1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver. 2 * 3 * Copyright (C) 2004 Sun Microsystems Inc. 4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation; either version 2 of the 9 * License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 * 19 * This driver uses the sungem driver (c) David Miller 20 * (davem@redhat.com) as its basis. 21 * 22 * The cassini chip has a number of features that distinguish it from 23 * the gem chip: 24 * 4 transmit descriptor rings that are used for either QoS (VLAN) or 25 * load balancing (non-VLAN mode) 26 * batching of multiple packets 27 * multiple CPU dispatching 28 * page-based RX descriptor engine with separate completion rings 29 * Gigabit support (GMII and PCS interface) 30 * MIF link up/down detection works 31 * 32 * RX is handled by page sized buffers that are attached as fragments to 33 * the skb. here's what's done: 34 * -- driver allocates pages at a time and keeps reference counts 35 * on them. 36 * -- the upper protocol layers assume that the header is in the skb 37 * itself. as a result, cassini will copy a small amount (64 bytes) 38 * to make them happy. 39 * -- driver appends the rest of the data pages as frags to skbuffs 40 * and increments the reference count 41 * -- on page reclamation, the driver swaps the page with a spare page. 42 * if that page is still in use, it frees its reference to that page, 43 * and allocates a new page for use. otherwise, it just recycles the 44 * the page. 45 * 46 * NOTE: cassini can parse the header. however, it's not worth it 47 * as long as the network stack requires a header copy. 48 * 49 * TX has 4 queues. currently these queues are used in a round-robin 50 * fashion for load balancing. They can also be used for QoS. for that 51 * to work, however, QoS information needs to be exposed down to the driver 52 * level so that subqueues get targeted to particular transmit rings. 53 * alternatively, the queues can be configured via use of the all-purpose 54 * ioctl. 55 * 56 * RX DATA: the rx completion ring has all the info, but the rx desc 57 * ring has all of the data. RX can conceivably come in under multiple 58 * interrupts, but the INT# assignment needs to be set up properly by 59 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do 60 * that. also, the two descriptor rings are designed to distinguish between 61 * encrypted and non-encrypted packets, but we use them for buffering 62 * instead. 63 * 64 * by default, the selective clear mask is set up to process rx packets. 65 */ 66 67 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 68 69 #include <linux/module.h> 70 #include <linux/kernel.h> 71 #include <linux/types.h> 72 #include <linux/compiler.h> 73 #include <linux/slab.h> 74 #include <linux/delay.h> 75 #include <linux/init.h> 76 #include <linux/interrupt.h> 77 #include <linux/vmalloc.h> 78 #include <linux/ioport.h> 79 #include <linux/pci.h> 80 #include <linux/mm.h> 81 #include <linux/highmem.h> 82 #include <linux/list.h> 83 #include <linux/dma-mapping.h> 84 85 #include <linux/netdevice.h> 86 #include <linux/etherdevice.h> 87 #include <linux/skbuff.h> 88 #include <linux/ethtool.h> 89 #include <linux/crc32.h> 90 #include <linux/random.h> 91 #include <linux/mii.h> 92 #include <linux/ip.h> 93 #include <linux/tcp.h> 94 #include <linux/mutex.h> 95 #include <linux/firmware.h> 96 97 #include <net/checksum.h> 98 99 #include <linux/atomic.h> 100 #include <asm/io.h> 101 #include <asm/byteorder.h> 102 #include <linux/uaccess.h> 103 104 #define cas_page_map(x) kmap_atomic((x)) 105 #define cas_page_unmap(x) kunmap_atomic((x)) 106 #define CAS_NCPUS num_online_cpus() 107 108 #define cas_skb_release(x) netif_rx(x) 109 110 /* select which firmware to use */ 111 #define USE_HP_WORKAROUND 112 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */ 113 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */ 114 115 #include "cassini.h" 116 117 #define USE_TX_COMPWB /* use completion writeback registers */ 118 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */ 119 #define USE_RX_BLANK /* hw interrupt mitigation */ 120 #undef USE_ENTROPY_DEV /* don't test for entropy device */ 121 122 /* NOTE: these aren't useable unless PCI interrupts can be assigned. 123 * also, we need to make cp->lock finer-grained. 124 */ 125 #undef USE_PCI_INTB 126 #undef USE_PCI_INTC 127 #undef USE_PCI_INTD 128 #undef USE_QOS 129 130 #undef USE_VPD_DEBUG /* debug vpd information if defined */ 131 132 /* rx processing options */ 133 #define USE_PAGE_ORDER /* specify to allocate large rx pages */ 134 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */ 135 #define RX_COPY_ALWAYS 0 /* if 0, use frags */ 136 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */ 137 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */ 138 139 #define DRV_MODULE_NAME "cassini" 140 #define DRV_MODULE_VERSION "1.6" 141 #define DRV_MODULE_RELDATE "21 May 2008" 142 143 #define CAS_DEF_MSG_ENABLE \ 144 (NETIF_MSG_DRV | \ 145 NETIF_MSG_PROBE | \ 146 NETIF_MSG_LINK | \ 147 NETIF_MSG_TIMER | \ 148 NETIF_MSG_IFDOWN | \ 149 NETIF_MSG_IFUP | \ 150 NETIF_MSG_RX_ERR | \ 151 NETIF_MSG_TX_ERR) 152 153 /* length of time before we decide the hardware is borked, 154 * and dev->tx_timeout() should be called to fix the problem 155 */ 156 #define CAS_TX_TIMEOUT (HZ) 157 #define CAS_LINK_TIMEOUT (22*HZ/10) 158 #define CAS_LINK_FAST_TIMEOUT (1) 159 160 /* timeout values for state changing. these specify the number 161 * of 10us delays to be used before giving up. 162 */ 163 #define STOP_TRIES_PHY 1000 164 #define STOP_TRIES 5000 165 166 /* specify a minimum frame size to deal with some fifo issues 167 * max mtu == 2 * page size - ethernet header - 64 - swivel = 168 * 2 * page_size - 0x50 169 */ 170 #define CAS_MIN_FRAME 97 171 #define CAS_1000MB_MIN_FRAME 255 172 #define CAS_MIN_MTU 60 173 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000) 174 175 #if 1 176 /* 177 * Eliminate these and use separate atomic counters for each, to 178 * avoid a race condition. 179 */ 180 #else 181 #define CAS_RESET_MTU 1 182 #define CAS_RESET_ALL 2 183 #define CAS_RESET_SPARE 3 184 #endif 185 186 static char version[] = 187 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 188 189 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */ 190 static int link_mode; 191 192 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)"); 193 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver"); 194 MODULE_LICENSE("GPL"); 195 MODULE_FIRMWARE("sun/cassini.bin"); 196 module_param(cassini_debug, int, 0); 197 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value"); 198 module_param(link_mode, int, 0); 199 MODULE_PARM_DESC(link_mode, "default link mode"); 200 201 /* 202 * Work around for a PCS bug in which the link goes down due to the chip 203 * being confused and never showing a link status of "up." 204 */ 205 #define DEFAULT_LINKDOWN_TIMEOUT 5 206 /* 207 * Value in seconds, for user input. 208 */ 209 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT; 210 module_param(linkdown_timeout, int, 0); 211 MODULE_PARM_DESC(linkdown_timeout, 212 "min reset interval in sec. for PCS linkdown issue; disabled if not positive"); 213 214 /* 215 * value in 'ticks' (units used by jiffies). Set when we init the 216 * module because 'HZ' in actually a function call on some flavors of 217 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ. 218 */ 219 static int link_transition_timeout; 220 221 222 223 static u16 link_modes[] = { 224 BMCR_ANENABLE, /* 0 : autoneg */ 225 0, /* 1 : 10bt half duplex */ 226 BMCR_SPEED100, /* 2 : 100bt half duplex */ 227 BMCR_FULLDPLX, /* 3 : 10bt full duplex */ 228 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */ 229 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */ 230 }; 231 232 static const struct pci_device_id cas_pci_tbl[] = { 233 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI, 234 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 235 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN, 236 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 237 { 0, } 238 }; 239 240 MODULE_DEVICE_TABLE(pci, cas_pci_tbl); 241 242 static void cas_set_link_modes(struct cas *cp); 243 244 static inline void cas_lock_tx(struct cas *cp) 245 { 246 int i; 247 248 for (i = 0; i < N_TX_RINGS; i++) 249 spin_lock_nested(&cp->tx_lock[i], i); 250 } 251 252 static inline void cas_lock_all(struct cas *cp) 253 { 254 spin_lock_irq(&cp->lock); 255 cas_lock_tx(cp); 256 } 257 258 /* WTZ: QA was finding deadlock problems with the previous 259 * versions after long test runs with multiple cards per machine. 260 * See if replacing cas_lock_all with safer versions helps. The 261 * symptoms QA is reporting match those we'd expect if interrupts 262 * aren't being properly restored, and we fixed a previous deadlock 263 * with similar symptoms by using save/restore versions in other 264 * places. 265 */ 266 #define cas_lock_all_save(cp, flags) \ 267 do { \ 268 struct cas *xxxcp = (cp); \ 269 spin_lock_irqsave(&xxxcp->lock, flags); \ 270 cas_lock_tx(xxxcp); \ 271 } while (0) 272 273 static inline void cas_unlock_tx(struct cas *cp) 274 { 275 int i; 276 277 for (i = N_TX_RINGS; i > 0; i--) 278 spin_unlock(&cp->tx_lock[i - 1]); 279 } 280 281 static inline void cas_unlock_all(struct cas *cp) 282 { 283 cas_unlock_tx(cp); 284 spin_unlock_irq(&cp->lock); 285 } 286 287 #define cas_unlock_all_restore(cp, flags) \ 288 do { \ 289 struct cas *xxxcp = (cp); \ 290 cas_unlock_tx(xxxcp); \ 291 spin_unlock_irqrestore(&xxxcp->lock, flags); \ 292 } while (0) 293 294 static void cas_disable_irq(struct cas *cp, const int ring) 295 { 296 /* Make sure we won't get any more interrupts */ 297 if (ring == 0) { 298 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK); 299 return; 300 } 301 302 /* disable completion interrupts and selectively mask */ 303 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 304 switch (ring) { 305 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 306 #ifdef USE_PCI_INTB 307 case 1: 308 #endif 309 #ifdef USE_PCI_INTC 310 case 2: 311 #endif 312 #ifdef USE_PCI_INTD 313 case 3: 314 #endif 315 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN, 316 cp->regs + REG_PLUS_INTRN_MASK(ring)); 317 break; 318 #endif 319 default: 320 writel(INTRN_MASK_CLEAR_ALL, cp->regs + 321 REG_PLUS_INTRN_MASK(ring)); 322 break; 323 } 324 } 325 } 326 327 static inline void cas_mask_intr(struct cas *cp) 328 { 329 int i; 330 331 for (i = 0; i < N_RX_COMP_RINGS; i++) 332 cas_disable_irq(cp, i); 333 } 334 335 static void cas_enable_irq(struct cas *cp, const int ring) 336 { 337 if (ring == 0) { /* all but TX_DONE */ 338 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK); 339 return; 340 } 341 342 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 343 switch (ring) { 344 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 345 #ifdef USE_PCI_INTB 346 case 1: 347 #endif 348 #ifdef USE_PCI_INTC 349 case 2: 350 #endif 351 #ifdef USE_PCI_INTD 352 case 3: 353 #endif 354 writel(INTRN_MASK_RX_EN, cp->regs + 355 REG_PLUS_INTRN_MASK(ring)); 356 break; 357 #endif 358 default: 359 break; 360 } 361 } 362 } 363 364 static inline void cas_unmask_intr(struct cas *cp) 365 { 366 int i; 367 368 for (i = 0; i < N_RX_COMP_RINGS; i++) 369 cas_enable_irq(cp, i); 370 } 371 372 static inline void cas_entropy_gather(struct cas *cp) 373 { 374 #ifdef USE_ENTROPY_DEV 375 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) 376 return; 377 378 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV), 379 readl(cp->regs + REG_ENTROPY_IV), 380 sizeof(uint64_t)*8); 381 #endif 382 } 383 384 static inline void cas_entropy_reset(struct cas *cp) 385 { 386 #ifdef USE_ENTROPY_DEV 387 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) 388 return; 389 390 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT, 391 cp->regs + REG_BIM_LOCAL_DEV_EN); 392 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET); 393 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG); 394 395 /* if we read back 0x0, we don't have an entropy device */ 396 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0) 397 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV; 398 #endif 399 } 400 401 /* access to the phy. the following assumes that we've initialized the MIF to 402 * be in frame rather than bit-bang mode 403 */ 404 static u16 cas_phy_read(struct cas *cp, int reg) 405 { 406 u32 cmd; 407 int limit = STOP_TRIES_PHY; 408 409 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ; 410 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); 411 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); 412 cmd |= MIF_FRAME_TURN_AROUND_MSB; 413 writel(cmd, cp->regs + REG_MIF_FRAME); 414 415 /* poll for completion */ 416 while (limit-- > 0) { 417 udelay(10); 418 cmd = readl(cp->regs + REG_MIF_FRAME); 419 if (cmd & MIF_FRAME_TURN_AROUND_LSB) 420 return cmd & MIF_FRAME_DATA_MASK; 421 } 422 return 0xFFFF; /* -1 */ 423 } 424 425 static int cas_phy_write(struct cas *cp, int reg, u16 val) 426 { 427 int limit = STOP_TRIES_PHY; 428 u32 cmd; 429 430 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE; 431 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); 432 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); 433 cmd |= MIF_FRAME_TURN_AROUND_MSB; 434 cmd |= val & MIF_FRAME_DATA_MASK; 435 writel(cmd, cp->regs + REG_MIF_FRAME); 436 437 /* poll for completion */ 438 while (limit-- > 0) { 439 udelay(10); 440 cmd = readl(cp->regs + REG_MIF_FRAME); 441 if (cmd & MIF_FRAME_TURN_AROUND_LSB) 442 return 0; 443 } 444 return -1; 445 } 446 447 static void cas_phy_powerup(struct cas *cp) 448 { 449 u16 ctl = cas_phy_read(cp, MII_BMCR); 450 451 if ((ctl & BMCR_PDOWN) == 0) 452 return; 453 ctl &= ~BMCR_PDOWN; 454 cas_phy_write(cp, MII_BMCR, ctl); 455 } 456 457 static void cas_phy_powerdown(struct cas *cp) 458 { 459 u16 ctl = cas_phy_read(cp, MII_BMCR); 460 461 if (ctl & BMCR_PDOWN) 462 return; 463 ctl |= BMCR_PDOWN; 464 cas_phy_write(cp, MII_BMCR, ctl); 465 } 466 467 /* cp->lock held. note: the last put_page will free the buffer */ 468 static int cas_page_free(struct cas *cp, cas_page_t *page) 469 { 470 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size, 471 PCI_DMA_FROMDEVICE); 472 __free_pages(page->buffer, cp->page_order); 473 kfree(page); 474 return 0; 475 } 476 477 #ifdef RX_COUNT_BUFFERS 478 #define RX_USED_ADD(x, y) ((x)->used += (y)) 479 #define RX_USED_SET(x, y) ((x)->used = (y)) 480 #else 481 #define RX_USED_ADD(x, y) 482 #define RX_USED_SET(x, y) 483 #endif 484 485 /* local page allocation routines for the receive buffers. jumbo pages 486 * require at least 8K contiguous and 8K aligned buffers. 487 */ 488 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags) 489 { 490 cas_page_t *page; 491 492 page = kmalloc(sizeof(cas_page_t), flags); 493 if (!page) 494 return NULL; 495 496 INIT_LIST_HEAD(&page->list); 497 RX_USED_SET(page, 0); 498 page->buffer = alloc_pages(flags, cp->page_order); 499 if (!page->buffer) 500 goto page_err; 501 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0, 502 cp->page_size, PCI_DMA_FROMDEVICE); 503 return page; 504 505 page_err: 506 kfree(page); 507 return NULL; 508 } 509 510 /* initialize spare pool of rx buffers, but allocate during the open */ 511 static void cas_spare_init(struct cas *cp) 512 { 513 spin_lock(&cp->rx_inuse_lock); 514 INIT_LIST_HEAD(&cp->rx_inuse_list); 515 spin_unlock(&cp->rx_inuse_lock); 516 517 spin_lock(&cp->rx_spare_lock); 518 INIT_LIST_HEAD(&cp->rx_spare_list); 519 cp->rx_spares_needed = RX_SPARE_COUNT; 520 spin_unlock(&cp->rx_spare_lock); 521 } 522 523 /* used on close. free all the spare buffers. */ 524 static void cas_spare_free(struct cas *cp) 525 { 526 struct list_head list, *elem, *tmp; 527 528 /* free spare buffers */ 529 INIT_LIST_HEAD(&list); 530 spin_lock(&cp->rx_spare_lock); 531 list_splice_init(&cp->rx_spare_list, &list); 532 spin_unlock(&cp->rx_spare_lock); 533 list_for_each_safe(elem, tmp, &list) { 534 cas_page_free(cp, list_entry(elem, cas_page_t, list)); 535 } 536 537 INIT_LIST_HEAD(&list); 538 #if 1 539 /* 540 * Looks like Adrian had protected this with a different 541 * lock than used everywhere else to manipulate this list. 542 */ 543 spin_lock(&cp->rx_inuse_lock); 544 list_splice_init(&cp->rx_inuse_list, &list); 545 spin_unlock(&cp->rx_inuse_lock); 546 #else 547 spin_lock(&cp->rx_spare_lock); 548 list_splice_init(&cp->rx_inuse_list, &list); 549 spin_unlock(&cp->rx_spare_lock); 550 #endif 551 list_for_each_safe(elem, tmp, &list) { 552 cas_page_free(cp, list_entry(elem, cas_page_t, list)); 553 } 554 } 555 556 /* replenish spares if needed */ 557 static void cas_spare_recover(struct cas *cp, const gfp_t flags) 558 { 559 struct list_head list, *elem, *tmp; 560 int needed, i; 561 562 /* check inuse list. if we don't need any more free buffers, 563 * just free it 564 */ 565 566 /* make a local copy of the list */ 567 INIT_LIST_HEAD(&list); 568 spin_lock(&cp->rx_inuse_lock); 569 list_splice_init(&cp->rx_inuse_list, &list); 570 spin_unlock(&cp->rx_inuse_lock); 571 572 list_for_each_safe(elem, tmp, &list) { 573 cas_page_t *page = list_entry(elem, cas_page_t, list); 574 575 /* 576 * With the lockless pagecache, cassini buffering scheme gets 577 * slightly less accurate: we might find that a page has an 578 * elevated reference count here, due to a speculative ref, 579 * and skip it as in-use. Ideally we would be able to reclaim 580 * it. However this would be such a rare case, it doesn't 581 * matter too much as we should pick it up the next time round. 582 * 583 * Importantly, if we find that the page has a refcount of 1 584 * here (our refcount), then we know it is definitely not inuse 585 * so we can reuse it. 586 */ 587 if (page_count(page->buffer) > 1) 588 continue; 589 590 list_del(elem); 591 spin_lock(&cp->rx_spare_lock); 592 if (cp->rx_spares_needed > 0) { 593 list_add(elem, &cp->rx_spare_list); 594 cp->rx_spares_needed--; 595 spin_unlock(&cp->rx_spare_lock); 596 } else { 597 spin_unlock(&cp->rx_spare_lock); 598 cas_page_free(cp, page); 599 } 600 } 601 602 /* put any inuse buffers back on the list */ 603 if (!list_empty(&list)) { 604 spin_lock(&cp->rx_inuse_lock); 605 list_splice(&list, &cp->rx_inuse_list); 606 spin_unlock(&cp->rx_inuse_lock); 607 } 608 609 spin_lock(&cp->rx_spare_lock); 610 needed = cp->rx_spares_needed; 611 spin_unlock(&cp->rx_spare_lock); 612 if (!needed) 613 return; 614 615 /* we still need spares, so try to allocate some */ 616 INIT_LIST_HEAD(&list); 617 i = 0; 618 while (i < needed) { 619 cas_page_t *spare = cas_page_alloc(cp, flags); 620 if (!spare) 621 break; 622 list_add(&spare->list, &list); 623 i++; 624 } 625 626 spin_lock(&cp->rx_spare_lock); 627 list_splice(&list, &cp->rx_spare_list); 628 cp->rx_spares_needed -= i; 629 spin_unlock(&cp->rx_spare_lock); 630 } 631 632 /* pull a page from the list. */ 633 static cas_page_t *cas_page_dequeue(struct cas *cp) 634 { 635 struct list_head *entry; 636 int recover; 637 638 spin_lock(&cp->rx_spare_lock); 639 if (list_empty(&cp->rx_spare_list)) { 640 /* try to do a quick recovery */ 641 spin_unlock(&cp->rx_spare_lock); 642 cas_spare_recover(cp, GFP_ATOMIC); 643 spin_lock(&cp->rx_spare_lock); 644 if (list_empty(&cp->rx_spare_list)) { 645 netif_err(cp, rx_err, cp->dev, 646 "no spare buffers available\n"); 647 spin_unlock(&cp->rx_spare_lock); 648 return NULL; 649 } 650 } 651 652 entry = cp->rx_spare_list.next; 653 list_del(entry); 654 recover = ++cp->rx_spares_needed; 655 spin_unlock(&cp->rx_spare_lock); 656 657 /* trigger the timer to do the recovery */ 658 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) { 659 #if 1 660 atomic_inc(&cp->reset_task_pending); 661 atomic_inc(&cp->reset_task_pending_spare); 662 schedule_work(&cp->reset_task); 663 #else 664 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE); 665 schedule_work(&cp->reset_task); 666 #endif 667 } 668 return list_entry(entry, cas_page_t, list); 669 } 670 671 672 static void cas_mif_poll(struct cas *cp, const int enable) 673 { 674 u32 cfg; 675 676 cfg = readl(cp->regs + REG_MIF_CFG); 677 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1); 678 679 if (cp->phy_type & CAS_PHY_MII_MDIO1) 680 cfg |= MIF_CFG_PHY_SELECT; 681 682 /* poll and interrupt on link status change. */ 683 if (enable) { 684 cfg |= MIF_CFG_POLL_EN; 685 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR); 686 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr); 687 } 688 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF, 689 cp->regs + REG_MIF_MASK); 690 writel(cfg, cp->regs + REG_MIF_CFG); 691 } 692 693 /* Must be invoked under cp->lock */ 694 static void cas_begin_auto_negotiation(struct cas *cp, 695 const struct ethtool_link_ksettings *ep) 696 { 697 u16 ctl; 698 #if 1 699 int lcntl; 700 int changed = 0; 701 int oldstate = cp->lstate; 702 int link_was_not_down = !(oldstate == link_down); 703 #endif 704 /* Setup link parameters */ 705 if (!ep) 706 goto start_aneg; 707 lcntl = cp->link_cntl; 708 if (ep->base.autoneg == AUTONEG_ENABLE) { 709 cp->link_cntl = BMCR_ANENABLE; 710 } else { 711 u32 speed = ep->base.speed; 712 cp->link_cntl = 0; 713 if (speed == SPEED_100) 714 cp->link_cntl |= BMCR_SPEED100; 715 else if (speed == SPEED_1000) 716 cp->link_cntl |= CAS_BMCR_SPEED1000; 717 if (ep->base.duplex == DUPLEX_FULL) 718 cp->link_cntl |= BMCR_FULLDPLX; 719 } 720 #if 1 721 changed = (lcntl != cp->link_cntl); 722 #endif 723 start_aneg: 724 if (cp->lstate == link_up) { 725 netdev_info(cp->dev, "PCS link down\n"); 726 } else { 727 if (changed) { 728 netdev_info(cp->dev, "link configuration changed\n"); 729 } 730 } 731 cp->lstate = link_down; 732 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 733 if (!cp->hw_running) 734 return; 735 #if 1 736 /* 737 * WTZ: If the old state was link_up, we turn off the carrier 738 * to replicate everything we do elsewhere on a link-down 739 * event when we were already in a link-up state.. 740 */ 741 if (oldstate == link_up) 742 netif_carrier_off(cp->dev); 743 if (changed && link_was_not_down) { 744 /* 745 * WTZ: This branch will simply schedule a full reset after 746 * we explicitly changed link modes in an ioctl. See if this 747 * fixes the link-problems we were having for forced mode. 748 */ 749 atomic_inc(&cp->reset_task_pending); 750 atomic_inc(&cp->reset_task_pending_all); 751 schedule_work(&cp->reset_task); 752 cp->timer_ticks = 0; 753 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 754 return; 755 } 756 #endif 757 if (cp->phy_type & CAS_PHY_SERDES) { 758 u32 val = readl(cp->regs + REG_PCS_MII_CTRL); 759 760 if (cp->link_cntl & BMCR_ANENABLE) { 761 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN); 762 cp->lstate = link_aneg; 763 } else { 764 if (cp->link_cntl & BMCR_FULLDPLX) 765 val |= PCS_MII_CTRL_DUPLEX; 766 val &= ~PCS_MII_AUTONEG_EN; 767 cp->lstate = link_force_ok; 768 } 769 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 770 writel(val, cp->regs + REG_PCS_MII_CTRL); 771 772 } else { 773 cas_mif_poll(cp, 0); 774 ctl = cas_phy_read(cp, MII_BMCR); 775 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | 776 CAS_BMCR_SPEED1000 | BMCR_ANENABLE); 777 ctl |= cp->link_cntl; 778 if (ctl & BMCR_ANENABLE) { 779 ctl |= BMCR_ANRESTART; 780 cp->lstate = link_aneg; 781 } else { 782 cp->lstate = link_force_ok; 783 } 784 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 785 cas_phy_write(cp, MII_BMCR, ctl); 786 cas_mif_poll(cp, 1); 787 } 788 789 cp->timer_ticks = 0; 790 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 791 } 792 793 /* Must be invoked under cp->lock. */ 794 static int cas_reset_mii_phy(struct cas *cp) 795 { 796 int limit = STOP_TRIES_PHY; 797 u16 val; 798 799 cas_phy_write(cp, MII_BMCR, BMCR_RESET); 800 udelay(100); 801 while (--limit) { 802 val = cas_phy_read(cp, MII_BMCR); 803 if ((val & BMCR_RESET) == 0) 804 break; 805 udelay(10); 806 } 807 return limit <= 0; 808 } 809 810 static void cas_saturn_firmware_init(struct cas *cp) 811 { 812 const struct firmware *fw; 813 const char fw_name[] = "sun/cassini.bin"; 814 int err; 815 816 if (PHY_NS_DP83065 != cp->phy_id) 817 return; 818 819 err = request_firmware(&fw, fw_name, &cp->pdev->dev); 820 if (err) { 821 pr_err("Failed to load firmware \"%s\"\n", 822 fw_name); 823 return; 824 } 825 if (fw->size < 2) { 826 pr_err("bogus length %zu in \"%s\"\n", 827 fw->size, fw_name); 828 goto out; 829 } 830 cp->fw_load_addr= fw->data[1] << 8 | fw->data[0]; 831 cp->fw_size = fw->size - 2; 832 cp->fw_data = vmalloc(cp->fw_size); 833 if (!cp->fw_data) 834 goto out; 835 memcpy(cp->fw_data, &fw->data[2], cp->fw_size); 836 out: 837 release_firmware(fw); 838 } 839 840 static void cas_saturn_firmware_load(struct cas *cp) 841 { 842 int i; 843 844 if (!cp->fw_data) 845 return; 846 847 cas_phy_powerdown(cp); 848 849 /* expanded memory access mode */ 850 cas_phy_write(cp, DP83065_MII_MEM, 0x0); 851 852 /* pointer configuration for new firmware */ 853 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9); 854 cas_phy_write(cp, DP83065_MII_REGD, 0xbd); 855 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa); 856 cas_phy_write(cp, DP83065_MII_REGD, 0x82); 857 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb); 858 cas_phy_write(cp, DP83065_MII_REGD, 0x0); 859 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc); 860 cas_phy_write(cp, DP83065_MII_REGD, 0x39); 861 862 /* download new firmware */ 863 cas_phy_write(cp, DP83065_MII_MEM, 0x1); 864 cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr); 865 for (i = 0; i < cp->fw_size; i++) 866 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]); 867 868 /* enable firmware */ 869 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8); 870 cas_phy_write(cp, DP83065_MII_REGD, 0x1); 871 } 872 873 874 /* phy initialization */ 875 static void cas_phy_init(struct cas *cp) 876 { 877 u16 val; 878 879 /* if we're in MII/GMII mode, set up phy */ 880 if (CAS_PHY_MII(cp->phy_type)) { 881 writel(PCS_DATAPATH_MODE_MII, 882 cp->regs + REG_PCS_DATAPATH_MODE); 883 884 cas_mif_poll(cp, 0); 885 cas_reset_mii_phy(cp); /* take out of isolate mode */ 886 887 if (PHY_LUCENT_B0 == cp->phy_id) { 888 /* workaround link up/down issue with lucent */ 889 cas_phy_write(cp, LUCENT_MII_REG, 0x8000); 890 cas_phy_write(cp, MII_BMCR, 0x00f1); 891 cas_phy_write(cp, LUCENT_MII_REG, 0x0); 892 893 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) { 894 /* workarounds for broadcom phy */ 895 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20); 896 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012); 897 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804); 898 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013); 899 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204); 900 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); 901 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132); 902 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); 903 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232); 904 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F); 905 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20); 906 907 } else if (PHY_BROADCOM_5411 == cp->phy_id) { 908 val = cas_phy_read(cp, BROADCOM_MII_REG4); 909 val = cas_phy_read(cp, BROADCOM_MII_REG4); 910 if (val & 0x0080) { 911 /* link workaround */ 912 cas_phy_write(cp, BROADCOM_MII_REG4, 913 val & ~0x0080); 914 } 915 916 } else if (cp->cas_flags & CAS_FLAG_SATURN) { 917 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ? 918 SATURN_PCFG_FSI : 0x0, 919 cp->regs + REG_SATURN_PCFG); 920 921 /* load firmware to address 10Mbps auto-negotiation 922 * issue. NOTE: this will need to be changed if the 923 * default firmware gets fixed. 924 */ 925 if (PHY_NS_DP83065 == cp->phy_id) { 926 cas_saturn_firmware_load(cp); 927 } 928 cas_phy_powerup(cp); 929 } 930 931 /* advertise capabilities */ 932 val = cas_phy_read(cp, MII_BMCR); 933 val &= ~BMCR_ANENABLE; 934 cas_phy_write(cp, MII_BMCR, val); 935 udelay(10); 936 937 cas_phy_write(cp, MII_ADVERTISE, 938 cas_phy_read(cp, MII_ADVERTISE) | 939 (ADVERTISE_10HALF | ADVERTISE_10FULL | 940 ADVERTISE_100HALF | ADVERTISE_100FULL | 941 CAS_ADVERTISE_PAUSE | 942 CAS_ADVERTISE_ASYM_PAUSE)); 943 944 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 945 /* make sure that we don't advertise half 946 * duplex to avoid a chip issue 947 */ 948 val = cas_phy_read(cp, CAS_MII_1000_CTRL); 949 val &= ~CAS_ADVERTISE_1000HALF; 950 val |= CAS_ADVERTISE_1000FULL; 951 cas_phy_write(cp, CAS_MII_1000_CTRL, val); 952 } 953 954 } else { 955 /* reset pcs for serdes */ 956 u32 val; 957 int limit; 958 959 writel(PCS_DATAPATH_MODE_SERDES, 960 cp->regs + REG_PCS_DATAPATH_MODE); 961 962 /* enable serdes pins on saturn */ 963 if (cp->cas_flags & CAS_FLAG_SATURN) 964 writel(0, cp->regs + REG_SATURN_PCFG); 965 966 /* Reset PCS unit. */ 967 val = readl(cp->regs + REG_PCS_MII_CTRL); 968 val |= PCS_MII_RESET; 969 writel(val, cp->regs + REG_PCS_MII_CTRL); 970 971 limit = STOP_TRIES; 972 while (--limit > 0) { 973 udelay(10); 974 if ((readl(cp->regs + REG_PCS_MII_CTRL) & 975 PCS_MII_RESET) == 0) 976 break; 977 } 978 if (limit <= 0) 979 netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n", 980 readl(cp->regs + REG_PCS_STATE_MACHINE)); 981 982 /* Make sure PCS is disabled while changing advertisement 983 * configuration. 984 */ 985 writel(0x0, cp->regs + REG_PCS_CFG); 986 987 /* Advertise all capabilities except half-duplex. */ 988 val = readl(cp->regs + REG_PCS_MII_ADVERT); 989 val &= ~PCS_MII_ADVERT_HD; 990 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE | 991 PCS_MII_ADVERT_ASYM_PAUSE); 992 writel(val, cp->regs + REG_PCS_MII_ADVERT); 993 994 /* enable PCS */ 995 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG); 996 997 /* pcs workaround: enable sync detect */ 998 writel(PCS_SERDES_CTRL_SYNCD_EN, 999 cp->regs + REG_PCS_SERDES_CTRL); 1000 } 1001 } 1002 1003 1004 static int cas_pcs_link_check(struct cas *cp) 1005 { 1006 u32 stat, state_machine; 1007 int retval = 0; 1008 1009 /* The link status bit latches on zero, so you must 1010 * read it twice in such a case to see a transition 1011 * to the link being up. 1012 */ 1013 stat = readl(cp->regs + REG_PCS_MII_STATUS); 1014 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0) 1015 stat = readl(cp->regs + REG_PCS_MII_STATUS); 1016 1017 /* The remote-fault indication is only valid 1018 * when autoneg has completed. 1019 */ 1020 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP | 1021 PCS_MII_STATUS_REMOTE_FAULT)) == 1022 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) 1023 netif_info(cp, link, cp->dev, "PCS RemoteFault\n"); 1024 1025 /* work around link detection issue by querying the PCS state 1026 * machine directly. 1027 */ 1028 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE); 1029 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) { 1030 stat &= ~PCS_MII_STATUS_LINK_STATUS; 1031 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) { 1032 stat |= PCS_MII_STATUS_LINK_STATUS; 1033 } 1034 1035 if (stat & PCS_MII_STATUS_LINK_STATUS) { 1036 if (cp->lstate != link_up) { 1037 if (cp->opened) { 1038 cp->lstate = link_up; 1039 cp->link_transition = LINK_TRANSITION_LINK_UP; 1040 1041 cas_set_link_modes(cp); 1042 netif_carrier_on(cp->dev); 1043 } 1044 } 1045 } else if (cp->lstate == link_up) { 1046 cp->lstate = link_down; 1047 if (link_transition_timeout != 0 && 1048 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && 1049 !cp->link_transition_jiffies_valid) { 1050 /* 1051 * force a reset, as a workaround for the 1052 * link-failure problem. May want to move this to a 1053 * point a bit earlier in the sequence. If we had 1054 * generated a reset a short time ago, we'll wait for 1055 * the link timer to check the status until a 1056 * timer expires (link_transistion_jiffies_valid is 1057 * true when the timer is running.) Instead of using 1058 * a system timer, we just do a check whenever the 1059 * link timer is running - this clears the flag after 1060 * a suitable delay. 1061 */ 1062 retval = 1; 1063 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; 1064 cp->link_transition_jiffies = jiffies; 1065 cp->link_transition_jiffies_valid = 1; 1066 } else { 1067 cp->link_transition = LINK_TRANSITION_ON_FAILURE; 1068 } 1069 netif_carrier_off(cp->dev); 1070 if (cp->opened) 1071 netif_info(cp, link, cp->dev, "PCS link down\n"); 1072 1073 /* Cassini only: if you force a mode, there can be 1074 * sync problems on link down. to fix that, the following 1075 * things need to be checked: 1076 * 1) read serialink state register 1077 * 2) read pcs status register to verify link down. 1078 * 3) if link down and serial link == 0x03, then you need 1079 * to global reset the chip. 1080 */ 1081 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) { 1082 /* should check to see if we're in a forced mode */ 1083 stat = readl(cp->regs + REG_PCS_SERDES_STATE); 1084 if (stat == 0x03) 1085 return 1; 1086 } 1087 } else if (cp->lstate == link_down) { 1088 if (link_transition_timeout != 0 && 1089 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && 1090 !cp->link_transition_jiffies_valid) { 1091 /* force a reset, as a workaround for the 1092 * link-failure problem. May want to move 1093 * this to a point a bit earlier in the 1094 * sequence. 1095 */ 1096 retval = 1; 1097 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; 1098 cp->link_transition_jiffies = jiffies; 1099 cp->link_transition_jiffies_valid = 1; 1100 } else { 1101 cp->link_transition = LINK_TRANSITION_STILL_FAILED; 1102 } 1103 } 1104 1105 return retval; 1106 } 1107 1108 static int cas_pcs_interrupt(struct net_device *dev, 1109 struct cas *cp, u32 status) 1110 { 1111 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS); 1112 1113 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0) 1114 return 0; 1115 return cas_pcs_link_check(cp); 1116 } 1117 1118 static int cas_txmac_interrupt(struct net_device *dev, 1119 struct cas *cp, u32 status) 1120 { 1121 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS); 1122 1123 if (!txmac_stat) 1124 return 0; 1125 1126 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1127 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat); 1128 1129 /* Defer timer expiration is quite normal, 1130 * don't even log the event. 1131 */ 1132 if ((txmac_stat & MAC_TX_DEFER_TIMER) && 1133 !(txmac_stat & ~MAC_TX_DEFER_TIMER)) 1134 return 0; 1135 1136 spin_lock(&cp->stat_lock[0]); 1137 if (txmac_stat & MAC_TX_UNDERRUN) { 1138 netdev_err(dev, "TX MAC xmit underrun\n"); 1139 cp->net_stats[0].tx_fifo_errors++; 1140 } 1141 1142 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) { 1143 netdev_err(dev, "TX MAC max packet size error\n"); 1144 cp->net_stats[0].tx_errors++; 1145 } 1146 1147 /* The rest are all cases of one of the 16-bit TX 1148 * counters expiring. 1149 */ 1150 if (txmac_stat & MAC_TX_COLL_NORMAL) 1151 cp->net_stats[0].collisions += 0x10000; 1152 1153 if (txmac_stat & MAC_TX_COLL_EXCESS) { 1154 cp->net_stats[0].tx_aborted_errors += 0x10000; 1155 cp->net_stats[0].collisions += 0x10000; 1156 } 1157 1158 if (txmac_stat & MAC_TX_COLL_LATE) { 1159 cp->net_stats[0].tx_aborted_errors += 0x10000; 1160 cp->net_stats[0].collisions += 0x10000; 1161 } 1162 spin_unlock(&cp->stat_lock[0]); 1163 1164 /* We do not keep track of MAC_TX_COLL_FIRST and 1165 * MAC_TX_PEAK_ATTEMPTS events. 1166 */ 1167 return 0; 1168 } 1169 1170 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware) 1171 { 1172 cas_hp_inst_t *inst; 1173 u32 val; 1174 int i; 1175 1176 i = 0; 1177 while ((inst = firmware) && inst->note) { 1178 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR); 1179 1180 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val); 1181 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask); 1182 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI); 1183 1184 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10); 1185 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop); 1186 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext); 1187 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff); 1188 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext); 1189 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff); 1190 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op); 1191 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID); 1192 1193 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask); 1194 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift); 1195 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab); 1196 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg); 1197 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW); 1198 ++firmware; 1199 ++i; 1200 } 1201 } 1202 1203 static void cas_init_rx_dma(struct cas *cp) 1204 { 1205 u64 desc_dma = cp->block_dvma; 1206 u32 val; 1207 int i, size; 1208 1209 /* rx free descriptors */ 1210 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL); 1211 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0)); 1212 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0)); 1213 if ((N_RX_DESC_RINGS > 1) && 1214 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */ 1215 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1)); 1216 writel(val, cp->regs + REG_RX_CFG); 1217 1218 val = (unsigned long) cp->init_rxds[0] - 1219 (unsigned long) cp->init_block; 1220 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI); 1221 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW); 1222 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); 1223 1224 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1225 /* rx desc 2 is for IPSEC packets. however, 1226 * we don't it that for that purpose. 1227 */ 1228 val = (unsigned long) cp->init_rxds[1] - 1229 (unsigned long) cp->init_block; 1230 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI); 1231 writel((desc_dma + val) & 0xffffffff, cp->regs + 1232 REG_PLUS_RX_DB1_LOW); 1233 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs + 1234 REG_PLUS_RX_KICK1); 1235 } 1236 1237 /* rx completion registers */ 1238 val = (unsigned long) cp->init_rxcs[0] - 1239 (unsigned long) cp->init_block; 1240 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI); 1241 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW); 1242 1243 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1244 /* rx comp 2-4 */ 1245 for (i = 1; i < MAX_RX_COMP_RINGS; i++) { 1246 val = (unsigned long) cp->init_rxcs[i] - 1247 (unsigned long) cp->init_block; 1248 writel((desc_dma + val) >> 32, cp->regs + 1249 REG_PLUS_RX_CBN_HI(i)); 1250 writel((desc_dma + val) & 0xffffffff, cp->regs + 1251 REG_PLUS_RX_CBN_LOW(i)); 1252 } 1253 } 1254 1255 /* read selective clear regs to prevent spurious interrupts 1256 * on reset because complete == kick. 1257 * selective clear set up to prevent interrupts on resets 1258 */ 1259 readl(cp->regs + REG_INTR_STATUS_ALIAS); 1260 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR); 1261 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1262 for (i = 1; i < N_RX_COMP_RINGS; i++) 1263 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i)); 1264 1265 /* 2 is different from 3 and 4 */ 1266 if (N_RX_COMP_RINGS > 1) 1267 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1, 1268 cp->regs + REG_PLUS_ALIASN_CLEAR(1)); 1269 1270 for (i = 2; i < N_RX_COMP_RINGS; i++) 1271 writel(INTR_RX_DONE_ALT, 1272 cp->regs + REG_PLUS_ALIASN_CLEAR(i)); 1273 } 1274 1275 /* set up pause thresholds */ 1276 val = CAS_BASE(RX_PAUSE_THRESH_OFF, 1277 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM); 1278 val |= CAS_BASE(RX_PAUSE_THRESH_ON, 1279 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM); 1280 writel(val, cp->regs + REG_RX_PAUSE_THRESH); 1281 1282 /* zero out dma reassembly buffers */ 1283 for (i = 0; i < 64; i++) { 1284 writel(i, cp->regs + REG_RX_TABLE_ADDR); 1285 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW); 1286 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID); 1287 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI); 1288 } 1289 1290 /* make sure address register is 0 for normal operation */ 1291 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR); 1292 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR); 1293 1294 /* interrupt mitigation */ 1295 #ifdef USE_RX_BLANK 1296 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL); 1297 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL); 1298 writel(val, cp->regs + REG_RX_BLANK); 1299 #else 1300 writel(0x0, cp->regs + REG_RX_BLANK); 1301 #endif 1302 1303 /* interrupt generation as a function of low water marks for 1304 * free desc and completion entries. these are used to trigger 1305 * housekeeping for rx descs. we don't use the free interrupt 1306 * as it's not very useful 1307 */ 1308 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */ 1309 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL); 1310 writel(val, cp->regs + REG_RX_AE_THRESH); 1311 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1312 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1)); 1313 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH); 1314 } 1315 1316 /* Random early detect registers. useful for congestion avoidance. 1317 * this should be tunable. 1318 */ 1319 writel(0x0, cp->regs + REG_RX_RED); 1320 1321 /* receive page sizes. default == 2K (0x800) */ 1322 val = 0; 1323 if (cp->page_size == 0x1000) 1324 val = 0x1; 1325 else if (cp->page_size == 0x2000) 1326 val = 0x2; 1327 else if (cp->page_size == 0x4000) 1328 val = 0x3; 1329 1330 /* round mtu + offset. constrain to page size. */ 1331 size = cp->dev->mtu + 64; 1332 if (size > cp->page_size) 1333 size = cp->page_size; 1334 1335 if (size <= 0x400) 1336 i = 0x0; 1337 else if (size <= 0x800) 1338 i = 0x1; 1339 else if (size <= 0x1000) 1340 i = 0x2; 1341 else 1342 i = 0x3; 1343 1344 cp->mtu_stride = 1 << (i + 10); 1345 val = CAS_BASE(RX_PAGE_SIZE, val); 1346 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i); 1347 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10)); 1348 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1); 1349 writel(val, cp->regs + REG_RX_PAGE_SIZE); 1350 1351 /* enable the header parser if desired */ 1352 if (CAS_HP_FIRMWARE == cas_prog_null) 1353 return; 1354 1355 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS); 1356 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK; 1357 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL); 1358 writel(val, cp->regs + REG_HP_CFG); 1359 } 1360 1361 static inline void cas_rxc_init(struct cas_rx_comp *rxc) 1362 { 1363 memset(rxc, 0, sizeof(*rxc)); 1364 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO); 1365 } 1366 1367 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1] 1368 * flipping is protected by the fact that the chip will not 1369 * hand back the same page index while it's being processed. 1370 */ 1371 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index) 1372 { 1373 cas_page_t *page = cp->rx_pages[1][index]; 1374 cas_page_t *new; 1375 1376 if (page_count(page->buffer) == 1) 1377 return page; 1378 1379 new = cas_page_dequeue(cp); 1380 if (new) { 1381 spin_lock(&cp->rx_inuse_lock); 1382 list_add(&page->list, &cp->rx_inuse_list); 1383 spin_unlock(&cp->rx_inuse_lock); 1384 } 1385 return new; 1386 } 1387 1388 /* this needs to be changed if we actually use the ENC RX DESC ring */ 1389 static cas_page_t *cas_page_swap(struct cas *cp, const int ring, 1390 const int index) 1391 { 1392 cas_page_t **page0 = cp->rx_pages[0]; 1393 cas_page_t **page1 = cp->rx_pages[1]; 1394 1395 /* swap if buffer is in use */ 1396 if (page_count(page0[index]->buffer) > 1) { 1397 cas_page_t *new = cas_page_spare(cp, index); 1398 if (new) { 1399 page1[index] = page0[index]; 1400 page0[index] = new; 1401 } 1402 } 1403 RX_USED_SET(page0[index], 0); 1404 return page0[index]; 1405 } 1406 1407 static void cas_clean_rxds(struct cas *cp) 1408 { 1409 /* only clean ring 0 as ring 1 is used for spare buffers */ 1410 struct cas_rx_desc *rxd = cp->init_rxds[0]; 1411 int i, size; 1412 1413 /* release all rx flows */ 1414 for (i = 0; i < N_RX_FLOWS; i++) { 1415 struct sk_buff *skb; 1416 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) { 1417 cas_skb_release(skb); 1418 } 1419 } 1420 1421 /* initialize descriptors */ 1422 size = RX_DESC_RINGN_SIZE(0); 1423 for (i = 0; i < size; i++) { 1424 cas_page_t *page = cas_page_swap(cp, 0, i); 1425 rxd[i].buffer = cpu_to_le64(page->dma_addr); 1426 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) | 1427 CAS_BASE(RX_INDEX_RING, 0)); 1428 } 1429 1430 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4; 1431 cp->rx_last[0] = 0; 1432 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0); 1433 } 1434 1435 static void cas_clean_rxcs(struct cas *cp) 1436 { 1437 int i, j; 1438 1439 /* take ownership of rx comp descriptors */ 1440 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS); 1441 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS); 1442 for (i = 0; i < N_RX_COMP_RINGS; i++) { 1443 struct cas_rx_comp *rxc = cp->init_rxcs[i]; 1444 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) { 1445 cas_rxc_init(rxc + j); 1446 } 1447 } 1448 } 1449 1450 #if 0 1451 /* When we get a RX fifo overflow, the RX unit is probably hung 1452 * so we do the following. 1453 * 1454 * If any part of the reset goes wrong, we return 1 and that causes the 1455 * whole chip to be reset. 1456 */ 1457 static int cas_rxmac_reset(struct cas *cp) 1458 { 1459 struct net_device *dev = cp->dev; 1460 int limit; 1461 u32 val; 1462 1463 /* First, reset MAC RX. */ 1464 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 1465 for (limit = 0; limit < STOP_TRIES; limit++) { 1466 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN)) 1467 break; 1468 udelay(10); 1469 } 1470 if (limit == STOP_TRIES) { 1471 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n"); 1472 return 1; 1473 } 1474 1475 /* Second, disable RX DMA. */ 1476 writel(0, cp->regs + REG_RX_CFG); 1477 for (limit = 0; limit < STOP_TRIES; limit++) { 1478 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN)) 1479 break; 1480 udelay(10); 1481 } 1482 if (limit == STOP_TRIES) { 1483 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n"); 1484 return 1; 1485 } 1486 1487 mdelay(5); 1488 1489 /* Execute RX reset command. */ 1490 writel(SW_RESET_RX, cp->regs + REG_SW_RESET); 1491 for (limit = 0; limit < STOP_TRIES; limit++) { 1492 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX)) 1493 break; 1494 udelay(10); 1495 } 1496 if (limit == STOP_TRIES) { 1497 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n"); 1498 return 1; 1499 } 1500 1501 /* reset driver rx state */ 1502 cas_clean_rxds(cp); 1503 cas_clean_rxcs(cp); 1504 1505 /* Now, reprogram the rest of RX unit. */ 1506 cas_init_rx_dma(cp); 1507 1508 /* re-enable */ 1509 val = readl(cp->regs + REG_RX_CFG); 1510 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG); 1511 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); 1512 val = readl(cp->regs + REG_MAC_RX_CFG); 1513 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 1514 return 0; 1515 } 1516 #endif 1517 1518 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp, 1519 u32 status) 1520 { 1521 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS); 1522 1523 if (!stat) 1524 return 0; 1525 1526 netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat); 1527 1528 /* these are all rollovers */ 1529 spin_lock(&cp->stat_lock[0]); 1530 if (stat & MAC_RX_ALIGN_ERR) 1531 cp->net_stats[0].rx_frame_errors += 0x10000; 1532 1533 if (stat & MAC_RX_CRC_ERR) 1534 cp->net_stats[0].rx_crc_errors += 0x10000; 1535 1536 if (stat & MAC_RX_LEN_ERR) 1537 cp->net_stats[0].rx_length_errors += 0x10000; 1538 1539 if (stat & MAC_RX_OVERFLOW) { 1540 cp->net_stats[0].rx_over_errors++; 1541 cp->net_stats[0].rx_fifo_errors++; 1542 } 1543 1544 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR 1545 * events. 1546 */ 1547 spin_unlock(&cp->stat_lock[0]); 1548 return 0; 1549 } 1550 1551 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp, 1552 u32 status) 1553 { 1554 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS); 1555 1556 if (!stat) 1557 return 0; 1558 1559 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1560 "mac interrupt, stat: 0x%x\n", stat); 1561 1562 /* This interrupt is just for pause frame and pause 1563 * tracking. It is useful for diagnostics and debug 1564 * but probably by default we will mask these events. 1565 */ 1566 if (stat & MAC_CTRL_PAUSE_STATE) 1567 cp->pause_entered++; 1568 1569 if (stat & MAC_CTRL_PAUSE_RECEIVED) 1570 cp->pause_last_time_recvd = (stat >> 16); 1571 1572 return 0; 1573 } 1574 1575 1576 /* Must be invoked under cp->lock. */ 1577 static inline int cas_mdio_link_not_up(struct cas *cp) 1578 { 1579 u16 val; 1580 1581 switch (cp->lstate) { 1582 case link_force_ret: 1583 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n"); 1584 cas_phy_write(cp, MII_BMCR, cp->link_fcntl); 1585 cp->timer_ticks = 5; 1586 cp->lstate = link_force_ok; 1587 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1588 break; 1589 1590 case link_aneg: 1591 val = cas_phy_read(cp, MII_BMCR); 1592 1593 /* Try forced modes. we try things in the following order: 1594 * 1000 full -> 100 full/half -> 10 half 1595 */ 1596 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE); 1597 val |= BMCR_FULLDPLX; 1598 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? 1599 CAS_BMCR_SPEED1000 : BMCR_SPEED100; 1600 cas_phy_write(cp, MII_BMCR, val); 1601 cp->timer_ticks = 5; 1602 cp->lstate = link_force_try; 1603 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1604 break; 1605 1606 case link_force_try: 1607 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */ 1608 val = cas_phy_read(cp, MII_BMCR); 1609 cp->timer_ticks = 5; 1610 if (val & CAS_BMCR_SPEED1000) { /* gigabit */ 1611 val &= ~CAS_BMCR_SPEED1000; 1612 val |= (BMCR_SPEED100 | BMCR_FULLDPLX); 1613 cas_phy_write(cp, MII_BMCR, val); 1614 break; 1615 } 1616 1617 if (val & BMCR_SPEED100) { 1618 if (val & BMCR_FULLDPLX) /* fd failed */ 1619 val &= ~BMCR_FULLDPLX; 1620 else { /* 100Mbps failed */ 1621 val &= ~BMCR_SPEED100; 1622 } 1623 cas_phy_write(cp, MII_BMCR, val); 1624 break; 1625 } 1626 default: 1627 break; 1628 } 1629 return 0; 1630 } 1631 1632 1633 /* must be invoked with cp->lock held */ 1634 static int cas_mii_link_check(struct cas *cp, const u16 bmsr) 1635 { 1636 int restart; 1637 1638 if (bmsr & BMSR_LSTATUS) { 1639 /* Ok, here we got a link. If we had it due to a forced 1640 * fallback, and we were configured for autoneg, we 1641 * retry a short autoneg pass. If you know your hub is 1642 * broken, use ethtool ;) 1643 */ 1644 if ((cp->lstate == link_force_try) && 1645 (cp->link_cntl & BMCR_ANENABLE)) { 1646 cp->lstate = link_force_ret; 1647 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1648 cas_mif_poll(cp, 0); 1649 cp->link_fcntl = cas_phy_read(cp, MII_BMCR); 1650 cp->timer_ticks = 5; 1651 if (cp->opened) 1652 netif_info(cp, link, cp->dev, 1653 "Got link after fallback, retrying autoneg once...\n"); 1654 cas_phy_write(cp, MII_BMCR, 1655 cp->link_fcntl | BMCR_ANENABLE | 1656 BMCR_ANRESTART); 1657 cas_mif_poll(cp, 1); 1658 1659 } else if (cp->lstate != link_up) { 1660 cp->lstate = link_up; 1661 cp->link_transition = LINK_TRANSITION_LINK_UP; 1662 1663 if (cp->opened) { 1664 cas_set_link_modes(cp); 1665 netif_carrier_on(cp->dev); 1666 } 1667 } 1668 return 0; 1669 } 1670 1671 /* link not up. if the link was previously up, we restart the 1672 * whole process 1673 */ 1674 restart = 0; 1675 if (cp->lstate == link_up) { 1676 cp->lstate = link_down; 1677 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 1678 1679 netif_carrier_off(cp->dev); 1680 if (cp->opened) 1681 netif_info(cp, link, cp->dev, "Link down\n"); 1682 restart = 1; 1683 1684 } else if (++cp->timer_ticks > 10) 1685 cas_mdio_link_not_up(cp); 1686 1687 return restart; 1688 } 1689 1690 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp, 1691 u32 status) 1692 { 1693 u32 stat = readl(cp->regs + REG_MIF_STATUS); 1694 u16 bmsr; 1695 1696 /* check for a link change */ 1697 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0) 1698 return 0; 1699 1700 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat); 1701 return cas_mii_link_check(cp, bmsr); 1702 } 1703 1704 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp, 1705 u32 status) 1706 { 1707 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS); 1708 1709 if (!stat) 1710 return 0; 1711 1712 netdev_err(dev, "PCI error [%04x:%04x]", 1713 stat, readl(cp->regs + REG_BIM_DIAG)); 1714 1715 /* cassini+ has this reserved */ 1716 if ((stat & PCI_ERR_BADACK) && 1717 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0)) 1718 pr_cont(" <No ACK64# during ABS64 cycle>"); 1719 1720 if (stat & PCI_ERR_DTRTO) 1721 pr_cont(" <Delayed transaction timeout>"); 1722 if (stat & PCI_ERR_OTHER) 1723 pr_cont(" <other>"); 1724 if (stat & PCI_ERR_BIM_DMA_WRITE) 1725 pr_cont(" <BIM DMA 0 write req>"); 1726 if (stat & PCI_ERR_BIM_DMA_READ) 1727 pr_cont(" <BIM DMA 0 read req>"); 1728 pr_cont("\n"); 1729 1730 if (stat & PCI_ERR_OTHER) { 1731 u16 cfg; 1732 1733 /* Interrogate PCI config space for the 1734 * true cause. 1735 */ 1736 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg); 1737 netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg); 1738 if (cfg & PCI_STATUS_PARITY) 1739 netdev_err(dev, "PCI parity error detected\n"); 1740 if (cfg & PCI_STATUS_SIG_TARGET_ABORT) 1741 netdev_err(dev, "PCI target abort\n"); 1742 if (cfg & PCI_STATUS_REC_TARGET_ABORT) 1743 netdev_err(dev, "PCI master acks target abort\n"); 1744 if (cfg & PCI_STATUS_REC_MASTER_ABORT) 1745 netdev_err(dev, "PCI master abort\n"); 1746 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR) 1747 netdev_err(dev, "PCI system error SERR#\n"); 1748 if (cfg & PCI_STATUS_DETECTED_PARITY) 1749 netdev_err(dev, "PCI parity error\n"); 1750 1751 /* Write the error bits back to clear them. */ 1752 cfg &= (PCI_STATUS_PARITY | 1753 PCI_STATUS_SIG_TARGET_ABORT | 1754 PCI_STATUS_REC_TARGET_ABORT | 1755 PCI_STATUS_REC_MASTER_ABORT | 1756 PCI_STATUS_SIG_SYSTEM_ERROR | 1757 PCI_STATUS_DETECTED_PARITY); 1758 pci_write_config_word(cp->pdev, PCI_STATUS, cfg); 1759 } 1760 1761 /* For all PCI errors, we should reset the chip. */ 1762 return 1; 1763 } 1764 1765 /* All non-normal interrupt conditions get serviced here. 1766 * Returns non-zero if we should just exit the interrupt 1767 * handler right now (ie. if we reset the card which invalidates 1768 * all of the other original irq status bits). 1769 */ 1770 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp, 1771 u32 status) 1772 { 1773 if (status & INTR_RX_TAG_ERROR) { 1774 /* corrupt RX tag framing */ 1775 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 1776 "corrupt rx tag framing\n"); 1777 spin_lock(&cp->stat_lock[0]); 1778 cp->net_stats[0].rx_errors++; 1779 spin_unlock(&cp->stat_lock[0]); 1780 goto do_reset; 1781 } 1782 1783 if (status & INTR_RX_LEN_MISMATCH) { 1784 /* length mismatch. */ 1785 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 1786 "length mismatch for rx frame\n"); 1787 spin_lock(&cp->stat_lock[0]); 1788 cp->net_stats[0].rx_errors++; 1789 spin_unlock(&cp->stat_lock[0]); 1790 goto do_reset; 1791 } 1792 1793 if (status & INTR_PCS_STATUS) { 1794 if (cas_pcs_interrupt(dev, cp, status)) 1795 goto do_reset; 1796 } 1797 1798 if (status & INTR_TX_MAC_STATUS) { 1799 if (cas_txmac_interrupt(dev, cp, status)) 1800 goto do_reset; 1801 } 1802 1803 if (status & INTR_RX_MAC_STATUS) { 1804 if (cas_rxmac_interrupt(dev, cp, status)) 1805 goto do_reset; 1806 } 1807 1808 if (status & INTR_MAC_CTRL_STATUS) { 1809 if (cas_mac_interrupt(dev, cp, status)) 1810 goto do_reset; 1811 } 1812 1813 if (status & INTR_MIF_STATUS) { 1814 if (cas_mif_interrupt(dev, cp, status)) 1815 goto do_reset; 1816 } 1817 1818 if (status & INTR_PCI_ERROR_STATUS) { 1819 if (cas_pci_interrupt(dev, cp, status)) 1820 goto do_reset; 1821 } 1822 return 0; 1823 1824 do_reset: 1825 #if 1 1826 atomic_inc(&cp->reset_task_pending); 1827 atomic_inc(&cp->reset_task_pending_all); 1828 netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status); 1829 schedule_work(&cp->reset_task); 1830 #else 1831 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 1832 netdev_err(dev, "reset called in cas_abnormal_irq\n"); 1833 schedule_work(&cp->reset_task); 1834 #endif 1835 return 1; 1836 } 1837 1838 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when 1839 * determining whether to do a netif_stop/wakeup 1840 */ 1841 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1) 1842 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK) 1843 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr, 1844 const int len) 1845 { 1846 unsigned long off = addr + len; 1847 1848 if (CAS_TABORT(cp) == 1) 1849 return 0; 1850 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN) 1851 return 0; 1852 return TX_TARGET_ABORT_LEN; 1853 } 1854 1855 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit) 1856 { 1857 struct cas_tx_desc *txds; 1858 struct sk_buff **skbs; 1859 struct net_device *dev = cp->dev; 1860 int entry, count; 1861 1862 spin_lock(&cp->tx_lock[ring]); 1863 txds = cp->init_txds[ring]; 1864 skbs = cp->tx_skbs[ring]; 1865 entry = cp->tx_old[ring]; 1866 1867 count = TX_BUFF_COUNT(ring, entry, limit); 1868 while (entry != limit) { 1869 struct sk_buff *skb = skbs[entry]; 1870 dma_addr_t daddr; 1871 u32 dlen; 1872 int frag; 1873 1874 if (!skb) { 1875 /* this should never occur */ 1876 entry = TX_DESC_NEXT(ring, entry); 1877 continue; 1878 } 1879 1880 /* however, we might get only a partial skb release. */ 1881 count -= skb_shinfo(skb)->nr_frags + 1882 + cp->tx_tiny_use[ring][entry].nbufs + 1; 1883 if (count < 0) 1884 break; 1885 1886 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev, 1887 "tx[%d] done, slot %d\n", ring, entry); 1888 1889 skbs[entry] = NULL; 1890 cp->tx_tiny_use[ring][entry].nbufs = 0; 1891 1892 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 1893 struct cas_tx_desc *txd = txds + entry; 1894 1895 daddr = le64_to_cpu(txd->buffer); 1896 dlen = CAS_VAL(TX_DESC_BUFLEN, 1897 le64_to_cpu(txd->control)); 1898 pci_unmap_page(cp->pdev, daddr, dlen, 1899 PCI_DMA_TODEVICE); 1900 entry = TX_DESC_NEXT(ring, entry); 1901 1902 /* tiny buffer may follow */ 1903 if (cp->tx_tiny_use[ring][entry].used) { 1904 cp->tx_tiny_use[ring][entry].used = 0; 1905 entry = TX_DESC_NEXT(ring, entry); 1906 } 1907 } 1908 1909 spin_lock(&cp->stat_lock[ring]); 1910 cp->net_stats[ring].tx_packets++; 1911 cp->net_stats[ring].tx_bytes += skb->len; 1912 spin_unlock(&cp->stat_lock[ring]); 1913 dev_kfree_skb_irq(skb); 1914 } 1915 cp->tx_old[ring] = entry; 1916 1917 /* this is wrong for multiple tx rings. the net device needs 1918 * multiple queues for this to do the right thing. we wait 1919 * for 2*packets to be available when using tiny buffers 1920 */ 1921 if (netif_queue_stopped(dev) && 1922 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))) 1923 netif_wake_queue(dev); 1924 spin_unlock(&cp->tx_lock[ring]); 1925 } 1926 1927 static void cas_tx(struct net_device *dev, struct cas *cp, 1928 u32 status) 1929 { 1930 int limit, ring; 1931 #ifdef USE_TX_COMPWB 1932 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb); 1933 #endif 1934 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1935 "tx interrupt, status: 0x%x, %llx\n", 1936 status, (unsigned long long)compwb); 1937 /* process all the rings */ 1938 for (ring = 0; ring < N_TX_RINGS; ring++) { 1939 #ifdef USE_TX_COMPWB 1940 /* use the completion writeback registers */ 1941 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) | 1942 CAS_VAL(TX_COMPWB_LSB, compwb); 1943 compwb = TX_COMPWB_NEXT(compwb); 1944 #else 1945 limit = readl(cp->regs + REG_TX_COMPN(ring)); 1946 #endif 1947 if (cp->tx_old[ring] != limit) 1948 cas_tx_ringN(cp, ring, limit); 1949 } 1950 } 1951 1952 1953 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc, 1954 int entry, const u64 *words, 1955 struct sk_buff **skbref) 1956 { 1957 int dlen, hlen, len, i, alloclen; 1958 int off, swivel = RX_SWIVEL_OFF_VAL; 1959 struct cas_page *page; 1960 struct sk_buff *skb; 1961 void *addr, *crcaddr; 1962 __sum16 csum; 1963 char *p; 1964 1965 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]); 1966 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]); 1967 len = hlen + dlen; 1968 1969 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT)) 1970 alloclen = len; 1971 else 1972 alloclen = max(hlen, RX_COPY_MIN); 1973 1974 skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size); 1975 if (skb == NULL) 1976 return -1; 1977 1978 *skbref = skb; 1979 skb_reserve(skb, swivel); 1980 1981 p = skb->data; 1982 addr = crcaddr = NULL; 1983 if (hlen) { /* always copy header pages */ 1984 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); 1985 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 1986 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 + 1987 swivel; 1988 1989 i = hlen; 1990 if (!dlen) /* attach FCS */ 1991 i += cp->crc_size; 1992 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, 1993 PCI_DMA_FROMDEVICE); 1994 addr = cas_page_map(page->buffer); 1995 memcpy(p, addr + off, i); 1996 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, 1997 PCI_DMA_FROMDEVICE); 1998 cas_page_unmap(addr); 1999 RX_USED_ADD(page, 0x100); 2000 p += hlen; 2001 swivel = 0; 2002 } 2003 2004 2005 if (alloclen < (hlen + dlen)) { 2006 skb_frag_t *frag = skb_shinfo(skb)->frags; 2007 2008 /* normal or jumbo packets. we use frags */ 2009 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 2010 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2011 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; 2012 2013 hlen = min(cp->page_size - off, dlen); 2014 if (hlen < 0) { 2015 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 2016 "rx page overflow: %d\n", hlen); 2017 dev_kfree_skb_irq(skb); 2018 return -1; 2019 } 2020 i = hlen; 2021 if (i == dlen) /* attach FCS */ 2022 i += cp->crc_size; 2023 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, 2024 PCI_DMA_FROMDEVICE); 2025 2026 /* make sure we always copy a header */ 2027 swivel = 0; 2028 if (p == (char *) skb->data) { /* not split */ 2029 addr = cas_page_map(page->buffer); 2030 memcpy(p, addr + off, RX_COPY_MIN); 2031 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, 2032 PCI_DMA_FROMDEVICE); 2033 cas_page_unmap(addr); 2034 off += RX_COPY_MIN; 2035 swivel = RX_COPY_MIN; 2036 RX_USED_ADD(page, cp->mtu_stride); 2037 } else { 2038 RX_USED_ADD(page, hlen); 2039 } 2040 skb_put(skb, alloclen); 2041 2042 skb_shinfo(skb)->nr_frags++; 2043 skb->data_len += hlen - swivel; 2044 skb->truesize += hlen - swivel; 2045 skb->len += hlen - swivel; 2046 2047 __skb_frag_set_page(frag, page->buffer); 2048 __skb_frag_ref(frag); 2049 frag->page_offset = off; 2050 skb_frag_size_set(frag, hlen - swivel); 2051 2052 /* any more data? */ 2053 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { 2054 hlen = dlen; 2055 off = 0; 2056 2057 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2058 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2059 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, 2060 hlen + cp->crc_size, 2061 PCI_DMA_FROMDEVICE); 2062 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, 2063 hlen + cp->crc_size, 2064 PCI_DMA_FROMDEVICE); 2065 2066 skb_shinfo(skb)->nr_frags++; 2067 skb->data_len += hlen; 2068 skb->len += hlen; 2069 frag++; 2070 2071 __skb_frag_set_page(frag, page->buffer); 2072 __skb_frag_ref(frag); 2073 frag->page_offset = 0; 2074 skb_frag_size_set(frag, hlen); 2075 RX_USED_ADD(page, hlen + cp->crc_size); 2076 } 2077 2078 if (cp->crc_size) { 2079 addr = cas_page_map(page->buffer); 2080 crcaddr = addr + off + hlen; 2081 } 2082 2083 } else { 2084 /* copying packet */ 2085 if (!dlen) 2086 goto end_copy_pkt; 2087 2088 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 2089 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2090 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; 2091 hlen = min(cp->page_size - off, dlen); 2092 if (hlen < 0) { 2093 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 2094 "rx page overflow: %d\n", hlen); 2095 dev_kfree_skb_irq(skb); 2096 return -1; 2097 } 2098 i = hlen; 2099 if (i == dlen) /* attach FCS */ 2100 i += cp->crc_size; 2101 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, 2102 PCI_DMA_FROMDEVICE); 2103 addr = cas_page_map(page->buffer); 2104 memcpy(p, addr + off, i); 2105 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, 2106 PCI_DMA_FROMDEVICE); 2107 cas_page_unmap(addr); 2108 if (p == (char *) skb->data) /* not split */ 2109 RX_USED_ADD(page, cp->mtu_stride); 2110 else 2111 RX_USED_ADD(page, i); 2112 2113 /* any more data? */ 2114 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { 2115 p += hlen; 2116 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2117 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2118 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, 2119 dlen + cp->crc_size, 2120 PCI_DMA_FROMDEVICE); 2121 addr = cas_page_map(page->buffer); 2122 memcpy(p, addr, dlen + cp->crc_size); 2123 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, 2124 dlen + cp->crc_size, 2125 PCI_DMA_FROMDEVICE); 2126 cas_page_unmap(addr); 2127 RX_USED_ADD(page, dlen + cp->crc_size); 2128 } 2129 end_copy_pkt: 2130 if (cp->crc_size) { 2131 addr = NULL; 2132 crcaddr = skb->data + alloclen; 2133 } 2134 skb_put(skb, alloclen); 2135 } 2136 2137 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3])); 2138 if (cp->crc_size) { 2139 /* checksum includes FCS. strip it out. */ 2140 csum = csum_fold(csum_partial(crcaddr, cp->crc_size, 2141 csum_unfold(csum))); 2142 if (addr) 2143 cas_page_unmap(addr); 2144 } 2145 skb->protocol = eth_type_trans(skb, cp->dev); 2146 if (skb->protocol == htons(ETH_P_IP)) { 2147 skb->csum = csum_unfold(~csum); 2148 skb->ip_summed = CHECKSUM_COMPLETE; 2149 } else 2150 skb_checksum_none_assert(skb); 2151 return len; 2152 } 2153 2154 2155 /* we can handle up to 64 rx flows at a time. we do the same thing 2156 * as nonreassm except that we batch up the buffers. 2157 * NOTE: we currently just treat each flow as a bunch of packets that 2158 * we pass up. a better way would be to coalesce the packets 2159 * into a jumbo packet. to do that, we need to do the following: 2160 * 1) the first packet will have a clean split between header and 2161 * data. save both. 2162 * 2) each time the next flow packet comes in, extend the 2163 * data length and merge the checksums. 2164 * 3) on flow release, fix up the header. 2165 * 4) make sure the higher layer doesn't care. 2166 * because packets get coalesced, we shouldn't run into fragment count 2167 * issues. 2168 */ 2169 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words, 2170 struct sk_buff *skb) 2171 { 2172 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1); 2173 struct sk_buff_head *flow = &cp->rx_flows[flowid]; 2174 2175 /* this is protected at a higher layer, so no need to 2176 * do any additional locking here. stick the buffer 2177 * at the end. 2178 */ 2179 __skb_queue_tail(flow, skb); 2180 if (words[0] & RX_COMP1_RELEASE_FLOW) { 2181 while ((skb = __skb_dequeue(flow))) { 2182 cas_skb_release(skb); 2183 } 2184 } 2185 } 2186 2187 /* put rx descriptor back on ring. if a buffer is in use by a higher 2188 * layer, this will need to put in a replacement. 2189 */ 2190 static void cas_post_page(struct cas *cp, const int ring, const int index) 2191 { 2192 cas_page_t *new; 2193 int entry; 2194 2195 entry = cp->rx_old[ring]; 2196 2197 new = cas_page_swap(cp, ring, index); 2198 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr); 2199 cp->init_rxds[ring][entry].index = 2200 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) | 2201 CAS_BASE(RX_INDEX_RING, ring)); 2202 2203 entry = RX_DESC_ENTRY(ring, entry + 1); 2204 cp->rx_old[ring] = entry; 2205 2206 if (entry % 4) 2207 return; 2208 2209 if (ring == 0) 2210 writel(entry, cp->regs + REG_RX_KICK); 2211 else if ((N_RX_DESC_RINGS > 1) && 2212 (cp->cas_flags & CAS_FLAG_REG_PLUS)) 2213 writel(entry, cp->regs + REG_PLUS_RX_KICK1); 2214 } 2215 2216 2217 /* only when things are bad */ 2218 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num) 2219 { 2220 unsigned int entry, last, count, released; 2221 int cluster; 2222 cas_page_t **page = cp->rx_pages[ring]; 2223 2224 entry = cp->rx_old[ring]; 2225 2226 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 2227 "rxd[%d] interrupt, done: %d\n", ring, entry); 2228 2229 cluster = -1; 2230 count = entry & 0x3; 2231 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4); 2232 released = 0; 2233 while (entry != last) { 2234 /* make a new buffer if it's still in use */ 2235 if (page_count(page[entry]->buffer) > 1) { 2236 cas_page_t *new = cas_page_dequeue(cp); 2237 if (!new) { 2238 /* let the timer know that we need to 2239 * do this again 2240 */ 2241 cp->cas_flags |= CAS_FLAG_RXD_POST(ring); 2242 if (!timer_pending(&cp->link_timer)) 2243 mod_timer(&cp->link_timer, jiffies + 2244 CAS_LINK_FAST_TIMEOUT); 2245 cp->rx_old[ring] = entry; 2246 cp->rx_last[ring] = num ? num - released : 0; 2247 return -ENOMEM; 2248 } 2249 spin_lock(&cp->rx_inuse_lock); 2250 list_add(&page[entry]->list, &cp->rx_inuse_list); 2251 spin_unlock(&cp->rx_inuse_lock); 2252 cp->init_rxds[ring][entry].buffer = 2253 cpu_to_le64(new->dma_addr); 2254 page[entry] = new; 2255 2256 } 2257 2258 if (++count == 4) { 2259 cluster = entry; 2260 count = 0; 2261 } 2262 released++; 2263 entry = RX_DESC_ENTRY(ring, entry + 1); 2264 } 2265 cp->rx_old[ring] = entry; 2266 2267 if (cluster < 0) 2268 return 0; 2269 2270 if (ring == 0) 2271 writel(cluster, cp->regs + REG_RX_KICK); 2272 else if ((N_RX_DESC_RINGS > 1) && 2273 (cp->cas_flags & CAS_FLAG_REG_PLUS)) 2274 writel(cluster, cp->regs + REG_PLUS_RX_KICK1); 2275 return 0; 2276 } 2277 2278 2279 /* process a completion ring. packets are set up in three basic ways: 2280 * small packets: should be copied header + data in single buffer. 2281 * large packets: header and data in a single buffer. 2282 * split packets: header in a separate buffer from data. 2283 * data may be in multiple pages. data may be > 256 2284 * bytes but in a single page. 2285 * 2286 * NOTE: RX page posting is done in this routine as well. while there's 2287 * the capability of using multiple RX completion rings, it isn't 2288 * really worthwhile due to the fact that the page posting will 2289 * force serialization on the single descriptor ring. 2290 */ 2291 static int cas_rx_ringN(struct cas *cp, int ring, int budget) 2292 { 2293 struct cas_rx_comp *rxcs = cp->init_rxcs[ring]; 2294 int entry, drops; 2295 int npackets = 0; 2296 2297 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 2298 "rx[%d] interrupt, done: %d/%d\n", 2299 ring, 2300 readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]); 2301 2302 entry = cp->rx_new[ring]; 2303 drops = 0; 2304 while (1) { 2305 struct cas_rx_comp *rxc = rxcs + entry; 2306 struct sk_buff *uninitialized_var(skb); 2307 int type, len; 2308 u64 words[4]; 2309 int i, dring; 2310 2311 words[0] = le64_to_cpu(rxc->word1); 2312 words[1] = le64_to_cpu(rxc->word2); 2313 words[2] = le64_to_cpu(rxc->word3); 2314 words[3] = le64_to_cpu(rxc->word4); 2315 2316 /* don't touch if still owned by hw */ 2317 type = CAS_VAL(RX_COMP1_TYPE, words[0]); 2318 if (type == 0) 2319 break; 2320 2321 /* hw hasn't cleared the zero bit yet */ 2322 if (words[3] & RX_COMP4_ZERO) { 2323 break; 2324 } 2325 2326 /* get info on the packet */ 2327 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) { 2328 spin_lock(&cp->stat_lock[ring]); 2329 cp->net_stats[ring].rx_errors++; 2330 if (words[3] & RX_COMP4_LEN_MISMATCH) 2331 cp->net_stats[ring].rx_length_errors++; 2332 if (words[3] & RX_COMP4_BAD) 2333 cp->net_stats[ring].rx_crc_errors++; 2334 spin_unlock(&cp->stat_lock[ring]); 2335 2336 /* We'll just return it to Cassini. */ 2337 drop_it: 2338 spin_lock(&cp->stat_lock[ring]); 2339 ++cp->net_stats[ring].rx_dropped; 2340 spin_unlock(&cp->stat_lock[ring]); 2341 goto next; 2342 } 2343 2344 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb); 2345 if (len < 0) { 2346 ++drops; 2347 goto drop_it; 2348 } 2349 2350 /* see if it's a flow re-assembly or not. the driver 2351 * itself handles release back up. 2352 */ 2353 if (RX_DONT_BATCH || (type == 0x2)) { 2354 /* non-reassm: these always get released */ 2355 cas_skb_release(skb); 2356 } else { 2357 cas_rx_flow_pkt(cp, words, skb); 2358 } 2359 2360 spin_lock(&cp->stat_lock[ring]); 2361 cp->net_stats[ring].rx_packets++; 2362 cp->net_stats[ring].rx_bytes += len; 2363 spin_unlock(&cp->stat_lock[ring]); 2364 2365 next: 2366 npackets++; 2367 2368 /* should it be released? */ 2369 if (words[0] & RX_COMP1_RELEASE_HDR) { 2370 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); 2371 dring = CAS_VAL(RX_INDEX_RING, i); 2372 i = CAS_VAL(RX_INDEX_NUM, i); 2373 cas_post_page(cp, dring, i); 2374 } 2375 2376 if (words[0] & RX_COMP1_RELEASE_DATA) { 2377 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 2378 dring = CAS_VAL(RX_INDEX_RING, i); 2379 i = CAS_VAL(RX_INDEX_NUM, i); 2380 cas_post_page(cp, dring, i); 2381 } 2382 2383 if (words[0] & RX_COMP1_RELEASE_NEXT) { 2384 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2385 dring = CAS_VAL(RX_INDEX_RING, i); 2386 i = CAS_VAL(RX_INDEX_NUM, i); 2387 cas_post_page(cp, dring, i); 2388 } 2389 2390 /* skip to the next entry */ 2391 entry = RX_COMP_ENTRY(ring, entry + 1 + 2392 CAS_VAL(RX_COMP1_SKIP, words[0])); 2393 #ifdef USE_NAPI 2394 if (budget && (npackets >= budget)) 2395 break; 2396 #endif 2397 } 2398 cp->rx_new[ring] = entry; 2399 2400 if (drops) 2401 netdev_info(cp->dev, "Memory squeeze, deferring packet\n"); 2402 return npackets; 2403 } 2404 2405 2406 /* put completion entries back on the ring */ 2407 static void cas_post_rxcs_ringN(struct net_device *dev, 2408 struct cas *cp, int ring) 2409 { 2410 struct cas_rx_comp *rxc = cp->init_rxcs[ring]; 2411 int last, entry; 2412 2413 last = cp->rx_cur[ring]; 2414 entry = cp->rx_new[ring]; 2415 netif_printk(cp, intr, KERN_DEBUG, dev, 2416 "rxc[%d] interrupt, done: %d/%d\n", 2417 ring, readl(cp->regs + REG_RX_COMP_HEAD), entry); 2418 2419 /* zero and re-mark descriptors */ 2420 while (last != entry) { 2421 cas_rxc_init(rxc + last); 2422 last = RX_COMP_ENTRY(ring, last + 1); 2423 } 2424 cp->rx_cur[ring] = last; 2425 2426 if (ring == 0) 2427 writel(last, cp->regs + REG_RX_COMP_TAIL); 2428 else if (cp->cas_flags & CAS_FLAG_REG_PLUS) 2429 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring)); 2430 } 2431 2432 2433 2434 /* cassini can use all four PCI interrupts for the completion ring. 2435 * rings 3 and 4 are identical 2436 */ 2437 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 2438 static inline void cas_handle_irqN(struct net_device *dev, 2439 struct cas *cp, const u32 status, 2440 const int ring) 2441 { 2442 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT)) 2443 cas_post_rxcs_ringN(dev, cp, ring); 2444 } 2445 2446 static irqreturn_t cas_interruptN(int irq, void *dev_id) 2447 { 2448 struct net_device *dev = dev_id; 2449 struct cas *cp = netdev_priv(dev); 2450 unsigned long flags; 2451 int ring = (irq == cp->pci_irq_INTC) ? 2 : 3; 2452 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring)); 2453 2454 /* check for shared irq */ 2455 if (status == 0) 2456 return IRQ_NONE; 2457 2458 spin_lock_irqsave(&cp->lock, flags); 2459 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ 2460 #ifdef USE_NAPI 2461 cas_mask_intr(cp); 2462 napi_schedule(&cp->napi); 2463 #else 2464 cas_rx_ringN(cp, ring, 0); 2465 #endif 2466 status &= ~INTR_RX_DONE_ALT; 2467 } 2468 2469 if (status) 2470 cas_handle_irqN(dev, cp, status, ring); 2471 spin_unlock_irqrestore(&cp->lock, flags); 2472 return IRQ_HANDLED; 2473 } 2474 #endif 2475 2476 #ifdef USE_PCI_INTB 2477 /* everything but rx packets */ 2478 static inline void cas_handle_irq1(struct cas *cp, const u32 status) 2479 { 2480 if (status & INTR_RX_BUF_UNAVAIL_1) { 2481 /* Frame arrived, no free RX buffers available. 2482 * NOTE: we can get this on a link transition. */ 2483 cas_post_rxds_ringN(cp, 1, 0); 2484 spin_lock(&cp->stat_lock[1]); 2485 cp->net_stats[1].rx_dropped++; 2486 spin_unlock(&cp->stat_lock[1]); 2487 } 2488 2489 if (status & INTR_RX_BUF_AE_1) 2490 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) - 2491 RX_AE_FREEN_VAL(1)); 2492 2493 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) 2494 cas_post_rxcs_ringN(cp, 1); 2495 } 2496 2497 /* ring 2 handles a few more events than 3 and 4 */ 2498 static irqreturn_t cas_interrupt1(int irq, void *dev_id) 2499 { 2500 struct net_device *dev = dev_id; 2501 struct cas *cp = netdev_priv(dev); 2502 unsigned long flags; 2503 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); 2504 2505 /* check for shared interrupt */ 2506 if (status == 0) 2507 return IRQ_NONE; 2508 2509 spin_lock_irqsave(&cp->lock, flags); 2510 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ 2511 #ifdef USE_NAPI 2512 cas_mask_intr(cp); 2513 napi_schedule(&cp->napi); 2514 #else 2515 cas_rx_ringN(cp, 1, 0); 2516 #endif 2517 status &= ~INTR_RX_DONE_ALT; 2518 } 2519 if (status) 2520 cas_handle_irq1(cp, status); 2521 spin_unlock_irqrestore(&cp->lock, flags); 2522 return IRQ_HANDLED; 2523 } 2524 #endif 2525 2526 static inline void cas_handle_irq(struct net_device *dev, 2527 struct cas *cp, const u32 status) 2528 { 2529 /* housekeeping interrupts */ 2530 if (status & INTR_ERROR_MASK) 2531 cas_abnormal_irq(dev, cp, status); 2532 2533 if (status & INTR_RX_BUF_UNAVAIL) { 2534 /* Frame arrived, no free RX buffers available. 2535 * NOTE: we can get this on a link transition. 2536 */ 2537 cas_post_rxds_ringN(cp, 0, 0); 2538 spin_lock(&cp->stat_lock[0]); 2539 cp->net_stats[0].rx_dropped++; 2540 spin_unlock(&cp->stat_lock[0]); 2541 } else if (status & INTR_RX_BUF_AE) { 2542 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) - 2543 RX_AE_FREEN_VAL(0)); 2544 } 2545 2546 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) 2547 cas_post_rxcs_ringN(dev, cp, 0); 2548 } 2549 2550 static irqreturn_t cas_interrupt(int irq, void *dev_id) 2551 { 2552 struct net_device *dev = dev_id; 2553 struct cas *cp = netdev_priv(dev); 2554 unsigned long flags; 2555 u32 status = readl(cp->regs + REG_INTR_STATUS); 2556 2557 if (status == 0) 2558 return IRQ_NONE; 2559 2560 spin_lock_irqsave(&cp->lock, flags); 2561 if (status & (INTR_TX_ALL | INTR_TX_INTME)) { 2562 cas_tx(dev, cp, status); 2563 status &= ~(INTR_TX_ALL | INTR_TX_INTME); 2564 } 2565 2566 if (status & INTR_RX_DONE) { 2567 #ifdef USE_NAPI 2568 cas_mask_intr(cp); 2569 napi_schedule(&cp->napi); 2570 #else 2571 cas_rx_ringN(cp, 0, 0); 2572 #endif 2573 status &= ~INTR_RX_DONE; 2574 } 2575 2576 if (status) 2577 cas_handle_irq(dev, cp, status); 2578 spin_unlock_irqrestore(&cp->lock, flags); 2579 return IRQ_HANDLED; 2580 } 2581 2582 2583 #ifdef USE_NAPI 2584 static int cas_poll(struct napi_struct *napi, int budget) 2585 { 2586 struct cas *cp = container_of(napi, struct cas, napi); 2587 struct net_device *dev = cp->dev; 2588 int i, enable_intr, credits; 2589 u32 status = readl(cp->regs + REG_INTR_STATUS); 2590 unsigned long flags; 2591 2592 spin_lock_irqsave(&cp->lock, flags); 2593 cas_tx(dev, cp, status); 2594 spin_unlock_irqrestore(&cp->lock, flags); 2595 2596 /* NAPI rx packets. we spread the credits across all of the 2597 * rxc rings 2598 * 2599 * to make sure we're fair with the work we loop through each 2600 * ring N_RX_COMP_RING times with a request of 2601 * budget / N_RX_COMP_RINGS 2602 */ 2603 enable_intr = 1; 2604 credits = 0; 2605 for (i = 0; i < N_RX_COMP_RINGS; i++) { 2606 int j; 2607 for (j = 0; j < N_RX_COMP_RINGS; j++) { 2608 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS); 2609 if (credits >= budget) { 2610 enable_intr = 0; 2611 goto rx_comp; 2612 } 2613 } 2614 } 2615 2616 rx_comp: 2617 /* final rx completion */ 2618 spin_lock_irqsave(&cp->lock, flags); 2619 if (status) 2620 cas_handle_irq(dev, cp, status); 2621 2622 #ifdef USE_PCI_INTB 2623 if (N_RX_COMP_RINGS > 1) { 2624 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); 2625 if (status) 2626 cas_handle_irq1(dev, cp, status); 2627 } 2628 #endif 2629 2630 #ifdef USE_PCI_INTC 2631 if (N_RX_COMP_RINGS > 2) { 2632 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2)); 2633 if (status) 2634 cas_handle_irqN(dev, cp, status, 2); 2635 } 2636 #endif 2637 2638 #ifdef USE_PCI_INTD 2639 if (N_RX_COMP_RINGS > 3) { 2640 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3)); 2641 if (status) 2642 cas_handle_irqN(dev, cp, status, 3); 2643 } 2644 #endif 2645 spin_unlock_irqrestore(&cp->lock, flags); 2646 if (enable_intr) { 2647 napi_complete(napi); 2648 cas_unmask_intr(cp); 2649 } 2650 return credits; 2651 } 2652 #endif 2653 2654 #ifdef CONFIG_NET_POLL_CONTROLLER 2655 static void cas_netpoll(struct net_device *dev) 2656 { 2657 struct cas *cp = netdev_priv(dev); 2658 2659 cas_disable_irq(cp, 0); 2660 cas_interrupt(cp->pdev->irq, dev); 2661 cas_enable_irq(cp, 0); 2662 2663 #ifdef USE_PCI_INTB 2664 if (N_RX_COMP_RINGS > 1) { 2665 /* cas_interrupt1(); */ 2666 } 2667 #endif 2668 #ifdef USE_PCI_INTC 2669 if (N_RX_COMP_RINGS > 2) { 2670 /* cas_interruptN(); */ 2671 } 2672 #endif 2673 #ifdef USE_PCI_INTD 2674 if (N_RX_COMP_RINGS > 3) { 2675 /* cas_interruptN(); */ 2676 } 2677 #endif 2678 } 2679 #endif 2680 2681 static void cas_tx_timeout(struct net_device *dev) 2682 { 2683 struct cas *cp = netdev_priv(dev); 2684 2685 netdev_err(dev, "transmit timed out, resetting\n"); 2686 if (!cp->hw_running) { 2687 netdev_err(dev, "hrm.. hw not running!\n"); 2688 return; 2689 } 2690 2691 netdev_err(dev, "MIF_STATE[%08x]\n", 2692 readl(cp->regs + REG_MIF_STATE_MACHINE)); 2693 2694 netdev_err(dev, "MAC_STATE[%08x]\n", 2695 readl(cp->regs + REG_MAC_STATE_MACHINE)); 2696 2697 netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n", 2698 readl(cp->regs + REG_TX_CFG), 2699 readl(cp->regs + REG_MAC_TX_STATUS), 2700 readl(cp->regs + REG_MAC_TX_CFG), 2701 readl(cp->regs + REG_TX_FIFO_PKT_CNT), 2702 readl(cp->regs + REG_TX_FIFO_WRITE_PTR), 2703 readl(cp->regs + REG_TX_FIFO_READ_PTR), 2704 readl(cp->regs + REG_TX_SM_1), 2705 readl(cp->regs + REG_TX_SM_2)); 2706 2707 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n", 2708 readl(cp->regs + REG_RX_CFG), 2709 readl(cp->regs + REG_MAC_RX_STATUS), 2710 readl(cp->regs + REG_MAC_RX_CFG)); 2711 2712 netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n", 2713 readl(cp->regs + REG_HP_STATE_MACHINE), 2714 readl(cp->regs + REG_HP_STATUS0), 2715 readl(cp->regs + REG_HP_STATUS1), 2716 readl(cp->regs + REG_HP_STATUS2)); 2717 2718 #if 1 2719 atomic_inc(&cp->reset_task_pending); 2720 atomic_inc(&cp->reset_task_pending_all); 2721 schedule_work(&cp->reset_task); 2722 #else 2723 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 2724 schedule_work(&cp->reset_task); 2725 #endif 2726 } 2727 2728 static inline int cas_intme(int ring, int entry) 2729 { 2730 /* Algorithm: IRQ every 1/2 of descriptors. */ 2731 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1))) 2732 return 1; 2733 return 0; 2734 } 2735 2736 2737 static void cas_write_txd(struct cas *cp, int ring, int entry, 2738 dma_addr_t mapping, int len, u64 ctrl, int last) 2739 { 2740 struct cas_tx_desc *txd = cp->init_txds[ring] + entry; 2741 2742 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len); 2743 if (cas_intme(ring, entry)) 2744 ctrl |= TX_DESC_INTME; 2745 if (last) 2746 ctrl |= TX_DESC_EOF; 2747 txd->control = cpu_to_le64(ctrl); 2748 txd->buffer = cpu_to_le64(mapping); 2749 } 2750 2751 static inline void *tx_tiny_buf(struct cas *cp, const int ring, 2752 const int entry) 2753 { 2754 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry; 2755 } 2756 2757 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring, 2758 const int entry, const int tentry) 2759 { 2760 cp->tx_tiny_use[ring][tentry].nbufs++; 2761 cp->tx_tiny_use[ring][entry].used = 1; 2762 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry; 2763 } 2764 2765 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring, 2766 struct sk_buff *skb) 2767 { 2768 struct net_device *dev = cp->dev; 2769 int entry, nr_frags, frag, tabort, tentry; 2770 dma_addr_t mapping; 2771 unsigned long flags; 2772 u64 ctrl; 2773 u32 len; 2774 2775 spin_lock_irqsave(&cp->tx_lock[ring], flags); 2776 2777 /* This is a hard error, log it. */ 2778 if (TX_BUFFS_AVAIL(cp, ring) <= 2779 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) { 2780 netif_stop_queue(dev); 2781 spin_unlock_irqrestore(&cp->tx_lock[ring], flags); 2782 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); 2783 return 1; 2784 } 2785 2786 ctrl = 0; 2787 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2788 const u64 csum_start_off = skb_checksum_start_offset(skb); 2789 const u64 csum_stuff_off = csum_start_off + skb->csum_offset; 2790 2791 ctrl = TX_DESC_CSUM_EN | 2792 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) | 2793 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off); 2794 } 2795 2796 entry = cp->tx_new[ring]; 2797 cp->tx_skbs[ring][entry] = skb; 2798 2799 nr_frags = skb_shinfo(skb)->nr_frags; 2800 len = skb_headlen(skb); 2801 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data), 2802 offset_in_page(skb->data), len, 2803 PCI_DMA_TODEVICE); 2804 2805 tentry = entry; 2806 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len); 2807 if (unlikely(tabort)) { 2808 /* NOTE: len is always > tabort */ 2809 cas_write_txd(cp, ring, entry, mapping, len - tabort, 2810 ctrl | TX_DESC_SOF, 0); 2811 entry = TX_DESC_NEXT(ring, entry); 2812 2813 skb_copy_from_linear_data_offset(skb, len - tabort, 2814 tx_tiny_buf(cp, ring, entry), tabort); 2815 mapping = tx_tiny_map(cp, ring, entry, tentry); 2816 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl, 2817 (nr_frags == 0)); 2818 } else { 2819 cas_write_txd(cp, ring, entry, mapping, len, ctrl | 2820 TX_DESC_SOF, (nr_frags == 0)); 2821 } 2822 entry = TX_DESC_NEXT(ring, entry); 2823 2824 for (frag = 0; frag < nr_frags; frag++) { 2825 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag]; 2826 2827 len = skb_frag_size(fragp); 2828 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len, 2829 DMA_TO_DEVICE); 2830 2831 tabort = cas_calc_tabort(cp, fragp->page_offset, len); 2832 if (unlikely(tabort)) { 2833 void *addr; 2834 2835 /* NOTE: len is always > tabort */ 2836 cas_write_txd(cp, ring, entry, mapping, len - tabort, 2837 ctrl, 0); 2838 entry = TX_DESC_NEXT(ring, entry); 2839 2840 addr = cas_page_map(skb_frag_page(fragp)); 2841 memcpy(tx_tiny_buf(cp, ring, entry), 2842 addr + fragp->page_offset + len - tabort, 2843 tabort); 2844 cas_page_unmap(addr); 2845 mapping = tx_tiny_map(cp, ring, entry, tentry); 2846 len = tabort; 2847 } 2848 2849 cas_write_txd(cp, ring, entry, mapping, len, ctrl, 2850 (frag + 1 == nr_frags)); 2851 entry = TX_DESC_NEXT(ring, entry); 2852 } 2853 2854 cp->tx_new[ring] = entry; 2855 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)) 2856 netif_stop_queue(dev); 2857 2858 netif_printk(cp, tx_queued, KERN_DEBUG, dev, 2859 "tx[%d] queued, slot %d, skblen %d, avail %d\n", 2860 ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring)); 2861 writel(entry, cp->regs + REG_TX_KICKN(ring)); 2862 spin_unlock_irqrestore(&cp->tx_lock[ring], flags); 2863 return 0; 2864 } 2865 2866 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev) 2867 { 2868 struct cas *cp = netdev_priv(dev); 2869 2870 /* this is only used as a load-balancing hint, so it doesn't 2871 * need to be SMP safe 2872 */ 2873 static int ring; 2874 2875 if (skb_padto(skb, cp->min_frame_size)) 2876 return NETDEV_TX_OK; 2877 2878 /* XXX: we need some higher-level QoS hooks to steer packets to 2879 * individual queues. 2880 */ 2881 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb)) 2882 return NETDEV_TX_BUSY; 2883 return NETDEV_TX_OK; 2884 } 2885 2886 static void cas_init_tx_dma(struct cas *cp) 2887 { 2888 u64 desc_dma = cp->block_dvma; 2889 unsigned long off; 2890 u32 val; 2891 int i; 2892 2893 /* set up tx completion writeback registers. must be 8-byte aligned */ 2894 #ifdef USE_TX_COMPWB 2895 off = offsetof(struct cas_init_block, tx_compwb); 2896 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI); 2897 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW); 2898 #endif 2899 2900 /* enable completion writebacks, enable paced mode, 2901 * disable read pipe, and disable pre-interrupt compwbs 2902 */ 2903 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 | 2904 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 | 2905 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE | 2906 TX_CFG_INTR_COMPWB_DIS; 2907 2908 /* write out tx ring info and tx desc bases */ 2909 for (i = 0; i < MAX_TX_RINGS; i++) { 2910 off = (unsigned long) cp->init_txds[i] - 2911 (unsigned long) cp->init_block; 2912 2913 val |= CAS_TX_RINGN_BASE(i); 2914 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i)); 2915 writel((desc_dma + off) & 0xffffffff, cp->regs + 2916 REG_TX_DBN_LOW(i)); 2917 /* don't zero out the kick register here as the system 2918 * will wedge 2919 */ 2920 } 2921 writel(val, cp->regs + REG_TX_CFG); 2922 2923 /* program max burst sizes. these numbers should be different 2924 * if doing QoS. 2925 */ 2926 #ifdef USE_QOS 2927 writel(0x800, cp->regs + REG_TX_MAXBURST_0); 2928 writel(0x1600, cp->regs + REG_TX_MAXBURST_1); 2929 writel(0x2400, cp->regs + REG_TX_MAXBURST_2); 2930 writel(0x4800, cp->regs + REG_TX_MAXBURST_3); 2931 #else 2932 writel(0x800, cp->regs + REG_TX_MAXBURST_0); 2933 writel(0x800, cp->regs + REG_TX_MAXBURST_1); 2934 writel(0x800, cp->regs + REG_TX_MAXBURST_2); 2935 writel(0x800, cp->regs + REG_TX_MAXBURST_3); 2936 #endif 2937 } 2938 2939 /* Must be invoked under cp->lock. */ 2940 static inline void cas_init_dma(struct cas *cp) 2941 { 2942 cas_init_tx_dma(cp); 2943 cas_init_rx_dma(cp); 2944 } 2945 2946 static void cas_process_mc_list(struct cas *cp) 2947 { 2948 u16 hash_table[16]; 2949 u32 crc; 2950 struct netdev_hw_addr *ha; 2951 int i = 1; 2952 2953 memset(hash_table, 0, sizeof(hash_table)); 2954 netdev_for_each_mc_addr(ha, cp->dev) { 2955 if (i <= CAS_MC_EXACT_MATCH_SIZE) { 2956 /* use the alternate mac address registers for the 2957 * first 15 multicast addresses 2958 */ 2959 writel((ha->addr[4] << 8) | ha->addr[5], 2960 cp->regs + REG_MAC_ADDRN(i*3 + 0)); 2961 writel((ha->addr[2] << 8) | ha->addr[3], 2962 cp->regs + REG_MAC_ADDRN(i*3 + 1)); 2963 writel((ha->addr[0] << 8) | ha->addr[1], 2964 cp->regs + REG_MAC_ADDRN(i*3 + 2)); 2965 i++; 2966 } 2967 else { 2968 /* use hw hash table for the next series of 2969 * multicast addresses 2970 */ 2971 crc = ether_crc_le(ETH_ALEN, ha->addr); 2972 crc >>= 24; 2973 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); 2974 } 2975 } 2976 for (i = 0; i < 16; i++) 2977 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i)); 2978 } 2979 2980 /* Must be invoked under cp->lock. */ 2981 static u32 cas_setup_multicast(struct cas *cp) 2982 { 2983 u32 rxcfg = 0; 2984 int i; 2985 2986 if (cp->dev->flags & IFF_PROMISC) { 2987 rxcfg |= MAC_RX_CFG_PROMISC_EN; 2988 2989 } else if (cp->dev->flags & IFF_ALLMULTI) { 2990 for (i=0; i < 16; i++) 2991 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i)); 2992 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; 2993 2994 } else { 2995 cas_process_mc_list(cp); 2996 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; 2997 } 2998 2999 return rxcfg; 3000 } 3001 3002 /* must be invoked under cp->stat_lock[N_TX_RINGS] */ 3003 static void cas_clear_mac_err(struct cas *cp) 3004 { 3005 writel(0, cp->regs + REG_MAC_COLL_NORMAL); 3006 writel(0, cp->regs + REG_MAC_COLL_FIRST); 3007 writel(0, cp->regs + REG_MAC_COLL_EXCESS); 3008 writel(0, cp->regs + REG_MAC_COLL_LATE); 3009 writel(0, cp->regs + REG_MAC_TIMER_DEFER); 3010 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK); 3011 writel(0, cp->regs + REG_MAC_RECV_FRAME); 3012 writel(0, cp->regs + REG_MAC_LEN_ERR); 3013 writel(0, cp->regs + REG_MAC_ALIGN_ERR); 3014 writel(0, cp->regs + REG_MAC_FCS_ERR); 3015 writel(0, cp->regs + REG_MAC_RX_CODE_ERR); 3016 } 3017 3018 3019 static void cas_mac_reset(struct cas *cp) 3020 { 3021 int i; 3022 3023 /* do both TX and RX reset */ 3024 writel(0x1, cp->regs + REG_MAC_TX_RESET); 3025 writel(0x1, cp->regs + REG_MAC_RX_RESET); 3026 3027 /* wait for TX */ 3028 i = STOP_TRIES; 3029 while (i-- > 0) { 3030 if (readl(cp->regs + REG_MAC_TX_RESET) == 0) 3031 break; 3032 udelay(10); 3033 } 3034 3035 /* wait for RX */ 3036 i = STOP_TRIES; 3037 while (i-- > 0) { 3038 if (readl(cp->regs + REG_MAC_RX_RESET) == 0) 3039 break; 3040 udelay(10); 3041 } 3042 3043 if (readl(cp->regs + REG_MAC_TX_RESET) | 3044 readl(cp->regs + REG_MAC_RX_RESET)) 3045 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n", 3046 readl(cp->regs + REG_MAC_TX_RESET), 3047 readl(cp->regs + REG_MAC_RX_RESET), 3048 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3049 } 3050 3051 3052 /* Must be invoked under cp->lock. */ 3053 static void cas_init_mac(struct cas *cp) 3054 { 3055 unsigned char *e = &cp->dev->dev_addr[0]; 3056 int i; 3057 cas_mac_reset(cp); 3058 3059 /* setup core arbitration weight register */ 3060 writel(CAWR_RR_DIS, cp->regs + REG_CAWR); 3061 3062 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) 3063 /* set the infinite burst register for chips that don't have 3064 * pci issues. 3065 */ 3066 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0) 3067 writel(INF_BURST_EN, cp->regs + REG_INF_BURST); 3068 #endif 3069 3070 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE); 3071 3072 writel(0x00, cp->regs + REG_MAC_IPG0); 3073 writel(0x08, cp->regs + REG_MAC_IPG1); 3074 writel(0x04, cp->regs + REG_MAC_IPG2); 3075 3076 /* change later for 802.3z */ 3077 writel(0x40, cp->regs + REG_MAC_SLOT_TIME); 3078 3079 /* min frame + FCS */ 3080 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN); 3081 3082 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we 3083 * specify the maximum frame size to prevent RX tag errors on 3084 * oversized frames. 3085 */ 3086 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) | 3087 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME, 3088 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)), 3089 cp->regs + REG_MAC_FRAMESIZE_MAX); 3090 3091 /* NOTE: crc_size is used as a surrogate for half-duplex. 3092 * workaround saturn half-duplex issue by increasing preamble 3093 * size to 65 bytes. 3094 */ 3095 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size) 3096 writel(0x41, cp->regs + REG_MAC_PA_SIZE); 3097 else 3098 writel(0x07, cp->regs + REG_MAC_PA_SIZE); 3099 writel(0x04, cp->regs + REG_MAC_JAM_SIZE); 3100 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT); 3101 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE); 3102 3103 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED); 3104 3105 writel(0, cp->regs + REG_MAC_ADDR_FILTER0); 3106 writel(0, cp->regs + REG_MAC_ADDR_FILTER1); 3107 writel(0, cp->regs + REG_MAC_ADDR_FILTER2); 3108 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK); 3109 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK); 3110 3111 /* setup mac address in perfect filter array */ 3112 for (i = 0; i < 45; i++) 3113 writel(0x0, cp->regs + REG_MAC_ADDRN(i)); 3114 3115 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0)); 3116 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1)); 3117 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2)); 3118 3119 writel(0x0001, cp->regs + REG_MAC_ADDRN(42)); 3120 writel(0xc200, cp->regs + REG_MAC_ADDRN(43)); 3121 writel(0x0180, cp->regs + REG_MAC_ADDRN(44)); 3122 3123 cp->mac_rx_cfg = cas_setup_multicast(cp); 3124 3125 spin_lock(&cp->stat_lock[N_TX_RINGS]); 3126 cas_clear_mac_err(cp); 3127 spin_unlock(&cp->stat_lock[N_TX_RINGS]); 3128 3129 /* Setup MAC interrupts. We want to get all of the interesting 3130 * counter expiration events, but we do not want to hear about 3131 * normal rx/tx as the DMA engine tells us that. 3132 */ 3133 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK); 3134 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); 3135 3136 /* Don't enable even the PAUSE interrupts for now, we 3137 * make no use of those events other than to record them. 3138 */ 3139 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK); 3140 } 3141 3142 /* Must be invoked under cp->lock. */ 3143 static void cas_init_pause_thresholds(struct cas *cp) 3144 { 3145 /* Calculate pause thresholds. Setting the OFF threshold to the 3146 * full RX fifo size effectively disables PAUSE generation 3147 */ 3148 if (cp->rx_fifo_size <= (2 * 1024)) { 3149 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size; 3150 } else { 3151 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63; 3152 if (max_frame * 3 > cp->rx_fifo_size) { 3153 cp->rx_pause_off = 7104; 3154 cp->rx_pause_on = 960; 3155 } else { 3156 int off = (cp->rx_fifo_size - (max_frame * 2)); 3157 int on = off - max_frame; 3158 cp->rx_pause_off = off; 3159 cp->rx_pause_on = on; 3160 } 3161 } 3162 } 3163 3164 static int cas_vpd_match(const void __iomem *p, const char *str) 3165 { 3166 int len = strlen(str) + 1; 3167 int i; 3168 3169 for (i = 0; i < len; i++) { 3170 if (readb(p + i) != str[i]) 3171 return 0; 3172 } 3173 return 1; 3174 } 3175 3176 3177 /* get the mac address by reading the vpd information in the rom. 3178 * also get the phy type and determine if there's an entropy generator. 3179 * NOTE: this is a bit convoluted for the following reasons: 3180 * 1) vpd info has order-dependent mac addresses for multinic cards 3181 * 2) the only way to determine the nic order is to use the slot 3182 * number. 3183 * 3) fiber cards don't have bridges, so their slot numbers don't 3184 * mean anything. 3185 * 4) we don't actually know we have a fiber card until after 3186 * the mac addresses are parsed. 3187 */ 3188 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr, 3189 const int offset) 3190 { 3191 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START; 3192 void __iomem *base, *kstart; 3193 int i, len; 3194 int found = 0; 3195 #define VPD_FOUND_MAC 0x01 3196 #define VPD_FOUND_PHY 0x02 3197 3198 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */ 3199 int mac_off = 0; 3200 3201 #if defined(CONFIG_SPARC) 3202 const unsigned char *addr; 3203 #endif 3204 3205 /* give us access to the PROM */ 3206 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD, 3207 cp->regs + REG_BIM_LOCAL_DEV_EN); 3208 3209 /* check for an expansion rom */ 3210 if (readb(p) != 0x55 || readb(p + 1) != 0xaa) 3211 goto use_random_mac_addr; 3212 3213 /* search for beginning of vpd */ 3214 base = NULL; 3215 for (i = 2; i < EXPANSION_ROM_SIZE; i++) { 3216 /* check for PCIR */ 3217 if ((readb(p + i + 0) == 0x50) && 3218 (readb(p + i + 1) == 0x43) && 3219 (readb(p + i + 2) == 0x49) && 3220 (readb(p + i + 3) == 0x52)) { 3221 base = p + (readb(p + i + 8) | 3222 (readb(p + i + 9) << 8)); 3223 break; 3224 } 3225 } 3226 3227 if (!base || (readb(base) != 0x82)) 3228 goto use_random_mac_addr; 3229 3230 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3; 3231 while (i < EXPANSION_ROM_SIZE) { 3232 if (readb(base + i) != 0x90) /* no vpd found */ 3233 goto use_random_mac_addr; 3234 3235 /* found a vpd field */ 3236 len = readb(base + i + 1) | (readb(base + i + 2) << 8); 3237 3238 /* extract keywords */ 3239 kstart = base + i + 3; 3240 p = kstart; 3241 while ((p - kstart) < len) { 3242 int klen = readb(p + 2); 3243 int j; 3244 char type; 3245 3246 p += 3; 3247 3248 /* look for the following things: 3249 * -- correct length == 29 3250 * 3 (type) + 2 (size) + 3251 * 18 (strlen("local-mac-address") + 1) + 3252 * 6 (mac addr) 3253 * -- VPD Instance 'I' 3254 * -- VPD Type Bytes 'B' 3255 * -- VPD data length == 6 3256 * -- property string == local-mac-address 3257 * 3258 * -- correct length == 24 3259 * 3 (type) + 2 (size) + 3260 * 12 (strlen("entropy-dev") + 1) + 3261 * 7 (strlen("vms110") + 1) 3262 * -- VPD Instance 'I' 3263 * -- VPD Type String 'B' 3264 * -- VPD data length == 7 3265 * -- property string == entropy-dev 3266 * 3267 * -- correct length == 18 3268 * 3 (type) + 2 (size) + 3269 * 9 (strlen("phy-type") + 1) + 3270 * 4 (strlen("pcs") + 1) 3271 * -- VPD Instance 'I' 3272 * -- VPD Type String 'S' 3273 * -- VPD data length == 4 3274 * -- property string == phy-type 3275 * 3276 * -- correct length == 23 3277 * 3 (type) + 2 (size) + 3278 * 14 (strlen("phy-interface") + 1) + 3279 * 4 (strlen("pcs") + 1) 3280 * -- VPD Instance 'I' 3281 * -- VPD Type String 'S' 3282 * -- VPD data length == 4 3283 * -- property string == phy-interface 3284 */ 3285 if (readb(p) != 'I') 3286 goto next; 3287 3288 /* finally, check string and length */ 3289 type = readb(p + 3); 3290 if (type == 'B') { 3291 if ((klen == 29) && readb(p + 4) == 6 && 3292 cas_vpd_match(p + 5, 3293 "local-mac-address")) { 3294 if (mac_off++ > offset) 3295 goto next; 3296 3297 /* set mac address */ 3298 for (j = 0; j < 6; j++) 3299 dev_addr[j] = 3300 readb(p + 23 + j); 3301 goto found_mac; 3302 } 3303 } 3304 3305 if (type != 'S') 3306 goto next; 3307 3308 #ifdef USE_ENTROPY_DEV 3309 if ((klen == 24) && 3310 cas_vpd_match(p + 5, "entropy-dev") && 3311 cas_vpd_match(p + 17, "vms110")) { 3312 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV; 3313 goto next; 3314 } 3315 #endif 3316 3317 if (found & VPD_FOUND_PHY) 3318 goto next; 3319 3320 if ((klen == 18) && readb(p + 4) == 4 && 3321 cas_vpd_match(p + 5, "phy-type")) { 3322 if (cas_vpd_match(p + 14, "pcs")) { 3323 phy_type = CAS_PHY_SERDES; 3324 goto found_phy; 3325 } 3326 } 3327 3328 if ((klen == 23) && readb(p + 4) == 4 && 3329 cas_vpd_match(p + 5, "phy-interface")) { 3330 if (cas_vpd_match(p + 19, "pcs")) { 3331 phy_type = CAS_PHY_SERDES; 3332 goto found_phy; 3333 } 3334 } 3335 found_mac: 3336 found |= VPD_FOUND_MAC; 3337 goto next; 3338 3339 found_phy: 3340 found |= VPD_FOUND_PHY; 3341 3342 next: 3343 p += klen; 3344 } 3345 i += len + 3; 3346 } 3347 3348 use_random_mac_addr: 3349 if (found & VPD_FOUND_MAC) 3350 goto done; 3351 3352 #if defined(CONFIG_SPARC) 3353 addr = of_get_property(cp->of_node, "local-mac-address", NULL); 3354 if (addr != NULL) { 3355 memcpy(dev_addr, addr, ETH_ALEN); 3356 goto done; 3357 } 3358 #endif 3359 3360 /* Sun MAC prefix then 3 random bytes. */ 3361 pr_info("MAC address not found in ROM VPD\n"); 3362 dev_addr[0] = 0x08; 3363 dev_addr[1] = 0x00; 3364 dev_addr[2] = 0x20; 3365 get_random_bytes(dev_addr + 3, 3); 3366 3367 done: 3368 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN); 3369 return phy_type; 3370 } 3371 3372 /* check pci invariants */ 3373 static void cas_check_pci_invariants(struct cas *cp) 3374 { 3375 struct pci_dev *pdev = cp->pdev; 3376 3377 cp->cas_flags = 0; 3378 if ((pdev->vendor == PCI_VENDOR_ID_SUN) && 3379 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) { 3380 if (pdev->revision >= CAS_ID_REVPLUS) 3381 cp->cas_flags |= CAS_FLAG_REG_PLUS; 3382 if (pdev->revision < CAS_ID_REVPLUS02u) 3383 cp->cas_flags |= CAS_FLAG_TARGET_ABORT; 3384 3385 /* Original Cassini supports HW CSUM, but it's not 3386 * enabled by default as it can trigger TX hangs. 3387 */ 3388 if (pdev->revision < CAS_ID_REV2) 3389 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM; 3390 } else { 3391 /* Only sun has original cassini chips. */ 3392 cp->cas_flags |= CAS_FLAG_REG_PLUS; 3393 3394 /* We use a flag because the same phy might be externally 3395 * connected. 3396 */ 3397 if ((pdev->vendor == PCI_VENDOR_ID_NS) && 3398 (pdev->device == PCI_DEVICE_ID_NS_SATURN)) 3399 cp->cas_flags |= CAS_FLAG_SATURN; 3400 } 3401 } 3402 3403 3404 static int cas_check_invariants(struct cas *cp) 3405 { 3406 struct pci_dev *pdev = cp->pdev; 3407 u32 cfg; 3408 int i; 3409 3410 /* get page size for rx buffers. */ 3411 cp->page_order = 0; 3412 #ifdef USE_PAGE_ORDER 3413 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) { 3414 /* see if we can allocate larger pages */ 3415 struct page *page = alloc_pages(GFP_ATOMIC, 3416 CAS_JUMBO_PAGE_SHIFT - 3417 PAGE_SHIFT); 3418 if (page) { 3419 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT); 3420 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT; 3421 } else { 3422 printk("MTU limited to %d bytes\n", CAS_MAX_MTU); 3423 } 3424 } 3425 #endif 3426 cp->page_size = (PAGE_SIZE << cp->page_order); 3427 3428 /* Fetch the FIFO configurations. */ 3429 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64; 3430 cp->rx_fifo_size = RX_FIFO_SIZE; 3431 3432 /* finish phy determination. MDIO1 takes precedence over MDIO0 if 3433 * they're both connected. 3434 */ 3435 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr, 3436 PCI_SLOT(pdev->devfn)); 3437 if (cp->phy_type & CAS_PHY_SERDES) { 3438 cp->cas_flags |= CAS_FLAG_1000MB_CAP; 3439 return 0; /* no more checking needed */ 3440 } 3441 3442 /* MII */ 3443 cfg = readl(cp->regs + REG_MIF_CFG); 3444 if (cfg & MIF_CFG_MDIO_1) { 3445 cp->phy_type = CAS_PHY_MII_MDIO1; 3446 } else if (cfg & MIF_CFG_MDIO_0) { 3447 cp->phy_type = CAS_PHY_MII_MDIO0; 3448 } 3449 3450 cas_mif_poll(cp, 0); 3451 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); 3452 3453 for (i = 0; i < 32; i++) { 3454 u32 phy_id; 3455 int j; 3456 3457 for (j = 0; j < 3; j++) { 3458 cp->phy_addr = i; 3459 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16; 3460 phy_id |= cas_phy_read(cp, MII_PHYSID2); 3461 if (phy_id && (phy_id != 0xFFFFFFFF)) { 3462 cp->phy_id = phy_id; 3463 goto done; 3464 } 3465 } 3466 } 3467 pr_err("MII phy did not respond [%08x]\n", 3468 readl(cp->regs + REG_MIF_STATE_MACHINE)); 3469 return -1; 3470 3471 done: 3472 /* see if we can do gigabit */ 3473 cfg = cas_phy_read(cp, MII_BMSR); 3474 if ((cfg & CAS_BMSR_1000_EXTEND) && 3475 cas_phy_read(cp, CAS_MII_1000_EXTEND)) 3476 cp->cas_flags |= CAS_FLAG_1000MB_CAP; 3477 return 0; 3478 } 3479 3480 /* Must be invoked under cp->lock. */ 3481 static inline void cas_start_dma(struct cas *cp) 3482 { 3483 int i; 3484 u32 val; 3485 int txfailed = 0; 3486 3487 /* enable dma */ 3488 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN; 3489 writel(val, cp->regs + REG_TX_CFG); 3490 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN; 3491 writel(val, cp->regs + REG_RX_CFG); 3492 3493 /* enable the mac */ 3494 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN; 3495 writel(val, cp->regs + REG_MAC_TX_CFG); 3496 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN; 3497 writel(val, cp->regs + REG_MAC_RX_CFG); 3498 3499 i = STOP_TRIES; 3500 while (i-- > 0) { 3501 val = readl(cp->regs + REG_MAC_TX_CFG); 3502 if ((val & MAC_TX_CFG_EN)) 3503 break; 3504 udelay(10); 3505 } 3506 if (i < 0) txfailed = 1; 3507 i = STOP_TRIES; 3508 while (i-- > 0) { 3509 val = readl(cp->regs + REG_MAC_RX_CFG); 3510 if ((val & MAC_RX_CFG_EN)) { 3511 if (txfailed) { 3512 netdev_err(cp->dev, 3513 "enabling mac failed [tx:%08x:%08x]\n", 3514 readl(cp->regs + REG_MIF_STATE_MACHINE), 3515 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3516 } 3517 goto enable_rx_done; 3518 } 3519 udelay(10); 3520 } 3521 netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n", 3522 (txfailed ? "tx,rx" : "rx"), 3523 readl(cp->regs + REG_MIF_STATE_MACHINE), 3524 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3525 3526 enable_rx_done: 3527 cas_unmask_intr(cp); /* enable interrupts */ 3528 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); 3529 writel(0, cp->regs + REG_RX_COMP_TAIL); 3530 3531 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 3532 if (N_RX_DESC_RINGS > 1) 3533 writel(RX_DESC_RINGN_SIZE(1) - 4, 3534 cp->regs + REG_PLUS_RX_KICK1); 3535 3536 for (i = 1; i < N_RX_COMP_RINGS; i++) 3537 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i)); 3538 } 3539 } 3540 3541 /* Must be invoked under cp->lock. */ 3542 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd, 3543 int *pause) 3544 { 3545 u32 val = readl(cp->regs + REG_PCS_MII_LPA); 3546 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0; 3547 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00; 3548 if (val & PCS_MII_LPA_ASYM_PAUSE) 3549 *pause |= 0x10; 3550 *spd = 1000; 3551 } 3552 3553 /* Must be invoked under cp->lock. */ 3554 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd, 3555 int *pause) 3556 { 3557 u32 val; 3558 3559 *fd = 0; 3560 *spd = 10; 3561 *pause = 0; 3562 3563 /* use GMII registers */ 3564 val = cas_phy_read(cp, MII_LPA); 3565 if (val & CAS_LPA_PAUSE) 3566 *pause = 0x01; 3567 3568 if (val & CAS_LPA_ASYM_PAUSE) 3569 *pause |= 0x10; 3570 3571 if (val & LPA_DUPLEX) 3572 *fd = 1; 3573 if (val & LPA_100) 3574 *spd = 100; 3575 3576 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 3577 val = cas_phy_read(cp, CAS_MII_1000_STATUS); 3578 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF)) 3579 *spd = 1000; 3580 if (val & CAS_LPA_1000FULL) 3581 *fd = 1; 3582 } 3583 } 3584 3585 /* A link-up condition has occurred, initialize and enable the 3586 * rest of the chip. 3587 * 3588 * Must be invoked under cp->lock. 3589 */ 3590 static void cas_set_link_modes(struct cas *cp) 3591 { 3592 u32 val; 3593 int full_duplex, speed, pause; 3594 3595 full_duplex = 0; 3596 speed = 10; 3597 pause = 0; 3598 3599 if (CAS_PHY_MII(cp->phy_type)) { 3600 cas_mif_poll(cp, 0); 3601 val = cas_phy_read(cp, MII_BMCR); 3602 if (val & BMCR_ANENABLE) { 3603 cas_read_mii_link_mode(cp, &full_duplex, &speed, 3604 &pause); 3605 } else { 3606 if (val & BMCR_FULLDPLX) 3607 full_duplex = 1; 3608 3609 if (val & BMCR_SPEED100) 3610 speed = 100; 3611 else if (val & CAS_BMCR_SPEED1000) 3612 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? 3613 1000 : 100; 3614 } 3615 cas_mif_poll(cp, 1); 3616 3617 } else { 3618 val = readl(cp->regs + REG_PCS_MII_CTRL); 3619 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause); 3620 if ((val & PCS_MII_AUTONEG_EN) == 0) { 3621 if (val & PCS_MII_CTRL_DUPLEX) 3622 full_duplex = 1; 3623 } 3624 } 3625 3626 netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n", 3627 speed, full_duplex ? "full" : "half"); 3628 3629 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED; 3630 if (CAS_PHY_MII(cp->phy_type)) { 3631 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN; 3632 if (!full_duplex) 3633 val |= MAC_XIF_DISABLE_ECHO; 3634 } 3635 if (full_duplex) 3636 val |= MAC_XIF_FDPLX_LED; 3637 if (speed == 1000) 3638 val |= MAC_XIF_GMII_MODE; 3639 writel(val, cp->regs + REG_MAC_XIF_CFG); 3640 3641 /* deal with carrier and collision detect. */ 3642 val = MAC_TX_CFG_IPG_EN; 3643 if (full_duplex) { 3644 val |= MAC_TX_CFG_IGNORE_CARRIER; 3645 val |= MAC_TX_CFG_IGNORE_COLL; 3646 } else { 3647 #ifndef USE_CSMA_CD_PROTO 3648 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN; 3649 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM; 3650 #endif 3651 } 3652 /* val now set up for REG_MAC_TX_CFG */ 3653 3654 /* If gigabit and half-duplex, enable carrier extension 3655 * mode. increase slot time to 512 bytes as well. 3656 * else, disable it and make sure slot time is 64 bytes. 3657 * also activate checksum bug workaround 3658 */ 3659 if ((speed == 1000) && !full_duplex) { 3660 writel(val | MAC_TX_CFG_CARRIER_EXTEND, 3661 cp->regs + REG_MAC_TX_CFG); 3662 3663 val = readl(cp->regs + REG_MAC_RX_CFG); 3664 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */ 3665 writel(val | MAC_RX_CFG_CARRIER_EXTEND, 3666 cp->regs + REG_MAC_RX_CFG); 3667 3668 writel(0x200, cp->regs + REG_MAC_SLOT_TIME); 3669 3670 cp->crc_size = 4; 3671 /* minimum size gigabit frame at half duplex */ 3672 cp->min_frame_size = CAS_1000MB_MIN_FRAME; 3673 3674 } else { 3675 writel(val, cp->regs + REG_MAC_TX_CFG); 3676 3677 /* checksum bug workaround. don't strip FCS when in 3678 * half-duplex mode 3679 */ 3680 val = readl(cp->regs + REG_MAC_RX_CFG); 3681 if (full_duplex) { 3682 val |= MAC_RX_CFG_STRIP_FCS; 3683 cp->crc_size = 0; 3684 cp->min_frame_size = CAS_MIN_MTU; 3685 } else { 3686 val &= ~MAC_RX_CFG_STRIP_FCS; 3687 cp->crc_size = 4; 3688 cp->min_frame_size = CAS_MIN_FRAME; 3689 } 3690 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND, 3691 cp->regs + REG_MAC_RX_CFG); 3692 writel(0x40, cp->regs + REG_MAC_SLOT_TIME); 3693 } 3694 3695 if (netif_msg_link(cp)) { 3696 if (pause & 0x01) { 3697 netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n", 3698 cp->rx_fifo_size, 3699 cp->rx_pause_off, 3700 cp->rx_pause_on); 3701 } else if (pause & 0x10) { 3702 netdev_info(cp->dev, "TX pause enabled\n"); 3703 } else { 3704 netdev_info(cp->dev, "Pause is disabled\n"); 3705 } 3706 } 3707 3708 val = readl(cp->regs + REG_MAC_CTRL_CFG); 3709 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN); 3710 if (pause) { /* symmetric or asymmetric pause */ 3711 val |= MAC_CTRL_CFG_SEND_PAUSE_EN; 3712 if (pause & 0x01) { /* symmetric pause */ 3713 val |= MAC_CTRL_CFG_RECV_PAUSE_EN; 3714 } 3715 } 3716 writel(val, cp->regs + REG_MAC_CTRL_CFG); 3717 cas_start_dma(cp); 3718 } 3719 3720 /* Must be invoked under cp->lock. */ 3721 static void cas_init_hw(struct cas *cp, int restart_link) 3722 { 3723 if (restart_link) 3724 cas_phy_init(cp); 3725 3726 cas_init_pause_thresholds(cp); 3727 cas_init_mac(cp); 3728 cas_init_dma(cp); 3729 3730 if (restart_link) { 3731 /* Default aneg parameters */ 3732 cp->timer_ticks = 0; 3733 cas_begin_auto_negotiation(cp, NULL); 3734 } else if (cp->lstate == link_up) { 3735 cas_set_link_modes(cp); 3736 netif_carrier_on(cp->dev); 3737 } 3738 } 3739 3740 /* Must be invoked under cp->lock. on earlier cassini boards, 3741 * SOFT_0 is tied to PCI reset. we use this to force a pci reset, 3742 * let it settle out, and then restore pci state. 3743 */ 3744 static void cas_hard_reset(struct cas *cp) 3745 { 3746 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN); 3747 udelay(20); 3748 pci_restore_state(cp->pdev); 3749 } 3750 3751 3752 static void cas_global_reset(struct cas *cp, int blkflag) 3753 { 3754 int limit; 3755 3756 /* issue a global reset. don't use RSTOUT. */ 3757 if (blkflag && !CAS_PHY_MII(cp->phy_type)) { 3758 /* For PCS, when the blkflag is set, we should set the 3759 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of 3760 * the last autonegotiation from being cleared. We'll 3761 * need some special handling if the chip is set into a 3762 * loopback mode. 3763 */ 3764 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK), 3765 cp->regs + REG_SW_RESET); 3766 } else { 3767 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET); 3768 } 3769 3770 /* need to wait at least 3ms before polling register */ 3771 mdelay(3); 3772 3773 limit = STOP_TRIES; 3774 while (limit-- > 0) { 3775 u32 val = readl(cp->regs + REG_SW_RESET); 3776 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0) 3777 goto done; 3778 udelay(10); 3779 } 3780 netdev_err(cp->dev, "sw reset failed\n"); 3781 3782 done: 3783 /* enable various BIM interrupts */ 3784 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE | 3785 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG); 3786 3787 /* clear out pci error status mask for handled errors. 3788 * we don't deal with DMA counter overflows as they happen 3789 * all the time. 3790 */ 3791 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO | 3792 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE | 3793 PCI_ERR_BIM_DMA_READ), cp->regs + 3794 REG_PCI_ERR_STATUS_MASK); 3795 3796 /* set up for MII by default to address mac rx reset timeout 3797 * issue 3798 */ 3799 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); 3800 } 3801 3802 static void cas_reset(struct cas *cp, int blkflag) 3803 { 3804 u32 val; 3805 3806 cas_mask_intr(cp); 3807 cas_global_reset(cp, blkflag); 3808 cas_mac_reset(cp); 3809 cas_entropy_reset(cp); 3810 3811 /* disable dma engines. */ 3812 val = readl(cp->regs + REG_TX_CFG); 3813 val &= ~TX_CFG_DMA_EN; 3814 writel(val, cp->regs + REG_TX_CFG); 3815 3816 val = readl(cp->regs + REG_RX_CFG); 3817 val &= ~RX_CFG_DMA_EN; 3818 writel(val, cp->regs + REG_RX_CFG); 3819 3820 /* program header parser */ 3821 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) || 3822 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) { 3823 cas_load_firmware(cp, CAS_HP_FIRMWARE); 3824 } else { 3825 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE); 3826 } 3827 3828 /* clear out error registers */ 3829 spin_lock(&cp->stat_lock[N_TX_RINGS]); 3830 cas_clear_mac_err(cp); 3831 spin_unlock(&cp->stat_lock[N_TX_RINGS]); 3832 } 3833 3834 /* Shut down the chip, must be called with pm_mutex held. */ 3835 static void cas_shutdown(struct cas *cp) 3836 { 3837 unsigned long flags; 3838 3839 /* Make us not-running to avoid timers respawning */ 3840 cp->hw_running = 0; 3841 3842 del_timer_sync(&cp->link_timer); 3843 3844 /* Stop the reset task */ 3845 #if 0 3846 while (atomic_read(&cp->reset_task_pending_mtu) || 3847 atomic_read(&cp->reset_task_pending_spare) || 3848 atomic_read(&cp->reset_task_pending_all)) 3849 schedule(); 3850 3851 #else 3852 while (atomic_read(&cp->reset_task_pending)) 3853 schedule(); 3854 #endif 3855 /* Actually stop the chip */ 3856 cas_lock_all_save(cp, flags); 3857 cas_reset(cp, 0); 3858 if (cp->cas_flags & CAS_FLAG_SATURN) 3859 cas_phy_powerdown(cp); 3860 cas_unlock_all_restore(cp, flags); 3861 } 3862 3863 static int cas_change_mtu(struct net_device *dev, int new_mtu) 3864 { 3865 struct cas *cp = netdev_priv(dev); 3866 3867 dev->mtu = new_mtu; 3868 if (!netif_running(dev) || !netif_device_present(dev)) 3869 return 0; 3870 3871 /* let the reset task handle it */ 3872 #if 1 3873 atomic_inc(&cp->reset_task_pending); 3874 if ((cp->phy_type & CAS_PHY_SERDES)) { 3875 atomic_inc(&cp->reset_task_pending_all); 3876 } else { 3877 atomic_inc(&cp->reset_task_pending_mtu); 3878 } 3879 schedule_work(&cp->reset_task); 3880 #else 3881 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ? 3882 CAS_RESET_ALL : CAS_RESET_MTU); 3883 pr_err("reset called in cas_change_mtu\n"); 3884 schedule_work(&cp->reset_task); 3885 #endif 3886 3887 flush_work(&cp->reset_task); 3888 return 0; 3889 } 3890 3891 static void cas_clean_txd(struct cas *cp, int ring) 3892 { 3893 struct cas_tx_desc *txd = cp->init_txds[ring]; 3894 struct sk_buff *skb, **skbs = cp->tx_skbs[ring]; 3895 u64 daddr, dlen; 3896 int i, size; 3897 3898 size = TX_DESC_RINGN_SIZE(ring); 3899 for (i = 0; i < size; i++) { 3900 int frag; 3901 3902 if (skbs[i] == NULL) 3903 continue; 3904 3905 skb = skbs[i]; 3906 skbs[i] = NULL; 3907 3908 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 3909 int ent = i & (size - 1); 3910 3911 /* first buffer is never a tiny buffer and so 3912 * needs to be unmapped. 3913 */ 3914 daddr = le64_to_cpu(txd[ent].buffer); 3915 dlen = CAS_VAL(TX_DESC_BUFLEN, 3916 le64_to_cpu(txd[ent].control)); 3917 pci_unmap_page(cp->pdev, daddr, dlen, 3918 PCI_DMA_TODEVICE); 3919 3920 if (frag != skb_shinfo(skb)->nr_frags) { 3921 i++; 3922 3923 /* next buffer might by a tiny buffer. 3924 * skip past it. 3925 */ 3926 ent = i & (size - 1); 3927 if (cp->tx_tiny_use[ring][ent].used) 3928 i++; 3929 } 3930 } 3931 dev_kfree_skb_any(skb); 3932 } 3933 3934 /* zero out tiny buf usage */ 3935 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring])); 3936 } 3937 3938 /* freed on close */ 3939 static inline void cas_free_rx_desc(struct cas *cp, int ring) 3940 { 3941 cas_page_t **page = cp->rx_pages[ring]; 3942 int i, size; 3943 3944 size = RX_DESC_RINGN_SIZE(ring); 3945 for (i = 0; i < size; i++) { 3946 if (page[i]) { 3947 cas_page_free(cp, page[i]); 3948 page[i] = NULL; 3949 } 3950 } 3951 } 3952 3953 static void cas_free_rxds(struct cas *cp) 3954 { 3955 int i; 3956 3957 for (i = 0; i < N_RX_DESC_RINGS; i++) 3958 cas_free_rx_desc(cp, i); 3959 } 3960 3961 /* Must be invoked under cp->lock. */ 3962 static void cas_clean_rings(struct cas *cp) 3963 { 3964 int i; 3965 3966 /* need to clean all tx rings */ 3967 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS); 3968 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS); 3969 for (i = 0; i < N_TX_RINGS; i++) 3970 cas_clean_txd(cp, i); 3971 3972 /* zero out init block */ 3973 memset(cp->init_block, 0, sizeof(struct cas_init_block)); 3974 cas_clean_rxds(cp); 3975 cas_clean_rxcs(cp); 3976 } 3977 3978 /* allocated on open */ 3979 static inline int cas_alloc_rx_desc(struct cas *cp, int ring) 3980 { 3981 cas_page_t **page = cp->rx_pages[ring]; 3982 int size, i = 0; 3983 3984 size = RX_DESC_RINGN_SIZE(ring); 3985 for (i = 0; i < size; i++) { 3986 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL) 3987 return -1; 3988 } 3989 return 0; 3990 } 3991 3992 static int cas_alloc_rxds(struct cas *cp) 3993 { 3994 int i; 3995 3996 for (i = 0; i < N_RX_DESC_RINGS; i++) { 3997 if (cas_alloc_rx_desc(cp, i) < 0) { 3998 cas_free_rxds(cp); 3999 return -1; 4000 } 4001 } 4002 return 0; 4003 } 4004 4005 static void cas_reset_task(struct work_struct *work) 4006 { 4007 struct cas *cp = container_of(work, struct cas, reset_task); 4008 #if 0 4009 int pending = atomic_read(&cp->reset_task_pending); 4010 #else 4011 int pending_all = atomic_read(&cp->reset_task_pending_all); 4012 int pending_spare = atomic_read(&cp->reset_task_pending_spare); 4013 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu); 4014 4015 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) { 4016 /* We can have more tasks scheduled than actually 4017 * needed. 4018 */ 4019 atomic_dec(&cp->reset_task_pending); 4020 return; 4021 } 4022 #endif 4023 /* The link went down, we reset the ring, but keep 4024 * DMA stopped. Use this function for reset 4025 * on error as well. 4026 */ 4027 if (cp->hw_running) { 4028 unsigned long flags; 4029 4030 /* Make sure we don't get interrupts or tx packets */ 4031 netif_device_detach(cp->dev); 4032 cas_lock_all_save(cp, flags); 4033 4034 if (cp->opened) { 4035 /* We call cas_spare_recover when we call cas_open. 4036 * but we do not initialize the lists cas_spare_recover 4037 * uses until cas_open is called. 4038 */ 4039 cas_spare_recover(cp, GFP_ATOMIC); 4040 } 4041 #if 1 4042 /* test => only pending_spare set */ 4043 if (!pending_all && !pending_mtu) 4044 goto done; 4045 #else 4046 if (pending == CAS_RESET_SPARE) 4047 goto done; 4048 #endif 4049 /* when pending == CAS_RESET_ALL, the following 4050 * call to cas_init_hw will restart auto negotiation. 4051 * Setting the second argument of cas_reset to 4052 * !(pending == CAS_RESET_ALL) will set this argument 4053 * to 1 (avoiding reinitializing the PHY for the normal 4054 * PCS case) when auto negotiation is not restarted. 4055 */ 4056 #if 1 4057 cas_reset(cp, !(pending_all > 0)); 4058 if (cp->opened) 4059 cas_clean_rings(cp); 4060 cas_init_hw(cp, (pending_all > 0)); 4061 #else 4062 cas_reset(cp, !(pending == CAS_RESET_ALL)); 4063 if (cp->opened) 4064 cas_clean_rings(cp); 4065 cas_init_hw(cp, pending == CAS_RESET_ALL); 4066 #endif 4067 4068 done: 4069 cas_unlock_all_restore(cp, flags); 4070 netif_device_attach(cp->dev); 4071 } 4072 #if 1 4073 atomic_sub(pending_all, &cp->reset_task_pending_all); 4074 atomic_sub(pending_spare, &cp->reset_task_pending_spare); 4075 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu); 4076 atomic_dec(&cp->reset_task_pending); 4077 #else 4078 atomic_set(&cp->reset_task_pending, 0); 4079 #endif 4080 } 4081 4082 static void cas_link_timer(unsigned long data) 4083 { 4084 struct cas *cp = (struct cas *) data; 4085 int mask, pending = 0, reset = 0; 4086 unsigned long flags; 4087 4088 if (link_transition_timeout != 0 && 4089 cp->link_transition_jiffies_valid && 4090 ((jiffies - cp->link_transition_jiffies) > 4091 (link_transition_timeout))) { 4092 /* One-second counter so link-down workaround doesn't 4093 * cause resets to occur so fast as to fool the switch 4094 * into thinking the link is down. 4095 */ 4096 cp->link_transition_jiffies_valid = 0; 4097 } 4098 4099 if (!cp->hw_running) 4100 return; 4101 4102 spin_lock_irqsave(&cp->lock, flags); 4103 cas_lock_tx(cp); 4104 cas_entropy_gather(cp); 4105 4106 /* If the link task is still pending, we just 4107 * reschedule the link timer 4108 */ 4109 #if 1 4110 if (atomic_read(&cp->reset_task_pending_all) || 4111 atomic_read(&cp->reset_task_pending_spare) || 4112 atomic_read(&cp->reset_task_pending_mtu)) 4113 goto done; 4114 #else 4115 if (atomic_read(&cp->reset_task_pending)) 4116 goto done; 4117 #endif 4118 4119 /* check for rx cleaning */ 4120 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) { 4121 int i, rmask; 4122 4123 for (i = 0; i < MAX_RX_DESC_RINGS; i++) { 4124 rmask = CAS_FLAG_RXD_POST(i); 4125 if ((mask & rmask) == 0) 4126 continue; 4127 4128 /* post_rxds will do a mod_timer */ 4129 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) { 4130 pending = 1; 4131 continue; 4132 } 4133 cp->cas_flags &= ~rmask; 4134 } 4135 } 4136 4137 if (CAS_PHY_MII(cp->phy_type)) { 4138 u16 bmsr; 4139 cas_mif_poll(cp, 0); 4140 bmsr = cas_phy_read(cp, MII_BMSR); 4141 /* WTZ: Solaris driver reads this twice, but that 4142 * may be due to the PCS case and the use of a 4143 * common implementation. Read it twice here to be 4144 * safe. 4145 */ 4146 bmsr = cas_phy_read(cp, MII_BMSR); 4147 cas_mif_poll(cp, 1); 4148 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */ 4149 reset = cas_mii_link_check(cp, bmsr); 4150 } else { 4151 reset = cas_pcs_link_check(cp); 4152 } 4153 4154 if (reset) 4155 goto done; 4156 4157 /* check for tx state machine confusion */ 4158 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) { 4159 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE); 4160 u32 wptr, rptr; 4161 int tlm = CAS_VAL(MAC_SM_TLM, val); 4162 4163 if (((tlm == 0x5) || (tlm == 0x3)) && 4164 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) { 4165 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev, 4166 "tx err: MAC_STATE[%08x]\n", val); 4167 reset = 1; 4168 goto done; 4169 } 4170 4171 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT); 4172 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR); 4173 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR); 4174 if ((val == 0) && (wptr != rptr)) { 4175 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev, 4176 "tx err: TX_FIFO[%08x:%08x:%08x]\n", 4177 val, wptr, rptr); 4178 reset = 1; 4179 } 4180 4181 if (reset) 4182 cas_hard_reset(cp); 4183 } 4184 4185 done: 4186 if (reset) { 4187 #if 1 4188 atomic_inc(&cp->reset_task_pending); 4189 atomic_inc(&cp->reset_task_pending_all); 4190 schedule_work(&cp->reset_task); 4191 #else 4192 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 4193 pr_err("reset called in cas_link_timer\n"); 4194 schedule_work(&cp->reset_task); 4195 #endif 4196 } 4197 4198 if (!pending) 4199 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 4200 cas_unlock_tx(cp); 4201 spin_unlock_irqrestore(&cp->lock, flags); 4202 } 4203 4204 /* tiny buffers are used to avoid target abort issues with 4205 * older cassini's 4206 */ 4207 static void cas_tx_tiny_free(struct cas *cp) 4208 { 4209 struct pci_dev *pdev = cp->pdev; 4210 int i; 4211 4212 for (i = 0; i < N_TX_RINGS; i++) { 4213 if (!cp->tx_tiny_bufs[i]) 4214 continue; 4215 4216 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK, 4217 cp->tx_tiny_bufs[i], 4218 cp->tx_tiny_dvma[i]); 4219 cp->tx_tiny_bufs[i] = NULL; 4220 } 4221 } 4222 4223 static int cas_tx_tiny_alloc(struct cas *cp) 4224 { 4225 struct pci_dev *pdev = cp->pdev; 4226 int i; 4227 4228 for (i = 0; i < N_TX_RINGS; i++) { 4229 cp->tx_tiny_bufs[i] = 4230 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK, 4231 &cp->tx_tiny_dvma[i]); 4232 if (!cp->tx_tiny_bufs[i]) { 4233 cas_tx_tiny_free(cp); 4234 return -1; 4235 } 4236 } 4237 return 0; 4238 } 4239 4240 4241 static int cas_open(struct net_device *dev) 4242 { 4243 struct cas *cp = netdev_priv(dev); 4244 int hw_was_up, err; 4245 unsigned long flags; 4246 4247 mutex_lock(&cp->pm_mutex); 4248 4249 hw_was_up = cp->hw_running; 4250 4251 /* The power-management mutex protects the hw_running 4252 * etc. state so it is safe to do this bit without cp->lock 4253 */ 4254 if (!cp->hw_running) { 4255 /* Reset the chip */ 4256 cas_lock_all_save(cp, flags); 4257 /* We set the second arg to cas_reset to zero 4258 * because cas_init_hw below will have its second 4259 * argument set to non-zero, which will force 4260 * autonegotiation to start. 4261 */ 4262 cas_reset(cp, 0); 4263 cp->hw_running = 1; 4264 cas_unlock_all_restore(cp, flags); 4265 } 4266 4267 err = -ENOMEM; 4268 if (cas_tx_tiny_alloc(cp) < 0) 4269 goto err_unlock; 4270 4271 /* alloc rx descriptors */ 4272 if (cas_alloc_rxds(cp) < 0) 4273 goto err_tx_tiny; 4274 4275 /* allocate spares */ 4276 cas_spare_init(cp); 4277 cas_spare_recover(cp, GFP_KERNEL); 4278 4279 /* We can now request the interrupt as we know it's masked 4280 * on the controller. cassini+ has up to 4 interrupts 4281 * that can be used, but you need to do explicit pci interrupt 4282 * mapping to expose them 4283 */ 4284 if (request_irq(cp->pdev->irq, cas_interrupt, 4285 IRQF_SHARED, dev->name, (void *) dev)) { 4286 netdev_err(cp->dev, "failed to request irq !\n"); 4287 err = -EAGAIN; 4288 goto err_spare; 4289 } 4290 4291 #ifdef USE_NAPI 4292 napi_enable(&cp->napi); 4293 #endif 4294 /* init hw */ 4295 cas_lock_all_save(cp, flags); 4296 cas_clean_rings(cp); 4297 cas_init_hw(cp, !hw_was_up); 4298 cp->opened = 1; 4299 cas_unlock_all_restore(cp, flags); 4300 4301 netif_start_queue(dev); 4302 mutex_unlock(&cp->pm_mutex); 4303 return 0; 4304 4305 err_spare: 4306 cas_spare_free(cp); 4307 cas_free_rxds(cp); 4308 err_tx_tiny: 4309 cas_tx_tiny_free(cp); 4310 err_unlock: 4311 mutex_unlock(&cp->pm_mutex); 4312 return err; 4313 } 4314 4315 static int cas_close(struct net_device *dev) 4316 { 4317 unsigned long flags; 4318 struct cas *cp = netdev_priv(dev); 4319 4320 #ifdef USE_NAPI 4321 napi_disable(&cp->napi); 4322 #endif 4323 /* Make sure we don't get distracted by suspend/resume */ 4324 mutex_lock(&cp->pm_mutex); 4325 4326 netif_stop_queue(dev); 4327 4328 /* Stop traffic, mark us closed */ 4329 cas_lock_all_save(cp, flags); 4330 cp->opened = 0; 4331 cas_reset(cp, 0); 4332 cas_phy_init(cp); 4333 cas_begin_auto_negotiation(cp, NULL); 4334 cas_clean_rings(cp); 4335 cas_unlock_all_restore(cp, flags); 4336 4337 free_irq(cp->pdev->irq, (void *) dev); 4338 cas_spare_free(cp); 4339 cas_free_rxds(cp); 4340 cas_tx_tiny_free(cp); 4341 mutex_unlock(&cp->pm_mutex); 4342 return 0; 4343 } 4344 4345 static struct { 4346 const char name[ETH_GSTRING_LEN]; 4347 } ethtool_cassini_statnames[] = { 4348 {"collisions"}, 4349 {"rx_bytes"}, 4350 {"rx_crc_errors"}, 4351 {"rx_dropped"}, 4352 {"rx_errors"}, 4353 {"rx_fifo_errors"}, 4354 {"rx_frame_errors"}, 4355 {"rx_length_errors"}, 4356 {"rx_over_errors"}, 4357 {"rx_packets"}, 4358 {"tx_aborted_errors"}, 4359 {"tx_bytes"}, 4360 {"tx_dropped"}, 4361 {"tx_errors"}, 4362 {"tx_fifo_errors"}, 4363 {"tx_packets"} 4364 }; 4365 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames) 4366 4367 static struct { 4368 const int offsets; /* neg. values for 2nd arg to cas_read_phy */ 4369 } ethtool_register_table[] = { 4370 {-MII_BMSR}, 4371 {-MII_BMCR}, 4372 {REG_CAWR}, 4373 {REG_INF_BURST}, 4374 {REG_BIM_CFG}, 4375 {REG_RX_CFG}, 4376 {REG_HP_CFG}, 4377 {REG_MAC_TX_CFG}, 4378 {REG_MAC_RX_CFG}, 4379 {REG_MAC_CTRL_CFG}, 4380 {REG_MAC_XIF_CFG}, 4381 {REG_MIF_CFG}, 4382 {REG_PCS_CFG}, 4383 {REG_SATURN_PCFG}, 4384 {REG_PCS_MII_STATUS}, 4385 {REG_PCS_STATE_MACHINE}, 4386 {REG_MAC_COLL_EXCESS}, 4387 {REG_MAC_COLL_LATE} 4388 }; 4389 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table) 4390 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN) 4391 4392 static void cas_read_regs(struct cas *cp, u8 *ptr, int len) 4393 { 4394 u8 *p; 4395 int i; 4396 unsigned long flags; 4397 4398 spin_lock_irqsave(&cp->lock, flags); 4399 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) { 4400 u16 hval; 4401 u32 val; 4402 if (ethtool_register_table[i].offsets < 0) { 4403 hval = cas_phy_read(cp, 4404 -ethtool_register_table[i].offsets); 4405 val = hval; 4406 } else { 4407 val= readl(cp->regs+ethtool_register_table[i].offsets); 4408 } 4409 memcpy(p, (u8 *)&val, sizeof(u32)); 4410 } 4411 spin_unlock_irqrestore(&cp->lock, flags); 4412 } 4413 4414 static struct net_device_stats *cas_get_stats(struct net_device *dev) 4415 { 4416 struct cas *cp = netdev_priv(dev); 4417 struct net_device_stats *stats = cp->net_stats; 4418 unsigned long flags; 4419 int i; 4420 unsigned long tmp; 4421 4422 /* we collate all of the stats into net_stats[N_TX_RING] */ 4423 if (!cp->hw_running) 4424 return stats + N_TX_RINGS; 4425 4426 /* collect outstanding stats */ 4427 /* WTZ: the Cassini spec gives these as 16 bit counters but 4428 * stored in 32-bit words. Added a mask of 0xffff to be safe, 4429 * in case the chip somehow puts any garbage in the other bits. 4430 * Also, counter usage didn't seem to mach what Adrian did 4431 * in the parts of the code that set these quantities. Made 4432 * that consistent. 4433 */ 4434 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags); 4435 stats[N_TX_RINGS].rx_crc_errors += 4436 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff; 4437 stats[N_TX_RINGS].rx_frame_errors += 4438 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff; 4439 stats[N_TX_RINGS].rx_length_errors += 4440 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff; 4441 #if 1 4442 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) + 4443 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff); 4444 stats[N_TX_RINGS].tx_aborted_errors += tmp; 4445 stats[N_TX_RINGS].collisions += 4446 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff); 4447 #else 4448 stats[N_TX_RINGS].tx_aborted_errors += 4449 readl(cp->regs + REG_MAC_COLL_EXCESS); 4450 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) + 4451 readl(cp->regs + REG_MAC_COLL_LATE); 4452 #endif 4453 cas_clear_mac_err(cp); 4454 4455 /* saved bits that are unique to ring 0 */ 4456 spin_lock(&cp->stat_lock[0]); 4457 stats[N_TX_RINGS].collisions += stats[0].collisions; 4458 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors; 4459 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors; 4460 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors; 4461 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors; 4462 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors; 4463 spin_unlock(&cp->stat_lock[0]); 4464 4465 for (i = 0; i < N_TX_RINGS; i++) { 4466 spin_lock(&cp->stat_lock[i]); 4467 stats[N_TX_RINGS].rx_length_errors += 4468 stats[i].rx_length_errors; 4469 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors; 4470 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets; 4471 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets; 4472 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes; 4473 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes; 4474 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors; 4475 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors; 4476 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped; 4477 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped; 4478 memset(stats + i, 0, sizeof(struct net_device_stats)); 4479 spin_unlock(&cp->stat_lock[i]); 4480 } 4481 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags); 4482 return stats + N_TX_RINGS; 4483 } 4484 4485 4486 static void cas_set_multicast(struct net_device *dev) 4487 { 4488 struct cas *cp = netdev_priv(dev); 4489 u32 rxcfg, rxcfg_new; 4490 unsigned long flags; 4491 int limit = STOP_TRIES; 4492 4493 if (!cp->hw_running) 4494 return; 4495 4496 spin_lock_irqsave(&cp->lock, flags); 4497 rxcfg = readl(cp->regs + REG_MAC_RX_CFG); 4498 4499 /* disable RX MAC and wait for completion */ 4500 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 4501 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) { 4502 if (!limit--) 4503 break; 4504 udelay(10); 4505 } 4506 4507 /* disable hash filter and wait for completion */ 4508 limit = STOP_TRIES; 4509 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN); 4510 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 4511 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) { 4512 if (!limit--) 4513 break; 4514 udelay(10); 4515 } 4516 4517 /* program hash filters */ 4518 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp); 4519 rxcfg |= rxcfg_new; 4520 writel(rxcfg, cp->regs + REG_MAC_RX_CFG); 4521 spin_unlock_irqrestore(&cp->lock, flags); 4522 } 4523 4524 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 4525 { 4526 struct cas *cp = netdev_priv(dev); 4527 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); 4528 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version)); 4529 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info)); 4530 } 4531 4532 static int cas_get_link_ksettings(struct net_device *dev, 4533 struct ethtool_link_ksettings *cmd) 4534 { 4535 struct cas *cp = netdev_priv(dev); 4536 u16 bmcr; 4537 int full_duplex, speed, pause; 4538 unsigned long flags; 4539 enum link_state linkstate = link_up; 4540 u32 supported, advertising; 4541 4542 advertising = 0; 4543 supported = SUPPORTED_Autoneg; 4544 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 4545 supported |= SUPPORTED_1000baseT_Full; 4546 advertising |= ADVERTISED_1000baseT_Full; 4547 } 4548 4549 /* Record PHY settings if HW is on. */ 4550 spin_lock_irqsave(&cp->lock, flags); 4551 bmcr = 0; 4552 linkstate = cp->lstate; 4553 if (CAS_PHY_MII(cp->phy_type)) { 4554 cmd->base.port = PORT_MII; 4555 cmd->base.phy_address = cp->phy_addr; 4556 advertising |= ADVERTISED_TP | ADVERTISED_MII | 4557 ADVERTISED_10baseT_Half | 4558 ADVERTISED_10baseT_Full | 4559 ADVERTISED_100baseT_Half | 4560 ADVERTISED_100baseT_Full; 4561 4562 supported |= 4563 (SUPPORTED_10baseT_Half | 4564 SUPPORTED_10baseT_Full | 4565 SUPPORTED_100baseT_Half | 4566 SUPPORTED_100baseT_Full | 4567 SUPPORTED_TP | SUPPORTED_MII); 4568 4569 if (cp->hw_running) { 4570 cas_mif_poll(cp, 0); 4571 bmcr = cas_phy_read(cp, MII_BMCR); 4572 cas_read_mii_link_mode(cp, &full_duplex, 4573 &speed, &pause); 4574 cas_mif_poll(cp, 1); 4575 } 4576 4577 } else { 4578 cmd->base.port = PORT_FIBRE; 4579 cmd->base.phy_address = 0; 4580 supported |= SUPPORTED_FIBRE; 4581 advertising |= ADVERTISED_FIBRE; 4582 4583 if (cp->hw_running) { 4584 /* pcs uses the same bits as mii */ 4585 bmcr = readl(cp->regs + REG_PCS_MII_CTRL); 4586 cas_read_pcs_link_mode(cp, &full_duplex, 4587 &speed, &pause); 4588 } 4589 } 4590 spin_unlock_irqrestore(&cp->lock, flags); 4591 4592 if (bmcr & BMCR_ANENABLE) { 4593 advertising |= ADVERTISED_Autoneg; 4594 cmd->base.autoneg = AUTONEG_ENABLE; 4595 cmd->base.speed = ((speed == 10) ? 4596 SPEED_10 : 4597 ((speed == 1000) ? 4598 SPEED_1000 : SPEED_100)); 4599 cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF; 4600 } else { 4601 cmd->base.autoneg = AUTONEG_DISABLE; 4602 cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ? 4603 SPEED_1000 : 4604 ((bmcr & BMCR_SPEED100) ? 4605 SPEED_100 : SPEED_10)); 4606 cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ? 4607 DUPLEX_FULL : DUPLEX_HALF; 4608 } 4609 if (linkstate != link_up) { 4610 /* Force these to "unknown" if the link is not up and 4611 * autonogotiation in enabled. We can set the link 4612 * speed to 0, but not cmd->duplex, 4613 * because its legal values are 0 and 1. Ethtool will 4614 * print the value reported in parentheses after the 4615 * word "Unknown" for unrecognized values. 4616 * 4617 * If in forced mode, we report the speed and duplex 4618 * settings that we configured. 4619 */ 4620 if (cp->link_cntl & BMCR_ANENABLE) { 4621 cmd->base.speed = 0; 4622 cmd->base.duplex = 0xff; 4623 } else { 4624 cmd->base.speed = SPEED_10; 4625 if (cp->link_cntl & BMCR_SPEED100) { 4626 cmd->base.speed = SPEED_100; 4627 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) { 4628 cmd->base.speed = SPEED_1000; 4629 } 4630 cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ? 4631 DUPLEX_FULL : DUPLEX_HALF; 4632 } 4633 } 4634 4635 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 4636 supported); 4637 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 4638 advertising); 4639 4640 return 0; 4641 } 4642 4643 static int cas_set_link_ksettings(struct net_device *dev, 4644 const struct ethtool_link_ksettings *cmd) 4645 { 4646 struct cas *cp = netdev_priv(dev); 4647 unsigned long flags; 4648 u32 speed = cmd->base.speed; 4649 4650 /* Verify the settings we care about. */ 4651 if (cmd->base.autoneg != AUTONEG_ENABLE && 4652 cmd->base.autoneg != AUTONEG_DISABLE) 4653 return -EINVAL; 4654 4655 if (cmd->base.autoneg == AUTONEG_DISABLE && 4656 ((speed != SPEED_1000 && 4657 speed != SPEED_100 && 4658 speed != SPEED_10) || 4659 (cmd->base.duplex != DUPLEX_HALF && 4660 cmd->base.duplex != DUPLEX_FULL))) 4661 return -EINVAL; 4662 4663 /* Apply settings and restart link process. */ 4664 spin_lock_irqsave(&cp->lock, flags); 4665 cas_begin_auto_negotiation(cp, cmd); 4666 spin_unlock_irqrestore(&cp->lock, flags); 4667 return 0; 4668 } 4669 4670 static int cas_nway_reset(struct net_device *dev) 4671 { 4672 struct cas *cp = netdev_priv(dev); 4673 unsigned long flags; 4674 4675 if ((cp->link_cntl & BMCR_ANENABLE) == 0) 4676 return -EINVAL; 4677 4678 /* Restart link process. */ 4679 spin_lock_irqsave(&cp->lock, flags); 4680 cas_begin_auto_negotiation(cp, NULL); 4681 spin_unlock_irqrestore(&cp->lock, flags); 4682 4683 return 0; 4684 } 4685 4686 static u32 cas_get_link(struct net_device *dev) 4687 { 4688 struct cas *cp = netdev_priv(dev); 4689 return cp->lstate == link_up; 4690 } 4691 4692 static u32 cas_get_msglevel(struct net_device *dev) 4693 { 4694 struct cas *cp = netdev_priv(dev); 4695 return cp->msg_enable; 4696 } 4697 4698 static void cas_set_msglevel(struct net_device *dev, u32 value) 4699 { 4700 struct cas *cp = netdev_priv(dev); 4701 cp->msg_enable = value; 4702 } 4703 4704 static int cas_get_regs_len(struct net_device *dev) 4705 { 4706 struct cas *cp = netdev_priv(dev); 4707 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS; 4708 } 4709 4710 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs, 4711 void *p) 4712 { 4713 struct cas *cp = netdev_priv(dev); 4714 regs->version = 0; 4715 /* cas_read_regs handles locks (cp->lock). */ 4716 cas_read_regs(cp, p, regs->len / sizeof(u32)); 4717 } 4718 4719 static int cas_get_sset_count(struct net_device *dev, int sset) 4720 { 4721 switch (sset) { 4722 case ETH_SS_STATS: 4723 return CAS_NUM_STAT_KEYS; 4724 default: 4725 return -EOPNOTSUPP; 4726 } 4727 } 4728 4729 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data) 4730 { 4731 memcpy(data, ðtool_cassini_statnames, 4732 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN); 4733 } 4734 4735 static void cas_get_ethtool_stats(struct net_device *dev, 4736 struct ethtool_stats *estats, u64 *data) 4737 { 4738 struct cas *cp = netdev_priv(dev); 4739 struct net_device_stats *stats = cas_get_stats(cp->dev); 4740 int i = 0; 4741 data[i++] = stats->collisions; 4742 data[i++] = stats->rx_bytes; 4743 data[i++] = stats->rx_crc_errors; 4744 data[i++] = stats->rx_dropped; 4745 data[i++] = stats->rx_errors; 4746 data[i++] = stats->rx_fifo_errors; 4747 data[i++] = stats->rx_frame_errors; 4748 data[i++] = stats->rx_length_errors; 4749 data[i++] = stats->rx_over_errors; 4750 data[i++] = stats->rx_packets; 4751 data[i++] = stats->tx_aborted_errors; 4752 data[i++] = stats->tx_bytes; 4753 data[i++] = stats->tx_dropped; 4754 data[i++] = stats->tx_errors; 4755 data[i++] = stats->tx_fifo_errors; 4756 data[i++] = stats->tx_packets; 4757 BUG_ON(i != CAS_NUM_STAT_KEYS); 4758 } 4759 4760 static const struct ethtool_ops cas_ethtool_ops = { 4761 .get_drvinfo = cas_get_drvinfo, 4762 .nway_reset = cas_nway_reset, 4763 .get_link = cas_get_link, 4764 .get_msglevel = cas_get_msglevel, 4765 .set_msglevel = cas_set_msglevel, 4766 .get_regs_len = cas_get_regs_len, 4767 .get_regs = cas_get_regs, 4768 .get_sset_count = cas_get_sset_count, 4769 .get_strings = cas_get_strings, 4770 .get_ethtool_stats = cas_get_ethtool_stats, 4771 .get_link_ksettings = cas_get_link_ksettings, 4772 .set_link_ksettings = cas_set_link_ksettings, 4773 }; 4774 4775 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 4776 { 4777 struct cas *cp = netdev_priv(dev); 4778 struct mii_ioctl_data *data = if_mii(ifr); 4779 unsigned long flags; 4780 int rc = -EOPNOTSUPP; 4781 4782 /* Hold the PM mutex while doing ioctl's or we may collide 4783 * with open/close and power management and oops. 4784 */ 4785 mutex_lock(&cp->pm_mutex); 4786 switch (cmd) { 4787 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 4788 data->phy_id = cp->phy_addr; 4789 /* Fallthrough... */ 4790 4791 case SIOCGMIIREG: /* Read MII PHY register. */ 4792 spin_lock_irqsave(&cp->lock, flags); 4793 cas_mif_poll(cp, 0); 4794 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f); 4795 cas_mif_poll(cp, 1); 4796 spin_unlock_irqrestore(&cp->lock, flags); 4797 rc = 0; 4798 break; 4799 4800 case SIOCSMIIREG: /* Write MII PHY register. */ 4801 spin_lock_irqsave(&cp->lock, flags); 4802 cas_mif_poll(cp, 0); 4803 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in); 4804 cas_mif_poll(cp, 1); 4805 spin_unlock_irqrestore(&cp->lock, flags); 4806 break; 4807 default: 4808 break; 4809 } 4810 4811 mutex_unlock(&cp->pm_mutex); 4812 return rc; 4813 } 4814 4815 /* When this chip sits underneath an Intel 31154 bridge, it is the 4816 * only subordinate device and we can tweak the bridge settings to 4817 * reflect that fact. 4818 */ 4819 static void cas_program_bridge(struct pci_dev *cas_pdev) 4820 { 4821 struct pci_dev *pdev = cas_pdev->bus->self; 4822 u32 val; 4823 4824 if (!pdev) 4825 return; 4826 4827 if (pdev->vendor != 0x8086 || pdev->device != 0x537c) 4828 return; 4829 4830 /* Clear bit 10 (Bus Parking Control) in the Secondary 4831 * Arbiter Control/Status Register which lives at offset 4832 * 0x41. Using a 32-bit word read/modify/write at 0x40 4833 * is much simpler so that's how we do this. 4834 */ 4835 pci_read_config_dword(pdev, 0x40, &val); 4836 val &= ~0x00040000; 4837 pci_write_config_dword(pdev, 0x40, val); 4838 4839 /* Max out the Multi-Transaction Timer settings since 4840 * Cassini is the only device present. 4841 * 4842 * The register is 16-bit and lives at 0x50. When the 4843 * settings are enabled, it extends the GRANT# signal 4844 * for a requestor after a transaction is complete. This 4845 * allows the next request to run without first needing 4846 * to negotiate the GRANT# signal back. 4847 * 4848 * Bits 12:10 define the grant duration: 4849 * 4850 * 1 -- 16 clocks 4851 * 2 -- 32 clocks 4852 * 3 -- 64 clocks 4853 * 4 -- 128 clocks 4854 * 5 -- 256 clocks 4855 * 4856 * All other values are illegal. 4857 * 4858 * Bits 09:00 define which REQ/GNT signal pairs get the 4859 * GRANT# signal treatment. We set them all. 4860 */ 4861 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff); 4862 4863 /* The Read Prefecth Policy register is 16-bit and sits at 4864 * offset 0x52. It enables a "smart" pre-fetch policy. We 4865 * enable it and max out all of the settings since only one 4866 * device is sitting underneath and thus bandwidth sharing is 4867 * not an issue. 4868 * 4869 * The register has several 3 bit fields, which indicates a 4870 * multiplier applied to the base amount of prefetching the 4871 * chip would do. These fields are at: 4872 * 4873 * 15:13 --- ReRead Primary Bus 4874 * 12:10 --- FirstRead Primary Bus 4875 * 09:07 --- ReRead Secondary Bus 4876 * 06:04 --- FirstRead Secondary Bus 4877 * 4878 * Bits 03:00 control which REQ/GNT pairs the prefetch settings 4879 * get enabled on. Bit 3 is a grouped enabler which controls 4880 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control 4881 * the individual REQ/GNT pairs [2:0]. 4882 */ 4883 pci_write_config_word(pdev, 0x52, 4884 (0x7 << 13) | 4885 (0x7 << 10) | 4886 (0x7 << 7) | 4887 (0x7 << 4) | 4888 (0xf << 0)); 4889 4890 /* Force cacheline size to 0x8 */ 4891 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08); 4892 4893 /* Force latency timer to maximum setting so Cassini can 4894 * sit on the bus as long as it likes. 4895 */ 4896 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff); 4897 } 4898 4899 static const struct net_device_ops cas_netdev_ops = { 4900 .ndo_open = cas_open, 4901 .ndo_stop = cas_close, 4902 .ndo_start_xmit = cas_start_xmit, 4903 .ndo_get_stats = cas_get_stats, 4904 .ndo_set_rx_mode = cas_set_multicast, 4905 .ndo_do_ioctl = cas_ioctl, 4906 .ndo_tx_timeout = cas_tx_timeout, 4907 .ndo_change_mtu = cas_change_mtu, 4908 .ndo_set_mac_address = eth_mac_addr, 4909 .ndo_validate_addr = eth_validate_addr, 4910 #ifdef CONFIG_NET_POLL_CONTROLLER 4911 .ndo_poll_controller = cas_netpoll, 4912 #endif 4913 }; 4914 4915 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 4916 { 4917 static int cas_version_printed = 0; 4918 unsigned long casreg_len; 4919 struct net_device *dev; 4920 struct cas *cp; 4921 int i, err, pci_using_dac; 4922 u16 pci_cmd; 4923 u8 orig_cacheline_size = 0, cas_cacheline_size = 0; 4924 4925 if (cas_version_printed++ == 0) 4926 pr_info("%s", version); 4927 4928 err = pci_enable_device(pdev); 4929 if (err) { 4930 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 4931 return err; 4932 } 4933 4934 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 4935 dev_err(&pdev->dev, "Cannot find proper PCI device " 4936 "base address, aborting\n"); 4937 err = -ENODEV; 4938 goto err_out_disable_pdev; 4939 } 4940 4941 dev = alloc_etherdev(sizeof(*cp)); 4942 if (!dev) { 4943 err = -ENOMEM; 4944 goto err_out_disable_pdev; 4945 } 4946 SET_NETDEV_DEV(dev, &pdev->dev); 4947 4948 err = pci_request_regions(pdev, dev->name); 4949 if (err) { 4950 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 4951 goto err_out_free_netdev; 4952 } 4953 pci_set_master(pdev); 4954 4955 /* we must always turn on parity response or else parity 4956 * doesn't get generated properly. disable SERR/PERR as well. 4957 * in addition, we want to turn MWI on. 4958 */ 4959 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); 4960 pci_cmd &= ~PCI_COMMAND_SERR; 4961 pci_cmd |= PCI_COMMAND_PARITY; 4962 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); 4963 if (pci_try_set_mwi(pdev)) 4964 pr_warn("Could not enable MWI for %s\n", pci_name(pdev)); 4965 4966 cas_program_bridge(pdev); 4967 4968 /* 4969 * On some architectures, the default cache line size set 4970 * by pci_try_set_mwi reduces perforamnce. We have to increase 4971 * it for this case. To start, we'll print some configuration 4972 * data. 4973 */ 4974 #if 1 4975 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, 4976 &orig_cacheline_size); 4977 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) { 4978 cas_cacheline_size = 4979 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ? 4980 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES; 4981 if (pci_write_config_byte(pdev, 4982 PCI_CACHE_LINE_SIZE, 4983 cas_cacheline_size)) { 4984 dev_err(&pdev->dev, "Could not set PCI cache " 4985 "line size\n"); 4986 goto err_write_cacheline; 4987 } 4988 } 4989 #endif 4990 4991 4992 /* Configure DMA attributes. */ 4993 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4994 pci_using_dac = 1; 4995 err = pci_set_consistent_dma_mask(pdev, 4996 DMA_BIT_MASK(64)); 4997 if (err < 0) { 4998 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA " 4999 "for consistent allocations\n"); 5000 goto err_out_free_res; 5001 } 5002 5003 } else { 5004 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 5005 if (err) { 5006 dev_err(&pdev->dev, "No usable DMA configuration, " 5007 "aborting\n"); 5008 goto err_out_free_res; 5009 } 5010 pci_using_dac = 0; 5011 } 5012 5013 casreg_len = pci_resource_len(pdev, 0); 5014 5015 cp = netdev_priv(dev); 5016 cp->pdev = pdev; 5017 #if 1 5018 /* A value of 0 indicates we never explicitly set it */ 5019 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0; 5020 #endif 5021 cp->dev = dev; 5022 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE : 5023 cassini_debug; 5024 5025 #if defined(CONFIG_SPARC) 5026 cp->of_node = pci_device_to_OF_node(pdev); 5027 #endif 5028 5029 cp->link_transition = LINK_TRANSITION_UNKNOWN; 5030 cp->link_transition_jiffies_valid = 0; 5031 5032 spin_lock_init(&cp->lock); 5033 spin_lock_init(&cp->rx_inuse_lock); 5034 spin_lock_init(&cp->rx_spare_lock); 5035 for (i = 0; i < N_TX_RINGS; i++) { 5036 spin_lock_init(&cp->stat_lock[i]); 5037 spin_lock_init(&cp->tx_lock[i]); 5038 } 5039 spin_lock_init(&cp->stat_lock[N_TX_RINGS]); 5040 mutex_init(&cp->pm_mutex); 5041 5042 init_timer(&cp->link_timer); 5043 cp->link_timer.function = cas_link_timer; 5044 cp->link_timer.data = (unsigned long) cp; 5045 5046 #if 1 5047 /* Just in case the implementation of atomic operations 5048 * change so that an explicit initialization is necessary. 5049 */ 5050 atomic_set(&cp->reset_task_pending, 0); 5051 atomic_set(&cp->reset_task_pending_all, 0); 5052 atomic_set(&cp->reset_task_pending_spare, 0); 5053 atomic_set(&cp->reset_task_pending_mtu, 0); 5054 #endif 5055 INIT_WORK(&cp->reset_task, cas_reset_task); 5056 5057 /* Default link parameters */ 5058 if (link_mode >= 0 && link_mode < 6) 5059 cp->link_cntl = link_modes[link_mode]; 5060 else 5061 cp->link_cntl = BMCR_ANENABLE; 5062 cp->lstate = link_down; 5063 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 5064 netif_carrier_off(cp->dev); 5065 cp->timer_ticks = 0; 5066 5067 /* give us access to cassini registers */ 5068 cp->regs = pci_iomap(pdev, 0, casreg_len); 5069 if (!cp->regs) { 5070 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 5071 goto err_out_free_res; 5072 } 5073 cp->casreg_len = casreg_len; 5074 5075 pci_save_state(pdev); 5076 cas_check_pci_invariants(cp); 5077 cas_hard_reset(cp); 5078 cas_reset(cp, 0); 5079 if (cas_check_invariants(cp)) 5080 goto err_out_iounmap; 5081 if (cp->cas_flags & CAS_FLAG_SATURN) 5082 cas_saturn_firmware_init(cp); 5083 5084 cp->init_block = (struct cas_init_block *) 5085 pci_alloc_consistent(pdev, sizeof(struct cas_init_block), 5086 &cp->block_dvma); 5087 if (!cp->init_block) { 5088 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n"); 5089 goto err_out_iounmap; 5090 } 5091 5092 for (i = 0; i < N_TX_RINGS; i++) 5093 cp->init_txds[i] = cp->init_block->txds[i]; 5094 5095 for (i = 0; i < N_RX_DESC_RINGS; i++) 5096 cp->init_rxds[i] = cp->init_block->rxds[i]; 5097 5098 for (i = 0; i < N_RX_COMP_RINGS; i++) 5099 cp->init_rxcs[i] = cp->init_block->rxcs[i]; 5100 5101 for (i = 0; i < N_RX_FLOWS; i++) 5102 skb_queue_head_init(&cp->rx_flows[i]); 5103 5104 dev->netdev_ops = &cas_netdev_ops; 5105 dev->ethtool_ops = &cas_ethtool_ops; 5106 dev->watchdog_timeo = CAS_TX_TIMEOUT; 5107 5108 #ifdef USE_NAPI 5109 netif_napi_add(dev, &cp->napi, cas_poll, 64); 5110 #endif 5111 dev->irq = pdev->irq; 5112 dev->dma = 0; 5113 5114 /* Cassini features. */ 5115 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0) 5116 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG; 5117 5118 if (pci_using_dac) 5119 dev->features |= NETIF_F_HIGHDMA; 5120 5121 /* MTU range: 60 - varies or 9000 */ 5122 dev->min_mtu = CAS_MIN_MTU; 5123 dev->max_mtu = CAS_MAX_MTU; 5124 5125 if (register_netdev(dev)) { 5126 dev_err(&pdev->dev, "Cannot register net device, aborting\n"); 5127 goto err_out_free_consistent; 5128 } 5129 5130 i = readl(cp->regs + REG_BIM_CFG); 5131 netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n", 5132 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "", 5133 (i & BIM_CFG_32BIT) ? "32" : "64", 5134 (i & BIM_CFG_66MHZ) ? "66" : "33", 5135 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq, 5136 dev->dev_addr); 5137 5138 pci_set_drvdata(pdev, dev); 5139 cp->hw_running = 1; 5140 cas_entropy_reset(cp); 5141 cas_phy_init(cp); 5142 cas_begin_auto_negotiation(cp, NULL); 5143 return 0; 5144 5145 err_out_free_consistent: 5146 pci_free_consistent(pdev, sizeof(struct cas_init_block), 5147 cp->init_block, cp->block_dvma); 5148 5149 err_out_iounmap: 5150 mutex_lock(&cp->pm_mutex); 5151 if (cp->hw_running) 5152 cas_shutdown(cp); 5153 mutex_unlock(&cp->pm_mutex); 5154 5155 pci_iounmap(pdev, cp->regs); 5156 5157 5158 err_out_free_res: 5159 pci_release_regions(pdev); 5160 5161 err_write_cacheline: 5162 /* Try to restore it in case the error occurred after we 5163 * set it. 5164 */ 5165 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size); 5166 5167 err_out_free_netdev: 5168 free_netdev(dev); 5169 5170 err_out_disable_pdev: 5171 pci_disable_device(pdev); 5172 return -ENODEV; 5173 } 5174 5175 static void cas_remove_one(struct pci_dev *pdev) 5176 { 5177 struct net_device *dev = pci_get_drvdata(pdev); 5178 struct cas *cp; 5179 if (!dev) 5180 return; 5181 5182 cp = netdev_priv(dev); 5183 unregister_netdev(dev); 5184 5185 vfree(cp->fw_data); 5186 5187 mutex_lock(&cp->pm_mutex); 5188 cancel_work_sync(&cp->reset_task); 5189 if (cp->hw_running) 5190 cas_shutdown(cp); 5191 mutex_unlock(&cp->pm_mutex); 5192 5193 #if 1 5194 if (cp->orig_cacheline_size) { 5195 /* Restore the cache line size if we had modified 5196 * it. 5197 */ 5198 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 5199 cp->orig_cacheline_size); 5200 } 5201 #endif 5202 pci_free_consistent(pdev, sizeof(struct cas_init_block), 5203 cp->init_block, cp->block_dvma); 5204 pci_iounmap(pdev, cp->regs); 5205 free_netdev(dev); 5206 pci_release_regions(pdev); 5207 pci_disable_device(pdev); 5208 } 5209 5210 #ifdef CONFIG_PM 5211 static int cas_suspend(struct pci_dev *pdev, pm_message_t state) 5212 { 5213 struct net_device *dev = pci_get_drvdata(pdev); 5214 struct cas *cp = netdev_priv(dev); 5215 unsigned long flags; 5216 5217 mutex_lock(&cp->pm_mutex); 5218 5219 /* If the driver is opened, we stop the DMA */ 5220 if (cp->opened) { 5221 netif_device_detach(dev); 5222 5223 cas_lock_all_save(cp, flags); 5224 5225 /* We can set the second arg of cas_reset to 0 5226 * because on resume, we'll call cas_init_hw with 5227 * its second arg set so that autonegotiation is 5228 * restarted. 5229 */ 5230 cas_reset(cp, 0); 5231 cas_clean_rings(cp); 5232 cas_unlock_all_restore(cp, flags); 5233 } 5234 5235 if (cp->hw_running) 5236 cas_shutdown(cp); 5237 mutex_unlock(&cp->pm_mutex); 5238 5239 return 0; 5240 } 5241 5242 static int cas_resume(struct pci_dev *pdev) 5243 { 5244 struct net_device *dev = pci_get_drvdata(pdev); 5245 struct cas *cp = netdev_priv(dev); 5246 5247 netdev_info(dev, "resuming\n"); 5248 5249 mutex_lock(&cp->pm_mutex); 5250 cas_hard_reset(cp); 5251 if (cp->opened) { 5252 unsigned long flags; 5253 cas_lock_all_save(cp, flags); 5254 cas_reset(cp, 0); 5255 cp->hw_running = 1; 5256 cas_clean_rings(cp); 5257 cas_init_hw(cp, 1); 5258 cas_unlock_all_restore(cp, flags); 5259 5260 netif_device_attach(dev); 5261 } 5262 mutex_unlock(&cp->pm_mutex); 5263 return 0; 5264 } 5265 #endif /* CONFIG_PM */ 5266 5267 static struct pci_driver cas_driver = { 5268 .name = DRV_MODULE_NAME, 5269 .id_table = cas_pci_tbl, 5270 .probe = cas_init_one, 5271 .remove = cas_remove_one, 5272 #ifdef CONFIG_PM 5273 .suspend = cas_suspend, 5274 .resume = cas_resume 5275 #endif 5276 }; 5277 5278 static int __init cas_init(void) 5279 { 5280 if (linkdown_timeout > 0) 5281 link_transition_timeout = linkdown_timeout * HZ; 5282 else 5283 link_transition_timeout = 0; 5284 5285 return pci_register_driver(&cas_driver); 5286 } 5287 5288 static void __exit cas_cleanup(void) 5289 { 5290 pci_unregister_driver(&cas_driver); 5291 } 5292 5293 module_init(cas_init); 5294 module_exit(cas_cleanup); 5295