1 // SPDX-License-Identifier: GPL-2.0+ 2 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver. 3 * 4 * Copyright (C) 2004 Sun Microsystems Inc. 5 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com) 6 * 7 * This driver uses the sungem driver (c) David Miller 8 * (davem@redhat.com) as its basis. 9 * 10 * The cassini chip has a number of features that distinguish it from 11 * the gem chip: 12 * 4 transmit descriptor rings that are used for either QoS (VLAN) or 13 * load balancing (non-VLAN mode) 14 * batching of multiple packets 15 * multiple CPU dispatching 16 * page-based RX descriptor engine with separate completion rings 17 * Gigabit support (GMII and PCS interface) 18 * MIF link up/down detection works 19 * 20 * RX is handled by page sized buffers that are attached as fragments to 21 * the skb. here's what's done: 22 * -- driver allocates pages at a time and keeps reference counts 23 * on them. 24 * -- the upper protocol layers assume that the header is in the skb 25 * itself. as a result, cassini will copy a small amount (64 bytes) 26 * to make them happy. 27 * -- driver appends the rest of the data pages as frags to skbuffs 28 * and increments the reference count 29 * -- on page reclamation, the driver swaps the page with a spare page. 30 * if that page is still in use, it frees its reference to that page, 31 * and allocates a new page for use. otherwise, it just recycles the 32 * the page. 33 * 34 * NOTE: cassini can parse the header. however, it's not worth it 35 * as long as the network stack requires a header copy. 36 * 37 * TX has 4 queues. currently these queues are used in a round-robin 38 * fashion for load balancing. They can also be used for QoS. for that 39 * to work, however, QoS information needs to be exposed down to the driver 40 * level so that subqueues get targeted to particular transmit rings. 41 * alternatively, the queues can be configured via use of the all-purpose 42 * ioctl. 43 * 44 * RX DATA: the rx completion ring has all the info, but the rx desc 45 * ring has all of the data. RX can conceivably come in under multiple 46 * interrupts, but the INT# assignment needs to be set up properly by 47 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do 48 * that. also, the two descriptor rings are designed to distinguish between 49 * encrypted and non-encrypted packets, but we use them for buffering 50 * instead. 51 * 52 * by default, the selective clear mask is set up to process rx packets. 53 */ 54 55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 56 57 #include <linux/module.h> 58 #include <linux/kernel.h> 59 #include <linux/types.h> 60 #include <linux/compiler.h> 61 #include <linux/slab.h> 62 #include <linux/delay.h> 63 #include <linux/init.h> 64 #include <linux/interrupt.h> 65 #include <linux/vmalloc.h> 66 #include <linux/ioport.h> 67 #include <linux/pci.h> 68 #include <linux/mm.h> 69 #include <linux/highmem.h> 70 #include <linux/list.h> 71 #include <linux/dma-mapping.h> 72 73 #include <linux/netdevice.h> 74 #include <linux/etherdevice.h> 75 #include <linux/skbuff.h> 76 #include <linux/ethtool.h> 77 #include <linux/crc32.h> 78 #include <linux/random.h> 79 #include <linux/mii.h> 80 #include <linux/ip.h> 81 #include <linux/tcp.h> 82 #include <linux/mutex.h> 83 #include <linux/firmware.h> 84 85 #include <net/checksum.h> 86 87 #include <linux/atomic.h> 88 #include <asm/io.h> 89 #include <asm/byteorder.h> 90 #include <linux/uaccess.h> 91 92 #define cas_page_map(x) kmap_atomic((x)) 93 #define cas_page_unmap(x) kunmap_atomic((x)) 94 #define CAS_NCPUS num_online_cpus() 95 96 #define cas_skb_release(x) netif_rx(x) 97 98 /* select which firmware to use */ 99 #define USE_HP_WORKAROUND 100 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */ 101 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */ 102 103 #include "cassini.h" 104 105 #define USE_TX_COMPWB /* use completion writeback registers */ 106 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */ 107 #define USE_RX_BLANK /* hw interrupt mitigation */ 108 #undef USE_ENTROPY_DEV /* don't test for entropy device */ 109 110 /* NOTE: these aren't useable unless PCI interrupts can be assigned. 111 * also, we need to make cp->lock finer-grained. 112 */ 113 #undef USE_PCI_INTB 114 #undef USE_PCI_INTC 115 #undef USE_PCI_INTD 116 #undef USE_QOS 117 118 #undef USE_VPD_DEBUG /* debug vpd information if defined */ 119 120 /* rx processing options */ 121 #define USE_PAGE_ORDER /* specify to allocate large rx pages */ 122 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */ 123 #define RX_COPY_ALWAYS 0 /* if 0, use frags */ 124 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */ 125 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */ 126 127 #define DRV_MODULE_NAME "cassini" 128 #define DRV_MODULE_VERSION "1.6" 129 #define DRV_MODULE_RELDATE "21 May 2008" 130 131 #define CAS_DEF_MSG_ENABLE \ 132 (NETIF_MSG_DRV | \ 133 NETIF_MSG_PROBE | \ 134 NETIF_MSG_LINK | \ 135 NETIF_MSG_TIMER | \ 136 NETIF_MSG_IFDOWN | \ 137 NETIF_MSG_IFUP | \ 138 NETIF_MSG_RX_ERR | \ 139 NETIF_MSG_TX_ERR) 140 141 /* length of time before we decide the hardware is borked, 142 * and dev->tx_timeout() should be called to fix the problem 143 */ 144 #define CAS_TX_TIMEOUT (HZ) 145 #define CAS_LINK_TIMEOUT (22*HZ/10) 146 #define CAS_LINK_FAST_TIMEOUT (1) 147 148 /* timeout values for state changing. these specify the number 149 * of 10us delays to be used before giving up. 150 */ 151 #define STOP_TRIES_PHY 1000 152 #define STOP_TRIES 5000 153 154 /* specify a minimum frame size to deal with some fifo issues 155 * max mtu == 2 * page size - ethernet header - 64 - swivel = 156 * 2 * page_size - 0x50 157 */ 158 #define CAS_MIN_FRAME 97 159 #define CAS_1000MB_MIN_FRAME 255 160 #define CAS_MIN_MTU 60 161 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000) 162 163 #if 1 164 /* 165 * Eliminate these and use separate atomic counters for each, to 166 * avoid a race condition. 167 */ 168 #else 169 #define CAS_RESET_MTU 1 170 #define CAS_RESET_ALL 2 171 #define CAS_RESET_SPARE 3 172 #endif 173 174 static char version[] = 175 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 176 177 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */ 178 static int link_mode; 179 180 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)"); 181 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver"); 182 MODULE_LICENSE("GPL"); 183 MODULE_FIRMWARE("sun/cassini.bin"); 184 module_param(cassini_debug, int, 0); 185 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value"); 186 module_param(link_mode, int, 0); 187 MODULE_PARM_DESC(link_mode, "default link mode"); 188 189 /* 190 * Work around for a PCS bug in which the link goes down due to the chip 191 * being confused and never showing a link status of "up." 192 */ 193 #define DEFAULT_LINKDOWN_TIMEOUT 5 194 /* 195 * Value in seconds, for user input. 196 */ 197 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT; 198 module_param(linkdown_timeout, int, 0); 199 MODULE_PARM_DESC(linkdown_timeout, 200 "min reset interval in sec. for PCS linkdown issue; disabled if not positive"); 201 202 /* 203 * value in 'ticks' (units used by jiffies). Set when we init the 204 * module because 'HZ' in actually a function call on some flavors of 205 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ. 206 */ 207 static int link_transition_timeout; 208 209 210 211 static u16 link_modes[] = { 212 BMCR_ANENABLE, /* 0 : autoneg */ 213 0, /* 1 : 10bt half duplex */ 214 BMCR_SPEED100, /* 2 : 100bt half duplex */ 215 BMCR_FULLDPLX, /* 3 : 10bt full duplex */ 216 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */ 217 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */ 218 }; 219 220 static const struct pci_device_id cas_pci_tbl[] = { 221 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI, 222 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 223 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN, 224 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 225 { 0, } 226 }; 227 228 MODULE_DEVICE_TABLE(pci, cas_pci_tbl); 229 230 static void cas_set_link_modes(struct cas *cp); 231 232 static inline void cas_lock_tx(struct cas *cp) 233 { 234 int i; 235 236 for (i = 0; i < N_TX_RINGS; i++) 237 spin_lock_nested(&cp->tx_lock[i], i); 238 } 239 240 static inline void cas_lock_all(struct cas *cp) 241 { 242 spin_lock_irq(&cp->lock); 243 cas_lock_tx(cp); 244 } 245 246 /* WTZ: QA was finding deadlock problems with the previous 247 * versions after long test runs with multiple cards per machine. 248 * See if replacing cas_lock_all with safer versions helps. The 249 * symptoms QA is reporting match those we'd expect if interrupts 250 * aren't being properly restored, and we fixed a previous deadlock 251 * with similar symptoms by using save/restore versions in other 252 * places. 253 */ 254 #define cas_lock_all_save(cp, flags) \ 255 do { \ 256 struct cas *xxxcp = (cp); \ 257 spin_lock_irqsave(&xxxcp->lock, flags); \ 258 cas_lock_tx(xxxcp); \ 259 } while (0) 260 261 static inline void cas_unlock_tx(struct cas *cp) 262 { 263 int i; 264 265 for (i = N_TX_RINGS; i > 0; i--) 266 spin_unlock(&cp->tx_lock[i - 1]); 267 } 268 269 static inline void cas_unlock_all(struct cas *cp) 270 { 271 cas_unlock_tx(cp); 272 spin_unlock_irq(&cp->lock); 273 } 274 275 #define cas_unlock_all_restore(cp, flags) \ 276 do { \ 277 struct cas *xxxcp = (cp); \ 278 cas_unlock_tx(xxxcp); \ 279 spin_unlock_irqrestore(&xxxcp->lock, flags); \ 280 } while (0) 281 282 static void cas_disable_irq(struct cas *cp, const int ring) 283 { 284 /* Make sure we won't get any more interrupts */ 285 if (ring == 0) { 286 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK); 287 return; 288 } 289 290 /* disable completion interrupts and selectively mask */ 291 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 292 switch (ring) { 293 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 294 #ifdef USE_PCI_INTB 295 case 1: 296 #endif 297 #ifdef USE_PCI_INTC 298 case 2: 299 #endif 300 #ifdef USE_PCI_INTD 301 case 3: 302 #endif 303 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN, 304 cp->regs + REG_PLUS_INTRN_MASK(ring)); 305 break; 306 #endif 307 default: 308 writel(INTRN_MASK_CLEAR_ALL, cp->regs + 309 REG_PLUS_INTRN_MASK(ring)); 310 break; 311 } 312 } 313 } 314 315 static inline void cas_mask_intr(struct cas *cp) 316 { 317 int i; 318 319 for (i = 0; i < N_RX_COMP_RINGS; i++) 320 cas_disable_irq(cp, i); 321 } 322 323 static void cas_enable_irq(struct cas *cp, const int ring) 324 { 325 if (ring == 0) { /* all but TX_DONE */ 326 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK); 327 return; 328 } 329 330 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 331 switch (ring) { 332 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 333 #ifdef USE_PCI_INTB 334 case 1: 335 #endif 336 #ifdef USE_PCI_INTC 337 case 2: 338 #endif 339 #ifdef USE_PCI_INTD 340 case 3: 341 #endif 342 writel(INTRN_MASK_RX_EN, cp->regs + 343 REG_PLUS_INTRN_MASK(ring)); 344 break; 345 #endif 346 default: 347 break; 348 } 349 } 350 } 351 352 static inline void cas_unmask_intr(struct cas *cp) 353 { 354 int i; 355 356 for (i = 0; i < N_RX_COMP_RINGS; i++) 357 cas_enable_irq(cp, i); 358 } 359 360 static inline void cas_entropy_gather(struct cas *cp) 361 { 362 #ifdef USE_ENTROPY_DEV 363 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) 364 return; 365 366 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV), 367 readl(cp->regs + REG_ENTROPY_IV), 368 sizeof(uint64_t)*8); 369 #endif 370 } 371 372 static inline void cas_entropy_reset(struct cas *cp) 373 { 374 #ifdef USE_ENTROPY_DEV 375 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) 376 return; 377 378 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT, 379 cp->regs + REG_BIM_LOCAL_DEV_EN); 380 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET); 381 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG); 382 383 /* if we read back 0x0, we don't have an entropy device */ 384 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0) 385 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV; 386 #endif 387 } 388 389 /* access to the phy. the following assumes that we've initialized the MIF to 390 * be in frame rather than bit-bang mode 391 */ 392 static u16 cas_phy_read(struct cas *cp, int reg) 393 { 394 u32 cmd; 395 int limit = STOP_TRIES_PHY; 396 397 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ; 398 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); 399 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); 400 cmd |= MIF_FRAME_TURN_AROUND_MSB; 401 writel(cmd, cp->regs + REG_MIF_FRAME); 402 403 /* poll for completion */ 404 while (limit-- > 0) { 405 udelay(10); 406 cmd = readl(cp->regs + REG_MIF_FRAME); 407 if (cmd & MIF_FRAME_TURN_AROUND_LSB) 408 return cmd & MIF_FRAME_DATA_MASK; 409 } 410 return 0xFFFF; /* -1 */ 411 } 412 413 static int cas_phy_write(struct cas *cp, int reg, u16 val) 414 { 415 int limit = STOP_TRIES_PHY; 416 u32 cmd; 417 418 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE; 419 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); 420 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); 421 cmd |= MIF_FRAME_TURN_AROUND_MSB; 422 cmd |= val & MIF_FRAME_DATA_MASK; 423 writel(cmd, cp->regs + REG_MIF_FRAME); 424 425 /* poll for completion */ 426 while (limit-- > 0) { 427 udelay(10); 428 cmd = readl(cp->regs + REG_MIF_FRAME); 429 if (cmd & MIF_FRAME_TURN_AROUND_LSB) 430 return 0; 431 } 432 return -1; 433 } 434 435 static void cas_phy_powerup(struct cas *cp) 436 { 437 u16 ctl = cas_phy_read(cp, MII_BMCR); 438 439 if ((ctl & BMCR_PDOWN) == 0) 440 return; 441 ctl &= ~BMCR_PDOWN; 442 cas_phy_write(cp, MII_BMCR, ctl); 443 } 444 445 static void cas_phy_powerdown(struct cas *cp) 446 { 447 u16 ctl = cas_phy_read(cp, MII_BMCR); 448 449 if (ctl & BMCR_PDOWN) 450 return; 451 ctl |= BMCR_PDOWN; 452 cas_phy_write(cp, MII_BMCR, ctl); 453 } 454 455 /* cp->lock held. note: the last put_page will free the buffer */ 456 static int cas_page_free(struct cas *cp, cas_page_t *page) 457 { 458 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size, 459 PCI_DMA_FROMDEVICE); 460 __free_pages(page->buffer, cp->page_order); 461 kfree(page); 462 return 0; 463 } 464 465 #ifdef RX_COUNT_BUFFERS 466 #define RX_USED_ADD(x, y) ((x)->used += (y)) 467 #define RX_USED_SET(x, y) ((x)->used = (y)) 468 #else 469 #define RX_USED_ADD(x, y) 470 #define RX_USED_SET(x, y) 471 #endif 472 473 /* local page allocation routines for the receive buffers. jumbo pages 474 * require at least 8K contiguous and 8K aligned buffers. 475 */ 476 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags) 477 { 478 cas_page_t *page; 479 480 page = kmalloc(sizeof(cas_page_t), flags); 481 if (!page) 482 return NULL; 483 484 INIT_LIST_HEAD(&page->list); 485 RX_USED_SET(page, 0); 486 page->buffer = alloc_pages(flags, cp->page_order); 487 if (!page->buffer) 488 goto page_err; 489 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0, 490 cp->page_size, PCI_DMA_FROMDEVICE); 491 return page; 492 493 page_err: 494 kfree(page); 495 return NULL; 496 } 497 498 /* initialize spare pool of rx buffers, but allocate during the open */ 499 static void cas_spare_init(struct cas *cp) 500 { 501 spin_lock(&cp->rx_inuse_lock); 502 INIT_LIST_HEAD(&cp->rx_inuse_list); 503 spin_unlock(&cp->rx_inuse_lock); 504 505 spin_lock(&cp->rx_spare_lock); 506 INIT_LIST_HEAD(&cp->rx_spare_list); 507 cp->rx_spares_needed = RX_SPARE_COUNT; 508 spin_unlock(&cp->rx_spare_lock); 509 } 510 511 /* used on close. free all the spare buffers. */ 512 static void cas_spare_free(struct cas *cp) 513 { 514 struct list_head list, *elem, *tmp; 515 516 /* free spare buffers */ 517 INIT_LIST_HEAD(&list); 518 spin_lock(&cp->rx_spare_lock); 519 list_splice_init(&cp->rx_spare_list, &list); 520 spin_unlock(&cp->rx_spare_lock); 521 list_for_each_safe(elem, tmp, &list) { 522 cas_page_free(cp, list_entry(elem, cas_page_t, list)); 523 } 524 525 INIT_LIST_HEAD(&list); 526 #if 1 527 /* 528 * Looks like Adrian had protected this with a different 529 * lock than used everywhere else to manipulate this list. 530 */ 531 spin_lock(&cp->rx_inuse_lock); 532 list_splice_init(&cp->rx_inuse_list, &list); 533 spin_unlock(&cp->rx_inuse_lock); 534 #else 535 spin_lock(&cp->rx_spare_lock); 536 list_splice_init(&cp->rx_inuse_list, &list); 537 spin_unlock(&cp->rx_spare_lock); 538 #endif 539 list_for_each_safe(elem, tmp, &list) { 540 cas_page_free(cp, list_entry(elem, cas_page_t, list)); 541 } 542 } 543 544 /* replenish spares if needed */ 545 static void cas_spare_recover(struct cas *cp, const gfp_t flags) 546 { 547 struct list_head list, *elem, *tmp; 548 int needed, i; 549 550 /* check inuse list. if we don't need any more free buffers, 551 * just free it 552 */ 553 554 /* make a local copy of the list */ 555 INIT_LIST_HEAD(&list); 556 spin_lock(&cp->rx_inuse_lock); 557 list_splice_init(&cp->rx_inuse_list, &list); 558 spin_unlock(&cp->rx_inuse_lock); 559 560 list_for_each_safe(elem, tmp, &list) { 561 cas_page_t *page = list_entry(elem, cas_page_t, list); 562 563 /* 564 * With the lockless pagecache, cassini buffering scheme gets 565 * slightly less accurate: we might find that a page has an 566 * elevated reference count here, due to a speculative ref, 567 * and skip it as in-use. Ideally we would be able to reclaim 568 * it. However this would be such a rare case, it doesn't 569 * matter too much as we should pick it up the next time round. 570 * 571 * Importantly, if we find that the page has a refcount of 1 572 * here (our refcount), then we know it is definitely not inuse 573 * so we can reuse it. 574 */ 575 if (page_count(page->buffer) > 1) 576 continue; 577 578 list_del(elem); 579 spin_lock(&cp->rx_spare_lock); 580 if (cp->rx_spares_needed > 0) { 581 list_add(elem, &cp->rx_spare_list); 582 cp->rx_spares_needed--; 583 spin_unlock(&cp->rx_spare_lock); 584 } else { 585 spin_unlock(&cp->rx_spare_lock); 586 cas_page_free(cp, page); 587 } 588 } 589 590 /* put any inuse buffers back on the list */ 591 if (!list_empty(&list)) { 592 spin_lock(&cp->rx_inuse_lock); 593 list_splice(&list, &cp->rx_inuse_list); 594 spin_unlock(&cp->rx_inuse_lock); 595 } 596 597 spin_lock(&cp->rx_spare_lock); 598 needed = cp->rx_spares_needed; 599 spin_unlock(&cp->rx_spare_lock); 600 if (!needed) 601 return; 602 603 /* we still need spares, so try to allocate some */ 604 INIT_LIST_HEAD(&list); 605 i = 0; 606 while (i < needed) { 607 cas_page_t *spare = cas_page_alloc(cp, flags); 608 if (!spare) 609 break; 610 list_add(&spare->list, &list); 611 i++; 612 } 613 614 spin_lock(&cp->rx_spare_lock); 615 list_splice(&list, &cp->rx_spare_list); 616 cp->rx_spares_needed -= i; 617 spin_unlock(&cp->rx_spare_lock); 618 } 619 620 /* pull a page from the list. */ 621 static cas_page_t *cas_page_dequeue(struct cas *cp) 622 { 623 struct list_head *entry; 624 int recover; 625 626 spin_lock(&cp->rx_spare_lock); 627 if (list_empty(&cp->rx_spare_list)) { 628 /* try to do a quick recovery */ 629 spin_unlock(&cp->rx_spare_lock); 630 cas_spare_recover(cp, GFP_ATOMIC); 631 spin_lock(&cp->rx_spare_lock); 632 if (list_empty(&cp->rx_spare_list)) { 633 netif_err(cp, rx_err, cp->dev, 634 "no spare buffers available\n"); 635 spin_unlock(&cp->rx_spare_lock); 636 return NULL; 637 } 638 } 639 640 entry = cp->rx_spare_list.next; 641 list_del(entry); 642 recover = ++cp->rx_spares_needed; 643 spin_unlock(&cp->rx_spare_lock); 644 645 /* trigger the timer to do the recovery */ 646 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) { 647 #if 1 648 atomic_inc(&cp->reset_task_pending); 649 atomic_inc(&cp->reset_task_pending_spare); 650 schedule_work(&cp->reset_task); 651 #else 652 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE); 653 schedule_work(&cp->reset_task); 654 #endif 655 } 656 return list_entry(entry, cas_page_t, list); 657 } 658 659 660 static void cas_mif_poll(struct cas *cp, const int enable) 661 { 662 u32 cfg; 663 664 cfg = readl(cp->regs + REG_MIF_CFG); 665 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1); 666 667 if (cp->phy_type & CAS_PHY_MII_MDIO1) 668 cfg |= MIF_CFG_PHY_SELECT; 669 670 /* poll and interrupt on link status change. */ 671 if (enable) { 672 cfg |= MIF_CFG_POLL_EN; 673 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR); 674 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr); 675 } 676 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF, 677 cp->regs + REG_MIF_MASK); 678 writel(cfg, cp->regs + REG_MIF_CFG); 679 } 680 681 /* Must be invoked under cp->lock */ 682 static void cas_begin_auto_negotiation(struct cas *cp, 683 const struct ethtool_link_ksettings *ep) 684 { 685 u16 ctl; 686 #if 1 687 int lcntl; 688 int changed = 0; 689 int oldstate = cp->lstate; 690 int link_was_not_down = !(oldstate == link_down); 691 #endif 692 /* Setup link parameters */ 693 if (!ep) 694 goto start_aneg; 695 lcntl = cp->link_cntl; 696 if (ep->base.autoneg == AUTONEG_ENABLE) { 697 cp->link_cntl = BMCR_ANENABLE; 698 } else { 699 u32 speed = ep->base.speed; 700 cp->link_cntl = 0; 701 if (speed == SPEED_100) 702 cp->link_cntl |= BMCR_SPEED100; 703 else if (speed == SPEED_1000) 704 cp->link_cntl |= CAS_BMCR_SPEED1000; 705 if (ep->base.duplex == DUPLEX_FULL) 706 cp->link_cntl |= BMCR_FULLDPLX; 707 } 708 #if 1 709 changed = (lcntl != cp->link_cntl); 710 #endif 711 start_aneg: 712 if (cp->lstate == link_up) { 713 netdev_info(cp->dev, "PCS link down\n"); 714 } else { 715 if (changed) { 716 netdev_info(cp->dev, "link configuration changed\n"); 717 } 718 } 719 cp->lstate = link_down; 720 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 721 if (!cp->hw_running) 722 return; 723 #if 1 724 /* 725 * WTZ: If the old state was link_up, we turn off the carrier 726 * to replicate everything we do elsewhere on a link-down 727 * event when we were already in a link-up state.. 728 */ 729 if (oldstate == link_up) 730 netif_carrier_off(cp->dev); 731 if (changed && link_was_not_down) { 732 /* 733 * WTZ: This branch will simply schedule a full reset after 734 * we explicitly changed link modes in an ioctl. See if this 735 * fixes the link-problems we were having for forced mode. 736 */ 737 atomic_inc(&cp->reset_task_pending); 738 atomic_inc(&cp->reset_task_pending_all); 739 schedule_work(&cp->reset_task); 740 cp->timer_ticks = 0; 741 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 742 return; 743 } 744 #endif 745 if (cp->phy_type & CAS_PHY_SERDES) { 746 u32 val = readl(cp->regs + REG_PCS_MII_CTRL); 747 748 if (cp->link_cntl & BMCR_ANENABLE) { 749 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN); 750 cp->lstate = link_aneg; 751 } else { 752 if (cp->link_cntl & BMCR_FULLDPLX) 753 val |= PCS_MII_CTRL_DUPLEX; 754 val &= ~PCS_MII_AUTONEG_EN; 755 cp->lstate = link_force_ok; 756 } 757 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 758 writel(val, cp->regs + REG_PCS_MII_CTRL); 759 760 } else { 761 cas_mif_poll(cp, 0); 762 ctl = cas_phy_read(cp, MII_BMCR); 763 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | 764 CAS_BMCR_SPEED1000 | BMCR_ANENABLE); 765 ctl |= cp->link_cntl; 766 if (ctl & BMCR_ANENABLE) { 767 ctl |= BMCR_ANRESTART; 768 cp->lstate = link_aneg; 769 } else { 770 cp->lstate = link_force_ok; 771 } 772 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 773 cas_phy_write(cp, MII_BMCR, ctl); 774 cas_mif_poll(cp, 1); 775 } 776 777 cp->timer_ticks = 0; 778 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 779 } 780 781 /* Must be invoked under cp->lock. */ 782 static int cas_reset_mii_phy(struct cas *cp) 783 { 784 int limit = STOP_TRIES_PHY; 785 u16 val; 786 787 cas_phy_write(cp, MII_BMCR, BMCR_RESET); 788 udelay(100); 789 while (--limit) { 790 val = cas_phy_read(cp, MII_BMCR); 791 if ((val & BMCR_RESET) == 0) 792 break; 793 udelay(10); 794 } 795 return limit <= 0; 796 } 797 798 static void cas_saturn_firmware_init(struct cas *cp) 799 { 800 const struct firmware *fw; 801 const char fw_name[] = "sun/cassini.bin"; 802 int err; 803 804 if (PHY_NS_DP83065 != cp->phy_id) 805 return; 806 807 err = request_firmware(&fw, fw_name, &cp->pdev->dev); 808 if (err) { 809 pr_err("Failed to load firmware \"%s\"\n", 810 fw_name); 811 return; 812 } 813 if (fw->size < 2) { 814 pr_err("bogus length %zu in \"%s\"\n", 815 fw->size, fw_name); 816 goto out; 817 } 818 cp->fw_load_addr= fw->data[1] << 8 | fw->data[0]; 819 cp->fw_size = fw->size - 2; 820 cp->fw_data = vmalloc(cp->fw_size); 821 if (!cp->fw_data) 822 goto out; 823 memcpy(cp->fw_data, &fw->data[2], cp->fw_size); 824 out: 825 release_firmware(fw); 826 } 827 828 static void cas_saturn_firmware_load(struct cas *cp) 829 { 830 int i; 831 832 if (!cp->fw_data) 833 return; 834 835 cas_phy_powerdown(cp); 836 837 /* expanded memory access mode */ 838 cas_phy_write(cp, DP83065_MII_MEM, 0x0); 839 840 /* pointer configuration for new firmware */ 841 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9); 842 cas_phy_write(cp, DP83065_MII_REGD, 0xbd); 843 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa); 844 cas_phy_write(cp, DP83065_MII_REGD, 0x82); 845 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb); 846 cas_phy_write(cp, DP83065_MII_REGD, 0x0); 847 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc); 848 cas_phy_write(cp, DP83065_MII_REGD, 0x39); 849 850 /* download new firmware */ 851 cas_phy_write(cp, DP83065_MII_MEM, 0x1); 852 cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr); 853 for (i = 0; i < cp->fw_size; i++) 854 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]); 855 856 /* enable firmware */ 857 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8); 858 cas_phy_write(cp, DP83065_MII_REGD, 0x1); 859 } 860 861 862 /* phy initialization */ 863 static void cas_phy_init(struct cas *cp) 864 { 865 u16 val; 866 867 /* if we're in MII/GMII mode, set up phy */ 868 if (CAS_PHY_MII(cp->phy_type)) { 869 writel(PCS_DATAPATH_MODE_MII, 870 cp->regs + REG_PCS_DATAPATH_MODE); 871 872 cas_mif_poll(cp, 0); 873 cas_reset_mii_phy(cp); /* take out of isolate mode */ 874 875 if (PHY_LUCENT_B0 == cp->phy_id) { 876 /* workaround link up/down issue with lucent */ 877 cas_phy_write(cp, LUCENT_MII_REG, 0x8000); 878 cas_phy_write(cp, MII_BMCR, 0x00f1); 879 cas_phy_write(cp, LUCENT_MII_REG, 0x0); 880 881 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) { 882 /* workarounds for broadcom phy */ 883 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20); 884 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012); 885 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804); 886 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013); 887 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204); 888 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); 889 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132); 890 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); 891 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232); 892 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F); 893 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20); 894 895 } else if (PHY_BROADCOM_5411 == cp->phy_id) { 896 val = cas_phy_read(cp, BROADCOM_MII_REG4); 897 val = cas_phy_read(cp, BROADCOM_MII_REG4); 898 if (val & 0x0080) { 899 /* link workaround */ 900 cas_phy_write(cp, BROADCOM_MII_REG4, 901 val & ~0x0080); 902 } 903 904 } else if (cp->cas_flags & CAS_FLAG_SATURN) { 905 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ? 906 SATURN_PCFG_FSI : 0x0, 907 cp->regs + REG_SATURN_PCFG); 908 909 /* load firmware to address 10Mbps auto-negotiation 910 * issue. NOTE: this will need to be changed if the 911 * default firmware gets fixed. 912 */ 913 if (PHY_NS_DP83065 == cp->phy_id) { 914 cas_saturn_firmware_load(cp); 915 } 916 cas_phy_powerup(cp); 917 } 918 919 /* advertise capabilities */ 920 val = cas_phy_read(cp, MII_BMCR); 921 val &= ~BMCR_ANENABLE; 922 cas_phy_write(cp, MII_BMCR, val); 923 udelay(10); 924 925 cas_phy_write(cp, MII_ADVERTISE, 926 cas_phy_read(cp, MII_ADVERTISE) | 927 (ADVERTISE_10HALF | ADVERTISE_10FULL | 928 ADVERTISE_100HALF | ADVERTISE_100FULL | 929 CAS_ADVERTISE_PAUSE | 930 CAS_ADVERTISE_ASYM_PAUSE)); 931 932 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 933 /* make sure that we don't advertise half 934 * duplex to avoid a chip issue 935 */ 936 val = cas_phy_read(cp, CAS_MII_1000_CTRL); 937 val &= ~CAS_ADVERTISE_1000HALF; 938 val |= CAS_ADVERTISE_1000FULL; 939 cas_phy_write(cp, CAS_MII_1000_CTRL, val); 940 } 941 942 } else { 943 /* reset pcs for serdes */ 944 u32 val; 945 int limit; 946 947 writel(PCS_DATAPATH_MODE_SERDES, 948 cp->regs + REG_PCS_DATAPATH_MODE); 949 950 /* enable serdes pins on saturn */ 951 if (cp->cas_flags & CAS_FLAG_SATURN) 952 writel(0, cp->regs + REG_SATURN_PCFG); 953 954 /* Reset PCS unit. */ 955 val = readl(cp->regs + REG_PCS_MII_CTRL); 956 val |= PCS_MII_RESET; 957 writel(val, cp->regs + REG_PCS_MII_CTRL); 958 959 limit = STOP_TRIES; 960 while (--limit > 0) { 961 udelay(10); 962 if ((readl(cp->regs + REG_PCS_MII_CTRL) & 963 PCS_MII_RESET) == 0) 964 break; 965 } 966 if (limit <= 0) 967 netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n", 968 readl(cp->regs + REG_PCS_STATE_MACHINE)); 969 970 /* Make sure PCS is disabled while changing advertisement 971 * configuration. 972 */ 973 writel(0x0, cp->regs + REG_PCS_CFG); 974 975 /* Advertise all capabilities except half-duplex. */ 976 val = readl(cp->regs + REG_PCS_MII_ADVERT); 977 val &= ~PCS_MII_ADVERT_HD; 978 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE | 979 PCS_MII_ADVERT_ASYM_PAUSE); 980 writel(val, cp->regs + REG_PCS_MII_ADVERT); 981 982 /* enable PCS */ 983 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG); 984 985 /* pcs workaround: enable sync detect */ 986 writel(PCS_SERDES_CTRL_SYNCD_EN, 987 cp->regs + REG_PCS_SERDES_CTRL); 988 } 989 } 990 991 992 static int cas_pcs_link_check(struct cas *cp) 993 { 994 u32 stat, state_machine; 995 int retval = 0; 996 997 /* The link status bit latches on zero, so you must 998 * read it twice in such a case to see a transition 999 * to the link being up. 1000 */ 1001 stat = readl(cp->regs + REG_PCS_MII_STATUS); 1002 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0) 1003 stat = readl(cp->regs + REG_PCS_MII_STATUS); 1004 1005 /* The remote-fault indication is only valid 1006 * when autoneg has completed. 1007 */ 1008 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP | 1009 PCS_MII_STATUS_REMOTE_FAULT)) == 1010 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) 1011 netif_info(cp, link, cp->dev, "PCS RemoteFault\n"); 1012 1013 /* work around link detection issue by querying the PCS state 1014 * machine directly. 1015 */ 1016 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE); 1017 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) { 1018 stat &= ~PCS_MII_STATUS_LINK_STATUS; 1019 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) { 1020 stat |= PCS_MII_STATUS_LINK_STATUS; 1021 } 1022 1023 if (stat & PCS_MII_STATUS_LINK_STATUS) { 1024 if (cp->lstate != link_up) { 1025 if (cp->opened) { 1026 cp->lstate = link_up; 1027 cp->link_transition = LINK_TRANSITION_LINK_UP; 1028 1029 cas_set_link_modes(cp); 1030 netif_carrier_on(cp->dev); 1031 } 1032 } 1033 } else if (cp->lstate == link_up) { 1034 cp->lstate = link_down; 1035 if (link_transition_timeout != 0 && 1036 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && 1037 !cp->link_transition_jiffies_valid) { 1038 /* 1039 * force a reset, as a workaround for the 1040 * link-failure problem. May want to move this to a 1041 * point a bit earlier in the sequence. If we had 1042 * generated a reset a short time ago, we'll wait for 1043 * the link timer to check the status until a 1044 * timer expires (link_transistion_jiffies_valid is 1045 * true when the timer is running.) Instead of using 1046 * a system timer, we just do a check whenever the 1047 * link timer is running - this clears the flag after 1048 * a suitable delay. 1049 */ 1050 retval = 1; 1051 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; 1052 cp->link_transition_jiffies = jiffies; 1053 cp->link_transition_jiffies_valid = 1; 1054 } else { 1055 cp->link_transition = LINK_TRANSITION_ON_FAILURE; 1056 } 1057 netif_carrier_off(cp->dev); 1058 if (cp->opened) 1059 netif_info(cp, link, cp->dev, "PCS link down\n"); 1060 1061 /* Cassini only: if you force a mode, there can be 1062 * sync problems on link down. to fix that, the following 1063 * things need to be checked: 1064 * 1) read serialink state register 1065 * 2) read pcs status register to verify link down. 1066 * 3) if link down and serial link == 0x03, then you need 1067 * to global reset the chip. 1068 */ 1069 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) { 1070 /* should check to see if we're in a forced mode */ 1071 stat = readl(cp->regs + REG_PCS_SERDES_STATE); 1072 if (stat == 0x03) 1073 return 1; 1074 } 1075 } else if (cp->lstate == link_down) { 1076 if (link_transition_timeout != 0 && 1077 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && 1078 !cp->link_transition_jiffies_valid) { 1079 /* force a reset, as a workaround for the 1080 * link-failure problem. May want to move 1081 * this to a point a bit earlier in the 1082 * sequence. 1083 */ 1084 retval = 1; 1085 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; 1086 cp->link_transition_jiffies = jiffies; 1087 cp->link_transition_jiffies_valid = 1; 1088 } else { 1089 cp->link_transition = LINK_TRANSITION_STILL_FAILED; 1090 } 1091 } 1092 1093 return retval; 1094 } 1095 1096 static int cas_pcs_interrupt(struct net_device *dev, 1097 struct cas *cp, u32 status) 1098 { 1099 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS); 1100 1101 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0) 1102 return 0; 1103 return cas_pcs_link_check(cp); 1104 } 1105 1106 static int cas_txmac_interrupt(struct net_device *dev, 1107 struct cas *cp, u32 status) 1108 { 1109 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS); 1110 1111 if (!txmac_stat) 1112 return 0; 1113 1114 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1115 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat); 1116 1117 /* Defer timer expiration is quite normal, 1118 * don't even log the event. 1119 */ 1120 if ((txmac_stat & MAC_TX_DEFER_TIMER) && 1121 !(txmac_stat & ~MAC_TX_DEFER_TIMER)) 1122 return 0; 1123 1124 spin_lock(&cp->stat_lock[0]); 1125 if (txmac_stat & MAC_TX_UNDERRUN) { 1126 netdev_err(dev, "TX MAC xmit underrun\n"); 1127 cp->net_stats[0].tx_fifo_errors++; 1128 } 1129 1130 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) { 1131 netdev_err(dev, "TX MAC max packet size error\n"); 1132 cp->net_stats[0].tx_errors++; 1133 } 1134 1135 /* The rest are all cases of one of the 16-bit TX 1136 * counters expiring. 1137 */ 1138 if (txmac_stat & MAC_TX_COLL_NORMAL) 1139 cp->net_stats[0].collisions += 0x10000; 1140 1141 if (txmac_stat & MAC_TX_COLL_EXCESS) { 1142 cp->net_stats[0].tx_aborted_errors += 0x10000; 1143 cp->net_stats[0].collisions += 0x10000; 1144 } 1145 1146 if (txmac_stat & MAC_TX_COLL_LATE) { 1147 cp->net_stats[0].tx_aborted_errors += 0x10000; 1148 cp->net_stats[0].collisions += 0x10000; 1149 } 1150 spin_unlock(&cp->stat_lock[0]); 1151 1152 /* We do not keep track of MAC_TX_COLL_FIRST and 1153 * MAC_TX_PEAK_ATTEMPTS events. 1154 */ 1155 return 0; 1156 } 1157 1158 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware) 1159 { 1160 cas_hp_inst_t *inst; 1161 u32 val; 1162 int i; 1163 1164 i = 0; 1165 while ((inst = firmware) && inst->note) { 1166 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR); 1167 1168 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val); 1169 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask); 1170 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI); 1171 1172 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10); 1173 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop); 1174 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext); 1175 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff); 1176 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext); 1177 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff); 1178 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op); 1179 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID); 1180 1181 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask); 1182 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift); 1183 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab); 1184 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg); 1185 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW); 1186 ++firmware; 1187 ++i; 1188 } 1189 } 1190 1191 static void cas_init_rx_dma(struct cas *cp) 1192 { 1193 u64 desc_dma = cp->block_dvma; 1194 u32 val; 1195 int i, size; 1196 1197 /* rx free descriptors */ 1198 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL); 1199 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0)); 1200 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0)); 1201 if ((N_RX_DESC_RINGS > 1) && 1202 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */ 1203 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1)); 1204 writel(val, cp->regs + REG_RX_CFG); 1205 1206 val = (unsigned long) cp->init_rxds[0] - 1207 (unsigned long) cp->init_block; 1208 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI); 1209 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW); 1210 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); 1211 1212 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1213 /* rx desc 2 is for IPSEC packets. however, 1214 * we don't it that for that purpose. 1215 */ 1216 val = (unsigned long) cp->init_rxds[1] - 1217 (unsigned long) cp->init_block; 1218 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI); 1219 writel((desc_dma + val) & 0xffffffff, cp->regs + 1220 REG_PLUS_RX_DB1_LOW); 1221 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs + 1222 REG_PLUS_RX_KICK1); 1223 } 1224 1225 /* rx completion registers */ 1226 val = (unsigned long) cp->init_rxcs[0] - 1227 (unsigned long) cp->init_block; 1228 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI); 1229 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW); 1230 1231 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1232 /* rx comp 2-4 */ 1233 for (i = 1; i < MAX_RX_COMP_RINGS; i++) { 1234 val = (unsigned long) cp->init_rxcs[i] - 1235 (unsigned long) cp->init_block; 1236 writel((desc_dma + val) >> 32, cp->regs + 1237 REG_PLUS_RX_CBN_HI(i)); 1238 writel((desc_dma + val) & 0xffffffff, cp->regs + 1239 REG_PLUS_RX_CBN_LOW(i)); 1240 } 1241 } 1242 1243 /* read selective clear regs to prevent spurious interrupts 1244 * on reset because complete == kick. 1245 * selective clear set up to prevent interrupts on resets 1246 */ 1247 readl(cp->regs + REG_INTR_STATUS_ALIAS); 1248 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR); 1249 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1250 for (i = 1; i < N_RX_COMP_RINGS; i++) 1251 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i)); 1252 1253 /* 2 is different from 3 and 4 */ 1254 if (N_RX_COMP_RINGS > 1) 1255 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1, 1256 cp->regs + REG_PLUS_ALIASN_CLEAR(1)); 1257 1258 for (i = 2; i < N_RX_COMP_RINGS; i++) 1259 writel(INTR_RX_DONE_ALT, 1260 cp->regs + REG_PLUS_ALIASN_CLEAR(i)); 1261 } 1262 1263 /* set up pause thresholds */ 1264 val = CAS_BASE(RX_PAUSE_THRESH_OFF, 1265 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM); 1266 val |= CAS_BASE(RX_PAUSE_THRESH_ON, 1267 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM); 1268 writel(val, cp->regs + REG_RX_PAUSE_THRESH); 1269 1270 /* zero out dma reassembly buffers */ 1271 for (i = 0; i < 64; i++) { 1272 writel(i, cp->regs + REG_RX_TABLE_ADDR); 1273 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW); 1274 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID); 1275 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI); 1276 } 1277 1278 /* make sure address register is 0 for normal operation */ 1279 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR); 1280 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR); 1281 1282 /* interrupt mitigation */ 1283 #ifdef USE_RX_BLANK 1284 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL); 1285 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL); 1286 writel(val, cp->regs + REG_RX_BLANK); 1287 #else 1288 writel(0x0, cp->regs + REG_RX_BLANK); 1289 #endif 1290 1291 /* interrupt generation as a function of low water marks for 1292 * free desc and completion entries. these are used to trigger 1293 * housekeeping for rx descs. we don't use the free interrupt 1294 * as it's not very useful 1295 */ 1296 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */ 1297 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL); 1298 writel(val, cp->regs + REG_RX_AE_THRESH); 1299 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1300 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1)); 1301 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH); 1302 } 1303 1304 /* Random early detect registers. useful for congestion avoidance. 1305 * this should be tunable. 1306 */ 1307 writel(0x0, cp->regs + REG_RX_RED); 1308 1309 /* receive page sizes. default == 2K (0x800) */ 1310 val = 0; 1311 if (cp->page_size == 0x1000) 1312 val = 0x1; 1313 else if (cp->page_size == 0x2000) 1314 val = 0x2; 1315 else if (cp->page_size == 0x4000) 1316 val = 0x3; 1317 1318 /* round mtu + offset. constrain to page size. */ 1319 size = cp->dev->mtu + 64; 1320 if (size > cp->page_size) 1321 size = cp->page_size; 1322 1323 if (size <= 0x400) 1324 i = 0x0; 1325 else if (size <= 0x800) 1326 i = 0x1; 1327 else if (size <= 0x1000) 1328 i = 0x2; 1329 else 1330 i = 0x3; 1331 1332 cp->mtu_stride = 1 << (i + 10); 1333 val = CAS_BASE(RX_PAGE_SIZE, val); 1334 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i); 1335 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10)); 1336 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1); 1337 writel(val, cp->regs + REG_RX_PAGE_SIZE); 1338 1339 /* enable the header parser if desired */ 1340 if (CAS_HP_FIRMWARE == cas_prog_null) 1341 return; 1342 1343 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS); 1344 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK; 1345 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL); 1346 writel(val, cp->regs + REG_HP_CFG); 1347 } 1348 1349 static inline void cas_rxc_init(struct cas_rx_comp *rxc) 1350 { 1351 memset(rxc, 0, sizeof(*rxc)); 1352 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO); 1353 } 1354 1355 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1] 1356 * flipping is protected by the fact that the chip will not 1357 * hand back the same page index while it's being processed. 1358 */ 1359 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index) 1360 { 1361 cas_page_t *page = cp->rx_pages[1][index]; 1362 cas_page_t *new; 1363 1364 if (page_count(page->buffer) == 1) 1365 return page; 1366 1367 new = cas_page_dequeue(cp); 1368 if (new) { 1369 spin_lock(&cp->rx_inuse_lock); 1370 list_add(&page->list, &cp->rx_inuse_list); 1371 spin_unlock(&cp->rx_inuse_lock); 1372 } 1373 return new; 1374 } 1375 1376 /* this needs to be changed if we actually use the ENC RX DESC ring */ 1377 static cas_page_t *cas_page_swap(struct cas *cp, const int ring, 1378 const int index) 1379 { 1380 cas_page_t **page0 = cp->rx_pages[0]; 1381 cas_page_t **page1 = cp->rx_pages[1]; 1382 1383 /* swap if buffer is in use */ 1384 if (page_count(page0[index]->buffer) > 1) { 1385 cas_page_t *new = cas_page_spare(cp, index); 1386 if (new) { 1387 page1[index] = page0[index]; 1388 page0[index] = new; 1389 } 1390 } 1391 RX_USED_SET(page0[index], 0); 1392 return page0[index]; 1393 } 1394 1395 static void cas_clean_rxds(struct cas *cp) 1396 { 1397 /* only clean ring 0 as ring 1 is used for spare buffers */ 1398 struct cas_rx_desc *rxd = cp->init_rxds[0]; 1399 int i, size; 1400 1401 /* release all rx flows */ 1402 for (i = 0; i < N_RX_FLOWS; i++) { 1403 struct sk_buff *skb; 1404 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) { 1405 cas_skb_release(skb); 1406 } 1407 } 1408 1409 /* initialize descriptors */ 1410 size = RX_DESC_RINGN_SIZE(0); 1411 for (i = 0; i < size; i++) { 1412 cas_page_t *page = cas_page_swap(cp, 0, i); 1413 rxd[i].buffer = cpu_to_le64(page->dma_addr); 1414 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) | 1415 CAS_BASE(RX_INDEX_RING, 0)); 1416 } 1417 1418 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4; 1419 cp->rx_last[0] = 0; 1420 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0); 1421 } 1422 1423 static void cas_clean_rxcs(struct cas *cp) 1424 { 1425 int i, j; 1426 1427 /* take ownership of rx comp descriptors */ 1428 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS); 1429 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS); 1430 for (i = 0; i < N_RX_COMP_RINGS; i++) { 1431 struct cas_rx_comp *rxc = cp->init_rxcs[i]; 1432 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) { 1433 cas_rxc_init(rxc + j); 1434 } 1435 } 1436 } 1437 1438 #if 0 1439 /* When we get a RX fifo overflow, the RX unit is probably hung 1440 * so we do the following. 1441 * 1442 * If any part of the reset goes wrong, we return 1 and that causes the 1443 * whole chip to be reset. 1444 */ 1445 static int cas_rxmac_reset(struct cas *cp) 1446 { 1447 struct net_device *dev = cp->dev; 1448 int limit; 1449 u32 val; 1450 1451 /* First, reset MAC RX. */ 1452 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 1453 for (limit = 0; limit < STOP_TRIES; limit++) { 1454 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN)) 1455 break; 1456 udelay(10); 1457 } 1458 if (limit == STOP_TRIES) { 1459 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n"); 1460 return 1; 1461 } 1462 1463 /* Second, disable RX DMA. */ 1464 writel(0, cp->regs + REG_RX_CFG); 1465 for (limit = 0; limit < STOP_TRIES; limit++) { 1466 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN)) 1467 break; 1468 udelay(10); 1469 } 1470 if (limit == STOP_TRIES) { 1471 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n"); 1472 return 1; 1473 } 1474 1475 mdelay(5); 1476 1477 /* Execute RX reset command. */ 1478 writel(SW_RESET_RX, cp->regs + REG_SW_RESET); 1479 for (limit = 0; limit < STOP_TRIES; limit++) { 1480 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX)) 1481 break; 1482 udelay(10); 1483 } 1484 if (limit == STOP_TRIES) { 1485 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n"); 1486 return 1; 1487 } 1488 1489 /* reset driver rx state */ 1490 cas_clean_rxds(cp); 1491 cas_clean_rxcs(cp); 1492 1493 /* Now, reprogram the rest of RX unit. */ 1494 cas_init_rx_dma(cp); 1495 1496 /* re-enable */ 1497 val = readl(cp->regs + REG_RX_CFG); 1498 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG); 1499 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); 1500 val = readl(cp->regs + REG_MAC_RX_CFG); 1501 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 1502 return 0; 1503 } 1504 #endif 1505 1506 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp, 1507 u32 status) 1508 { 1509 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS); 1510 1511 if (!stat) 1512 return 0; 1513 1514 netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat); 1515 1516 /* these are all rollovers */ 1517 spin_lock(&cp->stat_lock[0]); 1518 if (stat & MAC_RX_ALIGN_ERR) 1519 cp->net_stats[0].rx_frame_errors += 0x10000; 1520 1521 if (stat & MAC_RX_CRC_ERR) 1522 cp->net_stats[0].rx_crc_errors += 0x10000; 1523 1524 if (stat & MAC_RX_LEN_ERR) 1525 cp->net_stats[0].rx_length_errors += 0x10000; 1526 1527 if (stat & MAC_RX_OVERFLOW) { 1528 cp->net_stats[0].rx_over_errors++; 1529 cp->net_stats[0].rx_fifo_errors++; 1530 } 1531 1532 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR 1533 * events. 1534 */ 1535 spin_unlock(&cp->stat_lock[0]); 1536 return 0; 1537 } 1538 1539 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp, 1540 u32 status) 1541 { 1542 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS); 1543 1544 if (!stat) 1545 return 0; 1546 1547 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1548 "mac interrupt, stat: 0x%x\n", stat); 1549 1550 /* This interrupt is just for pause frame and pause 1551 * tracking. It is useful for diagnostics and debug 1552 * but probably by default we will mask these events. 1553 */ 1554 if (stat & MAC_CTRL_PAUSE_STATE) 1555 cp->pause_entered++; 1556 1557 if (stat & MAC_CTRL_PAUSE_RECEIVED) 1558 cp->pause_last_time_recvd = (stat >> 16); 1559 1560 return 0; 1561 } 1562 1563 1564 /* Must be invoked under cp->lock. */ 1565 static inline int cas_mdio_link_not_up(struct cas *cp) 1566 { 1567 u16 val; 1568 1569 switch (cp->lstate) { 1570 case link_force_ret: 1571 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n"); 1572 cas_phy_write(cp, MII_BMCR, cp->link_fcntl); 1573 cp->timer_ticks = 5; 1574 cp->lstate = link_force_ok; 1575 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1576 break; 1577 1578 case link_aneg: 1579 val = cas_phy_read(cp, MII_BMCR); 1580 1581 /* Try forced modes. we try things in the following order: 1582 * 1000 full -> 100 full/half -> 10 half 1583 */ 1584 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE); 1585 val |= BMCR_FULLDPLX; 1586 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? 1587 CAS_BMCR_SPEED1000 : BMCR_SPEED100; 1588 cas_phy_write(cp, MII_BMCR, val); 1589 cp->timer_ticks = 5; 1590 cp->lstate = link_force_try; 1591 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1592 break; 1593 1594 case link_force_try: 1595 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */ 1596 val = cas_phy_read(cp, MII_BMCR); 1597 cp->timer_ticks = 5; 1598 if (val & CAS_BMCR_SPEED1000) { /* gigabit */ 1599 val &= ~CAS_BMCR_SPEED1000; 1600 val |= (BMCR_SPEED100 | BMCR_FULLDPLX); 1601 cas_phy_write(cp, MII_BMCR, val); 1602 break; 1603 } 1604 1605 if (val & BMCR_SPEED100) { 1606 if (val & BMCR_FULLDPLX) /* fd failed */ 1607 val &= ~BMCR_FULLDPLX; 1608 else { /* 100Mbps failed */ 1609 val &= ~BMCR_SPEED100; 1610 } 1611 cas_phy_write(cp, MII_BMCR, val); 1612 break; 1613 } 1614 default: 1615 break; 1616 } 1617 return 0; 1618 } 1619 1620 1621 /* must be invoked with cp->lock held */ 1622 static int cas_mii_link_check(struct cas *cp, const u16 bmsr) 1623 { 1624 int restart; 1625 1626 if (bmsr & BMSR_LSTATUS) { 1627 /* Ok, here we got a link. If we had it due to a forced 1628 * fallback, and we were configured for autoneg, we 1629 * retry a short autoneg pass. If you know your hub is 1630 * broken, use ethtool ;) 1631 */ 1632 if ((cp->lstate == link_force_try) && 1633 (cp->link_cntl & BMCR_ANENABLE)) { 1634 cp->lstate = link_force_ret; 1635 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1636 cas_mif_poll(cp, 0); 1637 cp->link_fcntl = cas_phy_read(cp, MII_BMCR); 1638 cp->timer_ticks = 5; 1639 if (cp->opened) 1640 netif_info(cp, link, cp->dev, 1641 "Got link after fallback, retrying autoneg once...\n"); 1642 cas_phy_write(cp, MII_BMCR, 1643 cp->link_fcntl | BMCR_ANENABLE | 1644 BMCR_ANRESTART); 1645 cas_mif_poll(cp, 1); 1646 1647 } else if (cp->lstate != link_up) { 1648 cp->lstate = link_up; 1649 cp->link_transition = LINK_TRANSITION_LINK_UP; 1650 1651 if (cp->opened) { 1652 cas_set_link_modes(cp); 1653 netif_carrier_on(cp->dev); 1654 } 1655 } 1656 return 0; 1657 } 1658 1659 /* link not up. if the link was previously up, we restart the 1660 * whole process 1661 */ 1662 restart = 0; 1663 if (cp->lstate == link_up) { 1664 cp->lstate = link_down; 1665 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 1666 1667 netif_carrier_off(cp->dev); 1668 if (cp->opened) 1669 netif_info(cp, link, cp->dev, "Link down\n"); 1670 restart = 1; 1671 1672 } else if (++cp->timer_ticks > 10) 1673 cas_mdio_link_not_up(cp); 1674 1675 return restart; 1676 } 1677 1678 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp, 1679 u32 status) 1680 { 1681 u32 stat = readl(cp->regs + REG_MIF_STATUS); 1682 u16 bmsr; 1683 1684 /* check for a link change */ 1685 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0) 1686 return 0; 1687 1688 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat); 1689 return cas_mii_link_check(cp, bmsr); 1690 } 1691 1692 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp, 1693 u32 status) 1694 { 1695 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS); 1696 1697 if (!stat) 1698 return 0; 1699 1700 netdev_err(dev, "PCI error [%04x:%04x]", 1701 stat, readl(cp->regs + REG_BIM_DIAG)); 1702 1703 /* cassini+ has this reserved */ 1704 if ((stat & PCI_ERR_BADACK) && 1705 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0)) 1706 pr_cont(" <No ACK64# during ABS64 cycle>"); 1707 1708 if (stat & PCI_ERR_DTRTO) 1709 pr_cont(" <Delayed transaction timeout>"); 1710 if (stat & PCI_ERR_OTHER) 1711 pr_cont(" <other>"); 1712 if (stat & PCI_ERR_BIM_DMA_WRITE) 1713 pr_cont(" <BIM DMA 0 write req>"); 1714 if (stat & PCI_ERR_BIM_DMA_READ) 1715 pr_cont(" <BIM DMA 0 read req>"); 1716 pr_cont("\n"); 1717 1718 if (stat & PCI_ERR_OTHER) { 1719 u16 cfg; 1720 1721 /* Interrogate PCI config space for the 1722 * true cause. 1723 */ 1724 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg); 1725 netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg); 1726 if (cfg & PCI_STATUS_PARITY) 1727 netdev_err(dev, "PCI parity error detected\n"); 1728 if (cfg & PCI_STATUS_SIG_TARGET_ABORT) 1729 netdev_err(dev, "PCI target abort\n"); 1730 if (cfg & PCI_STATUS_REC_TARGET_ABORT) 1731 netdev_err(dev, "PCI master acks target abort\n"); 1732 if (cfg & PCI_STATUS_REC_MASTER_ABORT) 1733 netdev_err(dev, "PCI master abort\n"); 1734 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR) 1735 netdev_err(dev, "PCI system error SERR#\n"); 1736 if (cfg & PCI_STATUS_DETECTED_PARITY) 1737 netdev_err(dev, "PCI parity error\n"); 1738 1739 /* Write the error bits back to clear them. */ 1740 cfg &= (PCI_STATUS_PARITY | 1741 PCI_STATUS_SIG_TARGET_ABORT | 1742 PCI_STATUS_REC_TARGET_ABORT | 1743 PCI_STATUS_REC_MASTER_ABORT | 1744 PCI_STATUS_SIG_SYSTEM_ERROR | 1745 PCI_STATUS_DETECTED_PARITY); 1746 pci_write_config_word(cp->pdev, PCI_STATUS, cfg); 1747 } 1748 1749 /* For all PCI errors, we should reset the chip. */ 1750 return 1; 1751 } 1752 1753 /* All non-normal interrupt conditions get serviced here. 1754 * Returns non-zero if we should just exit the interrupt 1755 * handler right now (ie. if we reset the card which invalidates 1756 * all of the other original irq status bits). 1757 */ 1758 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp, 1759 u32 status) 1760 { 1761 if (status & INTR_RX_TAG_ERROR) { 1762 /* corrupt RX tag framing */ 1763 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 1764 "corrupt rx tag framing\n"); 1765 spin_lock(&cp->stat_lock[0]); 1766 cp->net_stats[0].rx_errors++; 1767 spin_unlock(&cp->stat_lock[0]); 1768 goto do_reset; 1769 } 1770 1771 if (status & INTR_RX_LEN_MISMATCH) { 1772 /* length mismatch. */ 1773 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 1774 "length mismatch for rx frame\n"); 1775 spin_lock(&cp->stat_lock[0]); 1776 cp->net_stats[0].rx_errors++; 1777 spin_unlock(&cp->stat_lock[0]); 1778 goto do_reset; 1779 } 1780 1781 if (status & INTR_PCS_STATUS) { 1782 if (cas_pcs_interrupt(dev, cp, status)) 1783 goto do_reset; 1784 } 1785 1786 if (status & INTR_TX_MAC_STATUS) { 1787 if (cas_txmac_interrupt(dev, cp, status)) 1788 goto do_reset; 1789 } 1790 1791 if (status & INTR_RX_MAC_STATUS) { 1792 if (cas_rxmac_interrupt(dev, cp, status)) 1793 goto do_reset; 1794 } 1795 1796 if (status & INTR_MAC_CTRL_STATUS) { 1797 if (cas_mac_interrupt(dev, cp, status)) 1798 goto do_reset; 1799 } 1800 1801 if (status & INTR_MIF_STATUS) { 1802 if (cas_mif_interrupt(dev, cp, status)) 1803 goto do_reset; 1804 } 1805 1806 if (status & INTR_PCI_ERROR_STATUS) { 1807 if (cas_pci_interrupt(dev, cp, status)) 1808 goto do_reset; 1809 } 1810 return 0; 1811 1812 do_reset: 1813 #if 1 1814 atomic_inc(&cp->reset_task_pending); 1815 atomic_inc(&cp->reset_task_pending_all); 1816 netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status); 1817 schedule_work(&cp->reset_task); 1818 #else 1819 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 1820 netdev_err(dev, "reset called in cas_abnormal_irq\n"); 1821 schedule_work(&cp->reset_task); 1822 #endif 1823 return 1; 1824 } 1825 1826 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when 1827 * determining whether to do a netif_stop/wakeup 1828 */ 1829 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1) 1830 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK) 1831 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr, 1832 const int len) 1833 { 1834 unsigned long off = addr + len; 1835 1836 if (CAS_TABORT(cp) == 1) 1837 return 0; 1838 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN) 1839 return 0; 1840 return TX_TARGET_ABORT_LEN; 1841 } 1842 1843 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit) 1844 { 1845 struct cas_tx_desc *txds; 1846 struct sk_buff **skbs; 1847 struct net_device *dev = cp->dev; 1848 int entry, count; 1849 1850 spin_lock(&cp->tx_lock[ring]); 1851 txds = cp->init_txds[ring]; 1852 skbs = cp->tx_skbs[ring]; 1853 entry = cp->tx_old[ring]; 1854 1855 count = TX_BUFF_COUNT(ring, entry, limit); 1856 while (entry != limit) { 1857 struct sk_buff *skb = skbs[entry]; 1858 dma_addr_t daddr; 1859 u32 dlen; 1860 int frag; 1861 1862 if (!skb) { 1863 /* this should never occur */ 1864 entry = TX_DESC_NEXT(ring, entry); 1865 continue; 1866 } 1867 1868 /* however, we might get only a partial skb release. */ 1869 count -= skb_shinfo(skb)->nr_frags + 1870 + cp->tx_tiny_use[ring][entry].nbufs + 1; 1871 if (count < 0) 1872 break; 1873 1874 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev, 1875 "tx[%d] done, slot %d\n", ring, entry); 1876 1877 skbs[entry] = NULL; 1878 cp->tx_tiny_use[ring][entry].nbufs = 0; 1879 1880 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 1881 struct cas_tx_desc *txd = txds + entry; 1882 1883 daddr = le64_to_cpu(txd->buffer); 1884 dlen = CAS_VAL(TX_DESC_BUFLEN, 1885 le64_to_cpu(txd->control)); 1886 pci_unmap_page(cp->pdev, daddr, dlen, 1887 PCI_DMA_TODEVICE); 1888 entry = TX_DESC_NEXT(ring, entry); 1889 1890 /* tiny buffer may follow */ 1891 if (cp->tx_tiny_use[ring][entry].used) { 1892 cp->tx_tiny_use[ring][entry].used = 0; 1893 entry = TX_DESC_NEXT(ring, entry); 1894 } 1895 } 1896 1897 spin_lock(&cp->stat_lock[ring]); 1898 cp->net_stats[ring].tx_packets++; 1899 cp->net_stats[ring].tx_bytes += skb->len; 1900 spin_unlock(&cp->stat_lock[ring]); 1901 dev_consume_skb_irq(skb); 1902 } 1903 cp->tx_old[ring] = entry; 1904 1905 /* this is wrong for multiple tx rings. the net device needs 1906 * multiple queues for this to do the right thing. we wait 1907 * for 2*packets to be available when using tiny buffers 1908 */ 1909 if (netif_queue_stopped(dev) && 1910 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))) 1911 netif_wake_queue(dev); 1912 spin_unlock(&cp->tx_lock[ring]); 1913 } 1914 1915 static void cas_tx(struct net_device *dev, struct cas *cp, 1916 u32 status) 1917 { 1918 int limit, ring; 1919 #ifdef USE_TX_COMPWB 1920 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb); 1921 #endif 1922 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1923 "tx interrupt, status: 0x%x, %llx\n", 1924 status, (unsigned long long)compwb); 1925 /* process all the rings */ 1926 for (ring = 0; ring < N_TX_RINGS; ring++) { 1927 #ifdef USE_TX_COMPWB 1928 /* use the completion writeback registers */ 1929 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) | 1930 CAS_VAL(TX_COMPWB_LSB, compwb); 1931 compwb = TX_COMPWB_NEXT(compwb); 1932 #else 1933 limit = readl(cp->regs + REG_TX_COMPN(ring)); 1934 #endif 1935 if (cp->tx_old[ring] != limit) 1936 cas_tx_ringN(cp, ring, limit); 1937 } 1938 } 1939 1940 1941 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc, 1942 int entry, const u64 *words, 1943 struct sk_buff **skbref) 1944 { 1945 int dlen, hlen, len, i, alloclen; 1946 int off, swivel = RX_SWIVEL_OFF_VAL; 1947 struct cas_page *page; 1948 struct sk_buff *skb; 1949 void *addr, *crcaddr; 1950 __sum16 csum; 1951 char *p; 1952 1953 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]); 1954 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]); 1955 len = hlen + dlen; 1956 1957 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT)) 1958 alloclen = len; 1959 else 1960 alloclen = max(hlen, RX_COPY_MIN); 1961 1962 skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size); 1963 if (skb == NULL) 1964 return -1; 1965 1966 *skbref = skb; 1967 skb_reserve(skb, swivel); 1968 1969 p = skb->data; 1970 addr = crcaddr = NULL; 1971 if (hlen) { /* always copy header pages */ 1972 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); 1973 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 1974 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 + 1975 swivel; 1976 1977 i = hlen; 1978 if (!dlen) /* attach FCS */ 1979 i += cp->crc_size; 1980 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, 1981 PCI_DMA_FROMDEVICE); 1982 addr = cas_page_map(page->buffer); 1983 memcpy(p, addr + off, i); 1984 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, 1985 PCI_DMA_FROMDEVICE); 1986 cas_page_unmap(addr); 1987 RX_USED_ADD(page, 0x100); 1988 p += hlen; 1989 swivel = 0; 1990 } 1991 1992 1993 if (alloclen < (hlen + dlen)) { 1994 skb_frag_t *frag = skb_shinfo(skb)->frags; 1995 1996 /* normal or jumbo packets. we use frags */ 1997 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 1998 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 1999 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; 2000 2001 hlen = min(cp->page_size - off, dlen); 2002 if (hlen < 0) { 2003 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 2004 "rx page overflow: %d\n", hlen); 2005 dev_kfree_skb_irq(skb); 2006 return -1; 2007 } 2008 i = hlen; 2009 if (i == dlen) /* attach FCS */ 2010 i += cp->crc_size; 2011 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, 2012 PCI_DMA_FROMDEVICE); 2013 2014 /* make sure we always copy a header */ 2015 swivel = 0; 2016 if (p == (char *) skb->data) { /* not split */ 2017 addr = cas_page_map(page->buffer); 2018 memcpy(p, addr + off, RX_COPY_MIN); 2019 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, 2020 PCI_DMA_FROMDEVICE); 2021 cas_page_unmap(addr); 2022 off += RX_COPY_MIN; 2023 swivel = RX_COPY_MIN; 2024 RX_USED_ADD(page, cp->mtu_stride); 2025 } else { 2026 RX_USED_ADD(page, hlen); 2027 } 2028 skb_put(skb, alloclen); 2029 2030 skb_shinfo(skb)->nr_frags++; 2031 skb->data_len += hlen - swivel; 2032 skb->truesize += hlen - swivel; 2033 skb->len += hlen - swivel; 2034 2035 __skb_frag_set_page(frag, page->buffer); 2036 __skb_frag_ref(frag); 2037 skb_frag_off_set(frag, off); 2038 skb_frag_size_set(frag, hlen - swivel); 2039 2040 /* any more data? */ 2041 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { 2042 hlen = dlen; 2043 off = 0; 2044 2045 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2046 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2047 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, 2048 hlen + cp->crc_size, 2049 PCI_DMA_FROMDEVICE); 2050 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, 2051 hlen + cp->crc_size, 2052 PCI_DMA_FROMDEVICE); 2053 2054 skb_shinfo(skb)->nr_frags++; 2055 skb->data_len += hlen; 2056 skb->len += hlen; 2057 frag++; 2058 2059 __skb_frag_set_page(frag, page->buffer); 2060 __skb_frag_ref(frag); 2061 skb_frag_off_set(frag, 0); 2062 skb_frag_size_set(frag, hlen); 2063 RX_USED_ADD(page, hlen + cp->crc_size); 2064 } 2065 2066 if (cp->crc_size) { 2067 addr = cas_page_map(page->buffer); 2068 crcaddr = addr + off + hlen; 2069 } 2070 2071 } else { 2072 /* copying packet */ 2073 if (!dlen) 2074 goto end_copy_pkt; 2075 2076 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 2077 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2078 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; 2079 hlen = min(cp->page_size - off, dlen); 2080 if (hlen < 0) { 2081 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 2082 "rx page overflow: %d\n", hlen); 2083 dev_kfree_skb_irq(skb); 2084 return -1; 2085 } 2086 i = hlen; 2087 if (i == dlen) /* attach FCS */ 2088 i += cp->crc_size; 2089 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, 2090 PCI_DMA_FROMDEVICE); 2091 addr = cas_page_map(page->buffer); 2092 memcpy(p, addr + off, i); 2093 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, 2094 PCI_DMA_FROMDEVICE); 2095 cas_page_unmap(addr); 2096 if (p == (char *) skb->data) /* not split */ 2097 RX_USED_ADD(page, cp->mtu_stride); 2098 else 2099 RX_USED_ADD(page, i); 2100 2101 /* any more data? */ 2102 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { 2103 p += hlen; 2104 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2105 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2106 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, 2107 dlen + cp->crc_size, 2108 PCI_DMA_FROMDEVICE); 2109 addr = cas_page_map(page->buffer); 2110 memcpy(p, addr, dlen + cp->crc_size); 2111 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, 2112 dlen + cp->crc_size, 2113 PCI_DMA_FROMDEVICE); 2114 cas_page_unmap(addr); 2115 RX_USED_ADD(page, dlen + cp->crc_size); 2116 } 2117 end_copy_pkt: 2118 if (cp->crc_size) { 2119 addr = NULL; 2120 crcaddr = skb->data + alloclen; 2121 } 2122 skb_put(skb, alloclen); 2123 } 2124 2125 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3])); 2126 if (cp->crc_size) { 2127 /* checksum includes FCS. strip it out. */ 2128 csum = csum_fold(csum_partial(crcaddr, cp->crc_size, 2129 csum_unfold(csum))); 2130 if (addr) 2131 cas_page_unmap(addr); 2132 } 2133 skb->protocol = eth_type_trans(skb, cp->dev); 2134 if (skb->protocol == htons(ETH_P_IP)) { 2135 skb->csum = csum_unfold(~csum); 2136 skb->ip_summed = CHECKSUM_COMPLETE; 2137 } else 2138 skb_checksum_none_assert(skb); 2139 return len; 2140 } 2141 2142 2143 /* we can handle up to 64 rx flows at a time. we do the same thing 2144 * as nonreassm except that we batch up the buffers. 2145 * NOTE: we currently just treat each flow as a bunch of packets that 2146 * we pass up. a better way would be to coalesce the packets 2147 * into a jumbo packet. to do that, we need to do the following: 2148 * 1) the first packet will have a clean split between header and 2149 * data. save both. 2150 * 2) each time the next flow packet comes in, extend the 2151 * data length and merge the checksums. 2152 * 3) on flow release, fix up the header. 2153 * 4) make sure the higher layer doesn't care. 2154 * because packets get coalesced, we shouldn't run into fragment count 2155 * issues. 2156 */ 2157 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words, 2158 struct sk_buff *skb) 2159 { 2160 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1); 2161 struct sk_buff_head *flow = &cp->rx_flows[flowid]; 2162 2163 /* this is protected at a higher layer, so no need to 2164 * do any additional locking here. stick the buffer 2165 * at the end. 2166 */ 2167 __skb_queue_tail(flow, skb); 2168 if (words[0] & RX_COMP1_RELEASE_FLOW) { 2169 while ((skb = __skb_dequeue(flow))) { 2170 cas_skb_release(skb); 2171 } 2172 } 2173 } 2174 2175 /* put rx descriptor back on ring. if a buffer is in use by a higher 2176 * layer, this will need to put in a replacement. 2177 */ 2178 static void cas_post_page(struct cas *cp, const int ring, const int index) 2179 { 2180 cas_page_t *new; 2181 int entry; 2182 2183 entry = cp->rx_old[ring]; 2184 2185 new = cas_page_swap(cp, ring, index); 2186 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr); 2187 cp->init_rxds[ring][entry].index = 2188 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) | 2189 CAS_BASE(RX_INDEX_RING, ring)); 2190 2191 entry = RX_DESC_ENTRY(ring, entry + 1); 2192 cp->rx_old[ring] = entry; 2193 2194 if (entry % 4) 2195 return; 2196 2197 if (ring == 0) 2198 writel(entry, cp->regs + REG_RX_KICK); 2199 else if ((N_RX_DESC_RINGS > 1) && 2200 (cp->cas_flags & CAS_FLAG_REG_PLUS)) 2201 writel(entry, cp->regs + REG_PLUS_RX_KICK1); 2202 } 2203 2204 2205 /* only when things are bad */ 2206 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num) 2207 { 2208 unsigned int entry, last, count, released; 2209 int cluster; 2210 cas_page_t **page = cp->rx_pages[ring]; 2211 2212 entry = cp->rx_old[ring]; 2213 2214 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 2215 "rxd[%d] interrupt, done: %d\n", ring, entry); 2216 2217 cluster = -1; 2218 count = entry & 0x3; 2219 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4); 2220 released = 0; 2221 while (entry != last) { 2222 /* make a new buffer if it's still in use */ 2223 if (page_count(page[entry]->buffer) > 1) { 2224 cas_page_t *new = cas_page_dequeue(cp); 2225 if (!new) { 2226 /* let the timer know that we need to 2227 * do this again 2228 */ 2229 cp->cas_flags |= CAS_FLAG_RXD_POST(ring); 2230 if (!timer_pending(&cp->link_timer)) 2231 mod_timer(&cp->link_timer, jiffies + 2232 CAS_LINK_FAST_TIMEOUT); 2233 cp->rx_old[ring] = entry; 2234 cp->rx_last[ring] = num ? num - released : 0; 2235 return -ENOMEM; 2236 } 2237 spin_lock(&cp->rx_inuse_lock); 2238 list_add(&page[entry]->list, &cp->rx_inuse_list); 2239 spin_unlock(&cp->rx_inuse_lock); 2240 cp->init_rxds[ring][entry].buffer = 2241 cpu_to_le64(new->dma_addr); 2242 page[entry] = new; 2243 2244 } 2245 2246 if (++count == 4) { 2247 cluster = entry; 2248 count = 0; 2249 } 2250 released++; 2251 entry = RX_DESC_ENTRY(ring, entry + 1); 2252 } 2253 cp->rx_old[ring] = entry; 2254 2255 if (cluster < 0) 2256 return 0; 2257 2258 if (ring == 0) 2259 writel(cluster, cp->regs + REG_RX_KICK); 2260 else if ((N_RX_DESC_RINGS > 1) && 2261 (cp->cas_flags & CAS_FLAG_REG_PLUS)) 2262 writel(cluster, cp->regs + REG_PLUS_RX_KICK1); 2263 return 0; 2264 } 2265 2266 2267 /* process a completion ring. packets are set up in three basic ways: 2268 * small packets: should be copied header + data in single buffer. 2269 * large packets: header and data in a single buffer. 2270 * split packets: header in a separate buffer from data. 2271 * data may be in multiple pages. data may be > 256 2272 * bytes but in a single page. 2273 * 2274 * NOTE: RX page posting is done in this routine as well. while there's 2275 * the capability of using multiple RX completion rings, it isn't 2276 * really worthwhile due to the fact that the page posting will 2277 * force serialization on the single descriptor ring. 2278 */ 2279 static int cas_rx_ringN(struct cas *cp, int ring, int budget) 2280 { 2281 struct cas_rx_comp *rxcs = cp->init_rxcs[ring]; 2282 int entry, drops; 2283 int npackets = 0; 2284 2285 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 2286 "rx[%d] interrupt, done: %d/%d\n", 2287 ring, 2288 readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]); 2289 2290 entry = cp->rx_new[ring]; 2291 drops = 0; 2292 while (1) { 2293 struct cas_rx_comp *rxc = rxcs + entry; 2294 struct sk_buff *uninitialized_var(skb); 2295 int type, len; 2296 u64 words[4]; 2297 int i, dring; 2298 2299 words[0] = le64_to_cpu(rxc->word1); 2300 words[1] = le64_to_cpu(rxc->word2); 2301 words[2] = le64_to_cpu(rxc->word3); 2302 words[3] = le64_to_cpu(rxc->word4); 2303 2304 /* don't touch if still owned by hw */ 2305 type = CAS_VAL(RX_COMP1_TYPE, words[0]); 2306 if (type == 0) 2307 break; 2308 2309 /* hw hasn't cleared the zero bit yet */ 2310 if (words[3] & RX_COMP4_ZERO) { 2311 break; 2312 } 2313 2314 /* get info on the packet */ 2315 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) { 2316 spin_lock(&cp->stat_lock[ring]); 2317 cp->net_stats[ring].rx_errors++; 2318 if (words[3] & RX_COMP4_LEN_MISMATCH) 2319 cp->net_stats[ring].rx_length_errors++; 2320 if (words[3] & RX_COMP4_BAD) 2321 cp->net_stats[ring].rx_crc_errors++; 2322 spin_unlock(&cp->stat_lock[ring]); 2323 2324 /* We'll just return it to Cassini. */ 2325 drop_it: 2326 spin_lock(&cp->stat_lock[ring]); 2327 ++cp->net_stats[ring].rx_dropped; 2328 spin_unlock(&cp->stat_lock[ring]); 2329 goto next; 2330 } 2331 2332 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb); 2333 if (len < 0) { 2334 ++drops; 2335 goto drop_it; 2336 } 2337 2338 /* see if it's a flow re-assembly or not. the driver 2339 * itself handles release back up. 2340 */ 2341 if (RX_DONT_BATCH || (type == 0x2)) { 2342 /* non-reassm: these always get released */ 2343 cas_skb_release(skb); 2344 } else { 2345 cas_rx_flow_pkt(cp, words, skb); 2346 } 2347 2348 spin_lock(&cp->stat_lock[ring]); 2349 cp->net_stats[ring].rx_packets++; 2350 cp->net_stats[ring].rx_bytes += len; 2351 spin_unlock(&cp->stat_lock[ring]); 2352 2353 next: 2354 npackets++; 2355 2356 /* should it be released? */ 2357 if (words[0] & RX_COMP1_RELEASE_HDR) { 2358 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); 2359 dring = CAS_VAL(RX_INDEX_RING, i); 2360 i = CAS_VAL(RX_INDEX_NUM, i); 2361 cas_post_page(cp, dring, i); 2362 } 2363 2364 if (words[0] & RX_COMP1_RELEASE_DATA) { 2365 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 2366 dring = CAS_VAL(RX_INDEX_RING, i); 2367 i = CAS_VAL(RX_INDEX_NUM, i); 2368 cas_post_page(cp, dring, i); 2369 } 2370 2371 if (words[0] & RX_COMP1_RELEASE_NEXT) { 2372 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2373 dring = CAS_VAL(RX_INDEX_RING, i); 2374 i = CAS_VAL(RX_INDEX_NUM, i); 2375 cas_post_page(cp, dring, i); 2376 } 2377 2378 /* skip to the next entry */ 2379 entry = RX_COMP_ENTRY(ring, entry + 1 + 2380 CAS_VAL(RX_COMP1_SKIP, words[0])); 2381 #ifdef USE_NAPI 2382 if (budget && (npackets >= budget)) 2383 break; 2384 #endif 2385 } 2386 cp->rx_new[ring] = entry; 2387 2388 if (drops) 2389 netdev_info(cp->dev, "Memory squeeze, deferring packet\n"); 2390 return npackets; 2391 } 2392 2393 2394 /* put completion entries back on the ring */ 2395 static void cas_post_rxcs_ringN(struct net_device *dev, 2396 struct cas *cp, int ring) 2397 { 2398 struct cas_rx_comp *rxc = cp->init_rxcs[ring]; 2399 int last, entry; 2400 2401 last = cp->rx_cur[ring]; 2402 entry = cp->rx_new[ring]; 2403 netif_printk(cp, intr, KERN_DEBUG, dev, 2404 "rxc[%d] interrupt, done: %d/%d\n", 2405 ring, readl(cp->regs + REG_RX_COMP_HEAD), entry); 2406 2407 /* zero and re-mark descriptors */ 2408 while (last != entry) { 2409 cas_rxc_init(rxc + last); 2410 last = RX_COMP_ENTRY(ring, last + 1); 2411 } 2412 cp->rx_cur[ring] = last; 2413 2414 if (ring == 0) 2415 writel(last, cp->regs + REG_RX_COMP_TAIL); 2416 else if (cp->cas_flags & CAS_FLAG_REG_PLUS) 2417 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring)); 2418 } 2419 2420 2421 2422 /* cassini can use all four PCI interrupts for the completion ring. 2423 * rings 3 and 4 are identical 2424 */ 2425 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 2426 static inline void cas_handle_irqN(struct net_device *dev, 2427 struct cas *cp, const u32 status, 2428 const int ring) 2429 { 2430 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT)) 2431 cas_post_rxcs_ringN(dev, cp, ring); 2432 } 2433 2434 static irqreturn_t cas_interruptN(int irq, void *dev_id) 2435 { 2436 struct net_device *dev = dev_id; 2437 struct cas *cp = netdev_priv(dev); 2438 unsigned long flags; 2439 int ring = (irq == cp->pci_irq_INTC) ? 2 : 3; 2440 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring)); 2441 2442 /* check for shared irq */ 2443 if (status == 0) 2444 return IRQ_NONE; 2445 2446 spin_lock_irqsave(&cp->lock, flags); 2447 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ 2448 #ifdef USE_NAPI 2449 cas_mask_intr(cp); 2450 napi_schedule(&cp->napi); 2451 #else 2452 cas_rx_ringN(cp, ring, 0); 2453 #endif 2454 status &= ~INTR_RX_DONE_ALT; 2455 } 2456 2457 if (status) 2458 cas_handle_irqN(dev, cp, status, ring); 2459 spin_unlock_irqrestore(&cp->lock, flags); 2460 return IRQ_HANDLED; 2461 } 2462 #endif 2463 2464 #ifdef USE_PCI_INTB 2465 /* everything but rx packets */ 2466 static inline void cas_handle_irq1(struct cas *cp, const u32 status) 2467 { 2468 if (status & INTR_RX_BUF_UNAVAIL_1) { 2469 /* Frame arrived, no free RX buffers available. 2470 * NOTE: we can get this on a link transition. */ 2471 cas_post_rxds_ringN(cp, 1, 0); 2472 spin_lock(&cp->stat_lock[1]); 2473 cp->net_stats[1].rx_dropped++; 2474 spin_unlock(&cp->stat_lock[1]); 2475 } 2476 2477 if (status & INTR_RX_BUF_AE_1) 2478 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) - 2479 RX_AE_FREEN_VAL(1)); 2480 2481 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) 2482 cas_post_rxcs_ringN(cp, 1); 2483 } 2484 2485 /* ring 2 handles a few more events than 3 and 4 */ 2486 static irqreturn_t cas_interrupt1(int irq, void *dev_id) 2487 { 2488 struct net_device *dev = dev_id; 2489 struct cas *cp = netdev_priv(dev); 2490 unsigned long flags; 2491 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); 2492 2493 /* check for shared interrupt */ 2494 if (status == 0) 2495 return IRQ_NONE; 2496 2497 spin_lock_irqsave(&cp->lock, flags); 2498 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ 2499 #ifdef USE_NAPI 2500 cas_mask_intr(cp); 2501 napi_schedule(&cp->napi); 2502 #else 2503 cas_rx_ringN(cp, 1, 0); 2504 #endif 2505 status &= ~INTR_RX_DONE_ALT; 2506 } 2507 if (status) 2508 cas_handle_irq1(cp, status); 2509 spin_unlock_irqrestore(&cp->lock, flags); 2510 return IRQ_HANDLED; 2511 } 2512 #endif 2513 2514 static inline void cas_handle_irq(struct net_device *dev, 2515 struct cas *cp, const u32 status) 2516 { 2517 /* housekeeping interrupts */ 2518 if (status & INTR_ERROR_MASK) 2519 cas_abnormal_irq(dev, cp, status); 2520 2521 if (status & INTR_RX_BUF_UNAVAIL) { 2522 /* Frame arrived, no free RX buffers available. 2523 * NOTE: we can get this on a link transition. 2524 */ 2525 cas_post_rxds_ringN(cp, 0, 0); 2526 spin_lock(&cp->stat_lock[0]); 2527 cp->net_stats[0].rx_dropped++; 2528 spin_unlock(&cp->stat_lock[0]); 2529 } else if (status & INTR_RX_BUF_AE) { 2530 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) - 2531 RX_AE_FREEN_VAL(0)); 2532 } 2533 2534 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) 2535 cas_post_rxcs_ringN(dev, cp, 0); 2536 } 2537 2538 static irqreturn_t cas_interrupt(int irq, void *dev_id) 2539 { 2540 struct net_device *dev = dev_id; 2541 struct cas *cp = netdev_priv(dev); 2542 unsigned long flags; 2543 u32 status = readl(cp->regs + REG_INTR_STATUS); 2544 2545 if (status == 0) 2546 return IRQ_NONE; 2547 2548 spin_lock_irqsave(&cp->lock, flags); 2549 if (status & (INTR_TX_ALL | INTR_TX_INTME)) { 2550 cas_tx(dev, cp, status); 2551 status &= ~(INTR_TX_ALL | INTR_TX_INTME); 2552 } 2553 2554 if (status & INTR_RX_DONE) { 2555 #ifdef USE_NAPI 2556 cas_mask_intr(cp); 2557 napi_schedule(&cp->napi); 2558 #else 2559 cas_rx_ringN(cp, 0, 0); 2560 #endif 2561 status &= ~INTR_RX_DONE; 2562 } 2563 2564 if (status) 2565 cas_handle_irq(dev, cp, status); 2566 spin_unlock_irqrestore(&cp->lock, flags); 2567 return IRQ_HANDLED; 2568 } 2569 2570 2571 #ifdef USE_NAPI 2572 static int cas_poll(struct napi_struct *napi, int budget) 2573 { 2574 struct cas *cp = container_of(napi, struct cas, napi); 2575 struct net_device *dev = cp->dev; 2576 int i, enable_intr, credits; 2577 u32 status = readl(cp->regs + REG_INTR_STATUS); 2578 unsigned long flags; 2579 2580 spin_lock_irqsave(&cp->lock, flags); 2581 cas_tx(dev, cp, status); 2582 spin_unlock_irqrestore(&cp->lock, flags); 2583 2584 /* NAPI rx packets. we spread the credits across all of the 2585 * rxc rings 2586 * 2587 * to make sure we're fair with the work we loop through each 2588 * ring N_RX_COMP_RING times with a request of 2589 * budget / N_RX_COMP_RINGS 2590 */ 2591 enable_intr = 1; 2592 credits = 0; 2593 for (i = 0; i < N_RX_COMP_RINGS; i++) { 2594 int j; 2595 for (j = 0; j < N_RX_COMP_RINGS; j++) { 2596 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS); 2597 if (credits >= budget) { 2598 enable_intr = 0; 2599 goto rx_comp; 2600 } 2601 } 2602 } 2603 2604 rx_comp: 2605 /* final rx completion */ 2606 spin_lock_irqsave(&cp->lock, flags); 2607 if (status) 2608 cas_handle_irq(dev, cp, status); 2609 2610 #ifdef USE_PCI_INTB 2611 if (N_RX_COMP_RINGS > 1) { 2612 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); 2613 if (status) 2614 cas_handle_irq1(dev, cp, status); 2615 } 2616 #endif 2617 2618 #ifdef USE_PCI_INTC 2619 if (N_RX_COMP_RINGS > 2) { 2620 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2)); 2621 if (status) 2622 cas_handle_irqN(dev, cp, status, 2); 2623 } 2624 #endif 2625 2626 #ifdef USE_PCI_INTD 2627 if (N_RX_COMP_RINGS > 3) { 2628 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3)); 2629 if (status) 2630 cas_handle_irqN(dev, cp, status, 3); 2631 } 2632 #endif 2633 spin_unlock_irqrestore(&cp->lock, flags); 2634 if (enable_intr) { 2635 napi_complete(napi); 2636 cas_unmask_intr(cp); 2637 } 2638 return credits; 2639 } 2640 #endif 2641 2642 #ifdef CONFIG_NET_POLL_CONTROLLER 2643 static void cas_netpoll(struct net_device *dev) 2644 { 2645 struct cas *cp = netdev_priv(dev); 2646 2647 cas_disable_irq(cp, 0); 2648 cas_interrupt(cp->pdev->irq, dev); 2649 cas_enable_irq(cp, 0); 2650 2651 #ifdef USE_PCI_INTB 2652 if (N_RX_COMP_RINGS > 1) { 2653 /* cas_interrupt1(); */ 2654 } 2655 #endif 2656 #ifdef USE_PCI_INTC 2657 if (N_RX_COMP_RINGS > 2) { 2658 /* cas_interruptN(); */ 2659 } 2660 #endif 2661 #ifdef USE_PCI_INTD 2662 if (N_RX_COMP_RINGS > 3) { 2663 /* cas_interruptN(); */ 2664 } 2665 #endif 2666 } 2667 #endif 2668 2669 static void cas_tx_timeout(struct net_device *dev) 2670 { 2671 struct cas *cp = netdev_priv(dev); 2672 2673 netdev_err(dev, "transmit timed out, resetting\n"); 2674 if (!cp->hw_running) { 2675 netdev_err(dev, "hrm.. hw not running!\n"); 2676 return; 2677 } 2678 2679 netdev_err(dev, "MIF_STATE[%08x]\n", 2680 readl(cp->regs + REG_MIF_STATE_MACHINE)); 2681 2682 netdev_err(dev, "MAC_STATE[%08x]\n", 2683 readl(cp->regs + REG_MAC_STATE_MACHINE)); 2684 2685 netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n", 2686 readl(cp->regs + REG_TX_CFG), 2687 readl(cp->regs + REG_MAC_TX_STATUS), 2688 readl(cp->regs + REG_MAC_TX_CFG), 2689 readl(cp->regs + REG_TX_FIFO_PKT_CNT), 2690 readl(cp->regs + REG_TX_FIFO_WRITE_PTR), 2691 readl(cp->regs + REG_TX_FIFO_READ_PTR), 2692 readl(cp->regs + REG_TX_SM_1), 2693 readl(cp->regs + REG_TX_SM_2)); 2694 2695 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n", 2696 readl(cp->regs + REG_RX_CFG), 2697 readl(cp->regs + REG_MAC_RX_STATUS), 2698 readl(cp->regs + REG_MAC_RX_CFG)); 2699 2700 netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n", 2701 readl(cp->regs + REG_HP_STATE_MACHINE), 2702 readl(cp->regs + REG_HP_STATUS0), 2703 readl(cp->regs + REG_HP_STATUS1), 2704 readl(cp->regs + REG_HP_STATUS2)); 2705 2706 #if 1 2707 atomic_inc(&cp->reset_task_pending); 2708 atomic_inc(&cp->reset_task_pending_all); 2709 schedule_work(&cp->reset_task); 2710 #else 2711 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 2712 schedule_work(&cp->reset_task); 2713 #endif 2714 } 2715 2716 static inline int cas_intme(int ring, int entry) 2717 { 2718 /* Algorithm: IRQ every 1/2 of descriptors. */ 2719 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1))) 2720 return 1; 2721 return 0; 2722 } 2723 2724 2725 static void cas_write_txd(struct cas *cp, int ring, int entry, 2726 dma_addr_t mapping, int len, u64 ctrl, int last) 2727 { 2728 struct cas_tx_desc *txd = cp->init_txds[ring] + entry; 2729 2730 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len); 2731 if (cas_intme(ring, entry)) 2732 ctrl |= TX_DESC_INTME; 2733 if (last) 2734 ctrl |= TX_DESC_EOF; 2735 txd->control = cpu_to_le64(ctrl); 2736 txd->buffer = cpu_to_le64(mapping); 2737 } 2738 2739 static inline void *tx_tiny_buf(struct cas *cp, const int ring, 2740 const int entry) 2741 { 2742 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry; 2743 } 2744 2745 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring, 2746 const int entry, const int tentry) 2747 { 2748 cp->tx_tiny_use[ring][tentry].nbufs++; 2749 cp->tx_tiny_use[ring][entry].used = 1; 2750 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry; 2751 } 2752 2753 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring, 2754 struct sk_buff *skb) 2755 { 2756 struct net_device *dev = cp->dev; 2757 int entry, nr_frags, frag, tabort, tentry; 2758 dma_addr_t mapping; 2759 unsigned long flags; 2760 u64 ctrl; 2761 u32 len; 2762 2763 spin_lock_irqsave(&cp->tx_lock[ring], flags); 2764 2765 /* This is a hard error, log it. */ 2766 if (TX_BUFFS_AVAIL(cp, ring) <= 2767 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) { 2768 netif_stop_queue(dev); 2769 spin_unlock_irqrestore(&cp->tx_lock[ring], flags); 2770 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); 2771 return 1; 2772 } 2773 2774 ctrl = 0; 2775 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2776 const u64 csum_start_off = skb_checksum_start_offset(skb); 2777 const u64 csum_stuff_off = csum_start_off + skb->csum_offset; 2778 2779 ctrl = TX_DESC_CSUM_EN | 2780 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) | 2781 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off); 2782 } 2783 2784 entry = cp->tx_new[ring]; 2785 cp->tx_skbs[ring][entry] = skb; 2786 2787 nr_frags = skb_shinfo(skb)->nr_frags; 2788 len = skb_headlen(skb); 2789 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data), 2790 offset_in_page(skb->data), len, 2791 PCI_DMA_TODEVICE); 2792 2793 tentry = entry; 2794 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len); 2795 if (unlikely(tabort)) { 2796 /* NOTE: len is always > tabort */ 2797 cas_write_txd(cp, ring, entry, mapping, len - tabort, 2798 ctrl | TX_DESC_SOF, 0); 2799 entry = TX_DESC_NEXT(ring, entry); 2800 2801 skb_copy_from_linear_data_offset(skb, len - tabort, 2802 tx_tiny_buf(cp, ring, entry), tabort); 2803 mapping = tx_tiny_map(cp, ring, entry, tentry); 2804 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl, 2805 (nr_frags == 0)); 2806 } else { 2807 cas_write_txd(cp, ring, entry, mapping, len, ctrl | 2808 TX_DESC_SOF, (nr_frags == 0)); 2809 } 2810 entry = TX_DESC_NEXT(ring, entry); 2811 2812 for (frag = 0; frag < nr_frags; frag++) { 2813 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag]; 2814 2815 len = skb_frag_size(fragp); 2816 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len, 2817 DMA_TO_DEVICE); 2818 2819 tabort = cas_calc_tabort(cp, skb_frag_off(fragp), len); 2820 if (unlikely(tabort)) { 2821 void *addr; 2822 2823 /* NOTE: len is always > tabort */ 2824 cas_write_txd(cp, ring, entry, mapping, len - tabort, 2825 ctrl, 0); 2826 entry = TX_DESC_NEXT(ring, entry); 2827 2828 addr = cas_page_map(skb_frag_page(fragp)); 2829 memcpy(tx_tiny_buf(cp, ring, entry), 2830 addr + skb_frag_off(fragp) + len - tabort, 2831 tabort); 2832 cas_page_unmap(addr); 2833 mapping = tx_tiny_map(cp, ring, entry, tentry); 2834 len = tabort; 2835 } 2836 2837 cas_write_txd(cp, ring, entry, mapping, len, ctrl, 2838 (frag + 1 == nr_frags)); 2839 entry = TX_DESC_NEXT(ring, entry); 2840 } 2841 2842 cp->tx_new[ring] = entry; 2843 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)) 2844 netif_stop_queue(dev); 2845 2846 netif_printk(cp, tx_queued, KERN_DEBUG, dev, 2847 "tx[%d] queued, slot %d, skblen %d, avail %d\n", 2848 ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring)); 2849 writel(entry, cp->regs + REG_TX_KICKN(ring)); 2850 spin_unlock_irqrestore(&cp->tx_lock[ring], flags); 2851 return 0; 2852 } 2853 2854 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev) 2855 { 2856 struct cas *cp = netdev_priv(dev); 2857 2858 /* this is only used as a load-balancing hint, so it doesn't 2859 * need to be SMP safe 2860 */ 2861 static int ring; 2862 2863 if (skb_padto(skb, cp->min_frame_size)) 2864 return NETDEV_TX_OK; 2865 2866 /* XXX: we need some higher-level QoS hooks to steer packets to 2867 * individual queues. 2868 */ 2869 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb)) 2870 return NETDEV_TX_BUSY; 2871 return NETDEV_TX_OK; 2872 } 2873 2874 static void cas_init_tx_dma(struct cas *cp) 2875 { 2876 u64 desc_dma = cp->block_dvma; 2877 unsigned long off; 2878 u32 val; 2879 int i; 2880 2881 /* set up tx completion writeback registers. must be 8-byte aligned */ 2882 #ifdef USE_TX_COMPWB 2883 off = offsetof(struct cas_init_block, tx_compwb); 2884 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI); 2885 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW); 2886 #endif 2887 2888 /* enable completion writebacks, enable paced mode, 2889 * disable read pipe, and disable pre-interrupt compwbs 2890 */ 2891 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 | 2892 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 | 2893 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE | 2894 TX_CFG_INTR_COMPWB_DIS; 2895 2896 /* write out tx ring info and tx desc bases */ 2897 for (i = 0; i < MAX_TX_RINGS; i++) { 2898 off = (unsigned long) cp->init_txds[i] - 2899 (unsigned long) cp->init_block; 2900 2901 val |= CAS_TX_RINGN_BASE(i); 2902 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i)); 2903 writel((desc_dma + off) & 0xffffffff, cp->regs + 2904 REG_TX_DBN_LOW(i)); 2905 /* don't zero out the kick register here as the system 2906 * will wedge 2907 */ 2908 } 2909 writel(val, cp->regs + REG_TX_CFG); 2910 2911 /* program max burst sizes. these numbers should be different 2912 * if doing QoS. 2913 */ 2914 #ifdef USE_QOS 2915 writel(0x800, cp->regs + REG_TX_MAXBURST_0); 2916 writel(0x1600, cp->regs + REG_TX_MAXBURST_1); 2917 writel(0x2400, cp->regs + REG_TX_MAXBURST_2); 2918 writel(0x4800, cp->regs + REG_TX_MAXBURST_3); 2919 #else 2920 writel(0x800, cp->regs + REG_TX_MAXBURST_0); 2921 writel(0x800, cp->regs + REG_TX_MAXBURST_1); 2922 writel(0x800, cp->regs + REG_TX_MAXBURST_2); 2923 writel(0x800, cp->regs + REG_TX_MAXBURST_3); 2924 #endif 2925 } 2926 2927 /* Must be invoked under cp->lock. */ 2928 static inline void cas_init_dma(struct cas *cp) 2929 { 2930 cas_init_tx_dma(cp); 2931 cas_init_rx_dma(cp); 2932 } 2933 2934 static void cas_process_mc_list(struct cas *cp) 2935 { 2936 u16 hash_table[16]; 2937 u32 crc; 2938 struct netdev_hw_addr *ha; 2939 int i = 1; 2940 2941 memset(hash_table, 0, sizeof(hash_table)); 2942 netdev_for_each_mc_addr(ha, cp->dev) { 2943 if (i <= CAS_MC_EXACT_MATCH_SIZE) { 2944 /* use the alternate mac address registers for the 2945 * first 15 multicast addresses 2946 */ 2947 writel((ha->addr[4] << 8) | ha->addr[5], 2948 cp->regs + REG_MAC_ADDRN(i*3 + 0)); 2949 writel((ha->addr[2] << 8) | ha->addr[3], 2950 cp->regs + REG_MAC_ADDRN(i*3 + 1)); 2951 writel((ha->addr[0] << 8) | ha->addr[1], 2952 cp->regs + REG_MAC_ADDRN(i*3 + 2)); 2953 i++; 2954 } 2955 else { 2956 /* use hw hash table for the next series of 2957 * multicast addresses 2958 */ 2959 crc = ether_crc_le(ETH_ALEN, ha->addr); 2960 crc >>= 24; 2961 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); 2962 } 2963 } 2964 for (i = 0; i < 16; i++) 2965 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i)); 2966 } 2967 2968 /* Must be invoked under cp->lock. */ 2969 static u32 cas_setup_multicast(struct cas *cp) 2970 { 2971 u32 rxcfg = 0; 2972 int i; 2973 2974 if (cp->dev->flags & IFF_PROMISC) { 2975 rxcfg |= MAC_RX_CFG_PROMISC_EN; 2976 2977 } else if (cp->dev->flags & IFF_ALLMULTI) { 2978 for (i=0; i < 16; i++) 2979 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i)); 2980 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; 2981 2982 } else { 2983 cas_process_mc_list(cp); 2984 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; 2985 } 2986 2987 return rxcfg; 2988 } 2989 2990 /* must be invoked under cp->stat_lock[N_TX_RINGS] */ 2991 static void cas_clear_mac_err(struct cas *cp) 2992 { 2993 writel(0, cp->regs + REG_MAC_COLL_NORMAL); 2994 writel(0, cp->regs + REG_MAC_COLL_FIRST); 2995 writel(0, cp->regs + REG_MAC_COLL_EXCESS); 2996 writel(0, cp->regs + REG_MAC_COLL_LATE); 2997 writel(0, cp->regs + REG_MAC_TIMER_DEFER); 2998 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK); 2999 writel(0, cp->regs + REG_MAC_RECV_FRAME); 3000 writel(0, cp->regs + REG_MAC_LEN_ERR); 3001 writel(0, cp->regs + REG_MAC_ALIGN_ERR); 3002 writel(0, cp->regs + REG_MAC_FCS_ERR); 3003 writel(0, cp->regs + REG_MAC_RX_CODE_ERR); 3004 } 3005 3006 3007 static void cas_mac_reset(struct cas *cp) 3008 { 3009 int i; 3010 3011 /* do both TX and RX reset */ 3012 writel(0x1, cp->regs + REG_MAC_TX_RESET); 3013 writel(0x1, cp->regs + REG_MAC_RX_RESET); 3014 3015 /* wait for TX */ 3016 i = STOP_TRIES; 3017 while (i-- > 0) { 3018 if (readl(cp->regs + REG_MAC_TX_RESET) == 0) 3019 break; 3020 udelay(10); 3021 } 3022 3023 /* wait for RX */ 3024 i = STOP_TRIES; 3025 while (i-- > 0) { 3026 if (readl(cp->regs + REG_MAC_RX_RESET) == 0) 3027 break; 3028 udelay(10); 3029 } 3030 3031 if (readl(cp->regs + REG_MAC_TX_RESET) | 3032 readl(cp->regs + REG_MAC_RX_RESET)) 3033 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n", 3034 readl(cp->regs + REG_MAC_TX_RESET), 3035 readl(cp->regs + REG_MAC_RX_RESET), 3036 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3037 } 3038 3039 3040 /* Must be invoked under cp->lock. */ 3041 static void cas_init_mac(struct cas *cp) 3042 { 3043 unsigned char *e = &cp->dev->dev_addr[0]; 3044 int i; 3045 cas_mac_reset(cp); 3046 3047 /* setup core arbitration weight register */ 3048 writel(CAWR_RR_DIS, cp->regs + REG_CAWR); 3049 3050 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) 3051 /* set the infinite burst register for chips that don't have 3052 * pci issues. 3053 */ 3054 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0) 3055 writel(INF_BURST_EN, cp->regs + REG_INF_BURST); 3056 #endif 3057 3058 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE); 3059 3060 writel(0x00, cp->regs + REG_MAC_IPG0); 3061 writel(0x08, cp->regs + REG_MAC_IPG1); 3062 writel(0x04, cp->regs + REG_MAC_IPG2); 3063 3064 /* change later for 802.3z */ 3065 writel(0x40, cp->regs + REG_MAC_SLOT_TIME); 3066 3067 /* min frame + FCS */ 3068 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN); 3069 3070 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we 3071 * specify the maximum frame size to prevent RX tag errors on 3072 * oversized frames. 3073 */ 3074 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) | 3075 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME, 3076 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)), 3077 cp->regs + REG_MAC_FRAMESIZE_MAX); 3078 3079 /* NOTE: crc_size is used as a surrogate for half-duplex. 3080 * workaround saturn half-duplex issue by increasing preamble 3081 * size to 65 bytes. 3082 */ 3083 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size) 3084 writel(0x41, cp->regs + REG_MAC_PA_SIZE); 3085 else 3086 writel(0x07, cp->regs + REG_MAC_PA_SIZE); 3087 writel(0x04, cp->regs + REG_MAC_JAM_SIZE); 3088 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT); 3089 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE); 3090 3091 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED); 3092 3093 writel(0, cp->regs + REG_MAC_ADDR_FILTER0); 3094 writel(0, cp->regs + REG_MAC_ADDR_FILTER1); 3095 writel(0, cp->regs + REG_MAC_ADDR_FILTER2); 3096 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK); 3097 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK); 3098 3099 /* setup mac address in perfect filter array */ 3100 for (i = 0; i < 45; i++) 3101 writel(0x0, cp->regs + REG_MAC_ADDRN(i)); 3102 3103 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0)); 3104 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1)); 3105 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2)); 3106 3107 writel(0x0001, cp->regs + REG_MAC_ADDRN(42)); 3108 writel(0xc200, cp->regs + REG_MAC_ADDRN(43)); 3109 writel(0x0180, cp->regs + REG_MAC_ADDRN(44)); 3110 3111 cp->mac_rx_cfg = cas_setup_multicast(cp); 3112 3113 spin_lock(&cp->stat_lock[N_TX_RINGS]); 3114 cas_clear_mac_err(cp); 3115 spin_unlock(&cp->stat_lock[N_TX_RINGS]); 3116 3117 /* Setup MAC interrupts. We want to get all of the interesting 3118 * counter expiration events, but we do not want to hear about 3119 * normal rx/tx as the DMA engine tells us that. 3120 */ 3121 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK); 3122 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); 3123 3124 /* Don't enable even the PAUSE interrupts for now, we 3125 * make no use of those events other than to record them. 3126 */ 3127 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK); 3128 } 3129 3130 /* Must be invoked under cp->lock. */ 3131 static void cas_init_pause_thresholds(struct cas *cp) 3132 { 3133 /* Calculate pause thresholds. Setting the OFF threshold to the 3134 * full RX fifo size effectively disables PAUSE generation 3135 */ 3136 if (cp->rx_fifo_size <= (2 * 1024)) { 3137 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size; 3138 } else { 3139 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63; 3140 if (max_frame * 3 > cp->rx_fifo_size) { 3141 cp->rx_pause_off = 7104; 3142 cp->rx_pause_on = 960; 3143 } else { 3144 int off = (cp->rx_fifo_size - (max_frame * 2)); 3145 int on = off - max_frame; 3146 cp->rx_pause_off = off; 3147 cp->rx_pause_on = on; 3148 } 3149 } 3150 } 3151 3152 static int cas_vpd_match(const void __iomem *p, const char *str) 3153 { 3154 int len = strlen(str) + 1; 3155 int i; 3156 3157 for (i = 0; i < len; i++) { 3158 if (readb(p + i) != str[i]) 3159 return 0; 3160 } 3161 return 1; 3162 } 3163 3164 3165 /* get the mac address by reading the vpd information in the rom. 3166 * also get the phy type and determine if there's an entropy generator. 3167 * NOTE: this is a bit convoluted for the following reasons: 3168 * 1) vpd info has order-dependent mac addresses for multinic cards 3169 * 2) the only way to determine the nic order is to use the slot 3170 * number. 3171 * 3) fiber cards don't have bridges, so their slot numbers don't 3172 * mean anything. 3173 * 4) we don't actually know we have a fiber card until after 3174 * the mac addresses are parsed. 3175 */ 3176 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr, 3177 const int offset) 3178 { 3179 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START; 3180 void __iomem *base, *kstart; 3181 int i, len; 3182 int found = 0; 3183 #define VPD_FOUND_MAC 0x01 3184 #define VPD_FOUND_PHY 0x02 3185 3186 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */ 3187 int mac_off = 0; 3188 3189 #if defined(CONFIG_SPARC) 3190 const unsigned char *addr; 3191 #endif 3192 3193 /* give us access to the PROM */ 3194 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD, 3195 cp->regs + REG_BIM_LOCAL_DEV_EN); 3196 3197 /* check for an expansion rom */ 3198 if (readb(p) != 0x55 || readb(p + 1) != 0xaa) 3199 goto use_random_mac_addr; 3200 3201 /* search for beginning of vpd */ 3202 base = NULL; 3203 for (i = 2; i < EXPANSION_ROM_SIZE; i++) { 3204 /* check for PCIR */ 3205 if ((readb(p + i + 0) == 0x50) && 3206 (readb(p + i + 1) == 0x43) && 3207 (readb(p + i + 2) == 0x49) && 3208 (readb(p + i + 3) == 0x52)) { 3209 base = p + (readb(p + i + 8) | 3210 (readb(p + i + 9) << 8)); 3211 break; 3212 } 3213 } 3214 3215 if (!base || (readb(base) != 0x82)) 3216 goto use_random_mac_addr; 3217 3218 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3; 3219 while (i < EXPANSION_ROM_SIZE) { 3220 if (readb(base + i) != 0x90) /* no vpd found */ 3221 goto use_random_mac_addr; 3222 3223 /* found a vpd field */ 3224 len = readb(base + i + 1) | (readb(base + i + 2) << 8); 3225 3226 /* extract keywords */ 3227 kstart = base + i + 3; 3228 p = kstart; 3229 while ((p - kstart) < len) { 3230 int klen = readb(p + 2); 3231 int j; 3232 char type; 3233 3234 p += 3; 3235 3236 /* look for the following things: 3237 * -- correct length == 29 3238 * 3 (type) + 2 (size) + 3239 * 18 (strlen("local-mac-address") + 1) + 3240 * 6 (mac addr) 3241 * -- VPD Instance 'I' 3242 * -- VPD Type Bytes 'B' 3243 * -- VPD data length == 6 3244 * -- property string == local-mac-address 3245 * 3246 * -- correct length == 24 3247 * 3 (type) + 2 (size) + 3248 * 12 (strlen("entropy-dev") + 1) + 3249 * 7 (strlen("vms110") + 1) 3250 * -- VPD Instance 'I' 3251 * -- VPD Type String 'B' 3252 * -- VPD data length == 7 3253 * -- property string == entropy-dev 3254 * 3255 * -- correct length == 18 3256 * 3 (type) + 2 (size) + 3257 * 9 (strlen("phy-type") + 1) + 3258 * 4 (strlen("pcs") + 1) 3259 * -- VPD Instance 'I' 3260 * -- VPD Type String 'S' 3261 * -- VPD data length == 4 3262 * -- property string == phy-type 3263 * 3264 * -- correct length == 23 3265 * 3 (type) + 2 (size) + 3266 * 14 (strlen("phy-interface") + 1) + 3267 * 4 (strlen("pcs") + 1) 3268 * -- VPD Instance 'I' 3269 * -- VPD Type String 'S' 3270 * -- VPD data length == 4 3271 * -- property string == phy-interface 3272 */ 3273 if (readb(p) != 'I') 3274 goto next; 3275 3276 /* finally, check string and length */ 3277 type = readb(p + 3); 3278 if (type == 'B') { 3279 if ((klen == 29) && readb(p + 4) == 6 && 3280 cas_vpd_match(p + 5, 3281 "local-mac-address")) { 3282 if (mac_off++ > offset) 3283 goto next; 3284 3285 /* set mac address */ 3286 for (j = 0; j < 6; j++) 3287 dev_addr[j] = 3288 readb(p + 23 + j); 3289 goto found_mac; 3290 } 3291 } 3292 3293 if (type != 'S') 3294 goto next; 3295 3296 #ifdef USE_ENTROPY_DEV 3297 if ((klen == 24) && 3298 cas_vpd_match(p + 5, "entropy-dev") && 3299 cas_vpd_match(p + 17, "vms110")) { 3300 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV; 3301 goto next; 3302 } 3303 #endif 3304 3305 if (found & VPD_FOUND_PHY) 3306 goto next; 3307 3308 if ((klen == 18) && readb(p + 4) == 4 && 3309 cas_vpd_match(p + 5, "phy-type")) { 3310 if (cas_vpd_match(p + 14, "pcs")) { 3311 phy_type = CAS_PHY_SERDES; 3312 goto found_phy; 3313 } 3314 } 3315 3316 if ((klen == 23) && readb(p + 4) == 4 && 3317 cas_vpd_match(p + 5, "phy-interface")) { 3318 if (cas_vpd_match(p + 19, "pcs")) { 3319 phy_type = CAS_PHY_SERDES; 3320 goto found_phy; 3321 } 3322 } 3323 found_mac: 3324 found |= VPD_FOUND_MAC; 3325 goto next; 3326 3327 found_phy: 3328 found |= VPD_FOUND_PHY; 3329 3330 next: 3331 p += klen; 3332 } 3333 i += len + 3; 3334 } 3335 3336 use_random_mac_addr: 3337 if (found & VPD_FOUND_MAC) 3338 goto done; 3339 3340 #if defined(CONFIG_SPARC) 3341 addr = of_get_property(cp->of_node, "local-mac-address", NULL); 3342 if (addr != NULL) { 3343 memcpy(dev_addr, addr, ETH_ALEN); 3344 goto done; 3345 } 3346 #endif 3347 3348 /* Sun MAC prefix then 3 random bytes. */ 3349 pr_info("MAC address not found in ROM VPD\n"); 3350 dev_addr[0] = 0x08; 3351 dev_addr[1] = 0x00; 3352 dev_addr[2] = 0x20; 3353 get_random_bytes(dev_addr + 3, 3); 3354 3355 done: 3356 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN); 3357 return phy_type; 3358 } 3359 3360 /* check pci invariants */ 3361 static void cas_check_pci_invariants(struct cas *cp) 3362 { 3363 struct pci_dev *pdev = cp->pdev; 3364 3365 cp->cas_flags = 0; 3366 if ((pdev->vendor == PCI_VENDOR_ID_SUN) && 3367 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) { 3368 if (pdev->revision >= CAS_ID_REVPLUS) 3369 cp->cas_flags |= CAS_FLAG_REG_PLUS; 3370 if (pdev->revision < CAS_ID_REVPLUS02u) 3371 cp->cas_flags |= CAS_FLAG_TARGET_ABORT; 3372 3373 /* Original Cassini supports HW CSUM, but it's not 3374 * enabled by default as it can trigger TX hangs. 3375 */ 3376 if (pdev->revision < CAS_ID_REV2) 3377 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM; 3378 } else { 3379 /* Only sun has original cassini chips. */ 3380 cp->cas_flags |= CAS_FLAG_REG_PLUS; 3381 3382 /* We use a flag because the same phy might be externally 3383 * connected. 3384 */ 3385 if ((pdev->vendor == PCI_VENDOR_ID_NS) && 3386 (pdev->device == PCI_DEVICE_ID_NS_SATURN)) 3387 cp->cas_flags |= CAS_FLAG_SATURN; 3388 } 3389 } 3390 3391 3392 static int cas_check_invariants(struct cas *cp) 3393 { 3394 struct pci_dev *pdev = cp->pdev; 3395 u32 cfg; 3396 int i; 3397 3398 /* get page size for rx buffers. */ 3399 cp->page_order = 0; 3400 #ifdef USE_PAGE_ORDER 3401 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) { 3402 /* see if we can allocate larger pages */ 3403 struct page *page = alloc_pages(GFP_ATOMIC, 3404 CAS_JUMBO_PAGE_SHIFT - 3405 PAGE_SHIFT); 3406 if (page) { 3407 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT); 3408 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT; 3409 } else { 3410 printk("MTU limited to %d bytes\n", CAS_MAX_MTU); 3411 } 3412 } 3413 #endif 3414 cp->page_size = (PAGE_SIZE << cp->page_order); 3415 3416 /* Fetch the FIFO configurations. */ 3417 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64; 3418 cp->rx_fifo_size = RX_FIFO_SIZE; 3419 3420 /* finish phy determination. MDIO1 takes precedence over MDIO0 if 3421 * they're both connected. 3422 */ 3423 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr, 3424 PCI_SLOT(pdev->devfn)); 3425 if (cp->phy_type & CAS_PHY_SERDES) { 3426 cp->cas_flags |= CAS_FLAG_1000MB_CAP; 3427 return 0; /* no more checking needed */ 3428 } 3429 3430 /* MII */ 3431 cfg = readl(cp->regs + REG_MIF_CFG); 3432 if (cfg & MIF_CFG_MDIO_1) { 3433 cp->phy_type = CAS_PHY_MII_MDIO1; 3434 } else if (cfg & MIF_CFG_MDIO_0) { 3435 cp->phy_type = CAS_PHY_MII_MDIO0; 3436 } 3437 3438 cas_mif_poll(cp, 0); 3439 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); 3440 3441 for (i = 0; i < 32; i++) { 3442 u32 phy_id; 3443 int j; 3444 3445 for (j = 0; j < 3; j++) { 3446 cp->phy_addr = i; 3447 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16; 3448 phy_id |= cas_phy_read(cp, MII_PHYSID2); 3449 if (phy_id && (phy_id != 0xFFFFFFFF)) { 3450 cp->phy_id = phy_id; 3451 goto done; 3452 } 3453 } 3454 } 3455 pr_err("MII phy did not respond [%08x]\n", 3456 readl(cp->regs + REG_MIF_STATE_MACHINE)); 3457 return -1; 3458 3459 done: 3460 /* see if we can do gigabit */ 3461 cfg = cas_phy_read(cp, MII_BMSR); 3462 if ((cfg & CAS_BMSR_1000_EXTEND) && 3463 cas_phy_read(cp, CAS_MII_1000_EXTEND)) 3464 cp->cas_flags |= CAS_FLAG_1000MB_CAP; 3465 return 0; 3466 } 3467 3468 /* Must be invoked under cp->lock. */ 3469 static inline void cas_start_dma(struct cas *cp) 3470 { 3471 int i; 3472 u32 val; 3473 int txfailed = 0; 3474 3475 /* enable dma */ 3476 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN; 3477 writel(val, cp->regs + REG_TX_CFG); 3478 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN; 3479 writel(val, cp->regs + REG_RX_CFG); 3480 3481 /* enable the mac */ 3482 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN; 3483 writel(val, cp->regs + REG_MAC_TX_CFG); 3484 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN; 3485 writel(val, cp->regs + REG_MAC_RX_CFG); 3486 3487 i = STOP_TRIES; 3488 while (i-- > 0) { 3489 val = readl(cp->regs + REG_MAC_TX_CFG); 3490 if ((val & MAC_TX_CFG_EN)) 3491 break; 3492 udelay(10); 3493 } 3494 if (i < 0) txfailed = 1; 3495 i = STOP_TRIES; 3496 while (i-- > 0) { 3497 val = readl(cp->regs + REG_MAC_RX_CFG); 3498 if ((val & MAC_RX_CFG_EN)) { 3499 if (txfailed) { 3500 netdev_err(cp->dev, 3501 "enabling mac failed [tx:%08x:%08x]\n", 3502 readl(cp->regs + REG_MIF_STATE_MACHINE), 3503 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3504 } 3505 goto enable_rx_done; 3506 } 3507 udelay(10); 3508 } 3509 netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n", 3510 (txfailed ? "tx,rx" : "rx"), 3511 readl(cp->regs + REG_MIF_STATE_MACHINE), 3512 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3513 3514 enable_rx_done: 3515 cas_unmask_intr(cp); /* enable interrupts */ 3516 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); 3517 writel(0, cp->regs + REG_RX_COMP_TAIL); 3518 3519 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 3520 if (N_RX_DESC_RINGS > 1) 3521 writel(RX_DESC_RINGN_SIZE(1) - 4, 3522 cp->regs + REG_PLUS_RX_KICK1); 3523 3524 for (i = 1; i < N_RX_COMP_RINGS; i++) 3525 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i)); 3526 } 3527 } 3528 3529 /* Must be invoked under cp->lock. */ 3530 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd, 3531 int *pause) 3532 { 3533 u32 val = readl(cp->regs + REG_PCS_MII_LPA); 3534 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0; 3535 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00; 3536 if (val & PCS_MII_LPA_ASYM_PAUSE) 3537 *pause |= 0x10; 3538 *spd = 1000; 3539 } 3540 3541 /* Must be invoked under cp->lock. */ 3542 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd, 3543 int *pause) 3544 { 3545 u32 val; 3546 3547 *fd = 0; 3548 *spd = 10; 3549 *pause = 0; 3550 3551 /* use GMII registers */ 3552 val = cas_phy_read(cp, MII_LPA); 3553 if (val & CAS_LPA_PAUSE) 3554 *pause = 0x01; 3555 3556 if (val & CAS_LPA_ASYM_PAUSE) 3557 *pause |= 0x10; 3558 3559 if (val & LPA_DUPLEX) 3560 *fd = 1; 3561 if (val & LPA_100) 3562 *spd = 100; 3563 3564 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 3565 val = cas_phy_read(cp, CAS_MII_1000_STATUS); 3566 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF)) 3567 *spd = 1000; 3568 if (val & CAS_LPA_1000FULL) 3569 *fd = 1; 3570 } 3571 } 3572 3573 /* A link-up condition has occurred, initialize and enable the 3574 * rest of the chip. 3575 * 3576 * Must be invoked under cp->lock. 3577 */ 3578 static void cas_set_link_modes(struct cas *cp) 3579 { 3580 u32 val; 3581 int full_duplex, speed, pause; 3582 3583 full_duplex = 0; 3584 speed = 10; 3585 pause = 0; 3586 3587 if (CAS_PHY_MII(cp->phy_type)) { 3588 cas_mif_poll(cp, 0); 3589 val = cas_phy_read(cp, MII_BMCR); 3590 if (val & BMCR_ANENABLE) { 3591 cas_read_mii_link_mode(cp, &full_duplex, &speed, 3592 &pause); 3593 } else { 3594 if (val & BMCR_FULLDPLX) 3595 full_duplex = 1; 3596 3597 if (val & BMCR_SPEED100) 3598 speed = 100; 3599 else if (val & CAS_BMCR_SPEED1000) 3600 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? 3601 1000 : 100; 3602 } 3603 cas_mif_poll(cp, 1); 3604 3605 } else { 3606 val = readl(cp->regs + REG_PCS_MII_CTRL); 3607 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause); 3608 if ((val & PCS_MII_AUTONEG_EN) == 0) { 3609 if (val & PCS_MII_CTRL_DUPLEX) 3610 full_duplex = 1; 3611 } 3612 } 3613 3614 netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n", 3615 speed, full_duplex ? "full" : "half"); 3616 3617 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED; 3618 if (CAS_PHY_MII(cp->phy_type)) { 3619 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN; 3620 if (!full_duplex) 3621 val |= MAC_XIF_DISABLE_ECHO; 3622 } 3623 if (full_duplex) 3624 val |= MAC_XIF_FDPLX_LED; 3625 if (speed == 1000) 3626 val |= MAC_XIF_GMII_MODE; 3627 writel(val, cp->regs + REG_MAC_XIF_CFG); 3628 3629 /* deal with carrier and collision detect. */ 3630 val = MAC_TX_CFG_IPG_EN; 3631 if (full_duplex) { 3632 val |= MAC_TX_CFG_IGNORE_CARRIER; 3633 val |= MAC_TX_CFG_IGNORE_COLL; 3634 } else { 3635 #ifndef USE_CSMA_CD_PROTO 3636 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN; 3637 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM; 3638 #endif 3639 } 3640 /* val now set up for REG_MAC_TX_CFG */ 3641 3642 /* If gigabit and half-duplex, enable carrier extension 3643 * mode. increase slot time to 512 bytes as well. 3644 * else, disable it and make sure slot time is 64 bytes. 3645 * also activate checksum bug workaround 3646 */ 3647 if ((speed == 1000) && !full_duplex) { 3648 writel(val | MAC_TX_CFG_CARRIER_EXTEND, 3649 cp->regs + REG_MAC_TX_CFG); 3650 3651 val = readl(cp->regs + REG_MAC_RX_CFG); 3652 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */ 3653 writel(val | MAC_RX_CFG_CARRIER_EXTEND, 3654 cp->regs + REG_MAC_RX_CFG); 3655 3656 writel(0x200, cp->regs + REG_MAC_SLOT_TIME); 3657 3658 cp->crc_size = 4; 3659 /* minimum size gigabit frame at half duplex */ 3660 cp->min_frame_size = CAS_1000MB_MIN_FRAME; 3661 3662 } else { 3663 writel(val, cp->regs + REG_MAC_TX_CFG); 3664 3665 /* checksum bug workaround. don't strip FCS when in 3666 * half-duplex mode 3667 */ 3668 val = readl(cp->regs + REG_MAC_RX_CFG); 3669 if (full_duplex) { 3670 val |= MAC_RX_CFG_STRIP_FCS; 3671 cp->crc_size = 0; 3672 cp->min_frame_size = CAS_MIN_MTU; 3673 } else { 3674 val &= ~MAC_RX_CFG_STRIP_FCS; 3675 cp->crc_size = 4; 3676 cp->min_frame_size = CAS_MIN_FRAME; 3677 } 3678 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND, 3679 cp->regs + REG_MAC_RX_CFG); 3680 writel(0x40, cp->regs + REG_MAC_SLOT_TIME); 3681 } 3682 3683 if (netif_msg_link(cp)) { 3684 if (pause & 0x01) { 3685 netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n", 3686 cp->rx_fifo_size, 3687 cp->rx_pause_off, 3688 cp->rx_pause_on); 3689 } else if (pause & 0x10) { 3690 netdev_info(cp->dev, "TX pause enabled\n"); 3691 } else { 3692 netdev_info(cp->dev, "Pause is disabled\n"); 3693 } 3694 } 3695 3696 val = readl(cp->regs + REG_MAC_CTRL_CFG); 3697 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN); 3698 if (pause) { /* symmetric or asymmetric pause */ 3699 val |= MAC_CTRL_CFG_SEND_PAUSE_EN; 3700 if (pause & 0x01) { /* symmetric pause */ 3701 val |= MAC_CTRL_CFG_RECV_PAUSE_EN; 3702 } 3703 } 3704 writel(val, cp->regs + REG_MAC_CTRL_CFG); 3705 cas_start_dma(cp); 3706 } 3707 3708 /* Must be invoked under cp->lock. */ 3709 static void cas_init_hw(struct cas *cp, int restart_link) 3710 { 3711 if (restart_link) 3712 cas_phy_init(cp); 3713 3714 cas_init_pause_thresholds(cp); 3715 cas_init_mac(cp); 3716 cas_init_dma(cp); 3717 3718 if (restart_link) { 3719 /* Default aneg parameters */ 3720 cp->timer_ticks = 0; 3721 cas_begin_auto_negotiation(cp, NULL); 3722 } else if (cp->lstate == link_up) { 3723 cas_set_link_modes(cp); 3724 netif_carrier_on(cp->dev); 3725 } 3726 } 3727 3728 /* Must be invoked under cp->lock. on earlier cassini boards, 3729 * SOFT_0 is tied to PCI reset. we use this to force a pci reset, 3730 * let it settle out, and then restore pci state. 3731 */ 3732 static void cas_hard_reset(struct cas *cp) 3733 { 3734 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN); 3735 udelay(20); 3736 pci_restore_state(cp->pdev); 3737 } 3738 3739 3740 static void cas_global_reset(struct cas *cp, int blkflag) 3741 { 3742 int limit; 3743 3744 /* issue a global reset. don't use RSTOUT. */ 3745 if (blkflag && !CAS_PHY_MII(cp->phy_type)) { 3746 /* For PCS, when the blkflag is set, we should set the 3747 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of 3748 * the last autonegotiation from being cleared. We'll 3749 * need some special handling if the chip is set into a 3750 * loopback mode. 3751 */ 3752 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK), 3753 cp->regs + REG_SW_RESET); 3754 } else { 3755 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET); 3756 } 3757 3758 /* need to wait at least 3ms before polling register */ 3759 mdelay(3); 3760 3761 limit = STOP_TRIES; 3762 while (limit-- > 0) { 3763 u32 val = readl(cp->regs + REG_SW_RESET); 3764 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0) 3765 goto done; 3766 udelay(10); 3767 } 3768 netdev_err(cp->dev, "sw reset failed\n"); 3769 3770 done: 3771 /* enable various BIM interrupts */ 3772 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE | 3773 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG); 3774 3775 /* clear out pci error status mask for handled errors. 3776 * we don't deal with DMA counter overflows as they happen 3777 * all the time. 3778 */ 3779 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO | 3780 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE | 3781 PCI_ERR_BIM_DMA_READ), cp->regs + 3782 REG_PCI_ERR_STATUS_MASK); 3783 3784 /* set up for MII by default to address mac rx reset timeout 3785 * issue 3786 */ 3787 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); 3788 } 3789 3790 static void cas_reset(struct cas *cp, int blkflag) 3791 { 3792 u32 val; 3793 3794 cas_mask_intr(cp); 3795 cas_global_reset(cp, blkflag); 3796 cas_mac_reset(cp); 3797 cas_entropy_reset(cp); 3798 3799 /* disable dma engines. */ 3800 val = readl(cp->regs + REG_TX_CFG); 3801 val &= ~TX_CFG_DMA_EN; 3802 writel(val, cp->regs + REG_TX_CFG); 3803 3804 val = readl(cp->regs + REG_RX_CFG); 3805 val &= ~RX_CFG_DMA_EN; 3806 writel(val, cp->regs + REG_RX_CFG); 3807 3808 /* program header parser */ 3809 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) || 3810 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) { 3811 cas_load_firmware(cp, CAS_HP_FIRMWARE); 3812 } else { 3813 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE); 3814 } 3815 3816 /* clear out error registers */ 3817 spin_lock(&cp->stat_lock[N_TX_RINGS]); 3818 cas_clear_mac_err(cp); 3819 spin_unlock(&cp->stat_lock[N_TX_RINGS]); 3820 } 3821 3822 /* Shut down the chip, must be called with pm_mutex held. */ 3823 static void cas_shutdown(struct cas *cp) 3824 { 3825 unsigned long flags; 3826 3827 /* Make us not-running to avoid timers respawning */ 3828 cp->hw_running = 0; 3829 3830 del_timer_sync(&cp->link_timer); 3831 3832 /* Stop the reset task */ 3833 #if 0 3834 while (atomic_read(&cp->reset_task_pending_mtu) || 3835 atomic_read(&cp->reset_task_pending_spare) || 3836 atomic_read(&cp->reset_task_pending_all)) 3837 schedule(); 3838 3839 #else 3840 while (atomic_read(&cp->reset_task_pending)) 3841 schedule(); 3842 #endif 3843 /* Actually stop the chip */ 3844 cas_lock_all_save(cp, flags); 3845 cas_reset(cp, 0); 3846 if (cp->cas_flags & CAS_FLAG_SATURN) 3847 cas_phy_powerdown(cp); 3848 cas_unlock_all_restore(cp, flags); 3849 } 3850 3851 static int cas_change_mtu(struct net_device *dev, int new_mtu) 3852 { 3853 struct cas *cp = netdev_priv(dev); 3854 3855 dev->mtu = new_mtu; 3856 if (!netif_running(dev) || !netif_device_present(dev)) 3857 return 0; 3858 3859 /* let the reset task handle it */ 3860 #if 1 3861 atomic_inc(&cp->reset_task_pending); 3862 if ((cp->phy_type & CAS_PHY_SERDES)) { 3863 atomic_inc(&cp->reset_task_pending_all); 3864 } else { 3865 atomic_inc(&cp->reset_task_pending_mtu); 3866 } 3867 schedule_work(&cp->reset_task); 3868 #else 3869 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ? 3870 CAS_RESET_ALL : CAS_RESET_MTU); 3871 pr_err("reset called in cas_change_mtu\n"); 3872 schedule_work(&cp->reset_task); 3873 #endif 3874 3875 flush_work(&cp->reset_task); 3876 return 0; 3877 } 3878 3879 static void cas_clean_txd(struct cas *cp, int ring) 3880 { 3881 struct cas_tx_desc *txd = cp->init_txds[ring]; 3882 struct sk_buff *skb, **skbs = cp->tx_skbs[ring]; 3883 u64 daddr, dlen; 3884 int i, size; 3885 3886 size = TX_DESC_RINGN_SIZE(ring); 3887 for (i = 0; i < size; i++) { 3888 int frag; 3889 3890 if (skbs[i] == NULL) 3891 continue; 3892 3893 skb = skbs[i]; 3894 skbs[i] = NULL; 3895 3896 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 3897 int ent = i & (size - 1); 3898 3899 /* first buffer is never a tiny buffer and so 3900 * needs to be unmapped. 3901 */ 3902 daddr = le64_to_cpu(txd[ent].buffer); 3903 dlen = CAS_VAL(TX_DESC_BUFLEN, 3904 le64_to_cpu(txd[ent].control)); 3905 pci_unmap_page(cp->pdev, daddr, dlen, 3906 PCI_DMA_TODEVICE); 3907 3908 if (frag != skb_shinfo(skb)->nr_frags) { 3909 i++; 3910 3911 /* next buffer might by a tiny buffer. 3912 * skip past it. 3913 */ 3914 ent = i & (size - 1); 3915 if (cp->tx_tiny_use[ring][ent].used) 3916 i++; 3917 } 3918 } 3919 dev_kfree_skb_any(skb); 3920 } 3921 3922 /* zero out tiny buf usage */ 3923 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring])); 3924 } 3925 3926 /* freed on close */ 3927 static inline void cas_free_rx_desc(struct cas *cp, int ring) 3928 { 3929 cas_page_t **page = cp->rx_pages[ring]; 3930 int i, size; 3931 3932 size = RX_DESC_RINGN_SIZE(ring); 3933 for (i = 0; i < size; i++) { 3934 if (page[i]) { 3935 cas_page_free(cp, page[i]); 3936 page[i] = NULL; 3937 } 3938 } 3939 } 3940 3941 static void cas_free_rxds(struct cas *cp) 3942 { 3943 int i; 3944 3945 for (i = 0; i < N_RX_DESC_RINGS; i++) 3946 cas_free_rx_desc(cp, i); 3947 } 3948 3949 /* Must be invoked under cp->lock. */ 3950 static void cas_clean_rings(struct cas *cp) 3951 { 3952 int i; 3953 3954 /* need to clean all tx rings */ 3955 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS); 3956 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS); 3957 for (i = 0; i < N_TX_RINGS; i++) 3958 cas_clean_txd(cp, i); 3959 3960 /* zero out init block */ 3961 memset(cp->init_block, 0, sizeof(struct cas_init_block)); 3962 cas_clean_rxds(cp); 3963 cas_clean_rxcs(cp); 3964 } 3965 3966 /* allocated on open */ 3967 static inline int cas_alloc_rx_desc(struct cas *cp, int ring) 3968 { 3969 cas_page_t **page = cp->rx_pages[ring]; 3970 int size, i = 0; 3971 3972 size = RX_DESC_RINGN_SIZE(ring); 3973 for (i = 0; i < size; i++) { 3974 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL) 3975 return -1; 3976 } 3977 return 0; 3978 } 3979 3980 static int cas_alloc_rxds(struct cas *cp) 3981 { 3982 int i; 3983 3984 for (i = 0; i < N_RX_DESC_RINGS; i++) { 3985 if (cas_alloc_rx_desc(cp, i) < 0) { 3986 cas_free_rxds(cp); 3987 return -1; 3988 } 3989 } 3990 return 0; 3991 } 3992 3993 static void cas_reset_task(struct work_struct *work) 3994 { 3995 struct cas *cp = container_of(work, struct cas, reset_task); 3996 #if 0 3997 int pending = atomic_read(&cp->reset_task_pending); 3998 #else 3999 int pending_all = atomic_read(&cp->reset_task_pending_all); 4000 int pending_spare = atomic_read(&cp->reset_task_pending_spare); 4001 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu); 4002 4003 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) { 4004 /* We can have more tasks scheduled than actually 4005 * needed. 4006 */ 4007 atomic_dec(&cp->reset_task_pending); 4008 return; 4009 } 4010 #endif 4011 /* The link went down, we reset the ring, but keep 4012 * DMA stopped. Use this function for reset 4013 * on error as well. 4014 */ 4015 if (cp->hw_running) { 4016 unsigned long flags; 4017 4018 /* Make sure we don't get interrupts or tx packets */ 4019 netif_device_detach(cp->dev); 4020 cas_lock_all_save(cp, flags); 4021 4022 if (cp->opened) { 4023 /* We call cas_spare_recover when we call cas_open. 4024 * but we do not initialize the lists cas_spare_recover 4025 * uses until cas_open is called. 4026 */ 4027 cas_spare_recover(cp, GFP_ATOMIC); 4028 } 4029 #if 1 4030 /* test => only pending_spare set */ 4031 if (!pending_all && !pending_mtu) 4032 goto done; 4033 #else 4034 if (pending == CAS_RESET_SPARE) 4035 goto done; 4036 #endif 4037 /* when pending == CAS_RESET_ALL, the following 4038 * call to cas_init_hw will restart auto negotiation. 4039 * Setting the second argument of cas_reset to 4040 * !(pending == CAS_RESET_ALL) will set this argument 4041 * to 1 (avoiding reinitializing the PHY for the normal 4042 * PCS case) when auto negotiation is not restarted. 4043 */ 4044 #if 1 4045 cas_reset(cp, !(pending_all > 0)); 4046 if (cp->opened) 4047 cas_clean_rings(cp); 4048 cas_init_hw(cp, (pending_all > 0)); 4049 #else 4050 cas_reset(cp, !(pending == CAS_RESET_ALL)); 4051 if (cp->opened) 4052 cas_clean_rings(cp); 4053 cas_init_hw(cp, pending == CAS_RESET_ALL); 4054 #endif 4055 4056 done: 4057 cas_unlock_all_restore(cp, flags); 4058 netif_device_attach(cp->dev); 4059 } 4060 #if 1 4061 atomic_sub(pending_all, &cp->reset_task_pending_all); 4062 atomic_sub(pending_spare, &cp->reset_task_pending_spare); 4063 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu); 4064 atomic_dec(&cp->reset_task_pending); 4065 #else 4066 atomic_set(&cp->reset_task_pending, 0); 4067 #endif 4068 } 4069 4070 static void cas_link_timer(struct timer_list *t) 4071 { 4072 struct cas *cp = from_timer(cp, t, link_timer); 4073 int mask, pending = 0, reset = 0; 4074 unsigned long flags; 4075 4076 if (link_transition_timeout != 0 && 4077 cp->link_transition_jiffies_valid && 4078 ((jiffies - cp->link_transition_jiffies) > 4079 (link_transition_timeout))) { 4080 /* One-second counter so link-down workaround doesn't 4081 * cause resets to occur so fast as to fool the switch 4082 * into thinking the link is down. 4083 */ 4084 cp->link_transition_jiffies_valid = 0; 4085 } 4086 4087 if (!cp->hw_running) 4088 return; 4089 4090 spin_lock_irqsave(&cp->lock, flags); 4091 cas_lock_tx(cp); 4092 cas_entropy_gather(cp); 4093 4094 /* If the link task is still pending, we just 4095 * reschedule the link timer 4096 */ 4097 #if 1 4098 if (atomic_read(&cp->reset_task_pending_all) || 4099 atomic_read(&cp->reset_task_pending_spare) || 4100 atomic_read(&cp->reset_task_pending_mtu)) 4101 goto done; 4102 #else 4103 if (atomic_read(&cp->reset_task_pending)) 4104 goto done; 4105 #endif 4106 4107 /* check for rx cleaning */ 4108 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) { 4109 int i, rmask; 4110 4111 for (i = 0; i < MAX_RX_DESC_RINGS; i++) { 4112 rmask = CAS_FLAG_RXD_POST(i); 4113 if ((mask & rmask) == 0) 4114 continue; 4115 4116 /* post_rxds will do a mod_timer */ 4117 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) { 4118 pending = 1; 4119 continue; 4120 } 4121 cp->cas_flags &= ~rmask; 4122 } 4123 } 4124 4125 if (CAS_PHY_MII(cp->phy_type)) { 4126 u16 bmsr; 4127 cas_mif_poll(cp, 0); 4128 bmsr = cas_phy_read(cp, MII_BMSR); 4129 /* WTZ: Solaris driver reads this twice, but that 4130 * may be due to the PCS case and the use of a 4131 * common implementation. Read it twice here to be 4132 * safe. 4133 */ 4134 bmsr = cas_phy_read(cp, MII_BMSR); 4135 cas_mif_poll(cp, 1); 4136 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */ 4137 reset = cas_mii_link_check(cp, bmsr); 4138 } else { 4139 reset = cas_pcs_link_check(cp); 4140 } 4141 4142 if (reset) 4143 goto done; 4144 4145 /* check for tx state machine confusion */ 4146 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) { 4147 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE); 4148 u32 wptr, rptr; 4149 int tlm = CAS_VAL(MAC_SM_TLM, val); 4150 4151 if (((tlm == 0x5) || (tlm == 0x3)) && 4152 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) { 4153 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev, 4154 "tx err: MAC_STATE[%08x]\n", val); 4155 reset = 1; 4156 goto done; 4157 } 4158 4159 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT); 4160 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR); 4161 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR); 4162 if ((val == 0) && (wptr != rptr)) { 4163 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev, 4164 "tx err: TX_FIFO[%08x:%08x:%08x]\n", 4165 val, wptr, rptr); 4166 reset = 1; 4167 } 4168 4169 if (reset) 4170 cas_hard_reset(cp); 4171 } 4172 4173 done: 4174 if (reset) { 4175 #if 1 4176 atomic_inc(&cp->reset_task_pending); 4177 atomic_inc(&cp->reset_task_pending_all); 4178 schedule_work(&cp->reset_task); 4179 #else 4180 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 4181 pr_err("reset called in cas_link_timer\n"); 4182 schedule_work(&cp->reset_task); 4183 #endif 4184 } 4185 4186 if (!pending) 4187 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 4188 cas_unlock_tx(cp); 4189 spin_unlock_irqrestore(&cp->lock, flags); 4190 } 4191 4192 /* tiny buffers are used to avoid target abort issues with 4193 * older cassini's 4194 */ 4195 static void cas_tx_tiny_free(struct cas *cp) 4196 { 4197 struct pci_dev *pdev = cp->pdev; 4198 int i; 4199 4200 for (i = 0; i < N_TX_RINGS; i++) { 4201 if (!cp->tx_tiny_bufs[i]) 4202 continue; 4203 4204 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK, 4205 cp->tx_tiny_bufs[i], 4206 cp->tx_tiny_dvma[i]); 4207 cp->tx_tiny_bufs[i] = NULL; 4208 } 4209 } 4210 4211 static int cas_tx_tiny_alloc(struct cas *cp) 4212 { 4213 struct pci_dev *pdev = cp->pdev; 4214 int i; 4215 4216 for (i = 0; i < N_TX_RINGS; i++) { 4217 cp->tx_tiny_bufs[i] = 4218 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK, 4219 &cp->tx_tiny_dvma[i]); 4220 if (!cp->tx_tiny_bufs[i]) { 4221 cas_tx_tiny_free(cp); 4222 return -1; 4223 } 4224 } 4225 return 0; 4226 } 4227 4228 4229 static int cas_open(struct net_device *dev) 4230 { 4231 struct cas *cp = netdev_priv(dev); 4232 int hw_was_up, err; 4233 unsigned long flags; 4234 4235 mutex_lock(&cp->pm_mutex); 4236 4237 hw_was_up = cp->hw_running; 4238 4239 /* The power-management mutex protects the hw_running 4240 * etc. state so it is safe to do this bit without cp->lock 4241 */ 4242 if (!cp->hw_running) { 4243 /* Reset the chip */ 4244 cas_lock_all_save(cp, flags); 4245 /* We set the second arg to cas_reset to zero 4246 * because cas_init_hw below will have its second 4247 * argument set to non-zero, which will force 4248 * autonegotiation to start. 4249 */ 4250 cas_reset(cp, 0); 4251 cp->hw_running = 1; 4252 cas_unlock_all_restore(cp, flags); 4253 } 4254 4255 err = -ENOMEM; 4256 if (cas_tx_tiny_alloc(cp) < 0) 4257 goto err_unlock; 4258 4259 /* alloc rx descriptors */ 4260 if (cas_alloc_rxds(cp) < 0) 4261 goto err_tx_tiny; 4262 4263 /* allocate spares */ 4264 cas_spare_init(cp); 4265 cas_spare_recover(cp, GFP_KERNEL); 4266 4267 /* We can now request the interrupt as we know it's masked 4268 * on the controller. cassini+ has up to 4 interrupts 4269 * that can be used, but you need to do explicit pci interrupt 4270 * mapping to expose them 4271 */ 4272 if (request_irq(cp->pdev->irq, cas_interrupt, 4273 IRQF_SHARED, dev->name, (void *) dev)) { 4274 netdev_err(cp->dev, "failed to request irq !\n"); 4275 err = -EAGAIN; 4276 goto err_spare; 4277 } 4278 4279 #ifdef USE_NAPI 4280 napi_enable(&cp->napi); 4281 #endif 4282 /* init hw */ 4283 cas_lock_all_save(cp, flags); 4284 cas_clean_rings(cp); 4285 cas_init_hw(cp, !hw_was_up); 4286 cp->opened = 1; 4287 cas_unlock_all_restore(cp, flags); 4288 4289 netif_start_queue(dev); 4290 mutex_unlock(&cp->pm_mutex); 4291 return 0; 4292 4293 err_spare: 4294 cas_spare_free(cp); 4295 cas_free_rxds(cp); 4296 err_tx_tiny: 4297 cas_tx_tiny_free(cp); 4298 err_unlock: 4299 mutex_unlock(&cp->pm_mutex); 4300 return err; 4301 } 4302 4303 static int cas_close(struct net_device *dev) 4304 { 4305 unsigned long flags; 4306 struct cas *cp = netdev_priv(dev); 4307 4308 #ifdef USE_NAPI 4309 napi_disable(&cp->napi); 4310 #endif 4311 /* Make sure we don't get distracted by suspend/resume */ 4312 mutex_lock(&cp->pm_mutex); 4313 4314 netif_stop_queue(dev); 4315 4316 /* Stop traffic, mark us closed */ 4317 cas_lock_all_save(cp, flags); 4318 cp->opened = 0; 4319 cas_reset(cp, 0); 4320 cas_phy_init(cp); 4321 cas_begin_auto_negotiation(cp, NULL); 4322 cas_clean_rings(cp); 4323 cas_unlock_all_restore(cp, flags); 4324 4325 free_irq(cp->pdev->irq, (void *) dev); 4326 cas_spare_free(cp); 4327 cas_free_rxds(cp); 4328 cas_tx_tiny_free(cp); 4329 mutex_unlock(&cp->pm_mutex); 4330 return 0; 4331 } 4332 4333 static struct { 4334 const char name[ETH_GSTRING_LEN]; 4335 } ethtool_cassini_statnames[] = { 4336 {"collisions"}, 4337 {"rx_bytes"}, 4338 {"rx_crc_errors"}, 4339 {"rx_dropped"}, 4340 {"rx_errors"}, 4341 {"rx_fifo_errors"}, 4342 {"rx_frame_errors"}, 4343 {"rx_length_errors"}, 4344 {"rx_over_errors"}, 4345 {"rx_packets"}, 4346 {"tx_aborted_errors"}, 4347 {"tx_bytes"}, 4348 {"tx_dropped"}, 4349 {"tx_errors"}, 4350 {"tx_fifo_errors"}, 4351 {"tx_packets"} 4352 }; 4353 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames) 4354 4355 static struct { 4356 const int offsets; /* neg. values for 2nd arg to cas_read_phy */ 4357 } ethtool_register_table[] = { 4358 {-MII_BMSR}, 4359 {-MII_BMCR}, 4360 {REG_CAWR}, 4361 {REG_INF_BURST}, 4362 {REG_BIM_CFG}, 4363 {REG_RX_CFG}, 4364 {REG_HP_CFG}, 4365 {REG_MAC_TX_CFG}, 4366 {REG_MAC_RX_CFG}, 4367 {REG_MAC_CTRL_CFG}, 4368 {REG_MAC_XIF_CFG}, 4369 {REG_MIF_CFG}, 4370 {REG_PCS_CFG}, 4371 {REG_SATURN_PCFG}, 4372 {REG_PCS_MII_STATUS}, 4373 {REG_PCS_STATE_MACHINE}, 4374 {REG_MAC_COLL_EXCESS}, 4375 {REG_MAC_COLL_LATE} 4376 }; 4377 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table) 4378 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN) 4379 4380 static void cas_read_regs(struct cas *cp, u8 *ptr, int len) 4381 { 4382 u8 *p; 4383 int i; 4384 unsigned long flags; 4385 4386 spin_lock_irqsave(&cp->lock, flags); 4387 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) { 4388 u16 hval; 4389 u32 val; 4390 if (ethtool_register_table[i].offsets < 0) { 4391 hval = cas_phy_read(cp, 4392 -ethtool_register_table[i].offsets); 4393 val = hval; 4394 } else { 4395 val= readl(cp->regs+ethtool_register_table[i].offsets); 4396 } 4397 memcpy(p, (u8 *)&val, sizeof(u32)); 4398 } 4399 spin_unlock_irqrestore(&cp->lock, flags); 4400 } 4401 4402 static struct net_device_stats *cas_get_stats(struct net_device *dev) 4403 { 4404 struct cas *cp = netdev_priv(dev); 4405 struct net_device_stats *stats = cp->net_stats; 4406 unsigned long flags; 4407 int i; 4408 unsigned long tmp; 4409 4410 /* we collate all of the stats into net_stats[N_TX_RING] */ 4411 if (!cp->hw_running) 4412 return stats + N_TX_RINGS; 4413 4414 /* collect outstanding stats */ 4415 /* WTZ: the Cassini spec gives these as 16 bit counters but 4416 * stored in 32-bit words. Added a mask of 0xffff to be safe, 4417 * in case the chip somehow puts any garbage in the other bits. 4418 * Also, counter usage didn't seem to mach what Adrian did 4419 * in the parts of the code that set these quantities. Made 4420 * that consistent. 4421 */ 4422 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags); 4423 stats[N_TX_RINGS].rx_crc_errors += 4424 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff; 4425 stats[N_TX_RINGS].rx_frame_errors += 4426 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff; 4427 stats[N_TX_RINGS].rx_length_errors += 4428 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff; 4429 #if 1 4430 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) + 4431 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff); 4432 stats[N_TX_RINGS].tx_aborted_errors += tmp; 4433 stats[N_TX_RINGS].collisions += 4434 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff); 4435 #else 4436 stats[N_TX_RINGS].tx_aborted_errors += 4437 readl(cp->regs + REG_MAC_COLL_EXCESS); 4438 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) + 4439 readl(cp->regs + REG_MAC_COLL_LATE); 4440 #endif 4441 cas_clear_mac_err(cp); 4442 4443 /* saved bits that are unique to ring 0 */ 4444 spin_lock(&cp->stat_lock[0]); 4445 stats[N_TX_RINGS].collisions += stats[0].collisions; 4446 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors; 4447 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors; 4448 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors; 4449 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors; 4450 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors; 4451 spin_unlock(&cp->stat_lock[0]); 4452 4453 for (i = 0; i < N_TX_RINGS; i++) { 4454 spin_lock(&cp->stat_lock[i]); 4455 stats[N_TX_RINGS].rx_length_errors += 4456 stats[i].rx_length_errors; 4457 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors; 4458 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets; 4459 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets; 4460 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes; 4461 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes; 4462 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors; 4463 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors; 4464 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped; 4465 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped; 4466 memset(stats + i, 0, sizeof(struct net_device_stats)); 4467 spin_unlock(&cp->stat_lock[i]); 4468 } 4469 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags); 4470 return stats + N_TX_RINGS; 4471 } 4472 4473 4474 static void cas_set_multicast(struct net_device *dev) 4475 { 4476 struct cas *cp = netdev_priv(dev); 4477 u32 rxcfg, rxcfg_new; 4478 unsigned long flags; 4479 int limit = STOP_TRIES; 4480 4481 if (!cp->hw_running) 4482 return; 4483 4484 spin_lock_irqsave(&cp->lock, flags); 4485 rxcfg = readl(cp->regs + REG_MAC_RX_CFG); 4486 4487 /* disable RX MAC and wait for completion */ 4488 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 4489 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) { 4490 if (!limit--) 4491 break; 4492 udelay(10); 4493 } 4494 4495 /* disable hash filter and wait for completion */ 4496 limit = STOP_TRIES; 4497 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN); 4498 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 4499 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) { 4500 if (!limit--) 4501 break; 4502 udelay(10); 4503 } 4504 4505 /* program hash filters */ 4506 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp); 4507 rxcfg |= rxcfg_new; 4508 writel(rxcfg, cp->regs + REG_MAC_RX_CFG); 4509 spin_unlock_irqrestore(&cp->lock, flags); 4510 } 4511 4512 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 4513 { 4514 struct cas *cp = netdev_priv(dev); 4515 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); 4516 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version)); 4517 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info)); 4518 } 4519 4520 static int cas_get_link_ksettings(struct net_device *dev, 4521 struct ethtool_link_ksettings *cmd) 4522 { 4523 struct cas *cp = netdev_priv(dev); 4524 u16 bmcr; 4525 int full_duplex, speed, pause; 4526 unsigned long flags; 4527 enum link_state linkstate = link_up; 4528 u32 supported, advertising; 4529 4530 advertising = 0; 4531 supported = SUPPORTED_Autoneg; 4532 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 4533 supported |= SUPPORTED_1000baseT_Full; 4534 advertising |= ADVERTISED_1000baseT_Full; 4535 } 4536 4537 /* Record PHY settings if HW is on. */ 4538 spin_lock_irqsave(&cp->lock, flags); 4539 bmcr = 0; 4540 linkstate = cp->lstate; 4541 if (CAS_PHY_MII(cp->phy_type)) { 4542 cmd->base.port = PORT_MII; 4543 cmd->base.phy_address = cp->phy_addr; 4544 advertising |= ADVERTISED_TP | ADVERTISED_MII | 4545 ADVERTISED_10baseT_Half | 4546 ADVERTISED_10baseT_Full | 4547 ADVERTISED_100baseT_Half | 4548 ADVERTISED_100baseT_Full; 4549 4550 supported |= 4551 (SUPPORTED_10baseT_Half | 4552 SUPPORTED_10baseT_Full | 4553 SUPPORTED_100baseT_Half | 4554 SUPPORTED_100baseT_Full | 4555 SUPPORTED_TP | SUPPORTED_MII); 4556 4557 if (cp->hw_running) { 4558 cas_mif_poll(cp, 0); 4559 bmcr = cas_phy_read(cp, MII_BMCR); 4560 cas_read_mii_link_mode(cp, &full_duplex, 4561 &speed, &pause); 4562 cas_mif_poll(cp, 1); 4563 } 4564 4565 } else { 4566 cmd->base.port = PORT_FIBRE; 4567 cmd->base.phy_address = 0; 4568 supported |= SUPPORTED_FIBRE; 4569 advertising |= ADVERTISED_FIBRE; 4570 4571 if (cp->hw_running) { 4572 /* pcs uses the same bits as mii */ 4573 bmcr = readl(cp->regs + REG_PCS_MII_CTRL); 4574 cas_read_pcs_link_mode(cp, &full_duplex, 4575 &speed, &pause); 4576 } 4577 } 4578 spin_unlock_irqrestore(&cp->lock, flags); 4579 4580 if (bmcr & BMCR_ANENABLE) { 4581 advertising |= ADVERTISED_Autoneg; 4582 cmd->base.autoneg = AUTONEG_ENABLE; 4583 cmd->base.speed = ((speed == 10) ? 4584 SPEED_10 : 4585 ((speed == 1000) ? 4586 SPEED_1000 : SPEED_100)); 4587 cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF; 4588 } else { 4589 cmd->base.autoneg = AUTONEG_DISABLE; 4590 cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ? 4591 SPEED_1000 : 4592 ((bmcr & BMCR_SPEED100) ? 4593 SPEED_100 : SPEED_10)); 4594 cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ? 4595 DUPLEX_FULL : DUPLEX_HALF; 4596 } 4597 if (linkstate != link_up) { 4598 /* Force these to "unknown" if the link is not up and 4599 * autonogotiation in enabled. We can set the link 4600 * speed to 0, but not cmd->duplex, 4601 * because its legal values are 0 and 1. Ethtool will 4602 * print the value reported in parentheses after the 4603 * word "Unknown" for unrecognized values. 4604 * 4605 * If in forced mode, we report the speed and duplex 4606 * settings that we configured. 4607 */ 4608 if (cp->link_cntl & BMCR_ANENABLE) { 4609 cmd->base.speed = 0; 4610 cmd->base.duplex = 0xff; 4611 } else { 4612 cmd->base.speed = SPEED_10; 4613 if (cp->link_cntl & BMCR_SPEED100) { 4614 cmd->base.speed = SPEED_100; 4615 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) { 4616 cmd->base.speed = SPEED_1000; 4617 } 4618 cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ? 4619 DUPLEX_FULL : DUPLEX_HALF; 4620 } 4621 } 4622 4623 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 4624 supported); 4625 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 4626 advertising); 4627 4628 return 0; 4629 } 4630 4631 static int cas_set_link_ksettings(struct net_device *dev, 4632 const struct ethtool_link_ksettings *cmd) 4633 { 4634 struct cas *cp = netdev_priv(dev); 4635 unsigned long flags; 4636 u32 speed = cmd->base.speed; 4637 4638 /* Verify the settings we care about. */ 4639 if (cmd->base.autoneg != AUTONEG_ENABLE && 4640 cmd->base.autoneg != AUTONEG_DISABLE) 4641 return -EINVAL; 4642 4643 if (cmd->base.autoneg == AUTONEG_DISABLE && 4644 ((speed != SPEED_1000 && 4645 speed != SPEED_100 && 4646 speed != SPEED_10) || 4647 (cmd->base.duplex != DUPLEX_HALF && 4648 cmd->base.duplex != DUPLEX_FULL))) 4649 return -EINVAL; 4650 4651 /* Apply settings and restart link process. */ 4652 spin_lock_irqsave(&cp->lock, flags); 4653 cas_begin_auto_negotiation(cp, cmd); 4654 spin_unlock_irqrestore(&cp->lock, flags); 4655 return 0; 4656 } 4657 4658 static int cas_nway_reset(struct net_device *dev) 4659 { 4660 struct cas *cp = netdev_priv(dev); 4661 unsigned long flags; 4662 4663 if ((cp->link_cntl & BMCR_ANENABLE) == 0) 4664 return -EINVAL; 4665 4666 /* Restart link process. */ 4667 spin_lock_irqsave(&cp->lock, flags); 4668 cas_begin_auto_negotiation(cp, NULL); 4669 spin_unlock_irqrestore(&cp->lock, flags); 4670 4671 return 0; 4672 } 4673 4674 static u32 cas_get_link(struct net_device *dev) 4675 { 4676 struct cas *cp = netdev_priv(dev); 4677 return cp->lstate == link_up; 4678 } 4679 4680 static u32 cas_get_msglevel(struct net_device *dev) 4681 { 4682 struct cas *cp = netdev_priv(dev); 4683 return cp->msg_enable; 4684 } 4685 4686 static void cas_set_msglevel(struct net_device *dev, u32 value) 4687 { 4688 struct cas *cp = netdev_priv(dev); 4689 cp->msg_enable = value; 4690 } 4691 4692 static int cas_get_regs_len(struct net_device *dev) 4693 { 4694 struct cas *cp = netdev_priv(dev); 4695 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS; 4696 } 4697 4698 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs, 4699 void *p) 4700 { 4701 struct cas *cp = netdev_priv(dev); 4702 regs->version = 0; 4703 /* cas_read_regs handles locks (cp->lock). */ 4704 cas_read_regs(cp, p, regs->len / sizeof(u32)); 4705 } 4706 4707 static int cas_get_sset_count(struct net_device *dev, int sset) 4708 { 4709 switch (sset) { 4710 case ETH_SS_STATS: 4711 return CAS_NUM_STAT_KEYS; 4712 default: 4713 return -EOPNOTSUPP; 4714 } 4715 } 4716 4717 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data) 4718 { 4719 memcpy(data, ðtool_cassini_statnames, 4720 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN); 4721 } 4722 4723 static void cas_get_ethtool_stats(struct net_device *dev, 4724 struct ethtool_stats *estats, u64 *data) 4725 { 4726 struct cas *cp = netdev_priv(dev); 4727 struct net_device_stats *stats = cas_get_stats(cp->dev); 4728 int i = 0; 4729 data[i++] = stats->collisions; 4730 data[i++] = stats->rx_bytes; 4731 data[i++] = stats->rx_crc_errors; 4732 data[i++] = stats->rx_dropped; 4733 data[i++] = stats->rx_errors; 4734 data[i++] = stats->rx_fifo_errors; 4735 data[i++] = stats->rx_frame_errors; 4736 data[i++] = stats->rx_length_errors; 4737 data[i++] = stats->rx_over_errors; 4738 data[i++] = stats->rx_packets; 4739 data[i++] = stats->tx_aborted_errors; 4740 data[i++] = stats->tx_bytes; 4741 data[i++] = stats->tx_dropped; 4742 data[i++] = stats->tx_errors; 4743 data[i++] = stats->tx_fifo_errors; 4744 data[i++] = stats->tx_packets; 4745 BUG_ON(i != CAS_NUM_STAT_KEYS); 4746 } 4747 4748 static const struct ethtool_ops cas_ethtool_ops = { 4749 .get_drvinfo = cas_get_drvinfo, 4750 .nway_reset = cas_nway_reset, 4751 .get_link = cas_get_link, 4752 .get_msglevel = cas_get_msglevel, 4753 .set_msglevel = cas_set_msglevel, 4754 .get_regs_len = cas_get_regs_len, 4755 .get_regs = cas_get_regs, 4756 .get_sset_count = cas_get_sset_count, 4757 .get_strings = cas_get_strings, 4758 .get_ethtool_stats = cas_get_ethtool_stats, 4759 .get_link_ksettings = cas_get_link_ksettings, 4760 .set_link_ksettings = cas_set_link_ksettings, 4761 }; 4762 4763 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 4764 { 4765 struct cas *cp = netdev_priv(dev); 4766 struct mii_ioctl_data *data = if_mii(ifr); 4767 unsigned long flags; 4768 int rc = -EOPNOTSUPP; 4769 4770 /* Hold the PM mutex while doing ioctl's or we may collide 4771 * with open/close and power management and oops. 4772 */ 4773 mutex_lock(&cp->pm_mutex); 4774 switch (cmd) { 4775 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 4776 data->phy_id = cp->phy_addr; 4777 /* Fallthrough... */ 4778 4779 case SIOCGMIIREG: /* Read MII PHY register. */ 4780 spin_lock_irqsave(&cp->lock, flags); 4781 cas_mif_poll(cp, 0); 4782 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f); 4783 cas_mif_poll(cp, 1); 4784 spin_unlock_irqrestore(&cp->lock, flags); 4785 rc = 0; 4786 break; 4787 4788 case SIOCSMIIREG: /* Write MII PHY register. */ 4789 spin_lock_irqsave(&cp->lock, flags); 4790 cas_mif_poll(cp, 0); 4791 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in); 4792 cas_mif_poll(cp, 1); 4793 spin_unlock_irqrestore(&cp->lock, flags); 4794 break; 4795 default: 4796 break; 4797 } 4798 4799 mutex_unlock(&cp->pm_mutex); 4800 return rc; 4801 } 4802 4803 /* When this chip sits underneath an Intel 31154 bridge, it is the 4804 * only subordinate device and we can tweak the bridge settings to 4805 * reflect that fact. 4806 */ 4807 static void cas_program_bridge(struct pci_dev *cas_pdev) 4808 { 4809 struct pci_dev *pdev = cas_pdev->bus->self; 4810 u32 val; 4811 4812 if (!pdev) 4813 return; 4814 4815 if (pdev->vendor != 0x8086 || pdev->device != 0x537c) 4816 return; 4817 4818 /* Clear bit 10 (Bus Parking Control) in the Secondary 4819 * Arbiter Control/Status Register which lives at offset 4820 * 0x41. Using a 32-bit word read/modify/write at 0x40 4821 * is much simpler so that's how we do this. 4822 */ 4823 pci_read_config_dword(pdev, 0x40, &val); 4824 val &= ~0x00040000; 4825 pci_write_config_dword(pdev, 0x40, val); 4826 4827 /* Max out the Multi-Transaction Timer settings since 4828 * Cassini is the only device present. 4829 * 4830 * The register is 16-bit and lives at 0x50. When the 4831 * settings are enabled, it extends the GRANT# signal 4832 * for a requestor after a transaction is complete. This 4833 * allows the next request to run without first needing 4834 * to negotiate the GRANT# signal back. 4835 * 4836 * Bits 12:10 define the grant duration: 4837 * 4838 * 1 -- 16 clocks 4839 * 2 -- 32 clocks 4840 * 3 -- 64 clocks 4841 * 4 -- 128 clocks 4842 * 5 -- 256 clocks 4843 * 4844 * All other values are illegal. 4845 * 4846 * Bits 09:00 define which REQ/GNT signal pairs get the 4847 * GRANT# signal treatment. We set them all. 4848 */ 4849 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff); 4850 4851 /* The Read Prefecth Policy register is 16-bit and sits at 4852 * offset 0x52. It enables a "smart" pre-fetch policy. We 4853 * enable it and max out all of the settings since only one 4854 * device is sitting underneath and thus bandwidth sharing is 4855 * not an issue. 4856 * 4857 * The register has several 3 bit fields, which indicates a 4858 * multiplier applied to the base amount of prefetching the 4859 * chip would do. These fields are at: 4860 * 4861 * 15:13 --- ReRead Primary Bus 4862 * 12:10 --- FirstRead Primary Bus 4863 * 09:07 --- ReRead Secondary Bus 4864 * 06:04 --- FirstRead Secondary Bus 4865 * 4866 * Bits 03:00 control which REQ/GNT pairs the prefetch settings 4867 * get enabled on. Bit 3 is a grouped enabler which controls 4868 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control 4869 * the individual REQ/GNT pairs [2:0]. 4870 */ 4871 pci_write_config_word(pdev, 0x52, 4872 (0x7 << 13) | 4873 (0x7 << 10) | 4874 (0x7 << 7) | 4875 (0x7 << 4) | 4876 (0xf << 0)); 4877 4878 /* Force cacheline size to 0x8 */ 4879 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08); 4880 4881 /* Force latency timer to maximum setting so Cassini can 4882 * sit on the bus as long as it likes. 4883 */ 4884 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff); 4885 } 4886 4887 static const struct net_device_ops cas_netdev_ops = { 4888 .ndo_open = cas_open, 4889 .ndo_stop = cas_close, 4890 .ndo_start_xmit = cas_start_xmit, 4891 .ndo_get_stats = cas_get_stats, 4892 .ndo_set_rx_mode = cas_set_multicast, 4893 .ndo_do_ioctl = cas_ioctl, 4894 .ndo_tx_timeout = cas_tx_timeout, 4895 .ndo_change_mtu = cas_change_mtu, 4896 .ndo_set_mac_address = eth_mac_addr, 4897 .ndo_validate_addr = eth_validate_addr, 4898 #ifdef CONFIG_NET_POLL_CONTROLLER 4899 .ndo_poll_controller = cas_netpoll, 4900 #endif 4901 }; 4902 4903 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 4904 { 4905 static int cas_version_printed = 0; 4906 unsigned long casreg_len; 4907 struct net_device *dev; 4908 struct cas *cp; 4909 int i, err, pci_using_dac; 4910 u16 pci_cmd; 4911 u8 orig_cacheline_size = 0, cas_cacheline_size = 0; 4912 4913 if (cas_version_printed++ == 0) 4914 pr_info("%s", version); 4915 4916 err = pci_enable_device(pdev); 4917 if (err) { 4918 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 4919 return err; 4920 } 4921 4922 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 4923 dev_err(&pdev->dev, "Cannot find proper PCI device " 4924 "base address, aborting\n"); 4925 err = -ENODEV; 4926 goto err_out_disable_pdev; 4927 } 4928 4929 dev = alloc_etherdev(sizeof(*cp)); 4930 if (!dev) { 4931 err = -ENOMEM; 4932 goto err_out_disable_pdev; 4933 } 4934 SET_NETDEV_DEV(dev, &pdev->dev); 4935 4936 err = pci_request_regions(pdev, dev->name); 4937 if (err) { 4938 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 4939 goto err_out_free_netdev; 4940 } 4941 pci_set_master(pdev); 4942 4943 /* we must always turn on parity response or else parity 4944 * doesn't get generated properly. disable SERR/PERR as well. 4945 * in addition, we want to turn MWI on. 4946 */ 4947 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); 4948 pci_cmd &= ~PCI_COMMAND_SERR; 4949 pci_cmd |= PCI_COMMAND_PARITY; 4950 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); 4951 if (pci_try_set_mwi(pdev)) 4952 pr_warn("Could not enable MWI for %s\n", pci_name(pdev)); 4953 4954 cas_program_bridge(pdev); 4955 4956 /* 4957 * On some architectures, the default cache line size set 4958 * by pci_try_set_mwi reduces perforamnce. We have to increase 4959 * it for this case. To start, we'll print some configuration 4960 * data. 4961 */ 4962 #if 1 4963 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, 4964 &orig_cacheline_size); 4965 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) { 4966 cas_cacheline_size = 4967 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ? 4968 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES; 4969 if (pci_write_config_byte(pdev, 4970 PCI_CACHE_LINE_SIZE, 4971 cas_cacheline_size)) { 4972 dev_err(&pdev->dev, "Could not set PCI cache " 4973 "line size\n"); 4974 goto err_write_cacheline; 4975 } 4976 } 4977 #endif 4978 4979 4980 /* Configure DMA attributes. */ 4981 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4982 pci_using_dac = 1; 4983 err = pci_set_consistent_dma_mask(pdev, 4984 DMA_BIT_MASK(64)); 4985 if (err < 0) { 4986 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA " 4987 "for consistent allocations\n"); 4988 goto err_out_free_res; 4989 } 4990 4991 } else { 4992 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4993 if (err) { 4994 dev_err(&pdev->dev, "No usable DMA configuration, " 4995 "aborting\n"); 4996 goto err_out_free_res; 4997 } 4998 pci_using_dac = 0; 4999 } 5000 5001 casreg_len = pci_resource_len(pdev, 0); 5002 5003 cp = netdev_priv(dev); 5004 cp->pdev = pdev; 5005 #if 1 5006 /* A value of 0 indicates we never explicitly set it */ 5007 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0; 5008 #endif 5009 cp->dev = dev; 5010 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE : 5011 cassini_debug; 5012 5013 #if defined(CONFIG_SPARC) 5014 cp->of_node = pci_device_to_OF_node(pdev); 5015 #endif 5016 5017 cp->link_transition = LINK_TRANSITION_UNKNOWN; 5018 cp->link_transition_jiffies_valid = 0; 5019 5020 spin_lock_init(&cp->lock); 5021 spin_lock_init(&cp->rx_inuse_lock); 5022 spin_lock_init(&cp->rx_spare_lock); 5023 for (i = 0; i < N_TX_RINGS; i++) { 5024 spin_lock_init(&cp->stat_lock[i]); 5025 spin_lock_init(&cp->tx_lock[i]); 5026 } 5027 spin_lock_init(&cp->stat_lock[N_TX_RINGS]); 5028 mutex_init(&cp->pm_mutex); 5029 5030 timer_setup(&cp->link_timer, cas_link_timer, 0); 5031 5032 #if 1 5033 /* Just in case the implementation of atomic operations 5034 * change so that an explicit initialization is necessary. 5035 */ 5036 atomic_set(&cp->reset_task_pending, 0); 5037 atomic_set(&cp->reset_task_pending_all, 0); 5038 atomic_set(&cp->reset_task_pending_spare, 0); 5039 atomic_set(&cp->reset_task_pending_mtu, 0); 5040 #endif 5041 INIT_WORK(&cp->reset_task, cas_reset_task); 5042 5043 /* Default link parameters */ 5044 if (link_mode >= 0 && link_mode < 6) 5045 cp->link_cntl = link_modes[link_mode]; 5046 else 5047 cp->link_cntl = BMCR_ANENABLE; 5048 cp->lstate = link_down; 5049 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 5050 netif_carrier_off(cp->dev); 5051 cp->timer_ticks = 0; 5052 5053 /* give us access to cassini registers */ 5054 cp->regs = pci_iomap(pdev, 0, casreg_len); 5055 if (!cp->regs) { 5056 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 5057 goto err_out_free_res; 5058 } 5059 cp->casreg_len = casreg_len; 5060 5061 pci_save_state(pdev); 5062 cas_check_pci_invariants(cp); 5063 cas_hard_reset(cp); 5064 cas_reset(cp, 0); 5065 if (cas_check_invariants(cp)) 5066 goto err_out_iounmap; 5067 if (cp->cas_flags & CAS_FLAG_SATURN) 5068 cas_saturn_firmware_init(cp); 5069 5070 cp->init_block = (struct cas_init_block *) 5071 pci_alloc_consistent(pdev, sizeof(struct cas_init_block), 5072 &cp->block_dvma); 5073 if (!cp->init_block) { 5074 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n"); 5075 goto err_out_iounmap; 5076 } 5077 5078 for (i = 0; i < N_TX_RINGS; i++) 5079 cp->init_txds[i] = cp->init_block->txds[i]; 5080 5081 for (i = 0; i < N_RX_DESC_RINGS; i++) 5082 cp->init_rxds[i] = cp->init_block->rxds[i]; 5083 5084 for (i = 0; i < N_RX_COMP_RINGS; i++) 5085 cp->init_rxcs[i] = cp->init_block->rxcs[i]; 5086 5087 for (i = 0; i < N_RX_FLOWS; i++) 5088 skb_queue_head_init(&cp->rx_flows[i]); 5089 5090 dev->netdev_ops = &cas_netdev_ops; 5091 dev->ethtool_ops = &cas_ethtool_ops; 5092 dev->watchdog_timeo = CAS_TX_TIMEOUT; 5093 5094 #ifdef USE_NAPI 5095 netif_napi_add(dev, &cp->napi, cas_poll, 64); 5096 #endif 5097 dev->irq = pdev->irq; 5098 dev->dma = 0; 5099 5100 /* Cassini features. */ 5101 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0) 5102 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG; 5103 5104 if (pci_using_dac) 5105 dev->features |= NETIF_F_HIGHDMA; 5106 5107 /* MTU range: 60 - varies or 9000 */ 5108 dev->min_mtu = CAS_MIN_MTU; 5109 dev->max_mtu = CAS_MAX_MTU; 5110 5111 if (register_netdev(dev)) { 5112 dev_err(&pdev->dev, "Cannot register net device, aborting\n"); 5113 goto err_out_free_consistent; 5114 } 5115 5116 i = readl(cp->regs + REG_BIM_CFG); 5117 netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n", 5118 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "", 5119 (i & BIM_CFG_32BIT) ? "32" : "64", 5120 (i & BIM_CFG_66MHZ) ? "66" : "33", 5121 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq, 5122 dev->dev_addr); 5123 5124 pci_set_drvdata(pdev, dev); 5125 cp->hw_running = 1; 5126 cas_entropy_reset(cp); 5127 cas_phy_init(cp); 5128 cas_begin_auto_negotiation(cp, NULL); 5129 return 0; 5130 5131 err_out_free_consistent: 5132 pci_free_consistent(pdev, sizeof(struct cas_init_block), 5133 cp->init_block, cp->block_dvma); 5134 5135 err_out_iounmap: 5136 mutex_lock(&cp->pm_mutex); 5137 if (cp->hw_running) 5138 cas_shutdown(cp); 5139 mutex_unlock(&cp->pm_mutex); 5140 5141 pci_iounmap(pdev, cp->regs); 5142 5143 5144 err_out_free_res: 5145 pci_release_regions(pdev); 5146 5147 err_write_cacheline: 5148 /* Try to restore it in case the error occurred after we 5149 * set it. 5150 */ 5151 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size); 5152 5153 err_out_free_netdev: 5154 free_netdev(dev); 5155 5156 err_out_disable_pdev: 5157 pci_disable_device(pdev); 5158 return -ENODEV; 5159 } 5160 5161 static void cas_remove_one(struct pci_dev *pdev) 5162 { 5163 struct net_device *dev = pci_get_drvdata(pdev); 5164 struct cas *cp; 5165 if (!dev) 5166 return; 5167 5168 cp = netdev_priv(dev); 5169 unregister_netdev(dev); 5170 5171 vfree(cp->fw_data); 5172 5173 mutex_lock(&cp->pm_mutex); 5174 cancel_work_sync(&cp->reset_task); 5175 if (cp->hw_running) 5176 cas_shutdown(cp); 5177 mutex_unlock(&cp->pm_mutex); 5178 5179 #if 1 5180 if (cp->orig_cacheline_size) { 5181 /* Restore the cache line size if we had modified 5182 * it. 5183 */ 5184 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 5185 cp->orig_cacheline_size); 5186 } 5187 #endif 5188 pci_free_consistent(pdev, sizeof(struct cas_init_block), 5189 cp->init_block, cp->block_dvma); 5190 pci_iounmap(pdev, cp->regs); 5191 free_netdev(dev); 5192 pci_release_regions(pdev); 5193 pci_disable_device(pdev); 5194 } 5195 5196 #ifdef CONFIG_PM 5197 static int cas_suspend(struct pci_dev *pdev, pm_message_t state) 5198 { 5199 struct net_device *dev = pci_get_drvdata(pdev); 5200 struct cas *cp = netdev_priv(dev); 5201 unsigned long flags; 5202 5203 mutex_lock(&cp->pm_mutex); 5204 5205 /* If the driver is opened, we stop the DMA */ 5206 if (cp->opened) { 5207 netif_device_detach(dev); 5208 5209 cas_lock_all_save(cp, flags); 5210 5211 /* We can set the second arg of cas_reset to 0 5212 * because on resume, we'll call cas_init_hw with 5213 * its second arg set so that autonegotiation is 5214 * restarted. 5215 */ 5216 cas_reset(cp, 0); 5217 cas_clean_rings(cp); 5218 cas_unlock_all_restore(cp, flags); 5219 } 5220 5221 if (cp->hw_running) 5222 cas_shutdown(cp); 5223 mutex_unlock(&cp->pm_mutex); 5224 5225 return 0; 5226 } 5227 5228 static int cas_resume(struct pci_dev *pdev) 5229 { 5230 struct net_device *dev = pci_get_drvdata(pdev); 5231 struct cas *cp = netdev_priv(dev); 5232 5233 netdev_info(dev, "resuming\n"); 5234 5235 mutex_lock(&cp->pm_mutex); 5236 cas_hard_reset(cp); 5237 if (cp->opened) { 5238 unsigned long flags; 5239 cas_lock_all_save(cp, flags); 5240 cas_reset(cp, 0); 5241 cp->hw_running = 1; 5242 cas_clean_rings(cp); 5243 cas_init_hw(cp, 1); 5244 cas_unlock_all_restore(cp, flags); 5245 5246 netif_device_attach(dev); 5247 } 5248 mutex_unlock(&cp->pm_mutex); 5249 return 0; 5250 } 5251 #endif /* CONFIG_PM */ 5252 5253 static struct pci_driver cas_driver = { 5254 .name = DRV_MODULE_NAME, 5255 .id_table = cas_pci_tbl, 5256 .probe = cas_init_one, 5257 .remove = cas_remove_one, 5258 #ifdef CONFIG_PM 5259 .suspend = cas_suspend, 5260 .resume = cas_resume 5261 #endif 5262 }; 5263 5264 static int __init cas_init(void) 5265 { 5266 if (linkdown_timeout > 0) 5267 link_transition_timeout = linkdown_timeout * HZ; 5268 else 5269 link_transition_timeout = 0; 5270 5271 return pci_register_driver(&cas_driver); 5272 } 5273 5274 static void __exit cas_cleanup(void) 5275 { 5276 pci_unregister_driver(&cas_driver); 5277 } 5278 5279 module_init(cas_init); 5280 module_exit(cas_cleanup); 5281