1 // SPDX-License-Identifier: GPL-2.0 2 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $ 3 * sungem.c: Sun GEM ethernet driver. 4 * 5 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com) 6 * 7 * Support for Apple GMAC and assorted PHYs, WOL, Power Management 8 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org) 9 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp. 10 * 11 * NAPI and NETPOLL support 12 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com) 13 * 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/types.h> 21 #include <linux/fcntl.h> 22 #include <linux/interrupt.h> 23 #include <linux/ioport.h> 24 #include <linux/in.h> 25 #include <linux/sched.h> 26 #include <linux/string.h> 27 #include <linux/delay.h> 28 #include <linux/errno.h> 29 #include <linux/pci.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/netdevice.h> 32 #include <linux/etherdevice.h> 33 #include <linux/skbuff.h> 34 #include <linux/mii.h> 35 #include <linux/ethtool.h> 36 #include <linux/crc32.h> 37 #include <linux/random.h> 38 #include <linux/workqueue.h> 39 #include <linux/if_vlan.h> 40 #include <linux/bitops.h> 41 #include <linux/mm.h> 42 #include <linux/gfp.h> 43 44 #include <asm/io.h> 45 #include <asm/byteorder.h> 46 #include <linux/uaccess.h> 47 #include <asm/irq.h> 48 49 #ifdef CONFIG_SPARC 50 #include <asm/idprom.h> 51 #include <asm/prom.h> 52 #endif 53 54 #ifdef CONFIG_PPC_PMAC 55 #include <asm/machdep.h> 56 #include <asm/pmac_feature.h> 57 #endif 58 59 #include <linux/sungem_phy.h> 60 #include "sungem.h" 61 62 #define STRIP_FCS 63 64 #define DEFAULT_MSG (NETIF_MSG_DRV | \ 65 NETIF_MSG_PROBE | \ 66 NETIF_MSG_LINK) 67 68 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \ 69 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \ 70 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \ 71 SUPPORTED_Pause | SUPPORTED_Autoneg) 72 73 #define DRV_NAME "sungem" 74 #define DRV_VERSION "1.0" 75 #define DRV_AUTHOR "David S. Miller <davem@redhat.com>" 76 77 static char version[] = 78 DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n"; 79 80 MODULE_AUTHOR(DRV_AUTHOR); 81 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver"); 82 MODULE_LICENSE("GPL"); 83 84 #define GEM_MODULE_NAME "gem" 85 86 static const struct pci_device_id gem_pci_tbl[] = { 87 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM, 88 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 89 90 /* These models only differ from the original GEM in 91 * that their tx/rx fifos are of a different size and 92 * they only support 10/100 speeds. -DaveM 93 * 94 * Apple's GMAC does support gigabit on machines with 95 * the BCM54xx PHYs. -BenH 96 */ 97 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM, 98 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 99 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC, 100 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 101 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP, 102 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 103 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2, 104 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 105 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC, 106 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 107 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM, 108 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 109 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC, 110 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 111 {0, } 112 }; 113 114 MODULE_DEVICE_TABLE(pci, gem_pci_tbl); 115 116 static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg) 117 { 118 u32 cmd; 119 int limit = 10000; 120 121 cmd = (1 << 30); 122 cmd |= (2 << 28); 123 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD; 124 cmd |= (reg << 18) & MIF_FRAME_REGAD; 125 cmd |= (MIF_FRAME_TAMSB); 126 writel(cmd, gp->regs + MIF_FRAME); 127 128 while (--limit) { 129 cmd = readl(gp->regs + MIF_FRAME); 130 if (cmd & MIF_FRAME_TALSB) 131 break; 132 133 udelay(10); 134 } 135 136 if (!limit) 137 cmd = 0xffff; 138 139 return cmd & MIF_FRAME_DATA; 140 } 141 142 static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg) 143 { 144 struct gem *gp = netdev_priv(dev); 145 return __sungem_phy_read(gp, mii_id, reg); 146 } 147 148 static inline u16 sungem_phy_read(struct gem *gp, int reg) 149 { 150 return __sungem_phy_read(gp, gp->mii_phy_addr, reg); 151 } 152 153 static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val) 154 { 155 u32 cmd; 156 int limit = 10000; 157 158 cmd = (1 << 30); 159 cmd |= (1 << 28); 160 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD; 161 cmd |= (reg << 18) & MIF_FRAME_REGAD; 162 cmd |= (MIF_FRAME_TAMSB); 163 cmd |= (val & MIF_FRAME_DATA); 164 writel(cmd, gp->regs + MIF_FRAME); 165 166 while (limit--) { 167 cmd = readl(gp->regs + MIF_FRAME); 168 if (cmd & MIF_FRAME_TALSB) 169 break; 170 171 udelay(10); 172 } 173 } 174 175 static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val) 176 { 177 struct gem *gp = netdev_priv(dev); 178 __sungem_phy_write(gp, mii_id, reg, val & 0xffff); 179 } 180 181 static inline void sungem_phy_write(struct gem *gp, int reg, u16 val) 182 { 183 __sungem_phy_write(gp, gp->mii_phy_addr, reg, val); 184 } 185 186 static inline void gem_enable_ints(struct gem *gp) 187 { 188 /* Enable all interrupts but TXDONE */ 189 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK); 190 } 191 192 static inline void gem_disable_ints(struct gem *gp) 193 { 194 /* Disable all interrupts, including TXDONE */ 195 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK); 196 (void)readl(gp->regs + GREG_IMASK); /* write posting */ 197 } 198 199 static void gem_get_cell(struct gem *gp) 200 { 201 BUG_ON(gp->cell_enabled < 0); 202 gp->cell_enabled++; 203 #ifdef CONFIG_PPC_PMAC 204 if (gp->cell_enabled == 1) { 205 mb(); 206 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1); 207 udelay(10); 208 } 209 #endif /* CONFIG_PPC_PMAC */ 210 } 211 212 /* Turn off the chip's clock */ 213 static void gem_put_cell(struct gem *gp) 214 { 215 BUG_ON(gp->cell_enabled <= 0); 216 gp->cell_enabled--; 217 #ifdef CONFIG_PPC_PMAC 218 if (gp->cell_enabled == 0) { 219 mb(); 220 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0); 221 udelay(10); 222 } 223 #endif /* CONFIG_PPC_PMAC */ 224 } 225 226 static inline void gem_netif_stop(struct gem *gp) 227 { 228 netif_trans_update(gp->dev); /* prevent tx timeout */ 229 napi_disable(&gp->napi); 230 netif_tx_disable(gp->dev); 231 } 232 233 static inline void gem_netif_start(struct gem *gp) 234 { 235 /* NOTE: unconditional netif_wake_queue is only 236 * appropriate so long as all callers are assured to 237 * have free tx slots. 238 */ 239 netif_wake_queue(gp->dev); 240 napi_enable(&gp->napi); 241 } 242 243 static void gem_schedule_reset(struct gem *gp) 244 { 245 gp->reset_task_pending = 1; 246 schedule_work(&gp->reset_task); 247 } 248 249 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits) 250 { 251 if (netif_msg_intr(gp)) 252 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name); 253 } 254 255 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 256 { 257 u32 pcs_istat = readl(gp->regs + PCS_ISTAT); 258 u32 pcs_miistat; 259 260 if (netif_msg_intr(gp)) 261 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n", 262 gp->dev->name, pcs_istat); 263 264 if (!(pcs_istat & PCS_ISTAT_LSC)) { 265 netdev_err(dev, "PCS irq but no link status change???\n"); 266 return 0; 267 } 268 269 /* The link status bit latches on zero, so you must 270 * read it twice in such a case to see a transition 271 * to the link being up. 272 */ 273 pcs_miistat = readl(gp->regs + PCS_MIISTAT); 274 if (!(pcs_miistat & PCS_MIISTAT_LS)) 275 pcs_miistat |= 276 (readl(gp->regs + PCS_MIISTAT) & 277 PCS_MIISTAT_LS); 278 279 if (pcs_miistat & PCS_MIISTAT_ANC) { 280 /* The remote-fault indication is only valid 281 * when autoneg has completed. 282 */ 283 if (pcs_miistat & PCS_MIISTAT_RF) 284 netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n"); 285 else 286 netdev_info(dev, "PCS AutoNEG complete\n"); 287 } 288 289 if (pcs_miistat & PCS_MIISTAT_LS) { 290 netdev_info(dev, "PCS link is now up\n"); 291 netif_carrier_on(gp->dev); 292 } else { 293 netdev_info(dev, "PCS link is now down\n"); 294 netif_carrier_off(gp->dev); 295 /* If this happens and the link timer is not running, 296 * reset so we re-negotiate. 297 */ 298 if (!timer_pending(&gp->link_timer)) 299 return 1; 300 } 301 302 return 0; 303 } 304 305 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 306 { 307 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT); 308 309 if (netif_msg_intr(gp)) 310 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n", 311 gp->dev->name, txmac_stat); 312 313 /* Defer timer expiration is quite normal, 314 * don't even log the event. 315 */ 316 if ((txmac_stat & MAC_TXSTAT_DTE) && 317 !(txmac_stat & ~MAC_TXSTAT_DTE)) 318 return 0; 319 320 if (txmac_stat & MAC_TXSTAT_URUN) { 321 netdev_err(dev, "TX MAC xmit underrun\n"); 322 dev->stats.tx_fifo_errors++; 323 } 324 325 if (txmac_stat & MAC_TXSTAT_MPE) { 326 netdev_err(dev, "TX MAC max packet size error\n"); 327 dev->stats.tx_errors++; 328 } 329 330 /* The rest are all cases of one of the 16-bit TX 331 * counters expiring. 332 */ 333 if (txmac_stat & MAC_TXSTAT_NCE) 334 dev->stats.collisions += 0x10000; 335 336 if (txmac_stat & MAC_TXSTAT_ECE) { 337 dev->stats.tx_aborted_errors += 0x10000; 338 dev->stats.collisions += 0x10000; 339 } 340 341 if (txmac_stat & MAC_TXSTAT_LCE) { 342 dev->stats.tx_aborted_errors += 0x10000; 343 dev->stats.collisions += 0x10000; 344 } 345 346 /* We do not keep track of MAC_TXSTAT_FCE and 347 * MAC_TXSTAT_PCE events. 348 */ 349 return 0; 350 } 351 352 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung 353 * so we do the following. 354 * 355 * If any part of the reset goes wrong, we return 1 and that causes the 356 * whole chip to be reset. 357 */ 358 static int gem_rxmac_reset(struct gem *gp) 359 { 360 struct net_device *dev = gp->dev; 361 int limit, i; 362 u64 desc_dma; 363 u32 val; 364 365 /* First, reset & disable MAC RX. */ 366 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST); 367 for (limit = 0; limit < 5000; limit++) { 368 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD)) 369 break; 370 udelay(10); 371 } 372 if (limit == 5000) { 373 netdev_err(dev, "RX MAC will not reset, resetting whole chip\n"); 374 return 1; 375 } 376 377 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB, 378 gp->regs + MAC_RXCFG); 379 for (limit = 0; limit < 5000; limit++) { 380 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB)) 381 break; 382 udelay(10); 383 } 384 if (limit == 5000) { 385 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n"); 386 return 1; 387 } 388 389 /* Second, disable RX DMA. */ 390 writel(0, gp->regs + RXDMA_CFG); 391 for (limit = 0; limit < 5000; limit++) { 392 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE)) 393 break; 394 udelay(10); 395 } 396 if (limit == 5000) { 397 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n"); 398 return 1; 399 } 400 401 mdelay(5); 402 403 /* Execute RX reset command. */ 404 writel(gp->swrst_base | GREG_SWRST_RXRST, 405 gp->regs + GREG_SWRST); 406 for (limit = 0; limit < 5000; limit++) { 407 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST)) 408 break; 409 udelay(10); 410 } 411 if (limit == 5000) { 412 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n"); 413 return 1; 414 } 415 416 /* Refresh the RX ring. */ 417 for (i = 0; i < RX_RING_SIZE; i++) { 418 struct gem_rxd *rxd = &gp->init_block->rxd[i]; 419 420 if (gp->rx_skbs[i] == NULL) { 421 netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n"); 422 return 1; 423 } 424 425 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 426 } 427 gp->rx_new = gp->rx_old = 0; 428 429 /* Now we must reprogram the rest of RX unit. */ 430 desc_dma = (u64) gp->gblock_dvma; 431 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd)); 432 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI); 433 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW); 434 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 435 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) | 436 (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128); 437 writel(val, gp->regs + RXDMA_CFG); 438 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN) 439 writel(((5 & RXDMA_BLANK_IPKTS) | 440 ((8 << 12) & RXDMA_BLANK_ITIME)), 441 gp->regs + RXDMA_BLANK); 442 else 443 writel(((5 & RXDMA_BLANK_IPKTS) | 444 ((4 << 12) & RXDMA_BLANK_ITIME)), 445 gp->regs + RXDMA_BLANK); 446 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF); 447 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON); 448 writel(val, gp->regs + RXDMA_PTHRESH); 449 val = readl(gp->regs + RXDMA_CFG); 450 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 451 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK); 452 val = readl(gp->regs + MAC_RXCFG); 453 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 454 455 return 0; 456 } 457 458 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 459 { 460 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT); 461 int ret = 0; 462 463 if (netif_msg_intr(gp)) 464 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n", 465 gp->dev->name, rxmac_stat); 466 467 if (rxmac_stat & MAC_RXSTAT_OFLW) { 468 u32 smac = readl(gp->regs + MAC_SMACHINE); 469 470 netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac); 471 dev->stats.rx_over_errors++; 472 dev->stats.rx_fifo_errors++; 473 474 ret = gem_rxmac_reset(gp); 475 } 476 477 if (rxmac_stat & MAC_RXSTAT_ACE) 478 dev->stats.rx_frame_errors += 0x10000; 479 480 if (rxmac_stat & MAC_RXSTAT_CCE) 481 dev->stats.rx_crc_errors += 0x10000; 482 483 if (rxmac_stat & MAC_RXSTAT_LCE) 484 dev->stats.rx_length_errors += 0x10000; 485 486 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE 487 * events. 488 */ 489 return ret; 490 } 491 492 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 493 { 494 u32 mac_cstat = readl(gp->regs + MAC_CSTAT); 495 496 if (netif_msg_intr(gp)) 497 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n", 498 gp->dev->name, mac_cstat); 499 500 /* This interrupt is just for pause frame and pause 501 * tracking. It is useful for diagnostics and debug 502 * but probably by default we will mask these events. 503 */ 504 if (mac_cstat & MAC_CSTAT_PS) 505 gp->pause_entered++; 506 507 if (mac_cstat & MAC_CSTAT_PRCV) 508 gp->pause_last_time_recvd = (mac_cstat >> 16); 509 510 return 0; 511 } 512 513 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 514 { 515 u32 mif_status = readl(gp->regs + MIF_STATUS); 516 u32 reg_val, changed_bits; 517 518 reg_val = (mif_status & MIF_STATUS_DATA) >> 16; 519 changed_bits = (mif_status & MIF_STATUS_STAT); 520 521 gem_handle_mif_event(gp, reg_val, changed_bits); 522 523 return 0; 524 } 525 526 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 527 { 528 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT); 529 530 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN && 531 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) { 532 netdev_err(dev, "PCI error [%04x]", pci_estat); 533 534 if (pci_estat & GREG_PCIESTAT_BADACK) 535 pr_cont(" <No ACK64# during ABS64 cycle>"); 536 if (pci_estat & GREG_PCIESTAT_DTRTO) 537 pr_cont(" <Delayed transaction timeout>"); 538 if (pci_estat & GREG_PCIESTAT_OTHER) 539 pr_cont(" <other>"); 540 pr_cont("\n"); 541 } else { 542 pci_estat |= GREG_PCIESTAT_OTHER; 543 netdev_err(dev, "PCI error\n"); 544 } 545 546 if (pci_estat & GREG_PCIESTAT_OTHER) { 547 int pci_errs; 548 549 /* Interrogate PCI config space for the 550 * true cause. 551 */ 552 pci_errs = pci_status_get_and_clear_errors(gp->pdev); 553 netdev_err(dev, "PCI status errors[%04x]\n", pci_errs); 554 if (pci_errs & PCI_STATUS_PARITY) 555 netdev_err(dev, "PCI parity error detected\n"); 556 if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT) 557 netdev_err(dev, "PCI target abort\n"); 558 if (pci_errs & PCI_STATUS_REC_TARGET_ABORT) 559 netdev_err(dev, "PCI master acks target abort\n"); 560 if (pci_errs & PCI_STATUS_REC_MASTER_ABORT) 561 netdev_err(dev, "PCI master abort\n"); 562 if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR) 563 netdev_err(dev, "PCI system error SERR#\n"); 564 if (pci_errs & PCI_STATUS_DETECTED_PARITY) 565 netdev_err(dev, "PCI parity error\n"); 566 } 567 568 /* For all PCI errors, we should reset the chip. */ 569 return 1; 570 } 571 572 /* All non-normal interrupt conditions get serviced here. 573 * Returns non-zero if we should just exit the interrupt 574 * handler right now (ie. if we reset the card which invalidates 575 * all of the other original irq status bits). 576 */ 577 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status) 578 { 579 if (gem_status & GREG_STAT_RXNOBUF) { 580 /* Frame arrived, no free RX buffers available. */ 581 if (netif_msg_rx_err(gp)) 582 printk(KERN_DEBUG "%s: no buffer for rx frame\n", 583 gp->dev->name); 584 dev->stats.rx_dropped++; 585 } 586 587 if (gem_status & GREG_STAT_RXTAGERR) { 588 /* corrupt RX tag framing */ 589 if (netif_msg_rx_err(gp)) 590 printk(KERN_DEBUG "%s: corrupt rx tag framing\n", 591 gp->dev->name); 592 dev->stats.rx_errors++; 593 594 return 1; 595 } 596 597 if (gem_status & GREG_STAT_PCS) { 598 if (gem_pcs_interrupt(dev, gp, gem_status)) 599 return 1; 600 } 601 602 if (gem_status & GREG_STAT_TXMAC) { 603 if (gem_txmac_interrupt(dev, gp, gem_status)) 604 return 1; 605 } 606 607 if (gem_status & GREG_STAT_RXMAC) { 608 if (gem_rxmac_interrupt(dev, gp, gem_status)) 609 return 1; 610 } 611 612 if (gem_status & GREG_STAT_MAC) { 613 if (gem_mac_interrupt(dev, gp, gem_status)) 614 return 1; 615 } 616 617 if (gem_status & GREG_STAT_MIF) { 618 if (gem_mif_interrupt(dev, gp, gem_status)) 619 return 1; 620 } 621 622 if (gem_status & GREG_STAT_PCIERR) { 623 if (gem_pci_interrupt(dev, gp, gem_status)) 624 return 1; 625 } 626 627 return 0; 628 } 629 630 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status) 631 { 632 int entry, limit; 633 634 entry = gp->tx_old; 635 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT); 636 while (entry != limit) { 637 struct sk_buff *skb; 638 struct gem_txd *txd; 639 dma_addr_t dma_addr; 640 u32 dma_len; 641 int frag; 642 643 if (netif_msg_tx_done(gp)) 644 printk(KERN_DEBUG "%s: tx done, slot %d\n", 645 gp->dev->name, entry); 646 skb = gp->tx_skbs[entry]; 647 if (skb_shinfo(skb)->nr_frags) { 648 int last = entry + skb_shinfo(skb)->nr_frags; 649 int walk = entry; 650 int incomplete = 0; 651 652 last &= (TX_RING_SIZE - 1); 653 for (;;) { 654 walk = NEXT_TX(walk); 655 if (walk == limit) 656 incomplete = 1; 657 if (walk == last) 658 break; 659 } 660 if (incomplete) 661 break; 662 } 663 gp->tx_skbs[entry] = NULL; 664 dev->stats.tx_bytes += skb->len; 665 666 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 667 txd = &gp->init_block->txd[entry]; 668 669 dma_addr = le64_to_cpu(txd->buffer); 670 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ; 671 672 dma_unmap_page(&gp->pdev->dev, dma_addr, dma_len, 673 DMA_TO_DEVICE); 674 entry = NEXT_TX(entry); 675 } 676 677 dev->stats.tx_packets++; 678 dev_consume_skb_any(skb); 679 } 680 gp->tx_old = entry; 681 682 /* Need to make the tx_old update visible to gem_start_xmit() 683 * before checking for netif_queue_stopped(). Without the 684 * memory barrier, there is a small possibility that gem_start_xmit() 685 * will miss it and cause the queue to be stopped forever. 686 */ 687 smp_mb(); 688 689 if (unlikely(netif_queue_stopped(dev) && 690 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) { 691 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 692 693 __netif_tx_lock(txq, smp_processor_id()); 694 if (netif_queue_stopped(dev) && 695 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1)) 696 netif_wake_queue(dev); 697 __netif_tx_unlock(txq); 698 } 699 } 700 701 static __inline__ void gem_post_rxds(struct gem *gp, int limit) 702 { 703 int cluster_start, curr, count, kick; 704 705 cluster_start = curr = (gp->rx_new & ~(4 - 1)); 706 count = 0; 707 kick = -1; 708 dma_wmb(); 709 while (curr != limit) { 710 curr = NEXT_RX(curr); 711 if (++count == 4) { 712 struct gem_rxd *rxd = 713 &gp->init_block->rxd[cluster_start]; 714 for (;;) { 715 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 716 rxd++; 717 cluster_start = NEXT_RX(cluster_start); 718 if (cluster_start == curr) 719 break; 720 } 721 kick = curr; 722 count = 0; 723 } 724 } 725 if (kick >= 0) { 726 mb(); 727 writel(kick, gp->regs + RXDMA_KICK); 728 } 729 } 730 731 #define ALIGNED_RX_SKB_ADDR(addr) \ 732 ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr)) 733 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size, 734 gfp_t gfp_flags) 735 { 736 struct sk_buff *skb = alloc_skb(size + 64, gfp_flags); 737 738 if (likely(skb)) { 739 unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data); 740 skb_reserve(skb, offset); 741 } 742 return skb; 743 } 744 745 static int gem_rx(struct gem *gp, int work_to_do) 746 { 747 struct net_device *dev = gp->dev; 748 int entry, drops, work_done = 0; 749 u32 done; 750 751 if (netif_msg_rx_status(gp)) 752 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n", 753 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new); 754 755 entry = gp->rx_new; 756 drops = 0; 757 done = readl(gp->regs + RXDMA_DONE); 758 for (;;) { 759 struct gem_rxd *rxd = &gp->init_block->rxd[entry]; 760 struct sk_buff *skb; 761 u64 status = le64_to_cpu(rxd->status_word); 762 dma_addr_t dma_addr; 763 int len; 764 765 if ((status & RXDCTRL_OWN) != 0) 766 break; 767 768 if (work_done >= RX_RING_SIZE || work_done >= work_to_do) 769 break; 770 771 /* When writing back RX descriptor, GEM writes status 772 * then buffer address, possibly in separate transactions. 773 * If we don't wait for the chip to write both, we could 774 * post a new buffer to this descriptor then have GEM spam 775 * on the buffer address. We sync on the RX completion 776 * register to prevent this from happening. 777 */ 778 if (entry == done) { 779 done = readl(gp->regs + RXDMA_DONE); 780 if (entry == done) 781 break; 782 } 783 784 /* We can now account for the work we're about to do */ 785 work_done++; 786 787 skb = gp->rx_skbs[entry]; 788 789 len = (status & RXDCTRL_BUFSZ) >> 16; 790 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) { 791 dev->stats.rx_errors++; 792 if (len < ETH_ZLEN) 793 dev->stats.rx_length_errors++; 794 if (len & RXDCTRL_BAD) 795 dev->stats.rx_crc_errors++; 796 797 /* We'll just return it to GEM. */ 798 drop_it: 799 dev->stats.rx_dropped++; 800 goto next; 801 } 802 803 dma_addr = le64_to_cpu(rxd->buffer); 804 if (len > RX_COPY_THRESHOLD) { 805 struct sk_buff *new_skb; 806 807 new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC); 808 if (new_skb == NULL) { 809 drops++; 810 goto drop_it; 811 } 812 dma_unmap_page(&gp->pdev->dev, dma_addr, 813 RX_BUF_ALLOC_SIZE(gp), DMA_FROM_DEVICE); 814 gp->rx_skbs[entry] = new_skb; 815 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET)); 816 rxd->buffer = cpu_to_le64(dma_map_page(&gp->pdev->dev, 817 virt_to_page(new_skb->data), 818 offset_in_page(new_skb->data), 819 RX_BUF_ALLOC_SIZE(gp), 820 DMA_FROM_DEVICE)); 821 skb_reserve(new_skb, RX_OFFSET); 822 823 /* Trim the original skb for the netif. */ 824 skb_trim(skb, len); 825 } else { 826 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2); 827 828 if (copy_skb == NULL) { 829 drops++; 830 goto drop_it; 831 } 832 833 skb_reserve(copy_skb, 2); 834 skb_put(copy_skb, len); 835 dma_sync_single_for_cpu(&gp->pdev->dev, dma_addr, len, 836 DMA_FROM_DEVICE); 837 skb_copy_from_linear_data(skb, copy_skb->data, len); 838 dma_sync_single_for_device(&gp->pdev->dev, dma_addr, 839 len, DMA_FROM_DEVICE); 840 841 /* We'll reuse the original ring buffer. */ 842 skb = copy_skb; 843 } 844 845 if (likely(dev->features & NETIF_F_RXCSUM)) { 846 __sum16 csum; 847 848 csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff); 849 skb->csum = csum_unfold(csum); 850 skb->ip_summed = CHECKSUM_COMPLETE; 851 } 852 skb->protocol = eth_type_trans(skb, gp->dev); 853 854 napi_gro_receive(&gp->napi, skb); 855 856 dev->stats.rx_packets++; 857 dev->stats.rx_bytes += len; 858 859 next: 860 entry = NEXT_RX(entry); 861 } 862 863 gem_post_rxds(gp, entry); 864 865 gp->rx_new = entry; 866 867 if (drops) 868 netdev_info(gp->dev, "Memory squeeze, deferring packet\n"); 869 870 return work_done; 871 } 872 873 static int gem_poll(struct napi_struct *napi, int budget) 874 { 875 struct gem *gp = container_of(napi, struct gem, napi); 876 struct net_device *dev = gp->dev; 877 int work_done; 878 879 work_done = 0; 880 do { 881 /* Handle anomalies */ 882 if (unlikely(gp->status & GREG_STAT_ABNORMAL)) { 883 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 884 int reset; 885 886 /* We run the abnormal interrupt handling code with 887 * the Tx lock. It only resets the Rx portion of the 888 * chip, but we need to guard it against DMA being 889 * restarted by the link poll timer 890 */ 891 __netif_tx_lock(txq, smp_processor_id()); 892 reset = gem_abnormal_irq(dev, gp, gp->status); 893 __netif_tx_unlock(txq); 894 if (reset) { 895 gem_schedule_reset(gp); 896 napi_complete(napi); 897 return work_done; 898 } 899 } 900 901 /* Run TX completion thread */ 902 gem_tx(dev, gp, gp->status); 903 904 /* Run RX thread. We don't use any locking here, 905 * code willing to do bad things - like cleaning the 906 * rx ring - must call napi_disable(), which 907 * schedule_timeout()'s if polling is already disabled. 908 */ 909 work_done += gem_rx(gp, budget - work_done); 910 911 if (work_done >= budget) 912 return work_done; 913 914 gp->status = readl(gp->regs + GREG_STAT); 915 } while (gp->status & GREG_STAT_NAPI); 916 917 napi_complete_done(napi, work_done); 918 gem_enable_ints(gp); 919 920 return work_done; 921 } 922 923 static irqreturn_t gem_interrupt(int irq, void *dev_id) 924 { 925 struct net_device *dev = dev_id; 926 struct gem *gp = netdev_priv(dev); 927 928 if (napi_schedule_prep(&gp->napi)) { 929 u32 gem_status = readl(gp->regs + GREG_STAT); 930 931 if (unlikely(gem_status == 0)) { 932 napi_enable(&gp->napi); 933 return IRQ_NONE; 934 } 935 if (netif_msg_intr(gp)) 936 printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n", 937 gp->dev->name, gem_status); 938 939 gp->status = gem_status; 940 gem_disable_ints(gp); 941 __napi_schedule(&gp->napi); 942 } 943 944 /* If polling was disabled at the time we received that 945 * interrupt, we may return IRQ_HANDLED here while we 946 * should return IRQ_NONE. No big deal... 947 */ 948 return IRQ_HANDLED; 949 } 950 951 #ifdef CONFIG_NET_POLL_CONTROLLER 952 static void gem_poll_controller(struct net_device *dev) 953 { 954 struct gem *gp = netdev_priv(dev); 955 956 disable_irq(gp->pdev->irq); 957 gem_interrupt(gp->pdev->irq, dev); 958 enable_irq(gp->pdev->irq); 959 } 960 #endif 961 962 static void gem_tx_timeout(struct net_device *dev, unsigned int txqueue) 963 { 964 struct gem *gp = netdev_priv(dev); 965 966 netdev_err(dev, "transmit timed out, resetting\n"); 967 968 netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n", 969 readl(gp->regs + TXDMA_CFG), 970 readl(gp->regs + MAC_TXSTAT), 971 readl(gp->regs + MAC_TXCFG)); 972 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n", 973 readl(gp->regs + RXDMA_CFG), 974 readl(gp->regs + MAC_RXSTAT), 975 readl(gp->regs + MAC_RXCFG)); 976 977 gem_schedule_reset(gp); 978 } 979 980 static __inline__ int gem_intme(int entry) 981 { 982 /* Algorithm: IRQ every 1/2 of descriptors. */ 983 if (!(entry & ((TX_RING_SIZE>>1)-1))) 984 return 1; 985 986 return 0; 987 } 988 989 static netdev_tx_t gem_start_xmit(struct sk_buff *skb, 990 struct net_device *dev) 991 { 992 struct gem *gp = netdev_priv(dev); 993 int entry; 994 u64 ctrl; 995 996 ctrl = 0; 997 if (skb->ip_summed == CHECKSUM_PARTIAL) { 998 const u64 csum_start_off = skb_checksum_start_offset(skb); 999 const u64 csum_stuff_off = csum_start_off + skb->csum_offset; 1000 1001 ctrl = (TXDCTRL_CENAB | 1002 (csum_start_off << 15) | 1003 (csum_stuff_off << 21)); 1004 } 1005 1006 if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) { 1007 /* This is a hard error, log it. */ 1008 if (!netif_queue_stopped(dev)) { 1009 netif_stop_queue(dev); 1010 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); 1011 } 1012 return NETDEV_TX_BUSY; 1013 } 1014 1015 entry = gp->tx_new; 1016 gp->tx_skbs[entry] = skb; 1017 1018 if (skb_shinfo(skb)->nr_frags == 0) { 1019 struct gem_txd *txd = &gp->init_block->txd[entry]; 1020 dma_addr_t mapping; 1021 u32 len; 1022 1023 len = skb->len; 1024 mapping = dma_map_page(&gp->pdev->dev, 1025 virt_to_page(skb->data), 1026 offset_in_page(skb->data), 1027 len, DMA_TO_DEVICE); 1028 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len; 1029 if (gem_intme(entry)) 1030 ctrl |= TXDCTRL_INTME; 1031 txd->buffer = cpu_to_le64(mapping); 1032 dma_wmb(); 1033 txd->control_word = cpu_to_le64(ctrl); 1034 entry = NEXT_TX(entry); 1035 } else { 1036 struct gem_txd *txd; 1037 u32 first_len; 1038 u64 intme; 1039 dma_addr_t first_mapping; 1040 int frag, first_entry = entry; 1041 1042 intme = 0; 1043 if (gem_intme(entry)) 1044 intme |= TXDCTRL_INTME; 1045 1046 /* We must give this initial chunk to the device last. 1047 * Otherwise we could race with the device. 1048 */ 1049 first_len = skb_headlen(skb); 1050 first_mapping = dma_map_page(&gp->pdev->dev, 1051 virt_to_page(skb->data), 1052 offset_in_page(skb->data), 1053 first_len, DMA_TO_DEVICE); 1054 entry = NEXT_TX(entry); 1055 1056 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) { 1057 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag]; 1058 u32 len; 1059 dma_addr_t mapping; 1060 u64 this_ctrl; 1061 1062 len = skb_frag_size(this_frag); 1063 mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag, 1064 0, len, DMA_TO_DEVICE); 1065 this_ctrl = ctrl; 1066 if (frag == skb_shinfo(skb)->nr_frags - 1) 1067 this_ctrl |= TXDCTRL_EOF; 1068 1069 txd = &gp->init_block->txd[entry]; 1070 txd->buffer = cpu_to_le64(mapping); 1071 dma_wmb(); 1072 txd->control_word = cpu_to_le64(this_ctrl | len); 1073 1074 if (gem_intme(entry)) 1075 intme |= TXDCTRL_INTME; 1076 1077 entry = NEXT_TX(entry); 1078 } 1079 txd = &gp->init_block->txd[first_entry]; 1080 txd->buffer = cpu_to_le64(first_mapping); 1081 dma_wmb(); 1082 txd->control_word = 1083 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len); 1084 } 1085 1086 gp->tx_new = entry; 1087 if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) { 1088 netif_stop_queue(dev); 1089 1090 /* netif_stop_queue() must be done before checking 1091 * checking tx index in TX_BUFFS_AVAIL() below, because 1092 * in gem_tx(), we update tx_old before checking for 1093 * netif_queue_stopped(). 1094 */ 1095 smp_mb(); 1096 if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1)) 1097 netif_wake_queue(dev); 1098 } 1099 if (netif_msg_tx_queued(gp)) 1100 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n", 1101 dev->name, entry, skb->len); 1102 mb(); 1103 writel(gp->tx_new, gp->regs + TXDMA_KICK); 1104 1105 return NETDEV_TX_OK; 1106 } 1107 1108 static void gem_pcs_reset(struct gem *gp) 1109 { 1110 int limit; 1111 u32 val; 1112 1113 /* Reset PCS unit. */ 1114 val = readl(gp->regs + PCS_MIICTRL); 1115 val |= PCS_MIICTRL_RST; 1116 writel(val, gp->regs + PCS_MIICTRL); 1117 1118 limit = 32; 1119 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) { 1120 udelay(100); 1121 if (limit-- <= 0) 1122 break; 1123 } 1124 if (limit < 0) 1125 netdev_warn(gp->dev, "PCS reset bit would not clear\n"); 1126 } 1127 1128 static void gem_pcs_reinit_adv(struct gem *gp) 1129 { 1130 u32 val; 1131 1132 /* Make sure PCS is disabled while changing advertisement 1133 * configuration. 1134 */ 1135 val = readl(gp->regs + PCS_CFG); 1136 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO); 1137 writel(val, gp->regs + PCS_CFG); 1138 1139 /* Advertise all capabilities except asymmetric 1140 * pause. 1141 */ 1142 val = readl(gp->regs + PCS_MIIADV); 1143 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD | 1144 PCS_MIIADV_SP | PCS_MIIADV_AP); 1145 writel(val, gp->regs + PCS_MIIADV); 1146 1147 /* Enable and restart auto-negotiation, disable wrapback/loopback, 1148 * and re-enable PCS. 1149 */ 1150 val = readl(gp->regs + PCS_MIICTRL); 1151 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE); 1152 val &= ~PCS_MIICTRL_WB; 1153 writel(val, gp->regs + PCS_MIICTRL); 1154 1155 val = readl(gp->regs + PCS_CFG); 1156 val |= PCS_CFG_ENABLE; 1157 writel(val, gp->regs + PCS_CFG); 1158 1159 /* Make sure serialink loopback is off. The meaning 1160 * of this bit is logically inverted based upon whether 1161 * you are in Serialink or SERDES mode. 1162 */ 1163 val = readl(gp->regs + PCS_SCTRL); 1164 if (gp->phy_type == phy_serialink) 1165 val &= ~PCS_SCTRL_LOOP; 1166 else 1167 val |= PCS_SCTRL_LOOP; 1168 writel(val, gp->regs + PCS_SCTRL); 1169 } 1170 1171 #define STOP_TRIES 32 1172 1173 static void gem_reset(struct gem *gp) 1174 { 1175 int limit; 1176 u32 val; 1177 1178 /* Make sure we won't get any more interrupts */ 1179 writel(0xffffffff, gp->regs + GREG_IMASK); 1180 1181 /* Reset the chip */ 1182 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST, 1183 gp->regs + GREG_SWRST); 1184 1185 limit = STOP_TRIES; 1186 1187 do { 1188 udelay(20); 1189 val = readl(gp->regs + GREG_SWRST); 1190 if (limit-- <= 0) 1191 break; 1192 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST)); 1193 1194 if (limit < 0) 1195 netdev_err(gp->dev, "SW reset is ghetto\n"); 1196 1197 if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes) 1198 gem_pcs_reinit_adv(gp); 1199 } 1200 1201 static void gem_start_dma(struct gem *gp) 1202 { 1203 u32 val; 1204 1205 /* We are ready to rock, turn everything on. */ 1206 val = readl(gp->regs + TXDMA_CFG); 1207 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG); 1208 val = readl(gp->regs + RXDMA_CFG); 1209 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 1210 val = readl(gp->regs + MAC_TXCFG); 1211 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG); 1212 val = readl(gp->regs + MAC_RXCFG); 1213 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 1214 1215 (void) readl(gp->regs + MAC_RXCFG); 1216 udelay(100); 1217 1218 gem_enable_ints(gp); 1219 1220 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 1221 } 1222 1223 /* DMA won't be actually stopped before about 4ms tho ... 1224 */ 1225 static void gem_stop_dma(struct gem *gp) 1226 { 1227 u32 val; 1228 1229 /* We are done rocking, turn everything off. */ 1230 val = readl(gp->regs + TXDMA_CFG); 1231 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG); 1232 val = readl(gp->regs + RXDMA_CFG); 1233 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 1234 val = readl(gp->regs + MAC_TXCFG); 1235 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG); 1236 val = readl(gp->regs + MAC_RXCFG); 1237 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 1238 1239 (void) readl(gp->regs + MAC_RXCFG); 1240 1241 /* Need to wait a bit ... done by the caller */ 1242 } 1243 1244 1245 // XXX dbl check what that function should do when called on PCS PHY 1246 static void gem_begin_auto_negotiation(struct gem *gp, 1247 const struct ethtool_link_ksettings *ep) 1248 { 1249 u32 advertise, features; 1250 int autoneg; 1251 int speed; 1252 int duplex; 1253 u32 advertising; 1254 1255 if (ep) 1256 ethtool_convert_link_mode_to_legacy_u32( 1257 &advertising, ep->link_modes.advertising); 1258 1259 if (gp->phy_type != phy_mii_mdio0 && 1260 gp->phy_type != phy_mii_mdio1) 1261 goto non_mii; 1262 1263 /* Setup advertise */ 1264 if (found_mii_phy(gp)) 1265 features = gp->phy_mii.def->features; 1266 else 1267 features = 0; 1268 1269 advertise = features & ADVERTISE_MASK; 1270 if (gp->phy_mii.advertising != 0) 1271 advertise &= gp->phy_mii.advertising; 1272 1273 autoneg = gp->want_autoneg; 1274 speed = gp->phy_mii.speed; 1275 duplex = gp->phy_mii.duplex; 1276 1277 /* Setup link parameters */ 1278 if (!ep) 1279 goto start_aneg; 1280 if (ep->base.autoneg == AUTONEG_ENABLE) { 1281 advertise = advertising; 1282 autoneg = 1; 1283 } else { 1284 autoneg = 0; 1285 speed = ep->base.speed; 1286 duplex = ep->base.duplex; 1287 } 1288 1289 start_aneg: 1290 /* Sanitize settings based on PHY capabilities */ 1291 if ((features & SUPPORTED_Autoneg) == 0) 1292 autoneg = 0; 1293 if (speed == SPEED_1000 && 1294 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full))) 1295 speed = SPEED_100; 1296 if (speed == SPEED_100 && 1297 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full))) 1298 speed = SPEED_10; 1299 if (duplex == DUPLEX_FULL && 1300 !(features & (SUPPORTED_1000baseT_Full | 1301 SUPPORTED_100baseT_Full | 1302 SUPPORTED_10baseT_Full))) 1303 duplex = DUPLEX_HALF; 1304 if (speed == 0) 1305 speed = SPEED_10; 1306 1307 /* If we are asleep, we don't try to actually setup the PHY, we 1308 * just store the settings 1309 */ 1310 if (!netif_device_present(gp->dev)) { 1311 gp->phy_mii.autoneg = gp->want_autoneg = autoneg; 1312 gp->phy_mii.speed = speed; 1313 gp->phy_mii.duplex = duplex; 1314 return; 1315 } 1316 1317 /* Configure PHY & start aneg */ 1318 gp->want_autoneg = autoneg; 1319 if (autoneg) { 1320 if (found_mii_phy(gp)) 1321 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise); 1322 gp->lstate = link_aneg; 1323 } else { 1324 if (found_mii_phy(gp)) 1325 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex); 1326 gp->lstate = link_force_ok; 1327 } 1328 1329 non_mii: 1330 gp->timer_ticks = 0; 1331 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 1332 } 1333 1334 /* A link-up condition has occurred, initialize and enable the 1335 * rest of the chip. 1336 */ 1337 static int gem_set_link_modes(struct gem *gp) 1338 { 1339 struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0); 1340 int full_duplex, speed, pause; 1341 u32 val; 1342 1343 full_duplex = 0; 1344 speed = SPEED_10; 1345 pause = 0; 1346 1347 if (found_mii_phy(gp)) { 1348 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii)) 1349 return 1; 1350 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL); 1351 speed = gp->phy_mii.speed; 1352 pause = gp->phy_mii.pause; 1353 } else if (gp->phy_type == phy_serialink || 1354 gp->phy_type == phy_serdes) { 1355 u32 pcs_lpa = readl(gp->regs + PCS_MIILP); 1356 1357 if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes) 1358 full_duplex = 1; 1359 speed = SPEED_1000; 1360 } 1361 1362 netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n", 1363 speed, (full_duplex ? "full" : "half")); 1364 1365 1366 /* We take the tx queue lock to avoid collisions between 1367 * this code, the tx path and the NAPI-driven error path 1368 */ 1369 __netif_tx_lock(txq, smp_processor_id()); 1370 1371 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU); 1372 if (full_duplex) { 1373 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL); 1374 } else { 1375 /* MAC_TXCFG_NBO must be zero. */ 1376 } 1377 writel(val, gp->regs + MAC_TXCFG); 1378 1379 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED); 1380 if (!full_duplex && 1381 (gp->phy_type == phy_mii_mdio0 || 1382 gp->phy_type == phy_mii_mdio1)) { 1383 val |= MAC_XIFCFG_DISE; 1384 } else if (full_duplex) { 1385 val |= MAC_XIFCFG_FLED; 1386 } 1387 1388 if (speed == SPEED_1000) 1389 val |= (MAC_XIFCFG_GMII); 1390 1391 writel(val, gp->regs + MAC_XIFCFG); 1392 1393 /* If gigabit and half-duplex, enable carrier extension 1394 * mode. Else, disable it. 1395 */ 1396 if (speed == SPEED_1000 && !full_duplex) { 1397 val = readl(gp->regs + MAC_TXCFG); 1398 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG); 1399 1400 val = readl(gp->regs + MAC_RXCFG); 1401 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG); 1402 } else { 1403 val = readl(gp->regs + MAC_TXCFG); 1404 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG); 1405 1406 val = readl(gp->regs + MAC_RXCFG); 1407 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG); 1408 } 1409 1410 if (gp->phy_type == phy_serialink || 1411 gp->phy_type == phy_serdes) { 1412 u32 pcs_lpa = readl(gp->regs + PCS_MIILP); 1413 1414 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP)) 1415 pause = 1; 1416 } 1417 1418 if (!full_duplex) 1419 writel(512, gp->regs + MAC_STIME); 1420 else 1421 writel(64, gp->regs + MAC_STIME); 1422 val = readl(gp->regs + MAC_MCCFG); 1423 if (pause) 1424 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE); 1425 else 1426 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE); 1427 writel(val, gp->regs + MAC_MCCFG); 1428 1429 gem_start_dma(gp); 1430 1431 __netif_tx_unlock(txq); 1432 1433 if (netif_msg_link(gp)) { 1434 if (pause) { 1435 netdev_info(gp->dev, 1436 "Pause is enabled (rxfifo: %d off: %d on: %d)\n", 1437 gp->rx_fifo_sz, 1438 gp->rx_pause_off, 1439 gp->rx_pause_on); 1440 } else { 1441 netdev_info(gp->dev, "Pause is disabled\n"); 1442 } 1443 } 1444 1445 return 0; 1446 } 1447 1448 static int gem_mdio_link_not_up(struct gem *gp) 1449 { 1450 switch (gp->lstate) { 1451 case link_force_ret: 1452 netif_info(gp, link, gp->dev, 1453 "Autoneg failed again, keeping forced mode\n"); 1454 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, 1455 gp->last_forced_speed, DUPLEX_HALF); 1456 gp->timer_ticks = 5; 1457 gp->lstate = link_force_ok; 1458 return 0; 1459 case link_aneg: 1460 /* We try forced modes after a failed aneg only on PHYs that don't 1461 * have "magic_aneg" bit set, which means they internally do the 1462 * while forced-mode thingy. On these, we just restart aneg 1463 */ 1464 if (gp->phy_mii.def->magic_aneg) 1465 return 1; 1466 netif_info(gp, link, gp->dev, "switching to forced 100bt\n"); 1467 /* Try forced modes. */ 1468 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100, 1469 DUPLEX_HALF); 1470 gp->timer_ticks = 5; 1471 gp->lstate = link_force_try; 1472 return 0; 1473 case link_force_try: 1474 /* Downgrade from 100 to 10 Mbps if necessary. 1475 * If already at 10Mbps, warn user about the 1476 * situation every 10 ticks. 1477 */ 1478 if (gp->phy_mii.speed == SPEED_100) { 1479 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10, 1480 DUPLEX_HALF); 1481 gp->timer_ticks = 5; 1482 netif_info(gp, link, gp->dev, 1483 "switching to forced 10bt\n"); 1484 return 0; 1485 } else 1486 return 1; 1487 default: 1488 return 0; 1489 } 1490 } 1491 1492 static void gem_link_timer(struct timer_list *t) 1493 { 1494 struct gem *gp = from_timer(gp, t, link_timer); 1495 struct net_device *dev = gp->dev; 1496 int restart_aneg = 0; 1497 1498 /* There's no point doing anything if we're going to be reset */ 1499 if (gp->reset_task_pending) 1500 return; 1501 1502 if (gp->phy_type == phy_serialink || 1503 gp->phy_type == phy_serdes) { 1504 u32 val = readl(gp->regs + PCS_MIISTAT); 1505 1506 if (!(val & PCS_MIISTAT_LS)) 1507 val = readl(gp->regs + PCS_MIISTAT); 1508 1509 if ((val & PCS_MIISTAT_LS) != 0) { 1510 if (gp->lstate == link_up) 1511 goto restart; 1512 1513 gp->lstate = link_up; 1514 netif_carrier_on(dev); 1515 (void)gem_set_link_modes(gp); 1516 } 1517 goto restart; 1518 } 1519 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) { 1520 /* Ok, here we got a link. If we had it due to a forced 1521 * fallback, and we were configured for autoneg, we do 1522 * retry a short autoneg pass. If you know your hub is 1523 * broken, use ethtool ;) 1524 */ 1525 if (gp->lstate == link_force_try && gp->want_autoneg) { 1526 gp->lstate = link_force_ret; 1527 gp->last_forced_speed = gp->phy_mii.speed; 1528 gp->timer_ticks = 5; 1529 if (netif_msg_link(gp)) 1530 netdev_info(dev, 1531 "Got link after fallback, retrying autoneg once...\n"); 1532 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising); 1533 } else if (gp->lstate != link_up) { 1534 gp->lstate = link_up; 1535 netif_carrier_on(dev); 1536 if (gem_set_link_modes(gp)) 1537 restart_aneg = 1; 1538 } 1539 } else { 1540 /* If the link was previously up, we restart the 1541 * whole process 1542 */ 1543 if (gp->lstate == link_up) { 1544 gp->lstate = link_down; 1545 netif_info(gp, link, dev, "Link down\n"); 1546 netif_carrier_off(dev); 1547 gem_schedule_reset(gp); 1548 /* The reset task will restart the timer */ 1549 return; 1550 } else if (++gp->timer_ticks > 10) { 1551 if (found_mii_phy(gp)) 1552 restart_aneg = gem_mdio_link_not_up(gp); 1553 else 1554 restart_aneg = 1; 1555 } 1556 } 1557 if (restart_aneg) { 1558 gem_begin_auto_negotiation(gp, NULL); 1559 return; 1560 } 1561 restart: 1562 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 1563 } 1564 1565 static void gem_clean_rings(struct gem *gp) 1566 { 1567 struct gem_init_block *gb = gp->init_block; 1568 struct sk_buff *skb; 1569 int i; 1570 dma_addr_t dma_addr; 1571 1572 for (i = 0; i < RX_RING_SIZE; i++) { 1573 struct gem_rxd *rxd; 1574 1575 rxd = &gb->rxd[i]; 1576 if (gp->rx_skbs[i] != NULL) { 1577 skb = gp->rx_skbs[i]; 1578 dma_addr = le64_to_cpu(rxd->buffer); 1579 dma_unmap_page(&gp->pdev->dev, dma_addr, 1580 RX_BUF_ALLOC_SIZE(gp), 1581 DMA_FROM_DEVICE); 1582 dev_kfree_skb_any(skb); 1583 gp->rx_skbs[i] = NULL; 1584 } 1585 rxd->status_word = 0; 1586 dma_wmb(); 1587 rxd->buffer = 0; 1588 } 1589 1590 for (i = 0; i < TX_RING_SIZE; i++) { 1591 if (gp->tx_skbs[i] != NULL) { 1592 struct gem_txd *txd; 1593 int frag; 1594 1595 skb = gp->tx_skbs[i]; 1596 gp->tx_skbs[i] = NULL; 1597 1598 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 1599 int ent = i & (TX_RING_SIZE - 1); 1600 1601 txd = &gb->txd[ent]; 1602 dma_addr = le64_to_cpu(txd->buffer); 1603 dma_unmap_page(&gp->pdev->dev, dma_addr, 1604 le64_to_cpu(txd->control_word) & 1605 TXDCTRL_BUFSZ, DMA_TO_DEVICE); 1606 1607 if (frag != skb_shinfo(skb)->nr_frags) 1608 i++; 1609 } 1610 dev_kfree_skb_any(skb); 1611 } 1612 } 1613 } 1614 1615 static void gem_init_rings(struct gem *gp) 1616 { 1617 struct gem_init_block *gb = gp->init_block; 1618 struct net_device *dev = gp->dev; 1619 int i; 1620 dma_addr_t dma_addr; 1621 1622 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0; 1623 1624 gem_clean_rings(gp); 1625 1626 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN, 1627 (unsigned)VLAN_ETH_FRAME_LEN); 1628 1629 for (i = 0; i < RX_RING_SIZE; i++) { 1630 struct sk_buff *skb; 1631 struct gem_rxd *rxd = &gb->rxd[i]; 1632 1633 skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL); 1634 if (!skb) { 1635 rxd->buffer = 0; 1636 rxd->status_word = 0; 1637 continue; 1638 } 1639 1640 gp->rx_skbs[i] = skb; 1641 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET)); 1642 dma_addr = dma_map_page(&gp->pdev->dev, 1643 virt_to_page(skb->data), 1644 offset_in_page(skb->data), 1645 RX_BUF_ALLOC_SIZE(gp), 1646 DMA_FROM_DEVICE); 1647 rxd->buffer = cpu_to_le64(dma_addr); 1648 dma_wmb(); 1649 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 1650 skb_reserve(skb, RX_OFFSET); 1651 } 1652 1653 for (i = 0; i < TX_RING_SIZE; i++) { 1654 struct gem_txd *txd = &gb->txd[i]; 1655 1656 txd->control_word = 0; 1657 dma_wmb(); 1658 txd->buffer = 0; 1659 } 1660 wmb(); 1661 } 1662 1663 /* Init PHY interface and start link poll state machine */ 1664 static void gem_init_phy(struct gem *gp) 1665 { 1666 u32 mifcfg; 1667 1668 /* Revert MIF CFG setting done on stop_phy */ 1669 mifcfg = readl(gp->regs + MIF_CFG); 1670 mifcfg &= ~MIF_CFG_BBMODE; 1671 writel(mifcfg, gp->regs + MIF_CFG); 1672 1673 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) { 1674 int i; 1675 1676 /* Those delays sucks, the HW seems to love them though, I'll 1677 * seriously consider breaking some locks here to be able 1678 * to schedule instead 1679 */ 1680 for (i = 0; i < 3; i++) { 1681 #ifdef CONFIG_PPC_PMAC 1682 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0); 1683 msleep(20); 1684 #endif 1685 /* Some PHYs used by apple have problem getting back to us, 1686 * we do an additional reset here 1687 */ 1688 sungem_phy_write(gp, MII_BMCR, BMCR_RESET); 1689 msleep(20); 1690 if (sungem_phy_read(gp, MII_BMCR) != 0xffff) 1691 break; 1692 if (i == 2) 1693 netdev_warn(gp->dev, "GMAC PHY not responding !\n"); 1694 } 1695 } 1696 1697 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN && 1698 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) { 1699 u32 val; 1700 1701 /* Init datapath mode register. */ 1702 if (gp->phy_type == phy_mii_mdio0 || 1703 gp->phy_type == phy_mii_mdio1) { 1704 val = PCS_DMODE_MGM; 1705 } else if (gp->phy_type == phy_serialink) { 1706 val = PCS_DMODE_SM | PCS_DMODE_GMOE; 1707 } else { 1708 val = PCS_DMODE_ESM; 1709 } 1710 1711 writel(val, gp->regs + PCS_DMODE); 1712 } 1713 1714 if (gp->phy_type == phy_mii_mdio0 || 1715 gp->phy_type == phy_mii_mdio1) { 1716 /* Reset and detect MII PHY */ 1717 sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr); 1718 1719 /* Init PHY */ 1720 if (gp->phy_mii.def && gp->phy_mii.def->ops->init) 1721 gp->phy_mii.def->ops->init(&gp->phy_mii); 1722 } else { 1723 gem_pcs_reset(gp); 1724 gem_pcs_reinit_adv(gp); 1725 } 1726 1727 /* Default aneg parameters */ 1728 gp->timer_ticks = 0; 1729 gp->lstate = link_down; 1730 netif_carrier_off(gp->dev); 1731 1732 /* Print things out */ 1733 if (gp->phy_type == phy_mii_mdio0 || 1734 gp->phy_type == phy_mii_mdio1) 1735 netdev_info(gp->dev, "Found %s PHY\n", 1736 gp->phy_mii.def ? gp->phy_mii.def->name : "no"); 1737 1738 gem_begin_auto_negotiation(gp, NULL); 1739 } 1740 1741 static void gem_init_dma(struct gem *gp) 1742 { 1743 u64 desc_dma = (u64) gp->gblock_dvma; 1744 u32 val; 1745 1746 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE); 1747 writel(val, gp->regs + TXDMA_CFG); 1748 1749 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI); 1750 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW); 1751 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd)); 1752 1753 writel(0, gp->regs + TXDMA_KICK); 1754 1755 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) | 1756 (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128); 1757 writel(val, gp->regs + RXDMA_CFG); 1758 1759 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI); 1760 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW); 1761 1762 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 1763 1764 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF); 1765 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON); 1766 writel(val, gp->regs + RXDMA_PTHRESH); 1767 1768 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN) 1769 writel(((5 & RXDMA_BLANK_IPKTS) | 1770 ((8 << 12) & RXDMA_BLANK_ITIME)), 1771 gp->regs + RXDMA_BLANK); 1772 else 1773 writel(((5 & RXDMA_BLANK_IPKTS) | 1774 ((4 << 12) & RXDMA_BLANK_ITIME)), 1775 gp->regs + RXDMA_BLANK); 1776 } 1777 1778 static u32 gem_setup_multicast(struct gem *gp) 1779 { 1780 u32 rxcfg = 0; 1781 int i; 1782 1783 if ((gp->dev->flags & IFF_ALLMULTI) || 1784 (netdev_mc_count(gp->dev) > 256)) { 1785 for (i=0; i<16; i++) 1786 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2)); 1787 rxcfg |= MAC_RXCFG_HFE; 1788 } else if (gp->dev->flags & IFF_PROMISC) { 1789 rxcfg |= MAC_RXCFG_PROM; 1790 } else { 1791 u16 hash_table[16]; 1792 u32 crc; 1793 struct netdev_hw_addr *ha; 1794 int i; 1795 1796 memset(hash_table, 0, sizeof(hash_table)); 1797 netdev_for_each_mc_addr(ha, gp->dev) { 1798 crc = ether_crc_le(6, ha->addr); 1799 crc >>= 24; 1800 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); 1801 } 1802 for (i=0; i<16; i++) 1803 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2)); 1804 rxcfg |= MAC_RXCFG_HFE; 1805 } 1806 1807 return rxcfg; 1808 } 1809 1810 static void gem_init_mac(struct gem *gp) 1811 { 1812 const unsigned char *e = &gp->dev->dev_addr[0]; 1813 1814 writel(0x1bf0, gp->regs + MAC_SNDPAUSE); 1815 1816 writel(0x00, gp->regs + MAC_IPG0); 1817 writel(0x08, gp->regs + MAC_IPG1); 1818 writel(0x04, gp->regs + MAC_IPG2); 1819 writel(0x40, gp->regs + MAC_STIME); 1820 writel(0x40, gp->regs + MAC_MINFSZ); 1821 1822 /* Ethernet payload + header + FCS + optional VLAN tag. */ 1823 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ); 1824 1825 writel(0x07, gp->regs + MAC_PASIZE); 1826 writel(0x04, gp->regs + MAC_JAMSIZE); 1827 writel(0x10, gp->regs + MAC_ATTLIM); 1828 writel(0x8808, gp->regs + MAC_MCTYPE); 1829 1830 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED); 1831 1832 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0); 1833 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1); 1834 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2); 1835 1836 writel(0, gp->regs + MAC_ADDR3); 1837 writel(0, gp->regs + MAC_ADDR4); 1838 writel(0, gp->regs + MAC_ADDR5); 1839 1840 writel(0x0001, gp->regs + MAC_ADDR6); 1841 writel(0xc200, gp->regs + MAC_ADDR7); 1842 writel(0x0180, gp->regs + MAC_ADDR8); 1843 1844 writel(0, gp->regs + MAC_AFILT0); 1845 writel(0, gp->regs + MAC_AFILT1); 1846 writel(0, gp->regs + MAC_AFILT2); 1847 writel(0, gp->regs + MAC_AF21MSK); 1848 writel(0, gp->regs + MAC_AF0MSK); 1849 1850 gp->mac_rx_cfg = gem_setup_multicast(gp); 1851 #ifdef STRIP_FCS 1852 gp->mac_rx_cfg |= MAC_RXCFG_SFCS; 1853 #endif 1854 writel(0, gp->regs + MAC_NCOLL); 1855 writel(0, gp->regs + MAC_FASUCC); 1856 writel(0, gp->regs + MAC_ECOLL); 1857 writel(0, gp->regs + MAC_LCOLL); 1858 writel(0, gp->regs + MAC_DTIMER); 1859 writel(0, gp->regs + MAC_PATMPS); 1860 writel(0, gp->regs + MAC_RFCTR); 1861 writel(0, gp->regs + MAC_LERR); 1862 writel(0, gp->regs + MAC_AERR); 1863 writel(0, gp->regs + MAC_FCSERR); 1864 writel(0, gp->regs + MAC_RXCVERR); 1865 1866 /* Clear RX/TX/MAC/XIF config, we will set these up and enable 1867 * them once a link is established. 1868 */ 1869 writel(0, gp->regs + MAC_TXCFG); 1870 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG); 1871 writel(0, gp->regs + MAC_MCCFG); 1872 writel(0, gp->regs + MAC_XIFCFG); 1873 1874 /* Setup MAC interrupts. We want to get all of the interesting 1875 * counter expiration events, but we do not want to hear about 1876 * normal rx/tx as the DMA engine tells us that. 1877 */ 1878 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK); 1879 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK); 1880 1881 /* Don't enable even the PAUSE interrupts for now, we 1882 * make no use of those events other than to record them. 1883 */ 1884 writel(0xffffffff, gp->regs + MAC_MCMASK); 1885 1886 /* Don't enable GEM's WOL in normal operations 1887 */ 1888 if (gp->has_wol) 1889 writel(0, gp->regs + WOL_WAKECSR); 1890 } 1891 1892 static void gem_init_pause_thresholds(struct gem *gp) 1893 { 1894 u32 cfg; 1895 1896 /* Calculate pause thresholds. Setting the OFF threshold to the 1897 * full RX fifo size effectively disables PAUSE generation which 1898 * is what we do for 10/100 only GEMs which have FIFOs too small 1899 * to make real gains from PAUSE. 1900 */ 1901 if (gp->rx_fifo_sz <= (2 * 1024)) { 1902 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz; 1903 } else { 1904 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63; 1905 int off = (gp->rx_fifo_sz - (max_frame * 2)); 1906 int on = off - max_frame; 1907 1908 gp->rx_pause_off = off; 1909 gp->rx_pause_on = on; 1910 } 1911 1912 1913 /* Configure the chip "burst" DMA mode & enable some 1914 * HW bug fixes on Apple version 1915 */ 1916 cfg = 0; 1917 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) 1918 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX; 1919 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) 1920 cfg |= GREG_CFG_IBURST; 1921 #endif 1922 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM); 1923 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM); 1924 writel(cfg, gp->regs + GREG_CFG); 1925 1926 /* If Infinite Burst didn't stick, then use different 1927 * thresholds (and Apple bug fixes don't exist) 1928 */ 1929 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) { 1930 cfg = ((2 << 1) & GREG_CFG_TXDMALIM); 1931 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM); 1932 writel(cfg, gp->regs + GREG_CFG); 1933 } 1934 } 1935 1936 static int gem_check_invariants(struct gem *gp) 1937 { 1938 struct pci_dev *pdev = gp->pdev; 1939 u32 mif_cfg; 1940 1941 /* On Apple's sungem, we can't rely on registers as the chip 1942 * was been powered down by the firmware. The PHY is looked 1943 * up later on. 1944 */ 1945 if (pdev->vendor == PCI_VENDOR_ID_APPLE) { 1946 gp->phy_type = phy_mii_mdio0; 1947 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64; 1948 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64; 1949 gp->swrst_base = 0; 1950 1951 mif_cfg = readl(gp->regs + MIF_CFG); 1952 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1); 1953 mif_cfg |= MIF_CFG_MDI0; 1954 writel(mif_cfg, gp->regs + MIF_CFG); 1955 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE); 1956 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG); 1957 1958 /* We hard-code the PHY address so we can properly bring it out of 1959 * reset later on, we can't really probe it at this point, though 1960 * that isn't an issue. 1961 */ 1962 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC) 1963 gp->mii_phy_addr = 1; 1964 else 1965 gp->mii_phy_addr = 0; 1966 1967 return 0; 1968 } 1969 1970 mif_cfg = readl(gp->regs + MIF_CFG); 1971 1972 if (pdev->vendor == PCI_VENDOR_ID_SUN && 1973 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) { 1974 /* One of the MII PHYs _must_ be present 1975 * as this chip has no gigabit PHY. 1976 */ 1977 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) { 1978 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n", 1979 mif_cfg); 1980 return -1; 1981 } 1982 } 1983 1984 /* Determine initial PHY interface type guess. MDIO1 is the 1985 * external PHY and thus takes precedence over MDIO0. 1986 */ 1987 1988 if (mif_cfg & MIF_CFG_MDI1) { 1989 gp->phy_type = phy_mii_mdio1; 1990 mif_cfg |= MIF_CFG_PSELECT; 1991 writel(mif_cfg, gp->regs + MIF_CFG); 1992 } else if (mif_cfg & MIF_CFG_MDI0) { 1993 gp->phy_type = phy_mii_mdio0; 1994 mif_cfg &= ~MIF_CFG_PSELECT; 1995 writel(mif_cfg, gp->regs + MIF_CFG); 1996 } else { 1997 #ifdef CONFIG_SPARC 1998 const char *p; 1999 2000 p = of_get_property(gp->of_node, "shared-pins", NULL); 2001 if (p && !strcmp(p, "serdes")) 2002 gp->phy_type = phy_serdes; 2003 else 2004 #endif 2005 gp->phy_type = phy_serialink; 2006 } 2007 if (gp->phy_type == phy_mii_mdio1 || 2008 gp->phy_type == phy_mii_mdio0) { 2009 int i; 2010 2011 for (i = 0; i < 32; i++) { 2012 gp->mii_phy_addr = i; 2013 if (sungem_phy_read(gp, MII_BMCR) != 0xffff) 2014 break; 2015 } 2016 if (i == 32) { 2017 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) { 2018 pr_err("RIO MII phy will not respond\n"); 2019 return -1; 2020 } 2021 gp->phy_type = phy_serdes; 2022 } 2023 } 2024 2025 /* Fetch the FIFO configurations now too. */ 2026 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64; 2027 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64; 2028 2029 if (pdev->vendor == PCI_VENDOR_ID_SUN) { 2030 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) { 2031 if (gp->tx_fifo_sz != (9 * 1024) || 2032 gp->rx_fifo_sz != (20 * 1024)) { 2033 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n", 2034 gp->tx_fifo_sz, gp->rx_fifo_sz); 2035 return -1; 2036 } 2037 gp->swrst_base = 0; 2038 } else { 2039 if (gp->tx_fifo_sz != (2 * 1024) || 2040 gp->rx_fifo_sz != (2 * 1024)) { 2041 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n", 2042 gp->tx_fifo_sz, gp->rx_fifo_sz); 2043 return -1; 2044 } 2045 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT; 2046 } 2047 } 2048 2049 return 0; 2050 } 2051 2052 static void gem_reinit_chip(struct gem *gp) 2053 { 2054 /* Reset the chip */ 2055 gem_reset(gp); 2056 2057 /* Make sure ints are disabled */ 2058 gem_disable_ints(gp); 2059 2060 /* Allocate & setup ring buffers */ 2061 gem_init_rings(gp); 2062 2063 /* Configure pause thresholds */ 2064 gem_init_pause_thresholds(gp); 2065 2066 /* Init DMA & MAC engines */ 2067 gem_init_dma(gp); 2068 gem_init_mac(gp); 2069 } 2070 2071 2072 static void gem_stop_phy(struct gem *gp, int wol) 2073 { 2074 u32 mifcfg; 2075 2076 /* Let the chip settle down a bit, it seems that helps 2077 * for sleep mode on some models 2078 */ 2079 msleep(10); 2080 2081 /* Make sure we aren't polling PHY status change. We 2082 * don't currently use that feature though 2083 */ 2084 mifcfg = readl(gp->regs + MIF_CFG); 2085 mifcfg &= ~MIF_CFG_POLL; 2086 writel(mifcfg, gp->regs + MIF_CFG); 2087 2088 if (wol && gp->has_wol) { 2089 const unsigned char *e = &gp->dev->dev_addr[0]; 2090 u32 csr; 2091 2092 /* Setup wake-on-lan for MAGIC packet */ 2093 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB, 2094 gp->regs + MAC_RXCFG); 2095 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0); 2096 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1); 2097 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2); 2098 2099 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT); 2100 csr = WOL_WAKECSR_ENABLE; 2101 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0) 2102 csr |= WOL_WAKECSR_MII; 2103 writel(csr, gp->regs + WOL_WAKECSR); 2104 } else { 2105 writel(0, gp->regs + MAC_RXCFG); 2106 (void)readl(gp->regs + MAC_RXCFG); 2107 /* Machine sleep will die in strange ways if we 2108 * dont wait a bit here, looks like the chip takes 2109 * some time to really shut down 2110 */ 2111 msleep(10); 2112 } 2113 2114 writel(0, gp->regs + MAC_TXCFG); 2115 writel(0, gp->regs + MAC_XIFCFG); 2116 writel(0, gp->regs + TXDMA_CFG); 2117 writel(0, gp->regs + RXDMA_CFG); 2118 2119 if (!wol) { 2120 gem_reset(gp); 2121 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST); 2122 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST); 2123 2124 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend) 2125 gp->phy_mii.def->ops->suspend(&gp->phy_mii); 2126 2127 /* According to Apple, we must set the MDIO pins to this begnign 2128 * state or we may 1) eat more current, 2) damage some PHYs 2129 */ 2130 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG); 2131 writel(0, gp->regs + MIF_BBCLK); 2132 writel(0, gp->regs + MIF_BBDATA); 2133 writel(0, gp->regs + MIF_BBOENAB); 2134 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG); 2135 (void) readl(gp->regs + MAC_XIFCFG); 2136 } 2137 } 2138 2139 static int gem_do_start(struct net_device *dev) 2140 { 2141 struct gem *gp = netdev_priv(dev); 2142 int rc; 2143 2144 pci_set_master(gp->pdev); 2145 2146 /* Init & setup chip hardware */ 2147 gem_reinit_chip(gp); 2148 2149 /* An interrupt might come in handy */ 2150 rc = request_irq(gp->pdev->irq, gem_interrupt, 2151 IRQF_SHARED, dev->name, (void *)dev); 2152 if (rc) { 2153 netdev_err(dev, "failed to request irq !\n"); 2154 2155 gem_reset(gp); 2156 gem_clean_rings(gp); 2157 gem_put_cell(gp); 2158 return rc; 2159 } 2160 2161 /* Mark us as attached again if we come from resume(), this has 2162 * no effect if we weren't detached and needs to be done now. 2163 */ 2164 netif_device_attach(dev); 2165 2166 /* Restart NAPI & queues */ 2167 gem_netif_start(gp); 2168 2169 /* Detect & init PHY, start autoneg etc... this will 2170 * eventually result in starting DMA operations when 2171 * the link is up 2172 */ 2173 gem_init_phy(gp); 2174 2175 return 0; 2176 } 2177 2178 static void gem_do_stop(struct net_device *dev, int wol) 2179 { 2180 struct gem *gp = netdev_priv(dev); 2181 2182 /* Stop NAPI and stop tx queue */ 2183 gem_netif_stop(gp); 2184 2185 /* Make sure ints are disabled. We don't care about 2186 * synchronizing as NAPI is disabled, thus a stray 2187 * interrupt will do nothing bad (our irq handler 2188 * just schedules NAPI) 2189 */ 2190 gem_disable_ints(gp); 2191 2192 /* Stop the link timer */ 2193 del_timer_sync(&gp->link_timer); 2194 2195 /* We cannot cancel the reset task while holding the 2196 * rtnl lock, we'd get an A->B / B->A deadlock stituation 2197 * if we did. This is not an issue however as the reset 2198 * task is synchronized vs. us (rtnl_lock) and will do 2199 * nothing if the device is down or suspended. We do 2200 * still clear reset_task_pending to avoid a spurrious 2201 * reset later on in case we do resume before it gets 2202 * scheduled. 2203 */ 2204 gp->reset_task_pending = 0; 2205 2206 /* If we are going to sleep with WOL */ 2207 gem_stop_dma(gp); 2208 msleep(10); 2209 if (!wol) 2210 gem_reset(gp); 2211 msleep(10); 2212 2213 /* Get rid of rings */ 2214 gem_clean_rings(gp); 2215 2216 /* No irq needed anymore */ 2217 free_irq(gp->pdev->irq, (void *) dev); 2218 2219 /* Shut the PHY down eventually and setup WOL */ 2220 gem_stop_phy(gp, wol); 2221 } 2222 2223 static void gem_reset_task(struct work_struct *work) 2224 { 2225 struct gem *gp = container_of(work, struct gem, reset_task); 2226 2227 /* Lock out the network stack (essentially shield ourselves 2228 * against a racing open, close, control call, or suspend 2229 */ 2230 rtnl_lock(); 2231 2232 /* Skip the reset task if suspended or closed, or if it's 2233 * been cancelled by gem_do_stop (see comment there) 2234 */ 2235 if (!netif_device_present(gp->dev) || 2236 !netif_running(gp->dev) || 2237 !gp->reset_task_pending) { 2238 rtnl_unlock(); 2239 return; 2240 } 2241 2242 /* Stop the link timer */ 2243 del_timer_sync(&gp->link_timer); 2244 2245 /* Stop NAPI and tx */ 2246 gem_netif_stop(gp); 2247 2248 /* Reset the chip & rings */ 2249 gem_reinit_chip(gp); 2250 if (gp->lstate == link_up) 2251 gem_set_link_modes(gp); 2252 2253 /* Restart NAPI and Tx */ 2254 gem_netif_start(gp); 2255 2256 /* We are back ! */ 2257 gp->reset_task_pending = 0; 2258 2259 /* If the link is not up, restart autoneg, else restart the 2260 * polling timer 2261 */ 2262 if (gp->lstate != link_up) 2263 gem_begin_auto_negotiation(gp, NULL); 2264 else 2265 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 2266 2267 rtnl_unlock(); 2268 } 2269 2270 static int gem_open(struct net_device *dev) 2271 { 2272 struct gem *gp = netdev_priv(dev); 2273 int rc; 2274 2275 /* We allow open while suspended, we just do nothing, 2276 * the chip will be initialized in resume() 2277 */ 2278 if (netif_device_present(dev)) { 2279 /* Enable the cell */ 2280 gem_get_cell(gp); 2281 2282 /* Make sure PCI access and bus master are enabled */ 2283 rc = pci_enable_device(gp->pdev); 2284 if (rc) { 2285 netdev_err(dev, "Failed to enable chip on PCI bus !\n"); 2286 2287 /* Put cell and forget it for now, it will be considered 2288 *as still asleep, a new sleep cycle may bring it back 2289 */ 2290 gem_put_cell(gp); 2291 return -ENXIO; 2292 } 2293 return gem_do_start(dev); 2294 } 2295 2296 return 0; 2297 } 2298 2299 static int gem_close(struct net_device *dev) 2300 { 2301 struct gem *gp = netdev_priv(dev); 2302 2303 if (netif_device_present(dev)) { 2304 gem_do_stop(dev, 0); 2305 2306 /* Make sure bus master is disabled */ 2307 pci_disable_device(gp->pdev); 2308 2309 /* Cell not needed neither if no WOL */ 2310 if (!gp->asleep_wol) 2311 gem_put_cell(gp); 2312 } 2313 return 0; 2314 } 2315 2316 static int __maybe_unused gem_suspend(struct device *dev_d) 2317 { 2318 struct net_device *dev = dev_get_drvdata(dev_d); 2319 struct gem *gp = netdev_priv(dev); 2320 2321 /* Lock the network stack first to avoid racing with open/close, 2322 * reset task and setting calls 2323 */ 2324 rtnl_lock(); 2325 2326 /* Not running, mark ourselves non-present, no need for 2327 * a lock here 2328 */ 2329 if (!netif_running(dev)) { 2330 netif_device_detach(dev); 2331 rtnl_unlock(); 2332 return 0; 2333 } 2334 netdev_info(dev, "suspending, WakeOnLan %s\n", 2335 (gp->wake_on_lan && netif_running(dev)) ? 2336 "enabled" : "disabled"); 2337 2338 /* Tell the network stack we're gone. gem_do_stop() below will 2339 * synchronize with TX, stop NAPI etc... 2340 */ 2341 netif_device_detach(dev); 2342 2343 /* Switch off chip, remember WOL setting */ 2344 gp->asleep_wol = !!gp->wake_on_lan; 2345 gem_do_stop(dev, gp->asleep_wol); 2346 2347 /* Cell not needed neither if no WOL */ 2348 if (!gp->asleep_wol) 2349 gem_put_cell(gp); 2350 2351 /* Unlock the network stack */ 2352 rtnl_unlock(); 2353 2354 return 0; 2355 } 2356 2357 static int __maybe_unused gem_resume(struct device *dev_d) 2358 { 2359 struct net_device *dev = dev_get_drvdata(dev_d); 2360 struct gem *gp = netdev_priv(dev); 2361 2362 /* See locking comment in gem_suspend */ 2363 rtnl_lock(); 2364 2365 /* Not running, mark ourselves present, no need for 2366 * a lock here 2367 */ 2368 if (!netif_running(dev)) { 2369 netif_device_attach(dev); 2370 rtnl_unlock(); 2371 return 0; 2372 } 2373 2374 /* Enable the cell */ 2375 gem_get_cell(gp); 2376 2377 /* Restart chip. If that fails there isn't much we can do, we 2378 * leave things stopped. 2379 */ 2380 gem_do_start(dev); 2381 2382 /* If we had WOL enabled, the cell clock was never turned off during 2383 * sleep, so we end up beeing unbalanced. Fix that here 2384 */ 2385 if (gp->asleep_wol) 2386 gem_put_cell(gp); 2387 2388 /* Unlock the network stack */ 2389 rtnl_unlock(); 2390 2391 return 0; 2392 } 2393 2394 static struct net_device_stats *gem_get_stats(struct net_device *dev) 2395 { 2396 struct gem *gp = netdev_priv(dev); 2397 2398 /* I have seen this being called while the PM was in progress, 2399 * so we shield against this. Let's also not poke at registers 2400 * while the reset task is going on. 2401 * 2402 * TODO: Move stats collection elsewhere (link timer ?) and 2403 * make this a nop to avoid all those synchro issues 2404 */ 2405 if (!netif_device_present(dev) || !netif_running(dev)) 2406 goto bail; 2407 2408 /* Better safe than sorry... */ 2409 if (WARN_ON(!gp->cell_enabled)) 2410 goto bail; 2411 2412 dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR); 2413 writel(0, gp->regs + MAC_FCSERR); 2414 2415 dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR); 2416 writel(0, gp->regs + MAC_AERR); 2417 2418 dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR); 2419 writel(0, gp->regs + MAC_LERR); 2420 2421 dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL); 2422 dev->stats.collisions += 2423 (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL)); 2424 writel(0, gp->regs + MAC_ECOLL); 2425 writel(0, gp->regs + MAC_LCOLL); 2426 bail: 2427 return &dev->stats; 2428 } 2429 2430 static int gem_set_mac_address(struct net_device *dev, void *addr) 2431 { 2432 struct sockaddr *macaddr = (struct sockaddr *) addr; 2433 const unsigned char *e = &dev->dev_addr[0]; 2434 struct gem *gp = netdev_priv(dev); 2435 2436 if (!is_valid_ether_addr(macaddr->sa_data)) 2437 return -EADDRNOTAVAIL; 2438 2439 eth_hw_addr_set(dev, macaddr->sa_data); 2440 2441 /* We'll just catch it later when the device is up'd or resumed */ 2442 if (!netif_running(dev) || !netif_device_present(dev)) 2443 return 0; 2444 2445 /* Better safe than sorry... */ 2446 if (WARN_ON(!gp->cell_enabled)) 2447 return 0; 2448 2449 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0); 2450 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1); 2451 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2); 2452 2453 return 0; 2454 } 2455 2456 static void gem_set_multicast(struct net_device *dev) 2457 { 2458 struct gem *gp = netdev_priv(dev); 2459 u32 rxcfg, rxcfg_new; 2460 int limit = 10000; 2461 2462 if (!netif_running(dev) || !netif_device_present(dev)) 2463 return; 2464 2465 /* Better safe than sorry... */ 2466 if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled)) 2467 return; 2468 2469 rxcfg = readl(gp->regs + MAC_RXCFG); 2470 rxcfg_new = gem_setup_multicast(gp); 2471 #ifdef STRIP_FCS 2472 rxcfg_new |= MAC_RXCFG_SFCS; 2473 #endif 2474 gp->mac_rx_cfg = rxcfg_new; 2475 2476 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 2477 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) { 2478 if (!limit--) 2479 break; 2480 udelay(10); 2481 } 2482 2483 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE); 2484 rxcfg |= rxcfg_new; 2485 2486 writel(rxcfg, gp->regs + MAC_RXCFG); 2487 } 2488 2489 /* Jumbo-grams don't seem to work :-( */ 2490 #define GEM_MIN_MTU ETH_MIN_MTU 2491 #if 1 2492 #define GEM_MAX_MTU ETH_DATA_LEN 2493 #else 2494 #define GEM_MAX_MTU 9000 2495 #endif 2496 2497 static int gem_change_mtu(struct net_device *dev, int new_mtu) 2498 { 2499 struct gem *gp = netdev_priv(dev); 2500 2501 dev->mtu = new_mtu; 2502 2503 /* We'll just catch it later when the device is up'd or resumed */ 2504 if (!netif_running(dev) || !netif_device_present(dev)) 2505 return 0; 2506 2507 /* Better safe than sorry... */ 2508 if (WARN_ON(!gp->cell_enabled)) 2509 return 0; 2510 2511 gem_netif_stop(gp); 2512 gem_reinit_chip(gp); 2513 if (gp->lstate == link_up) 2514 gem_set_link_modes(gp); 2515 gem_netif_start(gp); 2516 2517 return 0; 2518 } 2519 2520 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2521 { 2522 struct gem *gp = netdev_priv(dev); 2523 2524 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 2525 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 2526 strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info)); 2527 } 2528 2529 static int gem_get_link_ksettings(struct net_device *dev, 2530 struct ethtool_link_ksettings *cmd) 2531 { 2532 struct gem *gp = netdev_priv(dev); 2533 u32 supported, advertising; 2534 2535 if (gp->phy_type == phy_mii_mdio0 || 2536 gp->phy_type == phy_mii_mdio1) { 2537 if (gp->phy_mii.def) 2538 supported = gp->phy_mii.def->features; 2539 else 2540 supported = (SUPPORTED_10baseT_Half | 2541 SUPPORTED_10baseT_Full); 2542 2543 /* XXX hardcoded stuff for now */ 2544 cmd->base.port = PORT_MII; 2545 cmd->base.phy_address = 0; /* XXX fixed PHYAD */ 2546 2547 /* Return current PHY settings */ 2548 cmd->base.autoneg = gp->want_autoneg; 2549 cmd->base.speed = gp->phy_mii.speed; 2550 cmd->base.duplex = gp->phy_mii.duplex; 2551 advertising = gp->phy_mii.advertising; 2552 2553 /* If we started with a forced mode, we don't have a default 2554 * advertise set, we need to return something sensible so 2555 * userland can re-enable autoneg properly. 2556 */ 2557 if (advertising == 0) 2558 advertising = supported; 2559 } else { // XXX PCS ? 2560 supported = 2561 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 2562 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 2563 SUPPORTED_Autoneg); 2564 advertising = supported; 2565 cmd->base.speed = 0; 2566 cmd->base.duplex = 0; 2567 cmd->base.port = 0; 2568 cmd->base.phy_address = 0; 2569 cmd->base.autoneg = 0; 2570 2571 /* serdes means usually a Fibre connector, with most fixed */ 2572 if (gp->phy_type == phy_serdes) { 2573 cmd->base.port = PORT_FIBRE; 2574 supported = (SUPPORTED_1000baseT_Half | 2575 SUPPORTED_1000baseT_Full | 2576 SUPPORTED_FIBRE | SUPPORTED_Autoneg | 2577 SUPPORTED_Pause | SUPPORTED_Asym_Pause); 2578 advertising = supported; 2579 if (gp->lstate == link_up) 2580 cmd->base.speed = SPEED_1000; 2581 cmd->base.duplex = DUPLEX_FULL; 2582 cmd->base.autoneg = 1; 2583 } 2584 } 2585 2586 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 2587 supported); 2588 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 2589 advertising); 2590 2591 return 0; 2592 } 2593 2594 static int gem_set_link_ksettings(struct net_device *dev, 2595 const struct ethtool_link_ksettings *cmd) 2596 { 2597 struct gem *gp = netdev_priv(dev); 2598 u32 speed = cmd->base.speed; 2599 u32 advertising; 2600 2601 ethtool_convert_link_mode_to_legacy_u32(&advertising, 2602 cmd->link_modes.advertising); 2603 2604 /* Verify the settings we care about. */ 2605 if (cmd->base.autoneg != AUTONEG_ENABLE && 2606 cmd->base.autoneg != AUTONEG_DISABLE) 2607 return -EINVAL; 2608 2609 if (cmd->base.autoneg == AUTONEG_ENABLE && 2610 advertising == 0) 2611 return -EINVAL; 2612 2613 if (cmd->base.autoneg == AUTONEG_DISABLE && 2614 ((speed != SPEED_1000 && 2615 speed != SPEED_100 && 2616 speed != SPEED_10) || 2617 (cmd->base.duplex != DUPLEX_HALF && 2618 cmd->base.duplex != DUPLEX_FULL))) 2619 return -EINVAL; 2620 2621 /* Apply settings and restart link process. */ 2622 if (netif_device_present(gp->dev)) { 2623 del_timer_sync(&gp->link_timer); 2624 gem_begin_auto_negotiation(gp, cmd); 2625 } 2626 2627 return 0; 2628 } 2629 2630 static int gem_nway_reset(struct net_device *dev) 2631 { 2632 struct gem *gp = netdev_priv(dev); 2633 2634 if (!gp->want_autoneg) 2635 return -EINVAL; 2636 2637 /* Restart link process */ 2638 if (netif_device_present(gp->dev)) { 2639 del_timer_sync(&gp->link_timer); 2640 gem_begin_auto_negotiation(gp, NULL); 2641 } 2642 2643 return 0; 2644 } 2645 2646 static u32 gem_get_msglevel(struct net_device *dev) 2647 { 2648 struct gem *gp = netdev_priv(dev); 2649 return gp->msg_enable; 2650 } 2651 2652 static void gem_set_msglevel(struct net_device *dev, u32 value) 2653 { 2654 struct gem *gp = netdev_priv(dev); 2655 gp->msg_enable = value; 2656 } 2657 2658 2659 /* Add more when I understand how to program the chip */ 2660 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */ 2661 2662 #define WOL_SUPPORTED_MASK (WAKE_MAGIC) 2663 2664 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2665 { 2666 struct gem *gp = netdev_priv(dev); 2667 2668 /* Add more when I understand how to program the chip */ 2669 if (gp->has_wol) { 2670 wol->supported = WOL_SUPPORTED_MASK; 2671 wol->wolopts = gp->wake_on_lan; 2672 } else { 2673 wol->supported = 0; 2674 wol->wolopts = 0; 2675 } 2676 } 2677 2678 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2679 { 2680 struct gem *gp = netdev_priv(dev); 2681 2682 if (!gp->has_wol) 2683 return -EOPNOTSUPP; 2684 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK; 2685 return 0; 2686 } 2687 2688 static const struct ethtool_ops gem_ethtool_ops = { 2689 .get_drvinfo = gem_get_drvinfo, 2690 .get_link = ethtool_op_get_link, 2691 .nway_reset = gem_nway_reset, 2692 .get_msglevel = gem_get_msglevel, 2693 .set_msglevel = gem_set_msglevel, 2694 .get_wol = gem_get_wol, 2695 .set_wol = gem_set_wol, 2696 .get_link_ksettings = gem_get_link_ksettings, 2697 .set_link_ksettings = gem_set_link_ksettings, 2698 }; 2699 2700 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2701 { 2702 struct gem *gp = netdev_priv(dev); 2703 struct mii_ioctl_data *data = if_mii(ifr); 2704 int rc = -EOPNOTSUPP; 2705 2706 /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that 2707 * netif_device_present() is true and holds rtnl_lock for us 2708 * so we have nothing to worry about 2709 */ 2710 2711 switch (cmd) { 2712 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 2713 data->phy_id = gp->mii_phy_addr; 2714 fallthrough; 2715 2716 case SIOCGMIIREG: /* Read MII PHY register. */ 2717 data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f, 2718 data->reg_num & 0x1f); 2719 rc = 0; 2720 break; 2721 2722 case SIOCSMIIREG: /* Write MII PHY register. */ 2723 __sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f, 2724 data->val_in); 2725 rc = 0; 2726 break; 2727 } 2728 return rc; 2729 } 2730 2731 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC)) 2732 /* Fetch MAC address from vital product data of PCI ROM. */ 2733 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr) 2734 { 2735 int this_offset; 2736 2737 for (this_offset = 0x20; this_offset < len; this_offset++) { 2738 void __iomem *p = rom_base + this_offset; 2739 int i; 2740 2741 if (readb(p + 0) != 0x90 || 2742 readb(p + 1) != 0x00 || 2743 readb(p + 2) != 0x09 || 2744 readb(p + 3) != 0x4e || 2745 readb(p + 4) != 0x41 || 2746 readb(p + 5) != 0x06) 2747 continue; 2748 2749 this_offset += 6; 2750 p += 6; 2751 2752 for (i = 0; i < 6; i++) 2753 dev_addr[i] = readb(p + i); 2754 return 1; 2755 } 2756 return 0; 2757 } 2758 2759 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr) 2760 { 2761 size_t size; 2762 void __iomem *p = pci_map_rom(pdev, &size); 2763 2764 if (p) { 2765 int found; 2766 2767 found = readb(p) == 0x55 && 2768 readb(p + 1) == 0xaa && 2769 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr); 2770 pci_unmap_rom(pdev, p); 2771 if (found) 2772 return; 2773 } 2774 2775 /* Sun MAC prefix then 3 random bytes. */ 2776 dev_addr[0] = 0x08; 2777 dev_addr[1] = 0x00; 2778 dev_addr[2] = 0x20; 2779 get_random_bytes(dev_addr + 3, 3); 2780 } 2781 #endif /* not Sparc and not PPC */ 2782 2783 static int gem_get_device_address(struct gem *gp) 2784 { 2785 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC) 2786 struct net_device *dev = gp->dev; 2787 const unsigned char *addr; 2788 2789 addr = of_get_property(gp->of_node, "local-mac-address", NULL); 2790 if (addr == NULL) { 2791 #ifdef CONFIG_SPARC 2792 addr = idprom->id_ethaddr; 2793 #else 2794 printk("\n"); 2795 pr_err("%s: can't get mac-address\n", dev->name); 2796 return -1; 2797 #endif 2798 } 2799 eth_hw_addr_set(dev, addr); 2800 #else 2801 u8 addr[ETH_ALEN]; 2802 2803 get_gem_mac_nonobp(gp->pdev, addr); 2804 eth_hw_addr_set(gp->dev, addr); 2805 #endif 2806 return 0; 2807 } 2808 2809 static void gem_remove_one(struct pci_dev *pdev) 2810 { 2811 struct net_device *dev = pci_get_drvdata(pdev); 2812 2813 if (dev) { 2814 struct gem *gp = netdev_priv(dev); 2815 2816 unregister_netdev(dev); 2817 2818 /* Ensure reset task is truly gone */ 2819 cancel_work_sync(&gp->reset_task); 2820 2821 /* Free resources */ 2822 dma_free_coherent(&pdev->dev, sizeof(struct gem_init_block), 2823 gp->init_block, gp->gblock_dvma); 2824 iounmap(gp->regs); 2825 pci_release_regions(pdev); 2826 free_netdev(dev); 2827 } 2828 } 2829 2830 static const struct net_device_ops gem_netdev_ops = { 2831 .ndo_open = gem_open, 2832 .ndo_stop = gem_close, 2833 .ndo_start_xmit = gem_start_xmit, 2834 .ndo_get_stats = gem_get_stats, 2835 .ndo_set_rx_mode = gem_set_multicast, 2836 .ndo_eth_ioctl = gem_ioctl, 2837 .ndo_tx_timeout = gem_tx_timeout, 2838 .ndo_change_mtu = gem_change_mtu, 2839 .ndo_validate_addr = eth_validate_addr, 2840 .ndo_set_mac_address = gem_set_mac_address, 2841 #ifdef CONFIG_NET_POLL_CONTROLLER 2842 .ndo_poll_controller = gem_poll_controller, 2843 #endif 2844 }; 2845 2846 static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 2847 { 2848 unsigned long gemreg_base, gemreg_len; 2849 struct net_device *dev; 2850 struct gem *gp; 2851 int err, pci_using_dac; 2852 2853 printk_once(KERN_INFO "%s", version); 2854 2855 /* Apple gmac note: during probe, the chip is powered up by 2856 * the arch code to allow the code below to work (and to let 2857 * the chip be probed on the config space. It won't stay powered 2858 * up until the interface is brought up however, so we can't rely 2859 * on register configuration done at this point. 2860 */ 2861 err = pci_enable_device(pdev); 2862 if (err) { 2863 pr_err("Cannot enable MMIO operation, aborting\n"); 2864 return err; 2865 } 2866 pci_set_master(pdev); 2867 2868 /* Configure DMA attributes. */ 2869 2870 /* All of the GEM documentation states that 64-bit DMA addressing 2871 * is fully supported and should work just fine. However the 2872 * front end for RIO based GEMs is different and only supports 2873 * 32-bit addressing. 2874 * 2875 * For now we assume the various PPC GEMs are 32-bit only as well. 2876 */ 2877 if (pdev->vendor == PCI_VENDOR_ID_SUN && 2878 pdev->device == PCI_DEVICE_ID_SUN_GEM && 2879 !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) { 2880 pci_using_dac = 1; 2881 } else { 2882 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 2883 if (err) { 2884 pr_err("No usable DMA configuration, aborting\n"); 2885 goto err_disable_device; 2886 } 2887 pci_using_dac = 0; 2888 } 2889 2890 gemreg_base = pci_resource_start(pdev, 0); 2891 gemreg_len = pci_resource_len(pdev, 0); 2892 2893 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) { 2894 pr_err("Cannot find proper PCI device base address, aborting\n"); 2895 err = -ENODEV; 2896 goto err_disable_device; 2897 } 2898 2899 dev = alloc_etherdev(sizeof(*gp)); 2900 if (!dev) { 2901 err = -ENOMEM; 2902 goto err_disable_device; 2903 } 2904 SET_NETDEV_DEV(dev, &pdev->dev); 2905 2906 gp = netdev_priv(dev); 2907 2908 err = pci_request_regions(pdev, DRV_NAME); 2909 if (err) { 2910 pr_err("Cannot obtain PCI resources, aborting\n"); 2911 goto err_out_free_netdev; 2912 } 2913 2914 gp->pdev = pdev; 2915 gp->dev = dev; 2916 2917 gp->msg_enable = DEFAULT_MSG; 2918 2919 timer_setup(&gp->link_timer, gem_link_timer, 0); 2920 2921 INIT_WORK(&gp->reset_task, gem_reset_task); 2922 2923 gp->lstate = link_down; 2924 gp->timer_ticks = 0; 2925 netif_carrier_off(dev); 2926 2927 gp->regs = ioremap(gemreg_base, gemreg_len); 2928 if (!gp->regs) { 2929 pr_err("Cannot map device registers, aborting\n"); 2930 err = -EIO; 2931 goto err_out_free_res; 2932 } 2933 2934 /* On Apple, we want a reference to the Open Firmware device-tree 2935 * node. We use it for clock control. 2936 */ 2937 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC) 2938 gp->of_node = pci_device_to_OF_node(pdev); 2939 #endif 2940 2941 /* Only Apple version supports WOL afaik */ 2942 if (pdev->vendor == PCI_VENDOR_ID_APPLE) 2943 gp->has_wol = 1; 2944 2945 /* Make sure cell is enabled */ 2946 gem_get_cell(gp); 2947 2948 /* Make sure everything is stopped and in init state */ 2949 gem_reset(gp); 2950 2951 /* Fill up the mii_phy structure (even if we won't use it) */ 2952 gp->phy_mii.dev = dev; 2953 gp->phy_mii.mdio_read = _sungem_phy_read; 2954 gp->phy_mii.mdio_write = _sungem_phy_write; 2955 #ifdef CONFIG_PPC_PMAC 2956 gp->phy_mii.platform_data = gp->of_node; 2957 #endif 2958 /* By default, we start with autoneg */ 2959 gp->want_autoneg = 1; 2960 2961 /* Check fifo sizes, PHY type, etc... */ 2962 if (gem_check_invariants(gp)) { 2963 err = -ENODEV; 2964 goto err_out_iounmap; 2965 } 2966 2967 /* It is guaranteed that the returned buffer will be at least 2968 * PAGE_SIZE aligned. 2969 */ 2970 gp->init_block = dma_alloc_coherent(&pdev->dev, sizeof(struct gem_init_block), 2971 &gp->gblock_dvma, GFP_KERNEL); 2972 if (!gp->init_block) { 2973 pr_err("Cannot allocate init block, aborting\n"); 2974 err = -ENOMEM; 2975 goto err_out_iounmap; 2976 } 2977 2978 err = gem_get_device_address(gp); 2979 if (err) 2980 goto err_out_free_consistent; 2981 2982 dev->netdev_ops = &gem_netdev_ops; 2983 netif_napi_add(dev, &gp->napi, gem_poll, 64); 2984 dev->ethtool_ops = &gem_ethtool_ops; 2985 dev->watchdog_timeo = 5 * HZ; 2986 dev->dma = 0; 2987 2988 /* Set that now, in case PM kicks in now */ 2989 pci_set_drvdata(pdev, dev); 2990 2991 /* We can do scatter/gather and HW checksum */ 2992 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM; 2993 dev->features = dev->hw_features; 2994 if (pci_using_dac) 2995 dev->features |= NETIF_F_HIGHDMA; 2996 2997 /* MTU range: 68 - 1500 (Jumbo mode is broken) */ 2998 dev->min_mtu = GEM_MIN_MTU; 2999 dev->max_mtu = GEM_MAX_MTU; 3000 3001 /* Register with kernel */ 3002 if (register_netdev(dev)) { 3003 pr_err("Cannot register net device, aborting\n"); 3004 err = -ENOMEM; 3005 goto err_out_free_consistent; 3006 } 3007 3008 /* Undo the get_cell with appropriate locking (we could use 3009 * ndo_init/uninit but that would be even more clumsy imho) 3010 */ 3011 rtnl_lock(); 3012 gem_put_cell(gp); 3013 rtnl_unlock(); 3014 3015 netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n", 3016 dev->dev_addr); 3017 return 0; 3018 3019 err_out_free_consistent: 3020 gem_remove_one(pdev); 3021 err_out_iounmap: 3022 gem_put_cell(gp); 3023 iounmap(gp->regs); 3024 3025 err_out_free_res: 3026 pci_release_regions(pdev); 3027 3028 err_out_free_netdev: 3029 free_netdev(dev); 3030 err_disable_device: 3031 pci_disable_device(pdev); 3032 return err; 3033 3034 } 3035 3036 static SIMPLE_DEV_PM_OPS(gem_pm_ops, gem_suspend, gem_resume); 3037 3038 static struct pci_driver gem_driver = { 3039 .name = GEM_MODULE_NAME, 3040 .id_table = gem_pci_tbl, 3041 .probe = gem_init_one, 3042 .remove = gem_remove_one, 3043 .driver.pm = &gem_pm_ops, 3044 }; 3045 3046 module_pci_driver(gem_driver); 3047