xref: /linux/drivers/net/ethernet/sun/sungem.c (revision f2745dc0ba3dadd8fa2b2c33f48253d78e133a12)
1 // SPDX-License-Identifier: GPL-2.0
2 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
3  * sungem.c: Sun GEM ethernet driver.
4  *
5  * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6  *
7  * Support for Apple GMAC and assorted PHYs, WOL, Power Management
8  * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
9  * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10  *
11  * NAPI and NETPOLL support
12  * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
13  *
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/fcntl.h>
22 #include <linux/interrupt.h>
23 #include <linux/ioport.h>
24 #include <linux/in.h>
25 #include <linux/sched.h>
26 #include <linux/string.h>
27 #include <linux/delay.h>
28 #include <linux/errno.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 #include <linux/crc32.h>
37 #include <linux/random.h>
38 #include <linux/workqueue.h>
39 #include <linux/if_vlan.h>
40 #include <linux/bitops.h>
41 #include <linux/mm.h>
42 #include <linux/gfp.h>
43 
44 #include <asm/io.h>
45 #include <asm/byteorder.h>
46 #include <linux/uaccess.h>
47 #include <asm/irq.h>
48 
49 #ifdef CONFIG_SPARC
50 #include <asm/idprom.h>
51 #include <asm/prom.h>
52 #endif
53 
54 #ifdef CONFIG_PPC_PMAC
55 #include <asm/machdep.h>
56 #include <asm/pmac_feature.h>
57 #endif
58 
59 #include <linux/sungem_phy.h>
60 #include "sungem.h"
61 
62 #define STRIP_FCS
63 
64 #define DEFAULT_MSG	(NETIF_MSG_DRV		| \
65 			 NETIF_MSG_PROBE	| \
66 			 NETIF_MSG_LINK)
67 
68 #define ADVERTISE_MASK	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
69 			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
70 			 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
71 			 SUPPORTED_Pause | SUPPORTED_Autoneg)
72 
73 #define DRV_NAME	"sungem"
74 #define DRV_VERSION	"1.0"
75 #define DRV_AUTHOR	"David S. Miller <davem@redhat.com>"
76 
77 static char version[] =
78         DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
79 
80 MODULE_AUTHOR(DRV_AUTHOR);
81 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
82 MODULE_LICENSE("GPL");
83 
84 #define GEM_MODULE_NAME	"gem"
85 
86 static const struct pci_device_id gem_pci_tbl[] = {
87 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
88 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
89 
90 	/* These models only differ from the original GEM in
91 	 * that their tx/rx fifos are of a different size and
92 	 * they only support 10/100 speeds. -DaveM
93 	 *
94 	 * Apple's GMAC does support gigabit on machines with
95 	 * the BCM54xx PHYs. -BenH
96 	 */
97 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
98 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
99 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
100 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
101 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
102 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
103 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
104 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
105 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
106 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
107 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
108 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
109 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
110 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
111 	{0, }
112 };
113 
114 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
115 
116 static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg)
117 {
118 	u32 cmd;
119 	int limit = 10000;
120 
121 	cmd  = (1 << 30);
122 	cmd |= (2 << 28);
123 	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
124 	cmd |= (reg << 18) & MIF_FRAME_REGAD;
125 	cmd |= (MIF_FRAME_TAMSB);
126 	writel(cmd, gp->regs + MIF_FRAME);
127 
128 	while (--limit) {
129 		cmd = readl(gp->regs + MIF_FRAME);
130 		if (cmd & MIF_FRAME_TALSB)
131 			break;
132 
133 		udelay(10);
134 	}
135 
136 	if (!limit)
137 		cmd = 0xffff;
138 
139 	return cmd & MIF_FRAME_DATA;
140 }
141 
142 static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg)
143 {
144 	struct gem *gp = netdev_priv(dev);
145 	return __sungem_phy_read(gp, mii_id, reg);
146 }
147 
148 static inline u16 sungem_phy_read(struct gem *gp, int reg)
149 {
150 	return __sungem_phy_read(gp, gp->mii_phy_addr, reg);
151 }
152 
153 static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
154 {
155 	u32 cmd;
156 	int limit = 10000;
157 
158 	cmd  = (1 << 30);
159 	cmd |= (1 << 28);
160 	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
161 	cmd |= (reg << 18) & MIF_FRAME_REGAD;
162 	cmd |= (MIF_FRAME_TAMSB);
163 	cmd |= (val & MIF_FRAME_DATA);
164 	writel(cmd, gp->regs + MIF_FRAME);
165 
166 	while (limit--) {
167 		cmd = readl(gp->regs + MIF_FRAME);
168 		if (cmd & MIF_FRAME_TALSB)
169 			break;
170 
171 		udelay(10);
172 	}
173 }
174 
175 static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val)
176 {
177 	struct gem *gp = netdev_priv(dev);
178 	__sungem_phy_write(gp, mii_id, reg, val & 0xffff);
179 }
180 
181 static inline void sungem_phy_write(struct gem *gp, int reg, u16 val)
182 {
183 	__sungem_phy_write(gp, gp->mii_phy_addr, reg, val);
184 }
185 
186 static inline void gem_enable_ints(struct gem *gp)
187 {
188 	/* Enable all interrupts but TXDONE */
189 	writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
190 }
191 
192 static inline void gem_disable_ints(struct gem *gp)
193 {
194 	/* Disable all interrupts, including TXDONE */
195 	writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
196 	(void)readl(gp->regs + GREG_IMASK); /* write posting */
197 }
198 
199 static void gem_get_cell(struct gem *gp)
200 {
201 	BUG_ON(gp->cell_enabled < 0);
202 	gp->cell_enabled++;
203 #ifdef CONFIG_PPC_PMAC
204 	if (gp->cell_enabled == 1) {
205 		mb();
206 		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
207 		udelay(10);
208 	}
209 #endif /* CONFIG_PPC_PMAC */
210 }
211 
212 /* Turn off the chip's clock */
213 static void gem_put_cell(struct gem *gp)
214 {
215 	BUG_ON(gp->cell_enabled <= 0);
216 	gp->cell_enabled--;
217 #ifdef CONFIG_PPC_PMAC
218 	if (gp->cell_enabled == 0) {
219 		mb();
220 		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
221 		udelay(10);
222 	}
223 #endif /* CONFIG_PPC_PMAC */
224 }
225 
226 static inline void gem_netif_stop(struct gem *gp)
227 {
228 	netif_trans_update(gp->dev);	/* prevent tx timeout */
229 	napi_disable(&gp->napi);
230 	netif_tx_disable(gp->dev);
231 }
232 
233 static inline void gem_netif_start(struct gem *gp)
234 {
235 	/* NOTE: unconditional netif_wake_queue is only
236 	 * appropriate so long as all callers are assured to
237 	 * have free tx slots.
238 	 */
239 	netif_wake_queue(gp->dev);
240 	napi_enable(&gp->napi);
241 }
242 
243 static void gem_schedule_reset(struct gem *gp)
244 {
245 	gp->reset_task_pending = 1;
246 	schedule_work(&gp->reset_task);
247 }
248 
249 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
250 {
251 	if (netif_msg_intr(gp))
252 		printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
253 }
254 
255 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
256 {
257 	u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
258 	u32 pcs_miistat;
259 
260 	if (netif_msg_intr(gp))
261 		printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
262 			gp->dev->name, pcs_istat);
263 
264 	if (!(pcs_istat & PCS_ISTAT_LSC)) {
265 		netdev_err(dev, "PCS irq but no link status change???\n");
266 		return 0;
267 	}
268 
269 	/* The link status bit latches on zero, so you must
270 	 * read it twice in such a case to see a transition
271 	 * to the link being up.
272 	 */
273 	pcs_miistat = readl(gp->regs + PCS_MIISTAT);
274 	if (!(pcs_miistat & PCS_MIISTAT_LS))
275 		pcs_miistat |=
276 			(readl(gp->regs + PCS_MIISTAT) &
277 			 PCS_MIISTAT_LS);
278 
279 	if (pcs_miistat & PCS_MIISTAT_ANC) {
280 		/* The remote-fault indication is only valid
281 		 * when autoneg has completed.
282 		 */
283 		if (pcs_miistat & PCS_MIISTAT_RF)
284 			netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
285 		else
286 			netdev_info(dev, "PCS AutoNEG complete\n");
287 	}
288 
289 	if (pcs_miistat & PCS_MIISTAT_LS) {
290 		netdev_info(dev, "PCS link is now up\n");
291 		netif_carrier_on(gp->dev);
292 	} else {
293 		netdev_info(dev, "PCS link is now down\n");
294 		netif_carrier_off(gp->dev);
295 		/* If this happens and the link timer is not running,
296 		 * reset so we re-negotiate.
297 		 */
298 		if (!timer_pending(&gp->link_timer))
299 			return 1;
300 	}
301 
302 	return 0;
303 }
304 
305 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
306 {
307 	u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
308 
309 	if (netif_msg_intr(gp))
310 		printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
311 			gp->dev->name, txmac_stat);
312 
313 	/* Defer timer expiration is quite normal,
314 	 * don't even log the event.
315 	 */
316 	if ((txmac_stat & MAC_TXSTAT_DTE) &&
317 	    !(txmac_stat & ~MAC_TXSTAT_DTE))
318 		return 0;
319 
320 	if (txmac_stat & MAC_TXSTAT_URUN) {
321 		netdev_err(dev, "TX MAC xmit underrun\n");
322 		dev->stats.tx_fifo_errors++;
323 	}
324 
325 	if (txmac_stat & MAC_TXSTAT_MPE) {
326 		netdev_err(dev, "TX MAC max packet size error\n");
327 		dev->stats.tx_errors++;
328 	}
329 
330 	/* The rest are all cases of one of the 16-bit TX
331 	 * counters expiring.
332 	 */
333 	if (txmac_stat & MAC_TXSTAT_NCE)
334 		dev->stats.collisions += 0x10000;
335 
336 	if (txmac_stat & MAC_TXSTAT_ECE) {
337 		dev->stats.tx_aborted_errors += 0x10000;
338 		dev->stats.collisions += 0x10000;
339 	}
340 
341 	if (txmac_stat & MAC_TXSTAT_LCE) {
342 		dev->stats.tx_aborted_errors += 0x10000;
343 		dev->stats.collisions += 0x10000;
344 	}
345 
346 	/* We do not keep track of MAC_TXSTAT_FCE and
347 	 * MAC_TXSTAT_PCE events.
348 	 */
349 	return 0;
350 }
351 
352 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
353  * so we do the following.
354  *
355  * If any part of the reset goes wrong, we return 1 and that causes the
356  * whole chip to be reset.
357  */
358 static int gem_rxmac_reset(struct gem *gp)
359 {
360 	struct net_device *dev = gp->dev;
361 	int limit, i;
362 	u64 desc_dma;
363 	u32 val;
364 
365 	/* First, reset & disable MAC RX. */
366 	writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
367 	for (limit = 0; limit < 5000; limit++) {
368 		if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
369 			break;
370 		udelay(10);
371 	}
372 	if (limit == 5000) {
373 		netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
374 		return 1;
375 	}
376 
377 	writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
378 	       gp->regs + MAC_RXCFG);
379 	for (limit = 0; limit < 5000; limit++) {
380 		if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
381 			break;
382 		udelay(10);
383 	}
384 	if (limit == 5000) {
385 		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
386 		return 1;
387 	}
388 
389 	/* Second, disable RX DMA. */
390 	writel(0, gp->regs + RXDMA_CFG);
391 	for (limit = 0; limit < 5000; limit++) {
392 		if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
393 			break;
394 		udelay(10);
395 	}
396 	if (limit == 5000) {
397 		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
398 		return 1;
399 	}
400 
401 	mdelay(5);
402 
403 	/* Execute RX reset command. */
404 	writel(gp->swrst_base | GREG_SWRST_RXRST,
405 	       gp->regs + GREG_SWRST);
406 	for (limit = 0; limit < 5000; limit++) {
407 		if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
408 			break;
409 		udelay(10);
410 	}
411 	if (limit == 5000) {
412 		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
413 		return 1;
414 	}
415 
416 	/* Refresh the RX ring. */
417 	for (i = 0; i < RX_RING_SIZE; i++) {
418 		struct gem_rxd *rxd = &gp->init_block->rxd[i];
419 
420 		if (gp->rx_skbs[i] == NULL) {
421 			netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
422 			return 1;
423 		}
424 
425 		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
426 	}
427 	gp->rx_new = gp->rx_old = 0;
428 
429 	/* Now we must reprogram the rest of RX unit. */
430 	desc_dma = (u64) gp->gblock_dvma;
431 	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
432 	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
433 	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
434 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
435 	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
436 	       (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
437 	writel(val, gp->regs + RXDMA_CFG);
438 	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
439 		writel(((5 & RXDMA_BLANK_IPKTS) |
440 			((8 << 12) & RXDMA_BLANK_ITIME)),
441 		       gp->regs + RXDMA_BLANK);
442 	else
443 		writel(((5 & RXDMA_BLANK_IPKTS) |
444 			((4 << 12) & RXDMA_BLANK_ITIME)),
445 		       gp->regs + RXDMA_BLANK);
446 	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
447 	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
448 	writel(val, gp->regs + RXDMA_PTHRESH);
449 	val = readl(gp->regs + RXDMA_CFG);
450 	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
451 	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
452 	val = readl(gp->regs + MAC_RXCFG);
453 	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
454 
455 	return 0;
456 }
457 
458 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
459 {
460 	u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
461 	int ret = 0;
462 
463 	if (netif_msg_intr(gp))
464 		printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
465 			gp->dev->name, rxmac_stat);
466 
467 	if (rxmac_stat & MAC_RXSTAT_OFLW) {
468 		u32 smac = readl(gp->regs + MAC_SMACHINE);
469 
470 		netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
471 		dev->stats.rx_over_errors++;
472 		dev->stats.rx_fifo_errors++;
473 
474 		ret = gem_rxmac_reset(gp);
475 	}
476 
477 	if (rxmac_stat & MAC_RXSTAT_ACE)
478 		dev->stats.rx_frame_errors += 0x10000;
479 
480 	if (rxmac_stat & MAC_RXSTAT_CCE)
481 		dev->stats.rx_crc_errors += 0x10000;
482 
483 	if (rxmac_stat & MAC_RXSTAT_LCE)
484 		dev->stats.rx_length_errors += 0x10000;
485 
486 	/* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
487 	 * events.
488 	 */
489 	return ret;
490 }
491 
492 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
493 {
494 	u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
495 
496 	if (netif_msg_intr(gp))
497 		printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
498 			gp->dev->name, mac_cstat);
499 
500 	/* This interrupt is just for pause frame and pause
501 	 * tracking.  It is useful for diagnostics and debug
502 	 * but probably by default we will mask these events.
503 	 */
504 	if (mac_cstat & MAC_CSTAT_PS)
505 		gp->pause_entered++;
506 
507 	if (mac_cstat & MAC_CSTAT_PRCV)
508 		gp->pause_last_time_recvd = (mac_cstat >> 16);
509 
510 	return 0;
511 }
512 
513 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
514 {
515 	u32 mif_status = readl(gp->regs + MIF_STATUS);
516 	u32 reg_val, changed_bits;
517 
518 	reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
519 	changed_bits = (mif_status & MIF_STATUS_STAT);
520 
521 	gem_handle_mif_event(gp, reg_val, changed_bits);
522 
523 	return 0;
524 }
525 
526 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
527 {
528 	u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
529 
530 	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
531 	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
532 		netdev_err(dev, "PCI error [%04x]", pci_estat);
533 
534 		if (pci_estat & GREG_PCIESTAT_BADACK)
535 			pr_cont(" <No ACK64# during ABS64 cycle>");
536 		if (pci_estat & GREG_PCIESTAT_DTRTO)
537 			pr_cont(" <Delayed transaction timeout>");
538 		if (pci_estat & GREG_PCIESTAT_OTHER)
539 			pr_cont(" <other>");
540 		pr_cont("\n");
541 	} else {
542 		pci_estat |= GREG_PCIESTAT_OTHER;
543 		netdev_err(dev, "PCI error\n");
544 	}
545 
546 	if (pci_estat & GREG_PCIESTAT_OTHER) {
547 		int pci_errs;
548 
549 		/* Interrogate PCI config space for the
550 		 * true cause.
551 		 */
552 		pci_errs = pci_status_get_and_clear_errors(gp->pdev);
553 		netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
554 		if (pci_errs & PCI_STATUS_PARITY)
555 			netdev_err(dev, "PCI parity error detected\n");
556 		if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
557 			netdev_err(dev, "PCI target abort\n");
558 		if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
559 			netdev_err(dev, "PCI master acks target abort\n");
560 		if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
561 			netdev_err(dev, "PCI master abort\n");
562 		if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
563 			netdev_err(dev, "PCI system error SERR#\n");
564 		if (pci_errs & PCI_STATUS_DETECTED_PARITY)
565 			netdev_err(dev, "PCI parity error\n");
566 	}
567 
568 	/* For all PCI errors, we should reset the chip. */
569 	return 1;
570 }
571 
572 /* All non-normal interrupt conditions get serviced here.
573  * Returns non-zero if we should just exit the interrupt
574  * handler right now (ie. if we reset the card which invalidates
575  * all of the other original irq status bits).
576  */
577 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
578 {
579 	if (gem_status & GREG_STAT_RXNOBUF) {
580 		/* Frame arrived, no free RX buffers available. */
581 		if (netif_msg_rx_err(gp))
582 			printk(KERN_DEBUG "%s: no buffer for rx frame\n",
583 				gp->dev->name);
584 		dev->stats.rx_dropped++;
585 	}
586 
587 	if (gem_status & GREG_STAT_RXTAGERR) {
588 		/* corrupt RX tag framing */
589 		if (netif_msg_rx_err(gp))
590 			printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
591 				gp->dev->name);
592 		dev->stats.rx_errors++;
593 
594 		return 1;
595 	}
596 
597 	if (gem_status & GREG_STAT_PCS) {
598 		if (gem_pcs_interrupt(dev, gp, gem_status))
599 			return 1;
600 	}
601 
602 	if (gem_status & GREG_STAT_TXMAC) {
603 		if (gem_txmac_interrupt(dev, gp, gem_status))
604 			return 1;
605 	}
606 
607 	if (gem_status & GREG_STAT_RXMAC) {
608 		if (gem_rxmac_interrupt(dev, gp, gem_status))
609 			return 1;
610 	}
611 
612 	if (gem_status & GREG_STAT_MAC) {
613 		if (gem_mac_interrupt(dev, gp, gem_status))
614 			return 1;
615 	}
616 
617 	if (gem_status & GREG_STAT_MIF) {
618 		if (gem_mif_interrupt(dev, gp, gem_status))
619 			return 1;
620 	}
621 
622 	if (gem_status & GREG_STAT_PCIERR) {
623 		if (gem_pci_interrupt(dev, gp, gem_status))
624 			return 1;
625 	}
626 
627 	return 0;
628 }
629 
630 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
631 {
632 	int entry, limit;
633 
634 	entry = gp->tx_old;
635 	limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
636 	while (entry != limit) {
637 		struct sk_buff *skb;
638 		struct gem_txd *txd;
639 		dma_addr_t dma_addr;
640 		u32 dma_len;
641 		int frag;
642 
643 		if (netif_msg_tx_done(gp))
644 			printk(KERN_DEBUG "%s: tx done, slot %d\n",
645 				gp->dev->name, entry);
646 		skb = gp->tx_skbs[entry];
647 		if (skb_shinfo(skb)->nr_frags) {
648 			int last = entry + skb_shinfo(skb)->nr_frags;
649 			int walk = entry;
650 			int incomplete = 0;
651 
652 			last &= (TX_RING_SIZE - 1);
653 			for (;;) {
654 				walk = NEXT_TX(walk);
655 				if (walk == limit)
656 					incomplete = 1;
657 				if (walk == last)
658 					break;
659 			}
660 			if (incomplete)
661 				break;
662 		}
663 		gp->tx_skbs[entry] = NULL;
664 		dev->stats.tx_bytes += skb->len;
665 
666 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
667 			txd = &gp->init_block->txd[entry];
668 
669 			dma_addr = le64_to_cpu(txd->buffer);
670 			dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
671 
672 			dma_unmap_page(&gp->pdev->dev, dma_addr, dma_len,
673 				       DMA_TO_DEVICE);
674 			entry = NEXT_TX(entry);
675 		}
676 
677 		dev->stats.tx_packets++;
678 		dev_consume_skb_any(skb);
679 	}
680 	gp->tx_old = entry;
681 
682 	/* Need to make the tx_old update visible to gem_start_xmit()
683 	 * before checking for netif_queue_stopped().  Without the
684 	 * memory barrier, there is a small possibility that gem_start_xmit()
685 	 * will miss it and cause the queue to be stopped forever.
686 	 */
687 	smp_mb();
688 
689 	if (unlikely(netif_queue_stopped(dev) &&
690 		     TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
691 		struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
692 
693 		__netif_tx_lock(txq, smp_processor_id());
694 		if (netif_queue_stopped(dev) &&
695 		    TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
696 			netif_wake_queue(dev);
697 		__netif_tx_unlock(txq);
698 	}
699 }
700 
701 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
702 {
703 	int cluster_start, curr, count, kick;
704 
705 	cluster_start = curr = (gp->rx_new & ~(4 - 1));
706 	count = 0;
707 	kick = -1;
708 	dma_wmb();
709 	while (curr != limit) {
710 		curr = NEXT_RX(curr);
711 		if (++count == 4) {
712 			struct gem_rxd *rxd =
713 				&gp->init_block->rxd[cluster_start];
714 			for (;;) {
715 				rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
716 				rxd++;
717 				cluster_start = NEXT_RX(cluster_start);
718 				if (cluster_start == curr)
719 					break;
720 			}
721 			kick = curr;
722 			count = 0;
723 		}
724 	}
725 	if (kick >= 0) {
726 		mb();
727 		writel(kick, gp->regs + RXDMA_KICK);
728 	}
729 }
730 
731 #define ALIGNED_RX_SKB_ADDR(addr) \
732         ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
733 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
734 						gfp_t gfp_flags)
735 {
736 	struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
737 
738 	if (likely(skb)) {
739 		unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
740 		skb_reserve(skb, offset);
741 	}
742 	return skb;
743 }
744 
745 static int gem_rx(struct gem *gp, int work_to_do)
746 {
747 	struct net_device *dev = gp->dev;
748 	int entry, drops, work_done = 0;
749 	u32 done;
750 
751 	if (netif_msg_rx_status(gp))
752 		printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
753 			gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
754 
755 	entry = gp->rx_new;
756 	drops = 0;
757 	done = readl(gp->regs + RXDMA_DONE);
758 	for (;;) {
759 		struct gem_rxd *rxd = &gp->init_block->rxd[entry];
760 		struct sk_buff *skb;
761 		u64 status = le64_to_cpu(rxd->status_word);
762 		dma_addr_t dma_addr;
763 		int len;
764 
765 		if ((status & RXDCTRL_OWN) != 0)
766 			break;
767 
768 		if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
769 			break;
770 
771 		/* When writing back RX descriptor, GEM writes status
772 		 * then buffer address, possibly in separate transactions.
773 		 * If we don't wait for the chip to write both, we could
774 		 * post a new buffer to this descriptor then have GEM spam
775 		 * on the buffer address.  We sync on the RX completion
776 		 * register to prevent this from happening.
777 		 */
778 		if (entry == done) {
779 			done = readl(gp->regs + RXDMA_DONE);
780 			if (entry == done)
781 				break;
782 		}
783 
784 		/* We can now account for the work we're about to do */
785 		work_done++;
786 
787 		skb = gp->rx_skbs[entry];
788 
789 		len = (status & RXDCTRL_BUFSZ) >> 16;
790 		if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
791 			dev->stats.rx_errors++;
792 			if (len < ETH_ZLEN)
793 				dev->stats.rx_length_errors++;
794 			if (len & RXDCTRL_BAD)
795 				dev->stats.rx_crc_errors++;
796 
797 			/* We'll just return it to GEM. */
798 		drop_it:
799 			dev->stats.rx_dropped++;
800 			goto next;
801 		}
802 
803 		dma_addr = le64_to_cpu(rxd->buffer);
804 		if (len > RX_COPY_THRESHOLD) {
805 			struct sk_buff *new_skb;
806 
807 			new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
808 			if (new_skb == NULL) {
809 				drops++;
810 				goto drop_it;
811 			}
812 			dma_unmap_page(&gp->pdev->dev, dma_addr,
813 				       RX_BUF_ALLOC_SIZE(gp), DMA_FROM_DEVICE);
814 			gp->rx_skbs[entry] = new_skb;
815 			skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
816 			rxd->buffer = cpu_to_le64(dma_map_page(&gp->pdev->dev,
817 							       virt_to_page(new_skb->data),
818 							       offset_in_page(new_skb->data),
819 							       RX_BUF_ALLOC_SIZE(gp),
820 							       DMA_FROM_DEVICE));
821 			skb_reserve(new_skb, RX_OFFSET);
822 
823 			/* Trim the original skb for the netif. */
824 			skb_trim(skb, len);
825 		} else {
826 			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
827 
828 			if (copy_skb == NULL) {
829 				drops++;
830 				goto drop_it;
831 			}
832 
833 			skb_reserve(copy_skb, 2);
834 			skb_put(copy_skb, len);
835 			dma_sync_single_for_cpu(&gp->pdev->dev, dma_addr, len,
836 						DMA_FROM_DEVICE);
837 			skb_copy_from_linear_data(skb, copy_skb->data, len);
838 			dma_sync_single_for_device(&gp->pdev->dev, dma_addr,
839 						   len, DMA_FROM_DEVICE);
840 
841 			/* We'll reuse the original ring buffer. */
842 			skb = copy_skb;
843 		}
844 
845 		if (likely(dev->features & NETIF_F_RXCSUM)) {
846 			__sum16 csum;
847 
848 			csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
849 			skb->csum = csum_unfold(csum);
850 			skb->ip_summed = CHECKSUM_COMPLETE;
851 		}
852 		skb->protocol = eth_type_trans(skb, gp->dev);
853 
854 		napi_gro_receive(&gp->napi, skb);
855 
856 		dev->stats.rx_packets++;
857 		dev->stats.rx_bytes += len;
858 
859 	next:
860 		entry = NEXT_RX(entry);
861 	}
862 
863 	gem_post_rxds(gp, entry);
864 
865 	gp->rx_new = entry;
866 
867 	if (drops)
868 		netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
869 
870 	return work_done;
871 }
872 
873 static int gem_poll(struct napi_struct *napi, int budget)
874 {
875 	struct gem *gp = container_of(napi, struct gem, napi);
876 	struct net_device *dev = gp->dev;
877 	int work_done;
878 
879 	work_done = 0;
880 	do {
881 		/* Handle anomalies */
882 		if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
883 			struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
884 			int reset;
885 
886 			/* We run the abnormal interrupt handling code with
887 			 * the Tx lock. It only resets the Rx portion of the
888 			 * chip, but we need to guard it against DMA being
889 			 * restarted by the link poll timer
890 			 */
891 			__netif_tx_lock(txq, smp_processor_id());
892 			reset = gem_abnormal_irq(dev, gp, gp->status);
893 			__netif_tx_unlock(txq);
894 			if (reset) {
895 				gem_schedule_reset(gp);
896 				napi_complete(napi);
897 				return work_done;
898 			}
899 		}
900 
901 		/* Run TX completion thread */
902 		gem_tx(dev, gp, gp->status);
903 
904 		/* Run RX thread. We don't use any locking here,
905 		 * code willing to do bad things - like cleaning the
906 		 * rx ring - must call napi_disable(), which
907 		 * schedule_timeout()'s if polling is already disabled.
908 		 */
909 		work_done += gem_rx(gp, budget - work_done);
910 
911 		if (work_done >= budget)
912 			return work_done;
913 
914 		gp->status = readl(gp->regs + GREG_STAT);
915 	} while (gp->status & GREG_STAT_NAPI);
916 
917 	napi_complete_done(napi, work_done);
918 	gem_enable_ints(gp);
919 
920 	return work_done;
921 }
922 
923 static irqreturn_t gem_interrupt(int irq, void *dev_id)
924 {
925 	struct net_device *dev = dev_id;
926 	struct gem *gp = netdev_priv(dev);
927 
928 	if (napi_schedule_prep(&gp->napi)) {
929 		u32 gem_status = readl(gp->regs + GREG_STAT);
930 
931 		if (unlikely(gem_status == 0)) {
932 			napi_enable(&gp->napi);
933 			return IRQ_NONE;
934 		}
935 		if (netif_msg_intr(gp))
936 			printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
937 			       gp->dev->name, gem_status);
938 
939 		gp->status = gem_status;
940 		gem_disable_ints(gp);
941 		__napi_schedule(&gp->napi);
942 	}
943 
944 	/* If polling was disabled at the time we received that
945 	 * interrupt, we may return IRQ_HANDLED here while we
946 	 * should return IRQ_NONE. No big deal...
947 	 */
948 	return IRQ_HANDLED;
949 }
950 
951 #ifdef CONFIG_NET_POLL_CONTROLLER
952 static void gem_poll_controller(struct net_device *dev)
953 {
954 	struct gem *gp = netdev_priv(dev);
955 
956 	disable_irq(gp->pdev->irq);
957 	gem_interrupt(gp->pdev->irq, dev);
958 	enable_irq(gp->pdev->irq);
959 }
960 #endif
961 
962 static void gem_tx_timeout(struct net_device *dev, unsigned int txqueue)
963 {
964 	struct gem *gp = netdev_priv(dev);
965 
966 	netdev_err(dev, "transmit timed out, resetting\n");
967 
968 	netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
969 		   readl(gp->regs + TXDMA_CFG),
970 		   readl(gp->regs + MAC_TXSTAT),
971 		   readl(gp->regs + MAC_TXCFG));
972 	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
973 		   readl(gp->regs + RXDMA_CFG),
974 		   readl(gp->regs + MAC_RXSTAT),
975 		   readl(gp->regs + MAC_RXCFG));
976 
977 	gem_schedule_reset(gp);
978 }
979 
980 static __inline__ int gem_intme(int entry)
981 {
982 	/* Algorithm: IRQ every 1/2 of descriptors. */
983 	if (!(entry & ((TX_RING_SIZE>>1)-1)))
984 		return 1;
985 
986 	return 0;
987 }
988 
989 static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
990 				  struct net_device *dev)
991 {
992 	struct gem *gp = netdev_priv(dev);
993 	int entry;
994 	u64 ctrl;
995 
996 	ctrl = 0;
997 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
998 		const u64 csum_start_off = skb_checksum_start_offset(skb);
999 		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1000 
1001 		ctrl = (TXDCTRL_CENAB |
1002 			(csum_start_off << 15) |
1003 			(csum_stuff_off << 21));
1004 	}
1005 
1006 	if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1007 		/* This is a hard error, log it. */
1008 		if (!netif_queue_stopped(dev)) {
1009 			netif_stop_queue(dev);
1010 			netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1011 		}
1012 		return NETDEV_TX_BUSY;
1013 	}
1014 
1015 	entry = gp->tx_new;
1016 	gp->tx_skbs[entry] = skb;
1017 
1018 	if (skb_shinfo(skb)->nr_frags == 0) {
1019 		struct gem_txd *txd = &gp->init_block->txd[entry];
1020 		dma_addr_t mapping;
1021 		u32 len;
1022 
1023 		len = skb->len;
1024 		mapping = dma_map_page(&gp->pdev->dev,
1025 				       virt_to_page(skb->data),
1026 				       offset_in_page(skb->data),
1027 				       len, DMA_TO_DEVICE);
1028 		ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1029 		if (gem_intme(entry))
1030 			ctrl |= TXDCTRL_INTME;
1031 		txd->buffer = cpu_to_le64(mapping);
1032 		dma_wmb();
1033 		txd->control_word = cpu_to_le64(ctrl);
1034 		entry = NEXT_TX(entry);
1035 	} else {
1036 		struct gem_txd *txd;
1037 		u32 first_len;
1038 		u64 intme;
1039 		dma_addr_t first_mapping;
1040 		int frag, first_entry = entry;
1041 
1042 		intme = 0;
1043 		if (gem_intme(entry))
1044 			intme |= TXDCTRL_INTME;
1045 
1046 		/* We must give this initial chunk to the device last.
1047 		 * Otherwise we could race with the device.
1048 		 */
1049 		first_len = skb_headlen(skb);
1050 		first_mapping = dma_map_page(&gp->pdev->dev,
1051 					     virt_to_page(skb->data),
1052 					     offset_in_page(skb->data),
1053 					     first_len, DMA_TO_DEVICE);
1054 		entry = NEXT_TX(entry);
1055 
1056 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1057 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1058 			u32 len;
1059 			dma_addr_t mapping;
1060 			u64 this_ctrl;
1061 
1062 			len = skb_frag_size(this_frag);
1063 			mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1064 						   0, len, DMA_TO_DEVICE);
1065 			this_ctrl = ctrl;
1066 			if (frag == skb_shinfo(skb)->nr_frags - 1)
1067 				this_ctrl |= TXDCTRL_EOF;
1068 
1069 			txd = &gp->init_block->txd[entry];
1070 			txd->buffer = cpu_to_le64(mapping);
1071 			dma_wmb();
1072 			txd->control_word = cpu_to_le64(this_ctrl | len);
1073 
1074 			if (gem_intme(entry))
1075 				intme |= TXDCTRL_INTME;
1076 
1077 			entry = NEXT_TX(entry);
1078 		}
1079 		txd = &gp->init_block->txd[first_entry];
1080 		txd->buffer = cpu_to_le64(first_mapping);
1081 		dma_wmb();
1082 		txd->control_word =
1083 			cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1084 	}
1085 
1086 	gp->tx_new = entry;
1087 	if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1088 		netif_stop_queue(dev);
1089 
1090 		/* netif_stop_queue() must be done before checking
1091 		 * checking tx index in TX_BUFFS_AVAIL() below, because
1092 		 * in gem_tx(), we update tx_old before checking for
1093 		 * netif_queue_stopped().
1094 		 */
1095 		smp_mb();
1096 		if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1097 			netif_wake_queue(dev);
1098 	}
1099 	if (netif_msg_tx_queued(gp))
1100 		printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1101 		       dev->name, entry, skb->len);
1102 	mb();
1103 	writel(gp->tx_new, gp->regs + TXDMA_KICK);
1104 
1105 	return NETDEV_TX_OK;
1106 }
1107 
1108 static void gem_pcs_reset(struct gem *gp)
1109 {
1110 	int limit;
1111 	u32 val;
1112 
1113 	/* Reset PCS unit. */
1114 	val = readl(gp->regs + PCS_MIICTRL);
1115 	val |= PCS_MIICTRL_RST;
1116 	writel(val, gp->regs + PCS_MIICTRL);
1117 
1118 	limit = 32;
1119 	while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1120 		udelay(100);
1121 		if (limit-- <= 0)
1122 			break;
1123 	}
1124 	if (limit < 0)
1125 		netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1126 }
1127 
1128 static void gem_pcs_reinit_adv(struct gem *gp)
1129 {
1130 	u32 val;
1131 
1132 	/* Make sure PCS is disabled while changing advertisement
1133 	 * configuration.
1134 	 */
1135 	val = readl(gp->regs + PCS_CFG);
1136 	val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1137 	writel(val, gp->regs + PCS_CFG);
1138 
1139 	/* Advertise all capabilities except asymmetric
1140 	 * pause.
1141 	 */
1142 	val = readl(gp->regs + PCS_MIIADV);
1143 	val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1144 		PCS_MIIADV_SP | PCS_MIIADV_AP);
1145 	writel(val, gp->regs + PCS_MIIADV);
1146 
1147 	/* Enable and restart auto-negotiation, disable wrapback/loopback,
1148 	 * and re-enable PCS.
1149 	 */
1150 	val = readl(gp->regs + PCS_MIICTRL);
1151 	val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1152 	val &= ~PCS_MIICTRL_WB;
1153 	writel(val, gp->regs + PCS_MIICTRL);
1154 
1155 	val = readl(gp->regs + PCS_CFG);
1156 	val |= PCS_CFG_ENABLE;
1157 	writel(val, gp->regs + PCS_CFG);
1158 
1159 	/* Make sure serialink loopback is off.  The meaning
1160 	 * of this bit is logically inverted based upon whether
1161 	 * you are in Serialink or SERDES mode.
1162 	 */
1163 	val = readl(gp->regs + PCS_SCTRL);
1164 	if (gp->phy_type == phy_serialink)
1165 		val &= ~PCS_SCTRL_LOOP;
1166 	else
1167 		val |= PCS_SCTRL_LOOP;
1168 	writel(val, gp->regs + PCS_SCTRL);
1169 }
1170 
1171 #define STOP_TRIES 32
1172 
1173 static void gem_reset(struct gem *gp)
1174 {
1175 	int limit;
1176 	u32 val;
1177 
1178 	/* Make sure we won't get any more interrupts */
1179 	writel(0xffffffff, gp->regs + GREG_IMASK);
1180 
1181 	/* Reset the chip */
1182 	writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1183 	       gp->regs + GREG_SWRST);
1184 
1185 	limit = STOP_TRIES;
1186 
1187 	do {
1188 		udelay(20);
1189 		val = readl(gp->regs + GREG_SWRST);
1190 		if (limit-- <= 0)
1191 			break;
1192 	} while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1193 
1194 	if (limit < 0)
1195 		netdev_err(gp->dev, "SW reset is ghetto\n");
1196 
1197 	if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1198 		gem_pcs_reinit_adv(gp);
1199 }
1200 
1201 static void gem_start_dma(struct gem *gp)
1202 {
1203 	u32 val;
1204 
1205 	/* We are ready to rock, turn everything on. */
1206 	val = readl(gp->regs + TXDMA_CFG);
1207 	writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1208 	val = readl(gp->regs + RXDMA_CFG);
1209 	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1210 	val = readl(gp->regs + MAC_TXCFG);
1211 	writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1212 	val = readl(gp->regs + MAC_RXCFG);
1213 	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1214 
1215 	(void) readl(gp->regs + MAC_RXCFG);
1216 	udelay(100);
1217 
1218 	gem_enable_ints(gp);
1219 
1220 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1221 }
1222 
1223 /* DMA won't be actually stopped before about 4ms tho ...
1224  */
1225 static void gem_stop_dma(struct gem *gp)
1226 {
1227 	u32 val;
1228 
1229 	/* We are done rocking, turn everything off. */
1230 	val = readl(gp->regs + TXDMA_CFG);
1231 	writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1232 	val = readl(gp->regs + RXDMA_CFG);
1233 	writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1234 	val = readl(gp->regs + MAC_TXCFG);
1235 	writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1236 	val = readl(gp->regs + MAC_RXCFG);
1237 	writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1238 
1239 	(void) readl(gp->regs + MAC_RXCFG);
1240 
1241 	/* Need to wait a bit ... done by the caller */
1242 }
1243 
1244 
1245 // XXX dbl check what that function should do when called on PCS PHY
1246 static void gem_begin_auto_negotiation(struct gem *gp,
1247 				       const struct ethtool_link_ksettings *ep)
1248 {
1249 	u32 advertise, features;
1250 	int autoneg;
1251 	int speed;
1252 	int duplex;
1253 	u32 advertising;
1254 
1255 	if (ep)
1256 		ethtool_convert_link_mode_to_legacy_u32(
1257 			&advertising, ep->link_modes.advertising);
1258 
1259 	if (gp->phy_type != phy_mii_mdio0 &&
1260 	    gp->phy_type != phy_mii_mdio1)
1261 		goto non_mii;
1262 
1263 	/* Setup advertise */
1264 	if (found_mii_phy(gp))
1265 		features = gp->phy_mii.def->features;
1266 	else
1267 		features = 0;
1268 
1269 	advertise = features & ADVERTISE_MASK;
1270 	if (gp->phy_mii.advertising != 0)
1271 		advertise &= gp->phy_mii.advertising;
1272 
1273 	autoneg = gp->want_autoneg;
1274 	speed = gp->phy_mii.speed;
1275 	duplex = gp->phy_mii.duplex;
1276 
1277 	/* Setup link parameters */
1278 	if (!ep)
1279 		goto start_aneg;
1280 	if (ep->base.autoneg == AUTONEG_ENABLE) {
1281 		advertise = advertising;
1282 		autoneg = 1;
1283 	} else {
1284 		autoneg = 0;
1285 		speed = ep->base.speed;
1286 		duplex = ep->base.duplex;
1287 	}
1288 
1289 start_aneg:
1290 	/* Sanitize settings based on PHY capabilities */
1291 	if ((features & SUPPORTED_Autoneg) == 0)
1292 		autoneg = 0;
1293 	if (speed == SPEED_1000 &&
1294 	    !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1295 		speed = SPEED_100;
1296 	if (speed == SPEED_100 &&
1297 	    !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1298 		speed = SPEED_10;
1299 	if (duplex == DUPLEX_FULL &&
1300 	    !(features & (SUPPORTED_1000baseT_Full |
1301 	    		  SUPPORTED_100baseT_Full |
1302 	    		  SUPPORTED_10baseT_Full)))
1303 	    	duplex = DUPLEX_HALF;
1304 	if (speed == 0)
1305 		speed = SPEED_10;
1306 
1307 	/* If we are asleep, we don't try to actually setup the PHY, we
1308 	 * just store the settings
1309 	 */
1310 	if (!netif_device_present(gp->dev)) {
1311 		gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1312 		gp->phy_mii.speed = speed;
1313 		gp->phy_mii.duplex = duplex;
1314 		return;
1315 	}
1316 
1317 	/* Configure PHY & start aneg */
1318 	gp->want_autoneg = autoneg;
1319 	if (autoneg) {
1320 		if (found_mii_phy(gp))
1321 			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1322 		gp->lstate = link_aneg;
1323 	} else {
1324 		if (found_mii_phy(gp))
1325 			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1326 		gp->lstate = link_force_ok;
1327 	}
1328 
1329 non_mii:
1330 	gp->timer_ticks = 0;
1331 	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1332 }
1333 
1334 /* A link-up condition has occurred, initialize and enable the
1335  * rest of the chip.
1336  */
1337 static int gem_set_link_modes(struct gem *gp)
1338 {
1339 	struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1340 	int full_duplex, speed, pause;
1341 	u32 val;
1342 
1343 	full_duplex = 0;
1344 	speed = SPEED_10;
1345 	pause = 0;
1346 
1347 	if (found_mii_phy(gp)) {
1348 	    	if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1349 	    		return 1;
1350 		full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1351 		speed = gp->phy_mii.speed;
1352 		pause = gp->phy_mii.pause;
1353 	} else if (gp->phy_type == phy_serialink ||
1354 	    	   gp->phy_type == phy_serdes) {
1355 		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1356 
1357 		if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1358 			full_duplex = 1;
1359 		speed = SPEED_1000;
1360 	}
1361 
1362 	netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1363 		   speed, (full_duplex ? "full" : "half"));
1364 
1365 
1366 	/* We take the tx queue lock to avoid collisions between
1367 	 * this code, the tx path and the NAPI-driven error path
1368 	 */
1369 	__netif_tx_lock(txq, smp_processor_id());
1370 
1371 	val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1372 	if (full_duplex) {
1373 		val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1374 	} else {
1375 		/* MAC_TXCFG_NBO must be zero. */
1376 	}
1377 	writel(val, gp->regs + MAC_TXCFG);
1378 
1379 	val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1380 	if (!full_duplex &&
1381 	    (gp->phy_type == phy_mii_mdio0 ||
1382 	     gp->phy_type == phy_mii_mdio1)) {
1383 		val |= MAC_XIFCFG_DISE;
1384 	} else if (full_duplex) {
1385 		val |= MAC_XIFCFG_FLED;
1386 	}
1387 
1388 	if (speed == SPEED_1000)
1389 		val |= (MAC_XIFCFG_GMII);
1390 
1391 	writel(val, gp->regs + MAC_XIFCFG);
1392 
1393 	/* If gigabit and half-duplex, enable carrier extension
1394 	 * mode.  Else, disable it.
1395 	 */
1396 	if (speed == SPEED_1000 && !full_duplex) {
1397 		val = readl(gp->regs + MAC_TXCFG);
1398 		writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1399 
1400 		val = readl(gp->regs + MAC_RXCFG);
1401 		writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1402 	} else {
1403 		val = readl(gp->regs + MAC_TXCFG);
1404 		writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1405 
1406 		val = readl(gp->regs + MAC_RXCFG);
1407 		writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1408 	}
1409 
1410 	if (gp->phy_type == phy_serialink ||
1411 	    gp->phy_type == phy_serdes) {
1412 		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1413 
1414 		if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1415 			pause = 1;
1416 	}
1417 
1418 	if (!full_duplex)
1419 		writel(512, gp->regs + MAC_STIME);
1420 	else
1421 		writel(64, gp->regs + MAC_STIME);
1422 	val = readl(gp->regs + MAC_MCCFG);
1423 	if (pause)
1424 		val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1425 	else
1426 		val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1427 	writel(val, gp->regs + MAC_MCCFG);
1428 
1429 	gem_start_dma(gp);
1430 
1431 	__netif_tx_unlock(txq);
1432 
1433 	if (netif_msg_link(gp)) {
1434 		if (pause) {
1435 			netdev_info(gp->dev,
1436 				    "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1437 				    gp->rx_fifo_sz,
1438 				    gp->rx_pause_off,
1439 				    gp->rx_pause_on);
1440 		} else {
1441 			netdev_info(gp->dev, "Pause is disabled\n");
1442 		}
1443 	}
1444 
1445 	return 0;
1446 }
1447 
1448 static int gem_mdio_link_not_up(struct gem *gp)
1449 {
1450 	switch (gp->lstate) {
1451 	case link_force_ret:
1452 		netif_info(gp, link, gp->dev,
1453 			   "Autoneg failed again, keeping forced mode\n");
1454 		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1455 			gp->last_forced_speed, DUPLEX_HALF);
1456 		gp->timer_ticks = 5;
1457 		gp->lstate = link_force_ok;
1458 		return 0;
1459 	case link_aneg:
1460 		/* We try forced modes after a failed aneg only on PHYs that don't
1461 		 * have "magic_aneg" bit set, which means they internally do the
1462 		 * while forced-mode thingy. On these, we just restart aneg
1463 		 */
1464 		if (gp->phy_mii.def->magic_aneg)
1465 			return 1;
1466 		netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1467 		/* Try forced modes. */
1468 		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1469 			DUPLEX_HALF);
1470 		gp->timer_ticks = 5;
1471 		gp->lstate = link_force_try;
1472 		return 0;
1473 	case link_force_try:
1474 		/* Downgrade from 100 to 10 Mbps if necessary.
1475 		 * If already at 10Mbps, warn user about the
1476 		 * situation every 10 ticks.
1477 		 */
1478 		if (gp->phy_mii.speed == SPEED_100) {
1479 			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1480 				DUPLEX_HALF);
1481 			gp->timer_ticks = 5;
1482 			netif_info(gp, link, gp->dev,
1483 				   "switching to forced 10bt\n");
1484 			return 0;
1485 		} else
1486 			return 1;
1487 	default:
1488 		return 0;
1489 	}
1490 }
1491 
1492 static void gem_link_timer(struct timer_list *t)
1493 {
1494 	struct gem *gp = from_timer(gp, t, link_timer);
1495 	struct net_device *dev = gp->dev;
1496 	int restart_aneg = 0;
1497 
1498 	/* There's no point doing anything if we're going to be reset */
1499 	if (gp->reset_task_pending)
1500 		return;
1501 
1502 	if (gp->phy_type == phy_serialink ||
1503 	    gp->phy_type == phy_serdes) {
1504 		u32 val = readl(gp->regs + PCS_MIISTAT);
1505 
1506 		if (!(val & PCS_MIISTAT_LS))
1507 			val = readl(gp->regs + PCS_MIISTAT);
1508 
1509 		if ((val & PCS_MIISTAT_LS) != 0) {
1510 			if (gp->lstate == link_up)
1511 				goto restart;
1512 
1513 			gp->lstate = link_up;
1514 			netif_carrier_on(dev);
1515 			(void)gem_set_link_modes(gp);
1516 		}
1517 		goto restart;
1518 	}
1519 	if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1520 		/* Ok, here we got a link. If we had it due to a forced
1521 		 * fallback, and we were configured for autoneg, we do
1522 		 * retry a short autoneg pass. If you know your hub is
1523 		 * broken, use ethtool ;)
1524 		 */
1525 		if (gp->lstate == link_force_try && gp->want_autoneg) {
1526 			gp->lstate = link_force_ret;
1527 			gp->last_forced_speed = gp->phy_mii.speed;
1528 			gp->timer_ticks = 5;
1529 			if (netif_msg_link(gp))
1530 				netdev_info(dev,
1531 					    "Got link after fallback, retrying autoneg once...\n");
1532 			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1533 		} else if (gp->lstate != link_up) {
1534 			gp->lstate = link_up;
1535 			netif_carrier_on(dev);
1536 			if (gem_set_link_modes(gp))
1537 				restart_aneg = 1;
1538 		}
1539 	} else {
1540 		/* If the link was previously up, we restart the
1541 		 * whole process
1542 		 */
1543 		if (gp->lstate == link_up) {
1544 			gp->lstate = link_down;
1545 			netif_info(gp, link, dev, "Link down\n");
1546 			netif_carrier_off(dev);
1547 			gem_schedule_reset(gp);
1548 			/* The reset task will restart the timer */
1549 			return;
1550 		} else if (++gp->timer_ticks > 10) {
1551 			if (found_mii_phy(gp))
1552 				restart_aneg = gem_mdio_link_not_up(gp);
1553 			else
1554 				restart_aneg = 1;
1555 		}
1556 	}
1557 	if (restart_aneg) {
1558 		gem_begin_auto_negotiation(gp, NULL);
1559 		return;
1560 	}
1561 restart:
1562 	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1563 }
1564 
1565 static void gem_clean_rings(struct gem *gp)
1566 {
1567 	struct gem_init_block *gb = gp->init_block;
1568 	struct sk_buff *skb;
1569 	int i;
1570 	dma_addr_t dma_addr;
1571 
1572 	for (i = 0; i < RX_RING_SIZE; i++) {
1573 		struct gem_rxd *rxd;
1574 
1575 		rxd = &gb->rxd[i];
1576 		if (gp->rx_skbs[i] != NULL) {
1577 			skb = gp->rx_skbs[i];
1578 			dma_addr = le64_to_cpu(rxd->buffer);
1579 			dma_unmap_page(&gp->pdev->dev, dma_addr,
1580 				       RX_BUF_ALLOC_SIZE(gp),
1581 				       DMA_FROM_DEVICE);
1582 			dev_kfree_skb_any(skb);
1583 			gp->rx_skbs[i] = NULL;
1584 		}
1585 		rxd->status_word = 0;
1586 		dma_wmb();
1587 		rxd->buffer = 0;
1588 	}
1589 
1590 	for (i = 0; i < TX_RING_SIZE; i++) {
1591 		if (gp->tx_skbs[i] != NULL) {
1592 			struct gem_txd *txd;
1593 			int frag;
1594 
1595 			skb = gp->tx_skbs[i];
1596 			gp->tx_skbs[i] = NULL;
1597 
1598 			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1599 				int ent = i & (TX_RING_SIZE - 1);
1600 
1601 				txd = &gb->txd[ent];
1602 				dma_addr = le64_to_cpu(txd->buffer);
1603 				dma_unmap_page(&gp->pdev->dev, dma_addr,
1604 					       le64_to_cpu(txd->control_word) &
1605 					       TXDCTRL_BUFSZ, DMA_TO_DEVICE);
1606 
1607 				if (frag != skb_shinfo(skb)->nr_frags)
1608 					i++;
1609 			}
1610 			dev_kfree_skb_any(skb);
1611 		}
1612 	}
1613 }
1614 
1615 static void gem_init_rings(struct gem *gp)
1616 {
1617 	struct gem_init_block *gb = gp->init_block;
1618 	struct net_device *dev = gp->dev;
1619 	int i;
1620 	dma_addr_t dma_addr;
1621 
1622 	gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1623 
1624 	gem_clean_rings(gp);
1625 
1626 	gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1627 			    (unsigned)VLAN_ETH_FRAME_LEN);
1628 
1629 	for (i = 0; i < RX_RING_SIZE; i++) {
1630 		struct sk_buff *skb;
1631 		struct gem_rxd *rxd = &gb->rxd[i];
1632 
1633 		skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1634 		if (!skb) {
1635 			rxd->buffer = 0;
1636 			rxd->status_word = 0;
1637 			continue;
1638 		}
1639 
1640 		gp->rx_skbs[i] = skb;
1641 		skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1642 		dma_addr = dma_map_page(&gp->pdev->dev,
1643 					virt_to_page(skb->data),
1644 					offset_in_page(skb->data),
1645 					RX_BUF_ALLOC_SIZE(gp),
1646 					DMA_FROM_DEVICE);
1647 		rxd->buffer = cpu_to_le64(dma_addr);
1648 		dma_wmb();
1649 		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1650 		skb_reserve(skb, RX_OFFSET);
1651 	}
1652 
1653 	for (i = 0; i < TX_RING_SIZE; i++) {
1654 		struct gem_txd *txd = &gb->txd[i];
1655 
1656 		txd->control_word = 0;
1657 		dma_wmb();
1658 		txd->buffer = 0;
1659 	}
1660 	wmb();
1661 }
1662 
1663 /* Init PHY interface and start link poll state machine */
1664 static void gem_init_phy(struct gem *gp)
1665 {
1666 	u32 mifcfg;
1667 
1668 	/* Revert MIF CFG setting done on stop_phy */
1669 	mifcfg = readl(gp->regs + MIF_CFG);
1670 	mifcfg &= ~MIF_CFG_BBMODE;
1671 	writel(mifcfg, gp->regs + MIF_CFG);
1672 
1673 	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1674 		int i;
1675 
1676 		/* Those delays sucks, the HW seems to love them though, I'll
1677 		 * seriously consider breaking some locks here to be able
1678 		 * to schedule instead
1679 		 */
1680 		for (i = 0; i < 3; i++) {
1681 #ifdef CONFIG_PPC_PMAC
1682 			pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1683 			msleep(20);
1684 #endif
1685 			/* Some PHYs used by apple have problem getting back to us,
1686 			 * we do an additional reset here
1687 			 */
1688 			sungem_phy_write(gp, MII_BMCR, BMCR_RESET);
1689 			msleep(20);
1690 			if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
1691 				break;
1692 			if (i == 2)
1693 				netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1694 		}
1695 	}
1696 
1697 	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1698 	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1699 		u32 val;
1700 
1701 		/* Init datapath mode register. */
1702 		if (gp->phy_type == phy_mii_mdio0 ||
1703 		    gp->phy_type == phy_mii_mdio1) {
1704 			val = PCS_DMODE_MGM;
1705 		} else if (gp->phy_type == phy_serialink) {
1706 			val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1707 		} else {
1708 			val = PCS_DMODE_ESM;
1709 		}
1710 
1711 		writel(val, gp->regs + PCS_DMODE);
1712 	}
1713 
1714 	if (gp->phy_type == phy_mii_mdio0 ||
1715 	    gp->phy_type == phy_mii_mdio1) {
1716 		/* Reset and detect MII PHY */
1717 		sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1718 
1719 		/* Init PHY */
1720 		if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1721 			gp->phy_mii.def->ops->init(&gp->phy_mii);
1722 	} else {
1723 		gem_pcs_reset(gp);
1724 		gem_pcs_reinit_adv(gp);
1725 	}
1726 
1727 	/* Default aneg parameters */
1728 	gp->timer_ticks = 0;
1729 	gp->lstate = link_down;
1730 	netif_carrier_off(gp->dev);
1731 
1732 	/* Print things out */
1733 	if (gp->phy_type == phy_mii_mdio0 ||
1734 	    gp->phy_type == phy_mii_mdio1)
1735 		netdev_info(gp->dev, "Found %s PHY\n",
1736 			    gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1737 
1738 	gem_begin_auto_negotiation(gp, NULL);
1739 }
1740 
1741 static void gem_init_dma(struct gem *gp)
1742 {
1743 	u64 desc_dma = (u64) gp->gblock_dvma;
1744 	u32 val;
1745 
1746 	val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1747 	writel(val, gp->regs + TXDMA_CFG);
1748 
1749 	writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1750 	writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1751 	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1752 
1753 	writel(0, gp->regs + TXDMA_KICK);
1754 
1755 	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1756 	       (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
1757 	writel(val, gp->regs + RXDMA_CFG);
1758 
1759 	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1760 	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1761 
1762 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1763 
1764 	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1765 	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1766 	writel(val, gp->regs + RXDMA_PTHRESH);
1767 
1768 	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1769 		writel(((5 & RXDMA_BLANK_IPKTS) |
1770 			((8 << 12) & RXDMA_BLANK_ITIME)),
1771 		       gp->regs + RXDMA_BLANK);
1772 	else
1773 		writel(((5 & RXDMA_BLANK_IPKTS) |
1774 			((4 << 12) & RXDMA_BLANK_ITIME)),
1775 		       gp->regs + RXDMA_BLANK);
1776 }
1777 
1778 static u32 gem_setup_multicast(struct gem *gp)
1779 {
1780 	u32 rxcfg = 0;
1781 	int i;
1782 
1783 	if ((gp->dev->flags & IFF_ALLMULTI) ||
1784 	    (netdev_mc_count(gp->dev) > 256)) {
1785 	    	for (i=0; i<16; i++)
1786 			writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1787 		rxcfg |= MAC_RXCFG_HFE;
1788 	} else if (gp->dev->flags & IFF_PROMISC) {
1789 		rxcfg |= MAC_RXCFG_PROM;
1790 	} else {
1791 		u16 hash_table[16];
1792 		u32 crc;
1793 		struct netdev_hw_addr *ha;
1794 		int i;
1795 
1796 		memset(hash_table, 0, sizeof(hash_table));
1797 		netdev_for_each_mc_addr(ha, gp->dev) {
1798 			crc = ether_crc_le(6, ha->addr);
1799 			crc >>= 24;
1800 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1801 		}
1802 	    	for (i=0; i<16; i++)
1803 			writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1804 		rxcfg |= MAC_RXCFG_HFE;
1805 	}
1806 
1807 	return rxcfg;
1808 }
1809 
1810 static void gem_init_mac(struct gem *gp)
1811 {
1812 	const unsigned char *e = &gp->dev->dev_addr[0];
1813 
1814 	writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1815 
1816 	writel(0x00, gp->regs + MAC_IPG0);
1817 	writel(0x08, gp->regs + MAC_IPG1);
1818 	writel(0x04, gp->regs + MAC_IPG2);
1819 	writel(0x40, gp->regs + MAC_STIME);
1820 	writel(0x40, gp->regs + MAC_MINFSZ);
1821 
1822 	/* Ethernet payload + header + FCS + optional VLAN tag. */
1823 	writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1824 
1825 	writel(0x07, gp->regs + MAC_PASIZE);
1826 	writel(0x04, gp->regs + MAC_JAMSIZE);
1827 	writel(0x10, gp->regs + MAC_ATTLIM);
1828 	writel(0x8808, gp->regs + MAC_MCTYPE);
1829 
1830 	writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1831 
1832 	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1833 	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1834 	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1835 
1836 	writel(0, gp->regs + MAC_ADDR3);
1837 	writel(0, gp->regs + MAC_ADDR4);
1838 	writel(0, gp->regs + MAC_ADDR5);
1839 
1840 	writel(0x0001, gp->regs + MAC_ADDR6);
1841 	writel(0xc200, gp->regs + MAC_ADDR7);
1842 	writel(0x0180, gp->regs + MAC_ADDR8);
1843 
1844 	writel(0, gp->regs + MAC_AFILT0);
1845 	writel(0, gp->regs + MAC_AFILT1);
1846 	writel(0, gp->regs + MAC_AFILT2);
1847 	writel(0, gp->regs + MAC_AF21MSK);
1848 	writel(0, gp->regs + MAC_AF0MSK);
1849 
1850 	gp->mac_rx_cfg = gem_setup_multicast(gp);
1851 #ifdef STRIP_FCS
1852 	gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1853 #endif
1854 	writel(0, gp->regs + MAC_NCOLL);
1855 	writel(0, gp->regs + MAC_FASUCC);
1856 	writel(0, gp->regs + MAC_ECOLL);
1857 	writel(0, gp->regs + MAC_LCOLL);
1858 	writel(0, gp->regs + MAC_DTIMER);
1859 	writel(0, gp->regs + MAC_PATMPS);
1860 	writel(0, gp->regs + MAC_RFCTR);
1861 	writel(0, gp->regs + MAC_LERR);
1862 	writel(0, gp->regs + MAC_AERR);
1863 	writel(0, gp->regs + MAC_FCSERR);
1864 	writel(0, gp->regs + MAC_RXCVERR);
1865 
1866 	/* Clear RX/TX/MAC/XIF config, we will set these up and enable
1867 	 * them once a link is established.
1868 	 */
1869 	writel(0, gp->regs + MAC_TXCFG);
1870 	writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1871 	writel(0, gp->regs + MAC_MCCFG);
1872 	writel(0, gp->regs + MAC_XIFCFG);
1873 
1874 	/* Setup MAC interrupts.  We want to get all of the interesting
1875 	 * counter expiration events, but we do not want to hear about
1876 	 * normal rx/tx as the DMA engine tells us that.
1877 	 */
1878 	writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1879 	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1880 
1881 	/* Don't enable even the PAUSE interrupts for now, we
1882 	 * make no use of those events other than to record them.
1883 	 */
1884 	writel(0xffffffff, gp->regs + MAC_MCMASK);
1885 
1886 	/* Don't enable GEM's WOL in normal operations
1887 	 */
1888 	if (gp->has_wol)
1889 		writel(0, gp->regs + WOL_WAKECSR);
1890 }
1891 
1892 static void gem_init_pause_thresholds(struct gem *gp)
1893 {
1894 	u32 cfg;
1895 
1896 	/* Calculate pause thresholds.  Setting the OFF threshold to the
1897 	 * full RX fifo size effectively disables PAUSE generation which
1898 	 * is what we do for 10/100 only GEMs which have FIFOs too small
1899 	 * to make real gains from PAUSE.
1900 	 */
1901 	if (gp->rx_fifo_sz <= (2 * 1024)) {
1902 		gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1903 	} else {
1904 		int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1905 		int off = (gp->rx_fifo_sz - (max_frame * 2));
1906 		int on = off - max_frame;
1907 
1908 		gp->rx_pause_off = off;
1909 		gp->rx_pause_on = on;
1910 	}
1911 
1912 
1913 	/* Configure the chip "burst" DMA mode & enable some
1914 	 * HW bug fixes on Apple version
1915 	 */
1916 	cfg  = 0;
1917 	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1918 		cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1919 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1920 	cfg |= GREG_CFG_IBURST;
1921 #endif
1922 	cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1923 	cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1924 	writel(cfg, gp->regs + GREG_CFG);
1925 
1926 	/* If Infinite Burst didn't stick, then use different
1927 	 * thresholds (and Apple bug fixes don't exist)
1928 	 */
1929 	if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1930 		cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1931 		cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1932 		writel(cfg, gp->regs + GREG_CFG);
1933 	}
1934 }
1935 
1936 static int gem_check_invariants(struct gem *gp)
1937 {
1938 	struct pci_dev *pdev = gp->pdev;
1939 	u32 mif_cfg;
1940 
1941 	/* On Apple's sungem, we can't rely on registers as the chip
1942 	 * was been powered down by the firmware. The PHY is looked
1943 	 * up later on.
1944 	 */
1945 	if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1946 		gp->phy_type = phy_mii_mdio0;
1947 		gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1948 		gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1949 		gp->swrst_base = 0;
1950 
1951 		mif_cfg = readl(gp->regs + MIF_CFG);
1952 		mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1953 		mif_cfg |= MIF_CFG_MDI0;
1954 		writel(mif_cfg, gp->regs + MIF_CFG);
1955 		writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1956 		writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1957 
1958 		/* We hard-code the PHY address so we can properly bring it out of
1959 		 * reset later on, we can't really probe it at this point, though
1960 		 * that isn't an issue.
1961 		 */
1962 		if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1963 			gp->mii_phy_addr = 1;
1964 		else
1965 			gp->mii_phy_addr = 0;
1966 
1967 		return 0;
1968 	}
1969 
1970 	mif_cfg = readl(gp->regs + MIF_CFG);
1971 
1972 	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1973 	    pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1974 		/* One of the MII PHYs _must_ be present
1975 		 * as this chip has no gigabit PHY.
1976 		 */
1977 		if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1978 			pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1979 			       mif_cfg);
1980 			return -1;
1981 		}
1982 	}
1983 
1984 	/* Determine initial PHY interface type guess.  MDIO1 is the
1985 	 * external PHY and thus takes precedence over MDIO0.
1986 	 */
1987 
1988 	if (mif_cfg & MIF_CFG_MDI1) {
1989 		gp->phy_type = phy_mii_mdio1;
1990 		mif_cfg |= MIF_CFG_PSELECT;
1991 		writel(mif_cfg, gp->regs + MIF_CFG);
1992 	} else if (mif_cfg & MIF_CFG_MDI0) {
1993 		gp->phy_type = phy_mii_mdio0;
1994 		mif_cfg &= ~MIF_CFG_PSELECT;
1995 		writel(mif_cfg, gp->regs + MIF_CFG);
1996 	} else {
1997 #ifdef CONFIG_SPARC
1998 		const char *p;
1999 
2000 		p = of_get_property(gp->of_node, "shared-pins", NULL);
2001 		if (p && !strcmp(p, "serdes"))
2002 			gp->phy_type = phy_serdes;
2003 		else
2004 #endif
2005 			gp->phy_type = phy_serialink;
2006 	}
2007 	if (gp->phy_type == phy_mii_mdio1 ||
2008 	    gp->phy_type == phy_mii_mdio0) {
2009 		int i;
2010 
2011 		for (i = 0; i < 32; i++) {
2012 			gp->mii_phy_addr = i;
2013 			if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
2014 				break;
2015 		}
2016 		if (i == 32) {
2017 			if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2018 				pr_err("RIO MII phy will not respond\n");
2019 				return -1;
2020 			}
2021 			gp->phy_type = phy_serdes;
2022 		}
2023 	}
2024 
2025 	/* Fetch the FIFO configurations now too. */
2026 	gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2027 	gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2028 
2029 	if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2030 		if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2031 			if (gp->tx_fifo_sz != (9 * 1024) ||
2032 			    gp->rx_fifo_sz != (20 * 1024)) {
2033 				pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2034 				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2035 				return -1;
2036 			}
2037 			gp->swrst_base = 0;
2038 		} else {
2039 			if (gp->tx_fifo_sz != (2 * 1024) ||
2040 			    gp->rx_fifo_sz != (2 * 1024)) {
2041 				pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2042 				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2043 				return -1;
2044 			}
2045 			gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2046 		}
2047 	}
2048 
2049 	return 0;
2050 }
2051 
2052 static void gem_reinit_chip(struct gem *gp)
2053 {
2054 	/* Reset the chip */
2055 	gem_reset(gp);
2056 
2057 	/* Make sure ints are disabled */
2058 	gem_disable_ints(gp);
2059 
2060 	/* Allocate & setup ring buffers */
2061 	gem_init_rings(gp);
2062 
2063 	/* Configure pause thresholds */
2064 	gem_init_pause_thresholds(gp);
2065 
2066 	/* Init DMA & MAC engines */
2067 	gem_init_dma(gp);
2068 	gem_init_mac(gp);
2069 }
2070 
2071 
2072 static void gem_stop_phy(struct gem *gp, int wol)
2073 {
2074 	u32 mifcfg;
2075 
2076 	/* Let the chip settle down a bit, it seems that helps
2077 	 * for sleep mode on some models
2078 	 */
2079 	msleep(10);
2080 
2081 	/* Make sure we aren't polling PHY status change. We
2082 	 * don't currently use that feature though
2083 	 */
2084 	mifcfg = readl(gp->regs + MIF_CFG);
2085 	mifcfg &= ~MIF_CFG_POLL;
2086 	writel(mifcfg, gp->regs + MIF_CFG);
2087 
2088 	if (wol && gp->has_wol) {
2089 		const unsigned char *e = &gp->dev->dev_addr[0];
2090 		u32 csr;
2091 
2092 		/* Setup wake-on-lan for MAGIC packet */
2093 		writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2094 		       gp->regs + MAC_RXCFG);
2095 		writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2096 		writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2097 		writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2098 
2099 		writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2100 		csr = WOL_WAKECSR_ENABLE;
2101 		if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2102 			csr |= WOL_WAKECSR_MII;
2103 		writel(csr, gp->regs + WOL_WAKECSR);
2104 	} else {
2105 		writel(0, gp->regs + MAC_RXCFG);
2106 		(void)readl(gp->regs + MAC_RXCFG);
2107 		/* Machine sleep will die in strange ways if we
2108 		 * dont wait a bit here, looks like the chip takes
2109 		 * some time to really shut down
2110 		 */
2111 		msleep(10);
2112 	}
2113 
2114 	writel(0, gp->regs + MAC_TXCFG);
2115 	writel(0, gp->regs + MAC_XIFCFG);
2116 	writel(0, gp->regs + TXDMA_CFG);
2117 	writel(0, gp->regs + RXDMA_CFG);
2118 
2119 	if (!wol) {
2120 		gem_reset(gp);
2121 		writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2122 		writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2123 
2124 		if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2125 			gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2126 
2127 		/* According to Apple, we must set the MDIO pins to this begnign
2128 		 * state or we may 1) eat more current, 2) damage some PHYs
2129 		 */
2130 		writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2131 		writel(0, gp->regs + MIF_BBCLK);
2132 		writel(0, gp->regs + MIF_BBDATA);
2133 		writel(0, gp->regs + MIF_BBOENAB);
2134 		writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2135 		(void) readl(gp->regs + MAC_XIFCFG);
2136 	}
2137 }
2138 
2139 static int gem_do_start(struct net_device *dev)
2140 {
2141 	struct gem *gp = netdev_priv(dev);
2142 	int rc;
2143 
2144 	pci_set_master(gp->pdev);
2145 
2146 	/* Init & setup chip hardware */
2147 	gem_reinit_chip(gp);
2148 
2149 	/* An interrupt might come in handy */
2150 	rc = request_irq(gp->pdev->irq, gem_interrupt,
2151 			 IRQF_SHARED, dev->name, (void *)dev);
2152 	if (rc) {
2153 		netdev_err(dev, "failed to request irq !\n");
2154 
2155 		gem_reset(gp);
2156 		gem_clean_rings(gp);
2157 		gem_put_cell(gp);
2158 		return rc;
2159 	}
2160 
2161 	/* Mark us as attached again if we come from resume(), this has
2162 	 * no effect if we weren't detached and needs to be done now.
2163 	 */
2164 	netif_device_attach(dev);
2165 
2166 	/* Restart NAPI & queues */
2167 	gem_netif_start(gp);
2168 
2169 	/* Detect & init PHY, start autoneg etc... this will
2170 	 * eventually result in starting DMA operations when
2171 	 * the link is up
2172 	 */
2173 	gem_init_phy(gp);
2174 
2175 	return 0;
2176 }
2177 
2178 static void gem_do_stop(struct net_device *dev, int wol)
2179 {
2180 	struct gem *gp = netdev_priv(dev);
2181 
2182 	/* Stop NAPI and stop tx queue */
2183 	gem_netif_stop(gp);
2184 
2185 	/* Make sure ints are disabled. We don't care about
2186 	 * synchronizing as NAPI is disabled, thus a stray
2187 	 * interrupt will do nothing bad (our irq handler
2188 	 * just schedules NAPI)
2189 	 */
2190 	gem_disable_ints(gp);
2191 
2192 	/* Stop the link timer */
2193 	del_timer_sync(&gp->link_timer);
2194 
2195 	/* We cannot cancel the reset task while holding the
2196 	 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2197 	 * if we did. This is not an issue however as the reset
2198 	 * task is synchronized vs. us (rtnl_lock) and will do
2199 	 * nothing if the device is down or suspended. We do
2200 	 * still clear reset_task_pending to avoid a spurrious
2201 	 * reset later on in case we do resume before it gets
2202 	 * scheduled.
2203 	 */
2204 	gp->reset_task_pending = 0;
2205 
2206 	/* If we are going to sleep with WOL */
2207 	gem_stop_dma(gp);
2208 	msleep(10);
2209 	if (!wol)
2210 		gem_reset(gp);
2211 	msleep(10);
2212 
2213 	/* Get rid of rings */
2214 	gem_clean_rings(gp);
2215 
2216 	/* No irq needed anymore */
2217 	free_irq(gp->pdev->irq, (void *) dev);
2218 
2219 	/* Shut the PHY down eventually and setup WOL */
2220 	gem_stop_phy(gp, wol);
2221 }
2222 
2223 static void gem_reset_task(struct work_struct *work)
2224 {
2225 	struct gem *gp = container_of(work, struct gem, reset_task);
2226 
2227 	/* Lock out the network stack (essentially shield ourselves
2228 	 * against a racing open, close, control call, or suspend
2229 	 */
2230 	rtnl_lock();
2231 
2232 	/* Skip the reset task if suspended or closed, or if it's
2233 	 * been cancelled by gem_do_stop (see comment there)
2234 	 */
2235 	if (!netif_device_present(gp->dev) ||
2236 	    !netif_running(gp->dev) ||
2237 	    !gp->reset_task_pending) {
2238 		rtnl_unlock();
2239 		return;
2240 	}
2241 
2242 	/* Stop the link timer */
2243 	del_timer_sync(&gp->link_timer);
2244 
2245 	/* Stop NAPI and tx */
2246 	gem_netif_stop(gp);
2247 
2248 	/* Reset the chip & rings */
2249 	gem_reinit_chip(gp);
2250 	if (gp->lstate == link_up)
2251 		gem_set_link_modes(gp);
2252 
2253 	/* Restart NAPI and Tx */
2254 	gem_netif_start(gp);
2255 
2256 	/* We are back ! */
2257 	gp->reset_task_pending = 0;
2258 
2259 	/* If the link is not up, restart autoneg, else restart the
2260 	 * polling timer
2261 	 */
2262 	if (gp->lstate != link_up)
2263 		gem_begin_auto_negotiation(gp, NULL);
2264 	else
2265 		mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2266 
2267 	rtnl_unlock();
2268 }
2269 
2270 static int gem_open(struct net_device *dev)
2271 {
2272 	struct gem *gp = netdev_priv(dev);
2273 	int rc;
2274 
2275 	/* We allow open while suspended, we just do nothing,
2276 	 * the chip will be initialized in resume()
2277 	 */
2278 	if (netif_device_present(dev)) {
2279 		/* Enable the cell */
2280 		gem_get_cell(gp);
2281 
2282 		/* Make sure PCI access and bus master are enabled */
2283 		rc = pci_enable_device(gp->pdev);
2284 		if (rc) {
2285 			netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2286 
2287 			/* Put cell and forget it for now, it will be considered
2288 			 *as still asleep, a new sleep cycle may bring it back
2289 			 */
2290 			gem_put_cell(gp);
2291 			return -ENXIO;
2292 		}
2293 		return gem_do_start(dev);
2294 	}
2295 
2296 	return 0;
2297 }
2298 
2299 static int gem_close(struct net_device *dev)
2300 {
2301 	struct gem *gp = netdev_priv(dev);
2302 
2303 	if (netif_device_present(dev)) {
2304 		gem_do_stop(dev, 0);
2305 
2306 		/* Make sure bus master is disabled */
2307 		pci_disable_device(gp->pdev);
2308 
2309 		/* Cell not needed neither if no WOL */
2310 		if (!gp->asleep_wol)
2311 			gem_put_cell(gp);
2312 	}
2313 	return 0;
2314 }
2315 
2316 static int __maybe_unused gem_suspend(struct device *dev_d)
2317 {
2318 	struct net_device *dev = dev_get_drvdata(dev_d);
2319 	struct gem *gp = netdev_priv(dev);
2320 
2321 	/* Lock the network stack first to avoid racing with open/close,
2322 	 * reset task and setting calls
2323 	 */
2324 	rtnl_lock();
2325 
2326 	/* Not running, mark ourselves non-present, no need for
2327 	 * a lock here
2328 	 */
2329 	if (!netif_running(dev)) {
2330 		netif_device_detach(dev);
2331 		rtnl_unlock();
2332 		return 0;
2333 	}
2334 	netdev_info(dev, "suspending, WakeOnLan %s\n",
2335 		    (gp->wake_on_lan && netif_running(dev)) ?
2336 		    "enabled" : "disabled");
2337 
2338 	/* Tell the network stack we're gone. gem_do_stop() below will
2339 	 * synchronize with TX, stop NAPI etc...
2340 	 */
2341 	netif_device_detach(dev);
2342 
2343 	/* Switch off chip, remember WOL setting */
2344 	gp->asleep_wol = !!gp->wake_on_lan;
2345 	gem_do_stop(dev, gp->asleep_wol);
2346 
2347 	/* Cell not needed neither if no WOL */
2348 	if (!gp->asleep_wol)
2349 		gem_put_cell(gp);
2350 
2351 	/* Unlock the network stack */
2352 	rtnl_unlock();
2353 
2354 	return 0;
2355 }
2356 
2357 static int __maybe_unused gem_resume(struct device *dev_d)
2358 {
2359 	struct net_device *dev = dev_get_drvdata(dev_d);
2360 	struct gem *gp = netdev_priv(dev);
2361 
2362 	/* See locking comment in gem_suspend */
2363 	rtnl_lock();
2364 
2365 	/* Not running, mark ourselves present, no need for
2366 	 * a lock here
2367 	 */
2368 	if (!netif_running(dev)) {
2369 		netif_device_attach(dev);
2370 		rtnl_unlock();
2371 		return 0;
2372 	}
2373 
2374 	/* Enable the cell */
2375 	gem_get_cell(gp);
2376 
2377 	/* Restart chip. If that fails there isn't much we can do, we
2378 	 * leave things stopped.
2379 	 */
2380 	gem_do_start(dev);
2381 
2382 	/* If we had WOL enabled, the cell clock was never turned off during
2383 	 * sleep, so we end up beeing unbalanced. Fix that here
2384 	 */
2385 	if (gp->asleep_wol)
2386 		gem_put_cell(gp);
2387 
2388 	/* Unlock the network stack */
2389 	rtnl_unlock();
2390 
2391 	return 0;
2392 }
2393 
2394 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2395 {
2396 	struct gem *gp = netdev_priv(dev);
2397 
2398 	/* I have seen this being called while the PM was in progress,
2399 	 * so we shield against this. Let's also not poke at registers
2400 	 * while the reset task is going on.
2401 	 *
2402 	 * TODO: Move stats collection elsewhere (link timer ?) and
2403 	 * make this a nop to avoid all those synchro issues
2404 	 */
2405 	if (!netif_device_present(dev) || !netif_running(dev))
2406 		goto bail;
2407 
2408 	/* Better safe than sorry... */
2409 	if (WARN_ON(!gp->cell_enabled))
2410 		goto bail;
2411 
2412 	dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2413 	writel(0, gp->regs + MAC_FCSERR);
2414 
2415 	dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2416 	writel(0, gp->regs + MAC_AERR);
2417 
2418 	dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2419 	writel(0, gp->regs + MAC_LERR);
2420 
2421 	dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2422 	dev->stats.collisions +=
2423 		(readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2424 	writel(0, gp->regs + MAC_ECOLL);
2425 	writel(0, gp->regs + MAC_LCOLL);
2426  bail:
2427 	return &dev->stats;
2428 }
2429 
2430 static int gem_set_mac_address(struct net_device *dev, void *addr)
2431 {
2432 	struct sockaddr *macaddr = (struct sockaddr *) addr;
2433 	const unsigned char *e = &dev->dev_addr[0];
2434 	struct gem *gp = netdev_priv(dev);
2435 
2436 	if (!is_valid_ether_addr(macaddr->sa_data))
2437 		return -EADDRNOTAVAIL;
2438 
2439 	eth_hw_addr_set(dev, macaddr->sa_data);
2440 
2441 	/* We'll just catch it later when the device is up'd or resumed */
2442 	if (!netif_running(dev) || !netif_device_present(dev))
2443 		return 0;
2444 
2445 	/* Better safe than sorry... */
2446 	if (WARN_ON(!gp->cell_enabled))
2447 		return 0;
2448 
2449 	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2450 	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2451 	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2452 
2453 	return 0;
2454 }
2455 
2456 static void gem_set_multicast(struct net_device *dev)
2457 {
2458 	struct gem *gp = netdev_priv(dev);
2459 	u32 rxcfg, rxcfg_new;
2460 	int limit = 10000;
2461 
2462 	if (!netif_running(dev) || !netif_device_present(dev))
2463 		return;
2464 
2465 	/* Better safe than sorry... */
2466 	if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2467 		return;
2468 
2469 	rxcfg = readl(gp->regs + MAC_RXCFG);
2470 	rxcfg_new = gem_setup_multicast(gp);
2471 #ifdef STRIP_FCS
2472 	rxcfg_new |= MAC_RXCFG_SFCS;
2473 #endif
2474 	gp->mac_rx_cfg = rxcfg_new;
2475 
2476 	writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2477 	while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2478 		if (!limit--)
2479 			break;
2480 		udelay(10);
2481 	}
2482 
2483 	rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2484 	rxcfg |= rxcfg_new;
2485 
2486 	writel(rxcfg, gp->regs + MAC_RXCFG);
2487 }
2488 
2489 /* Jumbo-grams don't seem to work :-( */
2490 #define GEM_MIN_MTU	ETH_MIN_MTU
2491 #if 1
2492 #define GEM_MAX_MTU	ETH_DATA_LEN
2493 #else
2494 #define GEM_MAX_MTU	9000
2495 #endif
2496 
2497 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2498 {
2499 	struct gem *gp = netdev_priv(dev);
2500 
2501 	dev->mtu = new_mtu;
2502 
2503 	/* We'll just catch it later when the device is up'd or resumed */
2504 	if (!netif_running(dev) || !netif_device_present(dev))
2505 		return 0;
2506 
2507 	/* Better safe than sorry... */
2508 	if (WARN_ON(!gp->cell_enabled))
2509 		return 0;
2510 
2511 	gem_netif_stop(gp);
2512 	gem_reinit_chip(gp);
2513 	if (gp->lstate == link_up)
2514 		gem_set_link_modes(gp);
2515 	gem_netif_start(gp);
2516 
2517 	return 0;
2518 }
2519 
2520 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2521 {
2522 	struct gem *gp = netdev_priv(dev);
2523 
2524 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2525 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2526 	strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
2527 }
2528 
2529 static int gem_get_link_ksettings(struct net_device *dev,
2530 				  struct ethtool_link_ksettings *cmd)
2531 {
2532 	struct gem *gp = netdev_priv(dev);
2533 	u32 supported, advertising;
2534 
2535 	if (gp->phy_type == phy_mii_mdio0 ||
2536 	    gp->phy_type == phy_mii_mdio1) {
2537 		if (gp->phy_mii.def)
2538 			supported = gp->phy_mii.def->features;
2539 		else
2540 			supported = (SUPPORTED_10baseT_Half |
2541 					  SUPPORTED_10baseT_Full);
2542 
2543 		/* XXX hardcoded stuff for now */
2544 		cmd->base.port = PORT_MII;
2545 		cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2546 
2547 		/* Return current PHY settings */
2548 		cmd->base.autoneg = gp->want_autoneg;
2549 		cmd->base.speed = gp->phy_mii.speed;
2550 		cmd->base.duplex = gp->phy_mii.duplex;
2551 		advertising = gp->phy_mii.advertising;
2552 
2553 		/* If we started with a forced mode, we don't have a default
2554 		 * advertise set, we need to return something sensible so
2555 		 * userland can re-enable autoneg properly.
2556 		 */
2557 		if (advertising == 0)
2558 			advertising = supported;
2559 	} else { // XXX PCS ?
2560 		supported =
2561 			(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2562 			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2563 			 SUPPORTED_Autoneg);
2564 		advertising = supported;
2565 		cmd->base.speed = 0;
2566 		cmd->base.duplex = 0;
2567 		cmd->base.port = 0;
2568 		cmd->base.phy_address = 0;
2569 		cmd->base.autoneg = 0;
2570 
2571 		/* serdes means usually a Fibre connector, with most fixed */
2572 		if (gp->phy_type == phy_serdes) {
2573 			cmd->base.port = PORT_FIBRE;
2574 			supported = (SUPPORTED_1000baseT_Half |
2575 				SUPPORTED_1000baseT_Full |
2576 				SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2577 				SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2578 			advertising = supported;
2579 			if (gp->lstate == link_up)
2580 				cmd->base.speed = SPEED_1000;
2581 			cmd->base.duplex = DUPLEX_FULL;
2582 			cmd->base.autoneg = 1;
2583 		}
2584 	}
2585 
2586 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2587 						supported);
2588 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
2589 						advertising);
2590 
2591 	return 0;
2592 }
2593 
2594 static int gem_set_link_ksettings(struct net_device *dev,
2595 				  const struct ethtool_link_ksettings *cmd)
2596 {
2597 	struct gem *gp = netdev_priv(dev);
2598 	u32 speed = cmd->base.speed;
2599 	u32 advertising;
2600 
2601 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
2602 						cmd->link_modes.advertising);
2603 
2604 	/* Verify the settings we care about. */
2605 	if (cmd->base.autoneg != AUTONEG_ENABLE &&
2606 	    cmd->base.autoneg != AUTONEG_DISABLE)
2607 		return -EINVAL;
2608 
2609 	if (cmd->base.autoneg == AUTONEG_ENABLE &&
2610 	    advertising == 0)
2611 		return -EINVAL;
2612 
2613 	if (cmd->base.autoneg == AUTONEG_DISABLE &&
2614 	    ((speed != SPEED_1000 &&
2615 	      speed != SPEED_100 &&
2616 	      speed != SPEED_10) ||
2617 	     (cmd->base.duplex != DUPLEX_HALF &&
2618 	      cmd->base.duplex != DUPLEX_FULL)))
2619 		return -EINVAL;
2620 
2621 	/* Apply settings and restart link process. */
2622 	if (netif_device_present(gp->dev)) {
2623 		del_timer_sync(&gp->link_timer);
2624 		gem_begin_auto_negotiation(gp, cmd);
2625 	}
2626 
2627 	return 0;
2628 }
2629 
2630 static int gem_nway_reset(struct net_device *dev)
2631 {
2632 	struct gem *gp = netdev_priv(dev);
2633 
2634 	if (!gp->want_autoneg)
2635 		return -EINVAL;
2636 
2637 	/* Restart link process  */
2638 	if (netif_device_present(gp->dev)) {
2639 		del_timer_sync(&gp->link_timer);
2640 		gem_begin_auto_negotiation(gp, NULL);
2641 	}
2642 
2643 	return 0;
2644 }
2645 
2646 static u32 gem_get_msglevel(struct net_device *dev)
2647 {
2648 	struct gem *gp = netdev_priv(dev);
2649 	return gp->msg_enable;
2650 }
2651 
2652 static void gem_set_msglevel(struct net_device *dev, u32 value)
2653 {
2654 	struct gem *gp = netdev_priv(dev);
2655 	gp->msg_enable = value;
2656 }
2657 
2658 
2659 /* Add more when I understand how to program the chip */
2660 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2661 
2662 #define WOL_SUPPORTED_MASK	(WAKE_MAGIC)
2663 
2664 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2665 {
2666 	struct gem *gp = netdev_priv(dev);
2667 
2668 	/* Add more when I understand how to program the chip */
2669 	if (gp->has_wol) {
2670 		wol->supported = WOL_SUPPORTED_MASK;
2671 		wol->wolopts = gp->wake_on_lan;
2672 	} else {
2673 		wol->supported = 0;
2674 		wol->wolopts = 0;
2675 	}
2676 }
2677 
2678 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2679 {
2680 	struct gem *gp = netdev_priv(dev);
2681 
2682 	if (!gp->has_wol)
2683 		return -EOPNOTSUPP;
2684 	gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2685 	return 0;
2686 }
2687 
2688 static const struct ethtool_ops gem_ethtool_ops = {
2689 	.get_drvinfo		= gem_get_drvinfo,
2690 	.get_link		= ethtool_op_get_link,
2691 	.nway_reset		= gem_nway_reset,
2692 	.get_msglevel		= gem_get_msglevel,
2693 	.set_msglevel		= gem_set_msglevel,
2694 	.get_wol		= gem_get_wol,
2695 	.set_wol		= gem_set_wol,
2696 	.get_link_ksettings	= gem_get_link_ksettings,
2697 	.set_link_ksettings	= gem_set_link_ksettings,
2698 };
2699 
2700 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2701 {
2702 	struct gem *gp = netdev_priv(dev);
2703 	struct mii_ioctl_data *data = if_mii(ifr);
2704 	int rc = -EOPNOTSUPP;
2705 
2706 	/* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2707 	 * netif_device_present() is true and holds rtnl_lock for us
2708 	 * so we have nothing to worry about
2709 	 */
2710 
2711 	switch (cmd) {
2712 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2713 		data->phy_id = gp->mii_phy_addr;
2714 		fallthrough;
2715 
2716 	case SIOCGMIIREG:		/* Read MII PHY register. */
2717 		data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f,
2718 					   data->reg_num & 0x1f);
2719 		rc = 0;
2720 		break;
2721 
2722 	case SIOCSMIIREG:		/* Write MII PHY register. */
2723 		__sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2724 			    data->val_in);
2725 		rc = 0;
2726 		break;
2727 	}
2728 	return rc;
2729 }
2730 
2731 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2732 /* Fetch MAC address from vital product data of PCI ROM. */
2733 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2734 {
2735 	int this_offset;
2736 
2737 	for (this_offset = 0x20; this_offset < len; this_offset++) {
2738 		void __iomem *p = rom_base + this_offset;
2739 		int i;
2740 
2741 		if (readb(p + 0) != 0x90 ||
2742 		    readb(p + 1) != 0x00 ||
2743 		    readb(p + 2) != 0x09 ||
2744 		    readb(p + 3) != 0x4e ||
2745 		    readb(p + 4) != 0x41 ||
2746 		    readb(p + 5) != 0x06)
2747 			continue;
2748 
2749 		this_offset += 6;
2750 		p += 6;
2751 
2752 		for (i = 0; i < 6; i++)
2753 			dev_addr[i] = readb(p + i);
2754 		return 1;
2755 	}
2756 	return 0;
2757 }
2758 
2759 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2760 {
2761 	size_t size;
2762 	void __iomem *p = pci_map_rom(pdev, &size);
2763 
2764 	if (p) {
2765 		int found;
2766 
2767 		found = readb(p) == 0x55 &&
2768 			readb(p + 1) == 0xaa &&
2769 			find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2770 		pci_unmap_rom(pdev, p);
2771 		if (found)
2772 			return;
2773 	}
2774 
2775 	/* Sun MAC prefix then 3 random bytes. */
2776 	dev_addr[0] = 0x08;
2777 	dev_addr[1] = 0x00;
2778 	dev_addr[2] = 0x20;
2779 	get_random_bytes(dev_addr + 3, 3);
2780 }
2781 #endif /* not Sparc and not PPC */
2782 
2783 static int gem_get_device_address(struct gem *gp)
2784 {
2785 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2786 	struct net_device *dev = gp->dev;
2787 	const unsigned char *addr;
2788 
2789 	addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2790 	if (addr == NULL) {
2791 #ifdef CONFIG_SPARC
2792 		addr = idprom->id_ethaddr;
2793 #else
2794 		printk("\n");
2795 		pr_err("%s: can't get mac-address\n", dev->name);
2796 		return -1;
2797 #endif
2798 	}
2799 	eth_hw_addr_set(dev, addr);
2800 #else
2801 	u8 addr[ETH_ALEN];
2802 
2803 	get_gem_mac_nonobp(gp->pdev, addr);
2804 	eth_hw_addr_set(gp->dev, addr);
2805 #endif
2806 	return 0;
2807 }
2808 
2809 static void gem_remove_one(struct pci_dev *pdev)
2810 {
2811 	struct net_device *dev = pci_get_drvdata(pdev);
2812 
2813 	if (dev) {
2814 		struct gem *gp = netdev_priv(dev);
2815 
2816 		unregister_netdev(dev);
2817 
2818 		/* Ensure reset task is truly gone */
2819 		cancel_work_sync(&gp->reset_task);
2820 
2821 		/* Free resources */
2822 		dma_free_coherent(&pdev->dev, sizeof(struct gem_init_block),
2823 				  gp->init_block, gp->gblock_dvma);
2824 		iounmap(gp->regs);
2825 		pci_release_regions(pdev);
2826 		free_netdev(dev);
2827 	}
2828 }
2829 
2830 static const struct net_device_ops gem_netdev_ops = {
2831 	.ndo_open		= gem_open,
2832 	.ndo_stop		= gem_close,
2833 	.ndo_start_xmit		= gem_start_xmit,
2834 	.ndo_get_stats		= gem_get_stats,
2835 	.ndo_set_rx_mode	= gem_set_multicast,
2836 	.ndo_eth_ioctl		= gem_ioctl,
2837 	.ndo_tx_timeout		= gem_tx_timeout,
2838 	.ndo_change_mtu		= gem_change_mtu,
2839 	.ndo_validate_addr	= eth_validate_addr,
2840 	.ndo_set_mac_address    = gem_set_mac_address,
2841 #ifdef CONFIG_NET_POLL_CONTROLLER
2842 	.ndo_poll_controller    = gem_poll_controller,
2843 #endif
2844 };
2845 
2846 static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2847 {
2848 	unsigned long gemreg_base, gemreg_len;
2849 	struct net_device *dev;
2850 	struct gem *gp;
2851 	int err, pci_using_dac;
2852 
2853 	printk_once(KERN_INFO "%s", version);
2854 
2855 	/* Apple gmac note: during probe, the chip is powered up by
2856 	 * the arch code to allow the code below to work (and to let
2857 	 * the chip be probed on the config space. It won't stay powered
2858 	 * up until the interface is brought up however, so we can't rely
2859 	 * on register configuration done at this point.
2860 	 */
2861 	err = pci_enable_device(pdev);
2862 	if (err) {
2863 		pr_err("Cannot enable MMIO operation, aborting\n");
2864 		return err;
2865 	}
2866 	pci_set_master(pdev);
2867 
2868 	/* Configure DMA attributes. */
2869 
2870 	/* All of the GEM documentation states that 64-bit DMA addressing
2871 	 * is fully supported and should work just fine.  However the
2872 	 * front end for RIO based GEMs is different and only supports
2873 	 * 32-bit addressing.
2874 	 *
2875 	 * For now we assume the various PPC GEMs are 32-bit only as well.
2876 	 */
2877 	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2878 	    pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2879 	    !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
2880 		pci_using_dac = 1;
2881 	} else {
2882 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2883 		if (err) {
2884 			pr_err("No usable DMA configuration, aborting\n");
2885 			goto err_disable_device;
2886 		}
2887 		pci_using_dac = 0;
2888 	}
2889 
2890 	gemreg_base = pci_resource_start(pdev, 0);
2891 	gemreg_len = pci_resource_len(pdev, 0);
2892 
2893 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2894 		pr_err("Cannot find proper PCI device base address, aborting\n");
2895 		err = -ENODEV;
2896 		goto err_disable_device;
2897 	}
2898 
2899 	dev = alloc_etherdev(sizeof(*gp));
2900 	if (!dev) {
2901 		err = -ENOMEM;
2902 		goto err_disable_device;
2903 	}
2904 	SET_NETDEV_DEV(dev, &pdev->dev);
2905 
2906 	gp = netdev_priv(dev);
2907 
2908 	err = pci_request_regions(pdev, DRV_NAME);
2909 	if (err) {
2910 		pr_err("Cannot obtain PCI resources, aborting\n");
2911 		goto err_out_free_netdev;
2912 	}
2913 
2914 	gp->pdev = pdev;
2915 	gp->dev = dev;
2916 
2917 	gp->msg_enable = DEFAULT_MSG;
2918 
2919 	timer_setup(&gp->link_timer, gem_link_timer, 0);
2920 
2921 	INIT_WORK(&gp->reset_task, gem_reset_task);
2922 
2923 	gp->lstate = link_down;
2924 	gp->timer_ticks = 0;
2925 	netif_carrier_off(dev);
2926 
2927 	gp->regs = ioremap(gemreg_base, gemreg_len);
2928 	if (!gp->regs) {
2929 		pr_err("Cannot map device registers, aborting\n");
2930 		err = -EIO;
2931 		goto err_out_free_res;
2932 	}
2933 
2934 	/* On Apple, we want a reference to the Open Firmware device-tree
2935 	 * node. We use it for clock control.
2936 	 */
2937 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2938 	gp->of_node = pci_device_to_OF_node(pdev);
2939 #endif
2940 
2941 	/* Only Apple version supports WOL afaik */
2942 	if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2943 		gp->has_wol = 1;
2944 
2945 	/* Make sure cell is enabled */
2946 	gem_get_cell(gp);
2947 
2948 	/* Make sure everything is stopped and in init state */
2949 	gem_reset(gp);
2950 
2951 	/* Fill up the mii_phy structure (even if we won't use it) */
2952 	gp->phy_mii.dev = dev;
2953 	gp->phy_mii.mdio_read = _sungem_phy_read;
2954 	gp->phy_mii.mdio_write = _sungem_phy_write;
2955 #ifdef CONFIG_PPC_PMAC
2956 	gp->phy_mii.platform_data = gp->of_node;
2957 #endif
2958 	/* By default, we start with autoneg */
2959 	gp->want_autoneg = 1;
2960 
2961 	/* Check fifo sizes, PHY type, etc... */
2962 	if (gem_check_invariants(gp)) {
2963 		err = -ENODEV;
2964 		goto err_out_iounmap;
2965 	}
2966 
2967 	/* It is guaranteed that the returned buffer will be at least
2968 	 * PAGE_SIZE aligned.
2969 	 */
2970 	gp->init_block = dma_alloc_coherent(&pdev->dev, sizeof(struct gem_init_block),
2971 					    &gp->gblock_dvma, GFP_KERNEL);
2972 	if (!gp->init_block) {
2973 		pr_err("Cannot allocate init block, aborting\n");
2974 		err = -ENOMEM;
2975 		goto err_out_iounmap;
2976 	}
2977 
2978 	err = gem_get_device_address(gp);
2979 	if (err)
2980 		goto err_out_free_consistent;
2981 
2982 	dev->netdev_ops = &gem_netdev_ops;
2983 	netif_napi_add(dev, &gp->napi, gem_poll, 64);
2984 	dev->ethtool_ops = &gem_ethtool_ops;
2985 	dev->watchdog_timeo = 5 * HZ;
2986 	dev->dma = 0;
2987 
2988 	/* Set that now, in case PM kicks in now */
2989 	pci_set_drvdata(pdev, dev);
2990 
2991 	/* We can do scatter/gather and HW checksum */
2992 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
2993 	dev->features = dev->hw_features;
2994 	if (pci_using_dac)
2995 		dev->features |= NETIF_F_HIGHDMA;
2996 
2997 	/* MTU range: 68 - 1500 (Jumbo mode is broken) */
2998 	dev->min_mtu = GEM_MIN_MTU;
2999 	dev->max_mtu = GEM_MAX_MTU;
3000 
3001 	/* Register with kernel */
3002 	if (register_netdev(dev)) {
3003 		pr_err("Cannot register net device, aborting\n");
3004 		err = -ENOMEM;
3005 		goto err_out_free_consistent;
3006 	}
3007 
3008 	/* Undo the get_cell with appropriate locking (we could use
3009 	 * ndo_init/uninit but that would be even more clumsy imho)
3010 	 */
3011 	rtnl_lock();
3012 	gem_put_cell(gp);
3013 	rtnl_unlock();
3014 
3015 	netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3016 		    dev->dev_addr);
3017 	return 0;
3018 
3019 err_out_free_consistent:
3020 	gem_remove_one(pdev);
3021 err_out_iounmap:
3022 	gem_put_cell(gp);
3023 	iounmap(gp->regs);
3024 
3025 err_out_free_res:
3026 	pci_release_regions(pdev);
3027 
3028 err_out_free_netdev:
3029 	free_netdev(dev);
3030 err_disable_device:
3031 	pci_disable_device(pdev);
3032 	return err;
3033 
3034 }
3035 
3036 static SIMPLE_DEV_PM_OPS(gem_pm_ops, gem_suspend, gem_resume);
3037 
3038 static struct pci_driver gem_driver = {
3039 	.name		= GEM_MODULE_NAME,
3040 	.id_table	= gem_pci_tbl,
3041 	.probe		= gem_init_one,
3042 	.remove		= gem_remove_one,
3043 	.driver.pm	= &gem_pm_ops,
3044 };
3045 
3046 module_pci_driver(gem_driver);
3047