xref: /linux/drivers/net/ethernet/sun/sungem.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2  * sungem.c: Sun GEM ethernet driver.
3  *
4  * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
5  *
6  * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7  * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8  * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
9  *
10  * NAPI and NETPOLL support
11  * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
12  *
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/fcntl.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/in.h>
24 #include <linux/sched.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 #include <linux/crc32.h>
37 #include <linux/random.h>
38 #include <linux/workqueue.h>
39 #include <linux/if_vlan.h>
40 #include <linux/bitops.h>
41 #include <linux/mm.h>
42 #include <linux/gfp.h>
43 
44 #include <asm/io.h>
45 #include <asm/byteorder.h>
46 #include <asm/uaccess.h>
47 #include <asm/irq.h>
48 
49 #ifdef CONFIG_SPARC
50 #include <asm/idprom.h>
51 #include <asm/prom.h>
52 #endif
53 
54 #ifdef CONFIG_PPC_PMAC
55 #include <asm/pci-bridge.h>
56 #include <asm/prom.h>
57 #include <asm/machdep.h>
58 #include <asm/pmac_feature.h>
59 #endif
60 
61 #include <linux/sungem_phy.h>
62 #include "sungem.h"
63 
64 /* Stripping FCS is causing problems, disabled for now */
65 #undef STRIP_FCS
66 
67 #define DEFAULT_MSG	(NETIF_MSG_DRV		| \
68 			 NETIF_MSG_PROBE	| \
69 			 NETIF_MSG_LINK)
70 
71 #define ADVERTISE_MASK	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
72 			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
73 			 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
74 			 SUPPORTED_Pause | SUPPORTED_Autoneg)
75 
76 #define DRV_NAME	"sungem"
77 #define DRV_VERSION	"1.0"
78 #define DRV_AUTHOR	"David S. Miller <davem@redhat.com>"
79 
80 static char version[] __devinitdata =
81         DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
82 
83 MODULE_AUTHOR(DRV_AUTHOR);
84 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
85 MODULE_LICENSE("GPL");
86 
87 #define GEM_MODULE_NAME	"gem"
88 
89 static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl) = {
90 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
91 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
92 
93 	/* These models only differ from the original GEM in
94 	 * that their tx/rx fifos are of a different size and
95 	 * they only support 10/100 speeds. -DaveM
96 	 *
97 	 * Apple's GMAC does support gigabit on machines with
98 	 * the BCM54xx PHYs. -BenH
99 	 */
100 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
101 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
102 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
103 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
104 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
105 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
106 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
107 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
108 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
109 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
110 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
111 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
112 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
113 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
114 	{0, }
115 };
116 
117 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
118 
119 static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
120 {
121 	u32 cmd;
122 	int limit = 10000;
123 
124 	cmd  = (1 << 30);
125 	cmd |= (2 << 28);
126 	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
127 	cmd |= (reg << 18) & MIF_FRAME_REGAD;
128 	cmd |= (MIF_FRAME_TAMSB);
129 	writel(cmd, gp->regs + MIF_FRAME);
130 
131 	while (--limit) {
132 		cmd = readl(gp->regs + MIF_FRAME);
133 		if (cmd & MIF_FRAME_TALSB)
134 			break;
135 
136 		udelay(10);
137 	}
138 
139 	if (!limit)
140 		cmd = 0xffff;
141 
142 	return cmd & MIF_FRAME_DATA;
143 }
144 
145 static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
146 {
147 	struct gem *gp = netdev_priv(dev);
148 	return __phy_read(gp, mii_id, reg);
149 }
150 
151 static inline u16 phy_read(struct gem *gp, int reg)
152 {
153 	return __phy_read(gp, gp->mii_phy_addr, reg);
154 }
155 
156 static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
157 {
158 	u32 cmd;
159 	int limit = 10000;
160 
161 	cmd  = (1 << 30);
162 	cmd |= (1 << 28);
163 	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
164 	cmd |= (reg << 18) & MIF_FRAME_REGAD;
165 	cmd |= (MIF_FRAME_TAMSB);
166 	cmd |= (val & MIF_FRAME_DATA);
167 	writel(cmd, gp->regs + MIF_FRAME);
168 
169 	while (limit--) {
170 		cmd = readl(gp->regs + MIF_FRAME);
171 		if (cmd & MIF_FRAME_TALSB)
172 			break;
173 
174 		udelay(10);
175 	}
176 }
177 
178 static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
179 {
180 	struct gem *gp = netdev_priv(dev);
181 	__phy_write(gp, mii_id, reg, val & 0xffff);
182 }
183 
184 static inline void phy_write(struct gem *gp, int reg, u16 val)
185 {
186 	__phy_write(gp, gp->mii_phy_addr, reg, val);
187 }
188 
189 static inline void gem_enable_ints(struct gem *gp)
190 {
191 	/* Enable all interrupts but TXDONE */
192 	writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
193 }
194 
195 static inline void gem_disable_ints(struct gem *gp)
196 {
197 	/* Disable all interrupts, including TXDONE */
198 	writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
199 	(void)readl(gp->regs + GREG_IMASK); /* write posting */
200 }
201 
202 static void gem_get_cell(struct gem *gp)
203 {
204 	BUG_ON(gp->cell_enabled < 0);
205 	gp->cell_enabled++;
206 #ifdef CONFIG_PPC_PMAC
207 	if (gp->cell_enabled == 1) {
208 		mb();
209 		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
210 		udelay(10);
211 	}
212 #endif /* CONFIG_PPC_PMAC */
213 }
214 
215 /* Turn off the chip's clock */
216 static void gem_put_cell(struct gem *gp)
217 {
218 	BUG_ON(gp->cell_enabled <= 0);
219 	gp->cell_enabled--;
220 #ifdef CONFIG_PPC_PMAC
221 	if (gp->cell_enabled == 0) {
222 		mb();
223 		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
224 		udelay(10);
225 	}
226 #endif /* CONFIG_PPC_PMAC */
227 }
228 
229 static inline void gem_netif_stop(struct gem *gp)
230 {
231 	gp->dev->trans_start = jiffies;	/* prevent tx timeout */
232 	napi_disable(&gp->napi);
233 	netif_tx_disable(gp->dev);
234 }
235 
236 static inline void gem_netif_start(struct gem *gp)
237 {
238 	/* NOTE: unconditional netif_wake_queue is only
239 	 * appropriate so long as all callers are assured to
240 	 * have free tx slots.
241 	 */
242 	netif_wake_queue(gp->dev);
243 	napi_enable(&gp->napi);
244 }
245 
246 static void gem_schedule_reset(struct gem *gp)
247 {
248 	gp->reset_task_pending = 1;
249 	schedule_work(&gp->reset_task);
250 }
251 
252 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
253 {
254 	if (netif_msg_intr(gp))
255 		printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
256 }
257 
258 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
259 {
260 	u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
261 	u32 pcs_miistat;
262 
263 	if (netif_msg_intr(gp))
264 		printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
265 			gp->dev->name, pcs_istat);
266 
267 	if (!(pcs_istat & PCS_ISTAT_LSC)) {
268 		netdev_err(dev, "PCS irq but no link status change???\n");
269 		return 0;
270 	}
271 
272 	/* The link status bit latches on zero, so you must
273 	 * read it twice in such a case to see a transition
274 	 * to the link being up.
275 	 */
276 	pcs_miistat = readl(gp->regs + PCS_MIISTAT);
277 	if (!(pcs_miistat & PCS_MIISTAT_LS))
278 		pcs_miistat |=
279 			(readl(gp->regs + PCS_MIISTAT) &
280 			 PCS_MIISTAT_LS);
281 
282 	if (pcs_miistat & PCS_MIISTAT_ANC) {
283 		/* The remote-fault indication is only valid
284 		 * when autoneg has completed.
285 		 */
286 		if (pcs_miistat & PCS_MIISTAT_RF)
287 			netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
288 		else
289 			netdev_info(dev, "PCS AutoNEG complete\n");
290 	}
291 
292 	if (pcs_miistat & PCS_MIISTAT_LS) {
293 		netdev_info(dev, "PCS link is now up\n");
294 		netif_carrier_on(gp->dev);
295 	} else {
296 		netdev_info(dev, "PCS link is now down\n");
297 		netif_carrier_off(gp->dev);
298 		/* If this happens and the link timer is not running,
299 		 * reset so we re-negotiate.
300 		 */
301 		if (!timer_pending(&gp->link_timer))
302 			return 1;
303 	}
304 
305 	return 0;
306 }
307 
308 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
309 {
310 	u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
311 
312 	if (netif_msg_intr(gp))
313 		printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
314 			gp->dev->name, txmac_stat);
315 
316 	/* Defer timer expiration is quite normal,
317 	 * don't even log the event.
318 	 */
319 	if ((txmac_stat & MAC_TXSTAT_DTE) &&
320 	    !(txmac_stat & ~MAC_TXSTAT_DTE))
321 		return 0;
322 
323 	if (txmac_stat & MAC_TXSTAT_URUN) {
324 		netdev_err(dev, "TX MAC xmit underrun\n");
325 		dev->stats.tx_fifo_errors++;
326 	}
327 
328 	if (txmac_stat & MAC_TXSTAT_MPE) {
329 		netdev_err(dev, "TX MAC max packet size error\n");
330 		dev->stats.tx_errors++;
331 	}
332 
333 	/* The rest are all cases of one of the 16-bit TX
334 	 * counters expiring.
335 	 */
336 	if (txmac_stat & MAC_TXSTAT_NCE)
337 		dev->stats.collisions += 0x10000;
338 
339 	if (txmac_stat & MAC_TXSTAT_ECE) {
340 		dev->stats.tx_aborted_errors += 0x10000;
341 		dev->stats.collisions += 0x10000;
342 	}
343 
344 	if (txmac_stat & MAC_TXSTAT_LCE) {
345 		dev->stats.tx_aborted_errors += 0x10000;
346 		dev->stats.collisions += 0x10000;
347 	}
348 
349 	/* We do not keep track of MAC_TXSTAT_FCE and
350 	 * MAC_TXSTAT_PCE events.
351 	 */
352 	return 0;
353 }
354 
355 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
356  * so we do the following.
357  *
358  * If any part of the reset goes wrong, we return 1 and that causes the
359  * whole chip to be reset.
360  */
361 static int gem_rxmac_reset(struct gem *gp)
362 {
363 	struct net_device *dev = gp->dev;
364 	int limit, i;
365 	u64 desc_dma;
366 	u32 val;
367 
368 	/* First, reset & disable MAC RX. */
369 	writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
370 	for (limit = 0; limit < 5000; limit++) {
371 		if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
372 			break;
373 		udelay(10);
374 	}
375 	if (limit == 5000) {
376 		netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
377 		return 1;
378 	}
379 
380 	writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
381 	       gp->regs + MAC_RXCFG);
382 	for (limit = 0; limit < 5000; limit++) {
383 		if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
384 			break;
385 		udelay(10);
386 	}
387 	if (limit == 5000) {
388 		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
389 		return 1;
390 	}
391 
392 	/* Second, disable RX DMA. */
393 	writel(0, gp->regs + RXDMA_CFG);
394 	for (limit = 0; limit < 5000; limit++) {
395 		if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
396 			break;
397 		udelay(10);
398 	}
399 	if (limit == 5000) {
400 		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
401 		return 1;
402 	}
403 
404 	mdelay(5);
405 
406 	/* Execute RX reset command. */
407 	writel(gp->swrst_base | GREG_SWRST_RXRST,
408 	       gp->regs + GREG_SWRST);
409 	for (limit = 0; limit < 5000; limit++) {
410 		if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
411 			break;
412 		udelay(10);
413 	}
414 	if (limit == 5000) {
415 		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
416 		return 1;
417 	}
418 
419 	/* Refresh the RX ring. */
420 	for (i = 0; i < RX_RING_SIZE; i++) {
421 		struct gem_rxd *rxd = &gp->init_block->rxd[i];
422 
423 		if (gp->rx_skbs[i] == NULL) {
424 			netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
425 			return 1;
426 		}
427 
428 		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
429 	}
430 	gp->rx_new = gp->rx_old = 0;
431 
432 	/* Now we must reprogram the rest of RX unit. */
433 	desc_dma = (u64) gp->gblock_dvma;
434 	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
435 	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
436 	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
437 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
438 	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
439 	       ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
440 	writel(val, gp->regs + RXDMA_CFG);
441 	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
442 		writel(((5 & RXDMA_BLANK_IPKTS) |
443 			((8 << 12) & RXDMA_BLANK_ITIME)),
444 		       gp->regs + RXDMA_BLANK);
445 	else
446 		writel(((5 & RXDMA_BLANK_IPKTS) |
447 			((4 << 12) & RXDMA_BLANK_ITIME)),
448 		       gp->regs + RXDMA_BLANK);
449 	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
450 	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
451 	writel(val, gp->regs + RXDMA_PTHRESH);
452 	val = readl(gp->regs + RXDMA_CFG);
453 	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
454 	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
455 	val = readl(gp->regs + MAC_RXCFG);
456 	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
457 
458 	return 0;
459 }
460 
461 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
462 {
463 	u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
464 	int ret = 0;
465 
466 	if (netif_msg_intr(gp))
467 		printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
468 			gp->dev->name, rxmac_stat);
469 
470 	if (rxmac_stat & MAC_RXSTAT_OFLW) {
471 		u32 smac = readl(gp->regs + MAC_SMACHINE);
472 
473 		netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
474 		dev->stats.rx_over_errors++;
475 		dev->stats.rx_fifo_errors++;
476 
477 		ret = gem_rxmac_reset(gp);
478 	}
479 
480 	if (rxmac_stat & MAC_RXSTAT_ACE)
481 		dev->stats.rx_frame_errors += 0x10000;
482 
483 	if (rxmac_stat & MAC_RXSTAT_CCE)
484 		dev->stats.rx_crc_errors += 0x10000;
485 
486 	if (rxmac_stat & MAC_RXSTAT_LCE)
487 		dev->stats.rx_length_errors += 0x10000;
488 
489 	/* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
490 	 * events.
491 	 */
492 	return ret;
493 }
494 
495 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
496 {
497 	u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
498 
499 	if (netif_msg_intr(gp))
500 		printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
501 			gp->dev->name, mac_cstat);
502 
503 	/* This interrupt is just for pause frame and pause
504 	 * tracking.  It is useful for diagnostics and debug
505 	 * but probably by default we will mask these events.
506 	 */
507 	if (mac_cstat & MAC_CSTAT_PS)
508 		gp->pause_entered++;
509 
510 	if (mac_cstat & MAC_CSTAT_PRCV)
511 		gp->pause_last_time_recvd = (mac_cstat >> 16);
512 
513 	return 0;
514 }
515 
516 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
517 {
518 	u32 mif_status = readl(gp->regs + MIF_STATUS);
519 	u32 reg_val, changed_bits;
520 
521 	reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
522 	changed_bits = (mif_status & MIF_STATUS_STAT);
523 
524 	gem_handle_mif_event(gp, reg_val, changed_bits);
525 
526 	return 0;
527 }
528 
529 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
530 {
531 	u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
532 
533 	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
534 	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
535 		netdev_err(dev, "PCI error [%04x]", pci_estat);
536 
537 		if (pci_estat & GREG_PCIESTAT_BADACK)
538 			pr_cont(" <No ACK64# during ABS64 cycle>");
539 		if (pci_estat & GREG_PCIESTAT_DTRTO)
540 			pr_cont(" <Delayed transaction timeout>");
541 		if (pci_estat & GREG_PCIESTAT_OTHER)
542 			pr_cont(" <other>");
543 		pr_cont("\n");
544 	} else {
545 		pci_estat |= GREG_PCIESTAT_OTHER;
546 		netdev_err(dev, "PCI error\n");
547 	}
548 
549 	if (pci_estat & GREG_PCIESTAT_OTHER) {
550 		u16 pci_cfg_stat;
551 
552 		/* Interrogate PCI config space for the
553 		 * true cause.
554 		 */
555 		pci_read_config_word(gp->pdev, PCI_STATUS,
556 				     &pci_cfg_stat);
557 		netdev_err(dev, "Read PCI cfg space status [%04x]\n",
558 			   pci_cfg_stat);
559 		if (pci_cfg_stat & PCI_STATUS_PARITY)
560 			netdev_err(dev, "PCI parity error detected\n");
561 		if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
562 			netdev_err(dev, "PCI target abort\n");
563 		if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
564 			netdev_err(dev, "PCI master acks target abort\n");
565 		if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
566 			netdev_err(dev, "PCI master abort\n");
567 		if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
568 			netdev_err(dev, "PCI system error SERR#\n");
569 		if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
570 			netdev_err(dev, "PCI parity error\n");
571 
572 		/* Write the error bits back to clear them. */
573 		pci_cfg_stat &= (PCI_STATUS_PARITY |
574 				 PCI_STATUS_SIG_TARGET_ABORT |
575 				 PCI_STATUS_REC_TARGET_ABORT |
576 				 PCI_STATUS_REC_MASTER_ABORT |
577 				 PCI_STATUS_SIG_SYSTEM_ERROR |
578 				 PCI_STATUS_DETECTED_PARITY);
579 		pci_write_config_word(gp->pdev,
580 				      PCI_STATUS, pci_cfg_stat);
581 	}
582 
583 	/* For all PCI errors, we should reset the chip. */
584 	return 1;
585 }
586 
587 /* All non-normal interrupt conditions get serviced here.
588  * Returns non-zero if we should just exit the interrupt
589  * handler right now (ie. if we reset the card which invalidates
590  * all of the other original irq status bits).
591  */
592 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
593 {
594 	if (gem_status & GREG_STAT_RXNOBUF) {
595 		/* Frame arrived, no free RX buffers available. */
596 		if (netif_msg_rx_err(gp))
597 			printk(KERN_DEBUG "%s: no buffer for rx frame\n",
598 				gp->dev->name);
599 		dev->stats.rx_dropped++;
600 	}
601 
602 	if (gem_status & GREG_STAT_RXTAGERR) {
603 		/* corrupt RX tag framing */
604 		if (netif_msg_rx_err(gp))
605 			printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
606 				gp->dev->name);
607 		dev->stats.rx_errors++;
608 
609 		return 1;
610 	}
611 
612 	if (gem_status & GREG_STAT_PCS) {
613 		if (gem_pcs_interrupt(dev, gp, gem_status))
614 			return 1;
615 	}
616 
617 	if (gem_status & GREG_STAT_TXMAC) {
618 		if (gem_txmac_interrupt(dev, gp, gem_status))
619 			return 1;
620 	}
621 
622 	if (gem_status & GREG_STAT_RXMAC) {
623 		if (gem_rxmac_interrupt(dev, gp, gem_status))
624 			return 1;
625 	}
626 
627 	if (gem_status & GREG_STAT_MAC) {
628 		if (gem_mac_interrupt(dev, gp, gem_status))
629 			return 1;
630 	}
631 
632 	if (gem_status & GREG_STAT_MIF) {
633 		if (gem_mif_interrupt(dev, gp, gem_status))
634 			return 1;
635 	}
636 
637 	if (gem_status & GREG_STAT_PCIERR) {
638 		if (gem_pci_interrupt(dev, gp, gem_status))
639 			return 1;
640 	}
641 
642 	return 0;
643 }
644 
645 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
646 {
647 	int entry, limit;
648 
649 	entry = gp->tx_old;
650 	limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
651 	while (entry != limit) {
652 		struct sk_buff *skb;
653 		struct gem_txd *txd;
654 		dma_addr_t dma_addr;
655 		u32 dma_len;
656 		int frag;
657 
658 		if (netif_msg_tx_done(gp))
659 			printk(KERN_DEBUG "%s: tx done, slot %d\n",
660 				gp->dev->name, entry);
661 		skb = gp->tx_skbs[entry];
662 		if (skb_shinfo(skb)->nr_frags) {
663 			int last = entry + skb_shinfo(skb)->nr_frags;
664 			int walk = entry;
665 			int incomplete = 0;
666 
667 			last &= (TX_RING_SIZE - 1);
668 			for (;;) {
669 				walk = NEXT_TX(walk);
670 				if (walk == limit)
671 					incomplete = 1;
672 				if (walk == last)
673 					break;
674 			}
675 			if (incomplete)
676 				break;
677 		}
678 		gp->tx_skbs[entry] = NULL;
679 		dev->stats.tx_bytes += skb->len;
680 
681 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
682 			txd = &gp->init_block->txd[entry];
683 
684 			dma_addr = le64_to_cpu(txd->buffer);
685 			dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
686 
687 			pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
688 			entry = NEXT_TX(entry);
689 		}
690 
691 		dev->stats.tx_packets++;
692 		dev_kfree_skb(skb);
693 	}
694 	gp->tx_old = entry;
695 
696 	/* Need to make the tx_old update visible to gem_start_xmit()
697 	 * before checking for netif_queue_stopped().  Without the
698 	 * memory barrier, there is a small possibility that gem_start_xmit()
699 	 * will miss it and cause the queue to be stopped forever.
700 	 */
701 	smp_mb();
702 
703 	if (unlikely(netif_queue_stopped(dev) &&
704 		     TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
705 		struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
706 
707 		__netif_tx_lock(txq, smp_processor_id());
708 		if (netif_queue_stopped(dev) &&
709 		    TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
710 			netif_wake_queue(dev);
711 		__netif_tx_unlock(txq);
712 	}
713 }
714 
715 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
716 {
717 	int cluster_start, curr, count, kick;
718 
719 	cluster_start = curr = (gp->rx_new & ~(4 - 1));
720 	count = 0;
721 	kick = -1;
722 	wmb();
723 	while (curr != limit) {
724 		curr = NEXT_RX(curr);
725 		if (++count == 4) {
726 			struct gem_rxd *rxd =
727 				&gp->init_block->rxd[cluster_start];
728 			for (;;) {
729 				rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
730 				rxd++;
731 				cluster_start = NEXT_RX(cluster_start);
732 				if (cluster_start == curr)
733 					break;
734 			}
735 			kick = curr;
736 			count = 0;
737 		}
738 	}
739 	if (kick >= 0) {
740 		mb();
741 		writel(kick, gp->regs + RXDMA_KICK);
742 	}
743 }
744 
745 #define ALIGNED_RX_SKB_ADDR(addr) \
746         ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
747 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
748 						gfp_t gfp_flags)
749 {
750 	struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
751 
752 	if (likely(skb)) {
753 		unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
754 		skb_reserve(skb, offset);
755 	}
756 	return skb;
757 }
758 
759 static int gem_rx(struct gem *gp, int work_to_do)
760 {
761 	struct net_device *dev = gp->dev;
762 	int entry, drops, work_done = 0;
763 	u32 done;
764 	__sum16 csum;
765 
766 	if (netif_msg_rx_status(gp))
767 		printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
768 			gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
769 
770 	entry = gp->rx_new;
771 	drops = 0;
772 	done = readl(gp->regs + RXDMA_DONE);
773 	for (;;) {
774 		struct gem_rxd *rxd = &gp->init_block->rxd[entry];
775 		struct sk_buff *skb;
776 		u64 status = le64_to_cpu(rxd->status_word);
777 		dma_addr_t dma_addr;
778 		int len;
779 
780 		if ((status & RXDCTRL_OWN) != 0)
781 			break;
782 
783 		if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
784 			break;
785 
786 		/* When writing back RX descriptor, GEM writes status
787 		 * then buffer address, possibly in separate transactions.
788 		 * If we don't wait for the chip to write both, we could
789 		 * post a new buffer to this descriptor then have GEM spam
790 		 * on the buffer address.  We sync on the RX completion
791 		 * register to prevent this from happening.
792 		 */
793 		if (entry == done) {
794 			done = readl(gp->regs + RXDMA_DONE);
795 			if (entry == done)
796 				break;
797 		}
798 
799 		/* We can now account for the work we're about to do */
800 		work_done++;
801 
802 		skb = gp->rx_skbs[entry];
803 
804 		len = (status & RXDCTRL_BUFSZ) >> 16;
805 		if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
806 			dev->stats.rx_errors++;
807 			if (len < ETH_ZLEN)
808 				dev->stats.rx_length_errors++;
809 			if (len & RXDCTRL_BAD)
810 				dev->stats.rx_crc_errors++;
811 
812 			/* We'll just return it to GEM. */
813 		drop_it:
814 			dev->stats.rx_dropped++;
815 			goto next;
816 		}
817 
818 		dma_addr = le64_to_cpu(rxd->buffer);
819 		if (len > RX_COPY_THRESHOLD) {
820 			struct sk_buff *new_skb;
821 
822 			new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
823 			if (new_skb == NULL) {
824 				drops++;
825 				goto drop_it;
826 			}
827 			pci_unmap_page(gp->pdev, dma_addr,
828 				       RX_BUF_ALLOC_SIZE(gp),
829 				       PCI_DMA_FROMDEVICE);
830 			gp->rx_skbs[entry] = new_skb;
831 			skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
832 			rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
833 							       virt_to_page(new_skb->data),
834 							       offset_in_page(new_skb->data),
835 							       RX_BUF_ALLOC_SIZE(gp),
836 							       PCI_DMA_FROMDEVICE));
837 			skb_reserve(new_skb, RX_OFFSET);
838 
839 			/* Trim the original skb for the netif. */
840 			skb_trim(skb, len);
841 		} else {
842 			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
843 
844 			if (copy_skb == NULL) {
845 				drops++;
846 				goto drop_it;
847 			}
848 
849 			skb_reserve(copy_skb, 2);
850 			skb_put(copy_skb, len);
851 			pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
852 			skb_copy_from_linear_data(skb, copy_skb->data, len);
853 			pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
854 
855 			/* We'll reuse the original ring buffer. */
856 			skb = copy_skb;
857 		}
858 
859 		csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
860 		skb->csum = csum_unfold(csum);
861 		skb->ip_summed = CHECKSUM_COMPLETE;
862 		skb->protocol = eth_type_trans(skb, gp->dev);
863 
864 		napi_gro_receive(&gp->napi, skb);
865 
866 		dev->stats.rx_packets++;
867 		dev->stats.rx_bytes += len;
868 
869 	next:
870 		entry = NEXT_RX(entry);
871 	}
872 
873 	gem_post_rxds(gp, entry);
874 
875 	gp->rx_new = entry;
876 
877 	if (drops)
878 		netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
879 
880 	return work_done;
881 }
882 
883 static int gem_poll(struct napi_struct *napi, int budget)
884 {
885 	struct gem *gp = container_of(napi, struct gem, napi);
886 	struct net_device *dev = gp->dev;
887 	int work_done;
888 
889 	work_done = 0;
890 	do {
891 		/* Handle anomalies */
892 		if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
893 			struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
894 			int reset;
895 
896 			/* We run the abnormal interrupt handling code with
897 			 * the Tx lock. It only resets the Rx portion of the
898 			 * chip, but we need to guard it against DMA being
899 			 * restarted by the link poll timer
900 			 */
901 			__netif_tx_lock(txq, smp_processor_id());
902 			reset = gem_abnormal_irq(dev, gp, gp->status);
903 			__netif_tx_unlock(txq);
904 			if (reset) {
905 				gem_schedule_reset(gp);
906 				napi_complete(napi);
907 				return work_done;
908 			}
909 		}
910 
911 		/* Run TX completion thread */
912 		gem_tx(dev, gp, gp->status);
913 
914 		/* Run RX thread. We don't use any locking here,
915 		 * code willing to do bad things - like cleaning the
916 		 * rx ring - must call napi_disable(), which
917 		 * schedule_timeout()'s if polling is already disabled.
918 		 */
919 		work_done += gem_rx(gp, budget - work_done);
920 
921 		if (work_done >= budget)
922 			return work_done;
923 
924 		gp->status = readl(gp->regs + GREG_STAT);
925 	} while (gp->status & GREG_STAT_NAPI);
926 
927 	napi_complete(napi);
928 	gem_enable_ints(gp);
929 
930 	return work_done;
931 }
932 
933 static irqreturn_t gem_interrupt(int irq, void *dev_id)
934 {
935 	struct net_device *dev = dev_id;
936 	struct gem *gp = netdev_priv(dev);
937 
938 	if (napi_schedule_prep(&gp->napi)) {
939 		u32 gem_status = readl(gp->regs + GREG_STAT);
940 
941 		if (unlikely(gem_status == 0)) {
942 			napi_enable(&gp->napi);
943 			return IRQ_NONE;
944 		}
945 		if (netif_msg_intr(gp))
946 			printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
947 			       gp->dev->name, gem_status);
948 
949 		gp->status = gem_status;
950 		gem_disable_ints(gp);
951 		__napi_schedule(&gp->napi);
952 	}
953 
954 	/* If polling was disabled at the time we received that
955 	 * interrupt, we may return IRQ_HANDLED here while we
956 	 * should return IRQ_NONE. No big deal...
957 	 */
958 	return IRQ_HANDLED;
959 }
960 
961 #ifdef CONFIG_NET_POLL_CONTROLLER
962 static void gem_poll_controller(struct net_device *dev)
963 {
964 	struct gem *gp = netdev_priv(dev);
965 
966 	disable_irq(gp->pdev->irq);
967 	gem_interrupt(gp->pdev->irq, dev);
968 	enable_irq(gp->pdev->irq);
969 }
970 #endif
971 
972 static void gem_tx_timeout(struct net_device *dev)
973 {
974 	struct gem *gp = netdev_priv(dev);
975 
976 	netdev_err(dev, "transmit timed out, resetting\n");
977 
978 	netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
979 		   readl(gp->regs + TXDMA_CFG),
980 		   readl(gp->regs + MAC_TXSTAT),
981 		   readl(gp->regs + MAC_TXCFG));
982 	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
983 		   readl(gp->regs + RXDMA_CFG),
984 		   readl(gp->regs + MAC_RXSTAT),
985 		   readl(gp->regs + MAC_RXCFG));
986 
987 	gem_schedule_reset(gp);
988 }
989 
990 static __inline__ int gem_intme(int entry)
991 {
992 	/* Algorithm: IRQ every 1/2 of descriptors. */
993 	if (!(entry & ((TX_RING_SIZE>>1)-1)))
994 		return 1;
995 
996 	return 0;
997 }
998 
999 static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
1000 				  struct net_device *dev)
1001 {
1002 	struct gem *gp = netdev_priv(dev);
1003 	int entry;
1004 	u64 ctrl;
1005 
1006 	ctrl = 0;
1007 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1008 		const u64 csum_start_off = skb_checksum_start_offset(skb);
1009 		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1010 
1011 		ctrl = (TXDCTRL_CENAB |
1012 			(csum_start_off << 15) |
1013 			(csum_stuff_off << 21));
1014 	}
1015 
1016 	if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1017 		/* This is a hard error, log it. */
1018 		if (!netif_queue_stopped(dev)) {
1019 			netif_stop_queue(dev);
1020 			netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1021 		}
1022 		return NETDEV_TX_BUSY;
1023 	}
1024 
1025 	entry = gp->tx_new;
1026 	gp->tx_skbs[entry] = skb;
1027 
1028 	if (skb_shinfo(skb)->nr_frags == 0) {
1029 		struct gem_txd *txd = &gp->init_block->txd[entry];
1030 		dma_addr_t mapping;
1031 		u32 len;
1032 
1033 		len = skb->len;
1034 		mapping = pci_map_page(gp->pdev,
1035 				       virt_to_page(skb->data),
1036 				       offset_in_page(skb->data),
1037 				       len, PCI_DMA_TODEVICE);
1038 		ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1039 		if (gem_intme(entry))
1040 			ctrl |= TXDCTRL_INTME;
1041 		txd->buffer = cpu_to_le64(mapping);
1042 		wmb();
1043 		txd->control_word = cpu_to_le64(ctrl);
1044 		entry = NEXT_TX(entry);
1045 	} else {
1046 		struct gem_txd *txd;
1047 		u32 first_len;
1048 		u64 intme;
1049 		dma_addr_t first_mapping;
1050 		int frag, first_entry = entry;
1051 
1052 		intme = 0;
1053 		if (gem_intme(entry))
1054 			intme |= TXDCTRL_INTME;
1055 
1056 		/* We must give this initial chunk to the device last.
1057 		 * Otherwise we could race with the device.
1058 		 */
1059 		first_len = skb_headlen(skb);
1060 		first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1061 					     offset_in_page(skb->data),
1062 					     first_len, PCI_DMA_TODEVICE);
1063 		entry = NEXT_TX(entry);
1064 
1065 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1066 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1067 			u32 len;
1068 			dma_addr_t mapping;
1069 			u64 this_ctrl;
1070 
1071 			len = skb_frag_size(this_frag);
1072 			mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1073 						   0, len, DMA_TO_DEVICE);
1074 			this_ctrl = ctrl;
1075 			if (frag == skb_shinfo(skb)->nr_frags - 1)
1076 				this_ctrl |= TXDCTRL_EOF;
1077 
1078 			txd = &gp->init_block->txd[entry];
1079 			txd->buffer = cpu_to_le64(mapping);
1080 			wmb();
1081 			txd->control_word = cpu_to_le64(this_ctrl | len);
1082 
1083 			if (gem_intme(entry))
1084 				intme |= TXDCTRL_INTME;
1085 
1086 			entry = NEXT_TX(entry);
1087 		}
1088 		txd = &gp->init_block->txd[first_entry];
1089 		txd->buffer = cpu_to_le64(first_mapping);
1090 		wmb();
1091 		txd->control_word =
1092 			cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1093 	}
1094 
1095 	gp->tx_new = entry;
1096 	if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1097 		netif_stop_queue(dev);
1098 
1099 		/* netif_stop_queue() must be done before checking
1100 		 * checking tx index in TX_BUFFS_AVAIL() below, because
1101 		 * in gem_tx(), we update tx_old before checking for
1102 		 * netif_queue_stopped().
1103 		 */
1104 		smp_mb();
1105 		if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1106 			netif_wake_queue(dev);
1107 	}
1108 	if (netif_msg_tx_queued(gp))
1109 		printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1110 		       dev->name, entry, skb->len);
1111 	mb();
1112 	writel(gp->tx_new, gp->regs + TXDMA_KICK);
1113 
1114 	return NETDEV_TX_OK;
1115 }
1116 
1117 static void gem_pcs_reset(struct gem *gp)
1118 {
1119 	int limit;
1120 	u32 val;
1121 
1122 	/* Reset PCS unit. */
1123 	val = readl(gp->regs + PCS_MIICTRL);
1124 	val |= PCS_MIICTRL_RST;
1125 	writel(val, gp->regs + PCS_MIICTRL);
1126 
1127 	limit = 32;
1128 	while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1129 		udelay(100);
1130 		if (limit-- <= 0)
1131 			break;
1132 	}
1133 	if (limit < 0)
1134 		netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1135 }
1136 
1137 static void gem_pcs_reinit_adv(struct gem *gp)
1138 {
1139 	u32 val;
1140 
1141 	/* Make sure PCS is disabled while changing advertisement
1142 	 * configuration.
1143 	 */
1144 	val = readl(gp->regs + PCS_CFG);
1145 	val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1146 	writel(val, gp->regs + PCS_CFG);
1147 
1148 	/* Advertise all capabilities except asymmetric
1149 	 * pause.
1150 	 */
1151 	val = readl(gp->regs + PCS_MIIADV);
1152 	val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1153 		PCS_MIIADV_SP | PCS_MIIADV_AP);
1154 	writel(val, gp->regs + PCS_MIIADV);
1155 
1156 	/* Enable and restart auto-negotiation, disable wrapback/loopback,
1157 	 * and re-enable PCS.
1158 	 */
1159 	val = readl(gp->regs + PCS_MIICTRL);
1160 	val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1161 	val &= ~PCS_MIICTRL_WB;
1162 	writel(val, gp->regs + PCS_MIICTRL);
1163 
1164 	val = readl(gp->regs + PCS_CFG);
1165 	val |= PCS_CFG_ENABLE;
1166 	writel(val, gp->regs + PCS_CFG);
1167 
1168 	/* Make sure serialink loopback is off.  The meaning
1169 	 * of this bit is logically inverted based upon whether
1170 	 * you are in Serialink or SERDES mode.
1171 	 */
1172 	val = readl(gp->regs + PCS_SCTRL);
1173 	if (gp->phy_type == phy_serialink)
1174 		val &= ~PCS_SCTRL_LOOP;
1175 	else
1176 		val |= PCS_SCTRL_LOOP;
1177 	writel(val, gp->regs + PCS_SCTRL);
1178 }
1179 
1180 #define STOP_TRIES 32
1181 
1182 static void gem_reset(struct gem *gp)
1183 {
1184 	int limit;
1185 	u32 val;
1186 
1187 	/* Make sure we won't get any more interrupts */
1188 	writel(0xffffffff, gp->regs + GREG_IMASK);
1189 
1190 	/* Reset the chip */
1191 	writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1192 	       gp->regs + GREG_SWRST);
1193 
1194 	limit = STOP_TRIES;
1195 
1196 	do {
1197 		udelay(20);
1198 		val = readl(gp->regs + GREG_SWRST);
1199 		if (limit-- <= 0)
1200 			break;
1201 	} while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1202 
1203 	if (limit < 0)
1204 		netdev_err(gp->dev, "SW reset is ghetto\n");
1205 
1206 	if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1207 		gem_pcs_reinit_adv(gp);
1208 }
1209 
1210 static void gem_start_dma(struct gem *gp)
1211 {
1212 	u32 val;
1213 
1214 	/* We are ready to rock, turn everything on. */
1215 	val = readl(gp->regs + TXDMA_CFG);
1216 	writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1217 	val = readl(gp->regs + RXDMA_CFG);
1218 	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1219 	val = readl(gp->regs + MAC_TXCFG);
1220 	writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1221 	val = readl(gp->regs + MAC_RXCFG);
1222 	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1223 
1224 	(void) readl(gp->regs + MAC_RXCFG);
1225 	udelay(100);
1226 
1227 	gem_enable_ints(gp);
1228 
1229 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1230 }
1231 
1232 /* DMA won't be actually stopped before about 4ms tho ...
1233  */
1234 static void gem_stop_dma(struct gem *gp)
1235 {
1236 	u32 val;
1237 
1238 	/* We are done rocking, turn everything off. */
1239 	val = readl(gp->regs + TXDMA_CFG);
1240 	writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1241 	val = readl(gp->regs + RXDMA_CFG);
1242 	writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1243 	val = readl(gp->regs + MAC_TXCFG);
1244 	writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1245 	val = readl(gp->regs + MAC_RXCFG);
1246 	writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1247 
1248 	(void) readl(gp->regs + MAC_RXCFG);
1249 
1250 	/* Need to wait a bit ... done by the caller */
1251 }
1252 
1253 
1254 // XXX dbl check what that function should do when called on PCS PHY
1255 static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
1256 {
1257 	u32 advertise, features;
1258 	int autoneg;
1259 	int speed;
1260 	int duplex;
1261 
1262 	if (gp->phy_type != phy_mii_mdio0 &&
1263      	    gp->phy_type != phy_mii_mdio1)
1264      	    	goto non_mii;
1265 
1266 	/* Setup advertise */
1267 	if (found_mii_phy(gp))
1268 		features = gp->phy_mii.def->features;
1269 	else
1270 		features = 0;
1271 
1272 	advertise = features & ADVERTISE_MASK;
1273 	if (gp->phy_mii.advertising != 0)
1274 		advertise &= gp->phy_mii.advertising;
1275 
1276 	autoneg = gp->want_autoneg;
1277 	speed = gp->phy_mii.speed;
1278 	duplex = gp->phy_mii.duplex;
1279 
1280 	/* Setup link parameters */
1281 	if (!ep)
1282 		goto start_aneg;
1283 	if (ep->autoneg == AUTONEG_ENABLE) {
1284 		advertise = ep->advertising;
1285 		autoneg = 1;
1286 	} else {
1287 		autoneg = 0;
1288 		speed = ethtool_cmd_speed(ep);
1289 		duplex = ep->duplex;
1290 	}
1291 
1292 start_aneg:
1293 	/* Sanitize settings based on PHY capabilities */
1294 	if ((features & SUPPORTED_Autoneg) == 0)
1295 		autoneg = 0;
1296 	if (speed == SPEED_1000 &&
1297 	    !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1298 		speed = SPEED_100;
1299 	if (speed == SPEED_100 &&
1300 	    !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1301 		speed = SPEED_10;
1302 	if (duplex == DUPLEX_FULL &&
1303 	    !(features & (SUPPORTED_1000baseT_Full |
1304 	    		  SUPPORTED_100baseT_Full |
1305 	    		  SUPPORTED_10baseT_Full)))
1306 	    	duplex = DUPLEX_HALF;
1307 	if (speed == 0)
1308 		speed = SPEED_10;
1309 
1310 	/* If we are asleep, we don't try to actually setup the PHY, we
1311 	 * just store the settings
1312 	 */
1313 	if (!netif_device_present(gp->dev)) {
1314 		gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1315 		gp->phy_mii.speed = speed;
1316 		gp->phy_mii.duplex = duplex;
1317 		return;
1318 	}
1319 
1320 	/* Configure PHY & start aneg */
1321 	gp->want_autoneg = autoneg;
1322 	if (autoneg) {
1323 		if (found_mii_phy(gp))
1324 			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1325 		gp->lstate = link_aneg;
1326 	} else {
1327 		if (found_mii_phy(gp))
1328 			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1329 		gp->lstate = link_force_ok;
1330 	}
1331 
1332 non_mii:
1333 	gp->timer_ticks = 0;
1334 	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1335 }
1336 
1337 /* A link-up condition has occurred, initialize and enable the
1338  * rest of the chip.
1339  */
1340 static int gem_set_link_modes(struct gem *gp)
1341 {
1342 	struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1343 	int full_duplex, speed, pause;
1344 	u32 val;
1345 
1346 	full_duplex = 0;
1347 	speed = SPEED_10;
1348 	pause = 0;
1349 
1350 	if (found_mii_phy(gp)) {
1351 	    	if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1352 	    		return 1;
1353 		full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1354 		speed = gp->phy_mii.speed;
1355 		pause = gp->phy_mii.pause;
1356 	} else if (gp->phy_type == phy_serialink ||
1357 	    	   gp->phy_type == phy_serdes) {
1358 		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1359 
1360 		if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1361 			full_duplex = 1;
1362 		speed = SPEED_1000;
1363 	}
1364 
1365 	netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1366 		   speed, (full_duplex ? "full" : "half"));
1367 
1368 
1369 	/* We take the tx queue lock to avoid collisions between
1370 	 * this code, the tx path and the NAPI-driven error path
1371 	 */
1372 	__netif_tx_lock(txq, smp_processor_id());
1373 
1374 	val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1375 	if (full_duplex) {
1376 		val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1377 	} else {
1378 		/* MAC_TXCFG_NBO must be zero. */
1379 	}
1380 	writel(val, gp->regs + MAC_TXCFG);
1381 
1382 	val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1383 	if (!full_duplex &&
1384 	    (gp->phy_type == phy_mii_mdio0 ||
1385 	     gp->phy_type == phy_mii_mdio1)) {
1386 		val |= MAC_XIFCFG_DISE;
1387 	} else if (full_duplex) {
1388 		val |= MAC_XIFCFG_FLED;
1389 	}
1390 
1391 	if (speed == SPEED_1000)
1392 		val |= (MAC_XIFCFG_GMII);
1393 
1394 	writel(val, gp->regs + MAC_XIFCFG);
1395 
1396 	/* If gigabit and half-duplex, enable carrier extension
1397 	 * mode.  Else, disable it.
1398 	 */
1399 	if (speed == SPEED_1000 && !full_duplex) {
1400 		val = readl(gp->regs + MAC_TXCFG);
1401 		writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1402 
1403 		val = readl(gp->regs + MAC_RXCFG);
1404 		writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1405 	} else {
1406 		val = readl(gp->regs + MAC_TXCFG);
1407 		writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1408 
1409 		val = readl(gp->regs + MAC_RXCFG);
1410 		writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1411 	}
1412 
1413 	if (gp->phy_type == phy_serialink ||
1414 	    gp->phy_type == phy_serdes) {
1415  		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1416 
1417 		if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1418 			pause = 1;
1419 	}
1420 
1421 	if (!full_duplex)
1422 		writel(512, gp->regs + MAC_STIME);
1423 	else
1424 		writel(64, gp->regs + MAC_STIME);
1425 	val = readl(gp->regs + MAC_MCCFG);
1426 	if (pause)
1427 		val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1428 	else
1429 		val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1430 	writel(val, gp->regs + MAC_MCCFG);
1431 
1432 	gem_start_dma(gp);
1433 
1434 	__netif_tx_unlock(txq);
1435 
1436 	if (netif_msg_link(gp)) {
1437 		if (pause) {
1438 			netdev_info(gp->dev,
1439 				    "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1440 				    gp->rx_fifo_sz,
1441 				    gp->rx_pause_off,
1442 				    gp->rx_pause_on);
1443 		} else {
1444 			netdev_info(gp->dev, "Pause is disabled\n");
1445 		}
1446 	}
1447 
1448 	return 0;
1449 }
1450 
1451 static int gem_mdio_link_not_up(struct gem *gp)
1452 {
1453 	switch (gp->lstate) {
1454 	case link_force_ret:
1455 		netif_info(gp, link, gp->dev,
1456 			   "Autoneg failed again, keeping forced mode\n");
1457 		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1458 			gp->last_forced_speed, DUPLEX_HALF);
1459 		gp->timer_ticks = 5;
1460 		gp->lstate = link_force_ok;
1461 		return 0;
1462 	case link_aneg:
1463 		/* We try forced modes after a failed aneg only on PHYs that don't
1464 		 * have "magic_aneg" bit set, which means they internally do the
1465 		 * while forced-mode thingy. On these, we just restart aneg
1466 		 */
1467 		if (gp->phy_mii.def->magic_aneg)
1468 			return 1;
1469 		netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1470 		/* Try forced modes. */
1471 		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1472 			DUPLEX_HALF);
1473 		gp->timer_ticks = 5;
1474 		gp->lstate = link_force_try;
1475 		return 0;
1476 	case link_force_try:
1477 		/* Downgrade from 100 to 10 Mbps if necessary.
1478 		 * If already at 10Mbps, warn user about the
1479 		 * situation every 10 ticks.
1480 		 */
1481 		if (gp->phy_mii.speed == SPEED_100) {
1482 			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1483 				DUPLEX_HALF);
1484 			gp->timer_ticks = 5;
1485 			netif_info(gp, link, gp->dev,
1486 				   "switching to forced 10bt\n");
1487 			return 0;
1488 		} else
1489 			return 1;
1490 	default:
1491 		return 0;
1492 	}
1493 }
1494 
1495 static void gem_link_timer(unsigned long data)
1496 {
1497 	struct gem *gp = (struct gem *) data;
1498 	struct net_device *dev = gp->dev;
1499 	int restart_aneg = 0;
1500 
1501 	/* There's no point doing anything if we're going to be reset */
1502 	if (gp->reset_task_pending)
1503 		return;
1504 
1505 	if (gp->phy_type == phy_serialink ||
1506 	    gp->phy_type == phy_serdes) {
1507 		u32 val = readl(gp->regs + PCS_MIISTAT);
1508 
1509 		if (!(val & PCS_MIISTAT_LS))
1510 			val = readl(gp->regs + PCS_MIISTAT);
1511 
1512 		if ((val & PCS_MIISTAT_LS) != 0) {
1513 			if (gp->lstate == link_up)
1514 				goto restart;
1515 
1516 			gp->lstate = link_up;
1517 			netif_carrier_on(dev);
1518 			(void)gem_set_link_modes(gp);
1519 		}
1520 		goto restart;
1521 	}
1522 	if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1523 		/* Ok, here we got a link. If we had it due to a forced
1524 		 * fallback, and we were configured for autoneg, we do
1525 		 * retry a short autoneg pass. If you know your hub is
1526 		 * broken, use ethtool ;)
1527 		 */
1528 		if (gp->lstate == link_force_try && gp->want_autoneg) {
1529 			gp->lstate = link_force_ret;
1530 			gp->last_forced_speed = gp->phy_mii.speed;
1531 			gp->timer_ticks = 5;
1532 			if (netif_msg_link(gp))
1533 				netdev_info(dev,
1534 					    "Got link after fallback, retrying autoneg once...\n");
1535 			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1536 		} else if (gp->lstate != link_up) {
1537 			gp->lstate = link_up;
1538 			netif_carrier_on(dev);
1539 			if (gem_set_link_modes(gp))
1540 				restart_aneg = 1;
1541 		}
1542 	} else {
1543 		/* If the link was previously up, we restart the
1544 		 * whole process
1545 		 */
1546 		if (gp->lstate == link_up) {
1547 			gp->lstate = link_down;
1548 			netif_info(gp, link, dev, "Link down\n");
1549 			netif_carrier_off(dev);
1550 			gem_schedule_reset(gp);
1551 			/* The reset task will restart the timer */
1552 			return;
1553 		} else if (++gp->timer_ticks > 10) {
1554 			if (found_mii_phy(gp))
1555 				restart_aneg = gem_mdio_link_not_up(gp);
1556 			else
1557 				restart_aneg = 1;
1558 		}
1559 	}
1560 	if (restart_aneg) {
1561 		gem_begin_auto_negotiation(gp, NULL);
1562 		return;
1563 	}
1564 restart:
1565 	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1566 }
1567 
1568 static void gem_clean_rings(struct gem *gp)
1569 {
1570 	struct gem_init_block *gb = gp->init_block;
1571 	struct sk_buff *skb;
1572 	int i;
1573 	dma_addr_t dma_addr;
1574 
1575 	for (i = 0; i < RX_RING_SIZE; i++) {
1576 		struct gem_rxd *rxd;
1577 
1578 		rxd = &gb->rxd[i];
1579 		if (gp->rx_skbs[i] != NULL) {
1580 			skb = gp->rx_skbs[i];
1581 			dma_addr = le64_to_cpu(rxd->buffer);
1582 			pci_unmap_page(gp->pdev, dma_addr,
1583 				       RX_BUF_ALLOC_SIZE(gp),
1584 				       PCI_DMA_FROMDEVICE);
1585 			dev_kfree_skb_any(skb);
1586 			gp->rx_skbs[i] = NULL;
1587 		}
1588 		rxd->status_word = 0;
1589 		wmb();
1590 		rxd->buffer = 0;
1591 	}
1592 
1593 	for (i = 0; i < TX_RING_SIZE; i++) {
1594 		if (gp->tx_skbs[i] != NULL) {
1595 			struct gem_txd *txd;
1596 			int frag;
1597 
1598 			skb = gp->tx_skbs[i];
1599 			gp->tx_skbs[i] = NULL;
1600 
1601 			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1602 				int ent = i & (TX_RING_SIZE - 1);
1603 
1604 				txd = &gb->txd[ent];
1605 				dma_addr = le64_to_cpu(txd->buffer);
1606 				pci_unmap_page(gp->pdev, dma_addr,
1607 					       le64_to_cpu(txd->control_word) &
1608 					       TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1609 
1610 				if (frag != skb_shinfo(skb)->nr_frags)
1611 					i++;
1612 			}
1613 			dev_kfree_skb_any(skb);
1614 		}
1615 	}
1616 }
1617 
1618 static void gem_init_rings(struct gem *gp)
1619 {
1620 	struct gem_init_block *gb = gp->init_block;
1621 	struct net_device *dev = gp->dev;
1622 	int i;
1623 	dma_addr_t dma_addr;
1624 
1625 	gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1626 
1627 	gem_clean_rings(gp);
1628 
1629 	gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1630 			    (unsigned)VLAN_ETH_FRAME_LEN);
1631 
1632 	for (i = 0; i < RX_RING_SIZE; i++) {
1633 		struct sk_buff *skb;
1634 		struct gem_rxd *rxd = &gb->rxd[i];
1635 
1636 		skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1637 		if (!skb) {
1638 			rxd->buffer = 0;
1639 			rxd->status_word = 0;
1640 			continue;
1641 		}
1642 
1643 		gp->rx_skbs[i] = skb;
1644 		skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1645 		dma_addr = pci_map_page(gp->pdev,
1646 					virt_to_page(skb->data),
1647 					offset_in_page(skb->data),
1648 					RX_BUF_ALLOC_SIZE(gp),
1649 					PCI_DMA_FROMDEVICE);
1650 		rxd->buffer = cpu_to_le64(dma_addr);
1651 		wmb();
1652 		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1653 		skb_reserve(skb, RX_OFFSET);
1654 	}
1655 
1656 	for (i = 0; i < TX_RING_SIZE; i++) {
1657 		struct gem_txd *txd = &gb->txd[i];
1658 
1659 		txd->control_word = 0;
1660 		wmb();
1661 		txd->buffer = 0;
1662 	}
1663 	wmb();
1664 }
1665 
1666 /* Init PHY interface and start link poll state machine */
1667 static void gem_init_phy(struct gem *gp)
1668 {
1669 	u32 mifcfg;
1670 
1671 	/* Revert MIF CFG setting done on stop_phy */
1672 	mifcfg = readl(gp->regs + MIF_CFG);
1673 	mifcfg &= ~MIF_CFG_BBMODE;
1674 	writel(mifcfg, gp->regs + MIF_CFG);
1675 
1676 	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1677 		int i;
1678 
1679 		/* Those delay sucks, the HW seem to love them though, I'll
1680 		 * serisouly consider breaking some locks here to be able
1681 		 * to schedule instead
1682 		 */
1683 		for (i = 0; i < 3; i++) {
1684 #ifdef CONFIG_PPC_PMAC
1685 			pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1686 			msleep(20);
1687 #endif
1688 			/* Some PHYs used by apple have problem getting back to us,
1689 			 * we do an additional reset here
1690 			 */
1691 			phy_write(gp, MII_BMCR, BMCR_RESET);
1692 			msleep(20);
1693 			if (phy_read(gp, MII_BMCR) != 0xffff)
1694 				break;
1695 			if (i == 2)
1696 				netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1697 		}
1698 	}
1699 
1700 	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1701 	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1702 		u32 val;
1703 
1704 		/* Init datapath mode register. */
1705 		if (gp->phy_type == phy_mii_mdio0 ||
1706 		    gp->phy_type == phy_mii_mdio1) {
1707 			val = PCS_DMODE_MGM;
1708 		} else if (gp->phy_type == phy_serialink) {
1709 			val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1710 		} else {
1711 			val = PCS_DMODE_ESM;
1712 		}
1713 
1714 		writel(val, gp->regs + PCS_DMODE);
1715 	}
1716 
1717 	if (gp->phy_type == phy_mii_mdio0 ||
1718 	    gp->phy_type == phy_mii_mdio1) {
1719 		/* Reset and detect MII PHY */
1720 		sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1721 
1722 		/* Init PHY */
1723 		if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1724 			gp->phy_mii.def->ops->init(&gp->phy_mii);
1725 	} else {
1726 		gem_pcs_reset(gp);
1727 		gem_pcs_reinit_adv(gp);
1728 	}
1729 
1730 	/* Default aneg parameters */
1731 	gp->timer_ticks = 0;
1732 	gp->lstate = link_down;
1733 	netif_carrier_off(gp->dev);
1734 
1735 	/* Print things out */
1736 	if (gp->phy_type == phy_mii_mdio0 ||
1737 	    gp->phy_type == phy_mii_mdio1)
1738 		netdev_info(gp->dev, "Found %s PHY\n",
1739 			    gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1740 
1741 	gem_begin_auto_negotiation(gp, NULL);
1742 }
1743 
1744 static void gem_init_dma(struct gem *gp)
1745 {
1746 	u64 desc_dma = (u64) gp->gblock_dvma;
1747 	u32 val;
1748 
1749 	val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1750 	writel(val, gp->regs + TXDMA_CFG);
1751 
1752 	writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1753 	writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1754 	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1755 
1756 	writel(0, gp->regs + TXDMA_KICK);
1757 
1758 	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1759 	       ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1760 	writel(val, gp->regs + RXDMA_CFG);
1761 
1762 	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1763 	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1764 
1765 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1766 
1767 	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1768 	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1769 	writel(val, gp->regs + RXDMA_PTHRESH);
1770 
1771 	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1772 		writel(((5 & RXDMA_BLANK_IPKTS) |
1773 			((8 << 12) & RXDMA_BLANK_ITIME)),
1774 		       gp->regs + RXDMA_BLANK);
1775 	else
1776 		writel(((5 & RXDMA_BLANK_IPKTS) |
1777 			((4 << 12) & RXDMA_BLANK_ITIME)),
1778 		       gp->regs + RXDMA_BLANK);
1779 }
1780 
1781 static u32 gem_setup_multicast(struct gem *gp)
1782 {
1783 	u32 rxcfg = 0;
1784 	int i;
1785 
1786 	if ((gp->dev->flags & IFF_ALLMULTI) ||
1787 	    (netdev_mc_count(gp->dev) > 256)) {
1788 	    	for (i=0; i<16; i++)
1789 			writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1790 		rxcfg |= MAC_RXCFG_HFE;
1791 	} else if (gp->dev->flags & IFF_PROMISC) {
1792 		rxcfg |= MAC_RXCFG_PROM;
1793 	} else {
1794 		u16 hash_table[16];
1795 		u32 crc;
1796 		struct netdev_hw_addr *ha;
1797 		int i;
1798 
1799 		memset(hash_table, 0, sizeof(hash_table));
1800 		netdev_for_each_mc_addr(ha, gp->dev) {
1801 			crc = ether_crc_le(6, ha->addr);
1802 			crc >>= 24;
1803 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1804 		}
1805 	    	for (i=0; i<16; i++)
1806 			writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1807 		rxcfg |= MAC_RXCFG_HFE;
1808 	}
1809 
1810 	return rxcfg;
1811 }
1812 
1813 static void gem_init_mac(struct gem *gp)
1814 {
1815 	unsigned char *e = &gp->dev->dev_addr[0];
1816 
1817 	writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1818 
1819 	writel(0x00, gp->regs + MAC_IPG0);
1820 	writel(0x08, gp->regs + MAC_IPG1);
1821 	writel(0x04, gp->regs + MAC_IPG2);
1822 	writel(0x40, gp->regs + MAC_STIME);
1823 	writel(0x40, gp->regs + MAC_MINFSZ);
1824 
1825 	/* Ethernet payload + header + FCS + optional VLAN tag. */
1826 	writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1827 
1828 	writel(0x07, gp->regs + MAC_PASIZE);
1829 	writel(0x04, gp->regs + MAC_JAMSIZE);
1830 	writel(0x10, gp->regs + MAC_ATTLIM);
1831 	writel(0x8808, gp->regs + MAC_MCTYPE);
1832 
1833 	writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1834 
1835 	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1836 	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1837 	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1838 
1839 	writel(0, gp->regs + MAC_ADDR3);
1840 	writel(0, gp->regs + MAC_ADDR4);
1841 	writel(0, gp->regs + MAC_ADDR5);
1842 
1843 	writel(0x0001, gp->regs + MAC_ADDR6);
1844 	writel(0xc200, gp->regs + MAC_ADDR7);
1845 	writel(0x0180, gp->regs + MAC_ADDR8);
1846 
1847 	writel(0, gp->regs + MAC_AFILT0);
1848 	writel(0, gp->regs + MAC_AFILT1);
1849 	writel(0, gp->regs + MAC_AFILT2);
1850 	writel(0, gp->regs + MAC_AF21MSK);
1851 	writel(0, gp->regs + MAC_AF0MSK);
1852 
1853 	gp->mac_rx_cfg = gem_setup_multicast(gp);
1854 #ifdef STRIP_FCS
1855 	gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1856 #endif
1857 	writel(0, gp->regs + MAC_NCOLL);
1858 	writel(0, gp->regs + MAC_FASUCC);
1859 	writel(0, gp->regs + MAC_ECOLL);
1860 	writel(0, gp->regs + MAC_LCOLL);
1861 	writel(0, gp->regs + MAC_DTIMER);
1862 	writel(0, gp->regs + MAC_PATMPS);
1863 	writel(0, gp->regs + MAC_RFCTR);
1864 	writel(0, gp->regs + MAC_LERR);
1865 	writel(0, gp->regs + MAC_AERR);
1866 	writel(0, gp->regs + MAC_FCSERR);
1867 	writel(0, gp->regs + MAC_RXCVERR);
1868 
1869 	/* Clear RX/TX/MAC/XIF config, we will set these up and enable
1870 	 * them once a link is established.
1871 	 */
1872 	writel(0, gp->regs + MAC_TXCFG);
1873 	writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1874 	writel(0, gp->regs + MAC_MCCFG);
1875 	writel(0, gp->regs + MAC_XIFCFG);
1876 
1877 	/* Setup MAC interrupts.  We want to get all of the interesting
1878 	 * counter expiration events, but we do not want to hear about
1879 	 * normal rx/tx as the DMA engine tells us that.
1880 	 */
1881 	writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1882 	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1883 
1884 	/* Don't enable even the PAUSE interrupts for now, we
1885 	 * make no use of those events other than to record them.
1886 	 */
1887 	writel(0xffffffff, gp->regs + MAC_MCMASK);
1888 
1889 	/* Don't enable GEM's WOL in normal operations
1890 	 */
1891 	if (gp->has_wol)
1892 		writel(0, gp->regs + WOL_WAKECSR);
1893 }
1894 
1895 static void gem_init_pause_thresholds(struct gem *gp)
1896 {
1897        	u32 cfg;
1898 
1899 	/* Calculate pause thresholds.  Setting the OFF threshold to the
1900 	 * full RX fifo size effectively disables PAUSE generation which
1901 	 * is what we do for 10/100 only GEMs which have FIFOs too small
1902 	 * to make real gains from PAUSE.
1903 	 */
1904 	if (gp->rx_fifo_sz <= (2 * 1024)) {
1905 		gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1906 	} else {
1907 		int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1908 		int off = (gp->rx_fifo_sz - (max_frame * 2));
1909 		int on = off - max_frame;
1910 
1911 		gp->rx_pause_off = off;
1912 		gp->rx_pause_on = on;
1913 	}
1914 
1915 
1916 	/* Configure the chip "burst" DMA mode & enable some
1917 	 * HW bug fixes on Apple version
1918 	 */
1919        	cfg  = 0;
1920        	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1921 		cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1922 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1923        	cfg |= GREG_CFG_IBURST;
1924 #endif
1925        	cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1926        	cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1927        	writel(cfg, gp->regs + GREG_CFG);
1928 
1929 	/* If Infinite Burst didn't stick, then use different
1930 	 * thresholds (and Apple bug fixes don't exist)
1931 	 */
1932 	if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1933 		cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1934 		cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1935 		writel(cfg, gp->regs + GREG_CFG);
1936 	}
1937 }
1938 
1939 static int gem_check_invariants(struct gem *gp)
1940 {
1941 	struct pci_dev *pdev = gp->pdev;
1942 	u32 mif_cfg;
1943 
1944 	/* On Apple's sungem, we can't rely on registers as the chip
1945 	 * was been powered down by the firmware. The PHY is looked
1946 	 * up later on.
1947 	 */
1948 	if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1949 		gp->phy_type = phy_mii_mdio0;
1950 		gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1951 		gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1952 		gp->swrst_base = 0;
1953 
1954 		mif_cfg = readl(gp->regs + MIF_CFG);
1955 		mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1956 		mif_cfg |= MIF_CFG_MDI0;
1957 		writel(mif_cfg, gp->regs + MIF_CFG);
1958 		writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1959 		writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1960 
1961 		/* We hard-code the PHY address so we can properly bring it out of
1962 		 * reset later on, we can't really probe it at this point, though
1963 		 * that isn't an issue.
1964 		 */
1965 		if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1966 			gp->mii_phy_addr = 1;
1967 		else
1968 			gp->mii_phy_addr = 0;
1969 
1970 		return 0;
1971 	}
1972 
1973 	mif_cfg = readl(gp->regs + MIF_CFG);
1974 
1975 	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1976 	    pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1977 		/* One of the MII PHYs _must_ be present
1978 		 * as this chip has no gigabit PHY.
1979 		 */
1980 		if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1981 			pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1982 			       mif_cfg);
1983 			return -1;
1984 		}
1985 	}
1986 
1987 	/* Determine initial PHY interface type guess.  MDIO1 is the
1988 	 * external PHY and thus takes precedence over MDIO0.
1989 	 */
1990 
1991 	if (mif_cfg & MIF_CFG_MDI1) {
1992 		gp->phy_type = phy_mii_mdio1;
1993 		mif_cfg |= MIF_CFG_PSELECT;
1994 		writel(mif_cfg, gp->regs + MIF_CFG);
1995 	} else if (mif_cfg & MIF_CFG_MDI0) {
1996 		gp->phy_type = phy_mii_mdio0;
1997 		mif_cfg &= ~MIF_CFG_PSELECT;
1998 		writel(mif_cfg, gp->regs + MIF_CFG);
1999 	} else {
2000 #ifdef CONFIG_SPARC
2001 		const char *p;
2002 
2003 		p = of_get_property(gp->of_node, "shared-pins", NULL);
2004 		if (p && !strcmp(p, "serdes"))
2005 			gp->phy_type = phy_serdes;
2006 		else
2007 #endif
2008 			gp->phy_type = phy_serialink;
2009 	}
2010 	if (gp->phy_type == phy_mii_mdio1 ||
2011 	    gp->phy_type == phy_mii_mdio0) {
2012 		int i;
2013 
2014 		for (i = 0; i < 32; i++) {
2015 			gp->mii_phy_addr = i;
2016 			if (phy_read(gp, MII_BMCR) != 0xffff)
2017 				break;
2018 		}
2019 		if (i == 32) {
2020 			if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2021 				pr_err("RIO MII phy will not respond\n");
2022 				return -1;
2023 			}
2024 			gp->phy_type = phy_serdes;
2025 		}
2026 	}
2027 
2028 	/* Fetch the FIFO configurations now too. */
2029 	gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2030 	gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2031 
2032 	if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2033 		if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2034 			if (gp->tx_fifo_sz != (9 * 1024) ||
2035 			    gp->rx_fifo_sz != (20 * 1024)) {
2036 				pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2037 				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2038 				return -1;
2039 			}
2040 			gp->swrst_base = 0;
2041 		} else {
2042 			if (gp->tx_fifo_sz != (2 * 1024) ||
2043 			    gp->rx_fifo_sz != (2 * 1024)) {
2044 				pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2045 				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2046 				return -1;
2047 			}
2048 			gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2049 		}
2050 	}
2051 
2052 	return 0;
2053 }
2054 
2055 static void gem_reinit_chip(struct gem *gp)
2056 {
2057 	/* Reset the chip */
2058 	gem_reset(gp);
2059 
2060 	/* Make sure ints are disabled */
2061 	gem_disable_ints(gp);
2062 
2063 	/* Allocate & setup ring buffers */
2064 	gem_init_rings(gp);
2065 
2066 	/* Configure pause thresholds */
2067 	gem_init_pause_thresholds(gp);
2068 
2069 	/* Init DMA & MAC engines */
2070 	gem_init_dma(gp);
2071 	gem_init_mac(gp);
2072 }
2073 
2074 
2075 static void gem_stop_phy(struct gem *gp, int wol)
2076 {
2077 	u32 mifcfg;
2078 
2079 	/* Let the chip settle down a bit, it seems that helps
2080 	 * for sleep mode on some models
2081 	 */
2082 	msleep(10);
2083 
2084 	/* Make sure we aren't polling PHY status change. We
2085 	 * don't currently use that feature though
2086 	 */
2087 	mifcfg = readl(gp->regs + MIF_CFG);
2088 	mifcfg &= ~MIF_CFG_POLL;
2089 	writel(mifcfg, gp->regs + MIF_CFG);
2090 
2091 	if (wol && gp->has_wol) {
2092 		unsigned char *e = &gp->dev->dev_addr[0];
2093 		u32 csr;
2094 
2095 		/* Setup wake-on-lan for MAGIC packet */
2096 		writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2097 		       gp->regs + MAC_RXCFG);
2098 		writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2099 		writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2100 		writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2101 
2102 		writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2103 		csr = WOL_WAKECSR_ENABLE;
2104 		if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2105 			csr |= WOL_WAKECSR_MII;
2106 		writel(csr, gp->regs + WOL_WAKECSR);
2107 	} else {
2108 		writel(0, gp->regs + MAC_RXCFG);
2109 		(void)readl(gp->regs + MAC_RXCFG);
2110 		/* Machine sleep will die in strange ways if we
2111 		 * dont wait a bit here, looks like the chip takes
2112 		 * some time to really shut down
2113 		 */
2114 		msleep(10);
2115 	}
2116 
2117 	writel(0, gp->regs + MAC_TXCFG);
2118 	writel(0, gp->regs + MAC_XIFCFG);
2119 	writel(0, gp->regs + TXDMA_CFG);
2120 	writel(0, gp->regs + RXDMA_CFG);
2121 
2122 	if (!wol) {
2123 		gem_reset(gp);
2124 		writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2125 		writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2126 
2127 		if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2128 			gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2129 
2130 		/* According to Apple, we must set the MDIO pins to this begnign
2131 		 * state or we may 1) eat more current, 2) damage some PHYs
2132 		 */
2133 		writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2134 		writel(0, gp->regs + MIF_BBCLK);
2135 		writel(0, gp->regs + MIF_BBDATA);
2136 		writel(0, gp->regs + MIF_BBOENAB);
2137 		writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2138 		(void) readl(gp->regs + MAC_XIFCFG);
2139 	}
2140 }
2141 
2142 static int gem_do_start(struct net_device *dev)
2143 {
2144 	struct gem *gp = netdev_priv(dev);
2145 	int rc;
2146 
2147 	/* Enable the cell */
2148 	gem_get_cell(gp);
2149 
2150 	/* Make sure PCI access and bus master are enabled */
2151 	rc = pci_enable_device(gp->pdev);
2152 	if (rc) {
2153 		netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2154 
2155 		/* Put cell and forget it for now, it will be considered as
2156 		 * still asleep, a new sleep cycle may bring it back
2157 		 */
2158 		gem_put_cell(gp);
2159 		return -ENXIO;
2160 	}
2161 	pci_set_master(gp->pdev);
2162 
2163 	/* Init & setup chip hardware */
2164 	gem_reinit_chip(gp);
2165 
2166 	/* An interrupt might come in handy */
2167 	rc = request_irq(gp->pdev->irq, gem_interrupt,
2168 			 IRQF_SHARED, dev->name, (void *)dev);
2169 	if (rc) {
2170 		netdev_err(dev, "failed to request irq !\n");
2171 
2172 		gem_reset(gp);
2173 		gem_clean_rings(gp);
2174 		gem_put_cell(gp);
2175 		return rc;
2176 	}
2177 
2178 	/* Mark us as attached again if we come from resume(), this has
2179 	 * no effect if we weren't detatched and needs to be done now.
2180 	 */
2181 	netif_device_attach(dev);
2182 
2183 	/* Restart NAPI & queues */
2184 	gem_netif_start(gp);
2185 
2186 	/* Detect & init PHY, start autoneg etc... this will
2187 	 * eventually result in starting DMA operations when
2188 	 * the link is up
2189 	 */
2190 	gem_init_phy(gp);
2191 
2192 	return 0;
2193 }
2194 
2195 static void gem_do_stop(struct net_device *dev, int wol)
2196 {
2197 	struct gem *gp = netdev_priv(dev);
2198 
2199 	/* Stop NAPI and stop tx queue */
2200 	gem_netif_stop(gp);
2201 
2202 	/* Make sure ints are disabled. We don't care about
2203 	 * synchronizing as NAPI is disabled, thus a stray
2204 	 * interrupt will do nothing bad (our irq handler
2205 	 * just schedules NAPI)
2206 	 */
2207 	gem_disable_ints(gp);
2208 
2209 	/* Stop the link timer */
2210 	del_timer_sync(&gp->link_timer);
2211 
2212 	/* We cannot cancel the reset task while holding the
2213 	 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2214 	 * if we did. This is not an issue however as the reset
2215 	 * task is synchronized vs. us (rtnl_lock) and will do
2216 	 * nothing if the device is down or suspended. We do
2217 	 * still clear reset_task_pending to avoid a spurrious
2218 	 * reset later on in case we do resume before it gets
2219 	 * scheduled.
2220 	 */
2221 	gp->reset_task_pending = 0;
2222 
2223 	/* If we are going to sleep with WOL */
2224 	gem_stop_dma(gp);
2225 	msleep(10);
2226 	if (!wol)
2227 		gem_reset(gp);
2228 	msleep(10);
2229 
2230 	/* Get rid of rings */
2231 	gem_clean_rings(gp);
2232 
2233 	/* No irq needed anymore */
2234 	free_irq(gp->pdev->irq, (void *) dev);
2235 
2236 	/* Shut the PHY down eventually and setup WOL */
2237 	gem_stop_phy(gp, wol);
2238 
2239 	/* Make sure bus master is disabled */
2240 	pci_disable_device(gp->pdev);
2241 
2242 	/* Cell not needed neither if no WOL */
2243 	if (!wol)
2244 		gem_put_cell(gp);
2245 }
2246 
2247 static void gem_reset_task(struct work_struct *work)
2248 {
2249 	struct gem *gp = container_of(work, struct gem, reset_task);
2250 
2251 	/* Lock out the network stack (essentially shield ourselves
2252 	 * against a racing open, close, control call, or suspend
2253 	 */
2254 	rtnl_lock();
2255 
2256 	/* Skip the reset task if suspended or closed, or if it's
2257 	 * been cancelled by gem_do_stop (see comment there)
2258 	 */
2259 	if (!netif_device_present(gp->dev) ||
2260 	    !netif_running(gp->dev) ||
2261 	    !gp->reset_task_pending) {
2262 		rtnl_unlock();
2263 		return;
2264 	}
2265 
2266 	/* Stop the link timer */
2267 	del_timer_sync(&gp->link_timer);
2268 
2269 	/* Stop NAPI and tx */
2270 	gem_netif_stop(gp);
2271 
2272 	/* Reset the chip & rings */
2273 	gem_reinit_chip(gp);
2274 	if (gp->lstate == link_up)
2275 		gem_set_link_modes(gp);
2276 
2277 	/* Restart NAPI and Tx */
2278 	gem_netif_start(gp);
2279 
2280 	/* We are back ! */
2281 	gp->reset_task_pending = 0;
2282 
2283 	/* If the link is not up, restart autoneg, else restart the
2284 	 * polling timer
2285 	 */
2286 	if (gp->lstate != link_up)
2287 		gem_begin_auto_negotiation(gp, NULL);
2288 	else
2289 		mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2290 
2291 	rtnl_unlock();
2292 }
2293 
2294 static int gem_open(struct net_device *dev)
2295 {
2296 	/* We allow open while suspended, we just do nothing,
2297 	 * the chip will be initialized in resume()
2298 	 */
2299 	if (netif_device_present(dev))
2300 		return gem_do_start(dev);
2301 	return 0;
2302 }
2303 
2304 static int gem_close(struct net_device *dev)
2305 {
2306 	if (netif_device_present(dev))
2307 		gem_do_stop(dev, 0);
2308 
2309 	return 0;
2310 }
2311 
2312 #ifdef CONFIG_PM
2313 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2314 {
2315 	struct net_device *dev = pci_get_drvdata(pdev);
2316 	struct gem *gp = netdev_priv(dev);
2317 
2318 	/* Lock the network stack first to avoid racing with open/close,
2319 	 * reset task and setting calls
2320 	 */
2321 	rtnl_lock();
2322 
2323 	/* Not running, mark ourselves non-present, no need for
2324 	 * a lock here
2325 	 */
2326 	if (!netif_running(dev)) {
2327 		netif_device_detach(dev);
2328 		rtnl_unlock();
2329 		return 0;
2330 	}
2331 	netdev_info(dev, "suspending, WakeOnLan %s\n",
2332 		    (gp->wake_on_lan && netif_running(dev)) ?
2333 		    "enabled" : "disabled");
2334 
2335 	/* Tell the network stack we're gone. gem_do_stop() below will
2336 	 * synchronize with TX, stop NAPI etc...
2337 	 */
2338 	netif_device_detach(dev);
2339 
2340 	/* Switch off chip, remember WOL setting */
2341 	gp->asleep_wol = !!gp->wake_on_lan;
2342 	gem_do_stop(dev, gp->asleep_wol);
2343 
2344 	/* Unlock the network stack */
2345 	rtnl_unlock();
2346 
2347 	return 0;
2348 }
2349 
2350 static int gem_resume(struct pci_dev *pdev)
2351 {
2352 	struct net_device *dev = pci_get_drvdata(pdev);
2353 	struct gem *gp = netdev_priv(dev);
2354 
2355 	/* See locking comment in gem_suspend */
2356 	rtnl_lock();
2357 
2358 	/* Not running, mark ourselves present, no need for
2359 	 * a lock here
2360 	 */
2361 	if (!netif_running(dev)) {
2362 		netif_device_attach(dev);
2363 		rtnl_unlock();
2364 		return 0;
2365 	}
2366 
2367 	/* Restart chip. If that fails there isn't much we can do, we
2368 	 * leave things stopped.
2369 	 */
2370 	gem_do_start(dev);
2371 
2372 	/* If we had WOL enabled, the cell clock was never turned off during
2373 	 * sleep, so we end up beeing unbalanced. Fix that here
2374 	 */
2375 	if (gp->asleep_wol)
2376 		gem_put_cell(gp);
2377 
2378 	/* Unlock the network stack */
2379 	rtnl_unlock();
2380 
2381 	return 0;
2382 }
2383 #endif /* CONFIG_PM */
2384 
2385 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2386 {
2387 	struct gem *gp = netdev_priv(dev);
2388 
2389 	/* I have seen this being called while the PM was in progress,
2390 	 * so we shield against this. Let's also not poke at registers
2391 	 * while the reset task is going on.
2392 	 *
2393 	 * TODO: Move stats collection elsewhere (link timer ?) and
2394 	 * make this a nop to avoid all those synchro issues
2395 	 */
2396 	if (!netif_device_present(dev) || !netif_running(dev))
2397 		goto bail;
2398 
2399 	/* Better safe than sorry... */
2400 	if (WARN_ON(!gp->cell_enabled))
2401 		goto bail;
2402 
2403 	dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2404 	writel(0, gp->regs + MAC_FCSERR);
2405 
2406 	dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2407 	writel(0, gp->regs + MAC_AERR);
2408 
2409 	dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2410 	writel(0, gp->regs + MAC_LERR);
2411 
2412 	dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2413 	dev->stats.collisions +=
2414 		(readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2415 	writel(0, gp->regs + MAC_ECOLL);
2416 	writel(0, gp->regs + MAC_LCOLL);
2417  bail:
2418 	return &dev->stats;
2419 }
2420 
2421 static int gem_set_mac_address(struct net_device *dev, void *addr)
2422 {
2423 	struct sockaddr *macaddr = (struct sockaddr *) addr;
2424 	struct gem *gp = netdev_priv(dev);
2425 	unsigned char *e = &dev->dev_addr[0];
2426 
2427 	if (!is_valid_ether_addr(macaddr->sa_data))
2428 		return -EADDRNOTAVAIL;
2429 
2430 	memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2431 
2432 	/* We'll just catch it later when the device is up'd or resumed */
2433 	if (!netif_running(dev) || !netif_device_present(dev))
2434 		return 0;
2435 
2436 	/* Better safe than sorry... */
2437 	if (WARN_ON(!gp->cell_enabled))
2438 		return 0;
2439 
2440 	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2441 	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2442 	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2443 
2444 	return 0;
2445 }
2446 
2447 static void gem_set_multicast(struct net_device *dev)
2448 {
2449 	struct gem *gp = netdev_priv(dev);
2450 	u32 rxcfg, rxcfg_new;
2451 	int limit = 10000;
2452 
2453 	if (!netif_running(dev) || !netif_device_present(dev))
2454 		return;
2455 
2456 	/* Better safe than sorry... */
2457 	if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2458 		return;
2459 
2460 	rxcfg = readl(gp->regs + MAC_RXCFG);
2461 	rxcfg_new = gem_setup_multicast(gp);
2462 #ifdef STRIP_FCS
2463 	rxcfg_new |= MAC_RXCFG_SFCS;
2464 #endif
2465 	gp->mac_rx_cfg = rxcfg_new;
2466 
2467 	writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2468 	while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2469 		if (!limit--)
2470 			break;
2471 		udelay(10);
2472 	}
2473 
2474 	rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2475 	rxcfg |= rxcfg_new;
2476 
2477 	writel(rxcfg, gp->regs + MAC_RXCFG);
2478 }
2479 
2480 /* Jumbo-grams don't seem to work :-( */
2481 #define GEM_MIN_MTU	68
2482 #if 1
2483 #define GEM_MAX_MTU	1500
2484 #else
2485 #define GEM_MAX_MTU	9000
2486 #endif
2487 
2488 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2489 {
2490 	struct gem *gp = netdev_priv(dev);
2491 
2492 	if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
2493 		return -EINVAL;
2494 
2495 	dev->mtu = new_mtu;
2496 
2497 	/* We'll just catch it later when the device is up'd or resumed */
2498 	if (!netif_running(dev) || !netif_device_present(dev))
2499 		return 0;
2500 
2501 	/* Better safe than sorry... */
2502 	if (WARN_ON(!gp->cell_enabled))
2503 		return 0;
2504 
2505 	gem_netif_stop(gp);
2506 	gem_reinit_chip(gp);
2507 	if (gp->lstate == link_up)
2508 		gem_set_link_modes(gp);
2509 	gem_netif_start(gp);
2510 
2511 	return 0;
2512 }
2513 
2514 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2515 {
2516 	struct gem *gp = netdev_priv(dev);
2517 
2518 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2519 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2520 	strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
2521 }
2522 
2523 static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2524 {
2525 	struct gem *gp = netdev_priv(dev);
2526 
2527 	if (gp->phy_type == phy_mii_mdio0 ||
2528 	    gp->phy_type == phy_mii_mdio1) {
2529 		if (gp->phy_mii.def)
2530 			cmd->supported = gp->phy_mii.def->features;
2531 		else
2532 			cmd->supported = (SUPPORTED_10baseT_Half |
2533 					  SUPPORTED_10baseT_Full);
2534 
2535 		/* XXX hardcoded stuff for now */
2536 		cmd->port = PORT_MII;
2537 		cmd->transceiver = XCVR_EXTERNAL;
2538 		cmd->phy_address = 0; /* XXX fixed PHYAD */
2539 
2540 		/* Return current PHY settings */
2541 		cmd->autoneg = gp->want_autoneg;
2542 		ethtool_cmd_speed_set(cmd, gp->phy_mii.speed);
2543 		cmd->duplex = gp->phy_mii.duplex;
2544 		cmd->advertising = gp->phy_mii.advertising;
2545 
2546 		/* If we started with a forced mode, we don't have a default
2547 		 * advertise set, we need to return something sensible so
2548 		 * userland can re-enable autoneg properly.
2549 		 */
2550 		if (cmd->advertising == 0)
2551 			cmd->advertising = cmd->supported;
2552 	} else { // XXX PCS ?
2553 		cmd->supported =
2554 			(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2555 			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2556 			 SUPPORTED_Autoneg);
2557 		cmd->advertising = cmd->supported;
2558 		ethtool_cmd_speed_set(cmd, 0);
2559 		cmd->duplex = cmd->port = cmd->phy_address =
2560 			cmd->transceiver = cmd->autoneg = 0;
2561 
2562 		/* serdes means usually a Fibre connector, with most fixed */
2563 		if (gp->phy_type == phy_serdes) {
2564 			cmd->port = PORT_FIBRE;
2565 			cmd->supported = (SUPPORTED_1000baseT_Half |
2566 				SUPPORTED_1000baseT_Full |
2567 				SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2568 				SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2569 			cmd->advertising = cmd->supported;
2570 			cmd->transceiver = XCVR_INTERNAL;
2571 			if (gp->lstate == link_up)
2572 				ethtool_cmd_speed_set(cmd, SPEED_1000);
2573 			cmd->duplex = DUPLEX_FULL;
2574 			cmd->autoneg = 1;
2575 		}
2576 	}
2577 	cmd->maxtxpkt = cmd->maxrxpkt = 0;
2578 
2579 	return 0;
2580 }
2581 
2582 static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2583 {
2584 	struct gem *gp = netdev_priv(dev);
2585 	u32 speed = ethtool_cmd_speed(cmd);
2586 
2587 	/* Verify the settings we care about. */
2588 	if (cmd->autoneg != AUTONEG_ENABLE &&
2589 	    cmd->autoneg != AUTONEG_DISABLE)
2590 		return -EINVAL;
2591 
2592 	if (cmd->autoneg == AUTONEG_ENABLE &&
2593 	    cmd->advertising == 0)
2594 		return -EINVAL;
2595 
2596 	if (cmd->autoneg == AUTONEG_DISABLE &&
2597 	    ((speed != SPEED_1000 &&
2598 	      speed != SPEED_100 &&
2599 	      speed != SPEED_10) ||
2600 	     (cmd->duplex != DUPLEX_HALF &&
2601 	      cmd->duplex != DUPLEX_FULL)))
2602 		return -EINVAL;
2603 
2604 	/* Apply settings and restart link process. */
2605 	if (netif_device_present(gp->dev)) {
2606 		del_timer_sync(&gp->link_timer);
2607 		gem_begin_auto_negotiation(gp, cmd);
2608 	}
2609 
2610 	return 0;
2611 }
2612 
2613 static int gem_nway_reset(struct net_device *dev)
2614 {
2615 	struct gem *gp = netdev_priv(dev);
2616 
2617 	if (!gp->want_autoneg)
2618 		return -EINVAL;
2619 
2620 	/* Restart link process  */
2621 	if (netif_device_present(gp->dev)) {
2622 		del_timer_sync(&gp->link_timer);
2623 		gem_begin_auto_negotiation(gp, NULL);
2624 	}
2625 
2626 	return 0;
2627 }
2628 
2629 static u32 gem_get_msglevel(struct net_device *dev)
2630 {
2631 	struct gem *gp = netdev_priv(dev);
2632 	return gp->msg_enable;
2633 }
2634 
2635 static void gem_set_msglevel(struct net_device *dev, u32 value)
2636 {
2637 	struct gem *gp = netdev_priv(dev);
2638 	gp->msg_enable = value;
2639 }
2640 
2641 
2642 /* Add more when I understand how to program the chip */
2643 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2644 
2645 #define WOL_SUPPORTED_MASK	(WAKE_MAGIC)
2646 
2647 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2648 {
2649 	struct gem *gp = netdev_priv(dev);
2650 
2651 	/* Add more when I understand how to program the chip */
2652 	if (gp->has_wol) {
2653 		wol->supported = WOL_SUPPORTED_MASK;
2654 		wol->wolopts = gp->wake_on_lan;
2655 	} else {
2656 		wol->supported = 0;
2657 		wol->wolopts = 0;
2658 	}
2659 }
2660 
2661 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2662 {
2663 	struct gem *gp = netdev_priv(dev);
2664 
2665 	if (!gp->has_wol)
2666 		return -EOPNOTSUPP;
2667 	gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2668 	return 0;
2669 }
2670 
2671 static const struct ethtool_ops gem_ethtool_ops = {
2672 	.get_drvinfo		= gem_get_drvinfo,
2673 	.get_link		= ethtool_op_get_link,
2674 	.get_settings		= gem_get_settings,
2675 	.set_settings		= gem_set_settings,
2676 	.nway_reset		= gem_nway_reset,
2677 	.get_msglevel		= gem_get_msglevel,
2678 	.set_msglevel		= gem_set_msglevel,
2679 	.get_wol		= gem_get_wol,
2680 	.set_wol		= gem_set_wol,
2681 };
2682 
2683 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2684 {
2685 	struct gem *gp = netdev_priv(dev);
2686 	struct mii_ioctl_data *data = if_mii(ifr);
2687 	int rc = -EOPNOTSUPP;
2688 
2689 	/* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2690 	 * netif_device_present() is true and holds rtnl_lock for us
2691 	 * so we have nothing to worry about
2692 	 */
2693 
2694 	switch (cmd) {
2695 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2696 		data->phy_id = gp->mii_phy_addr;
2697 		/* Fallthrough... */
2698 
2699 	case SIOCGMIIREG:		/* Read MII PHY register. */
2700 		data->val_out = __phy_read(gp, data->phy_id & 0x1f,
2701 					   data->reg_num & 0x1f);
2702 		rc = 0;
2703 		break;
2704 
2705 	case SIOCSMIIREG:		/* Write MII PHY register. */
2706 		__phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2707 			    data->val_in);
2708 		rc = 0;
2709 		break;
2710 	}
2711 	return rc;
2712 }
2713 
2714 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2715 /* Fetch MAC address from vital product data of PCI ROM. */
2716 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2717 {
2718 	int this_offset;
2719 
2720 	for (this_offset = 0x20; this_offset < len; this_offset++) {
2721 		void __iomem *p = rom_base + this_offset;
2722 		int i;
2723 
2724 		if (readb(p + 0) != 0x90 ||
2725 		    readb(p + 1) != 0x00 ||
2726 		    readb(p + 2) != 0x09 ||
2727 		    readb(p + 3) != 0x4e ||
2728 		    readb(p + 4) != 0x41 ||
2729 		    readb(p + 5) != 0x06)
2730 			continue;
2731 
2732 		this_offset += 6;
2733 		p += 6;
2734 
2735 		for (i = 0; i < 6; i++)
2736 			dev_addr[i] = readb(p + i);
2737 		return 1;
2738 	}
2739 	return 0;
2740 }
2741 
2742 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2743 {
2744 	size_t size;
2745 	void __iomem *p = pci_map_rom(pdev, &size);
2746 
2747 	if (p) {
2748 			int found;
2749 
2750 		found = readb(p) == 0x55 &&
2751 			readb(p + 1) == 0xaa &&
2752 			find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2753 		pci_unmap_rom(pdev, p);
2754 		if (found)
2755 			return;
2756 	}
2757 
2758 	/* Sun MAC prefix then 3 random bytes. */
2759 	dev_addr[0] = 0x08;
2760 	dev_addr[1] = 0x00;
2761 	dev_addr[2] = 0x20;
2762 	get_random_bytes(dev_addr + 3, 3);
2763 }
2764 #endif /* not Sparc and not PPC */
2765 
2766 static int __devinit gem_get_device_address(struct gem *gp)
2767 {
2768 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2769 	struct net_device *dev = gp->dev;
2770 	const unsigned char *addr;
2771 
2772 	addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2773 	if (addr == NULL) {
2774 #ifdef CONFIG_SPARC
2775 		addr = idprom->id_ethaddr;
2776 #else
2777 		printk("\n");
2778 		pr_err("%s: can't get mac-address\n", dev->name);
2779 		return -1;
2780 #endif
2781 	}
2782 	memcpy(dev->dev_addr, addr, 6);
2783 #else
2784 	get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2785 #endif
2786 	return 0;
2787 }
2788 
2789 static void gem_remove_one(struct pci_dev *pdev)
2790 {
2791 	struct net_device *dev = pci_get_drvdata(pdev);
2792 
2793 	if (dev) {
2794 		struct gem *gp = netdev_priv(dev);
2795 
2796 		unregister_netdev(dev);
2797 
2798 		/* Ensure reset task is truely gone */
2799 		cancel_work_sync(&gp->reset_task);
2800 
2801 		/* Free resources */
2802 		pci_free_consistent(pdev,
2803 				    sizeof(struct gem_init_block),
2804 				    gp->init_block,
2805 				    gp->gblock_dvma);
2806 		iounmap(gp->regs);
2807 		pci_release_regions(pdev);
2808 		free_netdev(dev);
2809 
2810 		pci_set_drvdata(pdev, NULL);
2811 	}
2812 }
2813 
2814 static const struct net_device_ops gem_netdev_ops = {
2815 	.ndo_open		= gem_open,
2816 	.ndo_stop		= gem_close,
2817 	.ndo_start_xmit		= gem_start_xmit,
2818 	.ndo_get_stats		= gem_get_stats,
2819 	.ndo_set_rx_mode	= gem_set_multicast,
2820 	.ndo_do_ioctl		= gem_ioctl,
2821 	.ndo_tx_timeout		= gem_tx_timeout,
2822 	.ndo_change_mtu		= gem_change_mtu,
2823 	.ndo_validate_addr	= eth_validate_addr,
2824 	.ndo_set_mac_address    = gem_set_mac_address,
2825 #ifdef CONFIG_NET_POLL_CONTROLLER
2826 	.ndo_poll_controller    = gem_poll_controller,
2827 #endif
2828 };
2829 
2830 static int __devinit gem_init_one(struct pci_dev *pdev,
2831 				  const struct pci_device_id *ent)
2832 {
2833 	unsigned long gemreg_base, gemreg_len;
2834 	struct net_device *dev;
2835 	struct gem *gp;
2836 	int err, pci_using_dac;
2837 
2838 	printk_once(KERN_INFO "%s", version);
2839 
2840 	/* Apple gmac note: during probe, the chip is powered up by
2841 	 * the arch code to allow the code below to work (and to let
2842 	 * the chip be probed on the config space. It won't stay powered
2843 	 * up until the interface is brought up however, so we can't rely
2844 	 * on register configuration done at this point.
2845 	 */
2846 	err = pci_enable_device(pdev);
2847 	if (err) {
2848 		pr_err("Cannot enable MMIO operation, aborting\n");
2849 		return err;
2850 	}
2851 	pci_set_master(pdev);
2852 
2853 	/* Configure DMA attributes. */
2854 
2855 	/* All of the GEM documentation states that 64-bit DMA addressing
2856 	 * is fully supported and should work just fine.  However the
2857 	 * front end for RIO based GEMs is different and only supports
2858 	 * 32-bit addressing.
2859 	 *
2860 	 * For now we assume the various PPC GEMs are 32-bit only as well.
2861 	 */
2862 	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2863 	    pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2864 	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
2865 		pci_using_dac = 1;
2866 	} else {
2867 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2868 		if (err) {
2869 			pr_err("No usable DMA configuration, aborting\n");
2870 			goto err_disable_device;
2871 		}
2872 		pci_using_dac = 0;
2873 	}
2874 
2875 	gemreg_base = pci_resource_start(pdev, 0);
2876 	gemreg_len = pci_resource_len(pdev, 0);
2877 
2878 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2879 		pr_err("Cannot find proper PCI device base address, aborting\n");
2880 		err = -ENODEV;
2881 		goto err_disable_device;
2882 	}
2883 
2884 	dev = alloc_etherdev(sizeof(*gp));
2885 	if (!dev) {
2886 		err = -ENOMEM;
2887 		goto err_disable_device;
2888 	}
2889 	SET_NETDEV_DEV(dev, &pdev->dev);
2890 
2891 	gp = netdev_priv(dev);
2892 
2893 	err = pci_request_regions(pdev, DRV_NAME);
2894 	if (err) {
2895 		pr_err("Cannot obtain PCI resources, aborting\n");
2896 		goto err_out_free_netdev;
2897 	}
2898 
2899 	gp->pdev = pdev;
2900 	gp->dev = dev;
2901 
2902 	gp->msg_enable = DEFAULT_MSG;
2903 
2904 	init_timer(&gp->link_timer);
2905 	gp->link_timer.function = gem_link_timer;
2906 	gp->link_timer.data = (unsigned long) gp;
2907 
2908 	INIT_WORK(&gp->reset_task, gem_reset_task);
2909 
2910 	gp->lstate = link_down;
2911 	gp->timer_ticks = 0;
2912 	netif_carrier_off(dev);
2913 
2914 	gp->regs = ioremap(gemreg_base, gemreg_len);
2915 	if (!gp->regs) {
2916 		pr_err("Cannot map device registers, aborting\n");
2917 		err = -EIO;
2918 		goto err_out_free_res;
2919 	}
2920 
2921 	/* On Apple, we want a reference to the Open Firmware device-tree
2922 	 * node. We use it for clock control.
2923 	 */
2924 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2925 	gp->of_node = pci_device_to_OF_node(pdev);
2926 #endif
2927 
2928 	/* Only Apple version supports WOL afaik */
2929 	if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2930 		gp->has_wol = 1;
2931 
2932 	/* Make sure cell is enabled */
2933 	gem_get_cell(gp);
2934 
2935 	/* Make sure everything is stopped and in init state */
2936 	gem_reset(gp);
2937 
2938 	/* Fill up the mii_phy structure (even if we won't use it) */
2939 	gp->phy_mii.dev = dev;
2940 	gp->phy_mii.mdio_read = _phy_read;
2941 	gp->phy_mii.mdio_write = _phy_write;
2942 #ifdef CONFIG_PPC_PMAC
2943 	gp->phy_mii.platform_data = gp->of_node;
2944 #endif
2945 	/* By default, we start with autoneg */
2946 	gp->want_autoneg = 1;
2947 
2948 	/* Check fifo sizes, PHY type, etc... */
2949 	if (gem_check_invariants(gp)) {
2950 		err = -ENODEV;
2951 		goto err_out_iounmap;
2952 	}
2953 
2954 	/* It is guaranteed that the returned buffer will be at least
2955 	 * PAGE_SIZE aligned.
2956 	 */
2957 	gp->init_block = (struct gem_init_block *)
2958 		pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
2959 				     &gp->gblock_dvma);
2960 	if (!gp->init_block) {
2961 		pr_err("Cannot allocate init block, aborting\n");
2962 		err = -ENOMEM;
2963 		goto err_out_iounmap;
2964 	}
2965 
2966 	if (gem_get_device_address(gp))
2967 		goto err_out_free_consistent;
2968 
2969 	dev->netdev_ops = &gem_netdev_ops;
2970 	netif_napi_add(dev, &gp->napi, gem_poll, 64);
2971 	dev->ethtool_ops = &gem_ethtool_ops;
2972 	dev->watchdog_timeo = 5 * HZ;
2973 	dev->dma = 0;
2974 
2975 	/* Set that now, in case PM kicks in now */
2976 	pci_set_drvdata(pdev, dev);
2977 
2978 	/* We can do scatter/gather and HW checksum */
2979 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2980 	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2981 	if (pci_using_dac)
2982 		dev->features |= NETIF_F_HIGHDMA;
2983 
2984 	/* Register with kernel */
2985 	if (register_netdev(dev)) {
2986 		pr_err("Cannot register net device, aborting\n");
2987 		err = -ENOMEM;
2988 		goto err_out_free_consistent;
2989 	}
2990 
2991 	/* Undo the get_cell with appropriate locking (we could use
2992 	 * ndo_init/uninit but that would be even more clumsy imho)
2993 	 */
2994 	rtnl_lock();
2995 	gem_put_cell(gp);
2996 	rtnl_unlock();
2997 
2998 	netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
2999 		    dev->dev_addr);
3000 	return 0;
3001 
3002 err_out_free_consistent:
3003 	gem_remove_one(pdev);
3004 err_out_iounmap:
3005 	gem_put_cell(gp);
3006 	iounmap(gp->regs);
3007 
3008 err_out_free_res:
3009 	pci_release_regions(pdev);
3010 
3011 err_out_free_netdev:
3012 	free_netdev(dev);
3013 err_disable_device:
3014 	pci_disable_device(pdev);
3015 	return err;
3016 
3017 }
3018 
3019 
3020 static struct pci_driver gem_driver = {
3021 	.name		= GEM_MODULE_NAME,
3022 	.id_table	= gem_pci_tbl,
3023 	.probe		= gem_init_one,
3024 	.remove		= gem_remove_one,
3025 #ifdef CONFIG_PM
3026 	.suspend	= gem_suspend,
3027 	.resume		= gem_resume,
3028 #endif /* CONFIG_PM */
3029 };
3030 
3031 static int __init gem_init(void)
3032 {
3033 	return pci_register_driver(&gem_driver);
3034 }
3035 
3036 static void __exit gem_cleanup(void)
3037 {
3038 	pci_unregister_driver(&gem_driver);
3039 }
3040 
3041 module_init(gem_init);
3042 module_exit(gem_cleanup);
3043