1 // SPDX-License-Identifier: GPL-2.0 2 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $ 3 * sungem.c: Sun GEM ethernet driver. 4 * 5 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com) 6 * 7 * Support for Apple GMAC and assorted PHYs, WOL, Power Management 8 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org) 9 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp. 10 * 11 * NAPI and NETPOLL support 12 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com) 13 * 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/types.h> 21 #include <linux/fcntl.h> 22 #include <linux/interrupt.h> 23 #include <linux/ioport.h> 24 #include <linux/in.h> 25 #include <linux/sched.h> 26 #include <linux/string.h> 27 #include <linux/delay.h> 28 #include <linux/errno.h> 29 #include <linux/pci.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/netdevice.h> 32 #include <linux/etherdevice.h> 33 #include <linux/skbuff.h> 34 #include <linux/mii.h> 35 #include <linux/ethtool.h> 36 #include <linux/crc32.h> 37 #include <linux/random.h> 38 #include <linux/workqueue.h> 39 #include <linux/if_vlan.h> 40 #include <linux/bitops.h> 41 #include <linux/mm.h> 42 #include <linux/gfp.h> 43 #include <linux/of.h> 44 45 #include <asm/io.h> 46 #include <asm/byteorder.h> 47 #include <linux/uaccess.h> 48 #include <asm/irq.h> 49 50 #ifdef CONFIG_SPARC 51 #include <asm/idprom.h> 52 #include <asm/prom.h> 53 #endif 54 55 #ifdef CONFIG_PPC_PMAC 56 #include <asm/machdep.h> 57 #include <asm/pmac_feature.h> 58 #endif 59 60 #include <linux/sungem_phy.h> 61 #include "sungem.h" 62 63 #define STRIP_FCS 64 65 #define DEFAULT_MSG (NETIF_MSG_DRV | \ 66 NETIF_MSG_PROBE | \ 67 NETIF_MSG_LINK) 68 69 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \ 70 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \ 71 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \ 72 SUPPORTED_Pause | SUPPORTED_Autoneg) 73 74 #define DRV_NAME "sungem" 75 #define DRV_VERSION "1.0" 76 #define DRV_AUTHOR "David S. Miller <davem@redhat.com>" 77 78 static char version[] = 79 DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n"; 80 81 MODULE_AUTHOR(DRV_AUTHOR); 82 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver"); 83 MODULE_LICENSE("GPL"); 84 85 #define GEM_MODULE_NAME "gem" 86 87 static const struct pci_device_id gem_pci_tbl[] = { 88 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM, 89 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 90 91 /* These models only differ from the original GEM in 92 * that their tx/rx fifos are of a different size and 93 * they only support 10/100 speeds. -DaveM 94 * 95 * Apple's GMAC does support gigabit on machines with 96 * the BCM54xx PHYs. -BenH 97 */ 98 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM, 99 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 100 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC, 101 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 102 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP, 103 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 104 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2, 105 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 106 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC, 107 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 108 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM, 109 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 110 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC, 111 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 112 {0, } 113 }; 114 115 MODULE_DEVICE_TABLE(pci, gem_pci_tbl); 116 117 static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg) 118 { 119 u32 cmd; 120 int limit = 10000; 121 122 cmd = (1 << 30); 123 cmd |= (2 << 28); 124 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD; 125 cmd |= (reg << 18) & MIF_FRAME_REGAD; 126 cmd |= (MIF_FRAME_TAMSB); 127 writel(cmd, gp->regs + MIF_FRAME); 128 129 while (--limit) { 130 cmd = readl(gp->regs + MIF_FRAME); 131 if (cmd & MIF_FRAME_TALSB) 132 break; 133 134 udelay(10); 135 } 136 137 if (!limit) 138 cmd = 0xffff; 139 140 return cmd & MIF_FRAME_DATA; 141 } 142 143 static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg) 144 { 145 struct gem *gp = netdev_priv(dev); 146 return __sungem_phy_read(gp, mii_id, reg); 147 } 148 149 static inline u16 sungem_phy_read(struct gem *gp, int reg) 150 { 151 return __sungem_phy_read(gp, gp->mii_phy_addr, reg); 152 } 153 154 static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val) 155 { 156 u32 cmd; 157 int limit = 10000; 158 159 cmd = (1 << 30); 160 cmd |= (1 << 28); 161 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD; 162 cmd |= (reg << 18) & MIF_FRAME_REGAD; 163 cmd |= (MIF_FRAME_TAMSB); 164 cmd |= (val & MIF_FRAME_DATA); 165 writel(cmd, gp->regs + MIF_FRAME); 166 167 while (limit--) { 168 cmd = readl(gp->regs + MIF_FRAME); 169 if (cmd & MIF_FRAME_TALSB) 170 break; 171 172 udelay(10); 173 } 174 } 175 176 static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val) 177 { 178 struct gem *gp = netdev_priv(dev); 179 __sungem_phy_write(gp, mii_id, reg, val & 0xffff); 180 } 181 182 static inline void sungem_phy_write(struct gem *gp, int reg, u16 val) 183 { 184 __sungem_phy_write(gp, gp->mii_phy_addr, reg, val); 185 } 186 187 static inline void gem_enable_ints(struct gem *gp) 188 { 189 /* Enable all interrupts but TXDONE */ 190 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK); 191 } 192 193 static inline void gem_disable_ints(struct gem *gp) 194 { 195 /* Disable all interrupts, including TXDONE */ 196 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK); 197 (void)readl(gp->regs + GREG_IMASK); /* write posting */ 198 } 199 200 static void gem_get_cell(struct gem *gp) 201 { 202 BUG_ON(gp->cell_enabled < 0); 203 gp->cell_enabled++; 204 #ifdef CONFIG_PPC_PMAC 205 if (gp->cell_enabled == 1) { 206 mb(); 207 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1); 208 udelay(10); 209 } 210 #endif /* CONFIG_PPC_PMAC */ 211 } 212 213 /* Turn off the chip's clock */ 214 static void gem_put_cell(struct gem *gp) 215 { 216 BUG_ON(gp->cell_enabled <= 0); 217 gp->cell_enabled--; 218 #ifdef CONFIG_PPC_PMAC 219 if (gp->cell_enabled == 0) { 220 mb(); 221 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0); 222 udelay(10); 223 } 224 #endif /* CONFIG_PPC_PMAC */ 225 } 226 227 static inline void gem_netif_stop(struct gem *gp) 228 { 229 netif_trans_update(gp->dev); /* prevent tx timeout */ 230 napi_disable(&gp->napi); 231 netif_tx_disable(gp->dev); 232 } 233 234 static inline void gem_netif_start(struct gem *gp) 235 { 236 /* NOTE: unconditional netif_wake_queue is only 237 * appropriate so long as all callers are assured to 238 * have free tx slots. 239 */ 240 netif_wake_queue(gp->dev); 241 napi_enable(&gp->napi); 242 } 243 244 static void gem_schedule_reset(struct gem *gp) 245 { 246 gp->reset_task_pending = 1; 247 schedule_work(&gp->reset_task); 248 } 249 250 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits) 251 { 252 if (netif_msg_intr(gp)) 253 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name); 254 } 255 256 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 257 { 258 u32 pcs_istat = readl(gp->regs + PCS_ISTAT); 259 u32 pcs_miistat; 260 261 if (netif_msg_intr(gp)) 262 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n", 263 gp->dev->name, pcs_istat); 264 265 if (!(pcs_istat & PCS_ISTAT_LSC)) { 266 netdev_err(dev, "PCS irq but no link status change???\n"); 267 return 0; 268 } 269 270 /* The link status bit latches on zero, so you must 271 * read it twice in such a case to see a transition 272 * to the link being up. 273 */ 274 pcs_miistat = readl(gp->regs + PCS_MIISTAT); 275 if (!(pcs_miistat & PCS_MIISTAT_LS)) 276 pcs_miistat |= 277 (readl(gp->regs + PCS_MIISTAT) & 278 PCS_MIISTAT_LS); 279 280 if (pcs_miistat & PCS_MIISTAT_ANC) { 281 /* The remote-fault indication is only valid 282 * when autoneg has completed. 283 */ 284 if (pcs_miistat & PCS_MIISTAT_RF) 285 netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n"); 286 else 287 netdev_info(dev, "PCS AutoNEG complete\n"); 288 } 289 290 if (pcs_miistat & PCS_MIISTAT_LS) { 291 netdev_info(dev, "PCS link is now up\n"); 292 netif_carrier_on(gp->dev); 293 } else { 294 netdev_info(dev, "PCS link is now down\n"); 295 netif_carrier_off(gp->dev); 296 /* If this happens and the link timer is not running, 297 * reset so we re-negotiate. 298 */ 299 if (!timer_pending(&gp->link_timer)) 300 return 1; 301 } 302 303 return 0; 304 } 305 306 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 307 { 308 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT); 309 310 if (netif_msg_intr(gp)) 311 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n", 312 gp->dev->name, txmac_stat); 313 314 /* Defer timer expiration is quite normal, 315 * don't even log the event. 316 */ 317 if ((txmac_stat & MAC_TXSTAT_DTE) && 318 !(txmac_stat & ~MAC_TXSTAT_DTE)) 319 return 0; 320 321 if (txmac_stat & MAC_TXSTAT_URUN) { 322 netdev_err(dev, "TX MAC xmit underrun\n"); 323 dev->stats.tx_fifo_errors++; 324 } 325 326 if (txmac_stat & MAC_TXSTAT_MPE) { 327 netdev_err(dev, "TX MAC max packet size error\n"); 328 dev->stats.tx_errors++; 329 } 330 331 /* The rest are all cases of one of the 16-bit TX 332 * counters expiring. 333 */ 334 if (txmac_stat & MAC_TXSTAT_NCE) 335 dev->stats.collisions += 0x10000; 336 337 if (txmac_stat & MAC_TXSTAT_ECE) { 338 dev->stats.tx_aborted_errors += 0x10000; 339 dev->stats.collisions += 0x10000; 340 } 341 342 if (txmac_stat & MAC_TXSTAT_LCE) { 343 dev->stats.tx_aborted_errors += 0x10000; 344 dev->stats.collisions += 0x10000; 345 } 346 347 /* We do not keep track of MAC_TXSTAT_FCE and 348 * MAC_TXSTAT_PCE events. 349 */ 350 return 0; 351 } 352 353 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung 354 * so we do the following. 355 * 356 * If any part of the reset goes wrong, we return 1 and that causes the 357 * whole chip to be reset. 358 */ 359 static int gem_rxmac_reset(struct gem *gp) 360 { 361 struct net_device *dev = gp->dev; 362 int limit, i; 363 u64 desc_dma; 364 u32 val; 365 366 /* First, reset & disable MAC RX. */ 367 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST); 368 for (limit = 0; limit < 5000; limit++) { 369 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD)) 370 break; 371 udelay(10); 372 } 373 if (limit == 5000) { 374 netdev_err(dev, "RX MAC will not reset, resetting whole chip\n"); 375 return 1; 376 } 377 378 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB, 379 gp->regs + MAC_RXCFG); 380 for (limit = 0; limit < 5000; limit++) { 381 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB)) 382 break; 383 udelay(10); 384 } 385 if (limit == 5000) { 386 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n"); 387 return 1; 388 } 389 390 /* Second, disable RX DMA. */ 391 writel(0, gp->regs + RXDMA_CFG); 392 for (limit = 0; limit < 5000; limit++) { 393 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE)) 394 break; 395 udelay(10); 396 } 397 if (limit == 5000) { 398 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n"); 399 return 1; 400 } 401 402 mdelay(5); 403 404 /* Execute RX reset command. */ 405 writel(gp->swrst_base | GREG_SWRST_RXRST, 406 gp->regs + GREG_SWRST); 407 for (limit = 0; limit < 5000; limit++) { 408 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST)) 409 break; 410 udelay(10); 411 } 412 if (limit == 5000) { 413 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n"); 414 return 1; 415 } 416 417 /* Refresh the RX ring. */ 418 for (i = 0; i < RX_RING_SIZE; i++) { 419 struct gem_rxd *rxd = &gp->init_block->rxd[i]; 420 421 if (gp->rx_skbs[i] == NULL) { 422 netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n"); 423 return 1; 424 } 425 426 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 427 } 428 gp->rx_new = gp->rx_old = 0; 429 430 /* Now we must reprogram the rest of RX unit. */ 431 desc_dma = (u64) gp->gblock_dvma; 432 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd)); 433 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI); 434 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW); 435 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 436 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) | 437 (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128); 438 writel(val, gp->regs + RXDMA_CFG); 439 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN) 440 writel(((5 & RXDMA_BLANK_IPKTS) | 441 ((8 << 12) & RXDMA_BLANK_ITIME)), 442 gp->regs + RXDMA_BLANK); 443 else 444 writel(((5 & RXDMA_BLANK_IPKTS) | 445 ((4 << 12) & RXDMA_BLANK_ITIME)), 446 gp->regs + RXDMA_BLANK); 447 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF); 448 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON); 449 writel(val, gp->regs + RXDMA_PTHRESH); 450 val = readl(gp->regs + RXDMA_CFG); 451 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 452 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK); 453 val = readl(gp->regs + MAC_RXCFG); 454 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 455 456 return 0; 457 } 458 459 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 460 { 461 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT); 462 int ret = 0; 463 464 if (netif_msg_intr(gp)) 465 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n", 466 gp->dev->name, rxmac_stat); 467 468 if (rxmac_stat & MAC_RXSTAT_OFLW) { 469 u32 smac = readl(gp->regs + MAC_SMACHINE); 470 471 netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac); 472 dev->stats.rx_over_errors++; 473 dev->stats.rx_fifo_errors++; 474 475 ret = gem_rxmac_reset(gp); 476 } 477 478 if (rxmac_stat & MAC_RXSTAT_ACE) 479 dev->stats.rx_frame_errors += 0x10000; 480 481 if (rxmac_stat & MAC_RXSTAT_CCE) 482 dev->stats.rx_crc_errors += 0x10000; 483 484 if (rxmac_stat & MAC_RXSTAT_LCE) 485 dev->stats.rx_length_errors += 0x10000; 486 487 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE 488 * events. 489 */ 490 return ret; 491 } 492 493 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 494 { 495 u32 mac_cstat = readl(gp->regs + MAC_CSTAT); 496 497 if (netif_msg_intr(gp)) 498 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n", 499 gp->dev->name, mac_cstat); 500 501 /* This interrupt is just for pause frame and pause 502 * tracking. It is useful for diagnostics and debug 503 * but probably by default we will mask these events. 504 */ 505 if (mac_cstat & MAC_CSTAT_PS) 506 gp->pause_entered++; 507 508 if (mac_cstat & MAC_CSTAT_PRCV) 509 gp->pause_last_time_recvd = (mac_cstat >> 16); 510 511 return 0; 512 } 513 514 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 515 { 516 u32 mif_status = readl(gp->regs + MIF_STATUS); 517 u32 reg_val, changed_bits; 518 519 reg_val = (mif_status & MIF_STATUS_DATA) >> 16; 520 changed_bits = (mif_status & MIF_STATUS_STAT); 521 522 gem_handle_mif_event(gp, reg_val, changed_bits); 523 524 return 0; 525 } 526 527 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) 528 { 529 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT); 530 531 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN && 532 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) { 533 netdev_err(dev, "PCI error [%04x]", pci_estat); 534 535 if (pci_estat & GREG_PCIESTAT_BADACK) 536 pr_cont(" <No ACK64# during ABS64 cycle>"); 537 if (pci_estat & GREG_PCIESTAT_DTRTO) 538 pr_cont(" <Delayed transaction timeout>"); 539 if (pci_estat & GREG_PCIESTAT_OTHER) 540 pr_cont(" <other>"); 541 pr_cont("\n"); 542 } else { 543 pci_estat |= GREG_PCIESTAT_OTHER; 544 netdev_err(dev, "PCI error\n"); 545 } 546 547 if (pci_estat & GREG_PCIESTAT_OTHER) { 548 int pci_errs; 549 550 /* Interrogate PCI config space for the 551 * true cause. 552 */ 553 pci_errs = pci_status_get_and_clear_errors(gp->pdev); 554 netdev_err(dev, "PCI status errors[%04x]\n", pci_errs); 555 if (pci_errs & PCI_STATUS_PARITY) 556 netdev_err(dev, "PCI parity error detected\n"); 557 if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT) 558 netdev_err(dev, "PCI target abort\n"); 559 if (pci_errs & PCI_STATUS_REC_TARGET_ABORT) 560 netdev_err(dev, "PCI master acks target abort\n"); 561 if (pci_errs & PCI_STATUS_REC_MASTER_ABORT) 562 netdev_err(dev, "PCI master abort\n"); 563 if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR) 564 netdev_err(dev, "PCI system error SERR#\n"); 565 if (pci_errs & PCI_STATUS_DETECTED_PARITY) 566 netdev_err(dev, "PCI parity error\n"); 567 } 568 569 /* For all PCI errors, we should reset the chip. */ 570 return 1; 571 } 572 573 /* All non-normal interrupt conditions get serviced here. 574 * Returns non-zero if we should just exit the interrupt 575 * handler right now (ie. if we reset the card which invalidates 576 * all of the other original irq status bits). 577 */ 578 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status) 579 { 580 if (gem_status & GREG_STAT_RXNOBUF) { 581 /* Frame arrived, no free RX buffers available. */ 582 if (netif_msg_rx_err(gp)) 583 printk(KERN_DEBUG "%s: no buffer for rx frame\n", 584 gp->dev->name); 585 dev->stats.rx_dropped++; 586 } 587 588 if (gem_status & GREG_STAT_RXTAGERR) { 589 /* corrupt RX tag framing */ 590 if (netif_msg_rx_err(gp)) 591 printk(KERN_DEBUG "%s: corrupt rx tag framing\n", 592 gp->dev->name); 593 dev->stats.rx_errors++; 594 595 return 1; 596 } 597 598 if (gem_status & GREG_STAT_PCS) { 599 if (gem_pcs_interrupt(dev, gp, gem_status)) 600 return 1; 601 } 602 603 if (gem_status & GREG_STAT_TXMAC) { 604 if (gem_txmac_interrupt(dev, gp, gem_status)) 605 return 1; 606 } 607 608 if (gem_status & GREG_STAT_RXMAC) { 609 if (gem_rxmac_interrupt(dev, gp, gem_status)) 610 return 1; 611 } 612 613 if (gem_status & GREG_STAT_MAC) { 614 if (gem_mac_interrupt(dev, gp, gem_status)) 615 return 1; 616 } 617 618 if (gem_status & GREG_STAT_MIF) { 619 if (gem_mif_interrupt(dev, gp, gem_status)) 620 return 1; 621 } 622 623 if (gem_status & GREG_STAT_PCIERR) { 624 if (gem_pci_interrupt(dev, gp, gem_status)) 625 return 1; 626 } 627 628 return 0; 629 } 630 631 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status) 632 { 633 int entry, limit; 634 635 entry = gp->tx_old; 636 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT); 637 while (entry != limit) { 638 struct sk_buff *skb; 639 struct gem_txd *txd; 640 dma_addr_t dma_addr; 641 u32 dma_len; 642 int frag; 643 644 if (netif_msg_tx_done(gp)) 645 printk(KERN_DEBUG "%s: tx done, slot %d\n", 646 gp->dev->name, entry); 647 skb = gp->tx_skbs[entry]; 648 if (skb_shinfo(skb)->nr_frags) { 649 int last = entry + skb_shinfo(skb)->nr_frags; 650 int walk = entry; 651 int incomplete = 0; 652 653 last &= (TX_RING_SIZE - 1); 654 for (;;) { 655 walk = NEXT_TX(walk); 656 if (walk == limit) 657 incomplete = 1; 658 if (walk == last) 659 break; 660 } 661 if (incomplete) 662 break; 663 } 664 gp->tx_skbs[entry] = NULL; 665 dev->stats.tx_bytes += skb->len; 666 667 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 668 txd = &gp->init_block->txd[entry]; 669 670 dma_addr = le64_to_cpu(txd->buffer); 671 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ; 672 673 dma_unmap_page(&gp->pdev->dev, dma_addr, dma_len, 674 DMA_TO_DEVICE); 675 entry = NEXT_TX(entry); 676 } 677 678 dev->stats.tx_packets++; 679 dev_consume_skb_any(skb); 680 } 681 gp->tx_old = entry; 682 683 /* Need to make the tx_old update visible to gem_start_xmit() 684 * before checking for netif_queue_stopped(). Without the 685 * memory barrier, there is a small possibility that gem_start_xmit() 686 * will miss it and cause the queue to be stopped forever. 687 */ 688 smp_mb(); 689 690 if (unlikely(netif_queue_stopped(dev) && 691 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) { 692 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 693 694 __netif_tx_lock(txq, smp_processor_id()); 695 if (netif_queue_stopped(dev) && 696 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1)) 697 netif_wake_queue(dev); 698 __netif_tx_unlock(txq); 699 } 700 } 701 702 static __inline__ void gem_post_rxds(struct gem *gp, int limit) 703 { 704 int cluster_start, curr, count, kick; 705 706 cluster_start = curr = (gp->rx_new & ~(4 - 1)); 707 count = 0; 708 kick = -1; 709 dma_wmb(); 710 while (curr != limit) { 711 curr = NEXT_RX(curr); 712 if (++count == 4) { 713 struct gem_rxd *rxd = 714 &gp->init_block->rxd[cluster_start]; 715 for (;;) { 716 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 717 rxd++; 718 cluster_start = NEXT_RX(cluster_start); 719 if (cluster_start == curr) 720 break; 721 } 722 kick = curr; 723 count = 0; 724 } 725 } 726 if (kick >= 0) { 727 mb(); 728 writel(kick, gp->regs + RXDMA_KICK); 729 } 730 } 731 732 #define ALIGNED_RX_SKB_ADDR(addr) \ 733 ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr)) 734 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size, 735 gfp_t gfp_flags) 736 { 737 struct sk_buff *skb = alloc_skb(size + 64, gfp_flags); 738 739 if (likely(skb)) { 740 unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data); 741 skb_reserve(skb, offset); 742 } 743 return skb; 744 } 745 746 static int gem_rx(struct gem *gp, int work_to_do) 747 { 748 struct net_device *dev = gp->dev; 749 int entry, drops, work_done = 0; 750 u32 done; 751 752 if (netif_msg_rx_status(gp)) 753 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n", 754 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new); 755 756 entry = gp->rx_new; 757 drops = 0; 758 done = readl(gp->regs + RXDMA_DONE); 759 for (;;) { 760 struct gem_rxd *rxd = &gp->init_block->rxd[entry]; 761 struct sk_buff *skb; 762 u64 status = le64_to_cpu(rxd->status_word); 763 dma_addr_t dma_addr; 764 int len; 765 766 if ((status & RXDCTRL_OWN) != 0) 767 break; 768 769 if (work_done >= RX_RING_SIZE || work_done >= work_to_do) 770 break; 771 772 /* When writing back RX descriptor, GEM writes status 773 * then buffer address, possibly in separate transactions. 774 * If we don't wait for the chip to write both, we could 775 * post a new buffer to this descriptor then have GEM spam 776 * on the buffer address. We sync on the RX completion 777 * register to prevent this from happening. 778 */ 779 if (entry == done) { 780 done = readl(gp->regs + RXDMA_DONE); 781 if (entry == done) 782 break; 783 } 784 785 /* We can now account for the work we're about to do */ 786 work_done++; 787 788 skb = gp->rx_skbs[entry]; 789 790 len = (status & RXDCTRL_BUFSZ) >> 16; 791 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) { 792 dev->stats.rx_errors++; 793 if (len < ETH_ZLEN) 794 dev->stats.rx_length_errors++; 795 if (len & RXDCTRL_BAD) 796 dev->stats.rx_crc_errors++; 797 798 /* We'll just return it to GEM. */ 799 drop_it: 800 dev->stats.rx_dropped++; 801 goto next; 802 } 803 804 dma_addr = le64_to_cpu(rxd->buffer); 805 if (len > RX_COPY_THRESHOLD) { 806 struct sk_buff *new_skb; 807 808 new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC); 809 if (new_skb == NULL) { 810 drops++; 811 goto drop_it; 812 } 813 dma_unmap_page(&gp->pdev->dev, dma_addr, 814 RX_BUF_ALLOC_SIZE(gp), DMA_FROM_DEVICE); 815 gp->rx_skbs[entry] = new_skb; 816 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET)); 817 rxd->buffer = cpu_to_le64(dma_map_page(&gp->pdev->dev, 818 virt_to_page(new_skb->data), 819 offset_in_page(new_skb->data), 820 RX_BUF_ALLOC_SIZE(gp), 821 DMA_FROM_DEVICE)); 822 skb_reserve(new_skb, RX_OFFSET); 823 824 /* Trim the original skb for the netif. */ 825 skb_trim(skb, len); 826 } else { 827 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2); 828 829 if (copy_skb == NULL) { 830 drops++; 831 goto drop_it; 832 } 833 834 skb_reserve(copy_skb, 2); 835 skb_put(copy_skb, len); 836 dma_sync_single_for_cpu(&gp->pdev->dev, dma_addr, len, 837 DMA_FROM_DEVICE); 838 skb_copy_from_linear_data(skb, copy_skb->data, len); 839 dma_sync_single_for_device(&gp->pdev->dev, dma_addr, 840 len, DMA_FROM_DEVICE); 841 842 /* We'll reuse the original ring buffer. */ 843 skb = copy_skb; 844 } 845 846 if (likely(dev->features & NETIF_F_RXCSUM)) { 847 __sum16 csum; 848 849 csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff); 850 skb->csum = csum_unfold(csum); 851 skb->ip_summed = CHECKSUM_COMPLETE; 852 } 853 skb->protocol = eth_type_trans(skb, gp->dev); 854 855 napi_gro_receive(&gp->napi, skb); 856 857 dev->stats.rx_packets++; 858 dev->stats.rx_bytes += len; 859 860 next: 861 entry = NEXT_RX(entry); 862 } 863 864 gem_post_rxds(gp, entry); 865 866 gp->rx_new = entry; 867 868 if (drops) 869 netdev_info(gp->dev, "Memory squeeze, deferring packet\n"); 870 871 return work_done; 872 } 873 874 static int gem_poll(struct napi_struct *napi, int budget) 875 { 876 struct gem *gp = container_of(napi, struct gem, napi); 877 struct net_device *dev = gp->dev; 878 int work_done; 879 880 work_done = 0; 881 do { 882 /* Handle anomalies */ 883 if (unlikely(gp->status & GREG_STAT_ABNORMAL)) { 884 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 885 int reset; 886 887 /* We run the abnormal interrupt handling code with 888 * the Tx lock. It only resets the Rx portion of the 889 * chip, but we need to guard it against DMA being 890 * restarted by the link poll timer 891 */ 892 __netif_tx_lock(txq, smp_processor_id()); 893 reset = gem_abnormal_irq(dev, gp, gp->status); 894 __netif_tx_unlock(txq); 895 if (reset) { 896 gem_schedule_reset(gp); 897 napi_complete(napi); 898 return work_done; 899 } 900 } 901 902 /* Run TX completion thread */ 903 gem_tx(dev, gp, gp->status); 904 905 /* Run RX thread. We don't use any locking here, 906 * code willing to do bad things - like cleaning the 907 * rx ring - must call napi_disable(), which 908 * schedule_timeout()'s if polling is already disabled. 909 */ 910 work_done += gem_rx(gp, budget - work_done); 911 912 if (work_done >= budget) 913 return work_done; 914 915 gp->status = readl(gp->regs + GREG_STAT); 916 } while (gp->status & GREG_STAT_NAPI); 917 918 napi_complete_done(napi, work_done); 919 gem_enable_ints(gp); 920 921 return work_done; 922 } 923 924 static irqreturn_t gem_interrupt(int irq, void *dev_id) 925 { 926 struct net_device *dev = dev_id; 927 struct gem *gp = netdev_priv(dev); 928 929 if (napi_schedule_prep(&gp->napi)) { 930 u32 gem_status = readl(gp->regs + GREG_STAT); 931 932 if (unlikely(gem_status == 0)) { 933 napi_enable(&gp->napi); 934 return IRQ_NONE; 935 } 936 if (netif_msg_intr(gp)) 937 printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n", 938 gp->dev->name, gem_status); 939 940 gp->status = gem_status; 941 gem_disable_ints(gp); 942 __napi_schedule(&gp->napi); 943 } 944 945 /* If polling was disabled at the time we received that 946 * interrupt, we may return IRQ_HANDLED here while we 947 * should return IRQ_NONE. No big deal... 948 */ 949 return IRQ_HANDLED; 950 } 951 952 static void gem_tx_timeout(struct net_device *dev, unsigned int txqueue) 953 { 954 struct gem *gp = netdev_priv(dev); 955 956 netdev_err(dev, "transmit timed out, resetting\n"); 957 958 netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n", 959 readl(gp->regs + TXDMA_CFG), 960 readl(gp->regs + MAC_TXSTAT), 961 readl(gp->regs + MAC_TXCFG)); 962 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n", 963 readl(gp->regs + RXDMA_CFG), 964 readl(gp->regs + MAC_RXSTAT), 965 readl(gp->regs + MAC_RXCFG)); 966 967 gem_schedule_reset(gp); 968 } 969 970 static __inline__ int gem_intme(int entry) 971 { 972 /* Algorithm: IRQ every 1/2 of descriptors. */ 973 if (!(entry & ((TX_RING_SIZE>>1)-1))) 974 return 1; 975 976 return 0; 977 } 978 979 static netdev_tx_t gem_start_xmit(struct sk_buff *skb, 980 struct net_device *dev) 981 { 982 struct gem *gp = netdev_priv(dev); 983 int entry; 984 u64 ctrl; 985 986 ctrl = 0; 987 if (skb->ip_summed == CHECKSUM_PARTIAL) { 988 const u64 csum_start_off = skb_checksum_start_offset(skb); 989 const u64 csum_stuff_off = csum_start_off + skb->csum_offset; 990 991 ctrl = (TXDCTRL_CENAB | 992 (csum_start_off << 15) | 993 (csum_stuff_off << 21)); 994 } 995 996 if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) { 997 /* This is a hard error, log it. */ 998 if (!netif_queue_stopped(dev)) { 999 netif_stop_queue(dev); 1000 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); 1001 } 1002 return NETDEV_TX_BUSY; 1003 } 1004 1005 entry = gp->tx_new; 1006 gp->tx_skbs[entry] = skb; 1007 1008 if (skb_shinfo(skb)->nr_frags == 0) { 1009 struct gem_txd *txd = &gp->init_block->txd[entry]; 1010 dma_addr_t mapping; 1011 u32 len; 1012 1013 len = skb->len; 1014 mapping = dma_map_page(&gp->pdev->dev, 1015 virt_to_page(skb->data), 1016 offset_in_page(skb->data), 1017 len, DMA_TO_DEVICE); 1018 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len; 1019 if (gem_intme(entry)) 1020 ctrl |= TXDCTRL_INTME; 1021 txd->buffer = cpu_to_le64(mapping); 1022 dma_wmb(); 1023 txd->control_word = cpu_to_le64(ctrl); 1024 entry = NEXT_TX(entry); 1025 } else { 1026 struct gem_txd *txd; 1027 u32 first_len; 1028 u64 intme; 1029 dma_addr_t first_mapping; 1030 int frag, first_entry = entry; 1031 1032 intme = 0; 1033 if (gem_intme(entry)) 1034 intme |= TXDCTRL_INTME; 1035 1036 /* We must give this initial chunk to the device last. 1037 * Otherwise we could race with the device. 1038 */ 1039 first_len = skb_headlen(skb); 1040 first_mapping = dma_map_page(&gp->pdev->dev, 1041 virt_to_page(skb->data), 1042 offset_in_page(skb->data), 1043 first_len, DMA_TO_DEVICE); 1044 entry = NEXT_TX(entry); 1045 1046 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) { 1047 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag]; 1048 u32 len; 1049 dma_addr_t mapping; 1050 u64 this_ctrl; 1051 1052 len = skb_frag_size(this_frag); 1053 mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag, 1054 0, len, DMA_TO_DEVICE); 1055 this_ctrl = ctrl; 1056 if (frag == skb_shinfo(skb)->nr_frags - 1) 1057 this_ctrl |= TXDCTRL_EOF; 1058 1059 txd = &gp->init_block->txd[entry]; 1060 txd->buffer = cpu_to_le64(mapping); 1061 dma_wmb(); 1062 txd->control_word = cpu_to_le64(this_ctrl | len); 1063 1064 if (gem_intme(entry)) 1065 intme |= TXDCTRL_INTME; 1066 1067 entry = NEXT_TX(entry); 1068 } 1069 txd = &gp->init_block->txd[first_entry]; 1070 txd->buffer = cpu_to_le64(first_mapping); 1071 dma_wmb(); 1072 txd->control_word = 1073 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len); 1074 } 1075 1076 gp->tx_new = entry; 1077 if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) { 1078 netif_stop_queue(dev); 1079 1080 /* netif_stop_queue() must be done before checking 1081 * tx index in TX_BUFFS_AVAIL() below, because 1082 * in gem_tx(), we update tx_old before checking for 1083 * netif_queue_stopped(). 1084 */ 1085 smp_mb(); 1086 if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1)) 1087 netif_wake_queue(dev); 1088 } 1089 if (netif_msg_tx_queued(gp)) 1090 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n", 1091 dev->name, entry, skb->len); 1092 mb(); 1093 writel(gp->tx_new, gp->regs + TXDMA_KICK); 1094 1095 return NETDEV_TX_OK; 1096 } 1097 1098 static void gem_pcs_reset(struct gem *gp) 1099 { 1100 int limit; 1101 u32 val; 1102 1103 /* Reset PCS unit. */ 1104 val = readl(gp->regs + PCS_MIICTRL); 1105 val |= PCS_MIICTRL_RST; 1106 writel(val, gp->regs + PCS_MIICTRL); 1107 1108 limit = 32; 1109 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) { 1110 udelay(100); 1111 if (limit-- <= 0) 1112 break; 1113 } 1114 if (limit < 0) 1115 netdev_warn(gp->dev, "PCS reset bit would not clear\n"); 1116 } 1117 1118 static void gem_pcs_reinit_adv(struct gem *gp) 1119 { 1120 u32 val; 1121 1122 /* Make sure PCS is disabled while changing advertisement 1123 * configuration. 1124 */ 1125 val = readl(gp->regs + PCS_CFG); 1126 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO); 1127 writel(val, gp->regs + PCS_CFG); 1128 1129 /* Advertise all capabilities except asymmetric 1130 * pause. 1131 */ 1132 val = readl(gp->regs + PCS_MIIADV); 1133 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD | 1134 PCS_MIIADV_SP | PCS_MIIADV_AP); 1135 writel(val, gp->regs + PCS_MIIADV); 1136 1137 /* Enable and restart auto-negotiation, disable wrapback/loopback, 1138 * and re-enable PCS. 1139 */ 1140 val = readl(gp->regs + PCS_MIICTRL); 1141 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE); 1142 val &= ~PCS_MIICTRL_WB; 1143 writel(val, gp->regs + PCS_MIICTRL); 1144 1145 val = readl(gp->regs + PCS_CFG); 1146 val |= PCS_CFG_ENABLE; 1147 writel(val, gp->regs + PCS_CFG); 1148 1149 /* Make sure serialink loopback is off. The meaning 1150 * of this bit is logically inverted based upon whether 1151 * you are in Serialink or SERDES mode. 1152 */ 1153 val = readl(gp->regs + PCS_SCTRL); 1154 if (gp->phy_type == phy_serialink) 1155 val &= ~PCS_SCTRL_LOOP; 1156 else 1157 val |= PCS_SCTRL_LOOP; 1158 writel(val, gp->regs + PCS_SCTRL); 1159 } 1160 1161 #define STOP_TRIES 32 1162 1163 static void gem_reset(struct gem *gp) 1164 { 1165 int limit; 1166 u32 val; 1167 1168 /* Make sure we won't get any more interrupts */ 1169 writel(0xffffffff, gp->regs + GREG_IMASK); 1170 1171 /* Reset the chip */ 1172 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST, 1173 gp->regs + GREG_SWRST); 1174 1175 limit = STOP_TRIES; 1176 1177 do { 1178 udelay(20); 1179 val = readl(gp->regs + GREG_SWRST); 1180 if (limit-- <= 0) 1181 break; 1182 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST)); 1183 1184 if (limit < 0) 1185 netdev_err(gp->dev, "SW reset is ghetto\n"); 1186 1187 if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes) 1188 gem_pcs_reinit_adv(gp); 1189 } 1190 1191 static void gem_start_dma(struct gem *gp) 1192 { 1193 u32 val; 1194 1195 /* We are ready to rock, turn everything on. */ 1196 val = readl(gp->regs + TXDMA_CFG); 1197 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG); 1198 val = readl(gp->regs + RXDMA_CFG); 1199 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 1200 val = readl(gp->regs + MAC_TXCFG); 1201 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG); 1202 val = readl(gp->regs + MAC_RXCFG); 1203 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 1204 1205 (void) readl(gp->regs + MAC_RXCFG); 1206 udelay(100); 1207 1208 gem_enable_ints(gp); 1209 1210 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 1211 } 1212 1213 /* DMA won't be actually stopped before about 4ms tho ... 1214 */ 1215 static void gem_stop_dma(struct gem *gp) 1216 { 1217 u32 val; 1218 1219 /* We are done rocking, turn everything off. */ 1220 val = readl(gp->regs + TXDMA_CFG); 1221 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG); 1222 val = readl(gp->regs + RXDMA_CFG); 1223 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); 1224 val = readl(gp->regs + MAC_TXCFG); 1225 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG); 1226 val = readl(gp->regs + MAC_RXCFG); 1227 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 1228 1229 (void) readl(gp->regs + MAC_RXCFG); 1230 1231 /* Need to wait a bit ... done by the caller */ 1232 } 1233 1234 1235 // XXX dbl check what that function should do when called on PCS PHY 1236 static void gem_begin_auto_negotiation(struct gem *gp, 1237 const struct ethtool_link_ksettings *ep) 1238 { 1239 u32 advertise, features; 1240 int autoneg; 1241 int speed; 1242 int duplex; 1243 u32 advertising; 1244 1245 if (ep) 1246 ethtool_convert_link_mode_to_legacy_u32( 1247 &advertising, ep->link_modes.advertising); 1248 1249 if (gp->phy_type != phy_mii_mdio0 && 1250 gp->phy_type != phy_mii_mdio1) 1251 goto non_mii; 1252 1253 /* Setup advertise */ 1254 if (found_mii_phy(gp)) 1255 features = gp->phy_mii.def->features; 1256 else 1257 features = 0; 1258 1259 advertise = features & ADVERTISE_MASK; 1260 if (gp->phy_mii.advertising != 0) 1261 advertise &= gp->phy_mii.advertising; 1262 1263 autoneg = gp->want_autoneg; 1264 speed = gp->phy_mii.speed; 1265 duplex = gp->phy_mii.duplex; 1266 1267 /* Setup link parameters */ 1268 if (!ep) 1269 goto start_aneg; 1270 if (ep->base.autoneg == AUTONEG_ENABLE) { 1271 advertise = advertising; 1272 autoneg = 1; 1273 } else { 1274 autoneg = 0; 1275 speed = ep->base.speed; 1276 duplex = ep->base.duplex; 1277 } 1278 1279 start_aneg: 1280 /* Sanitize settings based on PHY capabilities */ 1281 if ((features & SUPPORTED_Autoneg) == 0) 1282 autoneg = 0; 1283 if (speed == SPEED_1000 && 1284 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full))) 1285 speed = SPEED_100; 1286 if (speed == SPEED_100 && 1287 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full))) 1288 speed = SPEED_10; 1289 if (duplex == DUPLEX_FULL && 1290 !(features & (SUPPORTED_1000baseT_Full | 1291 SUPPORTED_100baseT_Full | 1292 SUPPORTED_10baseT_Full))) 1293 duplex = DUPLEX_HALF; 1294 if (speed == 0) 1295 speed = SPEED_10; 1296 1297 /* If we are asleep, we don't try to actually setup the PHY, we 1298 * just store the settings 1299 */ 1300 if (!netif_device_present(gp->dev)) { 1301 gp->phy_mii.autoneg = gp->want_autoneg = autoneg; 1302 gp->phy_mii.speed = speed; 1303 gp->phy_mii.duplex = duplex; 1304 return; 1305 } 1306 1307 /* Configure PHY & start aneg */ 1308 gp->want_autoneg = autoneg; 1309 if (autoneg) { 1310 if (found_mii_phy(gp)) 1311 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise); 1312 gp->lstate = link_aneg; 1313 } else { 1314 if (found_mii_phy(gp)) 1315 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex); 1316 gp->lstate = link_force_ok; 1317 } 1318 1319 non_mii: 1320 gp->timer_ticks = 0; 1321 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 1322 } 1323 1324 /* A link-up condition has occurred, initialize and enable the 1325 * rest of the chip. 1326 */ 1327 static int gem_set_link_modes(struct gem *gp) 1328 { 1329 struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0); 1330 int full_duplex, speed, pause; 1331 u32 val; 1332 1333 full_duplex = 0; 1334 speed = SPEED_10; 1335 pause = 0; 1336 1337 if (found_mii_phy(gp)) { 1338 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii)) 1339 return 1; 1340 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL); 1341 speed = gp->phy_mii.speed; 1342 pause = gp->phy_mii.pause; 1343 } else if (gp->phy_type == phy_serialink || 1344 gp->phy_type == phy_serdes) { 1345 u32 pcs_lpa = readl(gp->regs + PCS_MIILP); 1346 1347 if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes) 1348 full_duplex = 1; 1349 speed = SPEED_1000; 1350 } 1351 1352 netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n", 1353 speed, (full_duplex ? "full" : "half")); 1354 1355 1356 /* We take the tx queue lock to avoid collisions between 1357 * this code, the tx path and the NAPI-driven error path 1358 */ 1359 __netif_tx_lock(txq, smp_processor_id()); 1360 1361 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU); 1362 if (full_duplex) { 1363 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL); 1364 } else { 1365 /* MAC_TXCFG_NBO must be zero. */ 1366 } 1367 writel(val, gp->regs + MAC_TXCFG); 1368 1369 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED); 1370 if (!full_duplex && 1371 (gp->phy_type == phy_mii_mdio0 || 1372 gp->phy_type == phy_mii_mdio1)) { 1373 val |= MAC_XIFCFG_DISE; 1374 } else if (full_duplex) { 1375 val |= MAC_XIFCFG_FLED; 1376 } 1377 1378 if (speed == SPEED_1000) 1379 val |= (MAC_XIFCFG_GMII); 1380 1381 writel(val, gp->regs + MAC_XIFCFG); 1382 1383 /* If gigabit and half-duplex, enable carrier extension 1384 * mode. Else, disable it. 1385 */ 1386 if (speed == SPEED_1000 && !full_duplex) { 1387 val = readl(gp->regs + MAC_TXCFG); 1388 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG); 1389 1390 val = readl(gp->regs + MAC_RXCFG); 1391 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG); 1392 } else { 1393 val = readl(gp->regs + MAC_TXCFG); 1394 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG); 1395 1396 val = readl(gp->regs + MAC_RXCFG); 1397 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG); 1398 } 1399 1400 if (gp->phy_type == phy_serialink || 1401 gp->phy_type == phy_serdes) { 1402 u32 pcs_lpa = readl(gp->regs + PCS_MIILP); 1403 1404 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP)) 1405 pause = 1; 1406 } 1407 1408 if (!full_duplex) 1409 writel(512, gp->regs + MAC_STIME); 1410 else 1411 writel(64, gp->regs + MAC_STIME); 1412 val = readl(gp->regs + MAC_MCCFG); 1413 if (pause) 1414 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE); 1415 else 1416 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE); 1417 writel(val, gp->regs + MAC_MCCFG); 1418 1419 gem_start_dma(gp); 1420 1421 __netif_tx_unlock(txq); 1422 1423 if (netif_msg_link(gp)) { 1424 if (pause) { 1425 netdev_info(gp->dev, 1426 "Pause is enabled (rxfifo: %d off: %d on: %d)\n", 1427 gp->rx_fifo_sz, 1428 gp->rx_pause_off, 1429 gp->rx_pause_on); 1430 } else { 1431 netdev_info(gp->dev, "Pause is disabled\n"); 1432 } 1433 } 1434 1435 return 0; 1436 } 1437 1438 static int gem_mdio_link_not_up(struct gem *gp) 1439 { 1440 switch (gp->lstate) { 1441 case link_force_ret: 1442 netif_info(gp, link, gp->dev, 1443 "Autoneg failed again, keeping forced mode\n"); 1444 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, 1445 gp->last_forced_speed, DUPLEX_HALF); 1446 gp->timer_ticks = 5; 1447 gp->lstate = link_force_ok; 1448 return 0; 1449 case link_aneg: 1450 /* We try forced modes after a failed aneg only on PHYs that don't 1451 * have "magic_aneg" bit set, which means they internally do the 1452 * while forced-mode thingy. On these, we just restart aneg 1453 */ 1454 if (gp->phy_mii.def->magic_aneg) 1455 return 1; 1456 netif_info(gp, link, gp->dev, "switching to forced 100bt\n"); 1457 /* Try forced modes. */ 1458 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100, 1459 DUPLEX_HALF); 1460 gp->timer_ticks = 5; 1461 gp->lstate = link_force_try; 1462 return 0; 1463 case link_force_try: 1464 /* Downgrade from 100 to 10 Mbps if necessary. 1465 * If already at 10Mbps, warn user about the 1466 * situation every 10 ticks. 1467 */ 1468 if (gp->phy_mii.speed == SPEED_100) { 1469 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10, 1470 DUPLEX_HALF); 1471 gp->timer_ticks = 5; 1472 netif_info(gp, link, gp->dev, 1473 "switching to forced 10bt\n"); 1474 return 0; 1475 } else 1476 return 1; 1477 default: 1478 return 0; 1479 } 1480 } 1481 1482 static void gem_link_timer(struct timer_list *t) 1483 { 1484 struct gem *gp = from_timer(gp, t, link_timer); 1485 struct net_device *dev = gp->dev; 1486 int restart_aneg = 0; 1487 1488 /* There's no point doing anything if we're going to be reset */ 1489 if (gp->reset_task_pending) 1490 return; 1491 1492 if (gp->phy_type == phy_serialink || 1493 gp->phy_type == phy_serdes) { 1494 u32 val = readl(gp->regs + PCS_MIISTAT); 1495 1496 if (!(val & PCS_MIISTAT_LS)) 1497 val = readl(gp->regs + PCS_MIISTAT); 1498 1499 if ((val & PCS_MIISTAT_LS) != 0) { 1500 if (gp->lstate == link_up) 1501 goto restart; 1502 1503 gp->lstate = link_up; 1504 netif_carrier_on(dev); 1505 (void)gem_set_link_modes(gp); 1506 } 1507 goto restart; 1508 } 1509 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) { 1510 /* Ok, here we got a link. If we had it due to a forced 1511 * fallback, and we were configured for autoneg, we do 1512 * retry a short autoneg pass. If you know your hub is 1513 * broken, use ethtool ;) 1514 */ 1515 if (gp->lstate == link_force_try && gp->want_autoneg) { 1516 gp->lstate = link_force_ret; 1517 gp->last_forced_speed = gp->phy_mii.speed; 1518 gp->timer_ticks = 5; 1519 if (netif_msg_link(gp)) 1520 netdev_info(dev, 1521 "Got link after fallback, retrying autoneg once...\n"); 1522 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising); 1523 } else if (gp->lstate != link_up) { 1524 gp->lstate = link_up; 1525 netif_carrier_on(dev); 1526 if (gem_set_link_modes(gp)) 1527 restart_aneg = 1; 1528 } 1529 } else { 1530 /* If the link was previously up, we restart the 1531 * whole process 1532 */ 1533 if (gp->lstate == link_up) { 1534 gp->lstate = link_down; 1535 netif_info(gp, link, dev, "Link down\n"); 1536 netif_carrier_off(dev); 1537 gem_schedule_reset(gp); 1538 /* The reset task will restart the timer */ 1539 return; 1540 } else if (++gp->timer_ticks > 10) { 1541 if (found_mii_phy(gp)) 1542 restart_aneg = gem_mdio_link_not_up(gp); 1543 else 1544 restart_aneg = 1; 1545 } 1546 } 1547 if (restart_aneg) { 1548 gem_begin_auto_negotiation(gp, NULL); 1549 return; 1550 } 1551 restart: 1552 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 1553 } 1554 1555 static void gem_clean_rings(struct gem *gp) 1556 { 1557 struct gem_init_block *gb = gp->init_block; 1558 struct sk_buff *skb; 1559 int i; 1560 dma_addr_t dma_addr; 1561 1562 for (i = 0; i < RX_RING_SIZE; i++) { 1563 struct gem_rxd *rxd; 1564 1565 rxd = &gb->rxd[i]; 1566 if (gp->rx_skbs[i] != NULL) { 1567 skb = gp->rx_skbs[i]; 1568 dma_addr = le64_to_cpu(rxd->buffer); 1569 dma_unmap_page(&gp->pdev->dev, dma_addr, 1570 RX_BUF_ALLOC_SIZE(gp), 1571 DMA_FROM_DEVICE); 1572 dev_kfree_skb_any(skb); 1573 gp->rx_skbs[i] = NULL; 1574 } 1575 rxd->status_word = 0; 1576 dma_wmb(); 1577 rxd->buffer = 0; 1578 } 1579 1580 for (i = 0; i < TX_RING_SIZE; i++) { 1581 if (gp->tx_skbs[i] != NULL) { 1582 struct gem_txd *txd; 1583 int frag; 1584 1585 skb = gp->tx_skbs[i]; 1586 gp->tx_skbs[i] = NULL; 1587 1588 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 1589 int ent = i & (TX_RING_SIZE - 1); 1590 1591 txd = &gb->txd[ent]; 1592 dma_addr = le64_to_cpu(txd->buffer); 1593 dma_unmap_page(&gp->pdev->dev, dma_addr, 1594 le64_to_cpu(txd->control_word) & 1595 TXDCTRL_BUFSZ, DMA_TO_DEVICE); 1596 1597 if (frag != skb_shinfo(skb)->nr_frags) 1598 i++; 1599 } 1600 dev_kfree_skb_any(skb); 1601 } 1602 } 1603 } 1604 1605 static void gem_init_rings(struct gem *gp) 1606 { 1607 struct gem_init_block *gb = gp->init_block; 1608 struct net_device *dev = gp->dev; 1609 int i; 1610 dma_addr_t dma_addr; 1611 1612 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0; 1613 1614 gem_clean_rings(gp); 1615 1616 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN, 1617 (unsigned)VLAN_ETH_FRAME_LEN); 1618 1619 for (i = 0; i < RX_RING_SIZE; i++) { 1620 struct sk_buff *skb; 1621 struct gem_rxd *rxd = &gb->rxd[i]; 1622 1623 skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL); 1624 if (!skb) { 1625 rxd->buffer = 0; 1626 rxd->status_word = 0; 1627 continue; 1628 } 1629 1630 gp->rx_skbs[i] = skb; 1631 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET)); 1632 dma_addr = dma_map_page(&gp->pdev->dev, 1633 virt_to_page(skb->data), 1634 offset_in_page(skb->data), 1635 RX_BUF_ALLOC_SIZE(gp), 1636 DMA_FROM_DEVICE); 1637 rxd->buffer = cpu_to_le64(dma_addr); 1638 dma_wmb(); 1639 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); 1640 skb_reserve(skb, RX_OFFSET); 1641 } 1642 1643 for (i = 0; i < TX_RING_SIZE; i++) { 1644 struct gem_txd *txd = &gb->txd[i]; 1645 1646 txd->control_word = 0; 1647 dma_wmb(); 1648 txd->buffer = 0; 1649 } 1650 wmb(); 1651 } 1652 1653 /* Init PHY interface and start link poll state machine */ 1654 static void gem_init_phy(struct gem *gp) 1655 { 1656 u32 mifcfg; 1657 1658 /* Revert MIF CFG setting done on stop_phy */ 1659 mifcfg = readl(gp->regs + MIF_CFG); 1660 mifcfg &= ~MIF_CFG_BBMODE; 1661 writel(mifcfg, gp->regs + MIF_CFG); 1662 1663 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) { 1664 int i; 1665 1666 /* Those delays sucks, the HW seems to love them though, I'll 1667 * seriously consider breaking some locks here to be able 1668 * to schedule instead 1669 */ 1670 for (i = 0; i < 3; i++) { 1671 #ifdef CONFIG_PPC_PMAC 1672 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0); 1673 msleep(20); 1674 #endif 1675 /* Some PHYs used by apple have problem getting back to us, 1676 * we do an additional reset here 1677 */ 1678 sungem_phy_write(gp, MII_BMCR, BMCR_RESET); 1679 msleep(20); 1680 if (sungem_phy_read(gp, MII_BMCR) != 0xffff) 1681 break; 1682 if (i == 2) 1683 netdev_warn(gp->dev, "GMAC PHY not responding !\n"); 1684 } 1685 } 1686 1687 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN && 1688 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) { 1689 u32 val; 1690 1691 /* Init datapath mode register. */ 1692 if (gp->phy_type == phy_mii_mdio0 || 1693 gp->phy_type == phy_mii_mdio1) { 1694 val = PCS_DMODE_MGM; 1695 } else if (gp->phy_type == phy_serialink) { 1696 val = PCS_DMODE_SM | PCS_DMODE_GMOE; 1697 } else { 1698 val = PCS_DMODE_ESM; 1699 } 1700 1701 writel(val, gp->regs + PCS_DMODE); 1702 } 1703 1704 if (gp->phy_type == phy_mii_mdio0 || 1705 gp->phy_type == phy_mii_mdio1) { 1706 /* Reset and detect MII PHY */ 1707 sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr); 1708 1709 /* Init PHY */ 1710 if (gp->phy_mii.def && gp->phy_mii.def->ops->init) 1711 gp->phy_mii.def->ops->init(&gp->phy_mii); 1712 } else { 1713 gem_pcs_reset(gp); 1714 gem_pcs_reinit_adv(gp); 1715 } 1716 1717 /* Default aneg parameters */ 1718 gp->timer_ticks = 0; 1719 gp->lstate = link_down; 1720 netif_carrier_off(gp->dev); 1721 1722 /* Print things out */ 1723 if (gp->phy_type == phy_mii_mdio0 || 1724 gp->phy_type == phy_mii_mdio1) 1725 netdev_info(gp->dev, "Found %s PHY\n", 1726 gp->phy_mii.def ? gp->phy_mii.def->name : "no"); 1727 1728 gem_begin_auto_negotiation(gp, NULL); 1729 } 1730 1731 static void gem_init_dma(struct gem *gp) 1732 { 1733 u64 desc_dma = (u64) gp->gblock_dvma; 1734 u32 val; 1735 1736 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE); 1737 writel(val, gp->regs + TXDMA_CFG); 1738 1739 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI); 1740 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW); 1741 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd)); 1742 1743 writel(0, gp->regs + TXDMA_KICK); 1744 1745 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) | 1746 (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128); 1747 writel(val, gp->regs + RXDMA_CFG); 1748 1749 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI); 1750 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW); 1751 1752 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); 1753 1754 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF); 1755 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON); 1756 writel(val, gp->regs + RXDMA_PTHRESH); 1757 1758 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN) 1759 writel(((5 & RXDMA_BLANK_IPKTS) | 1760 ((8 << 12) & RXDMA_BLANK_ITIME)), 1761 gp->regs + RXDMA_BLANK); 1762 else 1763 writel(((5 & RXDMA_BLANK_IPKTS) | 1764 ((4 << 12) & RXDMA_BLANK_ITIME)), 1765 gp->regs + RXDMA_BLANK); 1766 } 1767 1768 static u32 gem_setup_multicast(struct gem *gp) 1769 { 1770 u32 rxcfg = 0; 1771 int i; 1772 1773 if ((gp->dev->flags & IFF_ALLMULTI) || 1774 (netdev_mc_count(gp->dev) > 256)) { 1775 for (i=0; i<16; i++) 1776 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2)); 1777 rxcfg |= MAC_RXCFG_HFE; 1778 } else if (gp->dev->flags & IFF_PROMISC) { 1779 rxcfg |= MAC_RXCFG_PROM; 1780 } else { 1781 u16 hash_table[16]; 1782 u32 crc; 1783 struct netdev_hw_addr *ha; 1784 int i; 1785 1786 memset(hash_table, 0, sizeof(hash_table)); 1787 netdev_for_each_mc_addr(ha, gp->dev) { 1788 crc = ether_crc_le(6, ha->addr); 1789 crc >>= 24; 1790 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); 1791 } 1792 for (i=0; i<16; i++) 1793 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2)); 1794 rxcfg |= MAC_RXCFG_HFE; 1795 } 1796 1797 return rxcfg; 1798 } 1799 1800 static void gem_init_mac(struct gem *gp) 1801 { 1802 const unsigned char *e = &gp->dev->dev_addr[0]; 1803 1804 writel(0x1bf0, gp->regs + MAC_SNDPAUSE); 1805 1806 writel(0x00, gp->regs + MAC_IPG0); 1807 writel(0x08, gp->regs + MAC_IPG1); 1808 writel(0x04, gp->regs + MAC_IPG2); 1809 writel(0x40, gp->regs + MAC_STIME); 1810 writel(0x40, gp->regs + MAC_MINFSZ); 1811 1812 /* Ethernet payload + header + FCS + optional VLAN tag. */ 1813 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ); 1814 1815 writel(0x07, gp->regs + MAC_PASIZE); 1816 writel(0x04, gp->regs + MAC_JAMSIZE); 1817 writel(0x10, gp->regs + MAC_ATTLIM); 1818 writel(0x8808, gp->regs + MAC_MCTYPE); 1819 1820 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED); 1821 1822 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0); 1823 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1); 1824 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2); 1825 1826 writel(0, gp->regs + MAC_ADDR3); 1827 writel(0, gp->regs + MAC_ADDR4); 1828 writel(0, gp->regs + MAC_ADDR5); 1829 1830 writel(0x0001, gp->regs + MAC_ADDR6); 1831 writel(0xc200, gp->regs + MAC_ADDR7); 1832 writel(0x0180, gp->regs + MAC_ADDR8); 1833 1834 writel(0, gp->regs + MAC_AFILT0); 1835 writel(0, gp->regs + MAC_AFILT1); 1836 writel(0, gp->regs + MAC_AFILT2); 1837 writel(0, gp->regs + MAC_AF21MSK); 1838 writel(0, gp->regs + MAC_AF0MSK); 1839 1840 gp->mac_rx_cfg = gem_setup_multicast(gp); 1841 #ifdef STRIP_FCS 1842 gp->mac_rx_cfg |= MAC_RXCFG_SFCS; 1843 #endif 1844 writel(0, gp->regs + MAC_NCOLL); 1845 writel(0, gp->regs + MAC_FASUCC); 1846 writel(0, gp->regs + MAC_ECOLL); 1847 writel(0, gp->regs + MAC_LCOLL); 1848 writel(0, gp->regs + MAC_DTIMER); 1849 writel(0, gp->regs + MAC_PATMPS); 1850 writel(0, gp->regs + MAC_RFCTR); 1851 writel(0, gp->regs + MAC_LERR); 1852 writel(0, gp->regs + MAC_AERR); 1853 writel(0, gp->regs + MAC_FCSERR); 1854 writel(0, gp->regs + MAC_RXCVERR); 1855 1856 /* Clear RX/TX/MAC/XIF config, we will set these up and enable 1857 * them once a link is established. 1858 */ 1859 writel(0, gp->regs + MAC_TXCFG); 1860 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG); 1861 writel(0, gp->regs + MAC_MCCFG); 1862 writel(0, gp->regs + MAC_XIFCFG); 1863 1864 /* Setup MAC interrupts. We want to get all of the interesting 1865 * counter expiration events, but we do not want to hear about 1866 * normal rx/tx as the DMA engine tells us that. 1867 */ 1868 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK); 1869 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK); 1870 1871 /* Don't enable even the PAUSE interrupts for now, we 1872 * make no use of those events other than to record them. 1873 */ 1874 writel(0xffffffff, gp->regs + MAC_MCMASK); 1875 1876 /* Don't enable GEM's WOL in normal operations 1877 */ 1878 if (gp->has_wol) 1879 writel(0, gp->regs + WOL_WAKECSR); 1880 } 1881 1882 static void gem_init_pause_thresholds(struct gem *gp) 1883 { 1884 u32 cfg; 1885 1886 /* Calculate pause thresholds. Setting the OFF threshold to the 1887 * full RX fifo size effectively disables PAUSE generation which 1888 * is what we do for 10/100 only GEMs which have FIFOs too small 1889 * to make real gains from PAUSE. 1890 */ 1891 if (gp->rx_fifo_sz <= (2 * 1024)) { 1892 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz; 1893 } else { 1894 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63; 1895 int off = (gp->rx_fifo_sz - (max_frame * 2)); 1896 int on = off - max_frame; 1897 1898 gp->rx_pause_off = off; 1899 gp->rx_pause_on = on; 1900 } 1901 1902 1903 /* Configure the chip "burst" DMA mode & enable some 1904 * HW bug fixes on Apple version 1905 */ 1906 cfg = 0; 1907 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) 1908 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX; 1909 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) 1910 cfg |= GREG_CFG_IBURST; 1911 #endif 1912 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM); 1913 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM); 1914 writel(cfg, gp->regs + GREG_CFG); 1915 1916 /* If Infinite Burst didn't stick, then use different 1917 * thresholds (and Apple bug fixes don't exist) 1918 */ 1919 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) { 1920 cfg = ((2 << 1) & GREG_CFG_TXDMALIM); 1921 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM); 1922 writel(cfg, gp->regs + GREG_CFG); 1923 } 1924 } 1925 1926 static int gem_check_invariants(struct gem *gp) 1927 { 1928 struct pci_dev *pdev = gp->pdev; 1929 u32 mif_cfg; 1930 1931 /* On Apple's sungem, we can't rely on registers as the chip 1932 * was been powered down by the firmware. The PHY is looked 1933 * up later on. 1934 */ 1935 if (pdev->vendor == PCI_VENDOR_ID_APPLE) { 1936 gp->phy_type = phy_mii_mdio0; 1937 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64; 1938 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64; 1939 gp->swrst_base = 0; 1940 1941 mif_cfg = readl(gp->regs + MIF_CFG); 1942 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1); 1943 mif_cfg |= MIF_CFG_MDI0; 1944 writel(mif_cfg, gp->regs + MIF_CFG); 1945 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE); 1946 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG); 1947 1948 /* We hard-code the PHY address so we can properly bring it out of 1949 * reset later on, we can't really probe it at this point, though 1950 * that isn't an issue. 1951 */ 1952 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC) 1953 gp->mii_phy_addr = 1; 1954 else 1955 gp->mii_phy_addr = 0; 1956 1957 return 0; 1958 } 1959 1960 mif_cfg = readl(gp->regs + MIF_CFG); 1961 1962 if (pdev->vendor == PCI_VENDOR_ID_SUN && 1963 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) { 1964 /* One of the MII PHYs _must_ be present 1965 * as this chip has no gigabit PHY. 1966 */ 1967 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) { 1968 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n", 1969 mif_cfg); 1970 return -1; 1971 } 1972 } 1973 1974 /* Determine initial PHY interface type guess. MDIO1 is the 1975 * external PHY and thus takes precedence over MDIO0. 1976 */ 1977 1978 if (mif_cfg & MIF_CFG_MDI1) { 1979 gp->phy_type = phy_mii_mdio1; 1980 mif_cfg |= MIF_CFG_PSELECT; 1981 writel(mif_cfg, gp->regs + MIF_CFG); 1982 } else if (mif_cfg & MIF_CFG_MDI0) { 1983 gp->phy_type = phy_mii_mdio0; 1984 mif_cfg &= ~MIF_CFG_PSELECT; 1985 writel(mif_cfg, gp->regs + MIF_CFG); 1986 } else { 1987 #ifdef CONFIG_SPARC 1988 const char *p; 1989 1990 p = of_get_property(gp->of_node, "shared-pins", NULL); 1991 if (p && !strcmp(p, "serdes")) 1992 gp->phy_type = phy_serdes; 1993 else 1994 #endif 1995 gp->phy_type = phy_serialink; 1996 } 1997 if (gp->phy_type == phy_mii_mdio1 || 1998 gp->phy_type == phy_mii_mdio0) { 1999 int i; 2000 2001 for (i = 0; i < 32; i++) { 2002 gp->mii_phy_addr = i; 2003 if (sungem_phy_read(gp, MII_BMCR) != 0xffff) 2004 break; 2005 } 2006 if (i == 32) { 2007 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) { 2008 pr_err("RIO MII phy will not respond\n"); 2009 return -1; 2010 } 2011 gp->phy_type = phy_serdes; 2012 } 2013 } 2014 2015 /* Fetch the FIFO configurations now too. */ 2016 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64; 2017 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64; 2018 2019 if (pdev->vendor == PCI_VENDOR_ID_SUN) { 2020 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) { 2021 if (gp->tx_fifo_sz != (9 * 1024) || 2022 gp->rx_fifo_sz != (20 * 1024)) { 2023 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n", 2024 gp->tx_fifo_sz, gp->rx_fifo_sz); 2025 return -1; 2026 } 2027 gp->swrst_base = 0; 2028 } else { 2029 if (gp->tx_fifo_sz != (2 * 1024) || 2030 gp->rx_fifo_sz != (2 * 1024)) { 2031 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n", 2032 gp->tx_fifo_sz, gp->rx_fifo_sz); 2033 return -1; 2034 } 2035 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT; 2036 } 2037 } 2038 2039 return 0; 2040 } 2041 2042 static void gem_reinit_chip(struct gem *gp) 2043 { 2044 /* Reset the chip */ 2045 gem_reset(gp); 2046 2047 /* Make sure ints are disabled */ 2048 gem_disable_ints(gp); 2049 2050 /* Allocate & setup ring buffers */ 2051 gem_init_rings(gp); 2052 2053 /* Configure pause thresholds */ 2054 gem_init_pause_thresholds(gp); 2055 2056 /* Init DMA & MAC engines */ 2057 gem_init_dma(gp); 2058 gem_init_mac(gp); 2059 } 2060 2061 2062 static void gem_stop_phy(struct gem *gp, int wol) 2063 { 2064 u32 mifcfg; 2065 2066 /* Let the chip settle down a bit, it seems that helps 2067 * for sleep mode on some models 2068 */ 2069 msleep(10); 2070 2071 /* Make sure we aren't polling PHY status change. We 2072 * don't currently use that feature though 2073 */ 2074 mifcfg = readl(gp->regs + MIF_CFG); 2075 mifcfg &= ~MIF_CFG_POLL; 2076 writel(mifcfg, gp->regs + MIF_CFG); 2077 2078 if (wol && gp->has_wol) { 2079 const unsigned char *e = &gp->dev->dev_addr[0]; 2080 u32 csr; 2081 2082 /* Setup wake-on-lan for MAGIC packet */ 2083 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB, 2084 gp->regs + MAC_RXCFG); 2085 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0); 2086 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1); 2087 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2); 2088 2089 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT); 2090 csr = WOL_WAKECSR_ENABLE; 2091 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0) 2092 csr |= WOL_WAKECSR_MII; 2093 writel(csr, gp->regs + WOL_WAKECSR); 2094 } else { 2095 writel(0, gp->regs + MAC_RXCFG); 2096 (void)readl(gp->regs + MAC_RXCFG); 2097 /* Machine sleep will die in strange ways if we 2098 * dont wait a bit here, looks like the chip takes 2099 * some time to really shut down 2100 */ 2101 msleep(10); 2102 } 2103 2104 writel(0, gp->regs + MAC_TXCFG); 2105 writel(0, gp->regs + MAC_XIFCFG); 2106 writel(0, gp->regs + TXDMA_CFG); 2107 writel(0, gp->regs + RXDMA_CFG); 2108 2109 if (!wol) { 2110 gem_reset(gp); 2111 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST); 2112 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST); 2113 2114 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend) 2115 gp->phy_mii.def->ops->suspend(&gp->phy_mii); 2116 2117 /* According to Apple, we must set the MDIO pins to this begnign 2118 * state or we may 1) eat more current, 2) damage some PHYs 2119 */ 2120 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG); 2121 writel(0, gp->regs + MIF_BBCLK); 2122 writel(0, gp->regs + MIF_BBDATA); 2123 writel(0, gp->regs + MIF_BBOENAB); 2124 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG); 2125 (void) readl(gp->regs + MAC_XIFCFG); 2126 } 2127 } 2128 2129 static int gem_do_start(struct net_device *dev) 2130 { 2131 struct gem *gp = netdev_priv(dev); 2132 int rc; 2133 2134 pci_set_master(gp->pdev); 2135 2136 /* Init & setup chip hardware */ 2137 gem_reinit_chip(gp); 2138 2139 /* An interrupt might come in handy */ 2140 rc = request_irq(gp->pdev->irq, gem_interrupt, 2141 IRQF_SHARED, dev->name, (void *)dev); 2142 if (rc) { 2143 netdev_err(dev, "failed to request irq !\n"); 2144 2145 gem_reset(gp); 2146 gem_clean_rings(gp); 2147 gem_put_cell(gp); 2148 return rc; 2149 } 2150 2151 /* Mark us as attached again if we come from resume(), this has 2152 * no effect if we weren't detached and needs to be done now. 2153 */ 2154 netif_device_attach(dev); 2155 2156 /* Restart NAPI & queues */ 2157 gem_netif_start(gp); 2158 2159 /* Detect & init PHY, start autoneg etc... this will 2160 * eventually result in starting DMA operations when 2161 * the link is up 2162 */ 2163 gem_init_phy(gp); 2164 2165 return 0; 2166 } 2167 2168 static void gem_do_stop(struct net_device *dev, int wol) 2169 { 2170 struct gem *gp = netdev_priv(dev); 2171 2172 /* Stop NAPI and stop tx queue */ 2173 gem_netif_stop(gp); 2174 2175 /* Make sure ints are disabled. We don't care about 2176 * synchronizing as NAPI is disabled, thus a stray 2177 * interrupt will do nothing bad (our irq handler 2178 * just schedules NAPI) 2179 */ 2180 gem_disable_ints(gp); 2181 2182 /* Stop the link timer */ 2183 del_timer_sync(&gp->link_timer); 2184 2185 /* We cannot cancel the reset task while holding the 2186 * rtnl lock, we'd get an A->B / B->A deadlock stituation 2187 * if we did. This is not an issue however as the reset 2188 * task is synchronized vs. us (rtnl_lock) and will do 2189 * nothing if the device is down or suspended. We do 2190 * still clear reset_task_pending to avoid a spurrious 2191 * reset later on in case we do resume before it gets 2192 * scheduled. 2193 */ 2194 gp->reset_task_pending = 0; 2195 2196 /* If we are going to sleep with WOL */ 2197 gem_stop_dma(gp); 2198 msleep(10); 2199 if (!wol) 2200 gem_reset(gp); 2201 msleep(10); 2202 2203 /* Get rid of rings */ 2204 gem_clean_rings(gp); 2205 2206 /* No irq needed anymore */ 2207 free_irq(gp->pdev->irq, (void *) dev); 2208 2209 /* Shut the PHY down eventually and setup WOL */ 2210 gem_stop_phy(gp, wol); 2211 } 2212 2213 static void gem_reset_task(struct work_struct *work) 2214 { 2215 struct gem *gp = container_of(work, struct gem, reset_task); 2216 2217 /* Lock out the network stack (essentially shield ourselves 2218 * against a racing open, close, control call, or suspend 2219 */ 2220 rtnl_lock(); 2221 2222 /* Skip the reset task if suspended or closed, or if it's 2223 * been cancelled by gem_do_stop (see comment there) 2224 */ 2225 if (!netif_device_present(gp->dev) || 2226 !netif_running(gp->dev) || 2227 !gp->reset_task_pending) { 2228 rtnl_unlock(); 2229 return; 2230 } 2231 2232 /* Stop the link timer */ 2233 del_timer_sync(&gp->link_timer); 2234 2235 /* Stop NAPI and tx */ 2236 gem_netif_stop(gp); 2237 2238 /* Reset the chip & rings */ 2239 gem_reinit_chip(gp); 2240 if (gp->lstate == link_up) 2241 gem_set_link_modes(gp); 2242 2243 /* Restart NAPI and Tx */ 2244 gem_netif_start(gp); 2245 2246 /* We are back ! */ 2247 gp->reset_task_pending = 0; 2248 2249 /* If the link is not up, restart autoneg, else restart the 2250 * polling timer 2251 */ 2252 if (gp->lstate != link_up) 2253 gem_begin_auto_negotiation(gp, NULL); 2254 else 2255 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); 2256 2257 rtnl_unlock(); 2258 } 2259 2260 static int gem_open(struct net_device *dev) 2261 { 2262 struct gem *gp = netdev_priv(dev); 2263 int rc; 2264 2265 /* We allow open while suspended, we just do nothing, 2266 * the chip will be initialized in resume() 2267 */ 2268 if (netif_device_present(dev)) { 2269 /* Enable the cell */ 2270 gem_get_cell(gp); 2271 2272 /* Make sure PCI access and bus master are enabled */ 2273 rc = pci_enable_device(gp->pdev); 2274 if (rc) { 2275 netdev_err(dev, "Failed to enable chip on PCI bus !\n"); 2276 2277 /* Put cell and forget it for now, it will be considered 2278 *as still asleep, a new sleep cycle may bring it back 2279 */ 2280 gem_put_cell(gp); 2281 return -ENXIO; 2282 } 2283 return gem_do_start(dev); 2284 } 2285 2286 return 0; 2287 } 2288 2289 static int gem_close(struct net_device *dev) 2290 { 2291 struct gem *gp = netdev_priv(dev); 2292 2293 if (netif_device_present(dev)) { 2294 gem_do_stop(dev, 0); 2295 2296 /* Make sure bus master is disabled */ 2297 pci_disable_device(gp->pdev); 2298 2299 /* Cell not needed neither if no WOL */ 2300 if (!gp->asleep_wol) 2301 gem_put_cell(gp); 2302 } 2303 return 0; 2304 } 2305 2306 static int __maybe_unused gem_suspend(struct device *dev_d) 2307 { 2308 struct net_device *dev = dev_get_drvdata(dev_d); 2309 struct gem *gp = netdev_priv(dev); 2310 2311 /* Lock the network stack first to avoid racing with open/close, 2312 * reset task and setting calls 2313 */ 2314 rtnl_lock(); 2315 2316 /* Not running, mark ourselves non-present, no need for 2317 * a lock here 2318 */ 2319 if (!netif_running(dev)) { 2320 netif_device_detach(dev); 2321 rtnl_unlock(); 2322 return 0; 2323 } 2324 netdev_info(dev, "suspending, WakeOnLan %s\n", 2325 (gp->wake_on_lan && netif_running(dev)) ? 2326 "enabled" : "disabled"); 2327 2328 /* Tell the network stack we're gone. gem_do_stop() below will 2329 * synchronize with TX, stop NAPI etc... 2330 */ 2331 netif_device_detach(dev); 2332 2333 /* Switch off chip, remember WOL setting */ 2334 gp->asleep_wol = !!gp->wake_on_lan; 2335 gem_do_stop(dev, gp->asleep_wol); 2336 2337 /* Cell not needed neither if no WOL */ 2338 if (!gp->asleep_wol) 2339 gem_put_cell(gp); 2340 2341 /* Unlock the network stack */ 2342 rtnl_unlock(); 2343 2344 return 0; 2345 } 2346 2347 static int __maybe_unused gem_resume(struct device *dev_d) 2348 { 2349 struct net_device *dev = dev_get_drvdata(dev_d); 2350 struct gem *gp = netdev_priv(dev); 2351 2352 /* See locking comment in gem_suspend */ 2353 rtnl_lock(); 2354 2355 /* Not running, mark ourselves present, no need for 2356 * a lock here 2357 */ 2358 if (!netif_running(dev)) { 2359 netif_device_attach(dev); 2360 rtnl_unlock(); 2361 return 0; 2362 } 2363 2364 /* Enable the cell */ 2365 gem_get_cell(gp); 2366 2367 /* Restart chip. If that fails there isn't much we can do, we 2368 * leave things stopped. 2369 */ 2370 gem_do_start(dev); 2371 2372 /* If we had WOL enabled, the cell clock was never turned off during 2373 * sleep, so we end up beeing unbalanced. Fix that here 2374 */ 2375 if (gp->asleep_wol) 2376 gem_put_cell(gp); 2377 2378 /* Unlock the network stack */ 2379 rtnl_unlock(); 2380 2381 return 0; 2382 } 2383 2384 static struct net_device_stats *gem_get_stats(struct net_device *dev) 2385 { 2386 struct gem *gp = netdev_priv(dev); 2387 2388 /* I have seen this being called while the PM was in progress, 2389 * so we shield against this. Let's also not poke at registers 2390 * while the reset task is going on. 2391 * 2392 * TODO: Move stats collection elsewhere (link timer ?) and 2393 * make this a nop to avoid all those synchro issues 2394 */ 2395 if (!netif_device_present(dev) || !netif_running(dev)) 2396 goto bail; 2397 2398 /* Better safe than sorry... */ 2399 if (WARN_ON(!gp->cell_enabled)) 2400 goto bail; 2401 2402 dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR); 2403 writel(0, gp->regs + MAC_FCSERR); 2404 2405 dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR); 2406 writel(0, gp->regs + MAC_AERR); 2407 2408 dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR); 2409 writel(0, gp->regs + MAC_LERR); 2410 2411 dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL); 2412 dev->stats.collisions += 2413 (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL)); 2414 writel(0, gp->regs + MAC_ECOLL); 2415 writel(0, gp->regs + MAC_LCOLL); 2416 bail: 2417 return &dev->stats; 2418 } 2419 2420 static int gem_set_mac_address(struct net_device *dev, void *addr) 2421 { 2422 struct sockaddr *macaddr = (struct sockaddr *) addr; 2423 const unsigned char *e = &dev->dev_addr[0]; 2424 struct gem *gp = netdev_priv(dev); 2425 2426 if (!is_valid_ether_addr(macaddr->sa_data)) 2427 return -EADDRNOTAVAIL; 2428 2429 eth_hw_addr_set(dev, macaddr->sa_data); 2430 2431 /* We'll just catch it later when the device is up'd or resumed */ 2432 if (!netif_running(dev) || !netif_device_present(dev)) 2433 return 0; 2434 2435 /* Better safe than sorry... */ 2436 if (WARN_ON(!gp->cell_enabled)) 2437 return 0; 2438 2439 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0); 2440 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1); 2441 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2); 2442 2443 return 0; 2444 } 2445 2446 static void gem_set_multicast(struct net_device *dev) 2447 { 2448 struct gem *gp = netdev_priv(dev); 2449 u32 rxcfg, rxcfg_new; 2450 int limit = 10000; 2451 2452 if (!netif_running(dev) || !netif_device_present(dev)) 2453 return; 2454 2455 /* Better safe than sorry... */ 2456 if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled)) 2457 return; 2458 2459 rxcfg = readl(gp->regs + MAC_RXCFG); 2460 rxcfg_new = gem_setup_multicast(gp); 2461 #ifdef STRIP_FCS 2462 rxcfg_new |= MAC_RXCFG_SFCS; 2463 #endif 2464 gp->mac_rx_cfg = rxcfg_new; 2465 2466 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); 2467 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) { 2468 if (!limit--) 2469 break; 2470 udelay(10); 2471 } 2472 2473 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE); 2474 rxcfg |= rxcfg_new; 2475 2476 writel(rxcfg, gp->regs + MAC_RXCFG); 2477 } 2478 2479 /* Jumbo-grams don't seem to work :-( */ 2480 #define GEM_MIN_MTU ETH_MIN_MTU 2481 #if 1 2482 #define GEM_MAX_MTU ETH_DATA_LEN 2483 #else 2484 #define GEM_MAX_MTU 9000 2485 #endif 2486 2487 static int gem_change_mtu(struct net_device *dev, int new_mtu) 2488 { 2489 struct gem *gp = netdev_priv(dev); 2490 2491 WRITE_ONCE(dev->mtu, new_mtu); 2492 2493 /* We'll just catch it later when the device is up'd or resumed */ 2494 if (!netif_running(dev) || !netif_device_present(dev)) 2495 return 0; 2496 2497 /* Better safe than sorry... */ 2498 if (WARN_ON(!gp->cell_enabled)) 2499 return 0; 2500 2501 gem_netif_stop(gp); 2502 gem_reinit_chip(gp); 2503 if (gp->lstate == link_up) 2504 gem_set_link_modes(gp); 2505 gem_netif_start(gp); 2506 2507 return 0; 2508 } 2509 2510 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2511 { 2512 struct gem *gp = netdev_priv(dev); 2513 2514 strscpy(info->driver, DRV_NAME, sizeof(info->driver)); 2515 strscpy(info->version, DRV_VERSION, sizeof(info->version)); 2516 strscpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info)); 2517 } 2518 2519 static int gem_get_link_ksettings(struct net_device *dev, 2520 struct ethtool_link_ksettings *cmd) 2521 { 2522 struct gem *gp = netdev_priv(dev); 2523 u32 supported, advertising; 2524 2525 if (gp->phy_type == phy_mii_mdio0 || 2526 gp->phy_type == phy_mii_mdio1) { 2527 if (gp->phy_mii.def) 2528 supported = gp->phy_mii.def->features; 2529 else 2530 supported = (SUPPORTED_10baseT_Half | 2531 SUPPORTED_10baseT_Full); 2532 2533 /* XXX hardcoded stuff for now */ 2534 cmd->base.port = PORT_MII; 2535 cmd->base.phy_address = 0; /* XXX fixed PHYAD */ 2536 2537 /* Return current PHY settings */ 2538 cmd->base.autoneg = gp->want_autoneg; 2539 cmd->base.speed = gp->phy_mii.speed; 2540 cmd->base.duplex = gp->phy_mii.duplex; 2541 advertising = gp->phy_mii.advertising; 2542 2543 /* If we started with a forced mode, we don't have a default 2544 * advertise set, we need to return something sensible so 2545 * userland can re-enable autoneg properly. 2546 */ 2547 if (advertising == 0) 2548 advertising = supported; 2549 } else { // XXX PCS ? 2550 supported = 2551 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 2552 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 2553 SUPPORTED_Autoneg); 2554 advertising = supported; 2555 cmd->base.speed = 0; 2556 cmd->base.duplex = 0; 2557 cmd->base.port = 0; 2558 cmd->base.phy_address = 0; 2559 cmd->base.autoneg = 0; 2560 2561 /* serdes means usually a Fibre connector, with most fixed */ 2562 if (gp->phy_type == phy_serdes) { 2563 cmd->base.port = PORT_FIBRE; 2564 supported = (SUPPORTED_1000baseT_Half | 2565 SUPPORTED_1000baseT_Full | 2566 SUPPORTED_FIBRE | SUPPORTED_Autoneg | 2567 SUPPORTED_Pause | SUPPORTED_Asym_Pause); 2568 advertising = supported; 2569 if (gp->lstate == link_up) 2570 cmd->base.speed = SPEED_1000; 2571 cmd->base.duplex = DUPLEX_FULL; 2572 cmd->base.autoneg = 1; 2573 } 2574 } 2575 2576 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 2577 supported); 2578 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 2579 advertising); 2580 2581 return 0; 2582 } 2583 2584 static int gem_set_link_ksettings(struct net_device *dev, 2585 const struct ethtool_link_ksettings *cmd) 2586 { 2587 struct gem *gp = netdev_priv(dev); 2588 u32 speed = cmd->base.speed; 2589 u32 advertising; 2590 2591 ethtool_convert_link_mode_to_legacy_u32(&advertising, 2592 cmd->link_modes.advertising); 2593 2594 /* Verify the settings we care about. */ 2595 if (cmd->base.autoneg != AUTONEG_ENABLE && 2596 cmd->base.autoneg != AUTONEG_DISABLE) 2597 return -EINVAL; 2598 2599 if (cmd->base.autoneg == AUTONEG_ENABLE && 2600 advertising == 0) 2601 return -EINVAL; 2602 2603 if (cmd->base.autoneg == AUTONEG_DISABLE && 2604 ((speed != SPEED_1000 && 2605 speed != SPEED_100 && 2606 speed != SPEED_10) || 2607 (cmd->base.duplex != DUPLEX_HALF && 2608 cmd->base.duplex != DUPLEX_FULL))) 2609 return -EINVAL; 2610 2611 /* Apply settings and restart link process. */ 2612 if (netif_device_present(gp->dev)) { 2613 del_timer_sync(&gp->link_timer); 2614 gem_begin_auto_negotiation(gp, cmd); 2615 } 2616 2617 return 0; 2618 } 2619 2620 static int gem_nway_reset(struct net_device *dev) 2621 { 2622 struct gem *gp = netdev_priv(dev); 2623 2624 if (!gp->want_autoneg) 2625 return -EINVAL; 2626 2627 /* Restart link process */ 2628 if (netif_device_present(gp->dev)) { 2629 del_timer_sync(&gp->link_timer); 2630 gem_begin_auto_negotiation(gp, NULL); 2631 } 2632 2633 return 0; 2634 } 2635 2636 static u32 gem_get_msglevel(struct net_device *dev) 2637 { 2638 struct gem *gp = netdev_priv(dev); 2639 return gp->msg_enable; 2640 } 2641 2642 static void gem_set_msglevel(struct net_device *dev, u32 value) 2643 { 2644 struct gem *gp = netdev_priv(dev); 2645 gp->msg_enable = value; 2646 } 2647 2648 2649 /* Add more when I understand how to program the chip */ 2650 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */ 2651 2652 #define WOL_SUPPORTED_MASK (WAKE_MAGIC) 2653 2654 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2655 { 2656 struct gem *gp = netdev_priv(dev); 2657 2658 /* Add more when I understand how to program the chip */ 2659 if (gp->has_wol) { 2660 wol->supported = WOL_SUPPORTED_MASK; 2661 wol->wolopts = gp->wake_on_lan; 2662 } else { 2663 wol->supported = 0; 2664 wol->wolopts = 0; 2665 } 2666 } 2667 2668 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2669 { 2670 struct gem *gp = netdev_priv(dev); 2671 2672 if (!gp->has_wol) 2673 return -EOPNOTSUPP; 2674 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK; 2675 return 0; 2676 } 2677 2678 static const struct ethtool_ops gem_ethtool_ops = { 2679 .get_drvinfo = gem_get_drvinfo, 2680 .get_link = ethtool_op_get_link, 2681 .nway_reset = gem_nway_reset, 2682 .get_msglevel = gem_get_msglevel, 2683 .set_msglevel = gem_set_msglevel, 2684 .get_wol = gem_get_wol, 2685 .set_wol = gem_set_wol, 2686 .get_link_ksettings = gem_get_link_ksettings, 2687 .set_link_ksettings = gem_set_link_ksettings, 2688 }; 2689 2690 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2691 { 2692 struct gem *gp = netdev_priv(dev); 2693 struct mii_ioctl_data *data = if_mii(ifr); 2694 int rc = -EOPNOTSUPP; 2695 2696 /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that 2697 * netif_device_present() is true and holds rtnl_lock for us 2698 * so we have nothing to worry about 2699 */ 2700 2701 switch (cmd) { 2702 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 2703 data->phy_id = gp->mii_phy_addr; 2704 fallthrough; 2705 2706 case SIOCGMIIREG: /* Read MII PHY register. */ 2707 data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f, 2708 data->reg_num & 0x1f); 2709 rc = 0; 2710 break; 2711 2712 case SIOCSMIIREG: /* Write MII PHY register. */ 2713 __sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f, 2714 data->val_in); 2715 rc = 0; 2716 break; 2717 } 2718 return rc; 2719 } 2720 2721 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC)) 2722 /* Fetch MAC address from vital product data of PCI ROM. */ 2723 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr) 2724 { 2725 int this_offset; 2726 2727 for (this_offset = 0x20; this_offset < len; this_offset++) { 2728 void __iomem *p = rom_base + this_offset; 2729 int i; 2730 2731 if (readb(p + 0) != 0x90 || 2732 readb(p + 1) != 0x00 || 2733 readb(p + 2) != 0x09 || 2734 readb(p + 3) != 0x4e || 2735 readb(p + 4) != 0x41 || 2736 readb(p + 5) != 0x06) 2737 continue; 2738 2739 this_offset += 6; 2740 p += 6; 2741 2742 for (i = 0; i < 6; i++) 2743 dev_addr[i] = readb(p + i); 2744 return 1; 2745 } 2746 return 0; 2747 } 2748 2749 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr) 2750 { 2751 size_t size; 2752 void __iomem *p = pci_map_rom(pdev, &size); 2753 2754 if (p) { 2755 int found; 2756 2757 found = readb(p) == 0x55 && 2758 readb(p + 1) == 0xaa && 2759 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr); 2760 pci_unmap_rom(pdev, p); 2761 if (found) 2762 return; 2763 } 2764 2765 /* Sun MAC prefix then 3 random bytes. */ 2766 dev_addr[0] = 0x08; 2767 dev_addr[1] = 0x00; 2768 dev_addr[2] = 0x20; 2769 get_random_bytes(dev_addr + 3, 3); 2770 } 2771 #endif /* not Sparc and not PPC */ 2772 2773 static int gem_get_device_address(struct gem *gp) 2774 { 2775 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC) 2776 struct net_device *dev = gp->dev; 2777 const unsigned char *addr; 2778 2779 addr = of_get_property(gp->of_node, "local-mac-address", NULL); 2780 if (addr == NULL) { 2781 #ifdef CONFIG_SPARC 2782 addr = idprom->id_ethaddr; 2783 #else 2784 printk("\n"); 2785 pr_err("%s: can't get mac-address\n", dev->name); 2786 return -1; 2787 #endif 2788 } 2789 eth_hw_addr_set(dev, addr); 2790 #else 2791 u8 addr[ETH_ALEN]; 2792 2793 get_gem_mac_nonobp(gp->pdev, addr); 2794 eth_hw_addr_set(gp->dev, addr); 2795 #endif 2796 return 0; 2797 } 2798 2799 static void gem_remove_one(struct pci_dev *pdev) 2800 { 2801 struct net_device *dev = pci_get_drvdata(pdev); 2802 2803 if (dev) { 2804 struct gem *gp = netdev_priv(dev); 2805 2806 unregister_netdev(dev); 2807 2808 /* Ensure reset task is truly gone */ 2809 cancel_work_sync(&gp->reset_task); 2810 2811 /* Free resources */ 2812 dma_free_coherent(&pdev->dev, sizeof(struct gem_init_block), 2813 gp->init_block, gp->gblock_dvma); 2814 iounmap(gp->regs); 2815 pci_release_regions(pdev); 2816 free_netdev(dev); 2817 } 2818 } 2819 2820 static const struct net_device_ops gem_netdev_ops = { 2821 .ndo_open = gem_open, 2822 .ndo_stop = gem_close, 2823 .ndo_start_xmit = gem_start_xmit, 2824 .ndo_get_stats = gem_get_stats, 2825 .ndo_set_rx_mode = gem_set_multicast, 2826 .ndo_eth_ioctl = gem_ioctl, 2827 .ndo_tx_timeout = gem_tx_timeout, 2828 .ndo_change_mtu = gem_change_mtu, 2829 .ndo_validate_addr = eth_validate_addr, 2830 .ndo_set_mac_address = gem_set_mac_address, 2831 }; 2832 2833 static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 2834 { 2835 unsigned long gemreg_base, gemreg_len; 2836 struct net_device *dev; 2837 struct gem *gp; 2838 int err, pci_using_dac; 2839 2840 printk_once(KERN_INFO "%s", version); 2841 2842 /* Apple gmac note: during probe, the chip is powered up by 2843 * the arch code to allow the code below to work (and to let 2844 * the chip be probed on the config space. It won't stay powered 2845 * up until the interface is brought up however, so we can't rely 2846 * on register configuration done at this point. 2847 */ 2848 err = pci_enable_device(pdev); 2849 if (err) { 2850 pr_err("Cannot enable MMIO operation, aborting\n"); 2851 return err; 2852 } 2853 pci_set_master(pdev); 2854 2855 /* Configure DMA attributes. */ 2856 2857 /* All of the GEM documentation states that 64-bit DMA addressing 2858 * is fully supported and should work just fine. However the 2859 * front end for RIO based GEMs is different and only supports 2860 * 32-bit addressing. 2861 * 2862 * For now we assume the various PPC GEMs are 32-bit only as well. 2863 */ 2864 if (pdev->vendor == PCI_VENDOR_ID_SUN && 2865 pdev->device == PCI_DEVICE_ID_SUN_GEM && 2866 !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) { 2867 pci_using_dac = 1; 2868 } else { 2869 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 2870 if (err) { 2871 pr_err("No usable DMA configuration, aborting\n"); 2872 goto err_disable_device; 2873 } 2874 pci_using_dac = 0; 2875 } 2876 2877 gemreg_base = pci_resource_start(pdev, 0); 2878 gemreg_len = pci_resource_len(pdev, 0); 2879 2880 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) { 2881 pr_err("Cannot find proper PCI device base address, aborting\n"); 2882 err = -ENODEV; 2883 goto err_disable_device; 2884 } 2885 2886 dev = alloc_etherdev(sizeof(*gp)); 2887 if (!dev) { 2888 err = -ENOMEM; 2889 goto err_disable_device; 2890 } 2891 SET_NETDEV_DEV(dev, &pdev->dev); 2892 2893 gp = netdev_priv(dev); 2894 2895 err = pci_request_regions(pdev, DRV_NAME); 2896 if (err) { 2897 pr_err("Cannot obtain PCI resources, aborting\n"); 2898 goto err_out_free_netdev; 2899 } 2900 2901 gp->pdev = pdev; 2902 gp->dev = dev; 2903 2904 gp->msg_enable = DEFAULT_MSG; 2905 2906 timer_setup(&gp->link_timer, gem_link_timer, 0); 2907 2908 INIT_WORK(&gp->reset_task, gem_reset_task); 2909 2910 gp->lstate = link_down; 2911 gp->timer_ticks = 0; 2912 netif_carrier_off(dev); 2913 2914 gp->regs = ioremap(gemreg_base, gemreg_len); 2915 if (!gp->regs) { 2916 pr_err("Cannot map device registers, aborting\n"); 2917 err = -EIO; 2918 goto err_out_free_res; 2919 } 2920 2921 /* On Apple, we want a reference to the Open Firmware device-tree 2922 * node. We use it for clock control. 2923 */ 2924 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC) 2925 gp->of_node = pci_device_to_OF_node(pdev); 2926 #endif 2927 2928 /* Only Apple version supports WOL afaik */ 2929 if (pdev->vendor == PCI_VENDOR_ID_APPLE) 2930 gp->has_wol = 1; 2931 2932 /* Make sure cell is enabled */ 2933 gem_get_cell(gp); 2934 2935 /* Make sure everything is stopped and in init state */ 2936 gem_reset(gp); 2937 2938 /* Fill up the mii_phy structure (even if we won't use it) */ 2939 gp->phy_mii.dev = dev; 2940 gp->phy_mii.mdio_read = _sungem_phy_read; 2941 gp->phy_mii.mdio_write = _sungem_phy_write; 2942 #ifdef CONFIG_PPC_PMAC 2943 gp->phy_mii.platform_data = gp->of_node; 2944 #endif 2945 /* By default, we start with autoneg */ 2946 gp->want_autoneg = 1; 2947 2948 /* Check fifo sizes, PHY type, etc... */ 2949 if (gem_check_invariants(gp)) { 2950 err = -ENODEV; 2951 goto err_out_iounmap; 2952 } 2953 2954 /* It is guaranteed that the returned buffer will be at least 2955 * PAGE_SIZE aligned. 2956 */ 2957 gp->init_block = dma_alloc_coherent(&pdev->dev, sizeof(struct gem_init_block), 2958 &gp->gblock_dvma, GFP_KERNEL); 2959 if (!gp->init_block) { 2960 pr_err("Cannot allocate init block, aborting\n"); 2961 err = -ENOMEM; 2962 goto err_out_iounmap; 2963 } 2964 2965 err = gem_get_device_address(gp); 2966 if (err) 2967 goto err_out_free_consistent; 2968 2969 dev->netdev_ops = &gem_netdev_ops; 2970 netif_napi_add(dev, &gp->napi, gem_poll); 2971 dev->ethtool_ops = &gem_ethtool_ops; 2972 dev->watchdog_timeo = 5 * HZ; 2973 dev->dma = 0; 2974 2975 /* Set that now, in case PM kicks in now */ 2976 pci_set_drvdata(pdev, dev); 2977 2978 /* We can do scatter/gather and HW checksum */ 2979 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM; 2980 dev->features = dev->hw_features; 2981 if (pci_using_dac) 2982 dev->features |= NETIF_F_HIGHDMA; 2983 2984 /* MTU range: 68 - 1500 (Jumbo mode is broken) */ 2985 dev->min_mtu = GEM_MIN_MTU; 2986 dev->max_mtu = GEM_MAX_MTU; 2987 2988 /* Register with kernel */ 2989 if (register_netdev(dev)) { 2990 pr_err("Cannot register net device, aborting\n"); 2991 err = -ENOMEM; 2992 goto err_out_free_consistent; 2993 } 2994 2995 /* Undo the get_cell with appropriate locking (we could use 2996 * ndo_init/uninit but that would be even more clumsy imho) 2997 */ 2998 rtnl_lock(); 2999 gem_put_cell(gp); 3000 rtnl_unlock(); 3001 3002 netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n", 3003 dev->dev_addr); 3004 return 0; 3005 3006 err_out_free_consistent: 3007 gem_remove_one(pdev); 3008 err_out_iounmap: 3009 gem_put_cell(gp); 3010 iounmap(gp->regs); 3011 3012 err_out_free_res: 3013 pci_release_regions(pdev); 3014 3015 err_out_free_netdev: 3016 free_netdev(dev); 3017 err_disable_device: 3018 pci_disable_device(pdev); 3019 return err; 3020 3021 } 3022 3023 static SIMPLE_DEV_PM_OPS(gem_pm_ops, gem_suspend, gem_resume); 3024 3025 static struct pci_driver gem_driver = { 3026 .name = GEM_MODULE_NAME, 3027 .id_table = gem_pci_tbl, 3028 .probe = gem_init_one, 3029 .remove = gem_remove_one, 3030 .driver.pm = &gem_pm_ops, 3031 }; 3032 3033 module_pci_driver(gem_driver); 3034