1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $ 2 * sungem.c: Sun GEM ethernet driver. 3 * 4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com) 5 * 6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management 7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org) 8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp. 9 * 10 * NAPI and NETPOLL support 11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com) 12 * 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/types.h> 20 #include <linux/fcntl.h> 21 #include <linux/interrupt.h> 22 #include <linux/ioport.h> 23 #include <linux/in.h> 24 #include <linux/sched.h> 25 #include <linux/string.h> 26 #include <linux/delay.h> 27 #include <linux/errno.h> 28 #include <linux/pci.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/netdevice.h> 31 #include <linux/etherdevice.h> 32 #include <linux/skbuff.h> 33 #include <linux/mii.h> 34 #include <linux/ethtool.h> 35 #include <linux/crc32.h> 36 #include <linux/random.h> 37 #include <linux/workqueue.h> 38 #include <linux/if_vlan.h> 39 #include <linux/bitops.h> 40 #include <linux/mm.h> 41 #include <linux/gfp.h> 42 43 #include <asm/io.h> 44 #include <asm/byteorder.h> 45 #include <asm/uaccess.h> 46 #include <asm/irq.h> 47 48 #ifdef CONFIG_SPARC 49 #include <asm/idprom.h> 50 #include <asm/prom.h> 51 #endif 52 53 #ifdef CONFIG_PPC_PMAC 54 #include <asm/pci-bridge.h> 55 #include <asm/prom.h> 56 #include <asm/machdep.h> 57 #include <asm/pmac_feature.h> 58 #endif 59 60 #include <linux/sungem_phy.h> 61 #include "sungem.h" 62 63 /* Stripping FCS is causing problems, disabled for now */ 64 #undef STRIP_FCS 65 66 #define DEFAULT_MSG (NETIF_MSG_DRV | \ 67 NETIF_MSG_PROBE | \ 68 NETIF_MSG_LINK) 69 70 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \ 71 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \ 72 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \ 73 SUPPORTED_Pause | SUPPORTED_Autoneg) 74 75 #define DRV_NAME "sungem" 76 #define DRV_VERSION "1.0" 77 #define DRV_AUTHOR "David S. Miller <davem@redhat.com>" 78 79 static char version[] = 80 DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n"; 81 82 MODULE_AUTHOR(DRV_AUTHOR); 83 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver"); 84 MODULE_LICENSE("GPL"); 85 86 #define GEM_MODULE_NAME "gem" 87 88 static const struct pci_device_id gem_pci_tbl[] = { 89 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM, 90 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 91 92 /* These models only differ from the original GEM in 93 * that their tx/rx fifos are of a different size and 94 * they only support 10/100 speeds. -DaveM 95 * 96 * Apple's GMAC does support gigabit on machines with 97 * the BCM54xx PHYs. -BenH 98 */ 99 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM, 100 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 101 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC, 102 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 103 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP, 104 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 105 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2, 106 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 107 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC, 108 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 109 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM, 110 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 111 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC, 112 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 113 {0, } 114 }; 115 116 MODULE_DEVICE_TABLE(pci, gem_pci_tbl); 117 118 static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg) 119 { 120 u32 cmd; 121 int limit = 10000; 122 123 cmd = (1 << 30); 124 cmd |= (2 << 28); 125 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD; 126 cmd |= (reg << 18) & MIF_FRAME_REGAD; 127 cmd |= (MIF_FRAME_TAMSB); 128 writel(cmd, gp->regs + MIF_FRAME); 129 130 while (--limit) { 131 cmd = readl(gp->regs + MIF_FRAME); 132 if (cmd & MIF_FRAME_TALSB) 133 break; 134 135 udelay(10); 136 } 137 138 if (!limit) 139 cmd = 0xffff; 140 141 return cmd & MIF_FRAME_DATA; 142 } 143 144 static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg) 145 { 146 struct gem *gp = netdev_priv(dev); 147 return __sungem_phy_read(gp, mii_id, reg); 148 } 149 150 static inline u16 sungem_phy_read(struct gem *gp, int reg) 151 { 152 return __sungem_phy_read(gp, gp->mii_phy_addr, reg); 153 } 154 155 static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val) 156 { 157 u32 cmd; 158 int limit = 10000; 159 160 cmd = (1 << 30); 161 cmd |= (1 << 28); 162 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD; 163 cmd |= (reg << 18) & MIF_FRAME_REGAD; 164 cmd |= (MIF_FRAME_TAMSB); 165 cmd |= (val & MIF_FRAME_DATA); 166 writel(cmd, gp->regs + MIF_FRAME); 167 168 while (limit--) { 169 cmd = readl(gp->regs + MIF_FRAME); 170 if (cmd & MIF_FRAME_TALSB) 171 break; 172 173 udelay(10); 174 } 175 } 176 177 static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val) 178 { 179 struct gem *gp = netdev_priv(dev); 180 __sungem_phy_write(gp, mii_id, reg, val & 0xffff); 181 } 182 183 static inline void sungem_phy_write(struct gem *gp, int reg, u16 val) 184 { 185 __sungem_phy_write(gp, gp->mii_phy_addr, reg, val); 186 } 187 188 static inline void gem_enable_ints(struct gem *gp) 189 { 190 /* Enable all interrupts but TXDONE */ 191 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK); 192 } 193 194 static inline void gem_disable_ints(struct gem *gp) 195 { 196 /* Disable all interrupts, including TXDONE */ 197 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK); 198 (void)readl(gp->regs + GREG_IMASK); /* write posting */ 199 } 200 201 static void gem_get_cell(struct gem *gp) 202 { 203 BUG_ON(gp->cell_enabled < 0); 204 gp->cell_enabled++; 205 #ifdef CONFIG_PPC_PMAC 206 if (gp->cell_enabled == 1) { 207 mb(); 208 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1); 209 udelay(10); 210 } 211 #endif /* CONFIG_PPC_PMAC */ 212 } 213 214 /* Turn off the chip's clock */ 215 static void gem_put_cell(struct gem *gp) 216 { 217 BUG_ON(gp->cell_enabled <= 0); 218 gp->cell_enabled--; 219 #ifdef CONFIG_PPC_PMAC 220 if (gp->cell_enabled == 0) { 221 mb(); 222 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0); 223 udelay(10); 224 } 225 #endif /* CONFIG_PPC_PMAC */ 226 } 227 228 static inline void gem_netif_stop(struct gem *gp) 229 { 230 gp->dev->trans_start = jiffies; /* prevent tx timeout */ 231 napi_disable(&gp->napi); 232 netif_tx_disable(gp->dev); 233 } 234 235 static inline void gem_netif_start(struct gem *gp) 236 { 237 /* NOTE: unconditional netif_wake_queue is only 238 * appropriate so long as all callers are assured to 239 * have free tx slots. 240 */ 241 netif_wake_queue(gp->dev); 242 napi_enable(&gp->napi); 243 } 244 245 static void gem_schedule_reset(struct gem *gp) 246 { 247 gp->reset_task_pending = 1; 248 schedule_work(&gp->reset_task); 249 } 250 251 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits) 252 { 253 if (netif_msg_intr(gp)) 254 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name); 255 } 256 257 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 258 { 259 u32 pcs_istat = readl(gp->regs + PCS_ISTAT); 260 u32 pcs_miistat; 261 262 if (netif_msg_intr(gp)) 263 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n", 264 gp->dev->name, pcs_istat); 265 266 if (!(pcs_istat & PCS_ISTAT_LSC)) { 267 netdev_err(dev, "PCS irq but no link status change???\n"); 268 return 0; 269 } 270 271 /* The link status bit latches on zero, so you must 272 * read it twice in such a case to see a transition 273 * to the link being up. 274 */ 275 pcs_miistat = readl(gp->regs + PCS_MIISTAT); 276 if (!(pcs_miistat & PCS_MIISTAT_LS)) 277 pcs_miistat |= 278 (readl(gp->regs + PCS_MIISTAT) & 279 PCS_MIISTAT_LS); 280 281 if (pcs_miistat & PCS_MIISTAT_ANC) { 282 /* The remote-fault indication is only valid 283 * when autoneg has completed. 284 */ 285 if (pcs_miistat & PCS_MIISTAT_RF) 286 netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n"); 287 else 288 netdev_info(dev, "PCS AutoNEG complete\n"); 289 } 290 291 if (pcs_miistat & PCS_MIISTAT_LS) { 292 netdev_info(dev, "PCS link is now up\n"); 293 netif_carrier_on(gp->dev); 294 } else { 295 netdev_info(dev, "PCS link is now down\n"); 296 netif_carrier_off(gp->dev); 297 /* If this happens and the link timer is not running, 298 * reset so we re-negotiate. 299 */ 300 if (!timer_pending(&gp->link_timer)) 301 return 1; 302 } 303 304 return 0; 305 } 306 307 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 308 { 309 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT); 310 311 if (netif_msg_intr(gp)) 312 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n", 313 gp->dev->name, txmac_stat); 314 315 /* Defer timer expiration is quite normal, 316 * don't even log the event. 317 */ 318 if ((txmac_stat & MAC_TXSTAT_DTE) && 319 !(txmac_stat & ~MAC_TXSTAT_DTE)) 320 return 0; 321 322 if (txmac_stat & MAC_TXSTAT_URUN) { 323 netdev_err(dev, "TX MAC xmit underrun\n"); 324 dev->stats.tx_fifo_errors++; 325 } 326 327 if (txmac_stat & MAC_TXSTAT_MPE) { 328 netdev_err(dev, "TX MAC max packet size error\n"); 329 dev->stats.tx_errors++; 330 } 331 332 /* The rest are all cases of one of the 16-bit TX 333 * counters expiring. 334 */ 335 if (txmac_stat & MAC_TXSTAT_NCE) 336 dev->stats.collisions += 0x10000; 337 338 if (txmac_stat & MAC_TXSTAT_ECE) { 339 dev->stats.tx_aborted_errors += 0x10000; 340 dev->stats.collisions += 0x10000; 341 } 342 343 if (txmac_stat & MAC_TXSTAT_LCE) { 344 dev->stats.tx_aborted_errors += 0x10000; 345 dev->stats.collisions += 0x10000; 346 } 347 348 /* We do not keep track of MAC_TXSTAT_FCE and 349 * MAC_TXSTAT_PCE events. 350 */ 351 return 0; 352 } 353 354 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung 355 * so we do the following. 356 * 357 * If any part of the reset goes wrong, we return 1 and that causes the 358 * whole chip to be reset. 359 */ 360 static int gem_rxmac_reset(struct gem *gp) 361 { 362 struct net_device *dev = gp->dev; 363 int limit, i; 364 u64 desc_dma; 365 u32 val; 366 367 /* First, reset & disable MAC RX. */ 368 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST); 369 for (limit = 0; limit < 5000; limit++) { 370 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD)) 371 break; 372 udelay(10); 373 } 374 if (limit == 5000) { 375 netdev_err(dev, "RX MAC will not reset, resetting whole chip\n"); 376 return 1; 377 } 378 379 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB, 380 gp->regs + MAC_RXCFG); 381 for (limit = 0; limit < 5000; limit++) { 382 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB)) 383 break; 384 udelay(10); 385 } 386 if (limit == 5000) { 387 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n"); 388 return 1; 389 } 390 391 /* Second, disable RX DMA. */ 392 writel(0, gp->regs + RXDMA_CFG); 393 for (limit = 0; limit < 5000; limit++) { 394 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE)) 395 break; 396 udelay(10); 397 } 398 if (limit == 5000) { 399 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n"); 400 return 1; 401 } 402 403 mdelay(5); 404 405 /* Execute RX reset command. */ 406 writel(gp->swrst_base | GREG_SWRST_RXRST, 407 gp->regs + GREG_SWRST); 408 for (limit = 0; limit < 5000; limit++) { 409 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST)) 410 break; 411 udelay(10); 412 } 413 if (limit == 5000) { 414 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n"); 415 return 1; 416 } 417 418 /* Refresh the RX ring. */ 419 for (i = 0; i < RX_RING_SIZE; i++) { 420 struct gem_rxd *rxd = &gp->init_block->rxd[i]; 421 422 if (gp->rx_skbs[i] == NULL) { 423 netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n"); 424 return 1; 425 } 426 427 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 428 } 429 gp->rx_new = gp->rx_old = 0; 430 431 /* Now we must reprogram the rest of RX unit. */ 432 desc_dma = (u64) gp->gblock_dvma; 433 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd)); 434 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI); 435 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW); 436 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 437 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) | 438 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128); 439 writel(val, gp->regs + RXDMA_CFG); 440 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN) 441 writel(((5 & RXDMA_BLANK_IPKTS) | 442 ((8 << 12) & RXDMA_BLANK_ITIME)), 443 gp->regs + RXDMA_BLANK); 444 else 445 writel(((5 & RXDMA_BLANK_IPKTS) | 446 ((4 << 12) & RXDMA_BLANK_ITIME)), 447 gp->regs + RXDMA_BLANK); 448 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF); 449 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON); 450 writel(val, gp->regs + RXDMA_PTHRESH); 451 val = readl(gp->regs + RXDMA_CFG); 452 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 453 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK); 454 val = readl(gp->regs + MAC_RXCFG); 455 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 456 457 return 0; 458 } 459 460 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 461 { 462 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT); 463 int ret = 0; 464 465 if (netif_msg_intr(gp)) 466 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n", 467 gp->dev->name, rxmac_stat); 468 469 if (rxmac_stat & MAC_RXSTAT_OFLW) { 470 u32 smac = readl(gp->regs + MAC_SMACHINE); 471 472 netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac); 473 dev->stats.rx_over_errors++; 474 dev->stats.rx_fifo_errors++; 475 476 ret = gem_rxmac_reset(gp); 477 } 478 479 if (rxmac_stat & MAC_RXSTAT_ACE) 480 dev->stats.rx_frame_errors += 0x10000; 481 482 if (rxmac_stat & MAC_RXSTAT_CCE) 483 dev->stats.rx_crc_errors += 0x10000; 484 485 if (rxmac_stat & MAC_RXSTAT_LCE) 486 dev->stats.rx_length_errors += 0x10000; 487 488 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE 489 * events. 490 */ 491 return ret; 492 } 493 494 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 495 { 496 u32 mac_cstat = readl(gp->regs + MAC_CSTAT); 497 498 if (netif_msg_intr(gp)) 499 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n", 500 gp->dev->name, mac_cstat); 501 502 /* This interrupt is just for pause frame and pause 503 * tracking. It is useful for diagnostics and debug 504 * but probably by default we will mask these events. 505 */ 506 if (mac_cstat & MAC_CSTAT_PS) 507 gp->pause_entered++; 508 509 if (mac_cstat & MAC_CSTAT_PRCV) 510 gp->pause_last_time_recvd = (mac_cstat >> 16); 511 512 return 0; 513 } 514 515 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 516 { 517 u32 mif_status = readl(gp->regs + MIF_STATUS); 518 u32 reg_val, changed_bits; 519 520 reg_val = (mif_status & MIF_STATUS_DATA) >> 16; 521 changed_bits = (mif_status & MIF_STATUS_STAT); 522 523 gem_handle_mif_event(gp, reg_val, changed_bits); 524 525 return 0; 526 } 527 528 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 529 { 530 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT); 531 532 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN && 533 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) { 534 netdev_err(dev, "PCI error [%04x]", pci_estat); 535 536 if (pci_estat & GREG_PCIESTAT_BADACK) 537 pr_cont(" <No ACK64# during ABS64 cycle>"); 538 if (pci_estat & GREG_PCIESTAT_DTRTO) 539 pr_cont(" <Delayed transaction timeout>"); 540 if (pci_estat & GREG_PCIESTAT_OTHER) 541 pr_cont(" <other>"); 542 pr_cont("\n"); 543 } else { 544 pci_estat |= GREG_PCIESTAT_OTHER; 545 netdev_err(dev, "PCI error\n"); 546 } 547 548 if (pci_estat & GREG_PCIESTAT_OTHER) { 549 u16 pci_cfg_stat; 550 551 /* Interrogate PCI config space for the 552 * true cause. 553 */ 554 pci_read_config_word(gp->pdev, PCI_STATUS, 555 &pci_cfg_stat); 556 netdev_err(dev, "Read PCI cfg space status [%04x]\n", 557 pci_cfg_stat); 558 if (pci_cfg_stat & PCI_STATUS_PARITY) 559 netdev_err(dev, "PCI parity error detected\n"); 560 if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT) 561 netdev_err(dev, "PCI target abort\n"); 562 if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT) 563 netdev_err(dev, "PCI master acks target abort\n"); 564 if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT) 565 netdev_err(dev, "PCI master abort\n"); 566 if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR) 567 netdev_err(dev, "PCI system error SERR#\n"); 568 if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY) 569 netdev_err(dev, "PCI parity error\n"); 570 571 /* Write the error bits back to clear them. */ 572 pci_cfg_stat &= (PCI_STATUS_PARITY | 573 PCI_STATUS_SIG_TARGET_ABORT | 574 PCI_STATUS_REC_TARGET_ABORT | 575 PCI_STATUS_REC_MASTER_ABORT | 576 PCI_STATUS_SIG_SYSTEM_ERROR | 577 PCI_STATUS_DETECTED_PARITY); 578 pci_write_config_word(gp->pdev, 579 PCI_STATUS, pci_cfg_stat); 580 } 581 582 /* For all PCI errors, we should reset the chip. */ 583 return 1; 584 } 585 586 /* All non-normal interrupt conditions get serviced here. 587 * Returns non-zero if we should just exit the interrupt 588 * handler right now (ie. if we reset the card which invalidates 589 * all of the other original irq status bits). 590 */ 591 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status) 592 { 593 if (gem_status & GREG_STAT_RXNOBUF) { 594 /* Frame arrived, no free RX buffers available. */ 595 if (netif_msg_rx_err(gp)) 596 printk(KERN_DEBUG "%s: no buffer for rx frame\n", 597 gp->dev->name); 598 dev->stats.rx_dropped++; 599 } 600 601 if (gem_status & GREG_STAT_RXTAGERR) { 602 /* corrupt RX tag framing */ 603 if (netif_msg_rx_err(gp)) 604 printk(KERN_DEBUG "%s: corrupt rx tag framing\n", 605 gp->dev->name); 606 dev->stats.rx_errors++; 607 608 return 1; 609 } 610 611 if (gem_status & GREG_STAT_PCS) { 612 if (gem_pcs_interrupt(dev, gp, gem_status)) 613 return 1; 614 } 615 616 if (gem_status & GREG_STAT_TXMAC) { 617 if (gem_txmac_interrupt(dev, gp, gem_status)) 618 return 1; 619 } 620 621 if (gem_status & GREG_STAT_RXMAC) { 622 if (gem_rxmac_interrupt(dev, gp, gem_status)) 623 return 1; 624 } 625 626 if (gem_status & GREG_STAT_MAC) { 627 if (gem_mac_interrupt(dev, gp, gem_status)) 628 return 1; 629 } 630 631 if (gem_status & GREG_STAT_MIF) { 632 if (gem_mif_interrupt(dev, gp, gem_status)) 633 return 1; 634 } 635 636 if (gem_status & GREG_STAT_PCIERR) { 637 if (gem_pci_interrupt(dev, gp, gem_status)) 638 return 1; 639 } 640 641 return 0; 642 } 643 644 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status) 645 { 646 int entry, limit; 647 648 entry = gp->tx_old; 649 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT); 650 while (entry != limit) { 651 struct sk_buff *skb; 652 struct gem_txd *txd; 653 dma_addr_t dma_addr; 654 u32 dma_len; 655 int frag; 656 657 if (netif_msg_tx_done(gp)) 658 printk(KERN_DEBUG "%s: tx done, slot %d\n", 659 gp->dev->name, entry); 660 skb = gp->tx_skbs[entry]; 661 if (skb_shinfo(skb)->nr_frags) { 662 int last = entry + skb_shinfo(skb)->nr_frags; 663 int walk = entry; 664 int incomplete = 0; 665 666 last &= (TX_RING_SIZE - 1); 667 for (;;) { 668 walk = NEXT_TX(walk); 669 if (walk == limit) 670 incomplete = 1; 671 if (walk == last) 672 break; 673 } 674 if (incomplete) 675 break; 676 } 677 gp->tx_skbs[entry] = NULL; 678 dev->stats.tx_bytes += skb->len; 679 680 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 681 txd = &gp->init_block->txd[entry]; 682 683 dma_addr = le64_to_cpu(txd->buffer); 684 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ; 685 686 pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE); 687 entry = NEXT_TX(entry); 688 } 689 690 dev->stats.tx_packets++; 691 dev_consume_skb_any(skb); 692 } 693 gp->tx_old = entry; 694 695 /* Need to make the tx_old update visible to gem_start_xmit() 696 * before checking for netif_queue_stopped(). Without the 697 * memory barrier, there is a small possibility that gem_start_xmit() 698 * will miss it and cause the queue to be stopped forever. 699 */ 700 smp_mb(); 701 702 if (unlikely(netif_queue_stopped(dev) && 703 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) { 704 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 705 706 __netif_tx_lock(txq, smp_processor_id()); 707 if (netif_queue_stopped(dev) && 708 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1)) 709 netif_wake_queue(dev); 710 __netif_tx_unlock(txq); 711 } 712 } 713 714 static __inline__ void gem_post_rxds(struct gem *gp, int limit) 715 { 716 int cluster_start, curr, count, kick; 717 718 cluster_start = curr = (gp->rx_new & ~(4 - 1)); 719 count = 0; 720 kick = -1; 721 dma_wmb(); 722 while (curr != limit) { 723 curr = NEXT_RX(curr); 724 if (++count == 4) { 725 struct gem_rxd *rxd = 726 &gp->init_block->rxd[cluster_start]; 727 for (;;) { 728 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 729 rxd++; 730 cluster_start = NEXT_RX(cluster_start); 731 if (cluster_start == curr) 732 break; 733 } 734 kick = curr; 735 count = 0; 736 } 737 } 738 if (kick >= 0) { 739 mb(); 740 writel(kick, gp->regs + RXDMA_KICK); 741 } 742 } 743 744 #define ALIGNED_RX_SKB_ADDR(addr) \ 745 ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr)) 746 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size, 747 gfp_t gfp_flags) 748 { 749 struct sk_buff *skb = alloc_skb(size + 64, gfp_flags); 750 751 if (likely(skb)) { 752 unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data); 753 skb_reserve(skb, offset); 754 } 755 return skb; 756 } 757 758 static int gem_rx(struct gem *gp, int work_to_do) 759 { 760 struct net_device *dev = gp->dev; 761 int entry, drops, work_done = 0; 762 u32 done; 763 __sum16 csum; 764 765 if (netif_msg_rx_status(gp)) 766 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n", 767 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new); 768 769 entry = gp->rx_new; 770 drops = 0; 771 done = readl(gp->regs + RXDMA_DONE); 772 for (;;) { 773 struct gem_rxd *rxd = &gp->init_block->rxd[entry]; 774 struct sk_buff *skb; 775 u64 status = le64_to_cpu(rxd->status_word); 776 dma_addr_t dma_addr; 777 int len; 778 779 if ((status & RXDCTRL_OWN) != 0) 780 break; 781 782 if (work_done >= RX_RING_SIZE || work_done >= work_to_do) 783 break; 784 785 /* When writing back RX descriptor, GEM writes status 786 * then buffer address, possibly in separate transactions. 787 * If we don't wait for the chip to write both, we could 788 * post a new buffer to this descriptor then have GEM spam 789 * on the buffer address. We sync on the RX completion 790 * register to prevent this from happening. 791 */ 792 if (entry == done) { 793 done = readl(gp->regs + RXDMA_DONE); 794 if (entry == done) 795 break; 796 } 797 798 /* We can now account for the work we're about to do */ 799 work_done++; 800 801 skb = gp->rx_skbs[entry]; 802 803 len = (status & RXDCTRL_BUFSZ) >> 16; 804 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) { 805 dev->stats.rx_errors++; 806 if (len < ETH_ZLEN) 807 dev->stats.rx_length_errors++; 808 if (len & RXDCTRL_BAD) 809 dev->stats.rx_crc_errors++; 810 811 /* We'll just return it to GEM. */ 812 drop_it: 813 dev->stats.rx_dropped++; 814 goto next; 815 } 816 817 dma_addr = le64_to_cpu(rxd->buffer); 818 if (len > RX_COPY_THRESHOLD) { 819 struct sk_buff *new_skb; 820 821 new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC); 822 if (new_skb == NULL) { 823 drops++; 824 goto drop_it; 825 } 826 pci_unmap_page(gp->pdev, dma_addr, 827 RX_BUF_ALLOC_SIZE(gp), 828 PCI_DMA_FROMDEVICE); 829 gp->rx_skbs[entry] = new_skb; 830 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET)); 831 rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev, 832 virt_to_page(new_skb->data), 833 offset_in_page(new_skb->data), 834 RX_BUF_ALLOC_SIZE(gp), 835 PCI_DMA_FROMDEVICE)); 836 skb_reserve(new_skb, RX_OFFSET); 837 838 /* Trim the original skb for the netif. */ 839 skb_trim(skb, len); 840 } else { 841 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2); 842 843 if (copy_skb == NULL) { 844 drops++; 845 goto drop_it; 846 } 847 848 skb_reserve(copy_skb, 2); 849 skb_put(copy_skb, len); 850 pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE); 851 skb_copy_from_linear_data(skb, copy_skb->data, len); 852 pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE); 853 854 /* We'll reuse the original ring buffer. */ 855 skb = copy_skb; 856 } 857 858 csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff); 859 skb->csum = csum_unfold(csum); 860 skb->ip_summed = CHECKSUM_COMPLETE; 861 skb->protocol = eth_type_trans(skb, gp->dev); 862 863 napi_gro_receive(&gp->napi, skb); 864 865 dev->stats.rx_packets++; 866 dev->stats.rx_bytes += len; 867 868 next: 869 entry = NEXT_RX(entry); 870 } 871 872 gem_post_rxds(gp, entry); 873 874 gp->rx_new = entry; 875 876 if (drops) 877 netdev_info(gp->dev, "Memory squeeze, deferring packet\n"); 878 879 return work_done; 880 } 881 882 static int gem_poll(struct napi_struct *napi, int budget) 883 { 884 struct gem *gp = container_of(napi, struct gem, napi); 885 struct net_device *dev = gp->dev; 886 int work_done; 887 888 work_done = 0; 889 do { 890 /* Handle anomalies */ 891 if (unlikely(gp->status & GREG_STAT_ABNORMAL)) { 892 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 893 int reset; 894 895 /* We run the abnormal interrupt handling code with 896 * the Tx lock. It only resets the Rx portion of the 897 * chip, but we need to guard it against DMA being 898 * restarted by the link poll timer 899 */ 900 __netif_tx_lock(txq, smp_processor_id()); 901 reset = gem_abnormal_irq(dev, gp, gp->status); 902 __netif_tx_unlock(txq); 903 if (reset) { 904 gem_schedule_reset(gp); 905 napi_complete(napi); 906 return work_done; 907 } 908 } 909 910 /* Run TX completion thread */ 911 gem_tx(dev, gp, gp->status); 912 913 /* Run RX thread. We don't use any locking here, 914 * code willing to do bad things - like cleaning the 915 * rx ring - must call napi_disable(), which 916 * schedule_timeout()'s if polling is already disabled. 917 */ 918 work_done += gem_rx(gp, budget - work_done); 919 920 if (work_done >= budget) 921 return work_done; 922 923 gp->status = readl(gp->regs + GREG_STAT); 924 } while (gp->status & GREG_STAT_NAPI); 925 926 napi_complete(napi); 927 gem_enable_ints(gp); 928 929 return work_done; 930 } 931 932 static irqreturn_t gem_interrupt(int irq, void *dev_id) 933 { 934 struct net_device *dev = dev_id; 935 struct gem *gp = netdev_priv(dev); 936 937 if (napi_schedule_prep(&gp->napi)) { 938 u32 gem_status = readl(gp->regs + GREG_STAT); 939 940 if (unlikely(gem_status == 0)) { 941 napi_enable(&gp->napi); 942 return IRQ_NONE; 943 } 944 if (netif_msg_intr(gp)) 945 printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n", 946 gp->dev->name, gem_status); 947 948 gp->status = gem_status; 949 gem_disable_ints(gp); 950 __napi_schedule(&gp->napi); 951 } 952 953 /* If polling was disabled at the time we received that 954 * interrupt, we may return IRQ_HANDLED here while we 955 * should return IRQ_NONE. No big deal... 956 */ 957 return IRQ_HANDLED; 958 } 959 960 #ifdef CONFIG_NET_POLL_CONTROLLER 961 static void gem_poll_controller(struct net_device *dev) 962 { 963 struct gem *gp = netdev_priv(dev); 964 965 disable_irq(gp->pdev->irq); 966 gem_interrupt(gp->pdev->irq, dev); 967 enable_irq(gp->pdev->irq); 968 } 969 #endif 970 971 static void gem_tx_timeout(struct net_device *dev) 972 { 973 struct gem *gp = netdev_priv(dev); 974 975 netdev_err(dev, "transmit timed out, resetting\n"); 976 977 netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n", 978 readl(gp->regs + TXDMA_CFG), 979 readl(gp->regs + MAC_TXSTAT), 980 readl(gp->regs + MAC_TXCFG)); 981 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n", 982 readl(gp->regs + RXDMA_CFG), 983 readl(gp->regs + MAC_RXSTAT), 984 readl(gp->regs + MAC_RXCFG)); 985 986 gem_schedule_reset(gp); 987 } 988 989 static __inline__ int gem_intme(int entry) 990 { 991 /* Algorithm: IRQ every 1/2 of descriptors. */ 992 if (!(entry & ((TX_RING_SIZE>>1)-1))) 993 return 1; 994 995 return 0; 996 } 997 998 static netdev_tx_t gem_start_xmit(struct sk_buff *skb, 999 struct net_device *dev) 1000 { 1001 struct gem *gp = netdev_priv(dev); 1002 int entry; 1003 u64 ctrl; 1004 1005 ctrl = 0; 1006 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1007 const u64 csum_start_off = skb_checksum_start_offset(skb); 1008 const u64 csum_stuff_off = csum_start_off + skb->csum_offset; 1009 1010 ctrl = (TXDCTRL_CENAB | 1011 (csum_start_off << 15) | 1012 (csum_stuff_off << 21)); 1013 } 1014 1015 if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) { 1016 /* This is a hard error, log it. */ 1017 if (!netif_queue_stopped(dev)) { 1018 netif_stop_queue(dev); 1019 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); 1020 } 1021 return NETDEV_TX_BUSY; 1022 } 1023 1024 entry = gp->tx_new; 1025 gp->tx_skbs[entry] = skb; 1026 1027 if (skb_shinfo(skb)->nr_frags == 0) { 1028 struct gem_txd *txd = &gp->init_block->txd[entry]; 1029 dma_addr_t mapping; 1030 u32 len; 1031 1032 len = skb->len; 1033 mapping = pci_map_page(gp->pdev, 1034 virt_to_page(skb->data), 1035 offset_in_page(skb->data), 1036 len, PCI_DMA_TODEVICE); 1037 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len; 1038 if (gem_intme(entry)) 1039 ctrl |= TXDCTRL_INTME; 1040 txd->buffer = cpu_to_le64(mapping); 1041 dma_wmb(); 1042 txd->control_word = cpu_to_le64(ctrl); 1043 entry = NEXT_TX(entry); 1044 } else { 1045 struct gem_txd *txd; 1046 u32 first_len; 1047 u64 intme; 1048 dma_addr_t first_mapping; 1049 int frag, first_entry = entry; 1050 1051 intme = 0; 1052 if (gem_intme(entry)) 1053 intme |= TXDCTRL_INTME; 1054 1055 /* We must give this initial chunk to the device last. 1056 * Otherwise we could race with the device. 1057 */ 1058 first_len = skb_headlen(skb); 1059 first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data), 1060 offset_in_page(skb->data), 1061 first_len, PCI_DMA_TODEVICE); 1062 entry = NEXT_TX(entry); 1063 1064 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) { 1065 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag]; 1066 u32 len; 1067 dma_addr_t mapping; 1068 u64 this_ctrl; 1069 1070 len = skb_frag_size(this_frag); 1071 mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag, 1072 0, len, DMA_TO_DEVICE); 1073 this_ctrl = ctrl; 1074 if (frag == skb_shinfo(skb)->nr_frags - 1) 1075 this_ctrl |= TXDCTRL_EOF; 1076 1077 txd = &gp->init_block->txd[entry]; 1078 txd->buffer = cpu_to_le64(mapping); 1079 dma_wmb(); 1080 txd->control_word = cpu_to_le64(this_ctrl | len); 1081 1082 if (gem_intme(entry)) 1083 intme |= TXDCTRL_INTME; 1084 1085 entry = NEXT_TX(entry); 1086 } 1087 txd = &gp->init_block->txd[first_entry]; 1088 txd->buffer = cpu_to_le64(first_mapping); 1089 dma_wmb(); 1090 txd->control_word = 1091 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len); 1092 } 1093 1094 gp->tx_new = entry; 1095 if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) { 1096 netif_stop_queue(dev); 1097 1098 /* netif_stop_queue() must be done before checking 1099 * checking tx index in TX_BUFFS_AVAIL() below, because 1100 * in gem_tx(), we update tx_old before checking for 1101 * netif_queue_stopped(). 1102 */ 1103 smp_mb(); 1104 if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1)) 1105 netif_wake_queue(dev); 1106 } 1107 if (netif_msg_tx_queued(gp)) 1108 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n", 1109 dev->name, entry, skb->len); 1110 mb(); 1111 writel(gp->tx_new, gp->regs + TXDMA_KICK); 1112 1113 return NETDEV_TX_OK; 1114 } 1115 1116 static void gem_pcs_reset(struct gem *gp) 1117 { 1118 int limit; 1119 u32 val; 1120 1121 /* Reset PCS unit. */ 1122 val = readl(gp->regs + PCS_MIICTRL); 1123 val |= PCS_MIICTRL_RST; 1124 writel(val, gp->regs + PCS_MIICTRL); 1125 1126 limit = 32; 1127 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) { 1128 udelay(100); 1129 if (limit-- <= 0) 1130 break; 1131 } 1132 if (limit < 0) 1133 netdev_warn(gp->dev, "PCS reset bit would not clear\n"); 1134 } 1135 1136 static void gem_pcs_reinit_adv(struct gem *gp) 1137 { 1138 u32 val; 1139 1140 /* Make sure PCS is disabled while changing advertisement 1141 * configuration. 1142 */ 1143 val = readl(gp->regs + PCS_CFG); 1144 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO); 1145 writel(val, gp->regs + PCS_CFG); 1146 1147 /* Advertise all capabilities except asymmetric 1148 * pause. 1149 */ 1150 val = readl(gp->regs + PCS_MIIADV); 1151 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD | 1152 PCS_MIIADV_SP | PCS_MIIADV_AP); 1153 writel(val, gp->regs + PCS_MIIADV); 1154 1155 /* Enable and restart auto-negotiation, disable wrapback/loopback, 1156 * and re-enable PCS. 1157 */ 1158 val = readl(gp->regs + PCS_MIICTRL); 1159 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE); 1160 val &= ~PCS_MIICTRL_WB; 1161 writel(val, gp->regs + PCS_MIICTRL); 1162 1163 val = readl(gp->regs + PCS_CFG); 1164 val |= PCS_CFG_ENABLE; 1165 writel(val, gp->regs + PCS_CFG); 1166 1167 /* Make sure serialink loopback is off. The meaning 1168 * of this bit is logically inverted based upon whether 1169 * you are in Serialink or SERDES mode. 1170 */ 1171 val = readl(gp->regs + PCS_SCTRL); 1172 if (gp->phy_type == phy_serialink) 1173 val &= ~PCS_SCTRL_LOOP; 1174 else 1175 val |= PCS_SCTRL_LOOP; 1176 writel(val, gp->regs + PCS_SCTRL); 1177 } 1178 1179 #define STOP_TRIES 32 1180 1181 static void gem_reset(struct gem *gp) 1182 { 1183 int limit; 1184 u32 val; 1185 1186 /* Make sure we won't get any more interrupts */ 1187 writel(0xffffffff, gp->regs + GREG_IMASK); 1188 1189 /* Reset the chip */ 1190 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST, 1191 gp->regs + GREG_SWRST); 1192 1193 limit = STOP_TRIES; 1194 1195 do { 1196 udelay(20); 1197 val = readl(gp->regs + GREG_SWRST); 1198 if (limit-- <= 0) 1199 break; 1200 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST)); 1201 1202 if (limit < 0) 1203 netdev_err(gp->dev, "SW reset is ghetto\n"); 1204 1205 if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes) 1206 gem_pcs_reinit_adv(gp); 1207 } 1208 1209 static void gem_start_dma(struct gem *gp) 1210 { 1211 u32 val; 1212 1213 /* We are ready to rock, turn everything on. */ 1214 val = readl(gp->regs + TXDMA_CFG); 1215 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG); 1216 val = readl(gp->regs + RXDMA_CFG); 1217 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 1218 val = readl(gp->regs + MAC_TXCFG); 1219 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG); 1220 val = readl(gp->regs + MAC_RXCFG); 1221 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 1222 1223 (void) readl(gp->regs + MAC_RXCFG); 1224 udelay(100); 1225 1226 gem_enable_ints(gp); 1227 1228 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 1229 } 1230 1231 /* DMA won't be actually stopped before about 4ms tho ... 1232 */ 1233 static void gem_stop_dma(struct gem *gp) 1234 { 1235 u32 val; 1236 1237 /* We are done rocking, turn everything off. */ 1238 val = readl(gp->regs + TXDMA_CFG); 1239 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG); 1240 val = readl(gp->regs + RXDMA_CFG); 1241 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 1242 val = readl(gp->regs + MAC_TXCFG); 1243 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG); 1244 val = readl(gp->regs + MAC_RXCFG); 1245 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 1246 1247 (void) readl(gp->regs + MAC_RXCFG); 1248 1249 /* Need to wait a bit ... done by the caller */ 1250 } 1251 1252 1253 // XXX dbl check what that function should do when called on PCS PHY 1254 static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep) 1255 { 1256 u32 advertise, features; 1257 int autoneg; 1258 int speed; 1259 int duplex; 1260 1261 if (gp->phy_type != phy_mii_mdio0 && 1262 gp->phy_type != phy_mii_mdio1) 1263 goto non_mii; 1264 1265 /* Setup advertise */ 1266 if (found_mii_phy(gp)) 1267 features = gp->phy_mii.def->features; 1268 else 1269 features = 0; 1270 1271 advertise = features & ADVERTISE_MASK; 1272 if (gp->phy_mii.advertising != 0) 1273 advertise &= gp->phy_mii.advertising; 1274 1275 autoneg = gp->want_autoneg; 1276 speed = gp->phy_mii.speed; 1277 duplex = gp->phy_mii.duplex; 1278 1279 /* Setup link parameters */ 1280 if (!ep) 1281 goto start_aneg; 1282 if (ep->autoneg == AUTONEG_ENABLE) { 1283 advertise = ep->advertising; 1284 autoneg = 1; 1285 } else { 1286 autoneg = 0; 1287 speed = ethtool_cmd_speed(ep); 1288 duplex = ep->duplex; 1289 } 1290 1291 start_aneg: 1292 /* Sanitize settings based on PHY capabilities */ 1293 if ((features & SUPPORTED_Autoneg) == 0) 1294 autoneg = 0; 1295 if (speed == SPEED_1000 && 1296 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full))) 1297 speed = SPEED_100; 1298 if (speed == SPEED_100 && 1299 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full))) 1300 speed = SPEED_10; 1301 if (duplex == DUPLEX_FULL && 1302 !(features & (SUPPORTED_1000baseT_Full | 1303 SUPPORTED_100baseT_Full | 1304 SUPPORTED_10baseT_Full))) 1305 duplex = DUPLEX_HALF; 1306 if (speed == 0) 1307 speed = SPEED_10; 1308 1309 /* If we are asleep, we don't try to actually setup the PHY, we 1310 * just store the settings 1311 */ 1312 if (!netif_device_present(gp->dev)) { 1313 gp->phy_mii.autoneg = gp->want_autoneg = autoneg; 1314 gp->phy_mii.speed = speed; 1315 gp->phy_mii.duplex = duplex; 1316 return; 1317 } 1318 1319 /* Configure PHY & start aneg */ 1320 gp->want_autoneg = autoneg; 1321 if (autoneg) { 1322 if (found_mii_phy(gp)) 1323 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise); 1324 gp->lstate = link_aneg; 1325 } else { 1326 if (found_mii_phy(gp)) 1327 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex); 1328 gp->lstate = link_force_ok; 1329 } 1330 1331 non_mii: 1332 gp->timer_ticks = 0; 1333 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 1334 } 1335 1336 /* A link-up condition has occurred, initialize and enable the 1337 * rest of the chip. 1338 */ 1339 static int gem_set_link_modes(struct gem *gp) 1340 { 1341 struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0); 1342 int full_duplex, speed, pause; 1343 u32 val; 1344 1345 full_duplex = 0; 1346 speed = SPEED_10; 1347 pause = 0; 1348 1349 if (found_mii_phy(gp)) { 1350 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii)) 1351 return 1; 1352 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL); 1353 speed = gp->phy_mii.speed; 1354 pause = gp->phy_mii.pause; 1355 } else if (gp->phy_type == phy_serialink || 1356 gp->phy_type == phy_serdes) { 1357 u32 pcs_lpa = readl(gp->regs + PCS_MIILP); 1358 1359 if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes) 1360 full_duplex = 1; 1361 speed = SPEED_1000; 1362 } 1363 1364 netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n", 1365 speed, (full_duplex ? "full" : "half")); 1366 1367 1368 /* We take the tx queue lock to avoid collisions between 1369 * this code, the tx path and the NAPI-driven error path 1370 */ 1371 __netif_tx_lock(txq, smp_processor_id()); 1372 1373 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU); 1374 if (full_duplex) { 1375 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL); 1376 } else { 1377 /* MAC_TXCFG_NBO must be zero. */ 1378 } 1379 writel(val, gp->regs + MAC_TXCFG); 1380 1381 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED); 1382 if (!full_duplex && 1383 (gp->phy_type == phy_mii_mdio0 || 1384 gp->phy_type == phy_mii_mdio1)) { 1385 val |= MAC_XIFCFG_DISE; 1386 } else if (full_duplex) { 1387 val |= MAC_XIFCFG_FLED; 1388 } 1389 1390 if (speed == SPEED_1000) 1391 val |= (MAC_XIFCFG_GMII); 1392 1393 writel(val, gp->regs + MAC_XIFCFG); 1394 1395 /* If gigabit and half-duplex, enable carrier extension 1396 * mode. Else, disable it. 1397 */ 1398 if (speed == SPEED_1000 && !full_duplex) { 1399 val = readl(gp->regs + MAC_TXCFG); 1400 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG); 1401 1402 val = readl(gp->regs + MAC_RXCFG); 1403 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG); 1404 } else { 1405 val = readl(gp->regs + MAC_TXCFG); 1406 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG); 1407 1408 val = readl(gp->regs + MAC_RXCFG); 1409 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG); 1410 } 1411 1412 if (gp->phy_type == phy_serialink || 1413 gp->phy_type == phy_serdes) { 1414 u32 pcs_lpa = readl(gp->regs + PCS_MIILP); 1415 1416 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP)) 1417 pause = 1; 1418 } 1419 1420 if (!full_duplex) 1421 writel(512, gp->regs + MAC_STIME); 1422 else 1423 writel(64, gp->regs + MAC_STIME); 1424 val = readl(gp->regs + MAC_MCCFG); 1425 if (pause) 1426 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE); 1427 else 1428 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE); 1429 writel(val, gp->regs + MAC_MCCFG); 1430 1431 gem_start_dma(gp); 1432 1433 __netif_tx_unlock(txq); 1434 1435 if (netif_msg_link(gp)) { 1436 if (pause) { 1437 netdev_info(gp->dev, 1438 "Pause is enabled (rxfifo: %d off: %d on: %d)\n", 1439 gp->rx_fifo_sz, 1440 gp->rx_pause_off, 1441 gp->rx_pause_on); 1442 } else { 1443 netdev_info(gp->dev, "Pause is disabled\n"); 1444 } 1445 } 1446 1447 return 0; 1448 } 1449 1450 static int gem_mdio_link_not_up(struct gem *gp) 1451 { 1452 switch (gp->lstate) { 1453 case link_force_ret: 1454 netif_info(gp, link, gp->dev, 1455 "Autoneg failed again, keeping forced mode\n"); 1456 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, 1457 gp->last_forced_speed, DUPLEX_HALF); 1458 gp->timer_ticks = 5; 1459 gp->lstate = link_force_ok; 1460 return 0; 1461 case link_aneg: 1462 /* We try forced modes after a failed aneg only on PHYs that don't 1463 * have "magic_aneg" bit set, which means they internally do the 1464 * while forced-mode thingy. On these, we just restart aneg 1465 */ 1466 if (gp->phy_mii.def->magic_aneg) 1467 return 1; 1468 netif_info(gp, link, gp->dev, "switching to forced 100bt\n"); 1469 /* Try forced modes. */ 1470 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100, 1471 DUPLEX_HALF); 1472 gp->timer_ticks = 5; 1473 gp->lstate = link_force_try; 1474 return 0; 1475 case link_force_try: 1476 /* Downgrade from 100 to 10 Mbps if necessary. 1477 * If already at 10Mbps, warn user about the 1478 * situation every 10 ticks. 1479 */ 1480 if (gp->phy_mii.speed == SPEED_100) { 1481 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10, 1482 DUPLEX_HALF); 1483 gp->timer_ticks = 5; 1484 netif_info(gp, link, gp->dev, 1485 "switching to forced 10bt\n"); 1486 return 0; 1487 } else 1488 return 1; 1489 default: 1490 return 0; 1491 } 1492 } 1493 1494 static void gem_link_timer(unsigned long data) 1495 { 1496 struct gem *gp = (struct gem *) data; 1497 struct net_device *dev = gp->dev; 1498 int restart_aneg = 0; 1499 1500 /* There's no point doing anything if we're going to be reset */ 1501 if (gp->reset_task_pending) 1502 return; 1503 1504 if (gp->phy_type == phy_serialink || 1505 gp->phy_type == phy_serdes) { 1506 u32 val = readl(gp->regs + PCS_MIISTAT); 1507 1508 if (!(val & PCS_MIISTAT_LS)) 1509 val = readl(gp->regs + PCS_MIISTAT); 1510 1511 if ((val & PCS_MIISTAT_LS) != 0) { 1512 if (gp->lstate == link_up) 1513 goto restart; 1514 1515 gp->lstate = link_up; 1516 netif_carrier_on(dev); 1517 (void)gem_set_link_modes(gp); 1518 } 1519 goto restart; 1520 } 1521 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) { 1522 /* Ok, here we got a link. If we had it due to a forced 1523 * fallback, and we were configured for autoneg, we do 1524 * retry a short autoneg pass. If you know your hub is 1525 * broken, use ethtool ;) 1526 */ 1527 if (gp->lstate == link_force_try && gp->want_autoneg) { 1528 gp->lstate = link_force_ret; 1529 gp->last_forced_speed = gp->phy_mii.speed; 1530 gp->timer_ticks = 5; 1531 if (netif_msg_link(gp)) 1532 netdev_info(dev, 1533 "Got link after fallback, retrying autoneg once...\n"); 1534 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising); 1535 } else if (gp->lstate != link_up) { 1536 gp->lstate = link_up; 1537 netif_carrier_on(dev); 1538 if (gem_set_link_modes(gp)) 1539 restart_aneg = 1; 1540 } 1541 } else { 1542 /* If the link was previously up, we restart the 1543 * whole process 1544 */ 1545 if (gp->lstate == link_up) { 1546 gp->lstate = link_down; 1547 netif_info(gp, link, dev, "Link down\n"); 1548 netif_carrier_off(dev); 1549 gem_schedule_reset(gp); 1550 /* The reset task will restart the timer */ 1551 return; 1552 } else if (++gp->timer_ticks > 10) { 1553 if (found_mii_phy(gp)) 1554 restart_aneg = gem_mdio_link_not_up(gp); 1555 else 1556 restart_aneg = 1; 1557 } 1558 } 1559 if (restart_aneg) { 1560 gem_begin_auto_negotiation(gp, NULL); 1561 return; 1562 } 1563 restart: 1564 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 1565 } 1566 1567 static void gem_clean_rings(struct gem *gp) 1568 { 1569 struct gem_init_block *gb = gp->init_block; 1570 struct sk_buff *skb; 1571 int i; 1572 dma_addr_t dma_addr; 1573 1574 for (i = 0; i < RX_RING_SIZE; i++) { 1575 struct gem_rxd *rxd; 1576 1577 rxd = &gb->rxd[i]; 1578 if (gp->rx_skbs[i] != NULL) { 1579 skb = gp->rx_skbs[i]; 1580 dma_addr = le64_to_cpu(rxd->buffer); 1581 pci_unmap_page(gp->pdev, dma_addr, 1582 RX_BUF_ALLOC_SIZE(gp), 1583 PCI_DMA_FROMDEVICE); 1584 dev_kfree_skb_any(skb); 1585 gp->rx_skbs[i] = NULL; 1586 } 1587 rxd->status_word = 0; 1588 dma_wmb(); 1589 rxd->buffer = 0; 1590 } 1591 1592 for (i = 0; i < TX_RING_SIZE; i++) { 1593 if (gp->tx_skbs[i] != NULL) { 1594 struct gem_txd *txd; 1595 int frag; 1596 1597 skb = gp->tx_skbs[i]; 1598 gp->tx_skbs[i] = NULL; 1599 1600 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 1601 int ent = i & (TX_RING_SIZE - 1); 1602 1603 txd = &gb->txd[ent]; 1604 dma_addr = le64_to_cpu(txd->buffer); 1605 pci_unmap_page(gp->pdev, dma_addr, 1606 le64_to_cpu(txd->control_word) & 1607 TXDCTRL_BUFSZ, PCI_DMA_TODEVICE); 1608 1609 if (frag != skb_shinfo(skb)->nr_frags) 1610 i++; 1611 } 1612 dev_kfree_skb_any(skb); 1613 } 1614 } 1615 } 1616 1617 static void gem_init_rings(struct gem *gp) 1618 { 1619 struct gem_init_block *gb = gp->init_block; 1620 struct net_device *dev = gp->dev; 1621 int i; 1622 dma_addr_t dma_addr; 1623 1624 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0; 1625 1626 gem_clean_rings(gp); 1627 1628 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN, 1629 (unsigned)VLAN_ETH_FRAME_LEN); 1630 1631 for (i = 0; i < RX_RING_SIZE; i++) { 1632 struct sk_buff *skb; 1633 struct gem_rxd *rxd = &gb->rxd[i]; 1634 1635 skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL); 1636 if (!skb) { 1637 rxd->buffer = 0; 1638 rxd->status_word = 0; 1639 continue; 1640 } 1641 1642 gp->rx_skbs[i] = skb; 1643 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET)); 1644 dma_addr = pci_map_page(gp->pdev, 1645 virt_to_page(skb->data), 1646 offset_in_page(skb->data), 1647 RX_BUF_ALLOC_SIZE(gp), 1648 PCI_DMA_FROMDEVICE); 1649 rxd->buffer = cpu_to_le64(dma_addr); 1650 dma_wmb(); 1651 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 1652 skb_reserve(skb, RX_OFFSET); 1653 } 1654 1655 for (i = 0; i < TX_RING_SIZE; i++) { 1656 struct gem_txd *txd = &gb->txd[i]; 1657 1658 txd->control_word = 0; 1659 dma_wmb(); 1660 txd->buffer = 0; 1661 } 1662 wmb(); 1663 } 1664 1665 /* Init PHY interface and start link poll state machine */ 1666 static void gem_init_phy(struct gem *gp) 1667 { 1668 u32 mifcfg; 1669 1670 /* Revert MIF CFG setting done on stop_phy */ 1671 mifcfg = readl(gp->regs + MIF_CFG); 1672 mifcfg &= ~MIF_CFG_BBMODE; 1673 writel(mifcfg, gp->regs + MIF_CFG); 1674 1675 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) { 1676 int i; 1677 1678 /* Those delay sucks, the HW seem to love them though, I'll 1679 * serisouly consider breaking some locks here to be able 1680 * to schedule instead 1681 */ 1682 for (i = 0; i < 3; i++) { 1683 #ifdef CONFIG_PPC_PMAC 1684 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0); 1685 msleep(20); 1686 #endif 1687 /* Some PHYs used by apple have problem getting back to us, 1688 * we do an additional reset here 1689 */ 1690 sungem_phy_write(gp, MII_BMCR, BMCR_RESET); 1691 msleep(20); 1692 if (sungem_phy_read(gp, MII_BMCR) != 0xffff) 1693 break; 1694 if (i == 2) 1695 netdev_warn(gp->dev, "GMAC PHY not responding !\n"); 1696 } 1697 } 1698 1699 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN && 1700 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) { 1701 u32 val; 1702 1703 /* Init datapath mode register. */ 1704 if (gp->phy_type == phy_mii_mdio0 || 1705 gp->phy_type == phy_mii_mdio1) { 1706 val = PCS_DMODE_MGM; 1707 } else if (gp->phy_type == phy_serialink) { 1708 val = PCS_DMODE_SM | PCS_DMODE_GMOE; 1709 } else { 1710 val = PCS_DMODE_ESM; 1711 } 1712 1713 writel(val, gp->regs + PCS_DMODE); 1714 } 1715 1716 if (gp->phy_type == phy_mii_mdio0 || 1717 gp->phy_type == phy_mii_mdio1) { 1718 /* Reset and detect MII PHY */ 1719 sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr); 1720 1721 /* Init PHY */ 1722 if (gp->phy_mii.def && gp->phy_mii.def->ops->init) 1723 gp->phy_mii.def->ops->init(&gp->phy_mii); 1724 } else { 1725 gem_pcs_reset(gp); 1726 gem_pcs_reinit_adv(gp); 1727 } 1728 1729 /* Default aneg parameters */ 1730 gp->timer_ticks = 0; 1731 gp->lstate = link_down; 1732 netif_carrier_off(gp->dev); 1733 1734 /* Print things out */ 1735 if (gp->phy_type == phy_mii_mdio0 || 1736 gp->phy_type == phy_mii_mdio1) 1737 netdev_info(gp->dev, "Found %s PHY\n", 1738 gp->phy_mii.def ? gp->phy_mii.def->name : "no"); 1739 1740 gem_begin_auto_negotiation(gp, NULL); 1741 } 1742 1743 static void gem_init_dma(struct gem *gp) 1744 { 1745 u64 desc_dma = (u64) gp->gblock_dvma; 1746 u32 val; 1747 1748 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE); 1749 writel(val, gp->regs + TXDMA_CFG); 1750 1751 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI); 1752 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW); 1753 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd)); 1754 1755 writel(0, gp->regs + TXDMA_KICK); 1756 1757 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) | 1758 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128); 1759 writel(val, gp->regs + RXDMA_CFG); 1760 1761 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI); 1762 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW); 1763 1764 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 1765 1766 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF); 1767 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON); 1768 writel(val, gp->regs + RXDMA_PTHRESH); 1769 1770 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN) 1771 writel(((5 & RXDMA_BLANK_IPKTS) | 1772 ((8 << 12) & RXDMA_BLANK_ITIME)), 1773 gp->regs + RXDMA_BLANK); 1774 else 1775 writel(((5 & RXDMA_BLANK_IPKTS) | 1776 ((4 << 12) & RXDMA_BLANK_ITIME)), 1777 gp->regs + RXDMA_BLANK); 1778 } 1779 1780 static u32 gem_setup_multicast(struct gem *gp) 1781 { 1782 u32 rxcfg = 0; 1783 int i; 1784 1785 if ((gp->dev->flags & IFF_ALLMULTI) || 1786 (netdev_mc_count(gp->dev) > 256)) { 1787 for (i=0; i<16; i++) 1788 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2)); 1789 rxcfg |= MAC_RXCFG_HFE; 1790 } else if (gp->dev->flags & IFF_PROMISC) { 1791 rxcfg |= MAC_RXCFG_PROM; 1792 } else { 1793 u16 hash_table[16]; 1794 u32 crc; 1795 struct netdev_hw_addr *ha; 1796 int i; 1797 1798 memset(hash_table, 0, sizeof(hash_table)); 1799 netdev_for_each_mc_addr(ha, gp->dev) { 1800 crc = ether_crc_le(6, ha->addr); 1801 crc >>= 24; 1802 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); 1803 } 1804 for (i=0; i<16; i++) 1805 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2)); 1806 rxcfg |= MAC_RXCFG_HFE; 1807 } 1808 1809 return rxcfg; 1810 } 1811 1812 static void gem_init_mac(struct gem *gp) 1813 { 1814 unsigned char *e = &gp->dev->dev_addr[0]; 1815 1816 writel(0x1bf0, gp->regs + MAC_SNDPAUSE); 1817 1818 writel(0x00, gp->regs + MAC_IPG0); 1819 writel(0x08, gp->regs + MAC_IPG1); 1820 writel(0x04, gp->regs + MAC_IPG2); 1821 writel(0x40, gp->regs + MAC_STIME); 1822 writel(0x40, gp->regs + MAC_MINFSZ); 1823 1824 /* Ethernet payload + header + FCS + optional VLAN tag. */ 1825 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ); 1826 1827 writel(0x07, gp->regs + MAC_PASIZE); 1828 writel(0x04, gp->regs + MAC_JAMSIZE); 1829 writel(0x10, gp->regs + MAC_ATTLIM); 1830 writel(0x8808, gp->regs + MAC_MCTYPE); 1831 1832 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED); 1833 1834 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0); 1835 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1); 1836 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2); 1837 1838 writel(0, gp->regs + MAC_ADDR3); 1839 writel(0, gp->regs + MAC_ADDR4); 1840 writel(0, gp->regs + MAC_ADDR5); 1841 1842 writel(0x0001, gp->regs + MAC_ADDR6); 1843 writel(0xc200, gp->regs + MAC_ADDR7); 1844 writel(0x0180, gp->regs + MAC_ADDR8); 1845 1846 writel(0, gp->regs + MAC_AFILT0); 1847 writel(0, gp->regs + MAC_AFILT1); 1848 writel(0, gp->regs + MAC_AFILT2); 1849 writel(0, gp->regs + MAC_AF21MSK); 1850 writel(0, gp->regs + MAC_AF0MSK); 1851 1852 gp->mac_rx_cfg = gem_setup_multicast(gp); 1853 #ifdef STRIP_FCS 1854 gp->mac_rx_cfg |= MAC_RXCFG_SFCS; 1855 #endif 1856 writel(0, gp->regs + MAC_NCOLL); 1857 writel(0, gp->regs + MAC_FASUCC); 1858 writel(0, gp->regs + MAC_ECOLL); 1859 writel(0, gp->regs + MAC_LCOLL); 1860 writel(0, gp->regs + MAC_DTIMER); 1861 writel(0, gp->regs + MAC_PATMPS); 1862 writel(0, gp->regs + MAC_RFCTR); 1863 writel(0, gp->regs + MAC_LERR); 1864 writel(0, gp->regs + MAC_AERR); 1865 writel(0, gp->regs + MAC_FCSERR); 1866 writel(0, gp->regs + MAC_RXCVERR); 1867 1868 /* Clear RX/TX/MAC/XIF config, we will set these up and enable 1869 * them once a link is established. 1870 */ 1871 writel(0, gp->regs + MAC_TXCFG); 1872 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG); 1873 writel(0, gp->regs + MAC_MCCFG); 1874 writel(0, gp->regs + MAC_XIFCFG); 1875 1876 /* Setup MAC interrupts. We want to get all of the interesting 1877 * counter expiration events, but we do not want to hear about 1878 * normal rx/tx as the DMA engine tells us that. 1879 */ 1880 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK); 1881 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK); 1882 1883 /* Don't enable even the PAUSE interrupts for now, we 1884 * make no use of those events other than to record them. 1885 */ 1886 writel(0xffffffff, gp->regs + MAC_MCMASK); 1887 1888 /* Don't enable GEM's WOL in normal operations 1889 */ 1890 if (gp->has_wol) 1891 writel(0, gp->regs + WOL_WAKECSR); 1892 } 1893 1894 static void gem_init_pause_thresholds(struct gem *gp) 1895 { 1896 u32 cfg; 1897 1898 /* Calculate pause thresholds. Setting the OFF threshold to the 1899 * full RX fifo size effectively disables PAUSE generation which 1900 * is what we do for 10/100 only GEMs which have FIFOs too small 1901 * to make real gains from PAUSE. 1902 */ 1903 if (gp->rx_fifo_sz <= (2 * 1024)) { 1904 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz; 1905 } else { 1906 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63; 1907 int off = (gp->rx_fifo_sz - (max_frame * 2)); 1908 int on = off - max_frame; 1909 1910 gp->rx_pause_off = off; 1911 gp->rx_pause_on = on; 1912 } 1913 1914 1915 /* Configure the chip "burst" DMA mode & enable some 1916 * HW bug fixes on Apple version 1917 */ 1918 cfg = 0; 1919 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) 1920 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX; 1921 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) 1922 cfg |= GREG_CFG_IBURST; 1923 #endif 1924 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM); 1925 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM); 1926 writel(cfg, gp->regs + GREG_CFG); 1927 1928 /* If Infinite Burst didn't stick, then use different 1929 * thresholds (and Apple bug fixes don't exist) 1930 */ 1931 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) { 1932 cfg = ((2 << 1) & GREG_CFG_TXDMALIM); 1933 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM); 1934 writel(cfg, gp->regs + GREG_CFG); 1935 } 1936 } 1937 1938 static int gem_check_invariants(struct gem *gp) 1939 { 1940 struct pci_dev *pdev = gp->pdev; 1941 u32 mif_cfg; 1942 1943 /* On Apple's sungem, we can't rely on registers as the chip 1944 * was been powered down by the firmware. The PHY is looked 1945 * up later on. 1946 */ 1947 if (pdev->vendor == PCI_VENDOR_ID_APPLE) { 1948 gp->phy_type = phy_mii_mdio0; 1949 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64; 1950 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64; 1951 gp->swrst_base = 0; 1952 1953 mif_cfg = readl(gp->regs + MIF_CFG); 1954 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1); 1955 mif_cfg |= MIF_CFG_MDI0; 1956 writel(mif_cfg, gp->regs + MIF_CFG); 1957 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE); 1958 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG); 1959 1960 /* We hard-code the PHY address so we can properly bring it out of 1961 * reset later on, we can't really probe it at this point, though 1962 * that isn't an issue. 1963 */ 1964 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC) 1965 gp->mii_phy_addr = 1; 1966 else 1967 gp->mii_phy_addr = 0; 1968 1969 return 0; 1970 } 1971 1972 mif_cfg = readl(gp->regs + MIF_CFG); 1973 1974 if (pdev->vendor == PCI_VENDOR_ID_SUN && 1975 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) { 1976 /* One of the MII PHYs _must_ be present 1977 * as this chip has no gigabit PHY. 1978 */ 1979 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) { 1980 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n", 1981 mif_cfg); 1982 return -1; 1983 } 1984 } 1985 1986 /* Determine initial PHY interface type guess. MDIO1 is the 1987 * external PHY and thus takes precedence over MDIO0. 1988 */ 1989 1990 if (mif_cfg & MIF_CFG_MDI1) { 1991 gp->phy_type = phy_mii_mdio1; 1992 mif_cfg |= MIF_CFG_PSELECT; 1993 writel(mif_cfg, gp->regs + MIF_CFG); 1994 } else if (mif_cfg & MIF_CFG_MDI0) { 1995 gp->phy_type = phy_mii_mdio0; 1996 mif_cfg &= ~MIF_CFG_PSELECT; 1997 writel(mif_cfg, gp->regs + MIF_CFG); 1998 } else { 1999 #ifdef CONFIG_SPARC 2000 const char *p; 2001 2002 p = of_get_property(gp->of_node, "shared-pins", NULL); 2003 if (p && !strcmp(p, "serdes")) 2004 gp->phy_type = phy_serdes; 2005 else 2006 #endif 2007 gp->phy_type = phy_serialink; 2008 } 2009 if (gp->phy_type == phy_mii_mdio1 || 2010 gp->phy_type == phy_mii_mdio0) { 2011 int i; 2012 2013 for (i = 0; i < 32; i++) { 2014 gp->mii_phy_addr = i; 2015 if (sungem_phy_read(gp, MII_BMCR) != 0xffff) 2016 break; 2017 } 2018 if (i == 32) { 2019 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) { 2020 pr_err("RIO MII phy will not respond\n"); 2021 return -1; 2022 } 2023 gp->phy_type = phy_serdes; 2024 } 2025 } 2026 2027 /* Fetch the FIFO configurations now too. */ 2028 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64; 2029 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64; 2030 2031 if (pdev->vendor == PCI_VENDOR_ID_SUN) { 2032 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) { 2033 if (gp->tx_fifo_sz != (9 * 1024) || 2034 gp->rx_fifo_sz != (20 * 1024)) { 2035 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n", 2036 gp->tx_fifo_sz, gp->rx_fifo_sz); 2037 return -1; 2038 } 2039 gp->swrst_base = 0; 2040 } else { 2041 if (gp->tx_fifo_sz != (2 * 1024) || 2042 gp->rx_fifo_sz != (2 * 1024)) { 2043 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n", 2044 gp->tx_fifo_sz, gp->rx_fifo_sz); 2045 return -1; 2046 } 2047 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT; 2048 } 2049 } 2050 2051 return 0; 2052 } 2053 2054 static void gem_reinit_chip(struct gem *gp) 2055 { 2056 /* Reset the chip */ 2057 gem_reset(gp); 2058 2059 /* Make sure ints are disabled */ 2060 gem_disable_ints(gp); 2061 2062 /* Allocate & setup ring buffers */ 2063 gem_init_rings(gp); 2064 2065 /* Configure pause thresholds */ 2066 gem_init_pause_thresholds(gp); 2067 2068 /* Init DMA & MAC engines */ 2069 gem_init_dma(gp); 2070 gem_init_mac(gp); 2071 } 2072 2073 2074 static void gem_stop_phy(struct gem *gp, int wol) 2075 { 2076 u32 mifcfg; 2077 2078 /* Let the chip settle down a bit, it seems that helps 2079 * for sleep mode on some models 2080 */ 2081 msleep(10); 2082 2083 /* Make sure we aren't polling PHY status change. We 2084 * don't currently use that feature though 2085 */ 2086 mifcfg = readl(gp->regs + MIF_CFG); 2087 mifcfg &= ~MIF_CFG_POLL; 2088 writel(mifcfg, gp->regs + MIF_CFG); 2089 2090 if (wol && gp->has_wol) { 2091 unsigned char *e = &gp->dev->dev_addr[0]; 2092 u32 csr; 2093 2094 /* Setup wake-on-lan for MAGIC packet */ 2095 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB, 2096 gp->regs + MAC_RXCFG); 2097 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0); 2098 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1); 2099 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2); 2100 2101 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT); 2102 csr = WOL_WAKECSR_ENABLE; 2103 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0) 2104 csr |= WOL_WAKECSR_MII; 2105 writel(csr, gp->regs + WOL_WAKECSR); 2106 } else { 2107 writel(0, gp->regs + MAC_RXCFG); 2108 (void)readl(gp->regs + MAC_RXCFG); 2109 /* Machine sleep will die in strange ways if we 2110 * dont wait a bit here, looks like the chip takes 2111 * some time to really shut down 2112 */ 2113 msleep(10); 2114 } 2115 2116 writel(0, gp->regs + MAC_TXCFG); 2117 writel(0, gp->regs + MAC_XIFCFG); 2118 writel(0, gp->regs + TXDMA_CFG); 2119 writel(0, gp->regs + RXDMA_CFG); 2120 2121 if (!wol) { 2122 gem_reset(gp); 2123 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST); 2124 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST); 2125 2126 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend) 2127 gp->phy_mii.def->ops->suspend(&gp->phy_mii); 2128 2129 /* According to Apple, we must set the MDIO pins to this begnign 2130 * state or we may 1) eat more current, 2) damage some PHYs 2131 */ 2132 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG); 2133 writel(0, gp->regs + MIF_BBCLK); 2134 writel(0, gp->regs + MIF_BBDATA); 2135 writel(0, gp->regs + MIF_BBOENAB); 2136 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG); 2137 (void) readl(gp->regs + MAC_XIFCFG); 2138 } 2139 } 2140 2141 static int gem_do_start(struct net_device *dev) 2142 { 2143 struct gem *gp = netdev_priv(dev); 2144 int rc; 2145 2146 /* Enable the cell */ 2147 gem_get_cell(gp); 2148 2149 /* Make sure PCI access and bus master are enabled */ 2150 rc = pci_enable_device(gp->pdev); 2151 if (rc) { 2152 netdev_err(dev, "Failed to enable chip on PCI bus !\n"); 2153 2154 /* Put cell and forget it for now, it will be considered as 2155 * still asleep, a new sleep cycle may bring it back 2156 */ 2157 gem_put_cell(gp); 2158 return -ENXIO; 2159 } 2160 pci_set_master(gp->pdev); 2161 2162 /* Init & setup chip hardware */ 2163 gem_reinit_chip(gp); 2164 2165 /* An interrupt might come in handy */ 2166 rc = request_irq(gp->pdev->irq, gem_interrupt, 2167 IRQF_SHARED, dev->name, (void *)dev); 2168 if (rc) { 2169 netdev_err(dev, "failed to request irq !\n"); 2170 2171 gem_reset(gp); 2172 gem_clean_rings(gp); 2173 gem_put_cell(gp); 2174 return rc; 2175 } 2176 2177 /* Mark us as attached again if we come from resume(), this has 2178 * no effect if we weren't detached and needs to be done now. 2179 */ 2180 netif_device_attach(dev); 2181 2182 /* Restart NAPI & queues */ 2183 gem_netif_start(gp); 2184 2185 /* Detect & init PHY, start autoneg etc... this will 2186 * eventually result in starting DMA operations when 2187 * the link is up 2188 */ 2189 gem_init_phy(gp); 2190 2191 return 0; 2192 } 2193 2194 static void gem_do_stop(struct net_device *dev, int wol) 2195 { 2196 struct gem *gp = netdev_priv(dev); 2197 2198 /* Stop NAPI and stop tx queue */ 2199 gem_netif_stop(gp); 2200 2201 /* Make sure ints are disabled. We don't care about 2202 * synchronizing as NAPI is disabled, thus a stray 2203 * interrupt will do nothing bad (our irq handler 2204 * just schedules NAPI) 2205 */ 2206 gem_disable_ints(gp); 2207 2208 /* Stop the link timer */ 2209 del_timer_sync(&gp->link_timer); 2210 2211 /* We cannot cancel the reset task while holding the 2212 * rtnl lock, we'd get an A->B / B->A deadlock stituation 2213 * if we did. This is not an issue however as the reset 2214 * task is synchronized vs. us (rtnl_lock) and will do 2215 * nothing if the device is down or suspended. We do 2216 * still clear reset_task_pending to avoid a spurrious 2217 * reset later on in case we do resume before it gets 2218 * scheduled. 2219 */ 2220 gp->reset_task_pending = 0; 2221 2222 /* If we are going to sleep with WOL */ 2223 gem_stop_dma(gp); 2224 msleep(10); 2225 if (!wol) 2226 gem_reset(gp); 2227 msleep(10); 2228 2229 /* Get rid of rings */ 2230 gem_clean_rings(gp); 2231 2232 /* No irq needed anymore */ 2233 free_irq(gp->pdev->irq, (void *) dev); 2234 2235 /* Shut the PHY down eventually and setup WOL */ 2236 gem_stop_phy(gp, wol); 2237 2238 /* Make sure bus master is disabled */ 2239 pci_disable_device(gp->pdev); 2240 2241 /* Cell not needed neither if no WOL */ 2242 if (!wol) 2243 gem_put_cell(gp); 2244 } 2245 2246 static void gem_reset_task(struct work_struct *work) 2247 { 2248 struct gem *gp = container_of(work, struct gem, reset_task); 2249 2250 /* Lock out the network stack (essentially shield ourselves 2251 * against a racing open, close, control call, or suspend 2252 */ 2253 rtnl_lock(); 2254 2255 /* Skip the reset task if suspended or closed, or if it's 2256 * been cancelled by gem_do_stop (see comment there) 2257 */ 2258 if (!netif_device_present(gp->dev) || 2259 !netif_running(gp->dev) || 2260 !gp->reset_task_pending) { 2261 rtnl_unlock(); 2262 return; 2263 } 2264 2265 /* Stop the link timer */ 2266 del_timer_sync(&gp->link_timer); 2267 2268 /* Stop NAPI and tx */ 2269 gem_netif_stop(gp); 2270 2271 /* Reset the chip & rings */ 2272 gem_reinit_chip(gp); 2273 if (gp->lstate == link_up) 2274 gem_set_link_modes(gp); 2275 2276 /* Restart NAPI and Tx */ 2277 gem_netif_start(gp); 2278 2279 /* We are back ! */ 2280 gp->reset_task_pending = 0; 2281 2282 /* If the link is not up, restart autoneg, else restart the 2283 * polling timer 2284 */ 2285 if (gp->lstate != link_up) 2286 gem_begin_auto_negotiation(gp, NULL); 2287 else 2288 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 2289 2290 rtnl_unlock(); 2291 } 2292 2293 static int gem_open(struct net_device *dev) 2294 { 2295 /* We allow open while suspended, we just do nothing, 2296 * the chip will be initialized in resume() 2297 */ 2298 if (netif_device_present(dev)) 2299 return gem_do_start(dev); 2300 return 0; 2301 } 2302 2303 static int gem_close(struct net_device *dev) 2304 { 2305 if (netif_device_present(dev)) 2306 gem_do_stop(dev, 0); 2307 2308 return 0; 2309 } 2310 2311 #ifdef CONFIG_PM 2312 static int gem_suspend(struct pci_dev *pdev, pm_message_t state) 2313 { 2314 struct net_device *dev = pci_get_drvdata(pdev); 2315 struct gem *gp = netdev_priv(dev); 2316 2317 /* Lock the network stack first to avoid racing with open/close, 2318 * reset task and setting calls 2319 */ 2320 rtnl_lock(); 2321 2322 /* Not running, mark ourselves non-present, no need for 2323 * a lock here 2324 */ 2325 if (!netif_running(dev)) { 2326 netif_device_detach(dev); 2327 rtnl_unlock(); 2328 return 0; 2329 } 2330 netdev_info(dev, "suspending, WakeOnLan %s\n", 2331 (gp->wake_on_lan && netif_running(dev)) ? 2332 "enabled" : "disabled"); 2333 2334 /* Tell the network stack we're gone. gem_do_stop() below will 2335 * synchronize with TX, stop NAPI etc... 2336 */ 2337 netif_device_detach(dev); 2338 2339 /* Switch off chip, remember WOL setting */ 2340 gp->asleep_wol = !!gp->wake_on_lan; 2341 gem_do_stop(dev, gp->asleep_wol); 2342 2343 /* Unlock the network stack */ 2344 rtnl_unlock(); 2345 2346 return 0; 2347 } 2348 2349 static int gem_resume(struct pci_dev *pdev) 2350 { 2351 struct net_device *dev = pci_get_drvdata(pdev); 2352 struct gem *gp = netdev_priv(dev); 2353 2354 /* See locking comment in gem_suspend */ 2355 rtnl_lock(); 2356 2357 /* Not running, mark ourselves present, no need for 2358 * a lock here 2359 */ 2360 if (!netif_running(dev)) { 2361 netif_device_attach(dev); 2362 rtnl_unlock(); 2363 return 0; 2364 } 2365 2366 /* Restart chip. If that fails there isn't much we can do, we 2367 * leave things stopped. 2368 */ 2369 gem_do_start(dev); 2370 2371 /* If we had WOL enabled, the cell clock was never turned off during 2372 * sleep, so we end up beeing unbalanced. Fix that here 2373 */ 2374 if (gp->asleep_wol) 2375 gem_put_cell(gp); 2376 2377 /* Unlock the network stack */ 2378 rtnl_unlock(); 2379 2380 return 0; 2381 } 2382 #endif /* CONFIG_PM */ 2383 2384 static struct net_device_stats *gem_get_stats(struct net_device *dev) 2385 { 2386 struct gem *gp = netdev_priv(dev); 2387 2388 /* I have seen this being called while the PM was in progress, 2389 * so we shield against this. Let's also not poke at registers 2390 * while the reset task is going on. 2391 * 2392 * TODO: Move stats collection elsewhere (link timer ?) and 2393 * make this a nop to avoid all those synchro issues 2394 */ 2395 if (!netif_device_present(dev) || !netif_running(dev)) 2396 goto bail; 2397 2398 /* Better safe than sorry... */ 2399 if (WARN_ON(!gp->cell_enabled)) 2400 goto bail; 2401 2402 dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR); 2403 writel(0, gp->regs + MAC_FCSERR); 2404 2405 dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR); 2406 writel(0, gp->regs + MAC_AERR); 2407 2408 dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR); 2409 writel(0, gp->regs + MAC_LERR); 2410 2411 dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL); 2412 dev->stats.collisions += 2413 (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL)); 2414 writel(0, gp->regs + MAC_ECOLL); 2415 writel(0, gp->regs + MAC_LCOLL); 2416 bail: 2417 return &dev->stats; 2418 } 2419 2420 static int gem_set_mac_address(struct net_device *dev, void *addr) 2421 { 2422 struct sockaddr *macaddr = (struct sockaddr *) addr; 2423 struct gem *gp = netdev_priv(dev); 2424 unsigned char *e = &dev->dev_addr[0]; 2425 2426 if (!is_valid_ether_addr(macaddr->sa_data)) 2427 return -EADDRNOTAVAIL; 2428 2429 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len); 2430 2431 /* We'll just catch it later when the device is up'd or resumed */ 2432 if (!netif_running(dev) || !netif_device_present(dev)) 2433 return 0; 2434 2435 /* Better safe than sorry... */ 2436 if (WARN_ON(!gp->cell_enabled)) 2437 return 0; 2438 2439 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0); 2440 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1); 2441 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2); 2442 2443 return 0; 2444 } 2445 2446 static void gem_set_multicast(struct net_device *dev) 2447 { 2448 struct gem *gp = netdev_priv(dev); 2449 u32 rxcfg, rxcfg_new; 2450 int limit = 10000; 2451 2452 if (!netif_running(dev) || !netif_device_present(dev)) 2453 return; 2454 2455 /* Better safe than sorry... */ 2456 if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled)) 2457 return; 2458 2459 rxcfg = readl(gp->regs + MAC_RXCFG); 2460 rxcfg_new = gem_setup_multicast(gp); 2461 #ifdef STRIP_FCS 2462 rxcfg_new |= MAC_RXCFG_SFCS; 2463 #endif 2464 gp->mac_rx_cfg = rxcfg_new; 2465 2466 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 2467 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) { 2468 if (!limit--) 2469 break; 2470 udelay(10); 2471 } 2472 2473 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE); 2474 rxcfg |= rxcfg_new; 2475 2476 writel(rxcfg, gp->regs + MAC_RXCFG); 2477 } 2478 2479 /* Jumbo-grams don't seem to work :-( */ 2480 #define GEM_MIN_MTU 68 2481 #if 1 2482 #define GEM_MAX_MTU 1500 2483 #else 2484 #define GEM_MAX_MTU 9000 2485 #endif 2486 2487 static int gem_change_mtu(struct net_device *dev, int new_mtu) 2488 { 2489 struct gem *gp = netdev_priv(dev); 2490 2491 if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU) 2492 return -EINVAL; 2493 2494 dev->mtu = new_mtu; 2495 2496 /* We'll just catch it later when the device is up'd or resumed */ 2497 if (!netif_running(dev) || !netif_device_present(dev)) 2498 return 0; 2499 2500 /* Better safe than sorry... */ 2501 if (WARN_ON(!gp->cell_enabled)) 2502 return 0; 2503 2504 gem_netif_stop(gp); 2505 gem_reinit_chip(gp); 2506 if (gp->lstate == link_up) 2507 gem_set_link_modes(gp); 2508 gem_netif_start(gp); 2509 2510 return 0; 2511 } 2512 2513 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2514 { 2515 struct gem *gp = netdev_priv(dev); 2516 2517 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 2518 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 2519 strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info)); 2520 } 2521 2522 static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2523 { 2524 struct gem *gp = netdev_priv(dev); 2525 2526 if (gp->phy_type == phy_mii_mdio0 || 2527 gp->phy_type == phy_mii_mdio1) { 2528 if (gp->phy_mii.def) 2529 cmd->supported = gp->phy_mii.def->features; 2530 else 2531 cmd->supported = (SUPPORTED_10baseT_Half | 2532 SUPPORTED_10baseT_Full); 2533 2534 /* XXX hardcoded stuff for now */ 2535 cmd->port = PORT_MII; 2536 cmd->transceiver = XCVR_EXTERNAL; 2537 cmd->phy_address = 0; /* XXX fixed PHYAD */ 2538 2539 /* Return current PHY settings */ 2540 cmd->autoneg = gp->want_autoneg; 2541 ethtool_cmd_speed_set(cmd, gp->phy_mii.speed); 2542 cmd->duplex = gp->phy_mii.duplex; 2543 cmd->advertising = gp->phy_mii.advertising; 2544 2545 /* If we started with a forced mode, we don't have a default 2546 * advertise set, we need to return something sensible so 2547 * userland can re-enable autoneg properly. 2548 */ 2549 if (cmd->advertising == 0) 2550 cmd->advertising = cmd->supported; 2551 } else { // XXX PCS ? 2552 cmd->supported = 2553 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 2554 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 2555 SUPPORTED_Autoneg); 2556 cmd->advertising = cmd->supported; 2557 ethtool_cmd_speed_set(cmd, 0); 2558 cmd->duplex = cmd->port = cmd->phy_address = 2559 cmd->transceiver = cmd->autoneg = 0; 2560 2561 /* serdes means usually a Fibre connector, with most fixed */ 2562 if (gp->phy_type == phy_serdes) { 2563 cmd->port = PORT_FIBRE; 2564 cmd->supported = (SUPPORTED_1000baseT_Half | 2565 SUPPORTED_1000baseT_Full | 2566 SUPPORTED_FIBRE | SUPPORTED_Autoneg | 2567 SUPPORTED_Pause | SUPPORTED_Asym_Pause); 2568 cmd->advertising = cmd->supported; 2569 cmd->transceiver = XCVR_INTERNAL; 2570 if (gp->lstate == link_up) 2571 ethtool_cmd_speed_set(cmd, SPEED_1000); 2572 cmd->duplex = DUPLEX_FULL; 2573 cmd->autoneg = 1; 2574 } 2575 } 2576 cmd->maxtxpkt = cmd->maxrxpkt = 0; 2577 2578 return 0; 2579 } 2580 2581 static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2582 { 2583 struct gem *gp = netdev_priv(dev); 2584 u32 speed = ethtool_cmd_speed(cmd); 2585 2586 /* Verify the settings we care about. */ 2587 if (cmd->autoneg != AUTONEG_ENABLE && 2588 cmd->autoneg != AUTONEG_DISABLE) 2589 return -EINVAL; 2590 2591 if (cmd->autoneg == AUTONEG_ENABLE && 2592 cmd->advertising == 0) 2593 return -EINVAL; 2594 2595 if (cmd->autoneg == AUTONEG_DISABLE && 2596 ((speed != SPEED_1000 && 2597 speed != SPEED_100 && 2598 speed != SPEED_10) || 2599 (cmd->duplex != DUPLEX_HALF && 2600 cmd->duplex != DUPLEX_FULL))) 2601 return -EINVAL; 2602 2603 /* Apply settings and restart link process. */ 2604 if (netif_device_present(gp->dev)) { 2605 del_timer_sync(&gp->link_timer); 2606 gem_begin_auto_negotiation(gp, cmd); 2607 } 2608 2609 return 0; 2610 } 2611 2612 static int gem_nway_reset(struct net_device *dev) 2613 { 2614 struct gem *gp = netdev_priv(dev); 2615 2616 if (!gp->want_autoneg) 2617 return -EINVAL; 2618 2619 /* Restart link process */ 2620 if (netif_device_present(gp->dev)) { 2621 del_timer_sync(&gp->link_timer); 2622 gem_begin_auto_negotiation(gp, NULL); 2623 } 2624 2625 return 0; 2626 } 2627 2628 static u32 gem_get_msglevel(struct net_device *dev) 2629 { 2630 struct gem *gp = netdev_priv(dev); 2631 return gp->msg_enable; 2632 } 2633 2634 static void gem_set_msglevel(struct net_device *dev, u32 value) 2635 { 2636 struct gem *gp = netdev_priv(dev); 2637 gp->msg_enable = value; 2638 } 2639 2640 2641 /* Add more when I understand how to program the chip */ 2642 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */ 2643 2644 #define WOL_SUPPORTED_MASK (WAKE_MAGIC) 2645 2646 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2647 { 2648 struct gem *gp = netdev_priv(dev); 2649 2650 /* Add more when I understand how to program the chip */ 2651 if (gp->has_wol) { 2652 wol->supported = WOL_SUPPORTED_MASK; 2653 wol->wolopts = gp->wake_on_lan; 2654 } else { 2655 wol->supported = 0; 2656 wol->wolopts = 0; 2657 } 2658 } 2659 2660 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2661 { 2662 struct gem *gp = netdev_priv(dev); 2663 2664 if (!gp->has_wol) 2665 return -EOPNOTSUPP; 2666 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK; 2667 return 0; 2668 } 2669 2670 static const struct ethtool_ops gem_ethtool_ops = { 2671 .get_drvinfo = gem_get_drvinfo, 2672 .get_link = ethtool_op_get_link, 2673 .get_settings = gem_get_settings, 2674 .set_settings = gem_set_settings, 2675 .nway_reset = gem_nway_reset, 2676 .get_msglevel = gem_get_msglevel, 2677 .set_msglevel = gem_set_msglevel, 2678 .get_wol = gem_get_wol, 2679 .set_wol = gem_set_wol, 2680 }; 2681 2682 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2683 { 2684 struct gem *gp = netdev_priv(dev); 2685 struct mii_ioctl_data *data = if_mii(ifr); 2686 int rc = -EOPNOTSUPP; 2687 2688 /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that 2689 * netif_device_present() is true and holds rtnl_lock for us 2690 * so we have nothing to worry about 2691 */ 2692 2693 switch (cmd) { 2694 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 2695 data->phy_id = gp->mii_phy_addr; 2696 /* Fallthrough... */ 2697 2698 case SIOCGMIIREG: /* Read MII PHY register. */ 2699 data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f, 2700 data->reg_num & 0x1f); 2701 rc = 0; 2702 break; 2703 2704 case SIOCSMIIREG: /* Write MII PHY register. */ 2705 __sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f, 2706 data->val_in); 2707 rc = 0; 2708 break; 2709 } 2710 return rc; 2711 } 2712 2713 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC)) 2714 /* Fetch MAC address from vital product data of PCI ROM. */ 2715 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr) 2716 { 2717 int this_offset; 2718 2719 for (this_offset = 0x20; this_offset < len; this_offset++) { 2720 void __iomem *p = rom_base + this_offset; 2721 int i; 2722 2723 if (readb(p + 0) != 0x90 || 2724 readb(p + 1) != 0x00 || 2725 readb(p + 2) != 0x09 || 2726 readb(p + 3) != 0x4e || 2727 readb(p + 4) != 0x41 || 2728 readb(p + 5) != 0x06) 2729 continue; 2730 2731 this_offset += 6; 2732 p += 6; 2733 2734 for (i = 0; i < 6; i++) 2735 dev_addr[i] = readb(p + i); 2736 return 1; 2737 } 2738 return 0; 2739 } 2740 2741 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr) 2742 { 2743 size_t size; 2744 void __iomem *p = pci_map_rom(pdev, &size); 2745 2746 if (p) { 2747 int found; 2748 2749 found = readb(p) == 0x55 && 2750 readb(p + 1) == 0xaa && 2751 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr); 2752 pci_unmap_rom(pdev, p); 2753 if (found) 2754 return; 2755 } 2756 2757 /* Sun MAC prefix then 3 random bytes. */ 2758 dev_addr[0] = 0x08; 2759 dev_addr[1] = 0x00; 2760 dev_addr[2] = 0x20; 2761 get_random_bytes(dev_addr + 3, 3); 2762 } 2763 #endif /* not Sparc and not PPC */ 2764 2765 static int gem_get_device_address(struct gem *gp) 2766 { 2767 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC) 2768 struct net_device *dev = gp->dev; 2769 const unsigned char *addr; 2770 2771 addr = of_get_property(gp->of_node, "local-mac-address", NULL); 2772 if (addr == NULL) { 2773 #ifdef CONFIG_SPARC 2774 addr = idprom->id_ethaddr; 2775 #else 2776 printk("\n"); 2777 pr_err("%s: can't get mac-address\n", dev->name); 2778 return -1; 2779 #endif 2780 } 2781 memcpy(dev->dev_addr, addr, ETH_ALEN); 2782 #else 2783 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr); 2784 #endif 2785 return 0; 2786 } 2787 2788 static void gem_remove_one(struct pci_dev *pdev) 2789 { 2790 struct net_device *dev = pci_get_drvdata(pdev); 2791 2792 if (dev) { 2793 struct gem *gp = netdev_priv(dev); 2794 2795 unregister_netdev(dev); 2796 2797 /* Ensure reset task is truly gone */ 2798 cancel_work_sync(&gp->reset_task); 2799 2800 /* Free resources */ 2801 pci_free_consistent(pdev, 2802 sizeof(struct gem_init_block), 2803 gp->init_block, 2804 gp->gblock_dvma); 2805 iounmap(gp->regs); 2806 pci_release_regions(pdev); 2807 free_netdev(dev); 2808 } 2809 } 2810 2811 static const struct net_device_ops gem_netdev_ops = { 2812 .ndo_open = gem_open, 2813 .ndo_stop = gem_close, 2814 .ndo_start_xmit = gem_start_xmit, 2815 .ndo_get_stats = gem_get_stats, 2816 .ndo_set_rx_mode = gem_set_multicast, 2817 .ndo_do_ioctl = gem_ioctl, 2818 .ndo_tx_timeout = gem_tx_timeout, 2819 .ndo_change_mtu = gem_change_mtu, 2820 .ndo_validate_addr = eth_validate_addr, 2821 .ndo_set_mac_address = gem_set_mac_address, 2822 #ifdef CONFIG_NET_POLL_CONTROLLER 2823 .ndo_poll_controller = gem_poll_controller, 2824 #endif 2825 }; 2826 2827 static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 2828 { 2829 unsigned long gemreg_base, gemreg_len; 2830 struct net_device *dev; 2831 struct gem *gp; 2832 int err, pci_using_dac; 2833 2834 printk_once(KERN_INFO "%s", version); 2835 2836 /* Apple gmac note: during probe, the chip is powered up by 2837 * the arch code to allow the code below to work (and to let 2838 * the chip be probed on the config space. It won't stay powered 2839 * up until the interface is brought up however, so we can't rely 2840 * on register configuration done at this point. 2841 */ 2842 err = pci_enable_device(pdev); 2843 if (err) { 2844 pr_err("Cannot enable MMIO operation, aborting\n"); 2845 return err; 2846 } 2847 pci_set_master(pdev); 2848 2849 /* Configure DMA attributes. */ 2850 2851 /* All of the GEM documentation states that 64-bit DMA addressing 2852 * is fully supported and should work just fine. However the 2853 * front end for RIO based GEMs is different and only supports 2854 * 32-bit addressing. 2855 * 2856 * For now we assume the various PPC GEMs are 32-bit only as well. 2857 */ 2858 if (pdev->vendor == PCI_VENDOR_ID_SUN && 2859 pdev->device == PCI_DEVICE_ID_SUN_GEM && 2860 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 2861 pci_using_dac = 1; 2862 } else { 2863 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2864 if (err) { 2865 pr_err("No usable DMA configuration, aborting\n"); 2866 goto err_disable_device; 2867 } 2868 pci_using_dac = 0; 2869 } 2870 2871 gemreg_base = pci_resource_start(pdev, 0); 2872 gemreg_len = pci_resource_len(pdev, 0); 2873 2874 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) { 2875 pr_err("Cannot find proper PCI device base address, aborting\n"); 2876 err = -ENODEV; 2877 goto err_disable_device; 2878 } 2879 2880 dev = alloc_etherdev(sizeof(*gp)); 2881 if (!dev) { 2882 err = -ENOMEM; 2883 goto err_disable_device; 2884 } 2885 SET_NETDEV_DEV(dev, &pdev->dev); 2886 2887 gp = netdev_priv(dev); 2888 2889 err = pci_request_regions(pdev, DRV_NAME); 2890 if (err) { 2891 pr_err("Cannot obtain PCI resources, aborting\n"); 2892 goto err_out_free_netdev; 2893 } 2894 2895 gp->pdev = pdev; 2896 gp->dev = dev; 2897 2898 gp->msg_enable = DEFAULT_MSG; 2899 2900 init_timer(&gp->link_timer); 2901 gp->link_timer.function = gem_link_timer; 2902 gp->link_timer.data = (unsigned long) gp; 2903 2904 INIT_WORK(&gp->reset_task, gem_reset_task); 2905 2906 gp->lstate = link_down; 2907 gp->timer_ticks = 0; 2908 netif_carrier_off(dev); 2909 2910 gp->regs = ioremap(gemreg_base, gemreg_len); 2911 if (!gp->regs) { 2912 pr_err("Cannot map device registers, aborting\n"); 2913 err = -EIO; 2914 goto err_out_free_res; 2915 } 2916 2917 /* On Apple, we want a reference to the Open Firmware device-tree 2918 * node. We use it for clock control. 2919 */ 2920 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC) 2921 gp->of_node = pci_device_to_OF_node(pdev); 2922 #endif 2923 2924 /* Only Apple version supports WOL afaik */ 2925 if (pdev->vendor == PCI_VENDOR_ID_APPLE) 2926 gp->has_wol = 1; 2927 2928 /* Make sure cell is enabled */ 2929 gem_get_cell(gp); 2930 2931 /* Make sure everything is stopped and in init state */ 2932 gem_reset(gp); 2933 2934 /* Fill up the mii_phy structure (even if we won't use it) */ 2935 gp->phy_mii.dev = dev; 2936 gp->phy_mii.mdio_read = _sungem_phy_read; 2937 gp->phy_mii.mdio_write = _sungem_phy_write; 2938 #ifdef CONFIG_PPC_PMAC 2939 gp->phy_mii.platform_data = gp->of_node; 2940 #endif 2941 /* By default, we start with autoneg */ 2942 gp->want_autoneg = 1; 2943 2944 /* Check fifo sizes, PHY type, etc... */ 2945 if (gem_check_invariants(gp)) { 2946 err = -ENODEV; 2947 goto err_out_iounmap; 2948 } 2949 2950 /* It is guaranteed that the returned buffer will be at least 2951 * PAGE_SIZE aligned. 2952 */ 2953 gp->init_block = (struct gem_init_block *) 2954 pci_alloc_consistent(pdev, sizeof(struct gem_init_block), 2955 &gp->gblock_dvma); 2956 if (!gp->init_block) { 2957 pr_err("Cannot allocate init block, aborting\n"); 2958 err = -ENOMEM; 2959 goto err_out_iounmap; 2960 } 2961 2962 err = gem_get_device_address(gp); 2963 if (err) 2964 goto err_out_free_consistent; 2965 2966 dev->netdev_ops = &gem_netdev_ops; 2967 netif_napi_add(dev, &gp->napi, gem_poll, 64); 2968 dev->ethtool_ops = &gem_ethtool_ops; 2969 dev->watchdog_timeo = 5 * HZ; 2970 dev->dma = 0; 2971 2972 /* Set that now, in case PM kicks in now */ 2973 pci_set_drvdata(pdev, dev); 2974 2975 /* We can do scatter/gather and HW checksum */ 2976 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM; 2977 dev->features |= dev->hw_features | NETIF_F_RXCSUM; 2978 if (pci_using_dac) 2979 dev->features |= NETIF_F_HIGHDMA; 2980 2981 /* Register with kernel */ 2982 if (register_netdev(dev)) { 2983 pr_err("Cannot register net device, aborting\n"); 2984 err = -ENOMEM; 2985 goto err_out_free_consistent; 2986 } 2987 2988 /* Undo the get_cell with appropriate locking (we could use 2989 * ndo_init/uninit but that would be even more clumsy imho) 2990 */ 2991 rtnl_lock(); 2992 gem_put_cell(gp); 2993 rtnl_unlock(); 2994 2995 netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n", 2996 dev->dev_addr); 2997 return 0; 2998 2999 err_out_free_consistent: 3000 gem_remove_one(pdev); 3001 err_out_iounmap: 3002 gem_put_cell(gp); 3003 iounmap(gp->regs); 3004 3005 err_out_free_res: 3006 pci_release_regions(pdev); 3007 3008 err_out_free_netdev: 3009 free_netdev(dev); 3010 err_disable_device: 3011 pci_disable_device(pdev); 3012 return err; 3013 3014 } 3015 3016 3017 static struct pci_driver gem_driver = { 3018 .name = GEM_MODULE_NAME, 3019 .id_table = gem_pci_tbl, 3020 .probe = gem_init_one, 3021 .remove = gem_remove_one, 3022 #ifdef CONFIG_PM 3023 .suspend = gem_suspend, 3024 .resume = gem_resume, 3025 #endif /* CONFIG_PM */ 3026 }; 3027 3028 module_pci_driver(gem_driver); 3029