1 // SPDX-License-Identifier: GPL-2.0 2 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching, 3 * auto carrier detecting ethernet driver. Also known as the 4 * "Happy Meal Ethernet" found on SunSwift SBUS cards. 5 * 6 * Copyright (C) 1996, 1998, 1999, 2002, 2003, 7 * 2006, 2008 David S. Miller (davem@davemloft.net) 8 * 9 * Changes : 10 * 2000/11/11 Willy Tarreau <willy AT meta-x.org> 11 * - port to non-sparc architectures. Tested only on x86 and 12 * only currently works with QFE PCI cards. 13 * - ability to specify the MAC address at module load time by passing this 14 * argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50 15 */ 16 17 #include <linux/bitops.h> 18 #include <linux/crc32.h> 19 #include <linux/delay.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/errno.h> 22 #include <linux/etherdevice.h> 23 #include <linux/ethtool.h> 24 #include <linux/fcntl.h> 25 #include <linux/in.h> 26 #include <linux/init.h> 27 #include <linux/interrupt.h> 28 #include <linux/io.h> 29 #include <linux/ioport.h> 30 #include <linux/kernel.h> 31 #include <linux/mii.h> 32 #include <linux/mm.h> 33 #include <linux/module.h> 34 #include <linux/netdevice.h> 35 #include <linux/of.h> 36 #include <linux/of_device.h> 37 #include <linux/pci.h> 38 #include <linux/platform_device.h> 39 #include <linux/random.h> 40 #include <linux/skbuff.h> 41 #include <linux/slab.h> 42 #include <linux/string.h> 43 #include <linux/types.h> 44 #include <linux/uaccess.h> 45 46 #include <asm/byteorder.h> 47 #include <asm/dma.h> 48 #include <asm/irq.h> 49 50 #ifdef CONFIG_SPARC 51 #include <asm/auxio.h> 52 #include <asm/idprom.h> 53 #include <asm/openprom.h> 54 #include <asm/oplib.h> 55 #include <asm/prom.h> 56 #endif 57 58 #include "sunhme.h" 59 60 #define DRV_NAME "sunhme" 61 62 MODULE_AUTHOR("David S. Miller <davem@davemloft.net>"); 63 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver"); 64 MODULE_LICENSE("GPL"); 65 66 static int macaddr[6]; 67 68 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */ 69 module_param_array(macaddr, int, NULL, 0); 70 MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set"); 71 72 #ifdef CONFIG_SBUS 73 static struct quattro *qfe_sbus_list; 74 #endif 75 76 #ifdef CONFIG_PCI 77 static struct quattro *qfe_pci_list; 78 #endif 79 80 #define hme_debug(fmt, ...) pr_debug("%s: " fmt, __func__, ##__VA_ARGS__) 81 #define HMD hme_debug 82 83 /* "Auto Switch Debug" aka phy debug */ 84 #if 1 85 #define ASD hme_debug 86 #else 87 #define ASD(...) 88 #endif 89 90 #if 0 91 struct hme_tx_logent { 92 unsigned int tstamp; 93 int tx_new, tx_old; 94 unsigned int action; 95 #define TXLOG_ACTION_IRQ 0x01 96 #define TXLOG_ACTION_TXMIT 0x02 97 #define TXLOG_ACTION_TBUSY 0x04 98 #define TXLOG_ACTION_NBUFS 0x08 99 unsigned int status; 100 }; 101 #define TX_LOG_LEN 128 102 static struct hme_tx_logent tx_log[TX_LOG_LEN]; 103 static int txlog_cur_entry; 104 static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s) 105 { 106 struct hme_tx_logent *tlp; 107 unsigned long flags; 108 109 local_irq_save(flags); 110 tlp = &tx_log[txlog_cur_entry]; 111 tlp->tstamp = (unsigned int)jiffies; 112 tlp->tx_new = hp->tx_new; 113 tlp->tx_old = hp->tx_old; 114 tlp->action = a; 115 tlp->status = s; 116 txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1); 117 local_irq_restore(flags); 118 } 119 static __inline__ void tx_dump_log(void) 120 { 121 int i, this; 122 123 this = txlog_cur_entry; 124 for (i = 0; i < TX_LOG_LEN; i++) { 125 pr_err("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i, 126 tx_log[this].tstamp, 127 tx_log[this].tx_new, tx_log[this].tx_old, 128 tx_log[this].action, tx_log[this].status); 129 this = (this + 1) & (TX_LOG_LEN - 1); 130 } 131 } 132 #else 133 #define tx_add_log(hp, a, s) 134 #define tx_dump_log() 135 #endif 136 137 #define DEFAULT_IPG0 16 /* For lance-mode only */ 138 #define DEFAULT_IPG1 8 /* For all modes */ 139 #define DEFAULT_IPG2 4 /* For all modes */ 140 #define DEFAULT_JAMSIZE 4 /* Toe jam */ 141 142 /* NOTE: In the descriptor writes one _must_ write the address 143 * member _first_. The card must not be allowed to see 144 * the updated descriptor flags until the address is 145 * correct. I've added a write memory barrier between 146 * the two stores so that I can sleep well at night... -DaveM 147 */ 148 149 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI) 150 static void sbus_hme_write32(void __iomem *reg, u32 val) 151 { 152 sbus_writel(val, reg); 153 } 154 155 static u32 sbus_hme_read32(void __iomem *reg) 156 { 157 return sbus_readl(reg); 158 } 159 160 static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr) 161 { 162 rxd->rx_addr = (__force hme32)addr; 163 dma_wmb(); 164 rxd->rx_flags = (__force hme32)flags; 165 } 166 167 static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr) 168 { 169 txd->tx_addr = (__force hme32)addr; 170 dma_wmb(); 171 txd->tx_flags = (__force hme32)flags; 172 } 173 174 static u32 sbus_hme_read_desc32(hme32 *p) 175 { 176 return (__force u32)*p; 177 } 178 179 static void pci_hme_write32(void __iomem *reg, u32 val) 180 { 181 writel(val, reg); 182 } 183 184 static u32 pci_hme_read32(void __iomem *reg) 185 { 186 return readl(reg); 187 } 188 189 static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr) 190 { 191 rxd->rx_addr = (__force hme32)cpu_to_le32(addr); 192 dma_wmb(); 193 rxd->rx_flags = (__force hme32)cpu_to_le32(flags); 194 } 195 196 static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr) 197 { 198 txd->tx_addr = (__force hme32)cpu_to_le32(addr); 199 dma_wmb(); 200 txd->tx_flags = (__force hme32)cpu_to_le32(flags); 201 } 202 203 static u32 pci_hme_read_desc32(hme32 *p) 204 { 205 return le32_to_cpup((__le32 *)p); 206 } 207 208 #define hme_write32(__hp, __reg, __val) \ 209 ((__hp)->write32((__reg), (__val))) 210 #define hme_read32(__hp, __reg) \ 211 ((__hp)->read32(__reg)) 212 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \ 213 ((__hp)->write_rxd((__rxd), (__flags), (__addr))) 214 #define hme_write_txd(__hp, __txd, __flags, __addr) \ 215 ((__hp)->write_txd((__txd), (__flags), (__addr))) 216 #define hme_read_desc32(__hp, __p) \ 217 ((__hp)->read_desc32(__p)) 218 #else 219 #ifdef CONFIG_SBUS 220 /* SBUS only compilation */ 221 #define hme_write32(__hp, __reg, __val) \ 222 sbus_writel((__val), (__reg)) 223 #define hme_read32(__hp, __reg) \ 224 sbus_readl(__reg) 225 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \ 226 do { (__rxd)->rx_addr = (__force hme32)(u32)(__addr); \ 227 dma_wmb(); \ 228 (__rxd)->rx_flags = (__force hme32)(u32)(__flags); \ 229 } while(0) 230 #define hme_write_txd(__hp, __txd, __flags, __addr) \ 231 do { (__txd)->tx_addr = (__force hme32)(u32)(__addr); \ 232 dma_wmb(); \ 233 (__txd)->tx_flags = (__force hme32)(u32)(__flags); \ 234 } while(0) 235 #define hme_read_desc32(__hp, __p) ((__force u32)(hme32)*(__p)) 236 #else 237 /* PCI only compilation */ 238 #define hme_write32(__hp, __reg, __val) \ 239 writel((__val), (__reg)) 240 #define hme_read32(__hp, __reg) \ 241 readl(__reg) 242 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \ 243 do { (__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \ 244 dma_wmb(); \ 245 (__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \ 246 } while(0) 247 #define hme_write_txd(__hp, __txd, __flags, __addr) \ 248 do { (__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \ 249 dma_wmb(); \ 250 (__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \ 251 } while(0) 252 static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p) 253 { 254 return le32_to_cpup((__le32 *)p); 255 } 256 #endif 257 #endif 258 259 260 /* Oh yes, the MIF BitBang is mighty fun to program. BitBucket is more like it. */ 261 static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit) 262 { 263 hme_write32(hp, tregs + TCVR_BBDATA, bit); 264 hme_write32(hp, tregs + TCVR_BBCLOCK, 0); 265 hme_write32(hp, tregs + TCVR_BBCLOCK, 1); 266 } 267 268 #if 0 269 static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal) 270 { 271 u32 ret; 272 273 hme_write32(hp, tregs + TCVR_BBCLOCK, 0); 274 hme_write32(hp, tregs + TCVR_BBCLOCK, 1); 275 ret = hme_read32(hp, tregs + TCVR_CFG); 276 if (internal) 277 ret &= TCV_CFG_MDIO0; 278 else 279 ret &= TCV_CFG_MDIO1; 280 281 return ret; 282 } 283 #endif 284 285 static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal) 286 { 287 u32 retval; 288 289 hme_write32(hp, tregs + TCVR_BBCLOCK, 0); 290 udelay(1); 291 retval = hme_read32(hp, tregs + TCVR_CFG); 292 if (internal) 293 retval &= TCV_CFG_MDIO0; 294 else 295 retval &= TCV_CFG_MDIO1; 296 hme_write32(hp, tregs + TCVR_BBCLOCK, 1); 297 298 return retval; 299 } 300 301 #define TCVR_FAILURE 0x80000000 /* Impossible MIF read value */ 302 303 static int happy_meal_bb_read(struct happy_meal *hp, 304 void __iomem *tregs, int reg) 305 { 306 u32 tmp; 307 int retval = 0; 308 int i; 309 310 /* Enable the MIF BitBang outputs. */ 311 hme_write32(hp, tregs + TCVR_BBOENAB, 1); 312 313 /* Force BitBang into the idle state. */ 314 for (i = 0; i < 32; i++) 315 BB_PUT_BIT(hp, tregs, 1); 316 317 /* Give it the read sequence. */ 318 BB_PUT_BIT(hp, tregs, 0); 319 BB_PUT_BIT(hp, tregs, 1); 320 BB_PUT_BIT(hp, tregs, 1); 321 BB_PUT_BIT(hp, tregs, 0); 322 323 /* Give it the PHY address. */ 324 tmp = hp->paddr & 0xff; 325 for (i = 4; i >= 0; i--) 326 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); 327 328 /* Tell it what register we want to read. */ 329 tmp = (reg & 0xff); 330 for (i = 4; i >= 0; i--) 331 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); 332 333 /* Close down the MIF BitBang outputs. */ 334 hme_write32(hp, tregs + TCVR_BBOENAB, 0); 335 336 /* Now read in the value. */ 337 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); 338 for (i = 15; i >= 0; i--) 339 retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); 340 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); 341 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); 342 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); 343 ASD("reg=%d value=%x\n", reg, retval); 344 return retval; 345 } 346 347 static void happy_meal_bb_write(struct happy_meal *hp, 348 void __iomem *tregs, int reg, 349 unsigned short value) 350 { 351 u32 tmp; 352 int i; 353 354 ASD("reg=%d value=%x\n", reg, value); 355 356 /* Enable the MIF BitBang outputs. */ 357 hme_write32(hp, tregs + TCVR_BBOENAB, 1); 358 359 /* Force BitBang into the idle state. */ 360 for (i = 0; i < 32; i++) 361 BB_PUT_BIT(hp, tregs, 1); 362 363 /* Give it write sequence. */ 364 BB_PUT_BIT(hp, tregs, 0); 365 BB_PUT_BIT(hp, tregs, 1); 366 BB_PUT_BIT(hp, tregs, 0); 367 BB_PUT_BIT(hp, tregs, 1); 368 369 /* Give it the PHY address. */ 370 tmp = (hp->paddr & 0xff); 371 for (i = 4; i >= 0; i--) 372 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); 373 374 /* Tell it what register we will be writing. */ 375 tmp = (reg & 0xff); 376 for (i = 4; i >= 0; i--) 377 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); 378 379 /* Tell it to become ready for the bits. */ 380 BB_PUT_BIT(hp, tregs, 1); 381 BB_PUT_BIT(hp, tregs, 0); 382 383 for (i = 15; i >= 0; i--) 384 BB_PUT_BIT(hp, tregs, ((value >> i) & 1)); 385 386 /* Close down the MIF BitBang outputs. */ 387 hme_write32(hp, tregs + TCVR_BBOENAB, 0); 388 } 389 390 #define TCVR_READ_TRIES 16 391 392 static int happy_meal_tcvr_read(struct happy_meal *hp, 393 void __iomem *tregs, int reg) 394 { 395 int tries = TCVR_READ_TRIES; 396 int retval; 397 398 if (hp->tcvr_type == none) { 399 ASD("no transceiver, value=TCVR_FAILURE\n"); 400 return TCVR_FAILURE; 401 } 402 403 if (!(hp->happy_flags & HFLAG_FENABLE)) { 404 ASD("doing bit bang\n"); 405 return happy_meal_bb_read(hp, tregs, reg); 406 } 407 408 hme_write32(hp, tregs + TCVR_FRAME, 409 (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18))); 410 while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries) 411 udelay(20); 412 if (!tries) { 413 netdev_err(hp->dev, "Aieee, transceiver MIF read bolixed\n"); 414 return TCVR_FAILURE; 415 } 416 retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff; 417 ASD("reg=0x%02x value=%04x\n", reg, retval); 418 return retval; 419 } 420 421 #define TCVR_WRITE_TRIES 16 422 423 static void happy_meal_tcvr_write(struct happy_meal *hp, 424 void __iomem *tregs, int reg, 425 unsigned short value) 426 { 427 int tries = TCVR_WRITE_TRIES; 428 429 ASD("reg=0x%02x value=%04x\n", reg, value); 430 431 /* Welcome to Sun Microsystems, can I take your order please? */ 432 if (!(hp->happy_flags & HFLAG_FENABLE)) { 433 happy_meal_bb_write(hp, tregs, reg, value); 434 return; 435 } 436 437 /* Would you like fries with that? */ 438 hme_write32(hp, tregs + TCVR_FRAME, 439 (FRAME_WRITE | (hp->paddr << 23) | 440 ((reg & 0xff) << 18) | (value & 0xffff))); 441 while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries) 442 udelay(20); 443 444 /* Anything else? */ 445 if (!tries) 446 netdev_err(hp->dev, "Aieee, transceiver MIF write bolixed\n"); 447 448 /* Fifty-two cents is your change, have a nice day. */ 449 } 450 451 /* Auto negotiation. The scheme is very simple. We have a timer routine 452 * that keeps watching the auto negotiation process as it progresses. 453 * The DP83840 is first told to start doing it's thing, we set up the time 454 * and place the timer state machine in it's initial state. 455 * 456 * Here the timer peeks at the DP83840 status registers at each click to see 457 * if the auto negotiation has completed, we assume here that the DP83840 PHY 458 * will time out at some point and just tell us what (didn't) happen. For 459 * complete coverage we only allow so many of the ticks at this level to run, 460 * when this has expired we print a warning message and try another strategy. 461 * This "other" strategy is to force the interface into various speed/duplex 462 * configurations and we stop when we see a link-up condition before the 463 * maximum number of "peek" ticks have occurred. 464 * 465 * Once a valid link status has been detected we configure the BigMAC and 466 * the rest of the Happy Meal to speak the most efficient protocol we could 467 * get a clean link for. The priority for link configurations, highest first 468 * is: 469 * 100 Base-T Full Duplex 470 * 100 Base-T Half Duplex 471 * 10 Base-T Full Duplex 472 * 10 Base-T Half Duplex 473 * 474 * We start a new timer now, after a successful auto negotiation status has 475 * been detected. This timer just waits for the link-up bit to get set in 476 * the BMCR of the DP83840. When this occurs we print a kernel log message 477 * describing the link type in use and the fact that it is up. 478 * 479 * If a fatal error of some sort is signalled and detected in the interrupt 480 * service routine, and the chip is reset, or the link is ifconfig'd down 481 * and then back up, this entire process repeats itself all over again. 482 */ 483 static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs) 484 { 485 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); 486 487 /* Downgrade from full to half duplex. Only possible 488 * via ethtool. 489 */ 490 if (hp->sw_bmcr & BMCR_FULLDPLX) { 491 hp->sw_bmcr &= ~(BMCR_FULLDPLX); 492 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); 493 return 0; 494 } 495 496 /* Downgrade from 100 to 10. */ 497 if (hp->sw_bmcr & BMCR_SPEED100) { 498 hp->sw_bmcr &= ~(BMCR_SPEED100); 499 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); 500 return 0; 501 } 502 503 /* We've tried everything. */ 504 return -1; 505 } 506 507 static void display_link_mode(struct happy_meal *hp, void __iomem *tregs) 508 { 509 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA); 510 511 netdev_info(hp->dev, 512 "Link is up using %s transceiver at %dMb/s, %s Duplex.\n", 513 hp->tcvr_type == external ? "external" : "internal", 514 hp->sw_lpa & (LPA_100HALF | LPA_100FULL) ? 100 : 10, 515 hp->sw_lpa & (LPA_100FULL | LPA_10FULL) ? "Full" : "Half"); 516 } 517 518 static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs) 519 { 520 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); 521 522 netdev_info(hp->dev, 523 "Link has been forced up using %s transceiver at %dMb/s, %s Duplex.\n", 524 hp->tcvr_type == external ? "external" : "internal", 525 hp->sw_bmcr & BMCR_SPEED100 ? 100 : 10, 526 hp->sw_bmcr & BMCR_FULLDPLX ? "Full" : "Half"); 527 } 528 529 static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs) 530 { 531 int full; 532 533 /* All we care about is making sure the bigmac tx_cfg has a 534 * proper duplex setting. 535 */ 536 if (hp->timer_state == arbwait) { 537 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA); 538 if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL))) 539 goto no_response; 540 if (hp->sw_lpa & LPA_100FULL) 541 full = 1; 542 else if (hp->sw_lpa & LPA_100HALF) 543 full = 0; 544 else if (hp->sw_lpa & LPA_10FULL) 545 full = 1; 546 else 547 full = 0; 548 } else { 549 /* Forcing a link mode. */ 550 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); 551 if (hp->sw_bmcr & BMCR_FULLDPLX) 552 full = 1; 553 else 554 full = 0; 555 } 556 557 /* Before changing other bits in the tx_cfg register, and in 558 * general any of other the TX config registers too, you 559 * must: 560 * 1) Clear Enable 561 * 2) Poll with reads until that bit reads back as zero 562 * 3) Make TX configuration changes 563 * 4) Set Enable once more 564 */ 565 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG, 566 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & 567 ~(BIGMAC_TXCFG_ENABLE)); 568 while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE) 569 barrier(); 570 if (full) { 571 hp->happy_flags |= HFLAG_FULL; 572 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG, 573 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) | 574 BIGMAC_TXCFG_FULLDPLX); 575 } else { 576 hp->happy_flags &= ~(HFLAG_FULL); 577 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG, 578 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & 579 ~(BIGMAC_TXCFG_FULLDPLX)); 580 } 581 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG, 582 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) | 583 BIGMAC_TXCFG_ENABLE); 584 return 0; 585 no_response: 586 return 1; 587 } 588 589 static int is_lucent_phy(struct happy_meal *hp) 590 { 591 void __iomem *tregs = hp->tcvregs; 592 unsigned short mr2, mr3; 593 int ret = 0; 594 595 mr2 = happy_meal_tcvr_read(hp, tregs, 2); 596 mr3 = happy_meal_tcvr_read(hp, tregs, 3); 597 if ((mr2 & 0xffff) == 0x0180 && 598 ((mr3 & 0xffff) >> 10) == 0x1d) 599 ret = 1; 600 601 return ret; 602 } 603 604 /* hp->happy_lock must be held */ 605 static void 606 happy_meal_begin_auto_negotiation(struct happy_meal *hp, 607 void __iomem *tregs, 608 const struct ethtool_link_ksettings *ep) 609 { 610 int timeout; 611 612 /* Read all of the registers we are interested in now. */ 613 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); 614 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); 615 hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1); 616 hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2); 617 618 /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */ 619 620 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE); 621 if (!ep || ep->base.autoneg == AUTONEG_ENABLE) { 622 /* Advertise everything we can support. */ 623 if (hp->sw_bmsr & BMSR_10HALF) 624 hp->sw_advertise |= (ADVERTISE_10HALF); 625 else 626 hp->sw_advertise &= ~(ADVERTISE_10HALF); 627 628 if (hp->sw_bmsr & BMSR_10FULL) 629 hp->sw_advertise |= (ADVERTISE_10FULL); 630 else 631 hp->sw_advertise &= ~(ADVERTISE_10FULL); 632 if (hp->sw_bmsr & BMSR_100HALF) 633 hp->sw_advertise |= (ADVERTISE_100HALF); 634 else 635 hp->sw_advertise &= ~(ADVERTISE_100HALF); 636 if (hp->sw_bmsr & BMSR_100FULL) 637 hp->sw_advertise |= (ADVERTISE_100FULL); 638 else 639 hp->sw_advertise &= ~(ADVERTISE_100FULL); 640 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise); 641 642 /* XXX Currently no Happy Meal cards I know off support 100BaseT4, 643 * XXX and this is because the DP83840 does not support it, changes 644 * XXX would need to be made to the tx/rx logic in the driver as well 645 * XXX so I completely skip checking for it in the BMSR for now. 646 */ 647 648 ASD("Advertising [ %s%s%s%s]\n", 649 hp->sw_advertise & ADVERTISE_10HALF ? "10H " : "", 650 hp->sw_advertise & ADVERTISE_10FULL ? "10F " : "", 651 hp->sw_advertise & ADVERTISE_100HALF ? "100H " : "", 652 hp->sw_advertise & ADVERTISE_100FULL ? "100F " : ""); 653 654 /* Enable Auto-Negotiation, this is usually on already... */ 655 hp->sw_bmcr |= BMCR_ANENABLE; 656 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); 657 658 /* Restart it to make sure it is going. */ 659 hp->sw_bmcr |= BMCR_ANRESTART; 660 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); 661 662 /* BMCR_ANRESTART self clears when the process has begun. */ 663 664 timeout = 64; /* More than enough. */ 665 while (--timeout) { 666 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); 667 if (!(hp->sw_bmcr & BMCR_ANRESTART)) 668 break; /* got it. */ 669 udelay(10); 670 } 671 if (!timeout) { 672 netdev_err(hp->dev, 673 "Happy Meal would not start auto negotiation BMCR=0x%04x\n", 674 hp->sw_bmcr); 675 netdev_notice(hp->dev, 676 "Performing force link detection.\n"); 677 goto force_link; 678 } else { 679 hp->timer_state = arbwait; 680 } 681 } else { 682 force_link: 683 /* Force the link up, trying first a particular mode. 684 * Either we are here at the request of ethtool or 685 * because the Happy Meal would not start to autoneg. 686 */ 687 688 /* Disable auto-negotiation in BMCR, enable the duplex and 689 * speed setting, init the timer state machine, and fire it off. 690 */ 691 if (!ep || ep->base.autoneg == AUTONEG_ENABLE) { 692 hp->sw_bmcr = BMCR_SPEED100; 693 } else { 694 if (ep->base.speed == SPEED_100) 695 hp->sw_bmcr = BMCR_SPEED100; 696 else 697 hp->sw_bmcr = 0; 698 if (ep->base.duplex == DUPLEX_FULL) 699 hp->sw_bmcr |= BMCR_FULLDPLX; 700 } 701 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); 702 703 if (!is_lucent_phy(hp)) { 704 /* OK, seems we need do disable the transceiver for the first 705 * tick to make sure we get an accurate link state at the 706 * second tick. 707 */ 708 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, 709 DP83840_CSCONFIG); 710 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB); 711 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, 712 hp->sw_csconfig); 713 } 714 hp->timer_state = ltrywait; 715 } 716 717 hp->timer_ticks = 0; 718 hp->happy_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */ 719 add_timer(&hp->happy_timer); 720 } 721 722 static void happy_meal_timer(struct timer_list *t) 723 { 724 struct happy_meal *hp = from_timer(hp, t, happy_timer); 725 void __iomem *tregs = hp->tcvregs; 726 int restart_timer = 0; 727 728 spin_lock_irq(&hp->happy_lock); 729 730 hp->timer_ticks++; 731 switch(hp->timer_state) { 732 case arbwait: 733 /* Only allow for 5 ticks, thats 10 seconds and much too 734 * long to wait for arbitration to complete. 735 */ 736 if (hp->timer_ticks >= 10) { 737 /* Enter force mode. */ 738 do_force_mode: 739 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); 740 netdev_notice(hp->dev, 741 "Auto-Negotiation unsuccessful, trying force link mode\n"); 742 hp->sw_bmcr = BMCR_SPEED100; 743 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); 744 745 if (!is_lucent_phy(hp)) { 746 /* OK, seems we need do disable the transceiver for the first 747 * tick to make sure we get an accurate link state at the 748 * second tick. 749 */ 750 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG); 751 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB); 752 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig); 753 } 754 hp->timer_state = ltrywait; 755 hp->timer_ticks = 0; 756 restart_timer = 1; 757 } else { 758 /* Anything interesting happen? */ 759 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); 760 if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) { 761 int ret; 762 763 /* Just what we've been waiting for... */ 764 ret = set_happy_link_modes(hp, tregs); 765 if (ret) { 766 /* Ooops, something bad happened, go to force 767 * mode. 768 * 769 * XXX Broken hubs which don't support 802.3u 770 * XXX auto-negotiation make this happen as well. 771 */ 772 goto do_force_mode; 773 } 774 775 /* Success, at least so far, advance our state engine. */ 776 hp->timer_state = lupwait; 777 restart_timer = 1; 778 } else { 779 restart_timer = 1; 780 } 781 } 782 break; 783 784 case lupwait: 785 /* Auto negotiation was successful and we are awaiting a 786 * link up status. I have decided to let this timer run 787 * forever until some sort of error is signalled, reporting 788 * a message to the user at 10 second intervals. 789 */ 790 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); 791 if (hp->sw_bmsr & BMSR_LSTATUS) { 792 /* Wheee, it's up, display the link mode in use and put 793 * the timer to sleep. 794 */ 795 display_link_mode(hp, tregs); 796 hp->timer_state = asleep; 797 restart_timer = 0; 798 } else { 799 if (hp->timer_ticks >= 10) { 800 netdev_notice(hp->dev, 801 "Auto negotiation successful, link still not completely up.\n"); 802 hp->timer_ticks = 0; 803 restart_timer = 1; 804 } else { 805 restart_timer = 1; 806 } 807 } 808 break; 809 810 case ltrywait: 811 /* Making the timeout here too long can make it take 812 * annoyingly long to attempt all of the link mode 813 * permutations, but then again this is essentially 814 * error recovery code for the most part. 815 */ 816 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); 817 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG); 818 if (hp->timer_ticks == 1) { 819 if (!is_lucent_phy(hp)) { 820 /* Re-enable transceiver, we'll re-enable the transceiver next 821 * tick, then check link state on the following tick. 822 */ 823 hp->sw_csconfig |= CSCONFIG_TCVDISAB; 824 happy_meal_tcvr_write(hp, tregs, 825 DP83840_CSCONFIG, hp->sw_csconfig); 826 } 827 restart_timer = 1; 828 break; 829 } 830 if (hp->timer_ticks == 2) { 831 if (!is_lucent_phy(hp)) { 832 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB); 833 happy_meal_tcvr_write(hp, tregs, 834 DP83840_CSCONFIG, hp->sw_csconfig); 835 } 836 restart_timer = 1; 837 break; 838 } 839 if (hp->sw_bmsr & BMSR_LSTATUS) { 840 /* Force mode selection success. */ 841 display_forced_link_mode(hp, tregs); 842 set_happy_link_modes(hp, tregs); /* XXX error? then what? */ 843 hp->timer_state = asleep; 844 restart_timer = 0; 845 } else { 846 if (hp->timer_ticks >= 4) { /* 6 seconds or so... */ 847 int ret; 848 849 ret = try_next_permutation(hp, tregs); 850 if (ret == -1) { 851 /* Aieee, tried them all, reset the 852 * chip and try all over again. 853 */ 854 855 /* Let the user know... */ 856 netdev_notice(hp->dev, 857 "Link down, cable problem?\n"); 858 859 happy_meal_begin_auto_negotiation(hp, tregs, NULL); 860 goto out; 861 } 862 if (!is_lucent_phy(hp)) { 863 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, 864 DP83840_CSCONFIG); 865 hp->sw_csconfig |= CSCONFIG_TCVDISAB; 866 happy_meal_tcvr_write(hp, tregs, 867 DP83840_CSCONFIG, hp->sw_csconfig); 868 } 869 hp->timer_ticks = 0; 870 restart_timer = 1; 871 } else { 872 restart_timer = 1; 873 } 874 } 875 break; 876 877 case asleep: 878 default: 879 /* Can't happens.... */ 880 netdev_err(hp->dev, 881 "Aieee, link timer is asleep but we got one anyways!\n"); 882 restart_timer = 0; 883 hp->timer_ticks = 0; 884 hp->timer_state = asleep; /* foo on you */ 885 break; 886 } 887 888 if (restart_timer) { 889 hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */ 890 add_timer(&hp->happy_timer); 891 } 892 893 out: 894 spin_unlock_irq(&hp->happy_lock); 895 } 896 897 #define TX_RESET_TRIES 32 898 #define RX_RESET_TRIES 32 899 900 /* hp->happy_lock must be held */ 901 static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs) 902 { 903 int tries = TX_RESET_TRIES; 904 905 HMD("reset...\n"); 906 907 /* Would you like to try our SMCC Delux? */ 908 hme_write32(hp, bregs + BMAC_TXSWRESET, 0); 909 while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries) 910 udelay(20); 911 912 /* Lettuce, tomato, buggy hardware (no extra charge)? */ 913 if (!tries) 914 netdev_err(hp->dev, "Transceiver BigMac ATTACK!"); 915 916 /* Take care. */ 917 HMD("done\n"); 918 } 919 920 /* hp->happy_lock must be held */ 921 static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs) 922 { 923 int tries = RX_RESET_TRIES; 924 925 HMD("reset...\n"); 926 927 /* We have a special on GNU/Viking hardware bugs today. */ 928 hme_write32(hp, bregs + BMAC_RXSWRESET, 0); 929 while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries) 930 udelay(20); 931 932 /* Will that be all? */ 933 if (!tries) 934 netdev_err(hp->dev, "Receiver BigMac ATTACK!\n"); 935 936 /* Don't forget your vik_1137125_wa. Have a nice day. */ 937 HMD("done\n"); 938 } 939 940 #define STOP_TRIES 16 941 942 /* hp->happy_lock must be held */ 943 static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs) 944 { 945 int tries = STOP_TRIES; 946 947 HMD("reset...\n"); 948 949 /* We're consolidating our STB products, it's your lucky day. */ 950 hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL); 951 while (hme_read32(hp, gregs + GREG_SWRESET) && --tries) 952 udelay(20); 953 954 /* Come back next week when we are "Sun Microelectronics". */ 955 if (!tries) 956 netdev_err(hp->dev, "Fry guys.\n"); 957 958 /* Remember: "Different name, same old buggy as shit hardware." */ 959 HMD("done\n"); 960 } 961 962 /* hp->happy_lock must be held */ 963 static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs) 964 { 965 struct net_device_stats *stats = &hp->dev->stats; 966 967 stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR); 968 hme_write32(hp, bregs + BMAC_RCRCECTR, 0); 969 970 stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR); 971 hme_write32(hp, bregs + BMAC_UNALECTR, 0); 972 973 stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR); 974 hme_write32(hp, bregs + BMAC_GLECTR, 0); 975 976 stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR); 977 978 stats->collisions += 979 (hme_read32(hp, bregs + BMAC_EXCTR) + 980 hme_read32(hp, bregs + BMAC_LTCTR)); 981 hme_write32(hp, bregs + BMAC_EXCTR, 0); 982 hme_write32(hp, bregs + BMAC_LTCTR, 0); 983 } 984 985 /* Only Sun can take such nice parts and fuck up the programming interface 986 * like this. Good job guys... 987 */ 988 #define TCVR_RESET_TRIES 16 /* It should reset quickly */ 989 #define TCVR_UNISOLATE_TRIES 32 /* Dis-isolation can take longer. */ 990 991 /* hp->happy_lock must be held */ 992 static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs) 993 { 994 u32 tconfig; 995 int result, tries = TCVR_RESET_TRIES; 996 997 tconfig = hme_read32(hp, tregs + TCVR_CFG); 998 ASD("tcfg=%08x\n", tconfig); 999 if (hp->tcvr_type == external) { 1000 hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT)); 1001 hp->tcvr_type = internal; 1002 hp->paddr = TCV_PADDR_ITX; 1003 happy_meal_tcvr_write(hp, tregs, MII_BMCR, 1004 (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE)); 1005 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR); 1006 if (result == TCVR_FAILURE) { 1007 ASD("phyread_fail\n"); 1008 return -1; 1009 } 1010 ASD("external: ISOLATE, phyread_ok, PSELECT\n"); 1011 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT); 1012 hp->tcvr_type = external; 1013 hp->paddr = TCV_PADDR_ETX; 1014 } else { 1015 if (tconfig & TCV_CFG_MDIO1) { 1016 hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT)); 1017 happy_meal_tcvr_write(hp, tregs, MII_BMCR, 1018 (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE)); 1019 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR); 1020 if (result == TCVR_FAILURE) { 1021 ASD("phyread_fail>\n"); 1022 return -1; 1023 } 1024 ASD("internal: PSELECT, ISOLATE, phyread_ok, ~PSELECT\n"); 1025 hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT))); 1026 hp->tcvr_type = internal; 1027 hp->paddr = TCV_PADDR_ITX; 1028 } 1029 } 1030 1031 ASD("BMCR_RESET...\n"); 1032 happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET); 1033 1034 while (--tries) { 1035 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR); 1036 if (result == TCVR_FAILURE) 1037 return -1; 1038 hp->sw_bmcr = result; 1039 if (!(result & BMCR_RESET)) 1040 break; 1041 udelay(20); 1042 } 1043 if (!tries) { 1044 ASD("BMCR RESET FAILED!\n"); 1045 return -1; 1046 } 1047 ASD("RESET_OK\n"); 1048 1049 /* Get fresh copies of the PHY registers. */ 1050 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); 1051 hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1); 1052 hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2); 1053 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE); 1054 1055 ASD("UNISOLATE...\n"); 1056 hp->sw_bmcr &= ~(BMCR_ISOLATE); 1057 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); 1058 1059 tries = TCVR_UNISOLATE_TRIES; 1060 while (--tries) { 1061 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR); 1062 if (result == TCVR_FAILURE) 1063 return -1; 1064 if (!(result & BMCR_ISOLATE)) 1065 break; 1066 udelay(20); 1067 } 1068 if (!tries) { 1069 ASD("UNISOLATE FAILED!\n"); 1070 return -1; 1071 } 1072 ASD("SUCCESS and CSCONFIG_DFBYPASS\n"); 1073 if (!is_lucent_phy(hp)) { 1074 result = happy_meal_tcvr_read(hp, tregs, 1075 DP83840_CSCONFIG); 1076 happy_meal_tcvr_write(hp, tregs, 1077 DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS)); 1078 } 1079 return 0; 1080 } 1081 1082 /* Figure out whether we have an internal or external transceiver. 1083 * 1084 * hp->happy_lock must be held 1085 */ 1086 static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs) 1087 { 1088 unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG); 1089 u32 reread = hme_read32(hp, tregs + TCVR_CFG); 1090 1091 ASD("tcfg=%08lx\n", tconfig); 1092 if (reread & TCV_CFG_MDIO1) { 1093 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT); 1094 hp->paddr = TCV_PADDR_ETX; 1095 hp->tcvr_type = external; 1096 ASD("not polling, external\n"); 1097 } else { 1098 if (reread & TCV_CFG_MDIO0) { 1099 hme_write32(hp, tregs + TCVR_CFG, 1100 tconfig & ~(TCV_CFG_PSELECT)); 1101 hp->paddr = TCV_PADDR_ITX; 1102 hp->tcvr_type = internal; 1103 ASD("not polling, internal\n"); 1104 } else { 1105 netdev_err(hp->dev, 1106 "Transceiver and a coke please."); 1107 hp->tcvr_type = none; /* Grrr... */ 1108 ASD("not polling, none\n"); 1109 } 1110 } 1111 } 1112 1113 /* The receive ring buffers are a bit tricky to get right. Here goes... 1114 * 1115 * The buffers we dma into must be 64 byte aligned. So we use a special 1116 * alloc_skb() routine for the happy meal to allocate 64 bytes more than 1117 * we really need. 1118 * 1119 * We use skb_reserve() to align the data block we get in the skb. We 1120 * also program the etxregs->cfg register to use an offset of 2. This 1121 * imperical constant plus the ethernet header size will always leave 1122 * us with a nicely aligned ip header once we pass things up to the 1123 * protocol layers. 1124 * 1125 * The numbers work out to: 1126 * 1127 * Max ethernet frame size 1518 1128 * Ethernet header size 14 1129 * Happy Meal base offset 2 1130 * 1131 * Say a skb data area is at 0xf001b010, and its size alloced is 1132 * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes. 1133 * 1134 * First our alloc_skb() routine aligns the data base to a 64 byte 1135 * boundary. We now have 0xf001b040 as our skb data address. We 1136 * plug this into the receive descriptor address. 1137 * 1138 * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset. 1139 * So now the data we will end up looking at starts at 0xf001b042. When 1140 * the packet arrives, we will check out the size received and subtract 1141 * this from the skb->length. Then we just pass the packet up to the 1142 * protocols as is, and allocate a new skb to replace this slot we have 1143 * just received from. 1144 * 1145 * The ethernet layer will strip the ether header from the front of the 1146 * skb we just sent to it, this leaves us with the ip header sitting 1147 * nicely aligned at 0xf001b050. Also, for tcp and udp packets the 1148 * Happy Meal has even checksummed the tcp/udp data for us. The 16 1149 * bit checksum is obtained from the low bits of the receive descriptor 1150 * flags, thus: 1151 * 1152 * skb->csum = rxd->rx_flags & 0xffff; 1153 * skb->ip_summed = CHECKSUM_COMPLETE; 1154 * 1155 * before sending off the skb to the protocols, and we are good as gold. 1156 */ 1157 static void happy_meal_clean_rings(struct happy_meal *hp) 1158 { 1159 int i; 1160 1161 for (i = 0; i < RX_RING_SIZE; i++) { 1162 if (hp->rx_skbs[i] != NULL) { 1163 struct sk_buff *skb = hp->rx_skbs[i]; 1164 struct happy_meal_rxd *rxd; 1165 u32 dma_addr; 1166 1167 rxd = &hp->happy_block->happy_meal_rxd[i]; 1168 dma_addr = hme_read_desc32(hp, &rxd->rx_addr); 1169 dma_unmap_single(hp->dma_dev, dma_addr, 1170 RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE); 1171 dev_kfree_skb_any(skb); 1172 hp->rx_skbs[i] = NULL; 1173 } 1174 } 1175 1176 for (i = 0; i < TX_RING_SIZE; i++) { 1177 if (hp->tx_skbs[i] != NULL) { 1178 struct sk_buff *skb = hp->tx_skbs[i]; 1179 struct happy_meal_txd *txd; 1180 u32 dma_addr; 1181 int frag; 1182 1183 hp->tx_skbs[i] = NULL; 1184 1185 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 1186 txd = &hp->happy_block->happy_meal_txd[i]; 1187 dma_addr = hme_read_desc32(hp, &txd->tx_addr); 1188 if (!frag) 1189 dma_unmap_single(hp->dma_dev, dma_addr, 1190 (hme_read_desc32(hp, &txd->tx_flags) 1191 & TXFLAG_SIZE), 1192 DMA_TO_DEVICE); 1193 else 1194 dma_unmap_page(hp->dma_dev, dma_addr, 1195 (hme_read_desc32(hp, &txd->tx_flags) 1196 & TXFLAG_SIZE), 1197 DMA_TO_DEVICE); 1198 1199 if (frag != skb_shinfo(skb)->nr_frags) 1200 i++; 1201 } 1202 1203 dev_kfree_skb_any(skb); 1204 } 1205 } 1206 } 1207 1208 /* hp->happy_lock must be held */ 1209 static void happy_meal_init_rings(struct happy_meal *hp) 1210 { 1211 struct hmeal_init_block *hb = hp->happy_block; 1212 int i; 1213 1214 HMD("counters to zero\n"); 1215 hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0; 1216 1217 /* Free any skippy bufs left around in the rings. */ 1218 happy_meal_clean_rings(hp); 1219 1220 /* Now get new skippy bufs for the receive ring. */ 1221 HMD("init rxring\n"); 1222 for (i = 0; i < RX_RING_SIZE; i++) { 1223 struct sk_buff *skb; 1224 u32 mapping; 1225 1226 skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC); 1227 if (!skb) { 1228 hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0); 1229 continue; 1230 } 1231 hp->rx_skbs[i] = skb; 1232 1233 /* Because we reserve afterwards. */ 1234 skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4)); 1235 mapping = dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE, 1236 DMA_FROM_DEVICE); 1237 if (dma_mapping_error(hp->dma_dev, mapping)) { 1238 dev_kfree_skb_any(skb); 1239 hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0); 1240 continue; 1241 } 1242 hme_write_rxd(hp, &hb->happy_meal_rxd[i], 1243 (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)), 1244 mapping); 1245 skb_reserve(skb, RX_OFFSET); 1246 } 1247 1248 HMD("init txring\n"); 1249 for (i = 0; i < TX_RING_SIZE; i++) 1250 hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0); 1251 1252 HMD("done\n"); 1253 } 1254 1255 /* hp->happy_lock must be held */ 1256 static int happy_meal_init(struct happy_meal *hp) 1257 { 1258 const unsigned char *e = &hp->dev->dev_addr[0]; 1259 void __iomem *gregs = hp->gregs; 1260 void __iomem *etxregs = hp->etxregs; 1261 void __iomem *erxregs = hp->erxregs; 1262 void __iomem *bregs = hp->bigmacregs; 1263 void __iomem *tregs = hp->tcvregs; 1264 const char *bursts = "64"; 1265 u32 regtmp, rxcfg; 1266 1267 /* If auto-negotiation timer is running, kill it. */ 1268 del_timer(&hp->happy_timer); 1269 1270 HMD("happy_flags[%08x]\n", hp->happy_flags); 1271 if (!(hp->happy_flags & HFLAG_INIT)) { 1272 HMD("set HFLAG_INIT\n"); 1273 hp->happy_flags |= HFLAG_INIT; 1274 happy_meal_get_counters(hp, bregs); 1275 } 1276 1277 /* Stop transmitter and receiver. */ 1278 HMD("to happy_meal_stop\n"); 1279 happy_meal_stop(hp, gregs); 1280 1281 /* Alloc and reset the tx/rx descriptor chains. */ 1282 HMD("to happy_meal_init_rings\n"); 1283 happy_meal_init_rings(hp); 1284 1285 /* See if we can enable the MIF frame on this card to speak to the DP83840. */ 1286 if (hp->happy_flags & HFLAG_FENABLE) { 1287 HMD("use frame old[%08x]\n", 1288 hme_read32(hp, tregs + TCVR_CFG)); 1289 hme_write32(hp, tregs + TCVR_CFG, 1290 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE)); 1291 } else { 1292 HMD("use bitbang old[%08x]\n", 1293 hme_read32(hp, tregs + TCVR_CFG)); 1294 hme_write32(hp, tregs + TCVR_CFG, 1295 hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE); 1296 } 1297 1298 /* Check the state of the transceiver. */ 1299 HMD("to happy_meal_transceiver_check\n"); 1300 happy_meal_transceiver_check(hp, tregs); 1301 1302 /* Put the Big Mac into a sane state. */ 1303 switch(hp->tcvr_type) { 1304 case none: 1305 /* Cannot operate if we don't know the transceiver type! */ 1306 HMD("AAIEEE no transceiver type, EAGAIN\n"); 1307 return -EAGAIN; 1308 1309 case internal: 1310 /* Using the MII buffers. */ 1311 HMD("internal, using MII\n"); 1312 hme_write32(hp, bregs + BMAC_XIFCFG, 0); 1313 break; 1314 1315 case external: 1316 /* Not using the MII, disable it. */ 1317 HMD("external, disable MII\n"); 1318 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB); 1319 break; 1320 } 1321 1322 if (happy_meal_tcvr_reset(hp, tregs)) 1323 return -EAGAIN; 1324 1325 /* Reset the Happy Meal Big Mac transceiver and the receiver. */ 1326 HMD("tx/rx reset\n"); 1327 happy_meal_tx_reset(hp, bregs); 1328 happy_meal_rx_reset(hp, bregs); 1329 1330 /* Set jam size and inter-packet gaps to reasonable defaults. */ 1331 hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE); 1332 hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1); 1333 hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2); 1334 1335 /* Load up the MAC address and random seed. */ 1336 1337 /* The docs recommend to use the 10LSB of our MAC here. */ 1338 hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff)); 1339 1340 hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5])); 1341 hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3])); 1342 hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1])); 1343 1344 if ((hp->dev->flags & IFF_ALLMULTI) || 1345 (netdev_mc_count(hp->dev) > 64)) { 1346 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff); 1347 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff); 1348 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff); 1349 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff); 1350 } else if ((hp->dev->flags & IFF_PROMISC) == 0) { 1351 u16 hash_table[4]; 1352 struct netdev_hw_addr *ha; 1353 u32 crc; 1354 1355 memset(hash_table, 0, sizeof(hash_table)); 1356 netdev_for_each_mc_addr(ha, hp->dev) { 1357 crc = ether_crc_le(6, ha->addr); 1358 crc >>= 26; 1359 hash_table[crc >> 4] |= 1 << (crc & 0xf); 1360 } 1361 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]); 1362 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]); 1363 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]); 1364 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]); 1365 } else { 1366 hme_write32(hp, bregs + BMAC_HTABLE3, 0); 1367 hme_write32(hp, bregs + BMAC_HTABLE2, 0); 1368 hme_write32(hp, bregs + BMAC_HTABLE1, 0); 1369 hme_write32(hp, bregs + BMAC_HTABLE0, 0); 1370 } 1371 1372 /* Set the RX and TX ring ptrs. */ 1373 HMD("ring ptrs rxr[%08x] txr[%08x]\n", 1374 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)), 1375 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))); 1376 hme_write32(hp, erxregs + ERX_RING, 1377 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))); 1378 hme_write32(hp, etxregs + ETX_RING, 1379 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))); 1380 1381 /* Parity issues in the ERX unit of some HME revisions can cause some 1382 * registers to not be written unless their parity is even. Detect such 1383 * lost writes and simply rewrite with a low bit set (which will be ignored 1384 * since the rxring needs to be 2K aligned). 1385 */ 1386 if (hme_read32(hp, erxregs + ERX_RING) != 1387 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))) 1388 hme_write32(hp, erxregs + ERX_RING, 1389 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)) 1390 | 0x4); 1391 1392 /* Set the supported burst sizes. */ 1393 #ifndef CONFIG_SPARC 1394 /* It is always PCI and can handle 64byte bursts. */ 1395 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64); 1396 #else 1397 if ((hp->happy_bursts & DMA_BURST64) && 1398 ((hp->happy_flags & HFLAG_PCI) != 0 1399 #ifdef CONFIG_SBUS 1400 || sbus_can_burst64() 1401 #endif 1402 || 0)) { 1403 u32 gcfg = GREG_CFG_BURST64; 1404 1405 /* I have no idea if I should set the extended 1406 * transfer mode bit for Cheerio, so for now I 1407 * do not. -DaveM 1408 */ 1409 #ifdef CONFIG_SBUS 1410 if ((hp->happy_flags & HFLAG_PCI) == 0) { 1411 struct platform_device *op = hp->happy_dev; 1412 if (sbus_can_dma_64bit()) { 1413 sbus_set_sbus64(&op->dev, 1414 hp->happy_bursts); 1415 gcfg |= GREG_CFG_64BIT; 1416 } 1417 } 1418 #endif 1419 1420 bursts = "64"; 1421 hme_write32(hp, gregs + GREG_CFG, gcfg); 1422 } else if (hp->happy_bursts & DMA_BURST32) { 1423 bursts = "32"; 1424 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32); 1425 } else if (hp->happy_bursts & DMA_BURST16) { 1426 bursts = "16"; 1427 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16); 1428 } else { 1429 bursts = "XXX"; 1430 hme_write32(hp, gregs + GREG_CFG, 0); 1431 } 1432 #endif /* CONFIG_SPARC */ 1433 1434 HMD("old[%08x] bursts<%s>\n", 1435 hme_read32(hp, gregs + GREG_CFG), bursts); 1436 1437 /* Turn off interrupts we do not want to hear. */ 1438 hme_write32(hp, gregs + GREG_IMASK, 1439 (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP | 1440 GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR)); 1441 1442 /* Set the transmit ring buffer size. */ 1443 HMD("tx rsize=%d oreg[%08x]\n", (int)TX_RING_SIZE, 1444 hme_read32(hp, etxregs + ETX_RSIZE)); 1445 hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1); 1446 1447 /* Enable transmitter DVMA. */ 1448 HMD("tx dma enable old[%08x]\n", hme_read32(hp, etxregs + ETX_CFG)); 1449 hme_write32(hp, etxregs + ETX_CFG, 1450 hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE); 1451 1452 /* This chip really rots, for the receiver sometimes when you 1453 * write to its control registers not all the bits get there 1454 * properly. I cannot think of a sane way to provide complete 1455 * coverage for this hardware bug yet. 1456 */ 1457 HMD("erx regs bug old[%08x]\n", 1458 hme_read32(hp, erxregs + ERX_CFG)); 1459 hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET)); 1460 regtmp = hme_read32(hp, erxregs + ERX_CFG); 1461 hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET)); 1462 if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) { 1463 netdev_err(hp->dev, 1464 "Eieee, rx config register gets greasy fries.\n"); 1465 netdev_err(hp->dev, 1466 "Trying to set %08x, reread gives %08x\n", 1467 ERX_CFG_DEFAULT(RX_OFFSET), regtmp); 1468 /* XXX Should return failure here... */ 1469 } 1470 1471 /* Enable Big Mac hash table filter. */ 1472 HMD("enable hash rx_cfg_old[%08x]\n", 1473 hme_read32(hp, bregs + BMAC_RXCFG)); 1474 rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME; 1475 if (hp->dev->flags & IFF_PROMISC) 1476 rxcfg |= BIGMAC_RXCFG_PMISC; 1477 hme_write32(hp, bregs + BMAC_RXCFG, rxcfg); 1478 1479 /* Let the bits settle in the chip. */ 1480 udelay(10); 1481 1482 /* Ok, configure the Big Mac transmitter. */ 1483 HMD("BIGMAC init\n"); 1484 regtmp = 0; 1485 if (hp->happy_flags & HFLAG_FULL) 1486 regtmp |= BIGMAC_TXCFG_FULLDPLX; 1487 1488 /* Don't turn on the "don't give up" bit for now. It could cause hme 1489 * to deadlock with the PHY if a Jabber occurs. 1490 */ 1491 hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/); 1492 1493 /* Give up after 16 TX attempts. */ 1494 hme_write32(hp, bregs + BMAC_ALIMIT, 16); 1495 1496 /* Enable the output drivers no matter what. */ 1497 regtmp = BIGMAC_XCFG_ODENABLE; 1498 1499 /* If card can do lance mode, enable it. */ 1500 if (hp->happy_flags & HFLAG_LANCE) 1501 regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE; 1502 1503 /* Disable the MII buffers if using external transceiver. */ 1504 if (hp->tcvr_type == external) 1505 regtmp |= BIGMAC_XCFG_MIIDISAB; 1506 1507 HMD("XIF config old[%08x]\n", hme_read32(hp, bregs + BMAC_XIFCFG)); 1508 hme_write32(hp, bregs + BMAC_XIFCFG, regtmp); 1509 1510 /* Start things up. */ 1511 HMD("tx old[%08x] and rx [%08x] ON!\n", 1512 hme_read32(hp, bregs + BMAC_TXCFG), 1513 hme_read32(hp, bregs + BMAC_RXCFG)); 1514 1515 /* Set larger TX/RX size to allow for 802.1q */ 1516 hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8); 1517 hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8); 1518 1519 hme_write32(hp, bregs + BMAC_TXCFG, 1520 hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE); 1521 hme_write32(hp, bregs + BMAC_RXCFG, 1522 hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE); 1523 1524 /* Get the autonegotiation started, and the watch timer ticking. */ 1525 happy_meal_begin_auto_negotiation(hp, tregs, NULL); 1526 1527 /* Success. */ 1528 return 0; 1529 } 1530 1531 /* hp->happy_lock must be held */ 1532 static void happy_meal_set_initial_advertisement(struct happy_meal *hp) 1533 { 1534 void __iomem *tregs = hp->tcvregs; 1535 void __iomem *bregs = hp->bigmacregs; 1536 void __iomem *gregs = hp->gregs; 1537 1538 happy_meal_stop(hp, gregs); 1539 if (hp->happy_flags & HFLAG_FENABLE) 1540 hme_write32(hp, tregs + TCVR_CFG, 1541 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE)); 1542 else 1543 hme_write32(hp, tregs + TCVR_CFG, 1544 hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE); 1545 happy_meal_transceiver_check(hp, tregs); 1546 switch(hp->tcvr_type) { 1547 case none: 1548 return; 1549 case internal: 1550 hme_write32(hp, bregs + BMAC_XIFCFG, 0); 1551 break; 1552 case external: 1553 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB); 1554 break; 1555 } 1556 if (happy_meal_tcvr_reset(hp, tregs)) 1557 return; 1558 1559 /* Latch PHY registers as of now. */ 1560 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); 1561 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE); 1562 1563 /* Advertise everything we can support. */ 1564 if (hp->sw_bmsr & BMSR_10HALF) 1565 hp->sw_advertise |= (ADVERTISE_10HALF); 1566 else 1567 hp->sw_advertise &= ~(ADVERTISE_10HALF); 1568 1569 if (hp->sw_bmsr & BMSR_10FULL) 1570 hp->sw_advertise |= (ADVERTISE_10FULL); 1571 else 1572 hp->sw_advertise &= ~(ADVERTISE_10FULL); 1573 if (hp->sw_bmsr & BMSR_100HALF) 1574 hp->sw_advertise |= (ADVERTISE_100HALF); 1575 else 1576 hp->sw_advertise &= ~(ADVERTISE_100HALF); 1577 if (hp->sw_bmsr & BMSR_100FULL) 1578 hp->sw_advertise |= (ADVERTISE_100FULL); 1579 else 1580 hp->sw_advertise &= ~(ADVERTISE_100FULL); 1581 1582 /* Update the PHY advertisement register. */ 1583 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise); 1584 } 1585 1586 /* Once status is latched (by happy_meal_interrupt) it is cleared by 1587 * the hardware, so we cannot re-read it and get a correct value. 1588 * 1589 * hp->happy_lock must be held 1590 */ 1591 static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status) 1592 { 1593 int reset = 0; 1594 1595 /* Only print messages for non-counter related interrupts. */ 1596 if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND | 1597 GREG_STAT_MAXPKTERR | GREG_STAT_RXERR | 1598 GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR | 1599 GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR | 1600 GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR | 1601 GREG_STAT_SLVPERR)) 1602 netdev_err(hp->dev, 1603 "Error interrupt for happy meal, status = %08x\n", 1604 status); 1605 1606 if (status & GREG_STAT_RFIFOVF) { 1607 /* Receive FIFO overflow is harmless and the hardware will take 1608 care of it, just some packets are lost. Who cares. */ 1609 netdev_dbg(hp->dev, "Happy Meal receive FIFO overflow.\n"); 1610 } 1611 1612 if (status & GREG_STAT_STSTERR) { 1613 /* BigMAC SQE link test failed. */ 1614 netdev_err(hp->dev, "Happy Meal BigMAC SQE test failed.\n"); 1615 reset = 1; 1616 } 1617 1618 if (status & GREG_STAT_TFIFO_UND) { 1619 /* Transmit FIFO underrun, again DMA error likely. */ 1620 netdev_err(hp->dev, 1621 "Happy Meal transmitter FIFO underrun, DMA error.\n"); 1622 reset = 1; 1623 } 1624 1625 if (status & GREG_STAT_MAXPKTERR) { 1626 /* Driver error, tried to transmit something larger 1627 * than ethernet max mtu. 1628 */ 1629 netdev_err(hp->dev, "Happy Meal MAX Packet size error.\n"); 1630 reset = 1; 1631 } 1632 1633 if (status & GREG_STAT_NORXD) { 1634 /* This is harmless, it just means the system is 1635 * quite loaded and the incoming packet rate was 1636 * faster than the interrupt handler could keep up 1637 * with. 1638 */ 1639 netdev_info(hp->dev, 1640 "Happy Meal out of receive descriptors, packet dropped.\n"); 1641 } 1642 1643 if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) { 1644 /* All sorts of DMA receive errors. */ 1645 netdev_err(hp->dev, "Happy Meal rx DMA errors [ %s%s%s]\n", 1646 status & GREG_STAT_RXERR ? "GenericError " : "", 1647 status & GREG_STAT_RXPERR ? "ParityError " : "", 1648 status & GREG_STAT_RXTERR ? "RxTagBotch " : ""); 1649 reset = 1; 1650 } 1651 1652 if (status & GREG_STAT_EOPERR) { 1653 /* Driver bug, didn't set EOP bit in tx descriptor given 1654 * to the happy meal. 1655 */ 1656 netdev_err(hp->dev, 1657 "EOP not set in happy meal transmit descriptor!\n"); 1658 reset = 1; 1659 } 1660 1661 if (status & GREG_STAT_MIFIRQ) { 1662 /* MIF signalled an interrupt, were we polling it? */ 1663 netdev_err(hp->dev, "Happy Meal MIF interrupt.\n"); 1664 } 1665 1666 if (status & 1667 (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) { 1668 /* All sorts of transmit DMA errors. */ 1669 netdev_err(hp->dev, "Happy Meal tx DMA errors [ %s%s%s%s]\n", 1670 status & GREG_STAT_TXEACK ? "GenericError " : "", 1671 status & GREG_STAT_TXLERR ? "LateError " : "", 1672 status & GREG_STAT_TXPERR ? "ParityError " : "", 1673 status & GREG_STAT_TXTERR ? "TagBotch " : ""); 1674 reset = 1; 1675 } 1676 1677 if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) { 1678 /* Bus or parity error when cpu accessed happy meal registers 1679 * or it's internal FIFO's. Should never see this. 1680 */ 1681 netdev_err(hp->dev, 1682 "Happy Meal register access SBUS slave (%s) error.\n", 1683 (status & GREG_STAT_SLVPERR) ? "parity" : "generic"); 1684 reset = 1; 1685 } 1686 1687 if (reset) { 1688 netdev_notice(hp->dev, "Resetting...\n"); 1689 happy_meal_init(hp); 1690 return 1; 1691 } 1692 return 0; 1693 } 1694 1695 /* hp->happy_lock must be held */ 1696 static void happy_meal_tx(struct happy_meal *hp) 1697 { 1698 struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0]; 1699 struct happy_meal_txd *this; 1700 struct net_device *dev = hp->dev; 1701 int elem; 1702 1703 elem = hp->tx_old; 1704 while (elem != hp->tx_new) { 1705 struct sk_buff *skb; 1706 u32 flags, dma_addr, dma_len; 1707 int frag; 1708 1709 netdev_vdbg(hp->dev, "TX[%d]\n", elem); 1710 this = &txbase[elem]; 1711 flags = hme_read_desc32(hp, &this->tx_flags); 1712 if (flags & TXFLAG_OWN) 1713 break; 1714 skb = hp->tx_skbs[elem]; 1715 if (skb_shinfo(skb)->nr_frags) { 1716 int last; 1717 1718 last = elem + skb_shinfo(skb)->nr_frags; 1719 last &= (TX_RING_SIZE - 1); 1720 flags = hme_read_desc32(hp, &txbase[last].tx_flags); 1721 if (flags & TXFLAG_OWN) 1722 break; 1723 } 1724 hp->tx_skbs[elem] = NULL; 1725 dev->stats.tx_bytes += skb->len; 1726 1727 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 1728 dma_addr = hme_read_desc32(hp, &this->tx_addr); 1729 dma_len = hme_read_desc32(hp, &this->tx_flags); 1730 1731 dma_len &= TXFLAG_SIZE; 1732 if (!frag) 1733 dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE); 1734 else 1735 dma_unmap_page(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE); 1736 1737 elem = NEXT_TX(elem); 1738 this = &txbase[elem]; 1739 } 1740 1741 dev_consume_skb_irq(skb); 1742 dev->stats.tx_packets++; 1743 } 1744 hp->tx_old = elem; 1745 1746 if (netif_queue_stopped(dev) && 1747 TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1)) 1748 netif_wake_queue(dev); 1749 } 1750 1751 /* Originally I used to handle the allocation failure by just giving back just 1752 * that one ring buffer to the happy meal. Problem is that usually when that 1753 * condition is triggered, the happy meal expects you to do something reasonable 1754 * with all of the packets it has DMA'd in. So now I just drop the entire 1755 * ring when we cannot get a new skb and give them all back to the happy meal, 1756 * maybe things will be "happier" now. 1757 * 1758 * hp->happy_lock must be held 1759 */ 1760 static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev) 1761 { 1762 struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0]; 1763 struct happy_meal_rxd *this; 1764 int elem = hp->rx_new, drops = 0; 1765 u32 flags; 1766 1767 this = &rxbase[elem]; 1768 while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) { 1769 struct sk_buff *skb; 1770 int len = flags >> 16; 1771 u16 csum = flags & RXFLAG_CSUM; 1772 u32 dma_addr = hme_read_desc32(hp, &this->rx_addr); 1773 1774 /* Check for errors. */ 1775 if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) { 1776 netdev_vdbg(dev, "RX[%d ERR(%08x)]", elem, flags); 1777 dev->stats.rx_errors++; 1778 if (len < ETH_ZLEN) 1779 dev->stats.rx_length_errors++; 1780 if (len & (RXFLAG_OVERFLOW >> 16)) { 1781 dev->stats.rx_over_errors++; 1782 dev->stats.rx_fifo_errors++; 1783 } 1784 1785 /* Return it to the Happy meal. */ 1786 drop_it: 1787 dev->stats.rx_dropped++; 1788 hme_write_rxd(hp, this, 1789 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)), 1790 dma_addr); 1791 goto next; 1792 } 1793 skb = hp->rx_skbs[elem]; 1794 if (len > RX_COPY_THRESHOLD) { 1795 struct sk_buff *new_skb; 1796 u32 mapping; 1797 1798 /* Now refill the entry, if we can. */ 1799 new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC); 1800 if (new_skb == NULL) { 1801 drops++; 1802 goto drop_it; 1803 } 1804 skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4)); 1805 mapping = dma_map_single(hp->dma_dev, new_skb->data, 1806 RX_BUF_ALLOC_SIZE, 1807 DMA_FROM_DEVICE); 1808 if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) { 1809 dev_kfree_skb_any(new_skb); 1810 drops++; 1811 goto drop_it; 1812 } 1813 1814 dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE); 1815 hp->rx_skbs[elem] = new_skb; 1816 hme_write_rxd(hp, this, 1817 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)), 1818 mapping); 1819 skb_reserve(new_skb, RX_OFFSET); 1820 1821 /* Trim the original skb for the netif. */ 1822 skb_trim(skb, len); 1823 } else { 1824 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2); 1825 1826 if (copy_skb == NULL) { 1827 drops++; 1828 goto drop_it; 1829 } 1830 1831 skb_reserve(copy_skb, 2); 1832 skb_put(copy_skb, len); 1833 dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len + 2, DMA_FROM_DEVICE); 1834 skb_copy_from_linear_data(skb, copy_skb->data, len); 1835 dma_sync_single_for_device(hp->dma_dev, dma_addr, len + 2, DMA_FROM_DEVICE); 1836 /* Reuse original ring buffer. */ 1837 hme_write_rxd(hp, this, 1838 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)), 1839 dma_addr); 1840 1841 skb = copy_skb; 1842 } 1843 1844 /* This card is _fucking_ hot... */ 1845 skb->csum = csum_unfold(~(__force __sum16)htons(csum)); 1846 skb->ip_summed = CHECKSUM_COMPLETE; 1847 1848 netdev_vdbg(dev, "RX[%d len=%d csum=%4x]", elem, len, csum); 1849 skb->protocol = eth_type_trans(skb, dev); 1850 netif_rx(skb); 1851 1852 dev->stats.rx_packets++; 1853 dev->stats.rx_bytes += len; 1854 next: 1855 elem = NEXT_RX(elem); 1856 this = &rxbase[elem]; 1857 } 1858 hp->rx_new = elem; 1859 if (drops) 1860 netdev_info(hp->dev, "Memory squeeze, deferring packet.\n"); 1861 } 1862 1863 static irqreturn_t happy_meal_interrupt(int irq, void *dev_id) 1864 { 1865 struct net_device *dev = dev_id; 1866 struct happy_meal *hp = netdev_priv(dev); 1867 u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT); 1868 1869 HMD("status=%08x\n", happy_status); 1870 if (!happy_status) 1871 return IRQ_NONE; 1872 1873 spin_lock(&hp->happy_lock); 1874 1875 if (happy_status & GREG_STAT_ERRORS) { 1876 if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status)) 1877 goto out; 1878 } 1879 1880 if (happy_status & GREG_STAT_TXALL) 1881 happy_meal_tx(hp); 1882 1883 if (happy_status & GREG_STAT_RXTOHOST) 1884 happy_meal_rx(hp, dev); 1885 1886 HMD("done\n"); 1887 out: 1888 spin_unlock(&hp->happy_lock); 1889 1890 return IRQ_HANDLED; 1891 } 1892 1893 static int happy_meal_open(struct net_device *dev) 1894 { 1895 struct happy_meal *hp = netdev_priv(dev); 1896 int res; 1897 1898 res = request_irq(hp->irq, happy_meal_interrupt, IRQF_SHARED, 1899 dev->name, dev); 1900 if (res) { 1901 netdev_err(dev, "Can't order irq %d to go.\n", hp->irq); 1902 return res; 1903 } 1904 1905 HMD("to happy_meal_init\n"); 1906 1907 spin_lock_irq(&hp->happy_lock); 1908 res = happy_meal_init(hp); 1909 spin_unlock_irq(&hp->happy_lock); 1910 1911 if (res) 1912 free_irq(hp->irq, dev); 1913 return res; 1914 } 1915 1916 static int happy_meal_close(struct net_device *dev) 1917 { 1918 struct happy_meal *hp = netdev_priv(dev); 1919 1920 spin_lock_irq(&hp->happy_lock); 1921 happy_meal_stop(hp, hp->gregs); 1922 happy_meal_clean_rings(hp); 1923 1924 /* If auto-negotiation timer is running, kill it. */ 1925 del_timer(&hp->happy_timer); 1926 1927 spin_unlock_irq(&hp->happy_lock); 1928 1929 free_irq(hp->irq, dev); 1930 1931 return 0; 1932 } 1933 1934 static void happy_meal_tx_timeout(struct net_device *dev, unsigned int txqueue) 1935 { 1936 struct happy_meal *hp = netdev_priv(dev); 1937 1938 netdev_err(dev, "transmit timed out, resetting\n"); 1939 tx_dump_log(); 1940 netdev_err(dev, "Happy Status %08x TX[%08x:%08x]\n", 1941 hme_read32(hp, hp->gregs + GREG_STAT), 1942 hme_read32(hp, hp->etxregs + ETX_CFG), 1943 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG)); 1944 1945 spin_lock_irq(&hp->happy_lock); 1946 happy_meal_init(hp); 1947 spin_unlock_irq(&hp->happy_lock); 1948 1949 netif_wake_queue(dev); 1950 } 1951 1952 static void unmap_partial_tx_skb(struct happy_meal *hp, u32 first_mapping, 1953 u32 first_len, u32 first_entry, u32 entry) 1954 { 1955 struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0]; 1956 1957 dma_unmap_single(hp->dma_dev, first_mapping, first_len, DMA_TO_DEVICE); 1958 1959 first_entry = NEXT_TX(first_entry); 1960 while (first_entry != entry) { 1961 struct happy_meal_txd *this = &txbase[first_entry]; 1962 u32 addr, len; 1963 1964 addr = hme_read_desc32(hp, &this->tx_addr); 1965 len = hme_read_desc32(hp, &this->tx_flags); 1966 len &= TXFLAG_SIZE; 1967 dma_unmap_page(hp->dma_dev, addr, len, DMA_TO_DEVICE); 1968 } 1969 } 1970 1971 static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb, 1972 struct net_device *dev) 1973 { 1974 struct happy_meal *hp = netdev_priv(dev); 1975 int entry; 1976 u32 tx_flags; 1977 1978 tx_flags = TXFLAG_OWN; 1979 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1980 const u32 csum_start_off = skb_checksum_start_offset(skb); 1981 const u32 csum_stuff_off = csum_start_off + skb->csum_offset; 1982 1983 tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE | 1984 ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) | 1985 ((csum_stuff_off << 20) & TXFLAG_CSLOCATION)); 1986 } 1987 1988 spin_lock_irq(&hp->happy_lock); 1989 1990 if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) { 1991 netif_stop_queue(dev); 1992 spin_unlock_irq(&hp->happy_lock); 1993 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); 1994 return NETDEV_TX_BUSY; 1995 } 1996 1997 entry = hp->tx_new; 1998 netdev_vdbg(dev, "SX<l[%d]e[%d]>\n", skb->len, entry); 1999 hp->tx_skbs[entry] = skb; 2000 2001 if (skb_shinfo(skb)->nr_frags == 0) { 2002 u32 mapping, len; 2003 2004 len = skb->len; 2005 mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE); 2006 if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) 2007 goto out_dma_error; 2008 tx_flags |= (TXFLAG_SOP | TXFLAG_EOP); 2009 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry], 2010 (tx_flags | (len & TXFLAG_SIZE)), 2011 mapping); 2012 entry = NEXT_TX(entry); 2013 } else { 2014 u32 first_len, first_mapping; 2015 int frag, first_entry = entry; 2016 2017 /* We must give this initial chunk to the device last. 2018 * Otherwise we could race with the device. 2019 */ 2020 first_len = skb_headlen(skb); 2021 first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len, 2022 DMA_TO_DEVICE); 2023 if (unlikely(dma_mapping_error(hp->dma_dev, first_mapping))) 2024 goto out_dma_error; 2025 entry = NEXT_TX(entry); 2026 2027 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) { 2028 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag]; 2029 u32 len, mapping, this_txflags; 2030 2031 len = skb_frag_size(this_frag); 2032 mapping = skb_frag_dma_map(hp->dma_dev, this_frag, 2033 0, len, DMA_TO_DEVICE); 2034 if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) { 2035 unmap_partial_tx_skb(hp, first_mapping, first_len, 2036 first_entry, entry); 2037 goto out_dma_error; 2038 } 2039 this_txflags = tx_flags; 2040 if (frag == skb_shinfo(skb)->nr_frags - 1) 2041 this_txflags |= TXFLAG_EOP; 2042 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry], 2043 (this_txflags | (len & TXFLAG_SIZE)), 2044 mapping); 2045 entry = NEXT_TX(entry); 2046 } 2047 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry], 2048 (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)), 2049 first_mapping); 2050 } 2051 2052 hp->tx_new = entry; 2053 2054 if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1)) 2055 netif_stop_queue(dev); 2056 2057 /* Get it going. */ 2058 hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP); 2059 2060 spin_unlock_irq(&hp->happy_lock); 2061 2062 tx_add_log(hp, TXLOG_ACTION_TXMIT, 0); 2063 return NETDEV_TX_OK; 2064 2065 out_dma_error: 2066 hp->tx_skbs[hp->tx_new] = NULL; 2067 spin_unlock_irq(&hp->happy_lock); 2068 2069 dev_kfree_skb_any(skb); 2070 dev->stats.tx_dropped++; 2071 return NETDEV_TX_OK; 2072 } 2073 2074 static struct net_device_stats *happy_meal_get_stats(struct net_device *dev) 2075 { 2076 struct happy_meal *hp = netdev_priv(dev); 2077 2078 spin_lock_irq(&hp->happy_lock); 2079 happy_meal_get_counters(hp, hp->bigmacregs); 2080 spin_unlock_irq(&hp->happy_lock); 2081 2082 return &dev->stats; 2083 } 2084 2085 static void happy_meal_set_multicast(struct net_device *dev) 2086 { 2087 struct happy_meal *hp = netdev_priv(dev); 2088 void __iomem *bregs = hp->bigmacregs; 2089 struct netdev_hw_addr *ha; 2090 u32 crc; 2091 2092 spin_lock_irq(&hp->happy_lock); 2093 2094 if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) { 2095 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff); 2096 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff); 2097 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff); 2098 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff); 2099 } else if (dev->flags & IFF_PROMISC) { 2100 hme_write32(hp, bregs + BMAC_RXCFG, 2101 hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC); 2102 } else { 2103 u16 hash_table[4]; 2104 2105 memset(hash_table, 0, sizeof(hash_table)); 2106 netdev_for_each_mc_addr(ha, dev) { 2107 crc = ether_crc_le(6, ha->addr); 2108 crc >>= 26; 2109 hash_table[crc >> 4] |= 1 << (crc & 0xf); 2110 } 2111 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]); 2112 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]); 2113 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]); 2114 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]); 2115 } 2116 2117 spin_unlock_irq(&hp->happy_lock); 2118 } 2119 2120 /* Ethtool support... */ 2121 static int hme_get_link_ksettings(struct net_device *dev, 2122 struct ethtool_link_ksettings *cmd) 2123 { 2124 struct happy_meal *hp = netdev_priv(dev); 2125 u32 speed; 2126 u32 supported; 2127 2128 supported = 2129 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 2130 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 2131 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII); 2132 2133 /* XXX hardcoded stuff for now */ 2134 cmd->base.port = PORT_TP; /* XXX no MII support */ 2135 cmd->base.phy_address = 0; /* XXX fixed PHYAD */ 2136 2137 /* Record PHY settings. */ 2138 spin_lock_irq(&hp->happy_lock); 2139 hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR); 2140 hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA); 2141 spin_unlock_irq(&hp->happy_lock); 2142 2143 if (hp->sw_bmcr & BMCR_ANENABLE) { 2144 cmd->base.autoneg = AUTONEG_ENABLE; 2145 speed = ((hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ? 2146 SPEED_100 : SPEED_10); 2147 if (speed == SPEED_100) 2148 cmd->base.duplex = 2149 (hp->sw_lpa & (LPA_100FULL)) ? 2150 DUPLEX_FULL : DUPLEX_HALF; 2151 else 2152 cmd->base.duplex = 2153 (hp->sw_lpa & (LPA_10FULL)) ? 2154 DUPLEX_FULL : DUPLEX_HALF; 2155 } else { 2156 cmd->base.autoneg = AUTONEG_DISABLE; 2157 speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10; 2158 cmd->base.duplex = 2159 (hp->sw_bmcr & BMCR_FULLDPLX) ? 2160 DUPLEX_FULL : DUPLEX_HALF; 2161 } 2162 cmd->base.speed = speed; 2163 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 2164 supported); 2165 2166 return 0; 2167 } 2168 2169 static int hme_set_link_ksettings(struct net_device *dev, 2170 const struct ethtool_link_ksettings *cmd) 2171 { 2172 struct happy_meal *hp = netdev_priv(dev); 2173 2174 /* Verify the settings we care about. */ 2175 if (cmd->base.autoneg != AUTONEG_ENABLE && 2176 cmd->base.autoneg != AUTONEG_DISABLE) 2177 return -EINVAL; 2178 if (cmd->base.autoneg == AUTONEG_DISABLE && 2179 ((cmd->base.speed != SPEED_100 && 2180 cmd->base.speed != SPEED_10) || 2181 (cmd->base.duplex != DUPLEX_HALF && 2182 cmd->base.duplex != DUPLEX_FULL))) 2183 return -EINVAL; 2184 2185 /* Ok, do it to it. */ 2186 spin_lock_irq(&hp->happy_lock); 2187 del_timer(&hp->happy_timer); 2188 happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd); 2189 spin_unlock_irq(&hp->happy_lock); 2190 2191 return 0; 2192 } 2193 2194 static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2195 { 2196 struct happy_meal *hp = netdev_priv(dev); 2197 2198 strscpy(info->driver, DRV_NAME, sizeof(info->driver)); 2199 if (hp->happy_flags & HFLAG_PCI) { 2200 struct pci_dev *pdev = hp->happy_dev; 2201 strscpy(info->bus_info, pci_name(pdev), sizeof(info->bus_info)); 2202 } 2203 #ifdef CONFIG_SBUS 2204 else { 2205 const struct linux_prom_registers *regs; 2206 struct platform_device *op = hp->happy_dev; 2207 regs = of_get_property(op->dev.of_node, "regs", NULL); 2208 if (regs) 2209 snprintf(info->bus_info, sizeof(info->bus_info), 2210 "SBUS:%d", 2211 regs->which_io); 2212 } 2213 #endif 2214 } 2215 2216 static u32 hme_get_link(struct net_device *dev) 2217 { 2218 struct happy_meal *hp = netdev_priv(dev); 2219 2220 spin_lock_irq(&hp->happy_lock); 2221 hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR); 2222 spin_unlock_irq(&hp->happy_lock); 2223 2224 return hp->sw_bmsr & BMSR_LSTATUS; 2225 } 2226 2227 static const struct ethtool_ops hme_ethtool_ops = { 2228 .get_drvinfo = hme_get_drvinfo, 2229 .get_link = hme_get_link, 2230 .get_link_ksettings = hme_get_link_ksettings, 2231 .set_link_ksettings = hme_set_link_ksettings, 2232 }; 2233 2234 #ifdef CONFIG_SBUS 2235 /* Given a happy meal sbus device, find it's quattro parent. 2236 * If none exist, allocate and return a new one. 2237 * 2238 * Return NULL on failure. 2239 */ 2240 static struct quattro *quattro_sbus_find(struct platform_device *child) 2241 { 2242 struct device *parent = child->dev.parent; 2243 struct platform_device *op; 2244 struct quattro *qp; 2245 2246 op = to_platform_device(parent); 2247 qp = platform_get_drvdata(op); 2248 if (qp) 2249 return qp; 2250 2251 qp = kzalloc(sizeof(*qp), GFP_KERNEL); 2252 if (!qp) 2253 return NULL; 2254 2255 qp->quattro_dev = child; 2256 qp->next = qfe_sbus_list; 2257 qfe_sbus_list = qp; 2258 2259 platform_set_drvdata(op, qp); 2260 return qp; 2261 } 2262 #endif /* CONFIG_SBUS */ 2263 2264 #ifdef CONFIG_PCI 2265 static struct quattro *quattro_pci_find(struct pci_dev *pdev) 2266 { 2267 int i; 2268 struct pci_dev *bdev = pdev->bus->self; 2269 struct quattro *qp; 2270 2271 if (!bdev) 2272 return ERR_PTR(-ENODEV); 2273 2274 for (qp = qfe_pci_list; qp != NULL; qp = qp->next) { 2275 struct pci_dev *qpdev = qp->quattro_dev; 2276 2277 if (qpdev == bdev) 2278 return qp; 2279 } 2280 2281 qp = kmalloc(sizeof(struct quattro), GFP_KERNEL); 2282 if (!qp) 2283 return ERR_PTR(-ENOMEM); 2284 2285 for (i = 0; i < 4; i++) 2286 qp->happy_meals[i] = NULL; 2287 2288 qp->quattro_dev = bdev; 2289 qp->next = qfe_pci_list; 2290 qfe_pci_list = qp; 2291 2292 /* No range tricks necessary on PCI. */ 2293 qp->nranges = 0; 2294 return qp; 2295 } 2296 #endif /* CONFIG_PCI */ 2297 2298 static const struct net_device_ops hme_netdev_ops = { 2299 .ndo_open = happy_meal_open, 2300 .ndo_stop = happy_meal_close, 2301 .ndo_start_xmit = happy_meal_start_xmit, 2302 .ndo_tx_timeout = happy_meal_tx_timeout, 2303 .ndo_get_stats = happy_meal_get_stats, 2304 .ndo_set_rx_mode = happy_meal_set_multicast, 2305 .ndo_set_mac_address = eth_mac_addr, 2306 .ndo_validate_addr = eth_validate_addr, 2307 }; 2308 2309 #ifdef CONFIG_PCI 2310 static int is_quattro_p(struct pci_dev *pdev) 2311 { 2312 struct pci_dev *busdev = pdev->bus->self; 2313 struct pci_dev *this_pdev; 2314 int n_hmes; 2315 2316 if (!busdev || busdev->vendor != PCI_VENDOR_ID_DEC || 2317 busdev->device != PCI_DEVICE_ID_DEC_21153) 2318 return 0; 2319 2320 n_hmes = 0; 2321 list_for_each_entry(this_pdev, &pdev->bus->devices, bus_list) { 2322 if (this_pdev->vendor == PCI_VENDOR_ID_SUN && 2323 this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL) 2324 n_hmes++; 2325 } 2326 2327 if (n_hmes != 4) 2328 return 0; 2329 2330 return 1; 2331 } 2332 2333 /* Fetch MAC address from vital product data of PCI ROM. */ 2334 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr) 2335 { 2336 int this_offset; 2337 2338 for (this_offset = 0x20; this_offset < len; this_offset++) { 2339 void __iomem *p = rom_base + this_offset; 2340 2341 if (readb(p + 0) != 0x90 || 2342 readb(p + 1) != 0x00 || 2343 readb(p + 2) != 0x09 || 2344 readb(p + 3) != 0x4e || 2345 readb(p + 4) != 0x41 || 2346 readb(p + 5) != 0x06) 2347 continue; 2348 2349 this_offset += 6; 2350 p += 6; 2351 2352 if (index == 0) { 2353 for (int i = 0; i < 6; i++) 2354 dev_addr[i] = readb(p + i); 2355 return 1; 2356 } 2357 index--; 2358 } 2359 return 0; 2360 } 2361 2362 static void __maybe_unused get_hme_mac_nonsparc(struct pci_dev *pdev, 2363 unsigned char *dev_addr) 2364 { 2365 void __iomem *p; 2366 size_t size; 2367 2368 p = pci_map_rom(pdev, &size); 2369 if (p) { 2370 int index = 0; 2371 int found; 2372 2373 if (is_quattro_p(pdev)) 2374 index = PCI_SLOT(pdev->devfn); 2375 2376 found = readb(p) == 0x55 && 2377 readb(p + 1) == 0xaa && 2378 find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr); 2379 pci_unmap_rom(pdev, p); 2380 if (found) 2381 return; 2382 } 2383 2384 /* Sun MAC prefix then 3 random bytes. */ 2385 dev_addr[0] = 0x08; 2386 dev_addr[1] = 0x00; 2387 dev_addr[2] = 0x20; 2388 get_random_bytes(&dev_addr[3], 3); 2389 } 2390 #endif 2391 2392 static void happy_meal_addr_init(struct happy_meal *hp, 2393 struct device_node *dp, int qfe_slot) 2394 { 2395 int i; 2396 2397 for (i = 0; i < 6; i++) { 2398 if (macaddr[i] != 0) 2399 break; 2400 } 2401 2402 if (i < 6) { /* a mac address was given */ 2403 u8 addr[ETH_ALEN]; 2404 2405 for (i = 0; i < 6; i++) 2406 addr[i] = macaddr[i]; 2407 eth_hw_addr_set(hp->dev, addr); 2408 macaddr[5]++; 2409 } else { 2410 #ifdef CONFIG_SPARC 2411 const unsigned char *addr; 2412 int len; 2413 2414 /* If user did not specify a MAC address specifically, use 2415 * the Quattro local-mac-address property... 2416 */ 2417 if (qfe_slot != -1) { 2418 addr = of_get_property(dp, "local-mac-address", &len); 2419 if (addr && len == 6) { 2420 eth_hw_addr_set(hp->dev, addr); 2421 return; 2422 } 2423 } 2424 2425 eth_hw_addr_set(hp->dev, idprom->id_ethaddr); 2426 #else 2427 u8 addr[ETH_ALEN]; 2428 2429 get_hme_mac_nonsparc(hp->happy_dev, addr); 2430 eth_hw_addr_set(hp->dev, addr); 2431 #endif 2432 } 2433 } 2434 2435 static int happy_meal_common_probe(struct happy_meal *hp, 2436 struct device_node *dp) 2437 { 2438 struct net_device *dev = hp->dev; 2439 int err; 2440 2441 #ifdef CONFIG_SPARC 2442 hp->hm_revision = of_getintprop_default(dp, "hm-rev", hp->hm_revision); 2443 #endif 2444 2445 /* Now enable the feature flags we can. */ 2446 if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21) 2447 hp->happy_flags |= HFLAG_20_21; 2448 else if (hp->hm_revision != 0xa0) 2449 hp->happy_flags |= HFLAG_NOT_A0; 2450 2451 hp->happy_block = dmam_alloc_coherent(hp->dma_dev, PAGE_SIZE, 2452 &hp->hblock_dvma, GFP_KERNEL); 2453 if (!hp->happy_block) 2454 return -ENOMEM; 2455 2456 /* Force check of the link first time we are brought up. */ 2457 hp->linkcheck = 0; 2458 2459 /* Force timer state to 'asleep' with count of zero. */ 2460 hp->timer_state = asleep; 2461 hp->timer_ticks = 0; 2462 2463 timer_setup(&hp->happy_timer, happy_meal_timer, 0); 2464 2465 dev->netdev_ops = &hme_netdev_ops; 2466 dev->watchdog_timeo = 5 * HZ; 2467 dev->ethtool_ops = &hme_ethtool_ops; 2468 2469 /* Happy Meal can do it all... */ 2470 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM; 2471 dev->features |= dev->hw_features | NETIF_F_RXCSUM; 2472 2473 2474 /* Grrr, Happy Meal comes up by default not advertising 2475 * full duplex 100baseT capabilities, fix this. 2476 */ 2477 spin_lock_irq(&hp->happy_lock); 2478 happy_meal_set_initial_advertisement(hp); 2479 spin_unlock_irq(&hp->happy_lock); 2480 2481 err = devm_register_netdev(hp->dma_dev, dev); 2482 if (err) 2483 dev_err(hp->dma_dev, "Cannot register net device, aborting.\n"); 2484 return err; 2485 } 2486 2487 #ifdef CONFIG_SBUS 2488 static int happy_meal_sbus_probe_one(struct platform_device *op, int is_qfe) 2489 { 2490 struct device_node *dp = op->dev.of_node, *sbus_dp; 2491 struct quattro *qp = NULL; 2492 struct happy_meal *hp; 2493 struct net_device *dev; 2494 int qfe_slot = -1; 2495 int err; 2496 2497 sbus_dp = op->dev.parent->of_node; 2498 2499 /* We can match PCI devices too, do not accept those here. */ 2500 if (!of_node_name_eq(sbus_dp, "sbus") && !of_node_name_eq(sbus_dp, "sbi")) 2501 return -ENODEV; 2502 2503 if (is_qfe) { 2504 qp = quattro_sbus_find(op); 2505 if (qp == NULL) 2506 return -ENODEV; 2507 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) 2508 if (qp->happy_meals[qfe_slot] == NULL) 2509 break; 2510 if (qfe_slot == 4) 2511 return -ENODEV; 2512 } 2513 2514 dev = devm_alloc_etherdev(&op->dev, sizeof(struct happy_meal)); 2515 if (!dev) 2516 return -ENOMEM; 2517 SET_NETDEV_DEV(dev, &op->dev); 2518 2519 hp = netdev_priv(dev); 2520 hp->dev = dev; 2521 hp->happy_dev = op; 2522 hp->dma_dev = &op->dev; 2523 happy_meal_addr_init(hp, dp, qfe_slot); 2524 2525 spin_lock_init(&hp->happy_lock); 2526 2527 if (qp != NULL) { 2528 hp->qfe_parent = qp; 2529 hp->qfe_ent = qfe_slot; 2530 qp->happy_meals[qfe_slot] = dev; 2531 } 2532 2533 hp->gregs = devm_platform_ioremap_resource(op, 0); 2534 if (IS_ERR(hp->gregs)) { 2535 dev_err(&op->dev, "Cannot map global registers.\n"); 2536 err = PTR_ERR(hp->gregs); 2537 goto err_out_clear_quattro; 2538 } 2539 2540 hp->etxregs = devm_platform_ioremap_resource(op, 1); 2541 if (IS_ERR(hp->etxregs)) { 2542 dev_err(&op->dev, "Cannot map MAC TX registers.\n"); 2543 err = PTR_ERR(hp->etxregs); 2544 goto err_out_clear_quattro; 2545 } 2546 2547 hp->erxregs = devm_platform_ioremap_resource(op, 2); 2548 if (IS_ERR(hp->erxregs)) { 2549 dev_err(&op->dev, "Cannot map MAC RX registers.\n"); 2550 err = PTR_ERR(hp->erxregs); 2551 goto err_out_clear_quattro; 2552 } 2553 2554 hp->bigmacregs = devm_platform_ioremap_resource(op, 3); 2555 if (IS_ERR(hp->bigmacregs)) { 2556 dev_err(&op->dev, "Cannot map BIGMAC registers.\n"); 2557 err = PTR_ERR(hp->bigmacregs); 2558 goto err_out_clear_quattro; 2559 } 2560 2561 hp->tcvregs = devm_platform_ioremap_resource(op, 4); 2562 if (IS_ERR(hp->tcvregs)) { 2563 dev_err(&op->dev, "Cannot map TCVR registers.\n"); 2564 err = PTR_ERR(hp->tcvregs); 2565 goto err_out_clear_quattro; 2566 } 2567 2568 hp->hm_revision = 0xa0; 2569 2570 if (qp != NULL) 2571 hp->happy_flags |= HFLAG_QUATTRO; 2572 2573 hp->irq = op->archdata.irqs[0]; 2574 2575 /* Get the supported DVMA burst sizes from our Happy SBUS. */ 2576 hp->happy_bursts = of_getintprop_default(sbus_dp, 2577 "burst-sizes", 0x00); 2578 2579 #ifdef CONFIG_PCI 2580 /* Hook up SBUS register/descriptor accessors. */ 2581 hp->read_desc32 = sbus_hme_read_desc32; 2582 hp->write_txd = sbus_hme_write_txd; 2583 hp->write_rxd = sbus_hme_write_rxd; 2584 hp->read32 = sbus_hme_read32; 2585 hp->write32 = sbus_hme_write32; 2586 #endif 2587 2588 err = happy_meal_common_probe(hp, dp); 2589 if (err) 2590 goto err_out_clear_quattro; 2591 2592 platform_set_drvdata(op, hp); 2593 2594 if (qfe_slot != -1) 2595 netdev_info(dev, 2596 "Quattro HME slot %d (SBUS) 10/100baseT Ethernet %pM\n", 2597 qfe_slot, dev->dev_addr); 2598 else 2599 netdev_info(dev, "HAPPY MEAL (SBUS) 10/100baseT Ethernet %pM\n", 2600 dev->dev_addr); 2601 2602 return 0; 2603 2604 err_out_clear_quattro: 2605 if (qp) 2606 qp->happy_meals[qfe_slot] = NULL; 2607 return err; 2608 } 2609 #endif 2610 2611 #ifdef CONFIG_PCI 2612 static int happy_meal_pci_probe(struct pci_dev *pdev, 2613 const struct pci_device_id *ent) 2614 { 2615 struct device_node *dp = NULL; 2616 struct quattro *qp = NULL; 2617 struct happy_meal *hp; 2618 struct net_device *dev; 2619 void __iomem *hpreg_base; 2620 struct resource *hpreg_res; 2621 char prom_name[64]; 2622 int qfe_slot = -1; 2623 int err = -ENODEV; 2624 2625 /* Now make sure pci_dev cookie is there. */ 2626 #ifdef CONFIG_SPARC 2627 dp = pci_device_to_OF_node(pdev); 2628 snprintf(prom_name, sizeof(prom_name), "%pOFn", dp); 2629 #else 2630 if (is_quattro_p(pdev)) 2631 strcpy(prom_name, "SUNW,qfe"); 2632 else 2633 strcpy(prom_name, "SUNW,hme"); 2634 #endif 2635 2636 err = pcim_enable_device(pdev); 2637 if (err) 2638 return err; 2639 pci_set_master(pdev); 2640 2641 if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) { 2642 qp = quattro_pci_find(pdev); 2643 if (IS_ERR(qp)) 2644 return PTR_ERR(qp); 2645 2646 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) 2647 if (!qp->happy_meals[qfe_slot]) 2648 break; 2649 2650 if (qfe_slot == 4) 2651 return -ENODEV; 2652 } 2653 2654 dev = devm_alloc_etherdev(&pdev->dev, sizeof(struct happy_meal)); 2655 if (!dev) 2656 return -ENOMEM; 2657 SET_NETDEV_DEV(dev, &pdev->dev); 2658 2659 hp = netdev_priv(dev); 2660 hp->dev = dev; 2661 hp->happy_dev = pdev; 2662 hp->dma_dev = &pdev->dev; 2663 2664 spin_lock_init(&hp->happy_lock); 2665 2666 if (qp != NULL) { 2667 hp->qfe_parent = qp; 2668 hp->qfe_ent = qfe_slot; 2669 qp->happy_meals[qfe_slot] = dev; 2670 } 2671 2672 err = -EINVAL; 2673 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) { 2674 dev_err(&pdev->dev, 2675 "Cannot find proper PCI device base address.\n"); 2676 goto err_out_clear_quattro; 2677 } 2678 2679 hpreg_res = devm_request_mem_region(&pdev->dev, 2680 pci_resource_start(pdev, 0), 2681 pci_resource_len(pdev, 0), 2682 DRV_NAME); 2683 if (!hpreg_res) { 2684 err = -EBUSY; 2685 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n"); 2686 goto err_out_clear_quattro; 2687 } 2688 2689 hpreg_base = pcim_iomap(pdev, 0, 0x8000); 2690 if (!hpreg_base) { 2691 err = -ENOMEM; 2692 dev_err(&pdev->dev, "Unable to remap card memory.\n"); 2693 goto err_out_clear_quattro; 2694 } 2695 2696 happy_meal_addr_init(hp, dp, qfe_slot); 2697 2698 /* Layout registers. */ 2699 hp->gregs = (hpreg_base + 0x0000UL); 2700 hp->etxregs = (hpreg_base + 0x2000UL); 2701 hp->erxregs = (hpreg_base + 0x4000UL); 2702 hp->bigmacregs = (hpreg_base + 0x6000UL); 2703 hp->tcvregs = (hpreg_base + 0x7000UL); 2704 2705 if (IS_ENABLED(CONFIG_SPARC)) 2706 hp->hm_revision = 0xc0 | (pdev->revision & 0x0f); 2707 else 2708 hp->hm_revision = 0x20; 2709 2710 if (qp != NULL) 2711 hp->happy_flags |= HFLAG_QUATTRO; 2712 2713 /* And of course, indicate this is PCI. */ 2714 hp->happy_flags |= HFLAG_PCI; 2715 2716 #ifdef CONFIG_SPARC 2717 /* Assume PCI happy meals can handle all burst sizes. */ 2718 hp->happy_bursts = DMA_BURSTBITS; 2719 #endif 2720 hp->irq = pdev->irq; 2721 2722 #ifdef CONFIG_SBUS 2723 /* Hook up PCI register/descriptor accessors. */ 2724 hp->read_desc32 = pci_hme_read_desc32; 2725 hp->write_txd = pci_hme_write_txd; 2726 hp->write_rxd = pci_hme_write_rxd; 2727 hp->read32 = pci_hme_read32; 2728 hp->write32 = pci_hme_write32; 2729 #endif 2730 2731 err = happy_meal_common_probe(hp, dp); 2732 if (err) 2733 goto err_out_clear_quattro; 2734 2735 pci_set_drvdata(pdev, hp); 2736 2737 if (!qfe_slot) { 2738 struct pci_dev *qpdev = qp->quattro_dev; 2739 2740 prom_name[0] = 0; 2741 if (!strncmp(dev->name, "eth", 3)) { 2742 int i = simple_strtoul(dev->name + 3, NULL, 10); 2743 sprintf(prom_name, "-%d", i + 3); 2744 } 2745 netdev_info(dev, 2746 "%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet bridge %04x.%04x\n", 2747 prom_name, qpdev->vendor, qpdev->device); 2748 } 2749 2750 if (qfe_slot != -1) 2751 netdev_info(dev, 2752 "Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet %pM\n", 2753 qfe_slot, dev->dev_addr); 2754 else 2755 netdev_info(dev, 2756 "HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet %pM\n", 2757 dev->dev_addr); 2758 2759 return 0; 2760 2761 err_out_clear_quattro: 2762 if (qp != NULL) 2763 qp->happy_meals[qfe_slot] = NULL; 2764 return err; 2765 } 2766 2767 static const struct pci_device_id happymeal_pci_ids[] = { 2768 { PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) }, 2769 { } /* Terminating entry */ 2770 }; 2771 2772 MODULE_DEVICE_TABLE(pci, happymeal_pci_ids); 2773 2774 static struct pci_driver hme_pci_driver = { 2775 .name = "hme", 2776 .id_table = happymeal_pci_ids, 2777 .probe = happy_meal_pci_probe, 2778 }; 2779 2780 static int __init happy_meal_pci_init(void) 2781 { 2782 return pci_register_driver(&hme_pci_driver); 2783 } 2784 2785 static void happy_meal_pci_exit(void) 2786 { 2787 pci_unregister_driver(&hme_pci_driver); 2788 2789 while (qfe_pci_list) { 2790 struct quattro *qfe = qfe_pci_list; 2791 struct quattro *next = qfe->next; 2792 2793 kfree(qfe); 2794 2795 qfe_pci_list = next; 2796 } 2797 } 2798 2799 #endif 2800 2801 #ifdef CONFIG_SBUS 2802 static const struct of_device_id hme_sbus_match[]; 2803 static int hme_sbus_probe(struct platform_device *op) 2804 { 2805 const struct of_device_id *match; 2806 struct device_node *dp = op->dev.of_node; 2807 const char *model = of_get_property(dp, "model", NULL); 2808 int is_qfe; 2809 2810 match = of_match_device(hme_sbus_match, &op->dev); 2811 if (!match) 2812 return -EINVAL; 2813 is_qfe = (match->data != NULL); 2814 2815 if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe")) 2816 is_qfe = 1; 2817 2818 return happy_meal_sbus_probe_one(op, is_qfe); 2819 } 2820 2821 static const struct of_device_id hme_sbus_match[] = { 2822 { 2823 .name = "SUNW,hme", 2824 }, 2825 { 2826 .name = "SUNW,qfe", 2827 .data = (void *) 1, 2828 }, 2829 { 2830 .name = "qfe", 2831 .data = (void *) 1, 2832 }, 2833 {}, 2834 }; 2835 2836 MODULE_DEVICE_TABLE(of, hme_sbus_match); 2837 2838 static struct platform_driver hme_sbus_driver = { 2839 .driver = { 2840 .name = "hme", 2841 .of_match_table = hme_sbus_match, 2842 }, 2843 .probe = hme_sbus_probe, 2844 }; 2845 2846 static int __init happy_meal_sbus_init(void) 2847 { 2848 return platform_driver_register(&hme_sbus_driver); 2849 } 2850 2851 static void happy_meal_sbus_exit(void) 2852 { 2853 platform_driver_unregister(&hme_sbus_driver); 2854 2855 while (qfe_sbus_list) { 2856 struct quattro *qfe = qfe_sbus_list; 2857 struct quattro *next = qfe->next; 2858 2859 kfree(qfe); 2860 2861 qfe_sbus_list = next; 2862 } 2863 } 2864 #endif 2865 2866 static int __init happy_meal_probe(void) 2867 { 2868 int err = 0; 2869 2870 #ifdef CONFIG_SBUS 2871 err = happy_meal_sbus_init(); 2872 #endif 2873 #ifdef CONFIG_PCI 2874 if (!err) { 2875 err = happy_meal_pci_init(); 2876 #ifdef CONFIG_SBUS 2877 if (err) 2878 happy_meal_sbus_exit(); 2879 #endif 2880 } 2881 #endif 2882 2883 return err; 2884 } 2885 2886 2887 static void __exit happy_meal_exit(void) 2888 { 2889 #ifdef CONFIG_SBUS 2890 happy_meal_sbus_exit(); 2891 #endif 2892 #ifdef CONFIG_PCI 2893 happy_meal_pci_exit(); 2894 #endif 2895 } 2896 2897 module_init(happy_meal_probe); 2898 module_exit(happy_meal_exit); 2899