1 // SPDX-License-Identifier: GPL-2.0+ 2 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver. 3 * 4 * Copyright (C) 2004 Sun Microsystems Inc. 5 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com) 6 * 7 * This driver uses the sungem driver (c) David Miller 8 * (davem@redhat.com) as its basis. 9 * 10 * The cassini chip has a number of features that distinguish it from 11 * the gem chip: 12 * 4 transmit descriptor rings that are used for either QoS (VLAN) or 13 * load balancing (non-VLAN mode) 14 * batching of multiple packets 15 * multiple CPU dispatching 16 * page-based RX descriptor engine with separate completion rings 17 * Gigabit support (GMII and PCS interface) 18 * MIF link up/down detection works 19 * 20 * RX is handled by page sized buffers that are attached as fragments to 21 * the skb. here's what's done: 22 * -- driver allocates pages at a time and keeps reference counts 23 * on them. 24 * -- the upper protocol layers assume that the header is in the skb 25 * itself. as a result, cassini will copy a small amount (64 bytes) 26 * to make them happy. 27 * -- driver appends the rest of the data pages as frags to skbuffs 28 * and increments the reference count 29 * -- on page reclamation, the driver swaps the page with a spare page. 30 * if that page is still in use, it frees its reference to that page, 31 * and allocates a new page for use. otherwise, it just recycles the 32 * page. 33 * 34 * NOTE: cassini can parse the header. however, it's not worth it 35 * as long as the network stack requires a header copy. 36 * 37 * TX has 4 queues. currently these queues are used in a round-robin 38 * fashion for load balancing. They can also be used for QoS. for that 39 * to work, however, QoS information needs to be exposed down to the driver 40 * level so that subqueues get targeted to particular transmit rings. 41 * alternatively, the queues can be configured via use of the all-purpose 42 * ioctl. 43 * 44 * RX DATA: the rx completion ring has all the info, but the rx desc 45 * ring has all of the data. RX can conceivably come in under multiple 46 * interrupts, but the INT# assignment needs to be set up properly by 47 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do 48 * that. also, the two descriptor rings are designed to distinguish between 49 * encrypted and non-encrypted packets, but we use them for buffering 50 * instead. 51 * 52 * by default, the selective clear mask is set up to process rx packets. 53 */ 54 55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 56 57 #include <linux/module.h> 58 #include <linux/kernel.h> 59 #include <linux/types.h> 60 #include <linux/compiler.h> 61 #include <linux/slab.h> 62 #include <linux/delay.h> 63 #include <linux/init.h> 64 #include <linux/interrupt.h> 65 #include <linux/vmalloc.h> 66 #include <linux/ioport.h> 67 #include <linux/pci.h> 68 #include <linux/mm.h> 69 #include <linux/highmem.h> 70 #include <linux/list.h> 71 #include <linux/dma-mapping.h> 72 73 #include <linux/netdevice.h> 74 #include <linux/etherdevice.h> 75 #include <linux/skbuff.h> 76 #include <linux/ethtool.h> 77 #include <linux/crc32.h> 78 #include <linux/random.h> 79 #include <linux/mii.h> 80 #include <linux/ip.h> 81 #include <linux/tcp.h> 82 #include <linux/mutex.h> 83 #include <linux/firmware.h> 84 85 #include <net/checksum.h> 86 87 #include <linux/atomic.h> 88 #include <asm/io.h> 89 #include <asm/byteorder.h> 90 #include <linux/uaccess.h> 91 #include <linux/jiffies.h> 92 93 #define CAS_NCPUS num_online_cpus() 94 95 #define cas_skb_release(x) netif_rx(x) 96 97 /* select which firmware to use */ 98 #define USE_HP_WORKAROUND 99 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */ 100 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */ 101 102 #include "cassini.h" 103 104 #define USE_TX_COMPWB /* use completion writeback registers */ 105 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */ 106 #define USE_RX_BLANK /* hw interrupt mitigation */ 107 #undef USE_ENTROPY_DEV /* don't test for entropy device */ 108 109 /* NOTE: these aren't useable unless PCI interrupts can be assigned. 110 * also, we need to make cp->lock finer-grained. 111 */ 112 #undef USE_PCI_INTB 113 #undef USE_PCI_INTC 114 #undef USE_PCI_INTD 115 #undef USE_QOS 116 117 #undef USE_VPD_DEBUG /* debug vpd information if defined */ 118 119 /* rx processing options */ 120 #define USE_PAGE_ORDER /* specify to allocate large rx pages */ 121 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */ 122 #define RX_COPY_ALWAYS 0 /* if 0, use frags */ 123 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */ 124 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */ 125 126 #define DRV_MODULE_NAME "cassini" 127 #define DRV_MODULE_VERSION "1.6" 128 #define DRV_MODULE_RELDATE "21 May 2008" 129 130 #define CAS_DEF_MSG_ENABLE \ 131 (NETIF_MSG_DRV | \ 132 NETIF_MSG_PROBE | \ 133 NETIF_MSG_LINK | \ 134 NETIF_MSG_TIMER | \ 135 NETIF_MSG_IFDOWN | \ 136 NETIF_MSG_IFUP | \ 137 NETIF_MSG_RX_ERR | \ 138 NETIF_MSG_TX_ERR) 139 140 /* length of time before we decide the hardware is borked, 141 * and dev->tx_timeout() should be called to fix the problem 142 */ 143 #define CAS_TX_TIMEOUT (HZ) 144 #define CAS_LINK_TIMEOUT (22*HZ/10) 145 #define CAS_LINK_FAST_TIMEOUT (1) 146 147 /* timeout values for state changing. these specify the number 148 * of 10us delays to be used before giving up. 149 */ 150 #define STOP_TRIES_PHY 1000 151 #define STOP_TRIES 5000 152 153 /* specify a minimum frame size to deal with some fifo issues 154 * max mtu == 2 * page size - ethernet header - 64 - swivel = 155 * 2 * page_size - 0x50 156 */ 157 #define CAS_MIN_FRAME 97 158 #define CAS_1000MB_MIN_FRAME 255 159 #define CAS_MIN_MTU 60 160 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000) 161 162 #if 1 163 /* 164 * Eliminate these and use separate atomic counters for each, to 165 * avoid a race condition. 166 */ 167 #else 168 #define CAS_RESET_MTU 1 169 #define CAS_RESET_ALL 2 170 #define CAS_RESET_SPARE 3 171 #endif 172 173 static char version[] = 174 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 175 176 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */ 177 static int link_mode; 178 179 MODULE_AUTHOR("Adrian Sun <asun@darksunrising.com>"); 180 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver"); 181 MODULE_LICENSE("GPL"); 182 MODULE_FIRMWARE("sun/cassini.bin"); 183 module_param(cassini_debug, int, 0); 184 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value"); 185 module_param(link_mode, int, 0); 186 MODULE_PARM_DESC(link_mode, "default link mode"); 187 188 /* 189 * Work around for a PCS bug in which the link goes down due to the chip 190 * being confused and never showing a link status of "up." 191 */ 192 #define DEFAULT_LINKDOWN_TIMEOUT 5 193 /* 194 * Value in seconds, for user input. 195 */ 196 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT; 197 module_param(linkdown_timeout, int, 0); 198 MODULE_PARM_DESC(linkdown_timeout, 199 "min reset interval in sec. for PCS linkdown issue; disabled if not positive"); 200 201 /* 202 * value in 'ticks' (units used by jiffies). Set when we init the 203 * module because 'HZ' in actually a function call on some flavors of 204 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ. 205 */ 206 static int link_transition_timeout; 207 208 209 210 static u16 link_modes[] = { 211 BMCR_ANENABLE, /* 0 : autoneg */ 212 0, /* 1 : 10bt half duplex */ 213 BMCR_SPEED100, /* 2 : 100bt half duplex */ 214 BMCR_FULLDPLX, /* 3 : 10bt full duplex */ 215 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */ 216 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */ 217 }; 218 219 static const struct pci_device_id cas_pci_tbl[] = { 220 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI, 221 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 222 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN, 223 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 224 { 0, } 225 }; 226 227 MODULE_DEVICE_TABLE(pci, cas_pci_tbl); 228 229 static void cas_set_link_modes(struct cas *cp); 230 231 static inline void cas_lock_tx(struct cas *cp) 232 { 233 int i; 234 235 for (i = 0; i < N_TX_RINGS; i++) 236 spin_lock_nested(&cp->tx_lock[i], i); 237 } 238 239 /* WTZ: QA was finding deadlock problems with the previous 240 * versions after long test runs with multiple cards per machine. 241 * See if replacing cas_lock_all with safer versions helps. The 242 * symptoms QA is reporting match those we'd expect if interrupts 243 * aren't being properly restored, and we fixed a previous deadlock 244 * with similar symptoms by using save/restore versions in other 245 * places. 246 */ 247 #define cas_lock_all_save(cp, flags) \ 248 do { \ 249 struct cas *xxxcp = (cp); \ 250 spin_lock_irqsave(&xxxcp->lock, flags); \ 251 cas_lock_tx(xxxcp); \ 252 } while (0) 253 254 static inline void cas_unlock_tx(struct cas *cp) 255 { 256 int i; 257 258 for (i = N_TX_RINGS; i > 0; i--) 259 spin_unlock(&cp->tx_lock[i - 1]); 260 } 261 262 #define cas_unlock_all_restore(cp, flags) \ 263 do { \ 264 struct cas *xxxcp = (cp); \ 265 cas_unlock_tx(xxxcp); \ 266 spin_unlock_irqrestore(&xxxcp->lock, flags); \ 267 } while (0) 268 269 static void cas_disable_irq(struct cas *cp, const int ring) 270 { 271 /* Make sure we won't get any more interrupts */ 272 if (ring == 0) { 273 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK); 274 return; 275 } 276 277 /* disable completion interrupts and selectively mask */ 278 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 279 switch (ring) { 280 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 281 #ifdef USE_PCI_INTB 282 case 1: 283 #endif 284 #ifdef USE_PCI_INTC 285 case 2: 286 #endif 287 #ifdef USE_PCI_INTD 288 case 3: 289 #endif 290 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN, 291 cp->regs + REG_PLUS_INTRN_MASK(ring)); 292 break; 293 #endif 294 default: 295 writel(INTRN_MASK_CLEAR_ALL, cp->regs + 296 REG_PLUS_INTRN_MASK(ring)); 297 break; 298 } 299 } 300 } 301 302 static inline void cas_mask_intr(struct cas *cp) 303 { 304 int i; 305 306 for (i = 0; i < N_RX_COMP_RINGS; i++) 307 cas_disable_irq(cp, i); 308 } 309 310 static void cas_enable_irq(struct cas *cp, const int ring) 311 { 312 if (ring == 0) { /* all but TX_DONE */ 313 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK); 314 return; 315 } 316 317 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 318 switch (ring) { 319 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 320 #ifdef USE_PCI_INTB 321 case 1: 322 #endif 323 #ifdef USE_PCI_INTC 324 case 2: 325 #endif 326 #ifdef USE_PCI_INTD 327 case 3: 328 #endif 329 writel(INTRN_MASK_RX_EN, cp->regs + 330 REG_PLUS_INTRN_MASK(ring)); 331 break; 332 #endif 333 default: 334 break; 335 } 336 } 337 } 338 339 static inline void cas_unmask_intr(struct cas *cp) 340 { 341 int i; 342 343 for (i = 0; i < N_RX_COMP_RINGS; i++) 344 cas_enable_irq(cp, i); 345 } 346 347 static inline void cas_entropy_gather(struct cas *cp) 348 { 349 #ifdef USE_ENTROPY_DEV 350 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) 351 return; 352 353 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV), 354 readl(cp->regs + REG_ENTROPY_IV), 355 sizeof(uint64_t)*8); 356 #endif 357 } 358 359 static inline void cas_entropy_reset(struct cas *cp) 360 { 361 #ifdef USE_ENTROPY_DEV 362 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) 363 return; 364 365 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT, 366 cp->regs + REG_BIM_LOCAL_DEV_EN); 367 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET); 368 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG); 369 370 /* if we read back 0x0, we don't have an entropy device */ 371 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0) 372 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV; 373 #endif 374 } 375 376 /* access to the phy. the following assumes that we've initialized the MIF to 377 * be in frame rather than bit-bang mode 378 */ 379 static u16 cas_phy_read(struct cas *cp, int reg) 380 { 381 u32 cmd; 382 int limit = STOP_TRIES_PHY; 383 384 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ; 385 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); 386 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); 387 cmd |= MIF_FRAME_TURN_AROUND_MSB; 388 writel(cmd, cp->regs + REG_MIF_FRAME); 389 390 /* poll for completion */ 391 while (limit-- > 0) { 392 udelay(10); 393 cmd = readl(cp->regs + REG_MIF_FRAME); 394 if (cmd & MIF_FRAME_TURN_AROUND_LSB) 395 return cmd & MIF_FRAME_DATA_MASK; 396 } 397 return 0xFFFF; /* -1 */ 398 } 399 400 static int cas_phy_write(struct cas *cp, int reg, u16 val) 401 { 402 int limit = STOP_TRIES_PHY; 403 u32 cmd; 404 405 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE; 406 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); 407 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); 408 cmd |= MIF_FRAME_TURN_AROUND_MSB; 409 cmd |= val & MIF_FRAME_DATA_MASK; 410 writel(cmd, cp->regs + REG_MIF_FRAME); 411 412 /* poll for completion */ 413 while (limit-- > 0) { 414 udelay(10); 415 cmd = readl(cp->regs + REG_MIF_FRAME); 416 if (cmd & MIF_FRAME_TURN_AROUND_LSB) 417 return 0; 418 } 419 return -1; 420 } 421 422 static void cas_phy_powerup(struct cas *cp) 423 { 424 u16 ctl = cas_phy_read(cp, MII_BMCR); 425 426 if ((ctl & BMCR_PDOWN) == 0) 427 return; 428 ctl &= ~BMCR_PDOWN; 429 cas_phy_write(cp, MII_BMCR, ctl); 430 } 431 432 static void cas_phy_powerdown(struct cas *cp) 433 { 434 u16 ctl = cas_phy_read(cp, MII_BMCR); 435 436 if (ctl & BMCR_PDOWN) 437 return; 438 ctl |= BMCR_PDOWN; 439 cas_phy_write(cp, MII_BMCR, ctl); 440 } 441 442 /* cp->lock held. note: the last put_page will free the buffer */ 443 static int cas_page_free(struct cas *cp, cas_page_t *page) 444 { 445 dma_unmap_page(&cp->pdev->dev, page->dma_addr, cp->page_size, 446 DMA_FROM_DEVICE); 447 __free_pages(page->buffer, cp->page_order); 448 kfree(page); 449 return 0; 450 } 451 452 #ifdef RX_COUNT_BUFFERS 453 #define RX_USED_ADD(x, y) ((x)->used += (y)) 454 #define RX_USED_SET(x, y) ((x)->used = (y)) 455 #else 456 #define RX_USED_ADD(x, y) do { } while(0) 457 #define RX_USED_SET(x, y) do { } while(0) 458 #endif 459 460 /* local page allocation routines for the receive buffers. jumbo pages 461 * require at least 8K contiguous and 8K aligned buffers. 462 */ 463 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags) 464 { 465 cas_page_t *page; 466 467 page = kmalloc(sizeof(cas_page_t), flags); 468 if (!page) 469 return NULL; 470 471 INIT_LIST_HEAD(&page->list); 472 RX_USED_SET(page, 0); 473 page->buffer = alloc_pages(flags, cp->page_order); 474 if (!page->buffer) 475 goto page_err; 476 page->dma_addr = dma_map_page(&cp->pdev->dev, page->buffer, 0, 477 cp->page_size, DMA_FROM_DEVICE); 478 return page; 479 480 page_err: 481 kfree(page); 482 return NULL; 483 } 484 485 /* initialize spare pool of rx buffers, but allocate during the open */ 486 static void cas_spare_init(struct cas *cp) 487 { 488 spin_lock(&cp->rx_inuse_lock); 489 INIT_LIST_HEAD(&cp->rx_inuse_list); 490 spin_unlock(&cp->rx_inuse_lock); 491 492 spin_lock(&cp->rx_spare_lock); 493 INIT_LIST_HEAD(&cp->rx_spare_list); 494 cp->rx_spares_needed = RX_SPARE_COUNT; 495 spin_unlock(&cp->rx_spare_lock); 496 } 497 498 /* used on close. free all the spare buffers. */ 499 static void cas_spare_free(struct cas *cp) 500 { 501 struct list_head list, *elem, *tmp; 502 503 /* free spare buffers */ 504 INIT_LIST_HEAD(&list); 505 spin_lock(&cp->rx_spare_lock); 506 list_splice_init(&cp->rx_spare_list, &list); 507 spin_unlock(&cp->rx_spare_lock); 508 list_for_each_safe(elem, tmp, &list) { 509 cas_page_free(cp, list_entry(elem, cas_page_t, list)); 510 } 511 512 INIT_LIST_HEAD(&list); 513 #if 1 514 /* 515 * Looks like Adrian had protected this with a different 516 * lock than used everywhere else to manipulate this list. 517 */ 518 spin_lock(&cp->rx_inuse_lock); 519 list_splice_init(&cp->rx_inuse_list, &list); 520 spin_unlock(&cp->rx_inuse_lock); 521 #else 522 spin_lock(&cp->rx_spare_lock); 523 list_splice_init(&cp->rx_inuse_list, &list); 524 spin_unlock(&cp->rx_spare_lock); 525 #endif 526 list_for_each_safe(elem, tmp, &list) { 527 cas_page_free(cp, list_entry(elem, cas_page_t, list)); 528 } 529 } 530 531 /* replenish spares if needed */ 532 static void cas_spare_recover(struct cas *cp, const gfp_t flags) 533 { 534 struct list_head list, *elem, *tmp; 535 int needed, i; 536 537 /* check inuse list. if we don't need any more free buffers, 538 * just free it 539 */ 540 541 /* make a local copy of the list */ 542 INIT_LIST_HEAD(&list); 543 spin_lock(&cp->rx_inuse_lock); 544 list_splice_init(&cp->rx_inuse_list, &list); 545 spin_unlock(&cp->rx_inuse_lock); 546 547 list_for_each_safe(elem, tmp, &list) { 548 cas_page_t *page = list_entry(elem, cas_page_t, list); 549 550 /* 551 * With the lockless pagecache, cassini buffering scheme gets 552 * slightly less accurate: we might find that a page has an 553 * elevated reference count here, due to a speculative ref, 554 * and skip it as in-use. Ideally we would be able to reclaim 555 * it. However this would be such a rare case, it doesn't 556 * matter too much as we should pick it up the next time round. 557 * 558 * Importantly, if we find that the page has a refcount of 1 559 * here (our refcount), then we know it is definitely not inuse 560 * so we can reuse it. 561 */ 562 if (page_count(page->buffer) > 1) 563 continue; 564 565 list_del(elem); 566 spin_lock(&cp->rx_spare_lock); 567 if (cp->rx_spares_needed > 0) { 568 list_add(elem, &cp->rx_spare_list); 569 cp->rx_spares_needed--; 570 spin_unlock(&cp->rx_spare_lock); 571 } else { 572 spin_unlock(&cp->rx_spare_lock); 573 cas_page_free(cp, page); 574 } 575 } 576 577 /* put any inuse buffers back on the list */ 578 if (!list_empty(&list)) { 579 spin_lock(&cp->rx_inuse_lock); 580 list_splice(&list, &cp->rx_inuse_list); 581 spin_unlock(&cp->rx_inuse_lock); 582 } 583 584 spin_lock(&cp->rx_spare_lock); 585 needed = cp->rx_spares_needed; 586 spin_unlock(&cp->rx_spare_lock); 587 if (!needed) 588 return; 589 590 /* we still need spares, so try to allocate some */ 591 INIT_LIST_HEAD(&list); 592 i = 0; 593 while (i < needed) { 594 cas_page_t *spare = cas_page_alloc(cp, flags); 595 if (!spare) 596 break; 597 list_add(&spare->list, &list); 598 i++; 599 } 600 601 spin_lock(&cp->rx_spare_lock); 602 list_splice(&list, &cp->rx_spare_list); 603 cp->rx_spares_needed -= i; 604 spin_unlock(&cp->rx_spare_lock); 605 } 606 607 /* pull a page from the list. */ 608 static cas_page_t *cas_page_dequeue(struct cas *cp) 609 { 610 struct list_head *entry; 611 int recover; 612 613 spin_lock(&cp->rx_spare_lock); 614 if (list_empty(&cp->rx_spare_list)) { 615 /* try to do a quick recovery */ 616 spin_unlock(&cp->rx_spare_lock); 617 cas_spare_recover(cp, GFP_ATOMIC); 618 spin_lock(&cp->rx_spare_lock); 619 if (list_empty(&cp->rx_spare_list)) { 620 netif_err(cp, rx_err, cp->dev, 621 "no spare buffers available\n"); 622 spin_unlock(&cp->rx_spare_lock); 623 return NULL; 624 } 625 } 626 627 entry = cp->rx_spare_list.next; 628 list_del(entry); 629 recover = ++cp->rx_spares_needed; 630 spin_unlock(&cp->rx_spare_lock); 631 632 /* trigger the timer to do the recovery */ 633 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) { 634 #if 1 635 atomic_inc(&cp->reset_task_pending); 636 atomic_inc(&cp->reset_task_pending_spare); 637 schedule_work(&cp->reset_task); 638 #else 639 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE); 640 schedule_work(&cp->reset_task); 641 #endif 642 } 643 return list_entry(entry, cas_page_t, list); 644 } 645 646 647 static void cas_mif_poll(struct cas *cp, const int enable) 648 { 649 u32 cfg; 650 651 cfg = readl(cp->regs + REG_MIF_CFG); 652 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1); 653 654 if (cp->phy_type & CAS_PHY_MII_MDIO1) 655 cfg |= MIF_CFG_PHY_SELECT; 656 657 /* poll and interrupt on link status change. */ 658 if (enable) { 659 cfg |= MIF_CFG_POLL_EN; 660 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR); 661 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr); 662 } 663 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF, 664 cp->regs + REG_MIF_MASK); 665 writel(cfg, cp->regs + REG_MIF_CFG); 666 } 667 668 /* Must be invoked under cp->lock */ 669 static void cas_begin_auto_negotiation(struct cas *cp, 670 const struct ethtool_link_ksettings *ep) 671 { 672 u16 ctl; 673 #if 1 674 int lcntl; 675 int changed = 0; 676 int oldstate = cp->lstate; 677 int link_was_not_down = !(oldstate == link_down); 678 #endif 679 /* Setup link parameters */ 680 if (!ep) 681 goto start_aneg; 682 lcntl = cp->link_cntl; 683 if (ep->base.autoneg == AUTONEG_ENABLE) { 684 cp->link_cntl = BMCR_ANENABLE; 685 } else { 686 u32 speed = ep->base.speed; 687 cp->link_cntl = 0; 688 if (speed == SPEED_100) 689 cp->link_cntl |= BMCR_SPEED100; 690 else if (speed == SPEED_1000) 691 cp->link_cntl |= CAS_BMCR_SPEED1000; 692 if (ep->base.duplex == DUPLEX_FULL) 693 cp->link_cntl |= BMCR_FULLDPLX; 694 } 695 #if 1 696 changed = (lcntl != cp->link_cntl); 697 #endif 698 start_aneg: 699 if (cp->lstate == link_up) { 700 netdev_info(cp->dev, "PCS link down\n"); 701 } else { 702 if (changed) { 703 netdev_info(cp->dev, "link configuration changed\n"); 704 } 705 } 706 cp->lstate = link_down; 707 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 708 if (!cp->hw_running) 709 return; 710 #if 1 711 /* 712 * WTZ: If the old state was link_up, we turn off the carrier 713 * to replicate everything we do elsewhere on a link-down 714 * event when we were already in a link-up state.. 715 */ 716 if (oldstate == link_up) 717 netif_carrier_off(cp->dev); 718 if (changed && link_was_not_down) { 719 /* 720 * WTZ: This branch will simply schedule a full reset after 721 * we explicitly changed link modes in an ioctl. See if this 722 * fixes the link-problems we were having for forced mode. 723 */ 724 atomic_inc(&cp->reset_task_pending); 725 atomic_inc(&cp->reset_task_pending_all); 726 schedule_work(&cp->reset_task); 727 cp->timer_ticks = 0; 728 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 729 return; 730 } 731 #endif 732 if (cp->phy_type & CAS_PHY_SERDES) { 733 u32 val = readl(cp->regs + REG_PCS_MII_CTRL); 734 735 if (cp->link_cntl & BMCR_ANENABLE) { 736 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN); 737 cp->lstate = link_aneg; 738 } else { 739 if (cp->link_cntl & BMCR_FULLDPLX) 740 val |= PCS_MII_CTRL_DUPLEX; 741 val &= ~PCS_MII_AUTONEG_EN; 742 cp->lstate = link_force_ok; 743 } 744 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 745 writel(val, cp->regs + REG_PCS_MII_CTRL); 746 747 } else { 748 cas_mif_poll(cp, 0); 749 ctl = cas_phy_read(cp, MII_BMCR); 750 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | 751 CAS_BMCR_SPEED1000 | BMCR_ANENABLE); 752 ctl |= cp->link_cntl; 753 if (ctl & BMCR_ANENABLE) { 754 ctl |= BMCR_ANRESTART; 755 cp->lstate = link_aneg; 756 } else { 757 cp->lstate = link_force_ok; 758 } 759 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 760 cas_phy_write(cp, MII_BMCR, ctl); 761 cas_mif_poll(cp, 1); 762 } 763 764 cp->timer_ticks = 0; 765 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 766 } 767 768 /* Must be invoked under cp->lock. */ 769 static int cas_reset_mii_phy(struct cas *cp) 770 { 771 int limit = STOP_TRIES_PHY; 772 u16 val; 773 774 cas_phy_write(cp, MII_BMCR, BMCR_RESET); 775 udelay(100); 776 while (--limit) { 777 val = cas_phy_read(cp, MII_BMCR); 778 if ((val & BMCR_RESET) == 0) 779 break; 780 udelay(10); 781 } 782 return limit <= 0; 783 } 784 785 static void cas_saturn_firmware_init(struct cas *cp) 786 { 787 const struct firmware *fw; 788 const char fw_name[] = "sun/cassini.bin"; 789 int err; 790 791 if (PHY_NS_DP83065 != cp->phy_id) 792 return; 793 794 err = request_firmware(&fw, fw_name, &cp->pdev->dev); 795 if (err) { 796 pr_err("Failed to load firmware \"%s\"\n", 797 fw_name); 798 return; 799 } 800 if (fw->size < 2) { 801 pr_err("bogus length %zu in \"%s\"\n", 802 fw->size, fw_name); 803 goto out; 804 } 805 cp->fw_load_addr= fw->data[1] << 8 | fw->data[0]; 806 cp->fw_size = fw->size - 2; 807 cp->fw_data = vmalloc(cp->fw_size); 808 if (!cp->fw_data) 809 goto out; 810 memcpy(cp->fw_data, &fw->data[2], cp->fw_size); 811 out: 812 release_firmware(fw); 813 } 814 815 static void cas_saturn_firmware_load(struct cas *cp) 816 { 817 int i; 818 819 if (!cp->fw_data) 820 return; 821 822 cas_phy_powerdown(cp); 823 824 /* expanded memory access mode */ 825 cas_phy_write(cp, DP83065_MII_MEM, 0x0); 826 827 /* pointer configuration for new firmware */ 828 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9); 829 cas_phy_write(cp, DP83065_MII_REGD, 0xbd); 830 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa); 831 cas_phy_write(cp, DP83065_MII_REGD, 0x82); 832 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb); 833 cas_phy_write(cp, DP83065_MII_REGD, 0x0); 834 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc); 835 cas_phy_write(cp, DP83065_MII_REGD, 0x39); 836 837 /* download new firmware */ 838 cas_phy_write(cp, DP83065_MII_MEM, 0x1); 839 cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr); 840 for (i = 0; i < cp->fw_size; i++) 841 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]); 842 843 /* enable firmware */ 844 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8); 845 cas_phy_write(cp, DP83065_MII_REGD, 0x1); 846 } 847 848 849 /* phy initialization */ 850 static void cas_phy_init(struct cas *cp) 851 { 852 u16 val; 853 854 /* if we're in MII/GMII mode, set up phy */ 855 if (CAS_PHY_MII(cp->phy_type)) { 856 writel(PCS_DATAPATH_MODE_MII, 857 cp->regs + REG_PCS_DATAPATH_MODE); 858 859 cas_mif_poll(cp, 0); 860 cas_reset_mii_phy(cp); /* take out of isolate mode */ 861 862 if (PHY_LUCENT_B0 == cp->phy_id) { 863 /* workaround link up/down issue with lucent */ 864 cas_phy_write(cp, LUCENT_MII_REG, 0x8000); 865 cas_phy_write(cp, MII_BMCR, 0x00f1); 866 cas_phy_write(cp, LUCENT_MII_REG, 0x0); 867 868 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) { 869 /* workarounds for broadcom phy */ 870 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20); 871 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012); 872 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804); 873 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013); 874 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204); 875 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); 876 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132); 877 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); 878 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232); 879 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F); 880 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20); 881 882 } else if (PHY_BROADCOM_5411 == cp->phy_id) { 883 val = cas_phy_read(cp, BROADCOM_MII_REG4); 884 val = cas_phy_read(cp, BROADCOM_MII_REG4); 885 if (val & 0x0080) { 886 /* link workaround */ 887 cas_phy_write(cp, BROADCOM_MII_REG4, 888 val & ~0x0080); 889 } 890 891 } else if (cp->cas_flags & CAS_FLAG_SATURN) { 892 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ? 893 SATURN_PCFG_FSI : 0x0, 894 cp->regs + REG_SATURN_PCFG); 895 896 /* load firmware to address 10Mbps auto-negotiation 897 * issue. NOTE: this will need to be changed if the 898 * default firmware gets fixed. 899 */ 900 if (PHY_NS_DP83065 == cp->phy_id) { 901 cas_saturn_firmware_load(cp); 902 } 903 cas_phy_powerup(cp); 904 } 905 906 /* advertise capabilities */ 907 val = cas_phy_read(cp, MII_BMCR); 908 val &= ~BMCR_ANENABLE; 909 cas_phy_write(cp, MII_BMCR, val); 910 udelay(10); 911 912 cas_phy_write(cp, MII_ADVERTISE, 913 cas_phy_read(cp, MII_ADVERTISE) | 914 (ADVERTISE_10HALF | ADVERTISE_10FULL | 915 ADVERTISE_100HALF | ADVERTISE_100FULL | 916 CAS_ADVERTISE_PAUSE | 917 CAS_ADVERTISE_ASYM_PAUSE)); 918 919 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 920 /* make sure that we don't advertise half 921 * duplex to avoid a chip issue 922 */ 923 val = cas_phy_read(cp, CAS_MII_1000_CTRL); 924 val &= ~CAS_ADVERTISE_1000HALF; 925 val |= CAS_ADVERTISE_1000FULL; 926 cas_phy_write(cp, CAS_MII_1000_CTRL, val); 927 } 928 929 } else { 930 /* reset pcs for serdes */ 931 u32 val; 932 int limit; 933 934 writel(PCS_DATAPATH_MODE_SERDES, 935 cp->regs + REG_PCS_DATAPATH_MODE); 936 937 /* enable serdes pins on saturn */ 938 if (cp->cas_flags & CAS_FLAG_SATURN) 939 writel(0, cp->regs + REG_SATURN_PCFG); 940 941 /* Reset PCS unit. */ 942 val = readl(cp->regs + REG_PCS_MII_CTRL); 943 val |= PCS_MII_RESET; 944 writel(val, cp->regs + REG_PCS_MII_CTRL); 945 946 limit = STOP_TRIES; 947 while (--limit > 0) { 948 udelay(10); 949 if ((readl(cp->regs + REG_PCS_MII_CTRL) & 950 PCS_MII_RESET) == 0) 951 break; 952 } 953 if (limit <= 0) 954 netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n", 955 readl(cp->regs + REG_PCS_STATE_MACHINE)); 956 957 /* Make sure PCS is disabled while changing advertisement 958 * configuration. 959 */ 960 writel(0x0, cp->regs + REG_PCS_CFG); 961 962 /* Advertise all capabilities except half-duplex. */ 963 val = readl(cp->regs + REG_PCS_MII_ADVERT); 964 val &= ~PCS_MII_ADVERT_HD; 965 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE | 966 PCS_MII_ADVERT_ASYM_PAUSE); 967 writel(val, cp->regs + REG_PCS_MII_ADVERT); 968 969 /* enable PCS */ 970 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG); 971 972 /* pcs workaround: enable sync detect */ 973 writel(PCS_SERDES_CTRL_SYNCD_EN, 974 cp->regs + REG_PCS_SERDES_CTRL); 975 } 976 } 977 978 979 static int cas_pcs_link_check(struct cas *cp) 980 { 981 u32 stat, state_machine; 982 int retval = 0; 983 984 /* The link status bit latches on zero, so you must 985 * read it twice in such a case to see a transition 986 * to the link being up. 987 */ 988 stat = readl(cp->regs + REG_PCS_MII_STATUS); 989 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0) 990 stat = readl(cp->regs + REG_PCS_MII_STATUS); 991 992 /* The remote-fault indication is only valid 993 * when autoneg has completed. 994 */ 995 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP | 996 PCS_MII_STATUS_REMOTE_FAULT)) == 997 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) 998 netif_info(cp, link, cp->dev, "PCS RemoteFault\n"); 999 1000 /* work around link detection issue by querying the PCS state 1001 * machine directly. 1002 */ 1003 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE); 1004 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) { 1005 stat &= ~PCS_MII_STATUS_LINK_STATUS; 1006 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) { 1007 stat |= PCS_MII_STATUS_LINK_STATUS; 1008 } 1009 1010 if (stat & PCS_MII_STATUS_LINK_STATUS) { 1011 if (cp->lstate != link_up) { 1012 if (cp->opened) { 1013 cp->lstate = link_up; 1014 cp->link_transition = LINK_TRANSITION_LINK_UP; 1015 1016 cas_set_link_modes(cp); 1017 netif_carrier_on(cp->dev); 1018 } 1019 } 1020 } else if (cp->lstate == link_up) { 1021 cp->lstate = link_down; 1022 if (link_transition_timeout != 0 && 1023 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && 1024 !cp->link_transition_jiffies_valid) { 1025 /* 1026 * force a reset, as a workaround for the 1027 * link-failure problem. May want to move this to a 1028 * point a bit earlier in the sequence. If we had 1029 * generated a reset a short time ago, we'll wait for 1030 * the link timer to check the status until a 1031 * timer expires (link_transistion_jiffies_valid is 1032 * true when the timer is running.) Instead of using 1033 * a system timer, we just do a check whenever the 1034 * link timer is running - this clears the flag after 1035 * a suitable delay. 1036 */ 1037 retval = 1; 1038 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; 1039 cp->link_transition_jiffies = jiffies; 1040 cp->link_transition_jiffies_valid = 1; 1041 } else { 1042 cp->link_transition = LINK_TRANSITION_ON_FAILURE; 1043 } 1044 netif_carrier_off(cp->dev); 1045 if (cp->opened) 1046 netif_info(cp, link, cp->dev, "PCS link down\n"); 1047 1048 /* Cassini only: if you force a mode, there can be 1049 * sync problems on link down. to fix that, the following 1050 * things need to be checked: 1051 * 1) read serialink state register 1052 * 2) read pcs status register to verify link down. 1053 * 3) if link down and serial link == 0x03, then you need 1054 * to global reset the chip. 1055 */ 1056 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) { 1057 /* should check to see if we're in a forced mode */ 1058 stat = readl(cp->regs + REG_PCS_SERDES_STATE); 1059 if (stat == 0x03) 1060 return 1; 1061 } 1062 } else if (cp->lstate == link_down) { 1063 if (link_transition_timeout != 0 && 1064 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && 1065 !cp->link_transition_jiffies_valid) { 1066 /* force a reset, as a workaround for the 1067 * link-failure problem. May want to move 1068 * this to a point a bit earlier in the 1069 * sequence. 1070 */ 1071 retval = 1; 1072 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; 1073 cp->link_transition_jiffies = jiffies; 1074 cp->link_transition_jiffies_valid = 1; 1075 } else { 1076 cp->link_transition = LINK_TRANSITION_STILL_FAILED; 1077 } 1078 } 1079 1080 return retval; 1081 } 1082 1083 static int cas_pcs_interrupt(struct net_device *dev, 1084 struct cas *cp, u32 status) 1085 { 1086 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS); 1087 1088 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0) 1089 return 0; 1090 return cas_pcs_link_check(cp); 1091 } 1092 1093 static int cas_txmac_interrupt(struct net_device *dev, 1094 struct cas *cp, u32 status) 1095 { 1096 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS); 1097 1098 if (!txmac_stat) 1099 return 0; 1100 1101 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1102 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat); 1103 1104 /* Defer timer expiration is quite normal, 1105 * don't even log the event. 1106 */ 1107 if ((txmac_stat & MAC_TX_DEFER_TIMER) && 1108 !(txmac_stat & ~MAC_TX_DEFER_TIMER)) 1109 return 0; 1110 1111 spin_lock(&cp->stat_lock[0]); 1112 if (txmac_stat & MAC_TX_UNDERRUN) { 1113 netdev_err(dev, "TX MAC xmit underrun\n"); 1114 cp->net_stats[0].tx_fifo_errors++; 1115 } 1116 1117 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) { 1118 netdev_err(dev, "TX MAC max packet size error\n"); 1119 cp->net_stats[0].tx_errors++; 1120 } 1121 1122 /* The rest are all cases of one of the 16-bit TX 1123 * counters expiring. 1124 */ 1125 if (txmac_stat & MAC_TX_COLL_NORMAL) 1126 cp->net_stats[0].collisions += 0x10000; 1127 1128 if (txmac_stat & MAC_TX_COLL_EXCESS) { 1129 cp->net_stats[0].tx_aborted_errors += 0x10000; 1130 cp->net_stats[0].collisions += 0x10000; 1131 } 1132 1133 if (txmac_stat & MAC_TX_COLL_LATE) { 1134 cp->net_stats[0].tx_aborted_errors += 0x10000; 1135 cp->net_stats[0].collisions += 0x10000; 1136 } 1137 spin_unlock(&cp->stat_lock[0]); 1138 1139 /* We do not keep track of MAC_TX_COLL_FIRST and 1140 * MAC_TX_PEAK_ATTEMPTS events. 1141 */ 1142 return 0; 1143 } 1144 1145 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware) 1146 { 1147 cas_hp_inst_t *inst; 1148 u32 val; 1149 int i; 1150 1151 i = 0; 1152 while ((inst = firmware) && inst->note) { 1153 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR); 1154 1155 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val); 1156 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask); 1157 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI); 1158 1159 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10); 1160 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop); 1161 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext); 1162 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff); 1163 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext); 1164 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff); 1165 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op); 1166 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID); 1167 1168 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask); 1169 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift); 1170 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab); 1171 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg); 1172 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW); 1173 ++firmware; 1174 ++i; 1175 } 1176 } 1177 1178 static void cas_init_rx_dma(struct cas *cp) 1179 { 1180 u64 desc_dma = cp->block_dvma; 1181 u32 val; 1182 int i, size; 1183 1184 /* rx free descriptors */ 1185 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL); 1186 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0)); 1187 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0)); 1188 if ((N_RX_DESC_RINGS > 1) && 1189 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */ 1190 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1)); 1191 writel(val, cp->regs + REG_RX_CFG); 1192 1193 val = (unsigned long) cp->init_rxds[0] - 1194 (unsigned long) cp->init_block; 1195 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI); 1196 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW); 1197 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); 1198 1199 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1200 /* rx desc 2 is for IPSEC packets. however, 1201 * we don't it that for that purpose. 1202 */ 1203 val = (unsigned long) cp->init_rxds[1] - 1204 (unsigned long) cp->init_block; 1205 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI); 1206 writel((desc_dma + val) & 0xffffffff, cp->regs + 1207 REG_PLUS_RX_DB1_LOW); 1208 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs + 1209 REG_PLUS_RX_KICK1); 1210 } 1211 1212 /* rx completion registers */ 1213 val = (unsigned long) cp->init_rxcs[0] - 1214 (unsigned long) cp->init_block; 1215 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI); 1216 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW); 1217 1218 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1219 /* rx comp 2-4 */ 1220 for (i = 1; i < MAX_RX_COMP_RINGS; i++) { 1221 val = (unsigned long) cp->init_rxcs[i] - 1222 (unsigned long) cp->init_block; 1223 writel((desc_dma + val) >> 32, cp->regs + 1224 REG_PLUS_RX_CBN_HI(i)); 1225 writel((desc_dma + val) & 0xffffffff, cp->regs + 1226 REG_PLUS_RX_CBN_LOW(i)); 1227 } 1228 } 1229 1230 /* read selective clear regs to prevent spurious interrupts 1231 * on reset because complete == kick. 1232 * selective clear set up to prevent interrupts on resets 1233 */ 1234 readl(cp->regs + REG_INTR_STATUS_ALIAS); 1235 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR); 1236 1237 /* set up pause thresholds */ 1238 val = CAS_BASE(RX_PAUSE_THRESH_OFF, 1239 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM); 1240 val |= CAS_BASE(RX_PAUSE_THRESH_ON, 1241 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM); 1242 writel(val, cp->regs + REG_RX_PAUSE_THRESH); 1243 1244 /* zero out dma reassembly buffers */ 1245 for (i = 0; i < 64; i++) { 1246 writel(i, cp->regs + REG_RX_TABLE_ADDR); 1247 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW); 1248 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID); 1249 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI); 1250 } 1251 1252 /* make sure address register is 0 for normal operation */ 1253 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR); 1254 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR); 1255 1256 /* interrupt mitigation */ 1257 #ifdef USE_RX_BLANK 1258 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL); 1259 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL); 1260 writel(val, cp->regs + REG_RX_BLANK); 1261 #else 1262 writel(0x0, cp->regs + REG_RX_BLANK); 1263 #endif 1264 1265 /* interrupt generation as a function of low water marks for 1266 * free desc and completion entries. these are used to trigger 1267 * housekeeping for rx descs. we don't use the free interrupt 1268 * as it's not very useful 1269 */ 1270 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */ 1271 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL); 1272 writel(val, cp->regs + REG_RX_AE_THRESH); 1273 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1274 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1)); 1275 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH); 1276 } 1277 1278 /* Random early detect registers. useful for congestion avoidance. 1279 * this should be tunable. 1280 */ 1281 writel(0x0, cp->regs + REG_RX_RED); 1282 1283 /* receive page sizes. default == 2K (0x800) */ 1284 val = 0; 1285 if (cp->page_size == 0x1000) 1286 val = 0x1; 1287 else if (cp->page_size == 0x2000) 1288 val = 0x2; 1289 else if (cp->page_size == 0x4000) 1290 val = 0x3; 1291 1292 /* round mtu + offset. constrain to page size. */ 1293 size = cp->dev->mtu + 64; 1294 if (size > cp->page_size) 1295 size = cp->page_size; 1296 1297 if (size <= 0x400) 1298 i = 0x0; 1299 else if (size <= 0x800) 1300 i = 0x1; 1301 else if (size <= 0x1000) 1302 i = 0x2; 1303 else 1304 i = 0x3; 1305 1306 cp->mtu_stride = 1 << (i + 10); 1307 val = CAS_BASE(RX_PAGE_SIZE, val); 1308 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i); 1309 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10)); 1310 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1); 1311 writel(val, cp->regs + REG_RX_PAGE_SIZE); 1312 1313 /* enable the header parser if desired */ 1314 if (&CAS_HP_FIRMWARE[0] == &cas_prog_null[0]) 1315 return; 1316 1317 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS); 1318 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK; 1319 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL); 1320 writel(val, cp->regs + REG_HP_CFG); 1321 } 1322 1323 static inline void cas_rxc_init(struct cas_rx_comp *rxc) 1324 { 1325 memset(rxc, 0, sizeof(*rxc)); 1326 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO); 1327 } 1328 1329 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1] 1330 * flipping is protected by the fact that the chip will not 1331 * hand back the same page index while it's being processed. 1332 */ 1333 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index) 1334 { 1335 cas_page_t *page = cp->rx_pages[1][index]; 1336 cas_page_t *new; 1337 1338 if (page_count(page->buffer) == 1) 1339 return page; 1340 1341 new = cas_page_dequeue(cp); 1342 if (new) { 1343 spin_lock(&cp->rx_inuse_lock); 1344 list_add(&page->list, &cp->rx_inuse_list); 1345 spin_unlock(&cp->rx_inuse_lock); 1346 } 1347 return new; 1348 } 1349 1350 /* this needs to be changed if we actually use the ENC RX DESC ring */ 1351 static cas_page_t *cas_page_swap(struct cas *cp, const int ring, 1352 const int index) 1353 { 1354 cas_page_t **page0 = cp->rx_pages[0]; 1355 cas_page_t **page1 = cp->rx_pages[1]; 1356 1357 /* swap if buffer is in use */ 1358 if (page_count(page0[index]->buffer) > 1) { 1359 cas_page_t *new = cas_page_spare(cp, index); 1360 if (new) { 1361 page1[index] = page0[index]; 1362 page0[index] = new; 1363 } 1364 } 1365 RX_USED_SET(page0[index], 0); 1366 return page0[index]; 1367 } 1368 1369 static void cas_clean_rxds(struct cas *cp) 1370 { 1371 /* only clean ring 0 as ring 1 is used for spare buffers */ 1372 struct cas_rx_desc *rxd = cp->init_rxds[0]; 1373 int i, size; 1374 1375 /* release all rx flows */ 1376 for (i = 0; i < N_RX_FLOWS; i++) { 1377 struct sk_buff *skb; 1378 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) { 1379 cas_skb_release(skb); 1380 } 1381 } 1382 1383 /* initialize descriptors */ 1384 size = RX_DESC_RINGN_SIZE(0); 1385 for (i = 0; i < size; i++) { 1386 cas_page_t *page = cas_page_swap(cp, 0, i); 1387 rxd[i].buffer = cpu_to_le64(page->dma_addr); 1388 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) | 1389 CAS_BASE(RX_INDEX_RING, 0)); 1390 } 1391 1392 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4; 1393 cp->rx_last[0] = 0; 1394 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0); 1395 } 1396 1397 static void cas_clean_rxcs(struct cas *cp) 1398 { 1399 int i, j; 1400 1401 /* take ownership of rx comp descriptors */ 1402 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS); 1403 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS); 1404 for (i = 0; i < N_RX_COMP_RINGS; i++) { 1405 struct cas_rx_comp *rxc = cp->init_rxcs[i]; 1406 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) { 1407 cas_rxc_init(rxc + j); 1408 } 1409 } 1410 } 1411 1412 #if 0 1413 /* When we get a RX fifo overflow, the RX unit is probably hung 1414 * so we do the following. 1415 * 1416 * If any part of the reset goes wrong, we return 1 and that causes the 1417 * whole chip to be reset. 1418 */ 1419 static int cas_rxmac_reset(struct cas *cp) 1420 { 1421 struct net_device *dev = cp->dev; 1422 int limit; 1423 u32 val; 1424 1425 /* First, reset MAC RX. */ 1426 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 1427 for (limit = 0; limit < STOP_TRIES; limit++) { 1428 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN)) 1429 break; 1430 udelay(10); 1431 } 1432 if (limit == STOP_TRIES) { 1433 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n"); 1434 return 1; 1435 } 1436 1437 /* Second, disable RX DMA. */ 1438 writel(0, cp->regs + REG_RX_CFG); 1439 for (limit = 0; limit < STOP_TRIES; limit++) { 1440 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN)) 1441 break; 1442 udelay(10); 1443 } 1444 if (limit == STOP_TRIES) { 1445 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n"); 1446 return 1; 1447 } 1448 1449 mdelay(5); 1450 1451 /* Execute RX reset command. */ 1452 writel(SW_RESET_RX, cp->regs + REG_SW_RESET); 1453 for (limit = 0; limit < STOP_TRIES; limit++) { 1454 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX)) 1455 break; 1456 udelay(10); 1457 } 1458 if (limit == STOP_TRIES) { 1459 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n"); 1460 return 1; 1461 } 1462 1463 /* reset driver rx state */ 1464 cas_clean_rxds(cp); 1465 cas_clean_rxcs(cp); 1466 1467 /* Now, reprogram the rest of RX unit. */ 1468 cas_init_rx_dma(cp); 1469 1470 /* re-enable */ 1471 val = readl(cp->regs + REG_RX_CFG); 1472 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG); 1473 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); 1474 val = readl(cp->regs + REG_MAC_RX_CFG); 1475 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 1476 return 0; 1477 } 1478 #endif 1479 1480 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp, 1481 u32 status) 1482 { 1483 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS); 1484 1485 if (!stat) 1486 return 0; 1487 1488 netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat); 1489 1490 /* these are all rollovers */ 1491 spin_lock(&cp->stat_lock[0]); 1492 if (stat & MAC_RX_ALIGN_ERR) 1493 cp->net_stats[0].rx_frame_errors += 0x10000; 1494 1495 if (stat & MAC_RX_CRC_ERR) 1496 cp->net_stats[0].rx_crc_errors += 0x10000; 1497 1498 if (stat & MAC_RX_LEN_ERR) 1499 cp->net_stats[0].rx_length_errors += 0x10000; 1500 1501 if (stat & MAC_RX_OVERFLOW) { 1502 cp->net_stats[0].rx_over_errors++; 1503 cp->net_stats[0].rx_fifo_errors++; 1504 } 1505 1506 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR 1507 * events. 1508 */ 1509 spin_unlock(&cp->stat_lock[0]); 1510 return 0; 1511 } 1512 1513 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp, 1514 u32 status) 1515 { 1516 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS); 1517 1518 if (!stat) 1519 return 0; 1520 1521 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1522 "mac interrupt, stat: 0x%x\n", stat); 1523 1524 /* This interrupt is just for pause frame and pause 1525 * tracking. It is useful for diagnostics and debug 1526 * but probably by default we will mask these events. 1527 */ 1528 if (stat & MAC_CTRL_PAUSE_STATE) 1529 cp->pause_entered++; 1530 1531 if (stat & MAC_CTRL_PAUSE_RECEIVED) 1532 cp->pause_last_time_recvd = (stat >> 16); 1533 1534 return 0; 1535 } 1536 1537 1538 /* Must be invoked under cp->lock. */ 1539 static inline int cas_mdio_link_not_up(struct cas *cp) 1540 { 1541 u16 val; 1542 1543 switch (cp->lstate) { 1544 case link_force_ret: 1545 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n"); 1546 cas_phy_write(cp, MII_BMCR, cp->link_fcntl); 1547 cp->timer_ticks = 5; 1548 cp->lstate = link_force_ok; 1549 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1550 break; 1551 1552 case link_aneg: 1553 val = cas_phy_read(cp, MII_BMCR); 1554 1555 /* Try forced modes. we try things in the following order: 1556 * 1000 full -> 100 full/half -> 10 half 1557 */ 1558 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE); 1559 val |= BMCR_FULLDPLX; 1560 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? 1561 CAS_BMCR_SPEED1000 : BMCR_SPEED100; 1562 cas_phy_write(cp, MII_BMCR, val); 1563 cp->timer_ticks = 5; 1564 cp->lstate = link_force_try; 1565 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1566 break; 1567 1568 case link_force_try: 1569 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */ 1570 val = cas_phy_read(cp, MII_BMCR); 1571 cp->timer_ticks = 5; 1572 if (val & CAS_BMCR_SPEED1000) { /* gigabit */ 1573 val &= ~CAS_BMCR_SPEED1000; 1574 val |= (BMCR_SPEED100 | BMCR_FULLDPLX); 1575 cas_phy_write(cp, MII_BMCR, val); 1576 break; 1577 } 1578 1579 if (val & BMCR_SPEED100) { 1580 if (val & BMCR_FULLDPLX) /* fd failed */ 1581 val &= ~BMCR_FULLDPLX; 1582 else { /* 100Mbps failed */ 1583 val &= ~BMCR_SPEED100; 1584 } 1585 cas_phy_write(cp, MII_BMCR, val); 1586 break; 1587 } 1588 break; 1589 default: 1590 break; 1591 } 1592 return 0; 1593 } 1594 1595 1596 /* must be invoked with cp->lock held */ 1597 static int cas_mii_link_check(struct cas *cp, const u16 bmsr) 1598 { 1599 int restart; 1600 1601 if (bmsr & BMSR_LSTATUS) { 1602 /* Ok, here we got a link. If we had it due to a forced 1603 * fallback, and we were configured for autoneg, we 1604 * retry a short autoneg pass. If you know your hub is 1605 * broken, use ethtool ;) 1606 */ 1607 if ((cp->lstate == link_force_try) && 1608 (cp->link_cntl & BMCR_ANENABLE)) { 1609 cp->lstate = link_force_ret; 1610 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1611 cas_mif_poll(cp, 0); 1612 cp->link_fcntl = cas_phy_read(cp, MII_BMCR); 1613 cp->timer_ticks = 5; 1614 if (cp->opened) 1615 netif_info(cp, link, cp->dev, 1616 "Got link after fallback, retrying autoneg once...\n"); 1617 cas_phy_write(cp, MII_BMCR, 1618 cp->link_fcntl | BMCR_ANENABLE | 1619 BMCR_ANRESTART); 1620 cas_mif_poll(cp, 1); 1621 1622 } else if (cp->lstate != link_up) { 1623 cp->lstate = link_up; 1624 cp->link_transition = LINK_TRANSITION_LINK_UP; 1625 1626 if (cp->opened) { 1627 cas_set_link_modes(cp); 1628 netif_carrier_on(cp->dev); 1629 } 1630 } 1631 return 0; 1632 } 1633 1634 /* link not up. if the link was previously up, we restart the 1635 * whole process 1636 */ 1637 restart = 0; 1638 if (cp->lstate == link_up) { 1639 cp->lstate = link_down; 1640 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 1641 1642 netif_carrier_off(cp->dev); 1643 if (cp->opened) 1644 netif_info(cp, link, cp->dev, "Link down\n"); 1645 restart = 1; 1646 1647 } else if (++cp->timer_ticks > 10) 1648 cas_mdio_link_not_up(cp); 1649 1650 return restart; 1651 } 1652 1653 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp, 1654 u32 status) 1655 { 1656 u32 stat = readl(cp->regs + REG_MIF_STATUS); 1657 u16 bmsr; 1658 1659 /* check for a link change */ 1660 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0) 1661 return 0; 1662 1663 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat); 1664 return cas_mii_link_check(cp, bmsr); 1665 } 1666 1667 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp, 1668 u32 status) 1669 { 1670 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS); 1671 1672 if (!stat) 1673 return 0; 1674 1675 netdev_err(dev, "PCI error [%04x:%04x]", 1676 stat, readl(cp->regs + REG_BIM_DIAG)); 1677 1678 /* cassini+ has this reserved */ 1679 if ((stat & PCI_ERR_BADACK) && 1680 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0)) 1681 pr_cont(" <No ACK64# during ABS64 cycle>"); 1682 1683 if (stat & PCI_ERR_DTRTO) 1684 pr_cont(" <Delayed transaction timeout>"); 1685 if (stat & PCI_ERR_OTHER) 1686 pr_cont(" <other>"); 1687 if (stat & PCI_ERR_BIM_DMA_WRITE) 1688 pr_cont(" <BIM DMA 0 write req>"); 1689 if (stat & PCI_ERR_BIM_DMA_READ) 1690 pr_cont(" <BIM DMA 0 read req>"); 1691 pr_cont("\n"); 1692 1693 if (stat & PCI_ERR_OTHER) { 1694 int pci_errs; 1695 1696 /* Interrogate PCI config space for the 1697 * true cause. 1698 */ 1699 pci_errs = pci_status_get_and_clear_errors(cp->pdev); 1700 1701 netdev_err(dev, "PCI status errors[%04x]\n", pci_errs); 1702 if (pci_errs & PCI_STATUS_PARITY) 1703 netdev_err(dev, "PCI parity error detected\n"); 1704 if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT) 1705 netdev_err(dev, "PCI target abort\n"); 1706 if (pci_errs & PCI_STATUS_REC_TARGET_ABORT) 1707 netdev_err(dev, "PCI master acks target abort\n"); 1708 if (pci_errs & PCI_STATUS_REC_MASTER_ABORT) 1709 netdev_err(dev, "PCI master abort\n"); 1710 if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR) 1711 netdev_err(dev, "PCI system error SERR#\n"); 1712 if (pci_errs & PCI_STATUS_DETECTED_PARITY) 1713 netdev_err(dev, "PCI parity error\n"); 1714 } 1715 1716 /* For all PCI errors, we should reset the chip. */ 1717 return 1; 1718 } 1719 1720 /* All non-normal interrupt conditions get serviced here. 1721 * Returns non-zero if we should just exit the interrupt 1722 * handler right now (ie. if we reset the card which invalidates 1723 * all of the other original irq status bits). 1724 */ 1725 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp, 1726 u32 status) 1727 { 1728 if (status & INTR_RX_TAG_ERROR) { 1729 /* corrupt RX tag framing */ 1730 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 1731 "corrupt rx tag framing\n"); 1732 spin_lock(&cp->stat_lock[0]); 1733 cp->net_stats[0].rx_errors++; 1734 spin_unlock(&cp->stat_lock[0]); 1735 goto do_reset; 1736 } 1737 1738 if (status & INTR_RX_LEN_MISMATCH) { 1739 /* length mismatch. */ 1740 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 1741 "length mismatch for rx frame\n"); 1742 spin_lock(&cp->stat_lock[0]); 1743 cp->net_stats[0].rx_errors++; 1744 spin_unlock(&cp->stat_lock[0]); 1745 goto do_reset; 1746 } 1747 1748 if (status & INTR_PCS_STATUS) { 1749 if (cas_pcs_interrupt(dev, cp, status)) 1750 goto do_reset; 1751 } 1752 1753 if (status & INTR_TX_MAC_STATUS) { 1754 if (cas_txmac_interrupt(dev, cp, status)) 1755 goto do_reset; 1756 } 1757 1758 if (status & INTR_RX_MAC_STATUS) { 1759 if (cas_rxmac_interrupt(dev, cp, status)) 1760 goto do_reset; 1761 } 1762 1763 if (status & INTR_MAC_CTRL_STATUS) { 1764 if (cas_mac_interrupt(dev, cp, status)) 1765 goto do_reset; 1766 } 1767 1768 if (status & INTR_MIF_STATUS) { 1769 if (cas_mif_interrupt(dev, cp, status)) 1770 goto do_reset; 1771 } 1772 1773 if (status & INTR_PCI_ERROR_STATUS) { 1774 if (cas_pci_interrupt(dev, cp, status)) 1775 goto do_reset; 1776 } 1777 return 0; 1778 1779 do_reset: 1780 #if 1 1781 atomic_inc(&cp->reset_task_pending); 1782 atomic_inc(&cp->reset_task_pending_all); 1783 netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status); 1784 schedule_work(&cp->reset_task); 1785 #else 1786 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 1787 netdev_err(dev, "reset called in cas_abnormal_irq\n"); 1788 schedule_work(&cp->reset_task); 1789 #endif 1790 return 1; 1791 } 1792 1793 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when 1794 * determining whether to do a netif_stop/wakeup 1795 */ 1796 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1) 1797 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK) 1798 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr, 1799 const int len) 1800 { 1801 unsigned long off = addr + len; 1802 1803 if (CAS_TABORT(cp) == 1) 1804 return 0; 1805 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN) 1806 return 0; 1807 return TX_TARGET_ABORT_LEN; 1808 } 1809 1810 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit) 1811 { 1812 struct cas_tx_desc *txds; 1813 struct sk_buff **skbs; 1814 struct net_device *dev = cp->dev; 1815 int entry, count; 1816 1817 spin_lock(&cp->tx_lock[ring]); 1818 txds = cp->init_txds[ring]; 1819 skbs = cp->tx_skbs[ring]; 1820 entry = cp->tx_old[ring]; 1821 1822 count = TX_BUFF_COUNT(ring, entry, limit); 1823 while (entry != limit) { 1824 struct sk_buff *skb = skbs[entry]; 1825 dma_addr_t daddr; 1826 u32 dlen; 1827 int frag; 1828 1829 if (!skb) { 1830 /* this should never occur */ 1831 entry = TX_DESC_NEXT(ring, entry); 1832 continue; 1833 } 1834 1835 /* however, we might get only a partial skb release. */ 1836 count -= skb_shinfo(skb)->nr_frags + 1837 + cp->tx_tiny_use[ring][entry].nbufs + 1; 1838 if (count < 0) 1839 break; 1840 1841 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev, 1842 "tx[%d] done, slot %d\n", ring, entry); 1843 1844 skbs[entry] = NULL; 1845 cp->tx_tiny_use[ring][entry].nbufs = 0; 1846 1847 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 1848 struct cas_tx_desc *txd = txds + entry; 1849 1850 daddr = le64_to_cpu(txd->buffer); 1851 dlen = CAS_VAL(TX_DESC_BUFLEN, 1852 le64_to_cpu(txd->control)); 1853 dma_unmap_page(&cp->pdev->dev, daddr, dlen, 1854 DMA_TO_DEVICE); 1855 entry = TX_DESC_NEXT(ring, entry); 1856 1857 /* tiny buffer may follow */ 1858 if (cp->tx_tiny_use[ring][entry].used) { 1859 cp->tx_tiny_use[ring][entry].used = 0; 1860 entry = TX_DESC_NEXT(ring, entry); 1861 } 1862 } 1863 1864 spin_lock(&cp->stat_lock[ring]); 1865 cp->net_stats[ring].tx_packets++; 1866 cp->net_stats[ring].tx_bytes += skb->len; 1867 spin_unlock(&cp->stat_lock[ring]); 1868 dev_consume_skb_irq(skb); 1869 } 1870 cp->tx_old[ring] = entry; 1871 1872 /* this is wrong for multiple tx rings. the net device needs 1873 * multiple queues for this to do the right thing. we wait 1874 * for 2*packets to be available when using tiny buffers 1875 */ 1876 if (netif_queue_stopped(dev) && 1877 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))) 1878 netif_wake_queue(dev); 1879 spin_unlock(&cp->tx_lock[ring]); 1880 } 1881 1882 static void cas_tx(struct net_device *dev, struct cas *cp, 1883 u32 status) 1884 { 1885 int limit, ring; 1886 #ifdef USE_TX_COMPWB 1887 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb); 1888 #endif 1889 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1890 "tx interrupt, status: 0x%x, %llx\n", 1891 status, (unsigned long long)compwb); 1892 /* process all the rings */ 1893 for (ring = 0; ring < N_TX_RINGS; ring++) { 1894 #ifdef USE_TX_COMPWB 1895 /* use the completion writeback registers */ 1896 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) | 1897 CAS_VAL(TX_COMPWB_LSB, compwb); 1898 compwb = TX_COMPWB_NEXT(compwb); 1899 #else 1900 limit = readl(cp->regs + REG_TX_COMPN(ring)); 1901 #endif 1902 if (cp->tx_old[ring] != limit) 1903 cas_tx_ringN(cp, ring, limit); 1904 } 1905 } 1906 1907 1908 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc, 1909 int entry, const u64 *words, 1910 struct sk_buff **skbref) 1911 { 1912 int dlen, hlen, len, i, alloclen; 1913 int off, swivel = RX_SWIVEL_OFF_VAL; 1914 struct cas_page *page; 1915 struct sk_buff *skb; 1916 void *crcaddr; 1917 __sum16 csum; 1918 char *p; 1919 1920 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]); 1921 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]); 1922 len = hlen + dlen; 1923 1924 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT)) 1925 alloclen = len; 1926 else 1927 alloclen = max(hlen, RX_COPY_MIN); 1928 1929 skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size); 1930 if (skb == NULL) 1931 return -1; 1932 1933 *skbref = skb; 1934 skb_reserve(skb, swivel); 1935 1936 p = skb->data; 1937 crcaddr = NULL; 1938 if (hlen) { /* always copy header pages */ 1939 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); 1940 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 1941 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 + 1942 swivel; 1943 1944 i = hlen; 1945 if (!dlen) /* attach FCS */ 1946 i += cp->crc_size; 1947 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off, 1948 i, DMA_FROM_DEVICE); 1949 memcpy(p, page_address(page->buffer) + off, i); 1950 dma_sync_single_for_device(&cp->pdev->dev, 1951 page->dma_addr + off, i, 1952 DMA_FROM_DEVICE); 1953 RX_USED_ADD(page, 0x100); 1954 p += hlen; 1955 swivel = 0; 1956 } 1957 1958 1959 if (alloclen < (hlen + dlen)) { 1960 skb_frag_t *frag = skb_shinfo(skb)->frags; 1961 1962 /* normal or jumbo packets. we use frags */ 1963 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 1964 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 1965 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; 1966 1967 hlen = min(cp->page_size - off, dlen); 1968 if (hlen < 0) { 1969 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 1970 "rx page overflow: %d\n", hlen); 1971 dev_kfree_skb_irq(skb); 1972 return -1; 1973 } 1974 i = hlen; 1975 if (i == dlen) /* attach FCS */ 1976 i += cp->crc_size; 1977 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off, 1978 i, DMA_FROM_DEVICE); 1979 1980 /* make sure we always copy a header */ 1981 swivel = 0; 1982 if (p == (char *) skb->data) { /* not split */ 1983 memcpy(p, page_address(page->buffer) + off, 1984 RX_COPY_MIN); 1985 dma_sync_single_for_device(&cp->pdev->dev, 1986 page->dma_addr + off, i, 1987 DMA_FROM_DEVICE); 1988 off += RX_COPY_MIN; 1989 swivel = RX_COPY_MIN; 1990 RX_USED_ADD(page, cp->mtu_stride); 1991 } else { 1992 RX_USED_ADD(page, hlen); 1993 } 1994 skb_put(skb, alloclen); 1995 1996 skb_shinfo(skb)->nr_frags++; 1997 skb->data_len += hlen - swivel; 1998 skb->truesize += hlen - swivel; 1999 skb->len += hlen - swivel; 2000 2001 skb_frag_fill_page_desc(frag, page->buffer, off, hlen - swivel); 2002 __skb_frag_ref(frag); 2003 2004 /* any more data? */ 2005 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { 2006 hlen = dlen; 2007 off = 0; 2008 2009 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2010 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2011 dma_sync_single_for_cpu(&cp->pdev->dev, 2012 page->dma_addr, 2013 hlen + cp->crc_size, 2014 DMA_FROM_DEVICE); 2015 dma_sync_single_for_device(&cp->pdev->dev, 2016 page->dma_addr, 2017 hlen + cp->crc_size, 2018 DMA_FROM_DEVICE); 2019 2020 skb_shinfo(skb)->nr_frags++; 2021 skb->data_len += hlen; 2022 skb->len += hlen; 2023 frag++; 2024 2025 skb_frag_fill_page_desc(frag, page->buffer, 0, hlen); 2026 __skb_frag_ref(frag); 2027 RX_USED_ADD(page, hlen + cp->crc_size); 2028 } 2029 2030 if (cp->crc_size) 2031 crcaddr = page_address(page->buffer) + off + hlen; 2032 2033 } else { 2034 /* copying packet */ 2035 if (!dlen) 2036 goto end_copy_pkt; 2037 2038 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 2039 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2040 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; 2041 hlen = min(cp->page_size - off, dlen); 2042 if (hlen < 0) { 2043 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 2044 "rx page overflow: %d\n", hlen); 2045 dev_kfree_skb_irq(skb); 2046 return -1; 2047 } 2048 i = hlen; 2049 if (i == dlen) /* attach FCS */ 2050 i += cp->crc_size; 2051 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off, 2052 i, DMA_FROM_DEVICE); 2053 memcpy(p, page_address(page->buffer) + off, i); 2054 dma_sync_single_for_device(&cp->pdev->dev, 2055 page->dma_addr + off, i, 2056 DMA_FROM_DEVICE); 2057 if (p == (char *) skb->data) /* not split */ 2058 RX_USED_ADD(page, cp->mtu_stride); 2059 else 2060 RX_USED_ADD(page, i); 2061 2062 /* any more data? */ 2063 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { 2064 p += hlen; 2065 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2066 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2067 dma_sync_single_for_cpu(&cp->pdev->dev, 2068 page->dma_addr, 2069 dlen + cp->crc_size, 2070 DMA_FROM_DEVICE); 2071 memcpy(p, page_address(page->buffer), dlen + cp->crc_size); 2072 dma_sync_single_for_device(&cp->pdev->dev, 2073 page->dma_addr, 2074 dlen + cp->crc_size, 2075 DMA_FROM_DEVICE); 2076 RX_USED_ADD(page, dlen + cp->crc_size); 2077 } 2078 end_copy_pkt: 2079 if (cp->crc_size) 2080 crcaddr = skb->data + alloclen; 2081 2082 skb_put(skb, alloclen); 2083 } 2084 2085 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3])); 2086 if (cp->crc_size) { 2087 /* checksum includes FCS. strip it out. */ 2088 csum = csum_fold(csum_partial(crcaddr, cp->crc_size, 2089 csum_unfold(csum))); 2090 } 2091 skb->protocol = eth_type_trans(skb, cp->dev); 2092 if (skb->protocol == htons(ETH_P_IP)) { 2093 skb->csum = csum_unfold(~csum); 2094 skb->ip_summed = CHECKSUM_COMPLETE; 2095 } else 2096 skb_checksum_none_assert(skb); 2097 return len; 2098 } 2099 2100 2101 /* we can handle up to 64 rx flows at a time. we do the same thing 2102 * as nonreassm except that we batch up the buffers. 2103 * NOTE: we currently just treat each flow as a bunch of packets that 2104 * we pass up. a better way would be to coalesce the packets 2105 * into a jumbo packet. to do that, we need to do the following: 2106 * 1) the first packet will have a clean split between header and 2107 * data. save both. 2108 * 2) each time the next flow packet comes in, extend the 2109 * data length and merge the checksums. 2110 * 3) on flow release, fix up the header. 2111 * 4) make sure the higher layer doesn't care. 2112 * because packets get coalesced, we shouldn't run into fragment count 2113 * issues. 2114 */ 2115 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words, 2116 struct sk_buff *skb) 2117 { 2118 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1); 2119 struct sk_buff_head *flow = &cp->rx_flows[flowid]; 2120 2121 /* this is protected at a higher layer, so no need to 2122 * do any additional locking here. stick the buffer 2123 * at the end. 2124 */ 2125 __skb_queue_tail(flow, skb); 2126 if (words[0] & RX_COMP1_RELEASE_FLOW) { 2127 while ((skb = __skb_dequeue(flow))) { 2128 cas_skb_release(skb); 2129 } 2130 } 2131 } 2132 2133 /* put rx descriptor back on ring. if a buffer is in use by a higher 2134 * layer, this will need to put in a replacement. 2135 */ 2136 static void cas_post_page(struct cas *cp, const int ring, const int index) 2137 { 2138 cas_page_t *new; 2139 int entry; 2140 2141 entry = cp->rx_old[ring]; 2142 2143 new = cas_page_swap(cp, ring, index); 2144 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr); 2145 cp->init_rxds[ring][entry].index = 2146 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) | 2147 CAS_BASE(RX_INDEX_RING, ring)); 2148 2149 entry = RX_DESC_ENTRY(ring, entry + 1); 2150 cp->rx_old[ring] = entry; 2151 2152 if (entry % 4) 2153 return; 2154 2155 if (ring == 0) 2156 writel(entry, cp->regs + REG_RX_KICK); 2157 else if ((N_RX_DESC_RINGS > 1) && 2158 (cp->cas_flags & CAS_FLAG_REG_PLUS)) 2159 writel(entry, cp->regs + REG_PLUS_RX_KICK1); 2160 } 2161 2162 2163 /* only when things are bad */ 2164 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num) 2165 { 2166 unsigned int entry, last, count, released; 2167 int cluster; 2168 cas_page_t **page = cp->rx_pages[ring]; 2169 2170 entry = cp->rx_old[ring]; 2171 2172 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 2173 "rxd[%d] interrupt, done: %d\n", ring, entry); 2174 2175 cluster = -1; 2176 count = entry & 0x3; 2177 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4); 2178 released = 0; 2179 while (entry != last) { 2180 /* make a new buffer if it's still in use */ 2181 if (page_count(page[entry]->buffer) > 1) { 2182 cas_page_t *new = cas_page_dequeue(cp); 2183 if (!new) { 2184 /* let the timer know that we need to 2185 * do this again 2186 */ 2187 cp->cas_flags |= CAS_FLAG_RXD_POST(ring); 2188 if (!timer_pending(&cp->link_timer)) 2189 mod_timer(&cp->link_timer, jiffies + 2190 CAS_LINK_FAST_TIMEOUT); 2191 cp->rx_old[ring] = entry; 2192 cp->rx_last[ring] = num ? num - released : 0; 2193 return -ENOMEM; 2194 } 2195 spin_lock(&cp->rx_inuse_lock); 2196 list_add(&page[entry]->list, &cp->rx_inuse_list); 2197 spin_unlock(&cp->rx_inuse_lock); 2198 cp->init_rxds[ring][entry].buffer = 2199 cpu_to_le64(new->dma_addr); 2200 page[entry] = new; 2201 2202 } 2203 2204 if (++count == 4) { 2205 cluster = entry; 2206 count = 0; 2207 } 2208 released++; 2209 entry = RX_DESC_ENTRY(ring, entry + 1); 2210 } 2211 cp->rx_old[ring] = entry; 2212 2213 if (cluster < 0) 2214 return 0; 2215 2216 if (ring == 0) 2217 writel(cluster, cp->regs + REG_RX_KICK); 2218 else if ((N_RX_DESC_RINGS > 1) && 2219 (cp->cas_flags & CAS_FLAG_REG_PLUS)) 2220 writel(cluster, cp->regs + REG_PLUS_RX_KICK1); 2221 return 0; 2222 } 2223 2224 2225 /* process a completion ring. packets are set up in three basic ways: 2226 * small packets: should be copied header + data in single buffer. 2227 * large packets: header and data in a single buffer. 2228 * split packets: header in a separate buffer from data. 2229 * data may be in multiple pages. data may be > 256 2230 * bytes but in a single page. 2231 * 2232 * NOTE: RX page posting is done in this routine as well. while there's 2233 * the capability of using multiple RX completion rings, it isn't 2234 * really worthwhile due to the fact that the page posting will 2235 * force serialization on the single descriptor ring. 2236 */ 2237 static int cas_rx_ringN(struct cas *cp, int ring, int budget) 2238 { 2239 struct cas_rx_comp *rxcs = cp->init_rxcs[ring]; 2240 int entry, drops; 2241 int npackets = 0; 2242 2243 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 2244 "rx[%d] interrupt, done: %d/%d\n", 2245 ring, 2246 readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]); 2247 2248 entry = cp->rx_new[ring]; 2249 drops = 0; 2250 while (1) { 2251 struct cas_rx_comp *rxc = rxcs + entry; 2252 struct sk_buff *skb; 2253 int type, len; 2254 u64 words[4]; 2255 int i, dring; 2256 2257 words[0] = le64_to_cpu(rxc->word1); 2258 words[1] = le64_to_cpu(rxc->word2); 2259 words[2] = le64_to_cpu(rxc->word3); 2260 words[3] = le64_to_cpu(rxc->word4); 2261 2262 /* don't touch if still owned by hw */ 2263 type = CAS_VAL(RX_COMP1_TYPE, words[0]); 2264 if (type == 0) 2265 break; 2266 2267 /* hw hasn't cleared the zero bit yet */ 2268 if (words[3] & RX_COMP4_ZERO) { 2269 break; 2270 } 2271 2272 /* get info on the packet */ 2273 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) { 2274 spin_lock(&cp->stat_lock[ring]); 2275 cp->net_stats[ring].rx_errors++; 2276 if (words[3] & RX_COMP4_LEN_MISMATCH) 2277 cp->net_stats[ring].rx_length_errors++; 2278 if (words[3] & RX_COMP4_BAD) 2279 cp->net_stats[ring].rx_crc_errors++; 2280 spin_unlock(&cp->stat_lock[ring]); 2281 2282 /* We'll just return it to Cassini. */ 2283 drop_it: 2284 spin_lock(&cp->stat_lock[ring]); 2285 ++cp->net_stats[ring].rx_dropped; 2286 spin_unlock(&cp->stat_lock[ring]); 2287 goto next; 2288 } 2289 2290 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb); 2291 if (len < 0) { 2292 ++drops; 2293 goto drop_it; 2294 } 2295 2296 /* see if it's a flow re-assembly or not. the driver 2297 * itself handles release back up. 2298 */ 2299 if (RX_DONT_BATCH || (type == 0x2)) { 2300 /* non-reassm: these always get released */ 2301 cas_skb_release(skb); 2302 } else { 2303 cas_rx_flow_pkt(cp, words, skb); 2304 } 2305 2306 spin_lock(&cp->stat_lock[ring]); 2307 cp->net_stats[ring].rx_packets++; 2308 cp->net_stats[ring].rx_bytes += len; 2309 spin_unlock(&cp->stat_lock[ring]); 2310 2311 next: 2312 npackets++; 2313 2314 /* should it be released? */ 2315 if (words[0] & RX_COMP1_RELEASE_HDR) { 2316 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); 2317 dring = CAS_VAL(RX_INDEX_RING, i); 2318 i = CAS_VAL(RX_INDEX_NUM, i); 2319 cas_post_page(cp, dring, i); 2320 } 2321 2322 if (words[0] & RX_COMP1_RELEASE_DATA) { 2323 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 2324 dring = CAS_VAL(RX_INDEX_RING, i); 2325 i = CAS_VAL(RX_INDEX_NUM, i); 2326 cas_post_page(cp, dring, i); 2327 } 2328 2329 if (words[0] & RX_COMP1_RELEASE_NEXT) { 2330 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2331 dring = CAS_VAL(RX_INDEX_RING, i); 2332 i = CAS_VAL(RX_INDEX_NUM, i); 2333 cas_post_page(cp, dring, i); 2334 } 2335 2336 /* skip to the next entry */ 2337 entry = RX_COMP_ENTRY(ring, entry + 1 + 2338 CAS_VAL(RX_COMP1_SKIP, words[0])); 2339 #ifdef USE_NAPI 2340 if (budget && (npackets >= budget)) 2341 break; 2342 #endif 2343 } 2344 cp->rx_new[ring] = entry; 2345 2346 if (drops) 2347 netdev_info(cp->dev, "Memory squeeze, deferring packet\n"); 2348 return npackets; 2349 } 2350 2351 2352 /* put completion entries back on the ring */ 2353 static void cas_post_rxcs_ringN(struct net_device *dev, 2354 struct cas *cp, int ring) 2355 { 2356 struct cas_rx_comp *rxc = cp->init_rxcs[ring]; 2357 int last, entry; 2358 2359 last = cp->rx_cur[ring]; 2360 entry = cp->rx_new[ring]; 2361 netif_printk(cp, intr, KERN_DEBUG, dev, 2362 "rxc[%d] interrupt, done: %d/%d\n", 2363 ring, readl(cp->regs + REG_RX_COMP_HEAD), entry); 2364 2365 /* zero and re-mark descriptors */ 2366 while (last != entry) { 2367 cas_rxc_init(rxc + last); 2368 last = RX_COMP_ENTRY(ring, last + 1); 2369 } 2370 cp->rx_cur[ring] = last; 2371 2372 if (ring == 0) 2373 writel(last, cp->regs + REG_RX_COMP_TAIL); 2374 else if (cp->cas_flags & CAS_FLAG_REG_PLUS) 2375 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring)); 2376 } 2377 2378 2379 2380 /* cassini can use all four PCI interrupts for the completion ring. 2381 * rings 3 and 4 are identical 2382 */ 2383 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 2384 static inline void cas_handle_irqN(struct net_device *dev, 2385 struct cas *cp, const u32 status, 2386 const int ring) 2387 { 2388 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT)) 2389 cas_post_rxcs_ringN(dev, cp, ring); 2390 } 2391 2392 static irqreturn_t cas_interruptN(int irq, void *dev_id) 2393 { 2394 struct net_device *dev = dev_id; 2395 struct cas *cp = netdev_priv(dev); 2396 unsigned long flags; 2397 int ring = (irq == cp->pci_irq_INTC) ? 2 : 3; 2398 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring)); 2399 2400 /* check for shared irq */ 2401 if (status == 0) 2402 return IRQ_NONE; 2403 2404 spin_lock_irqsave(&cp->lock, flags); 2405 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ 2406 #ifdef USE_NAPI 2407 cas_mask_intr(cp); 2408 napi_schedule(&cp->napi); 2409 #else 2410 cas_rx_ringN(cp, ring, 0); 2411 #endif 2412 status &= ~INTR_RX_DONE_ALT; 2413 } 2414 2415 if (status) 2416 cas_handle_irqN(dev, cp, status, ring); 2417 spin_unlock_irqrestore(&cp->lock, flags); 2418 return IRQ_HANDLED; 2419 } 2420 #endif 2421 2422 #ifdef USE_PCI_INTB 2423 /* everything but rx packets */ 2424 static inline void cas_handle_irq1(struct cas *cp, const u32 status) 2425 { 2426 if (status & INTR_RX_BUF_UNAVAIL_1) { 2427 /* Frame arrived, no free RX buffers available. 2428 * NOTE: we can get this on a link transition. */ 2429 cas_post_rxds_ringN(cp, 1, 0); 2430 spin_lock(&cp->stat_lock[1]); 2431 cp->net_stats[1].rx_dropped++; 2432 spin_unlock(&cp->stat_lock[1]); 2433 } 2434 2435 if (status & INTR_RX_BUF_AE_1) 2436 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) - 2437 RX_AE_FREEN_VAL(1)); 2438 2439 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) 2440 cas_post_rxcs_ringN(cp, 1); 2441 } 2442 2443 /* ring 2 handles a few more events than 3 and 4 */ 2444 static irqreturn_t cas_interrupt1(int irq, void *dev_id) 2445 { 2446 struct net_device *dev = dev_id; 2447 struct cas *cp = netdev_priv(dev); 2448 unsigned long flags; 2449 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); 2450 2451 /* check for shared interrupt */ 2452 if (status == 0) 2453 return IRQ_NONE; 2454 2455 spin_lock_irqsave(&cp->lock, flags); 2456 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ 2457 #ifdef USE_NAPI 2458 cas_mask_intr(cp); 2459 napi_schedule(&cp->napi); 2460 #else 2461 cas_rx_ringN(cp, 1, 0); 2462 #endif 2463 status &= ~INTR_RX_DONE_ALT; 2464 } 2465 if (status) 2466 cas_handle_irq1(cp, status); 2467 spin_unlock_irqrestore(&cp->lock, flags); 2468 return IRQ_HANDLED; 2469 } 2470 #endif 2471 2472 static inline void cas_handle_irq(struct net_device *dev, 2473 struct cas *cp, const u32 status) 2474 { 2475 /* housekeeping interrupts */ 2476 if (status & INTR_ERROR_MASK) 2477 cas_abnormal_irq(dev, cp, status); 2478 2479 if (status & INTR_RX_BUF_UNAVAIL) { 2480 /* Frame arrived, no free RX buffers available. 2481 * NOTE: we can get this on a link transition. 2482 */ 2483 cas_post_rxds_ringN(cp, 0, 0); 2484 spin_lock(&cp->stat_lock[0]); 2485 cp->net_stats[0].rx_dropped++; 2486 spin_unlock(&cp->stat_lock[0]); 2487 } else if (status & INTR_RX_BUF_AE) { 2488 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) - 2489 RX_AE_FREEN_VAL(0)); 2490 } 2491 2492 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) 2493 cas_post_rxcs_ringN(dev, cp, 0); 2494 } 2495 2496 static irqreturn_t cas_interrupt(int irq, void *dev_id) 2497 { 2498 struct net_device *dev = dev_id; 2499 struct cas *cp = netdev_priv(dev); 2500 unsigned long flags; 2501 u32 status = readl(cp->regs + REG_INTR_STATUS); 2502 2503 if (status == 0) 2504 return IRQ_NONE; 2505 2506 spin_lock_irqsave(&cp->lock, flags); 2507 if (status & (INTR_TX_ALL | INTR_TX_INTME)) { 2508 cas_tx(dev, cp, status); 2509 status &= ~(INTR_TX_ALL | INTR_TX_INTME); 2510 } 2511 2512 if (status & INTR_RX_DONE) { 2513 #ifdef USE_NAPI 2514 cas_mask_intr(cp); 2515 napi_schedule(&cp->napi); 2516 #else 2517 cas_rx_ringN(cp, 0, 0); 2518 #endif 2519 status &= ~INTR_RX_DONE; 2520 } 2521 2522 if (status) 2523 cas_handle_irq(dev, cp, status); 2524 spin_unlock_irqrestore(&cp->lock, flags); 2525 return IRQ_HANDLED; 2526 } 2527 2528 2529 #ifdef USE_NAPI 2530 static int cas_poll(struct napi_struct *napi, int budget) 2531 { 2532 struct cas *cp = container_of(napi, struct cas, napi); 2533 struct net_device *dev = cp->dev; 2534 int i, enable_intr, credits; 2535 u32 status = readl(cp->regs + REG_INTR_STATUS); 2536 unsigned long flags; 2537 2538 spin_lock_irqsave(&cp->lock, flags); 2539 cas_tx(dev, cp, status); 2540 spin_unlock_irqrestore(&cp->lock, flags); 2541 2542 /* NAPI rx packets. we spread the credits across all of the 2543 * rxc rings 2544 * 2545 * to make sure we're fair with the work we loop through each 2546 * ring N_RX_COMP_RING times with a request of 2547 * budget / N_RX_COMP_RINGS 2548 */ 2549 enable_intr = 1; 2550 credits = 0; 2551 for (i = 0; i < N_RX_COMP_RINGS; i++) { 2552 int j; 2553 for (j = 0; j < N_RX_COMP_RINGS; j++) { 2554 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS); 2555 if (credits >= budget) { 2556 enable_intr = 0; 2557 goto rx_comp; 2558 } 2559 } 2560 } 2561 2562 rx_comp: 2563 /* final rx completion */ 2564 spin_lock_irqsave(&cp->lock, flags); 2565 if (status) 2566 cas_handle_irq(dev, cp, status); 2567 2568 #ifdef USE_PCI_INTB 2569 if (N_RX_COMP_RINGS > 1) { 2570 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); 2571 if (status) 2572 cas_handle_irq1(dev, cp, status); 2573 } 2574 #endif 2575 2576 #ifdef USE_PCI_INTC 2577 if (N_RX_COMP_RINGS > 2) { 2578 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2)); 2579 if (status) 2580 cas_handle_irqN(dev, cp, status, 2); 2581 } 2582 #endif 2583 2584 #ifdef USE_PCI_INTD 2585 if (N_RX_COMP_RINGS > 3) { 2586 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3)); 2587 if (status) 2588 cas_handle_irqN(dev, cp, status, 3); 2589 } 2590 #endif 2591 spin_unlock_irqrestore(&cp->lock, flags); 2592 if (enable_intr) { 2593 napi_complete(napi); 2594 cas_unmask_intr(cp); 2595 } 2596 return credits; 2597 } 2598 #endif 2599 2600 #ifdef CONFIG_NET_POLL_CONTROLLER 2601 static void cas_netpoll(struct net_device *dev) 2602 { 2603 struct cas *cp = netdev_priv(dev); 2604 2605 cas_disable_irq(cp, 0); 2606 cas_interrupt(cp->pdev->irq, dev); 2607 cas_enable_irq(cp, 0); 2608 2609 #ifdef USE_PCI_INTB 2610 if (N_RX_COMP_RINGS > 1) { 2611 /* cas_interrupt1(); */ 2612 } 2613 #endif 2614 #ifdef USE_PCI_INTC 2615 if (N_RX_COMP_RINGS > 2) { 2616 /* cas_interruptN(); */ 2617 } 2618 #endif 2619 #ifdef USE_PCI_INTD 2620 if (N_RX_COMP_RINGS > 3) { 2621 /* cas_interruptN(); */ 2622 } 2623 #endif 2624 } 2625 #endif 2626 2627 static void cas_tx_timeout(struct net_device *dev, unsigned int txqueue) 2628 { 2629 struct cas *cp = netdev_priv(dev); 2630 2631 netdev_err(dev, "transmit timed out, resetting\n"); 2632 if (!cp->hw_running) { 2633 netdev_err(dev, "hrm.. hw not running!\n"); 2634 return; 2635 } 2636 2637 netdev_err(dev, "MIF_STATE[%08x]\n", 2638 readl(cp->regs + REG_MIF_STATE_MACHINE)); 2639 2640 netdev_err(dev, "MAC_STATE[%08x]\n", 2641 readl(cp->regs + REG_MAC_STATE_MACHINE)); 2642 2643 netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n", 2644 readl(cp->regs + REG_TX_CFG), 2645 readl(cp->regs + REG_MAC_TX_STATUS), 2646 readl(cp->regs + REG_MAC_TX_CFG), 2647 readl(cp->regs + REG_TX_FIFO_PKT_CNT), 2648 readl(cp->regs + REG_TX_FIFO_WRITE_PTR), 2649 readl(cp->regs + REG_TX_FIFO_READ_PTR), 2650 readl(cp->regs + REG_TX_SM_1), 2651 readl(cp->regs + REG_TX_SM_2)); 2652 2653 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n", 2654 readl(cp->regs + REG_RX_CFG), 2655 readl(cp->regs + REG_MAC_RX_STATUS), 2656 readl(cp->regs + REG_MAC_RX_CFG)); 2657 2658 netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n", 2659 readl(cp->regs + REG_HP_STATE_MACHINE), 2660 readl(cp->regs + REG_HP_STATUS0), 2661 readl(cp->regs + REG_HP_STATUS1), 2662 readl(cp->regs + REG_HP_STATUS2)); 2663 2664 #if 1 2665 atomic_inc(&cp->reset_task_pending); 2666 atomic_inc(&cp->reset_task_pending_all); 2667 schedule_work(&cp->reset_task); 2668 #else 2669 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 2670 schedule_work(&cp->reset_task); 2671 #endif 2672 } 2673 2674 static inline int cas_intme(int ring, int entry) 2675 { 2676 /* Algorithm: IRQ every 1/2 of descriptors. */ 2677 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1))) 2678 return 1; 2679 return 0; 2680 } 2681 2682 2683 static void cas_write_txd(struct cas *cp, int ring, int entry, 2684 dma_addr_t mapping, int len, u64 ctrl, int last) 2685 { 2686 struct cas_tx_desc *txd = cp->init_txds[ring] + entry; 2687 2688 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len); 2689 if (cas_intme(ring, entry)) 2690 ctrl |= TX_DESC_INTME; 2691 if (last) 2692 ctrl |= TX_DESC_EOF; 2693 txd->control = cpu_to_le64(ctrl); 2694 txd->buffer = cpu_to_le64(mapping); 2695 } 2696 2697 static inline void *tx_tiny_buf(struct cas *cp, const int ring, 2698 const int entry) 2699 { 2700 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry; 2701 } 2702 2703 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring, 2704 const int entry, const int tentry) 2705 { 2706 cp->tx_tiny_use[ring][tentry].nbufs++; 2707 cp->tx_tiny_use[ring][entry].used = 1; 2708 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry; 2709 } 2710 2711 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring, 2712 struct sk_buff *skb) 2713 { 2714 struct net_device *dev = cp->dev; 2715 int entry, nr_frags, frag, tabort, tentry; 2716 dma_addr_t mapping; 2717 unsigned long flags; 2718 u64 ctrl; 2719 u32 len; 2720 2721 spin_lock_irqsave(&cp->tx_lock[ring], flags); 2722 2723 /* This is a hard error, log it. */ 2724 if (TX_BUFFS_AVAIL(cp, ring) <= 2725 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) { 2726 netif_stop_queue(dev); 2727 spin_unlock_irqrestore(&cp->tx_lock[ring], flags); 2728 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); 2729 return 1; 2730 } 2731 2732 ctrl = 0; 2733 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2734 const u64 csum_start_off = skb_checksum_start_offset(skb); 2735 const u64 csum_stuff_off = csum_start_off + skb->csum_offset; 2736 2737 ctrl = TX_DESC_CSUM_EN | 2738 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) | 2739 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off); 2740 } 2741 2742 entry = cp->tx_new[ring]; 2743 cp->tx_skbs[ring][entry] = skb; 2744 2745 nr_frags = skb_shinfo(skb)->nr_frags; 2746 len = skb_headlen(skb); 2747 mapping = dma_map_page(&cp->pdev->dev, virt_to_page(skb->data), 2748 offset_in_page(skb->data), len, DMA_TO_DEVICE); 2749 2750 tentry = entry; 2751 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len); 2752 if (unlikely(tabort)) { 2753 /* NOTE: len is always > tabort */ 2754 cas_write_txd(cp, ring, entry, mapping, len - tabort, 2755 ctrl | TX_DESC_SOF, 0); 2756 entry = TX_DESC_NEXT(ring, entry); 2757 2758 skb_copy_from_linear_data_offset(skb, len - tabort, 2759 tx_tiny_buf(cp, ring, entry), tabort); 2760 mapping = tx_tiny_map(cp, ring, entry, tentry); 2761 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl, 2762 (nr_frags == 0)); 2763 } else { 2764 cas_write_txd(cp, ring, entry, mapping, len, ctrl | 2765 TX_DESC_SOF, (nr_frags == 0)); 2766 } 2767 entry = TX_DESC_NEXT(ring, entry); 2768 2769 for (frag = 0; frag < nr_frags; frag++) { 2770 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag]; 2771 2772 len = skb_frag_size(fragp); 2773 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len, 2774 DMA_TO_DEVICE); 2775 2776 tabort = cas_calc_tabort(cp, skb_frag_off(fragp), len); 2777 if (unlikely(tabort)) { 2778 /* NOTE: len is always > tabort */ 2779 cas_write_txd(cp, ring, entry, mapping, len - tabort, 2780 ctrl, 0); 2781 entry = TX_DESC_NEXT(ring, entry); 2782 memcpy_from_page(tx_tiny_buf(cp, ring, entry), 2783 skb_frag_page(fragp), 2784 skb_frag_off(fragp) + len - tabort, 2785 tabort); 2786 mapping = tx_tiny_map(cp, ring, entry, tentry); 2787 len = tabort; 2788 } 2789 2790 cas_write_txd(cp, ring, entry, mapping, len, ctrl, 2791 (frag + 1 == nr_frags)); 2792 entry = TX_DESC_NEXT(ring, entry); 2793 } 2794 2795 cp->tx_new[ring] = entry; 2796 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)) 2797 netif_stop_queue(dev); 2798 2799 netif_printk(cp, tx_queued, KERN_DEBUG, dev, 2800 "tx[%d] queued, slot %d, skblen %d, avail %d\n", 2801 ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring)); 2802 writel(entry, cp->regs + REG_TX_KICKN(ring)); 2803 spin_unlock_irqrestore(&cp->tx_lock[ring], flags); 2804 return 0; 2805 } 2806 2807 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev) 2808 { 2809 struct cas *cp = netdev_priv(dev); 2810 2811 /* this is only used as a load-balancing hint, so it doesn't 2812 * need to be SMP safe 2813 */ 2814 static int ring; 2815 2816 if (skb_padto(skb, cp->min_frame_size)) 2817 return NETDEV_TX_OK; 2818 2819 /* XXX: we need some higher-level QoS hooks to steer packets to 2820 * individual queues. 2821 */ 2822 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb)) 2823 return NETDEV_TX_BUSY; 2824 return NETDEV_TX_OK; 2825 } 2826 2827 static void cas_init_tx_dma(struct cas *cp) 2828 { 2829 u64 desc_dma = cp->block_dvma; 2830 unsigned long off; 2831 u32 val; 2832 int i; 2833 2834 /* set up tx completion writeback registers. must be 8-byte aligned */ 2835 #ifdef USE_TX_COMPWB 2836 off = offsetof(struct cas_init_block, tx_compwb); 2837 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI); 2838 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW); 2839 #endif 2840 2841 /* enable completion writebacks, enable paced mode, 2842 * disable read pipe, and disable pre-interrupt compwbs 2843 */ 2844 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 | 2845 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 | 2846 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE | 2847 TX_CFG_INTR_COMPWB_DIS; 2848 2849 /* write out tx ring info and tx desc bases */ 2850 for (i = 0; i < MAX_TX_RINGS; i++) { 2851 off = (unsigned long) cp->init_txds[i] - 2852 (unsigned long) cp->init_block; 2853 2854 val |= CAS_TX_RINGN_BASE(i); 2855 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i)); 2856 writel((desc_dma + off) & 0xffffffff, cp->regs + 2857 REG_TX_DBN_LOW(i)); 2858 /* don't zero out the kick register here as the system 2859 * will wedge 2860 */ 2861 } 2862 writel(val, cp->regs + REG_TX_CFG); 2863 2864 /* program max burst sizes. these numbers should be different 2865 * if doing QoS. 2866 */ 2867 #ifdef USE_QOS 2868 writel(0x800, cp->regs + REG_TX_MAXBURST_0); 2869 writel(0x1600, cp->regs + REG_TX_MAXBURST_1); 2870 writel(0x2400, cp->regs + REG_TX_MAXBURST_2); 2871 writel(0x4800, cp->regs + REG_TX_MAXBURST_3); 2872 #else 2873 writel(0x800, cp->regs + REG_TX_MAXBURST_0); 2874 writel(0x800, cp->regs + REG_TX_MAXBURST_1); 2875 writel(0x800, cp->regs + REG_TX_MAXBURST_2); 2876 writel(0x800, cp->regs + REG_TX_MAXBURST_3); 2877 #endif 2878 } 2879 2880 /* Must be invoked under cp->lock. */ 2881 static inline void cas_init_dma(struct cas *cp) 2882 { 2883 cas_init_tx_dma(cp); 2884 cas_init_rx_dma(cp); 2885 } 2886 2887 static void cas_process_mc_list(struct cas *cp) 2888 { 2889 u16 hash_table[16]; 2890 u32 crc; 2891 struct netdev_hw_addr *ha; 2892 int i = 1; 2893 2894 memset(hash_table, 0, sizeof(hash_table)); 2895 netdev_for_each_mc_addr(ha, cp->dev) { 2896 if (i <= CAS_MC_EXACT_MATCH_SIZE) { 2897 /* use the alternate mac address registers for the 2898 * first 15 multicast addresses 2899 */ 2900 writel((ha->addr[4] << 8) | ha->addr[5], 2901 cp->regs + REG_MAC_ADDRN(i*3 + 0)); 2902 writel((ha->addr[2] << 8) | ha->addr[3], 2903 cp->regs + REG_MAC_ADDRN(i*3 + 1)); 2904 writel((ha->addr[0] << 8) | ha->addr[1], 2905 cp->regs + REG_MAC_ADDRN(i*3 + 2)); 2906 i++; 2907 } 2908 else { 2909 /* use hw hash table for the next series of 2910 * multicast addresses 2911 */ 2912 crc = ether_crc_le(ETH_ALEN, ha->addr); 2913 crc >>= 24; 2914 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); 2915 } 2916 } 2917 for (i = 0; i < 16; i++) 2918 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i)); 2919 } 2920 2921 /* Must be invoked under cp->lock. */ 2922 static u32 cas_setup_multicast(struct cas *cp) 2923 { 2924 u32 rxcfg = 0; 2925 int i; 2926 2927 if (cp->dev->flags & IFF_PROMISC) { 2928 rxcfg |= MAC_RX_CFG_PROMISC_EN; 2929 2930 } else if (cp->dev->flags & IFF_ALLMULTI) { 2931 for (i=0; i < 16; i++) 2932 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i)); 2933 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; 2934 2935 } else { 2936 cas_process_mc_list(cp); 2937 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; 2938 } 2939 2940 return rxcfg; 2941 } 2942 2943 /* must be invoked under cp->stat_lock[N_TX_RINGS] */ 2944 static void cas_clear_mac_err(struct cas *cp) 2945 { 2946 writel(0, cp->regs + REG_MAC_COLL_NORMAL); 2947 writel(0, cp->regs + REG_MAC_COLL_FIRST); 2948 writel(0, cp->regs + REG_MAC_COLL_EXCESS); 2949 writel(0, cp->regs + REG_MAC_COLL_LATE); 2950 writel(0, cp->regs + REG_MAC_TIMER_DEFER); 2951 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK); 2952 writel(0, cp->regs + REG_MAC_RECV_FRAME); 2953 writel(0, cp->regs + REG_MAC_LEN_ERR); 2954 writel(0, cp->regs + REG_MAC_ALIGN_ERR); 2955 writel(0, cp->regs + REG_MAC_FCS_ERR); 2956 writel(0, cp->regs + REG_MAC_RX_CODE_ERR); 2957 } 2958 2959 2960 static void cas_mac_reset(struct cas *cp) 2961 { 2962 int i; 2963 2964 /* do both TX and RX reset */ 2965 writel(0x1, cp->regs + REG_MAC_TX_RESET); 2966 writel(0x1, cp->regs + REG_MAC_RX_RESET); 2967 2968 /* wait for TX */ 2969 i = STOP_TRIES; 2970 while (i-- > 0) { 2971 if (readl(cp->regs + REG_MAC_TX_RESET) == 0) 2972 break; 2973 udelay(10); 2974 } 2975 2976 /* wait for RX */ 2977 i = STOP_TRIES; 2978 while (i-- > 0) { 2979 if (readl(cp->regs + REG_MAC_RX_RESET) == 0) 2980 break; 2981 udelay(10); 2982 } 2983 2984 if (readl(cp->regs + REG_MAC_TX_RESET) | 2985 readl(cp->regs + REG_MAC_RX_RESET)) 2986 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n", 2987 readl(cp->regs + REG_MAC_TX_RESET), 2988 readl(cp->regs + REG_MAC_RX_RESET), 2989 readl(cp->regs + REG_MAC_STATE_MACHINE)); 2990 } 2991 2992 2993 /* Must be invoked under cp->lock. */ 2994 static void cas_init_mac(struct cas *cp) 2995 { 2996 const unsigned char *e = &cp->dev->dev_addr[0]; 2997 int i; 2998 cas_mac_reset(cp); 2999 3000 /* setup core arbitration weight register */ 3001 writel(CAWR_RR_DIS, cp->regs + REG_CAWR); 3002 3003 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) 3004 /* set the infinite burst register for chips that don't have 3005 * pci issues. 3006 */ 3007 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0) 3008 writel(INF_BURST_EN, cp->regs + REG_INF_BURST); 3009 #endif 3010 3011 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE); 3012 3013 writel(0x00, cp->regs + REG_MAC_IPG0); 3014 writel(0x08, cp->regs + REG_MAC_IPG1); 3015 writel(0x04, cp->regs + REG_MAC_IPG2); 3016 3017 /* change later for 802.3z */ 3018 writel(0x40, cp->regs + REG_MAC_SLOT_TIME); 3019 3020 /* min frame + FCS */ 3021 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN); 3022 3023 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we 3024 * specify the maximum frame size to prevent RX tag errors on 3025 * oversized frames. 3026 */ 3027 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) | 3028 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME, 3029 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)), 3030 cp->regs + REG_MAC_FRAMESIZE_MAX); 3031 3032 /* NOTE: crc_size is used as a surrogate for half-duplex. 3033 * workaround saturn half-duplex issue by increasing preamble 3034 * size to 65 bytes. 3035 */ 3036 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size) 3037 writel(0x41, cp->regs + REG_MAC_PA_SIZE); 3038 else 3039 writel(0x07, cp->regs + REG_MAC_PA_SIZE); 3040 writel(0x04, cp->regs + REG_MAC_JAM_SIZE); 3041 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT); 3042 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE); 3043 3044 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED); 3045 3046 writel(0, cp->regs + REG_MAC_ADDR_FILTER0); 3047 writel(0, cp->regs + REG_MAC_ADDR_FILTER1); 3048 writel(0, cp->regs + REG_MAC_ADDR_FILTER2); 3049 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK); 3050 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK); 3051 3052 /* setup mac address in perfect filter array */ 3053 for (i = 0; i < 45; i++) 3054 writel(0x0, cp->regs + REG_MAC_ADDRN(i)); 3055 3056 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0)); 3057 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1)); 3058 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2)); 3059 3060 writel(0x0001, cp->regs + REG_MAC_ADDRN(42)); 3061 writel(0xc200, cp->regs + REG_MAC_ADDRN(43)); 3062 writel(0x0180, cp->regs + REG_MAC_ADDRN(44)); 3063 3064 cp->mac_rx_cfg = cas_setup_multicast(cp); 3065 3066 spin_lock(&cp->stat_lock[N_TX_RINGS]); 3067 cas_clear_mac_err(cp); 3068 spin_unlock(&cp->stat_lock[N_TX_RINGS]); 3069 3070 /* Setup MAC interrupts. We want to get all of the interesting 3071 * counter expiration events, but we do not want to hear about 3072 * normal rx/tx as the DMA engine tells us that. 3073 */ 3074 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK); 3075 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); 3076 3077 /* Don't enable even the PAUSE interrupts for now, we 3078 * make no use of those events other than to record them. 3079 */ 3080 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK); 3081 } 3082 3083 /* Must be invoked under cp->lock. */ 3084 static void cas_init_pause_thresholds(struct cas *cp) 3085 { 3086 /* Calculate pause thresholds. Setting the OFF threshold to the 3087 * full RX fifo size effectively disables PAUSE generation 3088 */ 3089 if (cp->rx_fifo_size <= (2 * 1024)) { 3090 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size; 3091 } else { 3092 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63; 3093 if (max_frame * 3 > cp->rx_fifo_size) { 3094 cp->rx_pause_off = 7104; 3095 cp->rx_pause_on = 960; 3096 } else { 3097 int off = (cp->rx_fifo_size - (max_frame * 2)); 3098 int on = off - max_frame; 3099 cp->rx_pause_off = off; 3100 cp->rx_pause_on = on; 3101 } 3102 } 3103 } 3104 3105 static int cas_vpd_match(const void __iomem *p, const char *str) 3106 { 3107 int len = strlen(str) + 1; 3108 int i; 3109 3110 for (i = 0; i < len; i++) { 3111 if (readb(p + i) != str[i]) 3112 return 0; 3113 } 3114 return 1; 3115 } 3116 3117 3118 /* get the mac address by reading the vpd information in the rom. 3119 * also get the phy type and determine if there's an entropy generator. 3120 * NOTE: this is a bit convoluted for the following reasons: 3121 * 1) vpd info has order-dependent mac addresses for multinic cards 3122 * 2) the only way to determine the nic order is to use the slot 3123 * number. 3124 * 3) fiber cards don't have bridges, so their slot numbers don't 3125 * mean anything. 3126 * 4) we don't actually know we have a fiber card until after 3127 * the mac addresses are parsed. 3128 */ 3129 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr, 3130 const int offset) 3131 { 3132 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START; 3133 void __iomem *base, *kstart; 3134 int i, len; 3135 int found = 0; 3136 #define VPD_FOUND_MAC 0x01 3137 #define VPD_FOUND_PHY 0x02 3138 3139 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */ 3140 int mac_off = 0; 3141 3142 #if defined(CONFIG_SPARC) 3143 const unsigned char *addr; 3144 #endif 3145 3146 /* give us access to the PROM */ 3147 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD, 3148 cp->regs + REG_BIM_LOCAL_DEV_EN); 3149 3150 /* check for an expansion rom */ 3151 if (readb(p) != 0x55 || readb(p + 1) != 0xaa) 3152 goto use_random_mac_addr; 3153 3154 /* search for beginning of vpd */ 3155 base = NULL; 3156 for (i = 2; i < EXPANSION_ROM_SIZE; i++) { 3157 /* check for PCIR */ 3158 if ((readb(p + i + 0) == 0x50) && 3159 (readb(p + i + 1) == 0x43) && 3160 (readb(p + i + 2) == 0x49) && 3161 (readb(p + i + 3) == 0x52)) { 3162 base = p + (readb(p + i + 8) | 3163 (readb(p + i + 9) << 8)); 3164 break; 3165 } 3166 } 3167 3168 if (!base || (readb(base) != 0x82)) 3169 goto use_random_mac_addr; 3170 3171 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3; 3172 while (i < EXPANSION_ROM_SIZE) { 3173 if (readb(base + i) != 0x90) /* no vpd found */ 3174 goto use_random_mac_addr; 3175 3176 /* found a vpd field */ 3177 len = readb(base + i + 1) | (readb(base + i + 2) << 8); 3178 3179 /* extract keywords */ 3180 kstart = base + i + 3; 3181 p = kstart; 3182 while ((p - kstart) < len) { 3183 int klen = readb(p + 2); 3184 int j; 3185 char type; 3186 3187 p += 3; 3188 3189 /* look for the following things: 3190 * -- correct length == 29 3191 * 3 (type) + 2 (size) + 3192 * 18 (strlen("local-mac-address") + 1) + 3193 * 6 (mac addr) 3194 * -- VPD Instance 'I' 3195 * -- VPD Type Bytes 'B' 3196 * -- VPD data length == 6 3197 * -- property string == local-mac-address 3198 * 3199 * -- correct length == 24 3200 * 3 (type) + 2 (size) + 3201 * 12 (strlen("entropy-dev") + 1) + 3202 * 7 (strlen("vms110") + 1) 3203 * -- VPD Instance 'I' 3204 * -- VPD Type String 'B' 3205 * -- VPD data length == 7 3206 * -- property string == entropy-dev 3207 * 3208 * -- correct length == 18 3209 * 3 (type) + 2 (size) + 3210 * 9 (strlen("phy-type") + 1) + 3211 * 4 (strlen("pcs") + 1) 3212 * -- VPD Instance 'I' 3213 * -- VPD Type String 'S' 3214 * -- VPD data length == 4 3215 * -- property string == phy-type 3216 * 3217 * -- correct length == 23 3218 * 3 (type) + 2 (size) + 3219 * 14 (strlen("phy-interface") + 1) + 3220 * 4 (strlen("pcs") + 1) 3221 * -- VPD Instance 'I' 3222 * -- VPD Type String 'S' 3223 * -- VPD data length == 4 3224 * -- property string == phy-interface 3225 */ 3226 if (readb(p) != 'I') 3227 goto next; 3228 3229 /* finally, check string and length */ 3230 type = readb(p + 3); 3231 if (type == 'B') { 3232 if ((klen == 29) && readb(p + 4) == 6 && 3233 cas_vpd_match(p + 5, 3234 "local-mac-address")) { 3235 if (mac_off++ > offset) 3236 goto next; 3237 3238 /* set mac address */ 3239 for (j = 0; j < 6; j++) 3240 dev_addr[j] = 3241 readb(p + 23 + j); 3242 goto found_mac; 3243 } 3244 } 3245 3246 if (type != 'S') 3247 goto next; 3248 3249 #ifdef USE_ENTROPY_DEV 3250 if ((klen == 24) && 3251 cas_vpd_match(p + 5, "entropy-dev") && 3252 cas_vpd_match(p + 17, "vms110")) { 3253 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV; 3254 goto next; 3255 } 3256 #endif 3257 3258 if (found & VPD_FOUND_PHY) 3259 goto next; 3260 3261 if ((klen == 18) && readb(p + 4) == 4 && 3262 cas_vpd_match(p + 5, "phy-type")) { 3263 if (cas_vpd_match(p + 14, "pcs")) { 3264 phy_type = CAS_PHY_SERDES; 3265 goto found_phy; 3266 } 3267 } 3268 3269 if ((klen == 23) && readb(p + 4) == 4 && 3270 cas_vpd_match(p + 5, "phy-interface")) { 3271 if (cas_vpd_match(p + 19, "pcs")) { 3272 phy_type = CAS_PHY_SERDES; 3273 goto found_phy; 3274 } 3275 } 3276 found_mac: 3277 found |= VPD_FOUND_MAC; 3278 goto next; 3279 3280 found_phy: 3281 found |= VPD_FOUND_PHY; 3282 3283 next: 3284 p += klen; 3285 } 3286 i += len + 3; 3287 } 3288 3289 use_random_mac_addr: 3290 if (found & VPD_FOUND_MAC) 3291 goto done; 3292 3293 #if defined(CONFIG_SPARC) 3294 addr = of_get_property(cp->of_node, "local-mac-address", NULL); 3295 if (addr != NULL) { 3296 memcpy(dev_addr, addr, ETH_ALEN); 3297 goto done; 3298 } 3299 #endif 3300 3301 /* Sun MAC prefix then 3 random bytes. */ 3302 pr_info("MAC address not found in ROM VPD\n"); 3303 dev_addr[0] = 0x08; 3304 dev_addr[1] = 0x00; 3305 dev_addr[2] = 0x20; 3306 get_random_bytes(dev_addr + 3, 3); 3307 3308 done: 3309 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN); 3310 return phy_type; 3311 } 3312 3313 /* check pci invariants */ 3314 static void cas_check_pci_invariants(struct cas *cp) 3315 { 3316 struct pci_dev *pdev = cp->pdev; 3317 3318 cp->cas_flags = 0; 3319 if ((pdev->vendor == PCI_VENDOR_ID_SUN) && 3320 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) { 3321 if (pdev->revision >= CAS_ID_REVPLUS) 3322 cp->cas_flags |= CAS_FLAG_REG_PLUS; 3323 if (pdev->revision < CAS_ID_REVPLUS02u) 3324 cp->cas_flags |= CAS_FLAG_TARGET_ABORT; 3325 3326 /* Original Cassini supports HW CSUM, but it's not 3327 * enabled by default as it can trigger TX hangs. 3328 */ 3329 if (pdev->revision < CAS_ID_REV2) 3330 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM; 3331 } else { 3332 /* Only sun has original cassini chips. */ 3333 cp->cas_flags |= CAS_FLAG_REG_PLUS; 3334 3335 /* We use a flag because the same phy might be externally 3336 * connected. 3337 */ 3338 if ((pdev->vendor == PCI_VENDOR_ID_NS) && 3339 (pdev->device == PCI_DEVICE_ID_NS_SATURN)) 3340 cp->cas_flags |= CAS_FLAG_SATURN; 3341 } 3342 } 3343 3344 3345 static int cas_check_invariants(struct cas *cp) 3346 { 3347 struct pci_dev *pdev = cp->pdev; 3348 u8 addr[ETH_ALEN]; 3349 u32 cfg; 3350 int i; 3351 3352 /* get page size for rx buffers. */ 3353 cp->page_order = 0; 3354 #ifdef USE_PAGE_ORDER 3355 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) { 3356 /* see if we can allocate larger pages */ 3357 struct page *page = alloc_pages(GFP_ATOMIC, 3358 CAS_JUMBO_PAGE_SHIFT - 3359 PAGE_SHIFT); 3360 if (page) { 3361 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT); 3362 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT; 3363 } else { 3364 printk("MTU limited to %d bytes\n", CAS_MAX_MTU); 3365 } 3366 } 3367 #endif 3368 cp->page_size = (PAGE_SIZE << cp->page_order); 3369 3370 /* Fetch the FIFO configurations. */ 3371 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64; 3372 cp->rx_fifo_size = RX_FIFO_SIZE; 3373 3374 /* finish phy determination. MDIO1 takes precedence over MDIO0 if 3375 * they're both connected. 3376 */ 3377 cp->phy_type = cas_get_vpd_info(cp, addr, PCI_SLOT(pdev->devfn)); 3378 eth_hw_addr_set(cp->dev, addr); 3379 if (cp->phy_type & CAS_PHY_SERDES) { 3380 cp->cas_flags |= CAS_FLAG_1000MB_CAP; 3381 return 0; /* no more checking needed */ 3382 } 3383 3384 /* MII */ 3385 cfg = readl(cp->regs + REG_MIF_CFG); 3386 if (cfg & MIF_CFG_MDIO_1) { 3387 cp->phy_type = CAS_PHY_MII_MDIO1; 3388 } else if (cfg & MIF_CFG_MDIO_0) { 3389 cp->phy_type = CAS_PHY_MII_MDIO0; 3390 } 3391 3392 cas_mif_poll(cp, 0); 3393 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); 3394 3395 for (i = 0; i < 32; i++) { 3396 u32 phy_id; 3397 int j; 3398 3399 for (j = 0; j < 3; j++) { 3400 cp->phy_addr = i; 3401 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16; 3402 phy_id |= cas_phy_read(cp, MII_PHYSID2); 3403 if (phy_id && (phy_id != 0xFFFFFFFF)) { 3404 cp->phy_id = phy_id; 3405 goto done; 3406 } 3407 } 3408 } 3409 pr_err("MII phy did not respond [%08x]\n", 3410 readl(cp->regs + REG_MIF_STATE_MACHINE)); 3411 return -1; 3412 3413 done: 3414 /* see if we can do gigabit */ 3415 cfg = cas_phy_read(cp, MII_BMSR); 3416 if ((cfg & CAS_BMSR_1000_EXTEND) && 3417 cas_phy_read(cp, CAS_MII_1000_EXTEND)) 3418 cp->cas_flags |= CAS_FLAG_1000MB_CAP; 3419 return 0; 3420 } 3421 3422 /* Must be invoked under cp->lock. */ 3423 static inline void cas_start_dma(struct cas *cp) 3424 { 3425 int i; 3426 u32 val; 3427 int txfailed = 0; 3428 3429 /* enable dma */ 3430 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN; 3431 writel(val, cp->regs + REG_TX_CFG); 3432 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN; 3433 writel(val, cp->regs + REG_RX_CFG); 3434 3435 /* enable the mac */ 3436 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN; 3437 writel(val, cp->regs + REG_MAC_TX_CFG); 3438 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN; 3439 writel(val, cp->regs + REG_MAC_RX_CFG); 3440 3441 i = STOP_TRIES; 3442 while (i-- > 0) { 3443 val = readl(cp->regs + REG_MAC_TX_CFG); 3444 if ((val & MAC_TX_CFG_EN)) 3445 break; 3446 udelay(10); 3447 } 3448 if (i < 0) txfailed = 1; 3449 i = STOP_TRIES; 3450 while (i-- > 0) { 3451 val = readl(cp->regs + REG_MAC_RX_CFG); 3452 if ((val & MAC_RX_CFG_EN)) { 3453 if (txfailed) { 3454 netdev_err(cp->dev, 3455 "enabling mac failed [tx:%08x:%08x]\n", 3456 readl(cp->regs + REG_MIF_STATE_MACHINE), 3457 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3458 } 3459 goto enable_rx_done; 3460 } 3461 udelay(10); 3462 } 3463 netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n", 3464 (txfailed ? "tx,rx" : "rx"), 3465 readl(cp->regs + REG_MIF_STATE_MACHINE), 3466 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3467 3468 enable_rx_done: 3469 cas_unmask_intr(cp); /* enable interrupts */ 3470 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); 3471 writel(0, cp->regs + REG_RX_COMP_TAIL); 3472 3473 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 3474 if (N_RX_DESC_RINGS > 1) 3475 writel(RX_DESC_RINGN_SIZE(1) - 4, 3476 cp->regs + REG_PLUS_RX_KICK1); 3477 } 3478 } 3479 3480 /* Must be invoked under cp->lock. */ 3481 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd, 3482 int *pause) 3483 { 3484 u32 val = readl(cp->regs + REG_PCS_MII_LPA); 3485 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0; 3486 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00; 3487 if (val & PCS_MII_LPA_ASYM_PAUSE) 3488 *pause |= 0x10; 3489 *spd = 1000; 3490 } 3491 3492 /* Must be invoked under cp->lock. */ 3493 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd, 3494 int *pause) 3495 { 3496 u32 val; 3497 3498 *fd = 0; 3499 *spd = 10; 3500 *pause = 0; 3501 3502 /* use GMII registers */ 3503 val = cas_phy_read(cp, MII_LPA); 3504 if (val & CAS_LPA_PAUSE) 3505 *pause = 0x01; 3506 3507 if (val & CAS_LPA_ASYM_PAUSE) 3508 *pause |= 0x10; 3509 3510 if (val & LPA_DUPLEX) 3511 *fd = 1; 3512 if (val & LPA_100) 3513 *spd = 100; 3514 3515 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 3516 val = cas_phy_read(cp, CAS_MII_1000_STATUS); 3517 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF)) 3518 *spd = 1000; 3519 if (val & CAS_LPA_1000FULL) 3520 *fd = 1; 3521 } 3522 } 3523 3524 /* A link-up condition has occurred, initialize and enable the 3525 * rest of the chip. 3526 * 3527 * Must be invoked under cp->lock. 3528 */ 3529 static void cas_set_link_modes(struct cas *cp) 3530 { 3531 u32 val; 3532 int full_duplex, speed, pause; 3533 3534 full_duplex = 0; 3535 speed = 10; 3536 pause = 0; 3537 3538 if (CAS_PHY_MII(cp->phy_type)) { 3539 cas_mif_poll(cp, 0); 3540 val = cas_phy_read(cp, MII_BMCR); 3541 if (val & BMCR_ANENABLE) { 3542 cas_read_mii_link_mode(cp, &full_duplex, &speed, 3543 &pause); 3544 } else { 3545 if (val & BMCR_FULLDPLX) 3546 full_duplex = 1; 3547 3548 if (val & BMCR_SPEED100) 3549 speed = 100; 3550 else if (val & CAS_BMCR_SPEED1000) 3551 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? 3552 1000 : 100; 3553 } 3554 cas_mif_poll(cp, 1); 3555 3556 } else { 3557 val = readl(cp->regs + REG_PCS_MII_CTRL); 3558 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause); 3559 if ((val & PCS_MII_AUTONEG_EN) == 0) { 3560 if (val & PCS_MII_CTRL_DUPLEX) 3561 full_duplex = 1; 3562 } 3563 } 3564 3565 netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n", 3566 speed, full_duplex ? "full" : "half"); 3567 3568 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED; 3569 if (CAS_PHY_MII(cp->phy_type)) { 3570 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN; 3571 if (!full_duplex) 3572 val |= MAC_XIF_DISABLE_ECHO; 3573 } 3574 if (full_duplex) 3575 val |= MAC_XIF_FDPLX_LED; 3576 if (speed == 1000) 3577 val |= MAC_XIF_GMII_MODE; 3578 writel(val, cp->regs + REG_MAC_XIF_CFG); 3579 3580 /* deal with carrier and collision detect. */ 3581 val = MAC_TX_CFG_IPG_EN; 3582 if (full_duplex) { 3583 val |= MAC_TX_CFG_IGNORE_CARRIER; 3584 val |= MAC_TX_CFG_IGNORE_COLL; 3585 } else { 3586 #ifndef USE_CSMA_CD_PROTO 3587 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN; 3588 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM; 3589 #endif 3590 } 3591 /* val now set up for REG_MAC_TX_CFG */ 3592 3593 /* If gigabit and half-duplex, enable carrier extension 3594 * mode. increase slot time to 512 bytes as well. 3595 * else, disable it and make sure slot time is 64 bytes. 3596 * also activate checksum bug workaround 3597 */ 3598 if ((speed == 1000) && !full_duplex) { 3599 writel(val | MAC_TX_CFG_CARRIER_EXTEND, 3600 cp->regs + REG_MAC_TX_CFG); 3601 3602 val = readl(cp->regs + REG_MAC_RX_CFG); 3603 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */ 3604 writel(val | MAC_RX_CFG_CARRIER_EXTEND, 3605 cp->regs + REG_MAC_RX_CFG); 3606 3607 writel(0x200, cp->regs + REG_MAC_SLOT_TIME); 3608 3609 cp->crc_size = 4; 3610 /* minimum size gigabit frame at half duplex */ 3611 cp->min_frame_size = CAS_1000MB_MIN_FRAME; 3612 3613 } else { 3614 writel(val, cp->regs + REG_MAC_TX_CFG); 3615 3616 /* checksum bug workaround. don't strip FCS when in 3617 * half-duplex mode 3618 */ 3619 val = readl(cp->regs + REG_MAC_RX_CFG); 3620 if (full_duplex) { 3621 val |= MAC_RX_CFG_STRIP_FCS; 3622 cp->crc_size = 0; 3623 cp->min_frame_size = CAS_MIN_MTU; 3624 } else { 3625 val &= ~MAC_RX_CFG_STRIP_FCS; 3626 cp->crc_size = 4; 3627 cp->min_frame_size = CAS_MIN_FRAME; 3628 } 3629 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND, 3630 cp->regs + REG_MAC_RX_CFG); 3631 writel(0x40, cp->regs + REG_MAC_SLOT_TIME); 3632 } 3633 3634 if (netif_msg_link(cp)) { 3635 if (pause & 0x01) { 3636 netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n", 3637 cp->rx_fifo_size, 3638 cp->rx_pause_off, 3639 cp->rx_pause_on); 3640 } else if (pause & 0x10) { 3641 netdev_info(cp->dev, "TX pause enabled\n"); 3642 } else { 3643 netdev_info(cp->dev, "Pause is disabled\n"); 3644 } 3645 } 3646 3647 val = readl(cp->regs + REG_MAC_CTRL_CFG); 3648 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN); 3649 if (pause) { /* symmetric or asymmetric pause */ 3650 val |= MAC_CTRL_CFG_SEND_PAUSE_EN; 3651 if (pause & 0x01) { /* symmetric pause */ 3652 val |= MAC_CTRL_CFG_RECV_PAUSE_EN; 3653 } 3654 } 3655 writel(val, cp->regs + REG_MAC_CTRL_CFG); 3656 cas_start_dma(cp); 3657 } 3658 3659 /* Must be invoked under cp->lock. */ 3660 static void cas_init_hw(struct cas *cp, int restart_link) 3661 { 3662 if (restart_link) 3663 cas_phy_init(cp); 3664 3665 cas_init_pause_thresholds(cp); 3666 cas_init_mac(cp); 3667 cas_init_dma(cp); 3668 3669 if (restart_link) { 3670 /* Default aneg parameters */ 3671 cp->timer_ticks = 0; 3672 cas_begin_auto_negotiation(cp, NULL); 3673 } else if (cp->lstate == link_up) { 3674 cas_set_link_modes(cp); 3675 netif_carrier_on(cp->dev); 3676 } 3677 } 3678 3679 /* Must be invoked under cp->lock. on earlier cassini boards, 3680 * SOFT_0 is tied to PCI reset. we use this to force a pci reset, 3681 * let it settle out, and then restore pci state. 3682 */ 3683 static void cas_hard_reset(struct cas *cp) 3684 { 3685 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN); 3686 udelay(20); 3687 pci_restore_state(cp->pdev); 3688 } 3689 3690 3691 static void cas_global_reset(struct cas *cp, int blkflag) 3692 { 3693 int limit; 3694 3695 /* issue a global reset. don't use RSTOUT. */ 3696 if (blkflag && !CAS_PHY_MII(cp->phy_type)) { 3697 /* For PCS, when the blkflag is set, we should set the 3698 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of 3699 * the last autonegotiation from being cleared. We'll 3700 * need some special handling if the chip is set into a 3701 * loopback mode. 3702 */ 3703 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK), 3704 cp->regs + REG_SW_RESET); 3705 } else { 3706 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET); 3707 } 3708 3709 /* need to wait at least 3ms before polling register */ 3710 mdelay(3); 3711 3712 limit = STOP_TRIES; 3713 while (limit-- > 0) { 3714 u32 val = readl(cp->regs + REG_SW_RESET); 3715 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0) 3716 goto done; 3717 udelay(10); 3718 } 3719 netdev_err(cp->dev, "sw reset failed\n"); 3720 3721 done: 3722 /* enable various BIM interrupts */ 3723 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE | 3724 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG); 3725 3726 /* clear out pci error status mask for handled errors. 3727 * we don't deal with DMA counter overflows as they happen 3728 * all the time. 3729 */ 3730 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO | 3731 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE | 3732 PCI_ERR_BIM_DMA_READ), cp->regs + 3733 REG_PCI_ERR_STATUS_MASK); 3734 3735 /* set up for MII by default to address mac rx reset timeout 3736 * issue 3737 */ 3738 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); 3739 } 3740 3741 static void cas_reset(struct cas *cp, int blkflag) 3742 { 3743 u32 val; 3744 3745 cas_mask_intr(cp); 3746 cas_global_reset(cp, blkflag); 3747 cas_mac_reset(cp); 3748 cas_entropy_reset(cp); 3749 3750 /* disable dma engines. */ 3751 val = readl(cp->regs + REG_TX_CFG); 3752 val &= ~TX_CFG_DMA_EN; 3753 writel(val, cp->regs + REG_TX_CFG); 3754 3755 val = readl(cp->regs + REG_RX_CFG); 3756 val &= ~RX_CFG_DMA_EN; 3757 writel(val, cp->regs + REG_RX_CFG); 3758 3759 /* program header parser */ 3760 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) || 3761 (&CAS_HP_ALT_FIRMWARE[0] == &cas_prog_null[0])) { 3762 cas_load_firmware(cp, CAS_HP_FIRMWARE); 3763 } else { 3764 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE); 3765 } 3766 3767 /* clear out error registers */ 3768 spin_lock(&cp->stat_lock[N_TX_RINGS]); 3769 cas_clear_mac_err(cp); 3770 spin_unlock(&cp->stat_lock[N_TX_RINGS]); 3771 } 3772 3773 /* Shut down the chip, must be called with pm_mutex held. */ 3774 static void cas_shutdown(struct cas *cp) 3775 { 3776 unsigned long flags; 3777 3778 /* Make us not-running to avoid timers respawning */ 3779 cp->hw_running = 0; 3780 3781 del_timer_sync(&cp->link_timer); 3782 3783 /* Stop the reset task */ 3784 #if 0 3785 while (atomic_read(&cp->reset_task_pending_mtu) || 3786 atomic_read(&cp->reset_task_pending_spare) || 3787 atomic_read(&cp->reset_task_pending_all)) 3788 schedule(); 3789 3790 #else 3791 while (atomic_read(&cp->reset_task_pending)) 3792 schedule(); 3793 #endif 3794 /* Actually stop the chip */ 3795 cas_lock_all_save(cp, flags); 3796 cas_reset(cp, 0); 3797 if (cp->cas_flags & CAS_FLAG_SATURN) 3798 cas_phy_powerdown(cp); 3799 cas_unlock_all_restore(cp, flags); 3800 } 3801 3802 static int cas_change_mtu(struct net_device *dev, int new_mtu) 3803 { 3804 struct cas *cp = netdev_priv(dev); 3805 3806 dev->mtu = new_mtu; 3807 if (!netif_running(dev) || !netif_device_present(dev)) 3808 return 0; 3809 3810 /* let the reset task handle it */ 3811 #if 1 3812 atomic_inc(&cp->reset_task_pending); 3813 if ((cp->phy_type & CAS_PHY_SERDES)) { 3814 atomic_inc(&cp->reset_task_pending_all); 3815 } else { 3816 atomic_inc(&cp->reset_task_pending_mtu); 3817 } 3818 schedule_work(&cp->reset_task); 3819 #else 3820 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ? 3821 CAS_RESET_ALL : CAS_RESET_MTU); 3822 pr_err("reset called in cas_change_mtu\n"); 3823 schedule_work(&cp->reset_task); 3824 #endif 3825 3826 flush_work(&cp->reset_task); 3827 return 0; 3828 } 3829 3830 static void cas_clean_txd(struct cas *cp, int ring) 3831 { 3832 struct cas_tx_desc *txd = cp->init_txds[ring]; 3833 struct sk_buff *skb, **skbs = cp->tx_skbs[ring]; 3834 u64 daddr, dlen; 3835 int i, size; 3836 3837 size = TX_DESC_RINGN_SIZE(ring); 3838 for (i = 0; i < size; i++) { 3839 int frag; 3840 3841 if (skbs[i] == NULL) 3842 continue; 3843 3844 skb = skbs[i]; 3845 skbs[i] = NULL; 3846 3847 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 3848 int ent = i & (size - 1); 3849 3850 /* first buffer is never a tiny buffer and so 3851 * needs to be unmapped. 3852 */ 3853 daddr = le64_to_cpu(txd[ent].buffer); 3854 dlen = CAS_VAL(TX_DESC_BUFLEN, 3855 le64_to_cpu(txd[ent].control)); 3856 dma_unmap_page(&cp->pdev->dev, daddr, dlen, 3857 DMA_TO_DEVICE); 3858 3859 if (frag != skb_shinfo(skb)->nr_frags) { 3860 i++; 3861 3862 /* next buffer might by a tiny buffer. 3863 * skip past it. 3864 */ 3865 ent = i & (size - 1); 3866 if (cp->tx_tiny_use[ring][ent].used) 3867 i++; 3868 } 3869 } 3870 dev_kfree_skb_any(skb); 3871 } 3872 3873 /* zero out tiny buf usage */ 3874 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring])); 3875 } 3876 3877 /* freed on close */ 3878 static inline void cas_free_rx_desc(struct cas *cp, int ring) 3879 { 3880 cas_page_t **page = cp->rx_pages[ring]; 3881 int i, size; 3882 3883 size = RX_DESC_RINGN_SIZE(ring); 3884 for (i = 0; i < size; i++) { 3885 if (page[i]) { 3886 cas_page_free(cp, page[i]); 3887 page[i] = NULL; 3888 } 3889 } 3890 } 3891 3892 static void cas_free_rxds(struct cas *cp) 3893 { 3894 int i; 3895 3896 for (i = 0; i < N_RX_DESC_RINGS; i++) 3897 cas_free_rx_desc(cp, i); 3898 } 3899 3900 /* Must be invoked under cp->lock. */ 3901 static void cas_clean_rings(struct cas *cp) 3902 { 3903 int i; 3904 3905 /* need to clean all tx rings */ 3906 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS); 3907 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS); 3908 for (i = 0; i < N_TX_RINGS; i++) 3909 cas_clean_txd(cp, i); 3910 3911 /* zero out init block */ 3912 memset(cp->init_block, 0, sizeof(struct cas_init_block)); 3913 cas_clean_rxds(cp); 3914 cas_clean_rxcs(cp); 3915 } 3916 3917 /* allocated on open */ 3918 static inline int cas_alloc_rx_desc(struct cas *cp, int ring) 3919 { 3920 cas_page_t **page = cp->rx_pages[ring]; 3921 int size, i = 0; 3922 3923 size = RX_DESC_RINGN_SIZE(ring); 3924 for (i = 0; i < size; i++) { 3925 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL) 3926 return -1; 3927 } 3928 return 0; 3929 } 3930 3931 static int cas_alloc_rxds(struct cas *cp) 3932 { 3933 int i; 3934 3935 for (i = 0; i < N_RX_DESC_RINGS; i++) { 3936 if (cas_alloc_rx_desc(cp, i) < 0) { 3937 cas_free_rxds(cp); 3938 return -1; 3939 } 3940 } 3941 return 0; 3942 } 3943 3944 static void cas_reset_task(struct work_struct *work) 3945 { 3946 struct cas *cp = container_of(work, struct cas, reset_task); 3947 #if 0 3948 int pending = atomic_read(&cp->reset_task_pending); 3949 #else 3950 int pending_all = atomic_read(&cp->reset_task_pending_all); 3951 int pending_spare = atomic_read(&cp->reset_task_pending_spare); 3952 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu); 3953 3954 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) { 3955 /* We can have more tasks scheduled than actually 3956 * needed. 3957 */ 3958 atomic_dec(&cp->reset_task_pending); 3959 return; 3960 } 3961 #endif 3962 /* The link went down, we reset the ring, but keep 3963 * DMA stopped. Use this function for reset 3964 * on error as well. 3965 */ 3966 if (cp->hw_running) { 3967 unsigned long flags; 3968 3969 /* Make sure we don't get interrupts or tx packets */ 3970 netif_device_detach(cp->dev); 3971 cas_lock_all_save(cp, flags); 3972 3973 if (cp->opened) { 3974 /* We call cas_spare_recover when we call cas_open. 3975 * but we do not initialize the lists cas_spare_recover 3976 * uses until cas_open is called. 3977 */ 3978 cas_spare_recover(cp, GFP_ATOMIC); 3979 } 3980 #if 1 3981 /* test => only pending_spare set */ 3982 if (!pending_all && !pending_mtu) 3983 goto done; 3984 #else 3985 if (pending == CAS_RESET_SPARE) 3986 goto done; 3987 #endif 3988 /* when pending == CAS_RESET_ALL, the following 3989 * call to cas_init_hw will restart auto negotiation. 3990 * Setting the second argument of cas_reset to 3991 * !(pending == CAS_RESET_ALL) will set this argument 3992 * to 1 (avoiding reinitializing the PHY for the normal 3993 * PCS case) when auto negotiation is not restarted. 3994 */ 3995 #if 1 3996 cas_reset(cp, !(pending_all > 0)); 3997 if (cp->opened) 3998 cas_clean_rings(cp); 3999 cas_init_hw(cp, (pending_all > 0)); 4000 #else 4001 cas_reset(cp, !(pending == CAS_RESET_ALL)); 4002 if (cp->opened) 4003 cas_clean_rings(cp); 4004 cas_init_hw(cp, pending == CAS_RESET_ALL); 4005 #endif 4006 4007 done: 4008 cas_unlock_all_restore(cp, flags); 4009 netif_device_attach(cp->dev); 4010 } 4011 #if 1 4012 atomic_sub(pending_all, &cp->reset_task_pending_all); 4013 atomic_sub(pending_spare, &cp->reset_task_pending_spare); 4014 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu); 4015 atomic_dec(&cp->reset_task_pending); 4016 #else 4017 atomic_set(&cp->reset_task_pending, 0); 4018 #endif 4019 } 4020 4021 static void cas_link_timer(struct timer_list *t) 4022 { 4023 struct cas *cp = from_timer(cp, t, link_timer); 4024 int mask, pending = 0, reset = 0; 4025 unsigned long flags; 4026 4027 if (link_transition_timeout != 0 && 4028 cp->link_transition_jiffies_valid && 4029 time_is_before_jiffies(cp->link_transition_jiffies + 4030 link_transition_timeout)) { 4031 /* One-second counter so link-down workaround doesn't 4032 * cause resets to occur so fast as to fool the switch 4033 * into thinking the link is down. 4034 */ 4035 cp->link_transition_jiffies_valid = 0; 4036 } 4037 4038 if (!cp->hw_running) 4039 return; 4040 4041 spin_lock_irqsave(&cp->lock, flags); 4042 cas_lock_tx(cp); 4043 cas_entropy_gather(cp); 4044 4045 /* If the link task is still pending, we just 4046 * reschedule the link timer 4047 */ 4048 #if 1 4049 if (atomic_read(&cp->reset_task_pending_all) || 4050 atomic_read(&cp->reset_task_pending_spare) || 4051 atomic_read(&cp->reset_task_pending_mtu)) 4052 goto done; 4053 #else 4054 if (atomic_read(&cp->reset_task_pending)) 4055 goto done; 4056 #endif 4057 4058 /* check for rx cleaning */ 4059 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) { 4060 int i, rmask; 4061 4062 for (i = 0; i < MAX_RX_DESC_RINGS; i++) { 4063 rmask = CAS_FLAG_RXD_POST(i); 4064 if ((mask & rmask) == 0) 4065 continue; 4066 4067 /* post_rxds will do a mod_timer */ 4068 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) { 4069 pending = 1; 4070 continue; 4071 } 4072 cp->cas_flags &= ~rmask; 4073 } 4074 } 4075 4076 if (CAS_PHY_MII(cp->phy_type)) { 4077 u16 bmsr; 4078 cas_mif_poll(cp, 0); 4079 bmsr = cas_phy_read(cp, MII_BMSR); 4080 /* WTZ: Solaris driver reads this twice, but that 4081 * may be due to the PCS case and the use of a 4082 * common implementation. Read it twice here to be 4083 * safe. 4084 */ 4085 bmsr = cas_phy_read(cp, MII_BMSR); 4086 cas_mif_poll(cp, 1); 4087 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */ 4088 reset = cas_mii_link_check(cp, bmsr); 4089 } else { 4090 reset = cas_pcs_link_check(cp); 4091 } 4092 4093 if (reset) 4094 goto done; 4095 4096 /* check for tx state machine confusion */ 4097 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) { 4098 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE); 4099 u32 wptr, rptr; 4100 int tlm = CAS_VAL(MAC_SM_TLM, val); 4101 4102 if (((tlm == 0x5) || (tlm == 0x3)) && 4103 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) { 4104 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev, 4105 "tx err: MAC_STATE[%08x]\n", val); 4106 reset = 1; 4107 goto done; 4108 } 4109 4110 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT); 4111 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR); 4112 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR); 4113 if ((val == 0) && (wptr != rptr)) { 4114 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev, 4115 "tx err: TX_FIFO[%08x:%08x:%08x]\n", 4116 val, wptr, rptr); 4117 reset = 1; 4118 } 4119 4120 if (reset) 4121 cas_hard_reset(cp); 4122 } 4123 4124 done: 4125 if (reset) { 4126 #if 1 4127 atomic_inc(&cp->reset_task_pending); 4128 atomic_inc(&cp->reset_task_pending_all); 4129 schedule_work(&cp->reset_task); 4130 #else 4131 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 4132 pr_err("reset called in cas_link_timer\n"); 4133 schedule_work(&cp->reset_task); 4134 #endif 4135 } 4136 4137 if (!pending) 4138 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 4139 cas_unlock_tx(cp); 4140 spin_unlock_irqrestore(&cp->lock, flags); 4141 } 4142 4143 /* tiny buffers are used to avoid target abort issues with 4144 * older cassini's 4145 */ 4146 static void cas_tx_tiny_free(struct cas *cp) 4147 { 4148 struct pci_dev *pdev = cp->pdev; 4149 int i; 4150 4151 for (i = 0; i < N_TX_RINGS; i++) { 4152 if (!cp->tx_tiny_bufs[i]) 4153 continue; 4154 4155 dma_free_coherent(&pdev->dev, TX_TINY_BUF_BLOCK, 4156 cp->tx_tiny_bufs[i], cp->tx_tiny_dvma[i]); 4157 cp->tx_tiny_bufs[i] = NULL; 4158 } 4159 } 4160 4161 static int cas_tx_tiny_alloc(struct cas *cp) 4162 { 4163 struct pci_dev *pdev = cp->pdev; 4164 int i; 4165 4166 for (i = 0; i < N_TX_RINGS; i++) { 4167 cp->tx_tiny_bufs[i] = 4168 dma_alloc_coherent(&pdev->dev, TX_TINY_BUF_BLOCK, 4169 &cp->tx_tiny_dvma[i], GFP_KERNEL); 4170 if (!cp->tx_tiny_bufs[i]) { 4171 cas_tx_tiny_free(cp); 4172 return -1; 4173 } 4174 } 4175 return 0; 4176 } 4177 4178 4179 static int cas_open(struct net_device *dev) 4180 { 4181 struct cas *cp = netdev_priv(dev); 4182 int hw_was_up, err; 4183 unsigned long flags; 4184 4185 mutex_lock(&cp->pm_mutex); 4186 4187 hw_was_up = cp->hw_running; 4188 4189 /* The power-management mutex protects the hw_running 4190 * etc. state so it is safe to do this bit without cp->lock 4191 */ 4192 if (!cp->hw_running) { 4193 /* Reset the chip */ 4194 cas_lock_all_save(cp, flags); 4195 /* We set the second arg to cas_reset to zero 4196 * because cas_init_hw below will have its second 4197 * argument set to non-zero, which will force 4198 * autonegotiation to start. 4199 */ 4200 cas_reset(cp, 0); 4201 cp->hw_running = 1; 4202 cas_unlock_all_restore(cp, flags); 4203 } 4204 4205 err = -ENOMEM; 4206 if (cas_tx_tiny_alloc(cp) < 0) 4207 goto err_unlock; 4208 4209 /* alloc rx descriptors */ 4210 if (cas_alloc_rxds(cp) < 0) 4211 goto err_tx_tiny; 4212 4213 /* allocate spares */ 4214 cas_spare_init(cp); 4215 cas_spare_recover(cp, GFP_KERNEL); 4216 4217 /* We can now request the interrupt as we know it's masked 4218 * on the controller. cassini+ has up to 4 interrupts 4219 * that can be used, but you need to do explicit pci interrupt 4220 * mapping to expose them 4221 */ 4222 if (request_irq(cp->pdev->irq, cas_interrupt, 4223 IRQF_SHARED, dev->name, (void *) dev)) { 4224 netdev_err(cp->dev, "failed to request irq !\n"); 4225 err = -EAGAIN; 4226 goto err_spare; 4227 } 4228 4229 #ifdef USE_NAPI 4230 napi_enable(&cp->napi); 4231 #endif 4232 /* init hw */ 4233 cas_lock_all_save(cp, flags); 4234 cas_clean_rings(cp); 4235 cas_init_hw(cp, !hw_was_up); 4236 cp->opened = 1; 4237 cas_unlock_all_restore(cp, flags); 4238 4239 netif_start_queue(dev); 4240 mutex_unlock(&cp->pm_mutex); 4241 return 0; 4242 4243 err_spare: 4244 cas_spare_free(cp); 4245 cas_free_rxds(cp); 4246 err_tx_tiny: 4247 cas_tx_tiny_free(cp); 4248 err_unlock: 4249 mutex_unlock(&cp->pm_mutex); 4250 return err; 4251 } 4252 4253 static int cas_close(struct net_device *dev) 4254 { 4255 unsigned long flags; 4256 struct cas *cp = netdev_priv(dev); 4257 4258 #ifdef USE_NAPI 4259 napi_disable(&cp->napi); 4260 #endif 4261 /* Make sure we don't get distracted by suspend/resume */ 4262 mutex_lock(&cp->pm_mutex); 4263 4264 netif_stop_queue(dev); 4265 4266 /* Stop traffic, mark us closed */ 4267 cas_lock_all_save(cp, flags); 4268 cp->opened = 0; 4269 cas_reset(cp, 0); 4270 cas_phy_init(cp); 4271 cas_begin_auto_negotiation(cp, NULL); 4272 cas_clean_rings(cp); 4273 cas_unlock_all_restore(cp, flags); 4274 4275 free_irq(cp->pdev->irq, (void *) dev); 4276 cas_spare_free(cp); 4277 cas_free_rxds(cp); 4278 cas_tx_tiny_free(cp); 4279 mutex_unlock(&cp->pm_mutex); 4280 return 0; 4281 } 4282 4283 static struct { 4284 const char name[ETH_GSTRING_LEN]; 4285 } ethtool_cassini_statnames[] = { 4286 {"collisions"}, 4287 {"rx_bytes"}, 4288 {"rx_crc_errors"}, 4289 {"rx_dropped"}, 4290 {"rx_errors"}, 4291 {"rx_fifo_errors"}, 4292 {"rx_frame_errors"}, 4293 {"rx_length_errors"}, 4294 {"rx_over_errors"}, 4295 {"rx_packets"}, 4296 {"tx_aborted_errors"}, 4297 {"tx_bytes"}, 4298 {"tx_dropped"}, 4299 {"tx_errors"}, 4300 {"tx_fifo_errors"}, 4301 {"tx_packets"} 4302 }; 4303 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames) 4304 4305 static struct { 4306 const int offsets; /* neg. values for 2nd arg to cas_read_phy */ 4307 } ethtool_register_table[] = { 4308 {-MII_BMSR}, 4309 {-MII_BMCR}, 4310 {REG_CAWR}, 4311 {REG_INF_BURST}, 4312 {REG_BIM_CFG}, 4313 {REG_RX_CFG}, 4314 {REG_HP_CFG}, 4315 {REG_MAC_TX_CFG}, 4316 {REG_MAC_RX_CFG}, 4317 {REG_MAC_CTRL_CFG}, 4318 {REG_MAC_XIF_CFG}, 4319 {REG_MIF_CFG}, 4320 {REG_PCS_CFG}, 4321 {REG_SATURN_PCFG}, 4322 {REG_PCS_MII_STATUS}, 4323 {REG_PCS_STATE_MACHINE}, 4324 {REG_MAC_COLL_EXCESS}, 4325 {REG_MAC_COLL_LATE} 4326 }; 4327 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table) 4328 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN) 4329 4330 static void cas_read_regs(struct cas *cp, u8 *ptr, int len) 4331 { 4332 u8 *p; 4333 int i; 4334 unsigned long flags; 4335 4336 spin_lock_irqsave(&cp->lock, flags); 4337 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) { 4338 u16 hval; 4339 u32 val; 4340 if (ethtool_register_table[i].offsets < 0) { 4341 hval = cas_phy_read(cp, 4342 -ethtool_register_table[i].offsets); 4343 val = hval; 4344 } else { 4345 val= readl(cp->regs+ethtool_register_table[i].offsets); 4346 } 4347 memcpy(p, (u8 *)&val, sizeof(u32)); 4348 } 4349 spin_unlock_irqrestore(&cp->lock, flags); 4350 } 4351 4352 static struct net_device_stats *cas_get_stats(struct net_device *dev) 4353 { 4354 struct cas *cp = netdev_priv(dev); 4355 struct net_device_stats *stats = cp->net_stats; 4356 unsigned long flags; 4357 int i; 4358 unsigned long tmp; 4359 4360 /* we collate all of the stats into net_stats[N_TX_RING] */ 4361 if (!cp->hw_running) 4362 return stats + N_TX_RINGS; 4363 4364 /* collect outstanding stats */ 4365 /* WTZ: the Cassini spec gives these as 16 bit counters but 4366 * stored in 32-bit words. Added a mask of 0xffff to be safe, 4367 * in case the chip somehow puts any garbage in the other bits. 4368 * Also, counter usage didn't seem to mach what Adrian did 4369 * in the parts of the code that set these quantities. Made 4370 * that consistent. 4371 */ 4372 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags); 4373 stats[N_TX_RINGS].rx_crc_errors += 4374 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff; 4375 stats[N_TX_RINGS].rx_frame_errors += 4376 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff; 4377 stats[N_TX_RINGS].rx_length_errors += 4378 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff; 4379 #if 1 4380 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) + 4381 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff); 4382 stats[N_TX_RINGS].tx_aborted_errors += tmp; 4383 stats[N_TX_RINGS].collisions += 4384 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff); 4385 #else 4386 stats[N_TX_RINGS].tx_aborted_errors += 4387 readl(cp->regs + REG_MAC_COLL_EXCESS); 4388 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) + 4389 readl(cp->regs + REG_MAC_COLL_LATE); 4390 #endif 4391 cas_clear_mac_err(cp); 4392 4393 /* saved bits that are unique to ring 0 */ 4394 spin_lock(&cp->stat_lock[0]); 4395 stats[N_TX_RINGS].collisions += stats[0].collisions; 4396 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors; 4397 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors; 4398 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors; 4399 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors; 4400 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors; 4401 spin_unlock(&cp->stat_lock[0]); 4402 4403 for (i = 0; i < N_TX_RINGS; i++) { 4404 spin_lock(&cp->stat_lock[i]); 4405 stats[N_TX_RINGS].rx_length_errors += 4406 stats[i].rx_length_errors; 4407 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors; 4408 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets; 4409 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets; 4410 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes; 4411 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes; 4412 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors; 4413 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors; 4414 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped; 4415 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped; 4416 memset(stats + i, 0, sizeof(struct net_device_stats)); 4417 spin_unlock(&cp->stat_lock[i]); 4418 } 4419 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags); 4420 return stats + N_TX_RINGS; 4421 } 4422 4423 4424 static void cas_set_multicast(struct net_device *dev) 4425 { 4426 struct cas *cp = netdev_priv(dev); 4427 u32 rxcfg, rxcfg_new; 4428 unsigned long flags; 4429 int limit = STOP_TRIES; 4430 4431 if (!cp->hw_running) 4432 return; 4433 4434 spin_lock_irqsave(&cp->lock, flags); 4435 rxcfg = readl(cp->regs + REG_MAC_RX_CFG); 4436 4437 /* disable RX MAC and wait for completion */ 4438 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 4439 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) { 4440 if (!limit--) 4441 break; 4442 udelay(10); 4443 } 4444 4445 /* disable hash filter and wait for completion */ 4446 limit = STOP_TRIES; 4447 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN); 4448 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 4449 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) { 4450 if (!limit--) 4451 break; 4452 udelay(10); 4453 } 4454 4455 /* program hash filters */ 4456 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp); 4457 rxcfg |= rxcfg_new; 4458 writel(rxcfg, cp->regs + REG_MAC_RX_CFG); 4459 spin_unlock_irqrestore(&cp->lock, flags); 4460 } 4461 4462 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 4463 { 4464 struct cas *cp = netdev_priv(dev); 4465 strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); 4466 strscpy(info->version, DRV_MODULE_VERSION, sizeof(info->version)); 4467 strscpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info)); 4468 } 4469 4470 static int cas_get_link_ksettings(struct net_device *dev, 4471 struct ethtool_link_ksettings *cmd) 4472 { 4473 struct cas *cp = netdev_priv(dev); 4474 u16 bmcr; 4475 int full_duplex, speed, pause; 4476 unsigned long flags; 4477 enum link_state linkstate = link_up; 4478 u32 supported, advertising; 4479 4480 advertising = 0; 4481 supported = SUPPORTED_Autoneg; 4482 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 4483 supported |= SUPPORTED_1000baseT_Full; 4484 advertising |= ADVERTISED_1000baseT_Full; 4485 } 4486 4487 /* Record PHY settings if HW is on. */ 4488 spin_lock_irqsave(&cp->lock, flags); 4489 bmcr = 0; 4490 linkstate = cp->lstate; 4491 if (CAS_PHY_MII(cp->phy_type)) { 4492 cmd->base.port = PORT_MII; 4493 cmd->base.phy_address = cp->phy_addr; 4494 advertising |= ADVERTISED_TP | ADVERTISED_MII | 4495 ADVERTISED_10baseT_Half | 4496 ADVERTISED_10baseT_Full | 4497 ADVERTISED_100baseT_Half | 4498 ADVERTISED_100baseT_Full; 4499 4500 supported |= 4501 (SUPPORTED_10baseT_Half | 4502 SUPPORTED_10baseT_Full | 4503 SUPPORTED_100baseT_Half | 4504 SUPPORTED_100baseT_Full | 4505 SUPPORTED_TP | SUPPORTED_MII); 4506 4507 if (cp->hw_running) { 4508 cas_mif_poll(cp, 0); 4509 bmcr = cas_phy_read(cp, MII_BMCR); 4510 cas_read_mii_link_mode(cp, &full_duplex, 4511 &speed, &pause); 4512 cas_mif_poll(cp, 1); 4513 } 4514 4515 } else { 4516 cmd->base.port = PORT_FIBRE; 4517 cmd->base.phy_address = 0; 4518 supported |= SUPPORTED_FIBRE; 4519 advertising |= ADVERTISED_FIBRE; 4520 4521 if (cp->hw_running) { 4522 /* pcs uses the same bits as mii */ 4523 bmcr = readl(cp->regs + REG_PCS_MII_CTRL); 4524 cas_read_pcs_link_mode(cp, &full_duplex, 4525 &speed, &pause); 4526 } 4527 } 4528 spin_unlock_irqrestore(&cp->lock, flags); 4529 4530 if (bmcr & BMCR_ANENABLE) { 4531 advertising |= ADVERTISED_Autoneg; 4532 cmd->base.autoneg = AUTONEG_ENABLE; 4533 cmd->base.speed = ((speed == 10) ? 4534 SPEED_10 : 4535 ((speed == 1000) ? 4536 SPEED_1000 : SPEED_100)); 4537 cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF; 4538 } else { 4539 cmd->base.autoneg = AUTONEG_DISABLE; 4540 cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ? 4541 SPEED_1000 : 4542 ((bmcr & BMCR_SPEED100) ? 4543 SPEED_100 : SPEED_10)); 4544 cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ? 4545 DUPLEX_FULL : DUPLEX_HALF; 4546 } 4547 if (linkstate != link_up) { 4548 /* Force these to "unknown" if the link is not up and 4549 * autonogotiation in enabled. We can set the link 4550 * speed to 0, but not cmd->duplex, 4551 * because its legal values are 0 and 1. Ethtool will 4552 * print the value reported in parentheses after the 4553 * word "Unknown" for unrecognized values. 4554 * 4555 * If in forced mode, we report the speed and duplex 4556 * settings that we configured. 4557 */ 4558 if (cp->link_cntl & BMCR_ANENABLE) { 4559 cmd->base.speed = 0; 4560 cmd->base.duplex = 0xff; 4561 } else { 4562 cmd->base.speed = SPEED_10; 4563 if (cp->link_cntl & BMCR_SPEED100) { 4564 cmd->base.speed = SPEED_100; 4565 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) { 4566 cmd->base.speed = SPEED_1000; 4567 } 4568 cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ? 4569 DUPLEX_FULL : DUPLEX_HALF; 4570 } 4571 } 4572 4573 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 4574 supported); 4575 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 4576 advertising); 4577 4578 return 0; 4579 } 4580 4581 static int cas_set_link_ksettings(struct net_device *dev, 4582 const struct ethtool_link_ksettings *cmd) 4583 { 4584 struct cas *cp = netdev_priv(dev); 4585 unsigned long flags; 4586 u32 speed = cmd->base.speed; 4587 4588 /* Verify the settings we care about. */ 4589 if (cmd->base.autoneg != AUTONEG_ENABLE && 4590 cmd->base.autoneg != AUTONEG_DISABLE) 4591 return -EINVAL; 4592 4593 if (cmd->base.autoneg == AUTONEG_DISABLE && 4594 ((speed != SPEED_1000 && 4595 speed != SPEED_100 && 4596 speed != SPEED_10) || 4597 (cmd->base.duplex != DUPLEX_HALF && 4598 cmd->base.duplex != DUPLEX_FULL))) 4599 return -EINVAL; 4600 4601 /* Apply settings and restart link process. */ 4602 spin_lock_irqsave(&cp->lock, flags); 4603 cas_begin_auto_negotiation(cp, cmd); 4604 spin_unlock_irqrestore(&cp->lock, flags); 4605 return 0; 4606 } 4607 4608 static int cas_nway_reset(struct net_device *dev) 4609 { 4610 struct cas *cp = netdev_priv(dev); 4611 unsigned long flags; 4612 4613 if ((cp->link_cntl & BMCR_ANENABLE) == 0) 4614 return -EINVAL; 4615 4616 /* Restart link process. */ 4617 spin_lock_irqsave(&cp->lock, flags); 4618 cas_begin_auto_negotiation(cp, NULL); 4619 spin_unlock_irqrestore(&cp->lock, flags); 4620 4621 return 0; 4622 } 4623 4624 static u32 cas_get_link(struct net_device *dev) 4625 { 4626 struct cas *cp = netdev_priv(dev); 4627 return cp->lstate == link_up; 4628 } 4629 4630 static u32 cas_get_msglevel(struct net_device *dev) 4631 { 4632 struct cas *cp = netdev_priv(dev); 4633 return cp->msg_enable; 4634 } 4635 4636 static void cas_set_msglevel(struct net_device *dev, u32 value) 4637 { 4638 struct cas *cp = netdev_priv(dev); 4639 cp->msg_enable = value; 4640 } 4641 4642 static int cas_get_regs_len(struct net_device *dev) 4643 { 4644 struct cas *cp = netdev_priv(dev); 4645 return min_t(int, cp->casreg_len, CAS_MAX_REGS); 4646 } 4647 4648 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs, 4649 void *p) 4650 { 4651 struct cas *cp = netdev_priv(dev); 4652 regs->version = 0; 4653 /* cas_read_regs handles locks (cp->lock). */ 4654 cas_read_regs(cp, p, regs->len / sizeof(u32)); 4655 } 4656 4657 static int cas_get_sset_count(struct net_device *dev, int sset) 4658 { 4659 switch (sset) { 4660 case ETH_SS_STATS: 4661 return CAS_NUM_STAT_KEYS; 4662 default: 4663 return -EOPNOTSUPP; 4664 } 4665 } 4666 4667 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data) 4668 { 4669 memcpy(data, ðtool_cassini_statnames, 4670 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN); 4671 } 4672 4673 static void cas_get_ethtool_stats(struct net_device *dev, 4674 struct ethtool_stats *estats, u64 *data) 4675 { 4676 struct cas *cp = netdev_priv(dev); 4677 struct net_device_stats *stats = cas_get_stats(cp->dev); 4678 int i = 0; 4679 data[i++] = stats->collisions; 4680 data[i++] = stats->rx_bytes; 4681 data[i++] = stats->rx_crc_errors; 4682 data[i++] = stats->rx_dropped; 4683 data[i++] = stats->rx_errors; 4684 data[i++] = stats->rx_fifo_errors; 4685 data[i++] = stats->rx_frame_errors; 4686 data[i++] = stats->rx_length_errors; 4687 data[i++] = stats->rx_over_errors; 4688 data[i++] = stats->rx_packets; 4689 data[i++] = stats->tx_aborted_errors; 4690 data[i++] = stats->tx_bytes; 4691 data[i++] = stats->tx_dropped; 4692 data[i++] = stats->tx_errors; 4693 data[i++] = stats->tx_fifo_errors; 4694 data[i++] = stats->tx_packets; 4695 BUG_ON(i != CAS_NUM_STAT_KEYS); 4696 } 4697 4698 static const struct ethtool_ops cas_ethtool_ops = { 4699 .get_drvinfo = cas_get_drvinfo, 4700 .nway_reset = cas_nway_reset, 4701 .get_link = cas_get_link, 4702 .get_msglevel = cas_get_msglevel, 4703 .set_msglevel = cas_set_msglevel, 4704 .get_regs_len = cas_get_regs_len, 4705 .get_regs = cas_get_regs, 4706 .get_sset_count = cas_get_sset_count, 4707 .get_strings = cas_get_strings, 4708 .get_ethtool_stats = cas_get_ethtool_stats, 4709 .get_link_ksettings = cas_get_link_ksettings, 4710 .set_link_ksettings = cas_set_link_ksettings, 4711 }; 4712 4713 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 4714 { 4715 struct cas *cp = netdev_priv(dev); 4716 struct mii_ioctl_data *data = if_mii(ifr); 4717 unsigned long flags; 4718 int rc = -EOPNOTSUPP; 4719 4720 /* Hold the PM mutex while doing ioctl's or we may collide 4721 * with open/close and power management and oops. 4722 */ 4723 mutex_lock(&cp->pm_mutex); 4724 switch (cmd) { 4725 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 4726 data->phy_id = cp->phy_addr; 4727 fallthrough; 4728 4729 case SIOCGMIIREG: /* Read MII PHY register. */ 4730 spin_lock_irqsave(&cp->lock, flags); 4731 cas_mif_poll(cp, 0); 4732 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f); 4733 cas_mif_poll(cp, 1); 4734 spin_unlock_irqrestore(&cp->lock, flags); 4735 rc = 0; 4736 break; 4737 4738 case SIOCSMIIREG: /* Write MII PHY register. */ 4739 spin_lock_irqsave(&cp->lock, flags); 4740 cas_mif_poll(cp, 0); 4741 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in); 4742 cas_mif_poll(cp, 1); 4743 spin_unlock_irqrestore(&cp->lock, flags); 4744 break; 4745 default: 4746 break; 4747 } 4748 4749 mutex_unlock(&cp->pm_mutex); 4750 return rc; 4751 } 4752 4753 /* When this chip sits underneath an Intel 31154 bridge, it is the 4754 * only subordinate device and we can tweak the bridge settings to 4755 * reflect that fact. 4756 */ 4757 static void cas_program_bridge(struct pci_dev *cas_pdev) 4758 { 4759 struct pci_dev *pdev = cas_pdev->bus->self; 4760 u32 val; 4761 4762 if (!pdev) 4763 return; 4764 4765 if (pdev->vendor != 0x8086 || pdev->device != 0x537c) 4766 return; 4767 4768 /* Clear bit 10 (Bus Parking Control) in the Secondary 4769 * Arbiter Control/Status Register which lives at offset 4770 * 0x41. Using a 32-bit word read/modify/write at 0x40 4771 * is much simpler so that's how we do this. 4772 */ 4773 pci_read_config_dword(pdev, 0x40, &val); 4774 val &= ~0x00040000; 4775 pci_write_config_dword(pdev, 0x40, val); 4776 4777 /* Max out the Multi-Transaction Timer settings since 4778 * Cassini is the only device present. 4779 * 4780 * The register is 16-bit and lives at 0x50. When the 4781 * settings are enabled, it extends the GRANT# signal 4782 * for a requestor after a transaction is complete. This 4783 * allows the next request to run without first needing 4784 * to negotiate the GRANT# signal back. 4785 * 4786 * Bits 12:10 define the grant duration: 4787 * 4788 * 1 -- 16 clocks 4789 * 2 -- 32 clocks 4790 * 3 -- 64 clocks 4791 * 4 -- 128 clocks 4792 * 5 -- 256 clocks 4793 * 4794 * All other values are illegal. 4795 * 4796 * Bits 09:00 define which REQ/GNT signal pairs get the 4797 * GRANT# signal treatment. We set them all. 4798 */ 4799 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff); 4800 4801 /* The Read Prefecth Policy register is 16-bit and sits at 4802 * offset 0x52. It enables a "smart" pre-fetch policy. We 4803 * enable it and max out all of the settings since only one 4804 * device is sitting underneath and thus bandwidth sharing is 4805 * not an issue. 4806 * 4807 * The register has several 3 bit fields, which indicates a 4808 * multiplier applied to the base amount of prefetching the 4809 * chip would do. These fields are at: 4810 * 4811 * 15:13 --- ReRead Primary Bus 4812 * 12:10 --- FirstRead Primary Bus 4813 * 09:07 --- ReRead Secondary Bus 4814 * 06:04 --- FirstRead Secondary Bus 4815 * 4816 * Bits 03:00 control which REQ/GNT pairs the prefetch settings 4817 * get enabled on. Bit 3 is a grouped enabler which controls 4818 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control 4819 * the individual REQ/GNT pairs [2:0]. 4820 */ 4821 pci_write_config_word(pdev, 0x52, 4822 (0x7 << 13) | 4823 (0x7 << 10) | 4824 (0x7 << 7) | 4825 (0x7 << 4) | 4826 (0xf << 0)); 4827 4828 /* Force cacheline size to 0x8 */ 4829 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08); 4830 4831 /* Force latency timer to maximum setting so Cassini can 4832 * sit on the bus as long as it likes. 4833 */ 4834 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff); 4835 } 4836 4837 static const struct net_device_ops cas_netdev_ops = { 4838 .ndo_open = cas_open, 4839 .ndo_stop = cas_close, 4840 .ndo_start_xmit = cas_start_xmit, 4841 .ndo_get_stats = cas_get_stats, 4842 .ndo_set_rx_mode = cas_set_multicast, 4843 .ndo_eth_ioctl = cas_ioctl, 4844 .ndo_tx_timeout = cas_tx_timeout, 4845 .ndo_change_mtu = cas_change_mtu, 4846 .ndo_set_mac_address = eth_mac_addr, 4847 .ndo_validate_addr = eth_validate_addr, 4848 #ifdef CONFIG_NET_POLL_CONTROLLER 4849 .ndo_poll_controller = cas_netpoll, 4850 #endif 4851 }; 4852 4853 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 4854 { 4855 static int cas_version_printed = 0; 4856 unsigned long casreg_len; 4857 struct net_device *dev; 4858 struct cas *cp; 4859 u16 pci_cmd; 4860 int i, err; 4861 u8 orig_cacheline_size = 0, cas_cacheline_size = 0; 4862 4863 if (cas_version_printed++ == 0) 4864 pr_info("%s", version); 4865 4866 err = pci_enable_device(pdev); 4867 if (err) { 4868 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 4869 return err; 4870 } 4871 4872 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 4873 dev_err(&pdev->dev, "Cannot find proper PCI device " 4874 "base address, aborting\n"); 4875 err = -ENODEV; 4876 goto err_out_disable_pdev; 4877 } 4878 4879 dev = alloc_etherdev(sizeof(*cp)); 4880 if (!dev) { 4881 err = -ENOMEM; 4882 goto err_out_disable_pdev; 4883 } 4884 SET_NETDEV_DEV(dev, &pdev->dev); 4885 4886 err = pci_request_regions(pdev, dev->name); 4887 if (err) { 4888 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 4889 goto err_out_free_netdev; 4890 } 4891 pci_set_master(pdev); 4892 4893 /* we must always turn on parity response or else parity 4894 * doesn't get generated properly. disable SERR/PERR as well. 4895 * in addition, we want to turn MWI on. 4896 */ 4897 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); 4898 pci_cmd &= ~PCI_COMMAND_SERR; 4899 pci_cmd |= PCI_COMMAND_PARITY; 4900 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); 4901 if (pci_try_set_mwi(pdev)) 4902 pr_warn("Could not enable MWI for %s\n", pci_name(pdev)); 4903 4904 cas_program_bridge(pdev); 4905 4906 /* 4907 * On some architectures, the default cache line size set 4908 * by pci_try_set_mwi reduces perforamnce. We have to increase 4909 * it for this case. To start, we'll print some configuration 4910 * data. 4911 */ 4912 #if 1 4913 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, 4914 &orig_cacheline_size); 4915 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) { 4916 cas_cacheline_size = 4917 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ? 4918 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES; 4919 if (pci_write_config_byte(pdev, 4920 PCI_CACHE_LINE_SIZE, 4921 cas_cacheline_size)) { 4922 dev_err(&pdev->dev, "Could not set PCI cache " 4923 "line size\n"); 4924 goto err_out_free_res; 4925 } 4926 } 4927 #endif 4928 4929 4930 /* Configure DMA attributes. */ 4931 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4932 if (err) { 4933 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 4934 goto err_out_free_res; 4935 } 4936 4937 casreg_len = pci_resource_len(pdev, 0); 4938 4939 cp = netdev_priv(dev); 4940 cp->pdev = pdev; 4941 #if 1 4942 /* A value of 0 indicates we never explicitly set it */ 4943 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0; 4944 #endif 4945 cp->dev = dev; 4946 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE : 4947 cassini_debug; 4948 4949 #if defined(CONFIG_SPARC) 4950 cp->of_node = pci_device_to_OF_node(pdev); 4951 #endif 4952 4953 cp->link_transition = LINK_TRANSITION_UNKNOWN; 4954 cp->link_transition_jiffies_valid = 0; 4955 4956 spin_lock_init(&cp->lock); 4957 spin_lock_init(&cp->rx_inuse_lock); 4958 spin_lock_init(&cp->rx_spare_lock); 4959 for (i = 0; i < N_TX_RINGS; i++) { 4960 spin_lock_init(&cp->stat_lock[i]); 4961 spin_lock_init(&cp->tx_lock[i]); 4962 } 4963 spin_lock_init(&cp->stat_lock[N_TX_RINGS]); 4964 mutex_init(&cp->pm_mutex); 4965 4966 timer_setup(&cp->link_timer, cas_link_timer, 0); 4967 4968 #if 1 4969 /* Just in case the implementation of atomic operations 4970 * change so that an explicit initialization is necessary. 4971 */ 4972 atomic_set(&cp->reset_task_pending, 0); 4973 atomic_set(&cp->reset_task_pending_all, 0); 4974 atomic_set(&cp->reset_task_pending_spare, 0); 4975 atomic_set(&cp->reset_task_pending_mtu, 0); 4976 #endif 4977 INIT_WORK(&cp->reset_task, cas_reset_task); 4978 4979 /* Default link parameters */ 4980 if (link_mode >= 0 && link_mode < 6) 4981 cp->link_cntl = link_modes[link_mode]; 4982 else 4983 cp->link_cntl = BMCR_ANENABLE; 4984 cp->lstate = link_down; 4985 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 4986 netif_carrier_off(cp->dev); 4987 cp->timer_ticks = 0; 4988 4989 /* give us access to cassini registers */ 4990 cp->regs = pci_iomap(pdev, 0, casreg_len); 4991 if (!cp->regs) { 4992 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 4993 goto err_out_free_res; 4994 } 4995 cp->casreg_len = casreg_len; 4996 4997 pci_save_state(pdev); 4998 cas_check_pci_invariants(cp); 4999 cas_hard_reset(cp); 5000 cas_reset(cp, 0); 5001 if (cas_check_invariants(cp)) 5002 goto err_out_iounmap; 5003 if (cp->cas_flags & CAS_FLAG_SATURN) 5004 cas_saturn_firmware_init(cp); 5005 5006 cp->init_block = 5007 dma_alloc_coherent(&pdev->dev, sizeof(struct cas_init_block), 5008 &cp->block_dvma, GFP_KERNEL); 5009 if (!cp->init_block) { 5010 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n"); 5011 goto err_out_iounmap; 5012 } 5013 5014 for (i = 0; i < N_TX_RINGS; i++) 5015 cp->init_txds[i] = cp->init_block->txds[i]; 5016 5017 for (i = 0; i < N_RX_DESC_RINGS; i++) 5018 cp->init_rxds[i] = cp->init_block->rxds[i]; 5019 5020 for (i = 0; i < N_RX_COMP_RINGS; i++) 5021 cp->init_rxcs[i] = cp->init_block->rxcs[i]; 5022 5023 for (i = 0; i < N_RX_FLOWS; i++) 5024 skb_queue_head_init(&cp->rx_flows[i]); 5025 5026 dev->netdev_ops = &cas_netdev_ops; 5027 dev->ethtool_ops = &cas_ethtool_ops; 5028 dev->watchdog_timeo = CAS_TX_TIMEOUT; 5029 5030 #ifdef USE_NAPI 5031 netif_napi_add(dev, &cp->napi, cas_poll); 5032 #endif 5033 dev->irq = pdev->irq; 5034 dev->dma = 0; 5035 5036 /* Cassini features. */ 5037 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0) 5038 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG; 5039 5040 dev->features |= NETIF_F_HIGHDMA; 5041 5042 /* MTU range: 60 - varies or 9000 */ 5043 dev->min_mtu = CAS_MIN_MTU; 5044 dev->max_mtu = CAS_MAX_MTU; 5045 5046 if (register_netdev(dev)) { 5047 dev_err(&pdev->dev, "Cannot register net device, aborting\n"); 5048 goto err_out_free_consistent; 5049 } 5050 5051 i = readl(cp->regs + REG_BIM_CFG); 5052 netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n", 5053 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "", 5054 (i & BIM_CFG_32BIT) ? "32" : "64", 5055 (i & BIM_CFG_66MHZ) ? "66" : "33", 5056 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq, 5057 dev->dev_addr); 5058 5059 pci_set_drvdata(pdev, dev); 5060 cp->hw_running = 1; 5061 cas_entropy_reset(cp); 5062 cas_phy_init(cp); 5063 cas_begin_auto_negotiation(cp, NULL); 5064 return 0; 5065 5066 err_out_free_consistent: 5067 dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block), 5068 cp->init_block, cp->block_dvma); 5069 5070 err_out_iounmap: 5071 mutex_lock(&cp->pm_mutex); 5072 if (cp->hw_running) 5073 cas_shutdown(cp); 5074 mutex_unlock(&cp->pm_mutex); 5075 5076 vfree(cp->fw_data); 5077 5078 pci_iounmap(pdev, cp->regs); 5079 5080 5081 err_out_free_res: 5082 pci_release_regions(pdev); 5083 5084 /* Try to restore it in case the error occurred after we 5085 * set it. 5086 */ 5087 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size); 5088 5089 err_out_free_netdev: 5090 free_netdev(dev); 5091 5092 err_out_disable_pdev: 5093 pci_disable_device(pdev); 5094 return -ENODEV; 5095 } 5096 5097 static void cas_remove_one(struct pci_dev *pdev) 5098 { 5099 struct net_device *dev = pci_get_drvdata(pdev); 5100 struct cas *cp; 5101 if (!dev) 5102 return; 5103 5104 cp = netdev_priv(dev); 5105 unregister_netdev(dev); 5106 5107 vfree(cp->fw_data); 5108 5109 mutex_lock(&cp->pm_mutex); 5110 cancel_work_sync(&cp->reset_task); 5111 if (cp->hw_running) 5112 cas_shutdown(cp); 5113 mutex_unlock(&cp->pm_mutex); 5114 5115 #if 1 5116 if (cp->orig_cacheline_size) { 5117 /* Restore the cache line size if we had modified 5118 * it. 5119 */ 5120 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 5121 cp->orig_cacheline_size); 5122 } 5123 #endif 5124 dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block), 5125 cp->init_block, cp->block_dvma); 5126 pci_iounmap(pdev, cp->regs); 5127 free_netdev(dev); 5128 pci_release_regions(pdev); 5129 pci_disable_device(pdev); 5130 } 5131 5132 static int __maybe_unused cas_suspend(struct device *dev_d) 5133 { 5134 struct net_device *dev = dev_get_drvdata(dev_d); 5135 struct cas *cp = netdev_priv(dev); 5136 unsigned long flags; 5137 5138 mutex_lock(&cp->pm_mutex); 5139 5140 /* If the driver is opened, we stop the DMA */ 5141 if (cp->opened) { 5142 netif_device_detach(dev); 5143 5144 cas_lock_all_save(cp, flags); 5145 5146 /* We can set the second arg of cas_reset to 0 5147 * because on resume, we'll call cas_init_hw with 5148 * its second arg set so that autonegotiation is 5149 * restarted. 5150 */ 5151 cas_reset(cp, 0); 5152 cas_clean_rings(cp); 5153 cas_unlock_all_restore(cp, flags); 5154 } 5155 5156 if (cp->hw_running) 5157 cas_shutdown(cp); 5158 mutex_unlock(&cp->pm_mutex); 5159 5160 return 0; 5161 } 5162 5163 static int __maybe_unused cas_resume(struct device *dev_d) 5164 { 5165 struct net_device *dev = dev_get_drvdata(dev_d); 5166 struct cas *cp = netdev_priv(dev); 5167 5168 netdev_info(dev, "resuming\n"); 5169 5170 mutex_lock(&cp->pm_mutex); 5171 cas_hard_reset(cp); 5172 if (cp->opened) { 5173 unsigned long flags; 5174 cas_lock_all_save(cp, flags); 5175 cas_reset(cp, 0); 5176 cp->hw_running = 1; 5177 cas_clean_rings(cp); 5178 cas_init_hw(cp, 1); 5179 cas_unlock_all_restore(cp, flags); 5180 5181 netif_device_attach(dev); 5182 } 5183 mutex_unlock(&cp->pm_mutex); 5184 return 0; 5185 } 5186 5187 static SIMPLE_DEV_PM_OPS(cas_pm_ops, cas_suspend, cas_resume); 5188 5189 static struct pci_driver cas_driver = { 5190 .name = DRV_MODULE_NAME, 5191 .id_table = cas_pci_tbl, 5192 .probe = cas_init_one, 5193 .remove = cas_remove_one, 5194 .driver.pm = &cas_pm_ops, 5195 }; 5196 5197 static int __init cas_init(void) 5198 { 5199 if (linkdown_timeout > 0) 5200 link_transition_timeout = linkdown_timeout * HZ; 5201 else 5202 link_transition_timeout = 0; 5203 5204 return pci_register_driver(&cas_driver); 5205 } 5206 5207 static void __exit cas_cleanup(void) 5208 { 5209 pci_unregister_driver(&cas_driver); 5210 } 5211 5212 module_init(cas_init); 5213 module_exit(cas_cleanup); 5214