 	if (happy_status & GREG_STAT_ERRORS) {
2084 		HMD(("ERRORS "));
2085 		if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2086 			goto out;
2087 	}
2088 
2089 	if (happy_status & GREG_STAT_MIFIRQ) {
2090 		HMD(("MIFIRQ "));
2091 		happy_meal_mif_interrupt(hp);
2092 	}
2093 
2094 	if (happy_status & GREG_STAT_TXALL) {
2095 		HMD(("TXALL "));
2096 		happy_meal_tx(hp);
2097 	}
2098 
2099 	if (happy_status & GREG_STAT_RXTOHOST) {
2100 		HMD(("RXTOHOST "));
2101 		happy_meal_rx(hp, dev);
2102 	}
2103 
2104 	HMD(("done\n"));
2105 out:
2106 	spin_unlock(&hp->happy_lock);
2107 
2108 	return IRQ_HANDLED;
2109 }
2110 
2111 #ifdef CONFIG_SBUS
2112 static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2113 {
2114 	struct quattro *qp = (struct quattro *) cookie;
2115 	int i;
2116 
2117 	for (i = 0; i < 4; i++) {
2118 		struct net_device *dev = qp->happy_meals[i];
2119 		struct happy_meal *hp  = netdev_priv(dev);
2120 		u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2121 
2122 		HMD(("quattro_interrupt: status=%08x ", happy_status));
2123 
2124 		if (!(happy_status & (GREG_STAT_ERRORS |
2125 				      GREG_STAT_MIFIRQ |
2126 				      GREG_STAT_TXALL |
2127 				      GREG_STAT_RXTOHOST)))
2128 			continue;
2129 
2130 		spin_lock(&hp->happy_lock);
2131 
2132 		if (happy_status & GREG_STAT_ERRORS) {
2133 			HMD(("ERRORS "));
2134 			if (happy_meal_is_not_so_happy(hp, happy_status))
2135 				goto next;
2136 		}
2137 
2138 		if (happy_status & GREG_STAT_MIFIRQ) {
2139 			HMD(("MIFIRQ "));
2140 			happy_meal_mif_interrupt(hp);
2141 		}
2142 
2143 		if (happy_status & GREG_STAT_TXALL) {
2144 			HMD(("TXALL "));
2145 			happy_meal_tx(hp);
2146 		}
2147 
2148 		if (happy_status & GREG_STAT_RXTOHOST) {
2149 			HMD(("RXTOHOST "));
2150 			happy_meal_rx(hp, dev);
2151 		}
2152 
2153 	next:
2154 		spin_unlock(&hp->happy_lock);
2155 	}
2156 	HMD(("done\n"));
2157 
2158 	return IRQ_HANDLED;
2159 }
2160 #endif
2161 
2162 static int happy_meal_open(struct net_device *dev)
2163 {
2164 	struct happy_meal *hp = netdev_priv(dev);
2165 	int res;
2166 
2167 	HMD(("happy_meal_open: "));
2168 
2169 	/* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2170 	 * into a single source which we register handling at probe time.
2171 	 */
2172 	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2173 		res = request_irq(hp->irq, happy_meal_interrupt, IRQF_SHARED,
2174 				  dev->name, dev);
2175 		if (res) {
2176 			HMD(("EAGAIN\n"));
2177 			printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2178 			       hp->irq);
2179 
2180 			return -EAGAIN;
2181 		}
2182 	}
2183 
2184 	HMD(("to happy_meal_init\n"));
2185 
2186 	spin_lock_irq(&hp->happy_lock);
2187 	res = happy_meal_init(hp);
2188 	spin_unlock_irq(&hp->happy_lock);
2189 
2190 	if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2191 		free_irq(hp->irq, dev);
2192 	return res;
2193 }
2194 
2195 static int happy_meal_close(struct net_device *dev)
2196 {
2197 	struct happy_meal *hp = netdev_priv(dev);
2198 
2199 	spin_lock_irq(&hp->happy_lock);
2200 	happy_meal_stop(hp, hp->gregs);
2201 	happy_meal_clean_rings(hp);
2202 
2203 	/* If auto-negotiation timer is running, kill it. */
2204 	del_timer(&hp->happy_timer);
2205 
2206 	spin_unlock_irq(&hp->happy_lock);
2207 
2208 	/* On Quattro QFE cards, all hme interrupts are concentrated
2209 	 * into a single source which we register handling at probe
2210 	 * time and never unregister.
2211 	 */
2212 	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2213 		free_irq(hp->irq, dev);
2214 
2215 	return 0;
2216 }
2217 
2218 #ifdef SXDEBUG
2219 #define SXD(x) printk x
2220 #else
2221 #define SXD(x)
2222 #endif
2223 
2224 static void happy_meal_tx_timeout(struct net_device *dev, unsigned int txqueue)
2225 {
2226 	struct happy_meal *hp = netdev_priv(dev);
2227 
2228 	printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2229 	tx_dump_log();
2230 	printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2231 		hme_read32(hp, hp->gregs + GREG_STAT),
2232 		hme_read32(hp, hp->etxregs + ETX_CFG),
2233 		hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2234 
2235 	spin_lock_irq(&hp->happy_lock);
2236 	happy_meal_init(hp);
2237 	spin_unlock_irq(&hp->happy_lock);
2238 
2239 	netif_wake_queue(dev);
2240 }
2241 
2242 static void unmap_partial_tx_skb(struct happy_meal *hp, u32 first_mapping,
2243 				 u32 first_len, u32 first_entry, u32 entry)
2244 {
2245 	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
2246 
2247 	dma_unmap_single(hp->dma_dev, first_mapping, first_len, DMA_TO_DEVICE);
2248 
2249 	first_entry = NEXT_TX(first_entry);
2250 	while (first_entry != entry) {
2251 		struct happy_meal_txd *this = &txbase[first_entry];
2252 		u32 addr, len;
2253 
2254 		addr = hme_read_desc32(hp, &this->tx_addr);
2255 		len = hme_read_desc32(hp, &this->tx_flags);
2256 		len &= TXFLAG_SIZE;
2257 		dma_unmap_page(hp->dma_dev, addr, len, DMA_TO_DEVICE);
2258 	}
2259 }
2260 
2261 static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb,
2262 					 struct net_device *dev)
2263 {
2264 	struct happy_meal *hp = netdev_priv(dev);
2265 	int entry;
2266 	u32 tx_flags;
2267 
2268 	tx_flags = TXFLAG_OWN;
2269 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2270 		const u32 csum_start_off = skb_checksum_start_offset(skb);
2271 		const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2272 
2273 		tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2274 			    ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2275 			    ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2276 	}
2277 
2278 	spin_lock_irq(&hp->happy_lock);
2279 
2280 	if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2281 		netif_stop_queue(dev);
2282 		spin_unlock_irq(&hp->happy_lock);
2283 		printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2284 		       dev->name);
2285 		return NETDEV_TX_BUSY;
2286 	}
2287 
2288 	entry = hp->tx_new;
2289 	SXD(("SX<l[%d]e[%d]>", len, entry));
2290 	hp->tx_skbs[entry] = skb;
2291 
2292 	if (skb_shinfo(skb)->nr_frags == 0) {
2293 		u32 mapping, len;
2294 
2295 		len = skb->len;
2296 		mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE);
2297 		if (unlikely(dma_mapping_error(hp->dma_dev, mapping)))
2298 			goto out_dma_error;
2299 		tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2300 		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2301 			      (tx_flags | (len & TXFLAG_SIZE)),
2302 			      mapping);
2303 		entry = NEXT_TX(entry);
2304 	} else {
2305 		u32 first_len, first_mapping;
2306 		int frag, first_entry = entry;
2307 
2308 		/* We must give this initial chunk to the device last.
2309 		 * Otherwise we could race with the device.
2310 		 */
2311 		first_len = skb_headlen(skb);
2312 		first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len,
2313 					       DMA_TO_DEVICE);
2314 		if (unlikely(dma_mapping_error(hp->dma_dev, first_mapping)))
2315 			goto out_dma_error;
2316 		entry = NEXT_TX(entry);
2317 
2318 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2319 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2320 			u32 len, mapping, this_txflags;
2321 
2322 			len = skb_frag_size(this_frag);
2323 			mapping = skb_frag_dma_map(hp->dma_dev, this_frag,
2324 						   0, len, DMA_TO_DEVICE);
2325 			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2326 				unmap_partial_tx_skb(hp, first_mapping, first_len,
2327 						     first_entry, entry);
2328 				goto out_dma_error;
2329 			}
2330 			this_txflags = tx_flags;
2331 			if (frag == skb_shinfo(skb)->nr_frags - 1)
2332 				this_txflags |= TXFLAG_EOP;
2333 			hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2334 				      (this_txflags | (len & TXFLAG_SIZE)),
2335 				      mapping);
2336 			entry = NEXT_TX(entry);
2337 		}
2338 		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2339 			      (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2340 			      first_mapping);
2341 	}
2342 
2343 	hp->tx_new = entry;
2344 
2345 	if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2346 		netif_stop_queue(dev);
2347 
2348 	/* Get it going. */
2349 	hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2350 
2351 	spin_unlock_irq(&hp->happy_lock);
2352 
2353 	tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2354 	return NETDEV_TX_OK;
2355 
2356 out_dma_error:
2357 	hp->tx_skbs[hp->tx_new] = NULL;
2358 	spin_unlock_irq(&hp->happy_lock);
2359 
2360 	dev_kfree_skb_any(skb);
2361 	dev->stats.tx_dropped++;
2362 	return NETDEV_TX_OK;
2363 }
2364 
2365 static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2366 {
2367 	struct happy_meal *hp = netdev_priv(dev);
2368 
2369 	spin_lock_irq(&hp->happy_lock);
2370 	happy_meal_get_counters(hp, hp->bigmacregs);
2371 	spin_unlock_irq(&hp->happy_lock);
2372 
2373 	return &dev->stats;
2374 }
2375 
2376 static void happy_meal_set_multicast(struct net_device *dev)
2377 {
2378 	struct happy_meal *hp = netdev_priv(dev);
2379 	void __iomem *bregs = hp->bigmacregs;
2380 	struct netdev_hw_addr *ha;
2381 	u32 crc;
2382 
2383 	spin_lock_irq(&hp->happy_lock);
2384 
2385 	if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
2386 		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2387 		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2388 		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2389 		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2390 	} else if (dev->flags & IFF_PROMISC) {
2391 		hme_write32(hp, bregs + BMAC_RXCFG,
2392 			    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2393 	} else {
2394 		u16 hash_table[4];
2395 
2396 		memset(hash_table, 0, sizeof(hash_table));
2397 		netdev_for_each_mc_addr(ha, dev) {
2398 			crc = ether_crc_le(6, ha->addr);
2399 			crc >>= 26;
2400 			hash_table[crc >> 4] |= 1 << (crc & 0xf);
2401 		}
2402 		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2403 		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2404 		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2405 		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2406 	}
2407 
2408 	spin_unlock_irq(&hp->happy_lock);
2409 }
2410 
2411 /* Ethtool support... */
2412 static int hme_get_link_ksettings(struct net_device *dev,
2413 				  struct ethtool_link_ksettings *cmd)
2414 {
2415 	struct happy_meal *hp = netdev_priv(dev);
2416 	u32 speed;
2417 	u32 supported;
2418 
2419 	supported =
2420 		(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2421 		 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2422 		 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2423 
2424 	/* XXX hardcoded stuff for now */
2425 	cmd->base.port = PORT_TP; /* XXX no MII support */
2426 	cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2427 
2428 	/* Record PHY settings. */
2429 	spin_lock_irq(&hp->happy_lock);
2430 	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2431 	hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2432 	spin_unlock_irq(&hp->happy_lock);
2433 
2434 	if (hp->sw_bmcr & BMCR_ANENABLE) {
2435 		cmd->base.autoneg = AUTONEG_ENABLE;
2436 		speed = ((hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2437 			 SPEED_100 : SPEED_10);
2438 		if (speed == SPEED_100)
2439 			cmd->base.duplex =
2440 				(hp->sw_lpa & (LPA_100FULL)) ?
2441 				DUPLEX_FULL : DUPLEX_HALF;
2442 		else
2443 			cmd->base.duplex =
2444 				(hp->sw_lpa & (LPA_10FULL)) ?
2445 				DUPLEX_FULL : DUPLEX_HALF;
2446 	} else {
2447 		cmd->base.autoneg = AUTONEG_DISABLE;
2448 		speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10;
2449 		cmd->base.duplex =
2450 			(hp->sw_bmcr & BMCR_FULLDPLX) ?
2451 			DUPLEX_FULL : DUPLEX_HALF;
2452 	}
2453 	cmd->base.speed = speed;
2454 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2455 						supported);
2456 
2457 	return 0;
2458 }
2459 
2460 static int hme_set_link_ksettings(struct net_device *dev,
2461 				  const struct ethtool_link_ksettings *cmd)
2462 {
2463 	struct happy_meal *hp = netdev_priv(dev);
2464 
2465 	/* Verify the settings we care about. */
2466 	if (cmd->base.autoneg != AUTONEG_ENABLE &&
2467 	    cmd->base.autoneg != AUTONEG_DISABLE)
2468 		return -EINVAL;
2469 	if (cmd->base.autoneg == AUTONEG_DISABLE &&
2470 	    ((cmd->base.speed != SPEED_100 &&
2471 	      cmd->base.speed != SPEED_10) ||
2472 	     (cmd->base.duplex != DUPLEX_HALF &&
2473 	      cmd->base.duplex != DUPLEX_FULL)))
2474 		return -EINVAL;
2475 
2476 	/* Ok, do it to it. */
2477 	spin_lock_irq(&hp->happy_lock);
2478 	del_timer(&hp->happy_timer);
2479 	happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2480 	spin_unlock_irq(&hp->happy_lock);
2481 
2482 	return 0;
2483 }
2484 
2485 static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2486 {
2487 	struct happy_meal *hp = netdev_priv(dev);
2488 
2489 	strlcpy(info->driver, "sunhme", sizeof(info->driver));
2490 	strlcpy(info->version, "2.02", sizeof(info->version));
2491 	if (hp->happy_flags & HFLAG_PCI) {
2492 		struct pci_dev *pdev = hp->happy_dev;
2493 		strlcpy(info->bus_info, pci_name(pdev), sizeof(info->bus_info));
2494 	}
2495 #ifdef CONFIG_SBUS
2496 	else {
2497 		const struct linux_prom_registers *regs;
2498 		struct platform_device *op = hp->happy_dev;
2499 		regs = of_get_property(op->dev.of_node, "regs", NULL);
2500 		if (regs)
2501 			snprintf(info->bus_info, sizeof(info->bus_info),
2502 				"SBUS:%d",
2503 				regs->which_io);
2504 	}
2505 #endif
2506 }
2507 
2508 static u32 hme_get_link(struct net_device *dev)
2509 {
2510 	struct happy_meal *hp = netdev_priv(dev);
2511 
2512 	spin_lock_irq(&hp->happy_lock);
2513 	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2514 	spin_unlock_irq(&hp->happy_lock);
2515 
2516 	return hp->sw_bmsr & BMSR_LSTATUS;
2517 }
2518 
2519 static const struct ethtool_ops hme_ethtool_ops = {
2520 	.get_drvinfo		= hme_get_drvinfo,
2521 	.get_link		= hme_get_link,
2522 	.get_link_ksettings	= hme_get_link_ksettings,
2523 	.set_link_ksettings	= hme_set_link_ksettings,
2524 };
2525 
2526 static int hme_version_printed;
2527 
2528 #ifdef CONFIG_SBUS
2529 /* Given a happy meal sbus device, find it's quattro parent.
2530  * If none exist, allocate and return a new one.
2531  *
2532  * Return NULL on failure.
2533  */
2534 static struct quattro *quattro_sbus_find(struct platform_device *child)
2535 {
2536 	struct device *parent = child->dev.parent;
2537 	struct platform_device *op;
2538 	struct quattro *qp;
2539 
2540 	op = to_platform_device(parent);
2541 	qp = platform_get_drvdata(op);
2542 	if (qp)
2543 		return qp;
2544 
2545 	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2546 	if (qp != NULL) {
2547 		int i;
2548 
2549 		for (i = 0; i < 4; i++)
2550 			qp->happy_meals[i] = NULL;
2551 
2552 		qp->quattro_dev = child;
2553 		qp->next = qfe_sbus_list;
2554 		qfe_sbus_list = qp;
2555 
2556 		platform_set_drvdata(op, qp);
2557 	}
2558 	return qp;
2559 }
2560 
2561 /* After all quattro cards have been probed, we call these functions
2562  * to register the IRQ handlers for the cards that have been
2563  * successfully probed and skip the cards that failed to initialize
2564  */
2565 static int __init quattro_sbus_register_irqs(void)
2566 {
2567 	struct quattro *qp;
2568 
2569 	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2570 		struct platform_device *op = qp->quattro_dev;
2571 		int err, qfe_slot, skip = 0;
2572 
2573 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2574 			if (!qp->happy_meals[qfe_slot])
2575 				skip = 1;
2576 		}
2577 		if (skip)
2578 			continue;
2579 
2580 		err = request_irq(op->archdata.irqs[0],
2581 				  quattro_sbus_interrupt,
2582 				  IRQF_SHARED, "Quattro",
2583 				  qp);
2584 		if (err != 0) {
2585 			printk(KERN_ERR "Quattro HME: IRQ registration "
2586 			       "error %d.\n", err);
2587 			return err;
2588 		}
2589 	}
2590 
2591 	return 0;
2592 }
2593 
2594 static void quattro_sbus_free_irqs(void)
2595 {
2596 	struct quattro *qp;
2597 
2598 	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2599 		struct platform_device *op = qp->quattro_dev;
2600 		int qfe_slot, skip = 0;
2601 
2602 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2603 			if (!qp->happy_meals[qfe_slot])
2604 				skip = 1;
2605 		}
2606 		if (skip)
2607 			continue;
2608 
2609 		free_irq(op->archdata.irqs[0], qp);
2610 	}
2611 }
2612 #endif /* CONFIG_SBUS */
2613 
2614 #ifdef CONFIG_PCI
2615 static struct quattro *quattro_pci_find(struct pci_dev *pdev)
2616 {
2617 	struct pci_dev *bdev = pdev->bus->self;
2618 	struct quattro *qp;
2619 
2620 	if (!bdev) return NULL;
2621 	for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2622 		struct pci_dev *qpdev = qp->quattro_dev;
2623 
2624 		if (qpdev == bdev)
2625 			return qp;
2626 	}
2627 	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2628 	if (qp != NULL) {
2629 		int i;
2630 
2631 		for (i = 0; i < 4; i++)
2632 			qp->happy_meals[i] = NULL;
2633 
2634 		qp->quattro_dev = bdev;
2635 		qp->next = qfe_pci_list;
2636 		qfe_pci_list = qp;
2637 
2638 		/* No range tricks necessary on PCI. */
2639 		qp->nranges = 0;
2640 	}
2641 	return qp;
2642 }
2643 #endif /* CONFIG_PCI */
2644 
2645 static const struct net_device_ops hme_netdev_ops = {
2646 	.ndo_open		= happy_meal_open,
2647 	.ndo_stop		= happy_meal_close,
2648 	.ndo_start_xmit		= happy_meal_start_xmit,
2649 	.ndo_tx_timeout		= happy_meal_tx_timeout,
2650 	.ndo_get_stats		= happy_meal_get_stats,
2651 	.ndo_set_rx_mode	= happy_meal_set_multicast,
2652 	.ndo_set_mac_address 	= eth_mac_addr,
2653 	.ndo_validate_addr	= eth_validate_addr,
2654 };
2655 
2656 #ifdef CONFIG_SBUS
2657 static int happy_meal_sbus_probe_one(struct platform_device *op, int is_qfe)
2658 {
2659 	struct device_node *dp = op->dev.of_node, *sbus_dp;
2660 	struct quattro *qp = NULL;
2661 	struct happy_meal *hp;
2662 	struct net_device *dev;
2663 	int i, qfe_slot = -1;
2664 	u8 addr[ETH_ALEN];
2665 	int err = -ENODEV;
2666 
2667 	sbus_dp = op->dev.parent->of_node;
2668 
2669 	/* We can match PCI devices too, do not accept those here. */
2670 	if (!of_node_name_eq(sbus_dp, "sbus") && !of_node_name_eq(sbus_dp, "sbi"))
2671 		return err;
2672 
2673 	if (is_qfe) {
2674 		qp = quattro_sbus_find(op);
2675 		if (qp == NULL)
2676 			goto err_out;
2677 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2678 			if (qp->happy_meals[qfe_slot] == NULL)
2679 				break;
2680 		if (qfe_slot == 4)
2681 			goto err_out;
2682 	}
2683 
2684 	err = -ENOMEM;
2685 	dev = alloc_etherdev(sizeof(struct happy_meal));
2686 	if (!dev)
2687 		goto err_out;
2688 	SET_NETDEV_DEV(dev, &op->dev);
2689 
2690 	if (hme_version_printed++ == 0)
2691 		printk(KERN_INFO "%s", version);
2692 
2693 	/* If user did not specify a MAC address specifically, use
2694 	 * the Quattro local-mac-address property...
2695 	 */
2696 	for (i = 0; i < 6; i++) {
2697 		if (macaddr[i] != 0)
2698 			break;
2699 	}
2700 	if (i < 6) { /* a mac address was given */
2701 		for (i = 0; i < 6; i++)
2702 			addr[i] = macaddr[i];
2703 		eth_hw_addr_set(dev, addr);
2704 		macaddr[5]++;
2705 	} else {
2706 		const unsigned char *addr;
2707 		int len;
2708 
2709 		addr = of_get_property(dp, "local-mac-address", &len);
2710 
2711 		if (qfe_slot != -1 && addr && len == ETH_ALEN)
2712 			eth_hw_addr_set(dev, addr);
2713 		else
2714 			eth_hw_addr_set(dev, idprom->id_ethaddr);
2715 	}
2716 
2717 	hp = netdev_priv(dev);
2718 
2719 	hp->happy_dev = op;
2720 	hp->dma_dev = &op->dev;
2721 
2722 	spin_lock_init(&hp->happy_lock);
2723 
2724 	err = -ENODEV;
2725 	if (qp != NULL) {
2726 		hp->qfe_parent = qp;
2727 		hp->qfe_ent = qfe_slot;
2728 		qp->happy_meals[qfe_slot] = dev;
2729 	}
2730 
2731 	hp->gregs = of_ioremap(&op->resource[0], 0,
2732 			       GREG_REG_SIZE, "HME Global Regs");
2733 	if (!hp->gregs) {
2734 		printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2735 		goto err_out_free_netdev;
2736 	}
2737 
2738 	hp->etxregs = of_ioremap(&op->resource[1], 0,
2739 				 ETX_REG_SIZE, "HME TX Regs");
2740 	if (!hp->etxregs) {
2741 		printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2742 		goto err_out_iounmap;
2743 	}
2744 
2745 	hp->erxregs = of_ioremap(&op->resource[2], 0,
2746 				 ERX_REG_SIZE, "HME RX Regs");
2747 	if (!hp->erxregs) {
2748 		printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2749 		goto err_out_iounmap;
2750 	}
2751 
2752 	hp->bigmacregs = of_ioremap(&op->resource[3], 0,
2753 				    BMAC_REG_SIZE, "HME BIGMAC Regs");
2754 	if (!hp->bigmacregs) {
2755 		printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2756 		goto err_out_iounmap;
2757 	}
2758 
2759 	hp->tcvregs = of_ioremap(&op->resource[4], 0,
2760 				 TCVR_REG_SIZE, "HME Tranceiver Regs");
2761 	if (!hp->tcvregs) {
2762 		printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2763 		goto err_out_iounmap;
2764 	}
2765 
2766 	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2767 	if (hp->hm_revision == 0xff)
2768 		hp->hm_revision = 0xa0;
2769 
2770 	/* Now enable the feature flags we can. */
2771 	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2772 		hp->happy_flags = HFLAG_20_21;
2773 	else if (hp->hm_revision != 0xa0)
2774 		hp->happy_flags = HFLAG_NOT_A0;
2775 
2776 	if (qp != NULL)
2777 		hp->happy_flags |= HFLAG_QUATTRO;
2778 
2779 	/* Get the supported DVMA burst sizes from our Happy SBUS. */
2780 	hp->happy_bursts = of_getintprop_default(sbus_dp,
2781 						 "burst-sizes", 0x00);
2782 
2783 	hp->happy_block = dma_alloc_coherent(hp->dma_dev,
2784 					     PAGE_SIZE,
2785 					     &hp->hblock_dvma,
2786 					     GFP_ATOMIC);
2787 	err = -ENOMEM;
2788 	if (!hp->happy_block)
2789 		goto err_out_iounmap;
2790 
2791 	/* Force check of the link first time we are brought up. */
2792 	hp->linkcheck = 0;
2793 
2794 	/* Force timer state to 'asleep' with count of zero. */
2795 	hp->timer_state = asleep;
2796 	hp->timer_ticks = 0;
2797 
2798 	timer_setup(&hp->happy_timer, happy_meal_timer, 0);
2799 
2800 	hp->dev = dev;
2801 	dev->netdev_ops = &hme_netdev_ops;
2802 	dev->watchdog_timeo = 5*HZ;
2803 	dev->ethtool_ops = &hme_ethtool_ops;
2804 
2805 	/* Happy Meal can do it all... */
2806 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2807 	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2808 
2809 	hp->irq = op->archdata.irqs[0];
2810 
2811 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2812 	/* Hook up SBUS register/descriptor accessors. */
2813 	hp->read_desc32 = sbus_hme_read_desc32;
2814 	hp->write_txd = sbus_hme_write_txd;
2815 	hp->write_rxd = sbus_hme_write_rxd;
2816 	hp->read32 = sbus_hme_read32;
2817 	hp->write32 = sbus_hme_write32;
2818 #endif
2819 
2820 	/* Grrr, Happy Meal comes up by default not advertising
2821 	 * full duplex 100baseT capabilities, fix this.
2822 	 */
2823 	spin_lock_irq(&hp->happy_lock);
2824 	happy_meal_set_initial_advertisement(hp);
2825 	spin_unlock_irq(&hp->happy_lock);
2826 
2827 	err = register_netdev(hp->dev);
2828 	if (err) {
2829 		printk(KERN_ERR "happymeal: Cannot register net device, "
2830 		       "aborting.\n");
2831 		goto err_out_free_coherent;
2832 	}
2833 
2834 	platform_set_drvdata(op, hp);
2835 
2836 	if (qfe_slot != -1)
2837 		printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2838 		       dev->name, qfe_slot);
2839 	else
2840 		printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2841 		       dev->name);
2842 
2843 	printk("%pM\n", dev->dev_addr);
2844 
2845 	return 0;
2846 
2847 err_out_free_coherent:
2848 	dma_free_coherent(hp->dma_dev,
2849 			  PAGE_SIZE,
2850 			  hp->happy_block,
2851 			  hp->hblock_dvma);
2852 
2853 err_out_iounmap:
2854 	if (hp->gregs)
2855 		of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
2856 	if (hp->etxregs)
2857 		of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
2858 	if (hp->erxregs)
2859 		of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
2860 	if (hp->bigmacregs)
2861 		of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
2862 	if (hp->tcvregs)
2863 		of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
2864 
2865 	if (qp)
2866 		qp->happy_meals[qfe_slot] = NULL;
2867 
2868 err_out_free_netdev:
2869 	free_netdev(dev);
2870 
2871 err_out:
2872 	return err;
2873 }
2874 #endif
2875 
2876 #ifdef CONFIG_PCI
2877 #ifndef CONFIG_SPARC
2878 static int is_quattro_p(struct pci_dev *pdev)
2879 {
2880 	struct pci_dev *busdev = pdev->bus->self;
2881 	struct pci_dev *this_pdev;
2882 	int n_hmes;
2883 
2884 	if (busdev == NULL ||
2885 	    busdev->vendor != PCI_VENDOR_ID_DEC ||
2886 	    busdev->device != PCI_DEVICE_ID_DEC_21153)
2887 		return 0;
2888 
2889 	n_hmes = 0;
2890 	list_for_each_entry(this_pdev, &pdev->bus->devices, bus_list) {
2891 		if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2892 		    this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2893 			n_hmes++;
2894 	}
2895 
2896 	if (n_hmes != 4)
2897 		return 0;
2898 
2899 	return 1;
2900 }
2901 
2902 /* Fetch MAC address from vital product data of PCI ROM. */
2903 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2904 {
2905 	int this_offset;
2906 
2907 	for (this_offset = 0x20; this_offset < len; this_offset++) {
2908 		void __iomem *p = rom_base + this_offset;
2909 
2910 		if (readb(p + 0) != 0x90 ||
2911 		    readb(p + 1) != 0x00 ||
2912 		    readb(p + 2) != 0x09 ||
2913 		    readb(p + 3) != 0x4e ||
2914 		    readb(p + 4) != 0x41 ||
2915 		    readb(p + 5) != 0x06)
2916 			continue;
2917 
2918 		this_offset += 6;
2919 		p += 6;
2920 
2921 		if (index == 0) {
2922 			int i;
2923 
2924 			for (i = 0; i < 6; i++)
2925 				dev_addr[i] = readb(p + i);
2926 			return 1;
2927 		}
2928 		index--;
2929 	}
2930 	return 0;
2931 }
2932 
2933 static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2934 {
2935 	size_t size;
2936 	void __iomem *p = pci_map_rom(pdev, &size);
2937 
2938 	if (p) {
2939 		int index = 0;
2940 		int found;
2941 
2942 		if (is_quattro_p(pdev))
2943 			index = PCI_SLOT(pdev->devfn);
2944 
2945 		found = readb(p) == 0x55 &&
2946 			readb(p + 1) == 0xaa &&
2947 			find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2948 		pci_unmap_rom(pdev, p);
2949 		if (found)
2950 			return;
2951 	}
2952 
2953 	/* Sun MAC prefix then 3 random bytes. */
2954 	dev_addr[0] = 0x08;
2955 	dev_addr[1] = 0x00;
2956 	dev_addr[2] = 0x20;
2957 	get_random_bytes(&dev_addr[3], 3);
2958 }
2959 #endif /* !(CONFIG_SPARC) */
2960 
2961 static int happy_meal_pci_probe(struct pci_dev *pdev,
2962 				const struct pci_device_id *ent)
2963 {
2964 	struct quattro *qp = NULL;
2965 #ifdef CONFIG_SPARC
2966 	struct device_node *dp;
2967 #endif
2968 	struct happy_meal *hp;
2969 	struct net_device *dev;
2970 	void __iomem *hpreg_base;
2971 	unsigned long hpreg_res;
2972 	int i, qfe_slot = -1;
2973 	char prom_name[64];
2974 	u8 addr[ETH_ALEN];
2975 	int err;
2976 
2977 	/* Now make sure pci_dev cookie is there. */
2978 #ifdef CONFIG_SPARC
2979 	dp = pci_device_to_OF_node(pdev);
2980 	snprintf(prom_name, sizeof(prom_name), "%pOFn", dp);
2981 #else
2982 	if (is_quattro_p(pdev))
2983 		strcpy(prom_name, "SUNW,qfe");
2984 	else
2985 		strcpy(prom_name, "SUNW,hme");
2986 #endif
2987 
2988 	err = -ENODEV;
2989 
2990 	if (pci_enable_device(pdev))
2991 		goto err_out;
2992 	pci_set_master(pdev);
2993 
2994 	if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
2995 		qp = quattro_pci_find(pdev);
2996 		if (qp == NULL)
2997 			goto err_out;
2998 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2999 			if (qp->happy_meals[qfe_slot] == NULL)
3000 				break;
3001 		if (qfe_slot == 4)
3002 			goto err_out;
3003 	}
3004 
3005 	dev = alloc_etherdev(sizeof(struct happy_meal));
3006 	err = -ENOMEM;
3007 	if (!dev)
3008 		goto err_out;
3009 	SET_NETDEV_DEV(dev, &pdev->dev);
3010 
3011 	if (hme_version_printed++ == 0)
3012 		printk(KERN_INFO "%s", version);
3013 
3014 	hp = netdev_priv(dev);
3015 
3016 	hp->happy_dev = pdev;
3017 	hp->dma_dev = &pdev->dev;
3018 
3019 	spin_lock_init(&hp->happy_lock);
3020 
3021 	if (qp != NULL) {
3022 		hp->qfe_parent = qp;
3023 		hp->qfe_ent = qfe_slot;
3024 		qp->happy_meals[qfe_slot] = dev;
3025 	}
3026 
3027 	hpreg_res = pci_resource_start(pdev, 0);
3028 	err = -ENODEV;
3029 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3030 		printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
3031 		goto err_out_clear_quattro;
3032 	}
3033 	if (pci_request_regions(pdev, DRV_NAME)) {
3034 		printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3035 		       "aborting.\n");
3036 		goto err_out_clear_quattro;
3037 	}
3038 
3039 	if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == NULL) {
3040 		printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3041 		goto err_out_free_res;
3042 	}
3043 
3044 	for (i = 0; i < 6; i++) {
3045 		if (macaddr[i] != 0)
3046 			break;
3047 	}
3048 	if (i < 6) { /* a mac address was given */
3049 		for (i = 0; i < 6; i++)
3050 			addr[i] = macaddr[i];
3051 		eth_hw_addr_set(dev, addr);
3052 		macaddr[5]++;
3053 	} else {
3054 #ifdef CONFIG_SPARC
3055 		const unsigned char *addr;
3056 		int len;
3057 
3058 		if (qfe_slot != -1 &&
3059 		    (addr = of_get_property(dp, "local-mac-address", &len))
3060 			!= NULL &&
3061 		    len == 6) {
3062 			eth_hw_addr_set(dev, addr);
3063 		} else {
3064 			eth_hw_addr_set(dev, idprom->id_ethaddr);
3065 		}
3066 #else
3067 		u8 addr[ETH_ALEN];
3068 
3069 		get_hme_mac_nonsparc(pdev, addr);
3070 		eth_hw_addr_set(dev, addr);
3071 #endif
3072 	}
3073 
3074 	/* Layout registers. */
3075 	hp->gregs      = (hpreg_base + 0x0000UL);
3076 	hp->etxregs    = (hpreg_base + 0x2000UL);
3077 	hp->erxregs    = (hpreg_base + 0x4000UL);
3078 	hp->bigmacregs = (hpreg_base + 0x6000UL);
3079 	hp->tcvregs    = (hpreg_base + 0x7000UL);
3080 
3081 #ifdef CONFIG_SPARC
3082 	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
3083 	if (hp->hm_revision == 0xff)
3084 		hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
3085 #else
3086 	/* works with this on non-sparc hosts */
3087 	hp->hm_revision = 0x20;
3088 #endif
3089 
3090 	/* Now enable the feature flags we can. */
3091 	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3092 		hp->happy_flags = HFLAG_20_21;
3093 	else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3094 		hp->happy_flags = HFLAG_NOT_A0;
3095 
3096 	if (qp != NULL)
3097 		hp->happy_flags |= HFLAG_QUATTRO;
3098 
3099 	/* And of course, indicate this is PCI. */
3100 	hp->happy_flags |= HFLAG_PCI;
3101 
3102 #ifdef CONFIG_SPARC
3103 	/* Assume PCI happy meals can handle all burst sizes. */
3104 	hp->happy_bursts = DMA_BURSTBITS;
3105 #endif
3106 
3107 	hp->happy_block = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3108 					     &hp->hblock_dvma, GFP_KERNEL);
3109 	err = -ENODEV;
3110 	if (!hp->happy_block)
3111 		goto err_out_iounmap;
3112 
3113 	hp->linkcheck = 0;
3114 	hp->timer_state = asleep;
3115 	hp->timer_ticks = 0;
3116 
3117 	timer_setup(&hp->happy_timer, happy_meal_timer, 0);
3118 
3119 	hp->irq = pdev->irq;
3120 	hp->dev = dev;
3121 	dev->netdev_ops = &hme_netdev_ops;
3122 	dev->watchdog_timeo = 5*HZ;
3123 	dev->ethtool_ops = &hme_ethtool_ops;
3124 
3125 	/* Happy Meal can do it all... */
3126 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
3127 	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
3128 
3129 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3130 	/* Hook up PCI register/descriptor accessors. */
3131 	hp->read_desc32 = pci_hme_read_desc32;
3132 	hp->write_txd = pci_hme_write_txd;
3133 	hp->write_rxd = pci_hme_write_rxd;
3134 	hp->read32 = pci_hme_read32;
3135 	hp->write32 = pci_hme_write32;
3136 #endif
3137 
3138 	/* Grrr, Happy Meal comes up by default not advertising
3139 	 * full duplex 100baseT capabilities, fix this.
3140 	 */
3141 	spin_lock_irq(&hp->happy_lock);
3142 	happy_meal_set_initial_advertisement(hp);
3143 	spin_unlock_irq(&hp->happy_lock);
3144 
3145 	err = register_netdev(hp->dev);
3146 	if (err) {
3147 		printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3148 		       "aborting.\n");
3149 		goto err_out_free_coherent;
3150 	}
3151 
3152 	pci_set_drvdata(pdev, hp);
3153 
3154 	if (!qfe_slot) {
3155 		struct pci_dev *qpdev = qp->quattro_dev;
3156 
3157 		prom_name[0] = 0;
3158 		if (!strncmp(dev->name, "eth", 3)) {
3159 			int i = simple_strtoul(dev->name + 3, NULL, 10);
3160 			sprintf(prom_name, "-%d", i + 3);
3161 		}
3162 		printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3163 		if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3164 		    qpdev->device == PCI_DEVICE_ID_DEC_21153)
3165 			printk("DEC 21153 PCI Bridge\n");
3166 		else
3167 			printk("unknown bridge %04x.%04x\n",
3168 				qpdev->vendor, qpdev->device);
3169 	}
3170 
3171 	if (qfe_slot != -1)
3172 		printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3173 		       dev->name, qfe_slot);
3174 	else
3175 		printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3176 		       dev->name);
3177 
3178 	printk("%pM\n", dev->dev_addr);
3179 
3180 	return 0;
3181 
3182 err_out_free_coherent:
3183 	dma_free_coherent(hp->dma_dev, PAGE_SIZE,
3184 			  hp->happy_block, hp->hblock_dvma);
3185 
3186 err_out_iounmap:
3187 	iounmap(hp->gregs);
3188 
3189 err_out_free_res:
3190 	pci_release_regions(pdev);
3191 
3192 err_out_clear_quattro:
3193 	if (qp != NULL)
3194 		qp->happy_meals[qfe_slot] = NULL;
3195 
3196 	free_netdev(dev);
3197 
3198 err_out:
3199 	return err;
3200 }
3201 
3202 static void happy_meal_pci_remove(struct pci_dev *pdev)
3203 {
3204 	struct happy_meal *hp = pci_get_drvdata(pdev);
3205 	struct net_device *net_dev = hp->dev;
3206 
3207 	unregister_netdev(net_dev);
3208 
3209 	dma_free_coherent(hp->dma_dev, PAGE_SIZE,
3210 			  hp->happy_block, hp->hblock_dvma);
3211 	iounmap(hp->gregs);
3212 	pci_release_regions(hp->happy_dev);
3213 
3214 	free_netdev(net_dev);
3215 }
3216 
3217 static const struct pci_device_id happymeal_pci_ids[] = {
3218 	{ PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3219 	{ }			/* Terminating entry */
3220 };
3221 
3222 MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3223 
3224 static struct pci_driver hme_pci_driver = {
3225 	.name		= "hme",
3226 	.id_table	= happymeal_pci_ids,
3227 	.probe		= happy_meal_pci_probe,
3228 	.remove		= happy_meal_pci_remove,
3229 };
3230 
3231 static int __init happy_meal_pci_init(void)
3232 {
3233 	return pci_register_driver(&hme_pci_driver);
3234 }
3235 
3236 static void happy_meal_pci_exit(void)
3237 {
3238 	pci_unregister_driver(&hme_pci_driver);
3239 
3240 	while (qfe_pci_list) {
3241 		struct quattro *qfe = qfe_pci_list;
3242 		struct quattro *next = qfe->next;
3243 
3244 		kfree(qfe);
3245 
3246 		qfe_pci_list = next;
3247 	}
3248 }
3249 
3250 #endif
3251 
3252 #ifdef CONFIG_SBUS
3253 static const struct of_device_id hme_sbus_match[];
3254 static int hme_sbus_probe(struct platform_device *op)
3255 {
3256 	const struct of_device_id *match;
3257 	struct device_node *dp = op->dev.of_node;
3258 	const char *model = of_get_property(dp, "model", NULL);
3259 	int is_qfe;
3260 
3261 	match = of_match_device(hme_sbus_match, &op->dev);
3262 	if (!match)
3263 		return -EINVAL;
3264 	is_qfe = (match->data != NULL);
3265 
3266 	if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3267 		is_qfe = 1;
3268 
3269 	return happy_meal_sbus_probe_one(op, is_qfe);
3270 }
3271 
3272 static int hme_sbus_remove(struct platform_device *op)
3273 {
3274 	struct happy_meal *hp = platform_get_drvdata(op);
3275 	struct net_device *net_dev = hp->dev;
3276 
3277 	unregister_netdev(net_dev);
3278 
3279 	/* XXX qfe parent interrupt... */
3280 
3281 	of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
3282 	of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
3283 	of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
3284 	of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
3285 	of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
3286 	dma_free_coherent(hp->dma_dev,
3287 			  PAGE_SIZE,
3288 			  hp->happy_block,
3289 			  hp->hblock_dvma);
3290 
3291 	free_netdev(net_dev);
3292 
3293 	return 0;
3294 }
3295 
3296 static const struct of_device_id hme_sbus_match[] = {
3297 	{
3298 		.name = "SUNW,hme",
3299 	},
3300 	{
3301 		.name = "SUNW,qfe",
3302 		.data = (void *) 1,
3303 	},
3304 	{
3305 		.name = "qfe",
3306 		.data = (void *) 1,
3307 	},
3308 	{},
3309 };
3310 
3311 MODULE_DEVICE_TABLE(of, hme_sbus_match);
3312 
3313 static struct platform_driver hme_sbus_driver = {
3314 	.driver = {
3315 		.name = "hme",
3316 		.of_match_table = hme_sbus_match,
3317 	},
3318 	.probe		= hme_sbus_probe,
3319 	.remove		= hme_sbus_remove,
3320 };
3321 
3322 static int __init happy_meal_sbus_init(void)
3323 {
3324 	int err;
3325 
3326 	err = platform_driver_register(&hme_sbus_driver);
3327 	if (!err)
3328 		err = quattro_sbus_register_irqs();
3329 
3330 	return err;
3331 }
3332 
3333 static void happy_meal_sbus_exit(void)
3334 {
3335 	platform_driver_unregister(&hme_sbus_driver);
3336 	quattro_sbus_free_irqs();
3337 
3338 	while (qfe_sbus_list) {
3339 		struct quattro *qfe = qfe_sbus_list;
3340 		struct quattro *next = qfe->next;
3341 
3342 		kfree(qfe);
3343 
3344 		qfe_sbus_list = next;
3345 	}
3346 }
3347 #endif
3348 
3349 static int __init happy_meal_probe(void)
3350 {
3351 	int err = 0;
3352 
3353 #ifdef CONFIG_SBUS
3354 	err = happy_meal_sbus_init();
3355 #endif
3356 #ifdef CONFIG_PCI
3357 	if (!err) {
3358 		err = happy_meal_pci_init();
3359 #ifdef CONFIG_SBUS
3360 		if (err)
3361 			happy_meal_sbus_exit();
3362 #endif
3363 	}
3364 #endif
3365 
3366 	return err;
3367 }
3368 
3369 
3370 static void __exit happy_meal_exit(void)
3371 {
3372 #ifdef CONFIG_SBUS
3373 	happy_meal_sbus_exit();
3374 #endif
3375 #ifdef CONFIG_PCI
3376 	happy_meal_pci_exit();
3377 #endif
3378 }
3379 
3380 module_init(happy_meal_probe);
3381 module_exit(happy_meal_exit);
3382