xref: /linux/drivers/net/ethernet/sun/cassini.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3  *
4  * Copyright (C) 2004 Sun Microsystems Inc.
5  * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6  *
7  * This driver uses the sungem driver (c) David Miller
8  * (davem@redhat.com) as its basis.
9  *
10  * The cassini chip has a number of features that distinguish it from
11  * the gem chip:
12  *  4 transmit descriptor rings that are used for either QoS (VLAN) or
13  *      load balancing (non-VLAN mode)
14  *  batching of multiple packets
15  *  multiple CPU dispatching
16  *  page-based RX descriptor engine with separate completion rings
17  *  Gigabit support (GMII and PCS interface)
18  *  MIF link up/down detection works
19  *
20  * RX is handled by page sized buffers that are attached as fragments to
21  * the skb. here's what's done:
22  *  -- driver allocates pages at a time and keeps reference counts
23  *     on them.
24  *  -- the upper protocol layers assume that the header is in the skb
25  *     itself. as a result, cassini will copy a small amount (64 bytes)
26  *     to make them happy.
27  *  -- driver appends the rest of the data pages as frags to skbuffs
28  *     and increments the reference count
29  *  -- on page reclamation, the driver swaps the page with a spare page.
30  *     if that page is still in use, it frees its reference to that page,
31  *     and allocates a new page for use. otherwise, it just recycles the
32  *     page.
33  *
34  * NOTE: cassini can parse the header. however, it's not worth it
35  *       as long as the network stack requires a header copy.
36  *
37  * TX has 4 queues. currently these queues are used in a round-robin
38  * fashion for load balancing. They can also be used for QoS. for that
39  * to work, however, QoS information needs to be exposed down to the driver
40  * level so that subqueues get targeted to particular transmit rings.
41  * alternatively, the queues can be configured via use of the all-purpose
42  * ioctl.
43  *
44  * RX DATA: the rx completion ring has all the info, but the rx desc
45  * ring has all of the data. RX can conceivably come in under multiple
46  * interrupts, but the INT# assignment needs to be set up properly by
47  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
48  * that. also, the two descriptor rings are designed to distinguish between
49  * encrypted and non-encrypted packets, but we use them for buffering
50  * instead.
51  *
52  * by default, the selective clear mask is set up to process rx packets.
53  */
54 
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56 
57 #include <linux/module.h>
58 #include <linux/kernel.h>
59 #include <linux/types.h>
60 #include <linux/compiler.h>
61 #include <linux/slab.h>
62 #include <linux/delay.h>
63 #include <linux/init.h>
64 #include <linux/interrupt.h>
65 #include <linux/vmalloc.h>
66 #include <linux/ioport.h>
67 #include <linux/pci.h>
68 #include <linux/mm.h>
69 #include <linux/highmem.h>
70 #include <linux/list.h>
71 #include <linux/dma-mapping.h>
72 
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/skbuff_ref.h>
77 #include <linux/ethtool.h>
78 #include <linux/crc32.h>
79 #include <linux/random.h>
80 #include <linux/mii.h>
81 #include <linux/ip.h>
82 #include <linux/tcp.h>
83 #include <linux/mutex.h>
84 #include <linux/firmware.h>
85 
86 #include <net/checksum.h>
87 
88 #include <linux/atomic.h>
89 #include <asm/io.h>
90 #include <asm/byteorder.h>
91 #include <linux/uaccess.h>
92 #include <linux/jiffies.h>
93 
94 #define CAS_NCPUS            num_online_cpus()
95 
96 #define cas_skb_release(x)  netif_rx(x)
97 
98 /* select which firmware to use */
99 #define USE_HP_WORKAROUND
100 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
101 #define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
102 
103 #include "cassini.h"
104 
105 #define USE_TX_COMPWB      /* use completion writeback registers */
106 #define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
107 #define USE_RX_BLANK       /* hw interrupt mitigation */
108 #undef USE_ENTROPY_DEV     /* don't test for entropy device */
109 
110 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
111  * also, we need to make cp->lock finer-grained.
112  */
113 #undef  USE_PCI_INTB
114 #undef  USE_PCI_INTC
115 #undef  USE_PCI_INTD
116 #undef  USE_QOS
117 
118 #undef  USE_VPD_DEBUG       /* debug vpd information if defined */
119 
120 /* rx processing options */
121 #define USE_PAGE_ORDER      /* specify to allocate large rx pages */
122 #define RX_DONT_BATCH  0    /* if 1, don't batch flows */
123 #define RX_COPY_ALWAYS 0    /* if 0, use frags */
124 #define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
125 #undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
126 
127 #define DRV_MODULE_NAME		"cassini"
128 #define DRV_MODULE_VERSION	"1.6"
129 #define DRV_MODULE_RELDATE	"21 May 2008"
130 
131 #define CAS_DEF_MSG_ENABLE	  \
132 	(NETIF_MSG_DRV		| \
133 	 NETIF_MSG_PROBE	| \
134 	 NETIF_MSG_LINK		| \
135 	 NETIF_MSG_TIMER	| \
136 	 NETIF_MSG_IFDOWN	| \
137 	 NETIF_MSG_IFUP		| \
138 	 NETIF_MSG_RX_ERR	| \
139 	 NETIF_MSG_TX_ERR)
140 
141 /* length of time before we decide the hardware is borked,
142  * and dev->tx_timeout() should be called to fix the problem
143  */
144 #define CAS_TX_TIMEOUT			(HZ)
145 #define CAS_LINK_TIMEOUT                (22*HZ/10)
146 #define CAS_LINK_FAST_TIMEOUT           (1)
147 
148 /* timeout values for state changing. these specify the number
149  * of 10us delays to be used before giving up.
150  */
151 #define STOP_TRIES_PHY 1000
152 #define STOP_TRIES     5000
153 
154 /* specify a minimum frame size to deal with some fifo issues
155  * max mtu == 2 * page size - ethernet header - 64 - swivel =
156  *            2 * page_size - 0x50
157  */
158 #define CAS_MIN_FRAME			97
159 #define CAS_1000MB_MIN_FRAME            255
160 #define CAS_MIN_MTU                     60
161 #define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
162 
163 #if 1
164 /*
165  * Eliminate these and use separate atomic counters for each, to
166  * avoid a race condition.
167  */
168 #else
169 #define CAS_RESET_MTU                   1
170 #define CAS_RESET_ALL                   2
171 #define CAS_RESET_SPARE                 3
172 #endif
173 
174 static char version[] =
175 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
176 
177 static int cassini_debug = -1;	/* -1 == use CAS_DEF_MSG_ENABLE as value */
178 static int link_mode;
179 
180 MODULE_AUTHOR("Adrian Sun <asun@darksunrising.com>");
181 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
182 MODULE_LICENSE("GPL");
183 MODULE_FIRMWARE("sun/cassini.bin");
184 module_param(cassini_debug, int, 0);
185 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
186 module_param(link_mode, int, 0);
187 MODULE_PARM_DESC(link_mode, "default link mode");
188 
189 /*
190  * Work around for a PCS bug in which the link goes down due to the chip
191  * being confused and never showing a link status of "up."
192  */
193 #define DEFAULT_LINKDOWN_TIMEOUT 5
194 /*
195  * Value in seconds, for user input.
196  */
197 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
198 module_param(linkdown_timeout, int, 0);
199 MODULE_PARM_DESC(linkdown_timeout,
200 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
201 
202 /*
203  * value in 'ticks' (units used by jiffies). Set when we init the
204  * module because 'HZ' in actually a function call on some flavors of
205  * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
206  */
207 static int link_transition_timeout;
208 
209 
210 
211 static u16 link_modes[] = {
212 	BMCR_ANENABLE,			 /* 0 : autoneg */
213 	0,				 /* 1 : 10bt half duplex */
214 	BMCR_SPEED100,			 /* 2 : 100bt half duplex */
215 	BMCR_FULLDPLX,			 /* 3 : 10bt full duplex */
216 	BMCR_SPEED100|BMCR_FULLDPLX,	 /* 4 : 100bt full duplex */
217 	CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
218 };
219 
220 static const struct pci_device_id cas_pci_tbl[] = {
221 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
222 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
223 	{ PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
224 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
225 	{ 0, }
226 };
227 
228 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
229 
230 static void cas_set_link_modes(struct cas *cp);
231 
232 static inline void cas_lock_tx(struct cas *cp)
233 {
234 	int i;
235 
236 	for (i = 0; i < N_TX_RINGS; i++)
237 		spin_lock_nested(&cp->tx_lock[i], i);
238 }
239 
240 /* WTZ: QA was finding deadlock problems with the previous
241  * versions after long test runs with multiple cards per machine.
242  * See if replacing cas_lock_all with safer versions helps. The
243  * symptoms QA is reporting match those we'd expect if interrupts
244  * aren't being properly restored, and we fixed a previous deadlock
245  * with similar symptoms by using save/restore versions in other
246  * places.
247  */
248 #define cas_lock_all_save(cp, flags) \
249 do { \
250 	struct cas *xxxcp = (cp); \
251 	spin_lock_irqsave(&xxxcp->lock, flags); \
252 	cas_lock_tx(xxxcp); \
253 } while (0)
254 
255 static inline void cas_unlock_tx(struct cas *cp)
256 {
257 	int i;
258 
259 	for (i = N_TX_RINGS; i > 0; i--)
260 		spin_unlock(&cp->tx_lock[i - 1]);
261 }
262 
263 #define cas_unlock_all_restore(cp, flags) \
264 do { \
265 	struct cas *xxxcp = (cp); \
266 	cas_unlock_tx(xxxcp); \
267 	spin_unlock_irqrestore(&xxxcp->lock, flags); \
268 } while (0)
269 
270 static void cas_disable_irq(struct cas *cp, const int ring)
271 {
272 	/* Make sure we won't get any more interrupts */
273 	if (ring == 0) {
274 		writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
275 		return;
276 	}
277 
278 	/* disable completion interrupts and selectively mask */
279 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
280 		switch (ring) {
281 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
282 #ifdef USE_PCI_INTB
283 		case 1:
284 #endif
285 #ifdef USE_PCI_INTC
286 		case 2:
287 #endif
288 #ifdef USE_PCI_INTD
289 		case 3:
290 #endif
291 			writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
292 			       cp->regs + REG_PLUS_INTRN_MASK(ring));
293 			break;
294 #endif
295 		default:
296 			writel(INTRN_MASK_CLEAR_ALL, cp->regs +
297 			       REG_PLUS_INTRN_MASK(ring));
298 			break;
299 		}
300 	}
301 }
302 
303 static inline void cas_mask_intr(struct cas *cp)
304 {
305 	int i;
306 
307 	for (i = 0; i < N_RX_COMP_RINGS; i++)
308 		cas_disable_irq(cp, i);
309 }
310 
311 static void cas_enable_irq(struct cas *cp, const int ring)
312 {
313 	if (ring == 0) { /* all but TX_DONE */
314 		writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
315 		return;
316 	}
317 
318 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
319 		switch (ring) {
320 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
321 #ifdef USE_PCI_INTB
322 		case 1:
323 #endif
324 #ifdef USE_PCI_INTC
325 		case 2:
326 #endif
327 #ifdef USE_PCI_INTD
328 		case 3:
329 #endif
330 			writel(INTRN_MASK_RX_EN, cp->regs +
331 			       REG_PLUS_INTRN_MASK(ring));
332 			break;
333 #endif
334 		default:
335 			break;
336 		}
337 	}
338 }
339 
340 static inline void cas_unmask_intr(struct cas *cp)
341 {
342 	int i;
343 
344 	for (i = 0; i < N_RX_COMP_RINGS; i++)
345 		cas_enable_irq(cp, i);
346 }
347 
348 static inline void cas_entropy_gather(struct cas *cp)
349 {
350 #ifdef USE_ENTROPY_DEV
351 	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
352 		return;
353 
354 	batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
355 			    readl(cp->regs + REG_ENTROPY_IV),
356 			    sizeof(uint64_t)*8);
357 #endif
358 }
359 
360 static inline void cas_entropy_reset(struct cas *cp)
361 {
362 #ifdef USE_ENTROPY_DEV
363 	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
364 		return;
365 
366 	writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
367 	       cp->regs + REG_BIM_LOCAL_DEV_EN);
368 	writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
369 	writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
370 
371 	/* if we read back 0x0, we don't have an entropy device */
372 	if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
373 		cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
374 #endif
375 }
376 
377 /* access to the phy. the following assumes that we've initialized the MIF to
378  * be in frame rather than bit-bang mode
379  */
380 static u16 cas_phy_read(struct cas *cp, int reg)
381 {
382 	u32 cmd;
383 	int limit = STOP_TRIES_PHY;
384 
385 	cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
386 	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
387 	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
388 	cmd |= MIF_FRAME_TURN_AROUND_MSB;
389 	writel(cmd, cp->regs + REG_MIF_FRAME);
390 
391 	/* poll for completion */
392 	while (limit-- > 0) {
393 		udelay(10);
394 		cmd = readl(cp->regs + REG_MIF_FRAME);
395 		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
396 			return cmd & MIF_FRAME_DATA_MASK;
397 	}
398 	return 0xFFFF; /* -1 */
399 }
400 
401 static int cas_phy_write(struct cas *cp, int reg, u16 val)
402 {
403 	int limit = STOP_TRIES_PHY;
404 	u32 cmd;
405 
406 	cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
407 	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
408 	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
409 	cmd |= MIF_FRAME_TURN_AROUND_MSB;
410 	cmd |= val & MIF_FRAME_DATA_MASK;
411 	writel(cmd, cp->regs + REG_MIF_FRAME);
412 
413 	/* poll for completion */
414 	while (limit-- > 0) {
415 		udelay(10);
416 		cmd = readl(cp->regs + REG_MIF_FRAME);
417 		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
418 			return 0;
419 	}
420 	return -1;
421 }
422 
423 static void cas_phy_powerup(struct cas *cp)
424 {
425 	u16 ctl = cas_phy_read(cp, MII_BMCR);
426 
427 	if ((ctl & BMCR_PDOWN) == 0)
428 		return;
429 	ctl &= ~BMCR_PDOWN;
430 	cas_phy_write(cp, MII_BMCR, ctl);
431 }
432 
433 static void cas_phy_powerdown(struct cas *cp)
434 {
435 	u16 ctl = cas_phy_read(cp, MII_BMCR);
436 
437 	if (ctl & BMCR_PDOWN)
438 		return;
439 	ctl |= BMCR_PDOWN;
440 	cas_phy_write(cp, MII_BMCR, ctl);
441 }
442 
443 /* cp->lock held. note: the last put_page will free the buffer */
444 static int cas_page_free(struct cas *cp, cas_page_t *page)
445 {
446 	dma_unmap_page(&cp->pdev->dev, page->dma_addr, cp->page_size,
447 		       DMA_FROM_DEVICE);
448 	__free_pages(page->buffer, cp->page_order);
449 	kfree(page);
450 	return 0;
451 }
452 
453 #ifdef RX_COUNT_BUFFERS
454 #define RX_USED_ADD(x, y)       ((x)->used += (y))
455 #define RX_USED_SET(x, y)       ((x)->used  = (y))
456 #else
457 #define RX_USED_ADD(x, y) do { } while(0)
458 #define RX_USED_SET(x, y) do { } while(0)
459 #endif
460 
461 /* local page allocation routines for the receive buffers. jumbo pages
462  * require at least 8K contiguous and 8K aligned buffers.
463  */
464 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
465 {
466 	cas_page_t *page;
467 
468 	page = kmalloc(sizeof(cas_page_t), flags);
469 	if (!page)
470 		return NULL;
471 
472 	INIT_LIST_HEAD(&page->list);
473 	RX_USED_SET(page, 0);
474 	page->buffer = alloc_pages(flags, cp->page_order);
475 	if (!page->buffer)
476 		goto page_err;
477 	page->dma_addr = dma_map_page(&cp->pdev->dev, page->buffer, 0,
478 				      cp->page_size, DMA_FROM_DEVICE);
479 	return page;
480 
481 page_err:
482 	kfree(page);
483 	return NULL;
484 }
485 
486 /* initialize spare pool of rx buffers, but allocate during the open */
487 static void cas_spare_init(struct cas *cp)
488 {
489 	spin_lock(&cp->rx_inuse_lock);
490 	INIT_LIST_HEAD(&cp->rx_inuse_list);
491 	spin_unlock(&cp->rx_inuse_lock);
492 
493 	spin_lock(&cp->rx_spare_lock);
494 	INIT_LIST_HEAD(&cp->rx_spare_list);
495 	cp->rx_spares_needed = RX_SPARE_COUNT;
496 	spin_unlock(&cp->rx_spare_lock);
497 }
498 
499 /* used on close. free all the spare buffers. */
500 static void cas_spare_free(struct cas *cp)
501 {
502 	struct list_head list, *elem, *tmp;
503 
504 	/* free spare buffers */
505 	INIT_LIST_HEAD(&list);
506 	spin_lock(&cp->rx_spare_lock);
507 	list_splice_init(&cp->rx_spare_list, &list);
508 	spin_unlock(&cp->rx_spare_lock);
509 	list_for_each_safe(elem, tmp, &list) {
510 		cas_page_free(cp, list_entry(elem, cas_page_t, list));
511 	}
512 
513 	INIT_LIST_HEAD(&list);
514 #if 1
515 	/*
516 	 * Looks like Adrian had protected this with a different
517 	 * lock than used everywhere else to manipulate this list.
518 	 */
519 	spin_lock(&cp->rx_inuse_lock);
520 	list_splice_init(&cp->rx_inuse_list, &list);
521 	spin_unlock(&cp->rx_inuse_lock);
522 #else
523 	spin_lock(&cp->rx_spare_lock);
524 	list_splice_init(&cp->rx_inuse_list, &list);
525 	spin_unlock(&cp->rx_spare_lock);
526 #endif
527 	list_for_each_safe(elem, tmp, &list) {
528 		cas_page_free(cp, list_entry(elem, cas_page_t, list));
529 	}
530 }
531 
532 /* replenish spares if needed */
533 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
534 {
535 	struct list_head list, *elem, *tmp;
536 	int needed, i;
537 
538 	/* check inuse list. if we don't need any more free buffers,
539 	 * just free it
540 	 */
541 
542 	/* make a local copy of the list */
543 	INIT_LIST_HEAD(&list);
544 	spin_lock(&cp->rx_inuse_lock);
545 	list_splice_init(&cp->rx_inuse_list, &list);
546 	spin_unlock(&cp->rx_inuse_lock);
547 
548 	list_for_each_safe(elem, tmp, &list) {
549 		cas_page_t *page = list_entry(elem, cas_page_t, list);
550 
551 		/*
552 		 * With the lockless pagecache, cassini buffering scheme gets
553 		 * slightly less accurate: we might find that a page has an
554 		 * elevated reference count here, due to a speculative ref,
555 		 * and skip it as in-use. Ideally we would be able to reclaim
556 		 * it. However this would be such a rare case, it doesn't
557 		 * matter too much as we should pick it up the next time round.
558 		 *
559 		 * Importantly, if we find that the page has a refcount of 1
560 		 * here (our refcount), then we know it is definitely not inuse
561 		 * so we can reuse it.
562 		 */
563 		if (page_count(page->buffer) > 1)
564 			continue;
565 
566 		list_del(elem);
567 		spin_lock(&cp->rx_spare_lock);
568 		if (cp->rx_spares_needed > 0) {
569 			list_add(elem, &cp->rx_spare_list);
570 			cp->rx_spares_needed--;
571 			spin_unlock(&cp->rx_spare_lock);
572 		} else {
573 			spin_unlock(&cp->rx_spare_lock);
574 			cas_page_free(cp, page);
575 		}
576 	}
577 
578 	/* put any inuse buffers back on the list */
579 	if (!list_empty(&list)) {
580 		spin_lock(&cp->rx_inuse_lock);
581 		list_splice(&list, &cp->rx_inuse_list);
582 		spin_unlock(&cp->rx_inuse_lock);
583 	}
584 
585 	spin_lock(&cp->rx_spare_lock);
586 	needed = cp->rx_spares_needed;
587 	spin_unlock(&cp->rx_spare_lock);
588 	if (!needed)
589 		return;
590 
591 	/* we still need spares, so try to allocate some */
592 	INIT_LIST_HEAD(&list);
593 	i = 0;
594 	while (i < needed) {
595 		cas_page_t *spare = cas_page_alloc(cp, flags);
596 		if (!spare)
597 			break;
598 		list_add(&spare->list, &list);
599 		i++;
600 	}
601 
602 	spin_lock(&cp->rx_spare_lock);
603 	list_splice(&list, &cp->rx_spare_list);
604 	cp->rx_spares_needed -= i;
605 	spin_unlock(&cp->rx_spare_lock);
606 }
607 
608 /* pull a page from the list. */
609 static cas_page_t *cas_page_dequeue(struct cas *cp)
610 {
611 	struct list_head *entry;
612 	int recover;
613 
614 	spin_lock(&cp->rx_spare_lock);
615 	if (list_empty(&cp->rx_spare_list)) {
616 		/* try to do a quick recovery */
617 		spin_unlock(&cp->rx_spare_lock);
618 		cas_spare_recover(cp, GFP_ATOMIC);
619 		spin_lock(&cp->rx_spare_lock);
620 		if (list_empty(&cp->rx_spare_list)) {
621 			netif_err(cp, rx_err, cp->dev,
622 				  "no spare buffers available\n");
623 			spin_unlock(&cp->rx_spare_lock);
624 			return NULL;
625 		}
626 	}
627 
628 	entry = cp->rx_spare_list.next;
629 	list_del(entry);
630 	recover = ++cp->rx_spares_needed;
631 	spin_unlock(&cp->rx_spare_lock);
632 
633 	/* trigger the timer to do the recovery */
634 	if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
635 #if 1
636 		atomic_inc(&cp->reset_task_pending);
637 		atomic_inc(&cp->reset_task_pending_spare);
638 		schedule_work(&cp->reset_task);
639 #else
640 		atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
641 		schedule_work(&cp->reset_task);
642 #endif
643 	}
644 	return list_entry(entry, cas_page_t, list);
645 }
646 
647 
648 static void cas_mif_poll(struct cas *cp, const int enable)
649 {
650 	u32 cfg;
651 
652 	cfg  = readl(cp->regs + REG_MIF_CFG);
653 	cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
654 
655 	if (cp->phy_type & CAS_PHY_MII_MDIO1)
656 		cfg |= MIF_CFG_PHY_SELECT;
657 
658 	/* poll and interrupt on link status change. */
659 	if (enable) {
660 		cfg |= MIF_CFG_POLL_EN;
661 		cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
662 		cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
663 	}
664 	writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
665 	       cp->regs + REG_MIF_MASK);
666 	writel(cfg, cp->regs + REG_MIF_CFG);
667 }
668 
669 /* Must be invoked under cp->lock */
670 static void cas_begin_auto_negotiation(struct cas *cp,
671 				       const struct ethtool_link_ksettings *ep)
672 {
673 	u16 ctl;
674 #if 1
675 	int lcntl;
676 	int changed = 0;
677 	int oldstate = cp->lstate;
678 	int link_was_not_down = !(oldstate == link_down);
679 #endif
680 	/* Setup link parameters */
681 	if (!ep)
682 		goto start_aneg;
683 	lcntl = cp->link_cntl;
684 	if (ep->base.autoneg == AUTONEG_ENABLE) {
685 		cp->link_cntl = BMCR_ANENABLE;
686 	} else {
687 		u32 speed = ep->base.speed;
688 		cp->link_cntl = 0;
689 		if (speed == SPEED_100)
690 			cp->link_cntl |= BMCR_SPEED100;
691 		else if (speed == SPEED_1000)
692 			cp->link_cntl |= CAS_BMCR_SPEED1000;
693 		if (ep->base.duplex == DUPLEX_FULL)
694 			cp->link_cntl |= BMCR_FULLDPLX;
695 	}
696 #if 1
697 	changed = (lcntl != cp->link_cntl);
698 #endif
699 start_aneg:
700 	if (cp->lstate == link_up) {
701 		netdev_info(cp->dev, "PCS link down\n");
702 	} else {
703 		if (changed) {
704 			netdev_info(cp->dev, "link configuration changed\n");
705 		}
706 	}
707 	cp->lstate = link_down;
708 	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
709 	if (!cp->hw_running)
710 		return;
711 #if 1
712 	/*
713 	 * WTZ: If the old state was link_up, we turn off the carrier
714 	 * to replicate everything we do elsewhere on a link-down
715 	 * event when we were already in a link-up state..
716 	 */
717 	if (oldstate == link_up)
718 		netif_carrier_off(cp->dev);
719 	if (changed  && link_was_not_down) {
720 		/*
721 		 * WTZ: This branch will simply schedule a full reset after
722 		 * we explicitly changed link modes in an ioctl. See if this
723 		 * fixes the link-problems we were having for forced mode.
724 		 */
725 		atomic_inc(&cp->reset_task_pending);
726 		atomic_inc(&cp->reset_task_pending_all);
727 		schedule_work(&cp->reset_task);
728 		cp->timer_ticks = 0;
729 		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
730 		return;
731 	}
732 #endif
733 	if (cp->phy_type & CAS_PHY_SERDES) {
734 		u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
735 
736 		if (cp->link_cntl & BMCR_ANENABLE) {
737 			val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
738 			cp->lstate = link_aneg;
739 		} else {
740 			if (cp->link_cntl & BMCR_FULLDPLX)
741 				val |= PCS_MII_CTRL_DUPLEX;
742 			val &= ~PCS_MII_AUTONEG_EN;
743 			cp->lstate = link_force_ok;
744 		}
745 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
746 		writel(val, cp->regs + REG_PCS_MII_CTRL);
747 
748 	} else {
749 		cas_mif_poll(cp, 0);
750 		ctl = cas_phy_read(cp, MII_BMCR);
751 		ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
752 			 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
753 		ctl |= cp->link_cntl;
754 		if (ctl & BMCR_ANENABLE) {
755 			ctl |= BMCR_ANRESTART;
756 			cp->lstate = link_aneg;
757 		} else {
758 			cp->lstate = link_force_ok;
759 		}
760 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
761 		cas_phy_write(cp, MII_BMCR, ctl);
762 		cas_mif_poll(cp, 1);
763 	}
764 
765 	cp->timer_ticks = 0;
766 	mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
767 }
768 
769 /* Must be invoked under cp->lock. */
770 static int cas_reset_mii_phy(struct cas *cp)
771 {
772 	int limit = STOP_TRIES_PHY;
773 	u16 val;
774 
775 	cas_phy_write(cp, MII_BMCR, BMCR_RESET);
776 	udelay(100);
777 	while (--limit) {
778 		val = cas_phy_read(cp, MII_BMCR);
779 		if ((val & BMCR_RESET) == 0)
780 			break;
781 		udelay(10);
782 	}
783 	return limit <= 0;
784 }
785 
786 static void cas_saturn_firmware_init(struct cas *cp)
787 {
788 	const struct firmware *fw;
789 	const char fw_name[] = "sun/cassini.bin";
790 	int err;
791 
792 	if (PHY_NS_DP83065 != cp->phy_id)
793 		return;
794 
795 	err = request_firmware(&fw, fw_name, &cp->pdev->dev);
796 	if (err) {
797 		pr_err("Failed to load firmware \"%s\"\n",
798 		       fw_name);
799 		return;
800 	}
801 	if (fw->size < 2) {
802 		pr_err("bogus length %zu in \"%s\"\n",
803 		       fw->size, fw_name);
804 		goto out;
805 	}
806 	cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
807 	cp->fw_size = fw->size - 2;
808 	cp->fw_data = vmalloc(cp->fw_size);
809 	if (!cp->fw_data)
810 		goto out;
811 	memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
812 out:
813 	release_firmware(fw);
814 }
815 
816 static void cas_saturn_firmware_load(struct cas *cp)
817 {
818 	int i;
819 
820 	if (!cp->fw_data)
821 		return;
822 
823 	cas_phy_powerdown(cp);
824 
825 	/* expanded memory access mode */
826 	cas_phy_write(cp, DP83065_MII_MEM, 0x0);
827 
828 	/* pointer configuration for new firmware */
829 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
830 	cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
831 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
832 	cas_phy_write(cp, DP83065_MII_REGD, 0x82);
833 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
834 	cas_phy_write(cp, DP83065_MII_REGD, 0x0);
835 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
836 	cas_phy_write(cp, DP83065_MII_REGD, 0x39);
837 
838 	/* download new firmware */
839 	cas_phy_write(cp, DP83065_MII_MEM, 0x1);
840 	cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
841 	for (i = 0; i < cp->fw_size; i++)
842 		cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
843 
844 	/* enable firmware */
845 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
846 	cas_phy_write(cp, DP83065_MII_REGD, 0x1);
847 }
848 
849 
850 /* phy initialization */
851 static void cas_phy_init(struct cas *cp)
852 {
853 	u16 val;
854 
855 	/* if we're in MII/GMII mode, set up phy */
856 	if (CAS_PHY_MII(cp->phy_type)) {
857 		writel(PCS_DATAPATH_MODE_MII,
858 		       cp->regs + REG_PCS_DATAPATH_MODE);
859 
860 		cas_mif_poll(cp, 0);
861 		cas_reset_mii_phy(cp); /* take out of isolate mode */
862 
863 		if (PHY_LUCENT_B0 == cp->phy_id) {
864 			/* workaround link up/down issue with lucent */
865 			cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
866 			cas_phy_write(cp, MII_BMCR, 0x00f1);
867 			cas_phy_write(cp, LUCENT_MII_REG, 0x0);
868 
869 		} else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
870 			/* workarounds for broadcom phy */
871 			cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
872 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
873 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
874 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
875 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
876 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
877 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
878 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
879 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
880 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
881 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
882 
883 		} else if (PHY_BROADCOM_5411 == cp->phy_id) {
884 			val = cas_phy_read(cp, BROADCOM_MII_REG4);
885 			val = cas_phy_read(cp, BROADCOM_MII_REG4);
886 			if (val & 0x0080) {
887 				/* link workaround */
888 				cas_phy_write(cp, BROADCOM_MII_REG4,
889 					      val & ~0x0080);
890 			}
891 
892 		} else if (cp->cas_flags & CAS_FLAG_SATURN) {
893 			writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
894 			       SATURN_PCFG_FSI : 0x0,
895 			       cp->regs + REG_SATURN_PCFG);
896 
897 			/* load firmware to address 10Mbps auto-negotiation
898 			 * issue. NOTE: this will need to be changed if the
899 			 * default firmware gets fixed.
900 			 */
901 			if (PHY_NS_DP83065 == cp->phy_id) {
902 				cas_saturn_firmware_load(cp);
903 			}
904 			cas_phy_powerup(cp);
905 		}
906 
907 		/* advertise capabilities */
908 		val = cas_phy_read(cp, MII_BMCR);
909 		val &= ~BMCR_ANENABLE;
910 		cas_phy_write(cp, MII_BMCR, val);
911 		udelay(10);
912 
913 		cas_phy_write(cp, MII_ADVERTISE,
914 			      cas_phy_read(cp, MII_ADVERTISE) |
915 			      (ADVERTISE_10HALF | ADVERTISE_10FULL |
916 			       ADVERTISE_100HALF | ADVERTISE_100FULL |
917 			       CAS_ADVERTISE_PAUSE |
918 			       CAS_ADVERTISE_ASYM_PAUSE));
919 
920 		if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
921 			/* make sure that we don't advertise half
922 			 * duplex to avoid a chip issue
923 			 */
924 			val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
925 			val &= ~CAS_ADVERTISE_1000HALF;
926 			val |= CAS_ADVERTISE_1000FULL;
927 			cas_phy_write(cp, CAS_MII_1000_CTRL, val);
928 		}
929 
930 	} else {
931 		/* reset pcs for serdes */
932 		u32 val;
933 		int limit;
934 
935 		writel(PCS_DATAPATH_MODE_SERDES,
936 		       cp->regs + REG_PCS_DATAPATH_MODE);
937 
938 		/* enable serdes pins on saturn */
939 		if (cp->cas_flags & CAS_FLAG_SATURN)
940 			writel(0, cp->regs + REG_SATURN_PCFG);
941 
942 		/* Reset PCS unit. */
943 		val = readl(cp->regs + REG_PCS_MII_CTRL);
944 		val |= PCS_MII_RESET;
945 		writel(val, cp->regs + REG_PCS_MII_CTRL);
946 
947 		limit = STOP_TRIES;
948 		while (--limit > 0) {
949 			udelay(10);
950 			if ((readl(cp->regs + REG_PCS_MII_CTRL) &
951 			     PCS_MII_RESET) == 0)
952 				break;
953 		}
954 		if (limit <= 0)
955 			netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
956 				    readl(cp->regs + REG_PCS_STATE_MACHINE));
957 
958 		/* Make sure PCS is disabled while changing advertisement
959 		 * configuration.
960 		 */
961 		writel(0x0, cp->regs + REG_PCS_CFG);
962 
963 		/* Advertise all capabilities except half-duplex. */
964 		val  = readl(cp->regs + REG_PCS_MII_ADVERT);
965 		val &= ~PCS_MII_ADVERT_HD;
966 		val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
967 			PCS_MII_ADVERT_ASYM_PAUSE);
968 		writel(val, cp->regs + REG_PCS_MII_ADVERT);
969 
970 		/* enable PCS */
971 		writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
972 
973 		/* pcs workaround: enable sync detect */
974 		writel(PCS_SERDES_CTRL_SYNCD_EN,
975 		       cp->regs + REG_PCS_SERDES_CTRL);
976 	}
977 }
978 
979 
980 static int cas_pcs_link_check(struct cas *cp)
981 {
982 	u32 stat, state_machine;
983 	int retval = 0;
984 
985 	/* The link status bit latches on zero, so you must
986 	 * read it twice in such a case to see a transition
987 	 * to the link being up.
988 	 */
989 	stat = readl(cp->regs + REG_PCS_MII_STATUS);
990 	if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
991 		stat = readl(cp->regs + REG_PCS_MII_STATUS);
992 
993 	/* The remote-fault indication is only valid
994 	 * when autoneg has completed.
995 	 */
996 	if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
997 		     PCS_MII_STATUS_REMOTE_FAULT)) ==
998 	    (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
999 		netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1000 
1001 	/* work around link detection issue by querying the PCS state
1002 	 * machine directly.
1003 	 */
1004 	state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1005 	if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1006 		stat &= ~PCS_MII_STATUS_LINK_STATUS;
1007 	} else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1008 		stat |= PCS_MII_STATUS_LINK_STATUS;
1009 	}
1010 
1011 	if (stat & PCS_MII_STATUS_LINK_STATUS) {
1012 		if (cp->lstate != link_up) {
1013 			if (cp->opened) {
1014 				cp->lstate = link_up;
1015 				cp->link_transition = LINK_TRANSITION_LINK_UP;
1016 
1017 				cas_set_link_modes(cp);
1018 				netif_carrier_on(cp->dev);
1019 			}
1020 		}
1021 	} else if (cp->lstate == link_up) {
1022 		cp->lstate = link_down;
1023 		if (link_transition_timeout != 0 &&
1024 		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1025 		    !cp->link_transition_jiffies_valid) {
1026 			/*
1027 			 * force a reset, as a workaround for the
1028 			 * link-failure problem. May want to move this to a
1029 			 * point a bit earlier in the sequence. If we had
1030 			 * generated a reset a short time ago, we'll wait for
1031 			 * the link timer to check the status until a
1032 			 * timer expires (link_transistion_jiffies_valid is
1033 			 * true when the timer is running.)  Instead of using
1034 			 * a system timer, we just do a check whenever the
1035 			 * link timer is running - this clears the flag after
1036 			 * a suitable delay.
1037 			 */
1038 			retval = 1;
1039 			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1040 			cp->link_transition_jiffies = jiffies;
1041 			cp->link_transition_jiffies_valid = 1;
1042 		} else {
1043 			cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1044 		}
1045 		netif_carrier_off(cp->dev);
1046 		if (cp->opened)
1047 			netif_info(cp, link, cp->dev, "PCS link down\n");
1048 
1049 		/* Cassini only: if you force a mode, there can be
1050 		 * sync problems on link down. to fix that, the following
1051 		 * things need to be checked:
1052 		 * 1) read serialink state register
1053 		 * 2) read pcs status register to verify link down.
1054 		 * 3) if link down and serial link == 0x03, then you need
1055 		 *    to global reset the chip.
1056 		 */
1057 		if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1058 			/* should check to see if we're in a forced mode */
1059 			stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1060 			if (stat == 0x03)
1061 				return 1;
1062 		}
1063 	} else if (cp->lstate == link_down) {
1064 		if (link_transition_timeout != 0 &&
1065 		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1066 		    !cp->link_transition_jiffies_valid) {
1067 			/* force a reset, as a workaround for the
1068 			 * link-failure problem.  May want to move
1069 			 * this to a point a bit earlier in the
1070 			 * sequence.
1071 			 */
1072 			retval = 1;
1073 			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1074 			cp->link_transition_jiffies = jiffies;
1075 			cp->link_transition_jiffies_valid = 1;
1076 		} else {
1077 			cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1078 		}
1079 	}
1080 
1081 	return retval;
1082 }
1083 
1084 static int cas_pcs_interrupt(struct net_device *dev,
1085 			     struct cas *cp, u32 status)
1086 {
1087 	u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1088 
1089 	if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1090 		return 0;
1091 	return cas_pcs_link_check(cp);
1092 }
1093 
1094 static int cas_txmac_interrupt(struct net_device *dev,
1095 			       struct cas *cp, u32 status)
1096 {
1097 	u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1098 
1099 	if (!txmac_stat)
1100 		return 0;
1101 
1102 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1103 		     "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1104 
1105 	/* Defer timer expiration is quite normal,
1106 	 * don't even log the event.
1107 	 */
1108 	if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1109 	    !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1110 		return 0;
1111 
1112 	spin_lock(&cp->stat_lock[0]);
1113 	if (txmac_stat & MAC_TX_UNDERRUN) {
1114 		netdev_err(dev, "TX MAC xmit underrun\n");
1115 		cp->net_stats[0].tx_fifo_errors++;
1116 	}
1117 
1118 	if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1119 		netdev_err(dev, "TX MAC max packet size error\n");
1120 		cp->net_stats[0].tx_errors++;
1121 	}
1122 
1123 	/* The rest are all cases of one of the 16-bit TX
1124 	 * counters expiring.
1125 	 */
1126 	if (txmac_stat & MAC_TX_COLL_NORMAL)
1127 		cp->net_stats[0].collisions += 0x10000;
1128 
1129 	if (txmac_stat & MAC_TX_COLL_EXCESS) {
1130 		cp->net_stats[0].tx_aborted_errors += 0x10000;
1131 		cp->net_stats[0].collisions += 0x10000;
1132 	}
1133 
1134 	if (txmac_stat & MAC_TX_COLL_LATE) {
1135 		cp->net_stats[0].tx_aborted_errors += 0x10000;
1136 		cp->net_stats[0].collisions += 0x10000;
1137 	}
1138 	spin_unlock(&cp->stat_lock[0]);
1139 
1140 	/* We do not keep track of MAC_TX_COLL_FIRST and
1141 	 * MAC_TX_PEAK_ATTEMPTS events.
1142 	 */
1143 	return 0;
1144 }
1145 
1146 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1147 {
1148 	cas_hp_inst_t *inst;
1149 	u32 val;
1150 	int i;
1151 
1152 	i = 0;
1153 	while ((inst = firmware) && inst->note) {
1154 		writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1155 
1156 		val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1157 		val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1158 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1159 
1160 		val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1161 		val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1162 		val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1163 		val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1164 		val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1165 		val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1166 		val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1167 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1168 
1169 		val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1170 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1171 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1172 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1173 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1174 		++firmware;
1175 		++i;
1176 	}
1177 }
1178 
1179 static void cas_init_rx_dma(struct cas *cp)
1180 {
1181 	u64 desc_dma = cp->block_dvma;
1182 	u32 val;
1183 	int i, size;
1184 
1185 	/* rx free descriptors */
1186 	val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1187 	val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1188 	val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1189 	if ((N_RX_DESC_RINGS > 1) &&
1190 	    (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1191 		val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1192 	writel(val, cp->regs + REG_RX_CFG);
1193 
1194 	val = (unsigned long) cp->init_rxds[0] -
1195 		(unsigned long) cp->init_block;
1196 	writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1197 	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1198 	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1199 
1200 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1201 		/* rx desc 2 is for IPSEC packets. however,
1202 		 * we don't it that for that purpose.
1203 		 */
1204 		val = (unsigned long) cp->init_rxds[1] -
1205 			(unsigned long) cp->init_block;
1206 		writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1207 		writel((desc_dma + val) & 0xffffffff, cp->regs +
1208 		       REG_PLUS_RX_DB1_LOW);
1209 		writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1210 		       REG_PLUS_RX_KICK1);
1211 	}
1212 
1213 	/* rx completion registers */
1214 	val = (unsigned long) cp->init_rxcs[0] -
1215 		(unsigned long) cp->init_block;
1216 	writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1217 	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1218 
1219 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1220 		/* rx comp 2-4 */
1221 		for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1222 			val = (unsigned long) cp->init_rxcs[i] -
1223 				(unsigned long) cp->init_block;
1224 			writel((desc_dma + val) >> 32, cp->regs +
1225 			       REG_PLUS_RX_CBN_HI(i));
1226 			writel((desc_dma + val) & 0xffffffff, cp->regs +
1227 			       REG_PLUS_RX_CBN_LOW(i));
1228 		}
1229 	}
1230 
1231 	/* read selective clear regs to prevent spurious interrupts
1232 	 * on reset because complete == kick.
1233 	 * selective clear set up to prevent interrupts on resets
1234 	 */
1235 	readl(cp->regs + REG_INTR_STATUS_ALIAS);
1236 	writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1237 
1238 	/* set up pause thresholds */
1239 	val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1240 			cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1241 	val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1242 			cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1243 	writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1244 
1245 	/* zero out dma reassembly buffers */
1246 	for (i = 0; i < 64; i++) {
1247 		writel(i, cp->regs + REG_RX_TABLE_ADDR);
1248 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1249 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1250 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1251 	}
1252 
1253 	/* make sure address register is 0 for normal operation */
1254 	writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1255 	writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1256 
1257 	/* interrupt mitigation */
1258 #ifdef USE_RX_BLANK
1259 	val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1260 	val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1261 	writel(val, cp->regs + REG_RX_BLANK);
1262 #else
1263 	writel(0x0, cp->regs + REG_RX_BLANK);
1264 #endif
1265 
1266 	/* interrupt generation as a function of low water marks for
1267 	 * free desc and completion entries. these are used to trigger
1268 	 * housekeeping for rx descs. we don't use the free interrupt
1269 	 * as it's not very useful
1270 	 */
1271 	/* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1272 	val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1273 	writel(val, cp->regs + REG_RX_AE_THRESH);
1274 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1275 		val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1276 		writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1277 	}
1278 
1279 	/* Random early detect registers. useful for congestion avoidance.
1280 	 * this should be tunable.
1281 	 */
1282 	writel(0x0, cp->regs + REG_RX_RED);
1283 
1284 	/* receive page sizes. default == 2K (0x800) */
1285 	val = 0;
1286 	if (cp->page_size == 0x1000)
1287 		val = 0x1;
1288 	else if (cp->page_size == 0x2000)
1289 		val = 0x2;
1290 	else if (cp->page_size == 0x4000)
1291 		val = 0x3;
1292 
1293 	/* round mtu + offset. constrain to page size. */
1294 	size = cp->dev->mtu + 64;
1295 	if (size > cp->page_size)
1296 		size = cp->page_size;
1297 
1298 	if (size <= 0x400)
1299 		i = 0x0;
1300 	else if (size <= 0x800)
1301 		i = 0x1;
1302 	else if (size <= 0x1000)
1303 		i = 0x2;
1304 	else
1305 		i = 0x3;
1306 
1307 	cp->mtu_stride = 1 << (i + 10);
1308 	val  = CAS_BASE(RX_PAGE_SIZE, val);
1309 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1310 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1311 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1312 	writel(val, cp->regs + REG_RX_PAGE_SIZE);
1313 
1314 	/* enable the header parser if desired */
1315 	if (&CAS_HP_FIRMWARE[0] == &cas_prog_null[0])
1316 		return;
1317 
1318 	val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1319 	val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1320 	val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1321 	writel(val, cp->regs + REG_HP_CFG);
1322 }
1323 
1324 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1325 {
1326 	memset(rxc, 0, sizeof(*rxc));
1327 	rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1328 }
1329 
1330 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1331  * flipping is protected by the fact that the chip will not
1332  * hand back the same page index while it's being processed.
1333  */
1334 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1335 {
1336 	cas_page_t *page = cp->rx_pages[1][index];
1337 	cas_page_t *new;
1338 
1339 	if (page_count(page->buffer) == 1)
1340 		return page;
1341 
1342 	new = cas_page_dequeue(cp);
1343 	if (new) {
1344 		spin_lock(&cp->rx_inuse_lock);
1345 		list_add(&page->list, &cp->rx_inuse_list);
1346 		spin_unlock(&cp->rx_inuse_lock);
1347 	}
1348 	return new;
1349 }
1350 
1351 /* this needs to be changed if we actually use the ENC RX DESC ring */
1352 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1353 				 const int index)
1354 {
1355 	cas_page_t **page0 = cp->rx_pages[0];
1356 	cas_page_t **page1 = cp->rx_pages[1];
1357 
1358 	/* swap if buffer is in use */
1359 	if (page_count(page0[index]->buffer) > 1) {
1360 		cas_page_t *new = cas_page_spare(cp, index);
1361 		if (new) {
1362 			page1[index] = page0[index];
1363 			page0[index] = new;
1364 		}
1365 	}
1366 	RX_USED_SET(page0[index], 0);
1367 	return page0[index];
1368 }
1369 
1370 static void cas_clean_rxds(struct cas *cp)
1371 {
1372 	/* only clean ring 0 as ring 1 is used for spare buffers */
1373         struct cas_rx_desc *rxd = cp->init_rxds[0];
1374 	int i, size;
1375 
1376 	/* release all rx flows */
1377 	for (i = 0; i < N_RX_FLOWS; i++) {
1378 		struct sk_buff *skb;
1379 		while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1380 			cas_skb_release(skb);
1381 		}
1382 	}
1383 
1384 	/* initialize descriptors */
1385 	size = RX_DESC_RINGN_SIZE(0);
1386 	for (i = 0; i < size; i++) {
1387 		cas_page_t *page = cas_page_swap(cp, 0, i);
1388 		rxd[i].buffer = cpu_to_le64(page->dma_addr);
1389 		rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1390 					    CAS_BASE(RX_INDEX_RING, 0));
1391 	}
1392 
1393 	cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1394 	cp->rx_last[0] = 0;
1395 	cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1396 }
1397 
1398 static void cas_clean_rxcs(struct cas *cp)
1399 {
1400 	int i, j;
1401 
1402 	/* take ownership of rx comp descriptors */
1403 	memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1404 	memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1405 	for (i = 0; i < N_RX_COMP_RINGS; i++) {
1406 		struct cas_rx_comp *rxc = cp->init_rxcs[i];
1407 		for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1408 			cas_rxc_init(rxc + j);
1409 		}
1410 	}
1411 }
1412 
1413 #if 0
1414 /* When we get a RX fifo overflow, the RX unit is probably hung
1415  * so we do the following.
1416  *
1417  * If any part of the reset goes wrong, we return 1 and that causes the
1418  * whole chip to be reset.
1419  */
1420 static int cas_rxmac_reset(struct cas *cp)
1421 {
1422 	struct net_device *dev = cp->dev;
1423 	int limit;
1424 	u32 val;
1425 
1426 	/* First, reset MAC RX. */
1427 	writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1428 	for (limit = 0; limit < STOP_TRIES; limit++) {
1429 		if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1430 			break;
1431 		udelay(10);
1432 	}
1433 	if (limit == STOP_TRIES) {
1434 		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1435 		return 1;
1436 	}
1437 
1438 	/* Second, disable RX DMA. */
1439 	writel(0, cp->regs + REG_RX_CFG);
1440 	for (limit = 0; limit < STOP_TRIES; limit++) {
1441 		if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1442 			break;
1443 		udelay(10);
1444 	}
1445 	if (limit == STOP_TRIES) {
1446 		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1447 		return 1;
1448 	}
1449 
1450 	mdelay(5);
1451 
1452 	/* Execute RX reset command. */
1453 	writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1454 	for (limit = 0; limit < STOP_TRIES; limit++) {
1455 		if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1456 			break;
1457 		udelay(10);
1458 	}
1459 	if (limit == STOP_TRIES) {
1460 		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1461 		return 1;
1462 	}
1463 
1464 	/* reset driver rx state */
1465 	cas_clean_rxds(cp);
1466 	cas_clean_rxcs(cp);
1467 
1468 	/* Now, reprogram the rest of RX unit. */
1469 	cas_init_rx_dma(cp);
1470 
1471 	/* re-enable */
1472 	val = readl(cp->regs + REG_RX_CFG);
1473 	writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1474 	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1475 	val = readl(cp->regs + REG_MAC_RX_CFG);
1476 	writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1477 	return 0;
1478 }
1479 #endif
1480 
1481 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1482 			       u32 status)
1483 {
1484 	u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1485 
1486 	if (!stat)
1487 		return 0;
1488 
1489 	netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1490 
1491 	/* these are all rollovers */
1492 	spin_lock(&cp->stat_lock[0]);
1493 	if (stat & MAC_RX_ALIGN_ERR)
1494 		cp->net_stats[0].rx_frame_errors += 0x10000;
1495 
1496 	if (stat & MAC_RX_CRC_ERR)
1497 		cp->net_stats[0].rx_crc_errors += 0x10000;
1498 
1499 	if (stat & MAC_RX_LEN_ERR)
1500 		cp->net_stats[0].rx_length_errors += 0x10000;
1501 
1502 	if (stat & MAC_RX_OVERFLOW) {
1503 		cp->net_stats[0].rx_over_errors++;
1504 		cp->net_stats[0].rx_fifo_errors++;
1505 	}
1506 
1507 	/* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1508 	 * events.
1509 	 */
1510 	spin_unlock(&cp->stat_lock[0]);
1511 	return 0;
1512 }
1513 
1514 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1515 			     u32 status)
1516 {
1517 	u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1518 
1519 	if (!stat)
1520 		return 0;
1521 
1522 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1523 		     "mac interrupt, stat: 0x%x\n", stat);
1524 
1525 	/* This interrupt is just for pause frame and pause
1526 	 * tracking.  It is useful for diagnostics and debug
1527 	 * but probably by default we will mask these events.
1528 	 */
1529 	if (stat & MAC_CTRL_PAUSE_STATE)
1530 		cp->pause_entered++;
1531 
1532 	if (stat & MAC_CTRL_PAUSE_RECEIVED)
1533 		cp->pause_last_time_recvd = (stat >> 16);
1534 
1535 	return 0;
1536 }
1537 
1538 
1539 /* Must be invoked under cp->lock. */
1540 static inline int cas_mdio_link_not_up(struct cas *cp)
1541 {
1542 	u16 val;
1543 
1544 	switch (cp->lstate) {
1545 	case link_force_ret:
1546 		netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1547 		cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1548 		cp->timer_ticks = 5;
1549 		cp->lstate = link_force_ok;
1550 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1551 		break;
1552 
1553 	case link_aneg:
1554 		val = cas_phy_read(cp, MII_BMCR);
1555 
1556 		/* Try forced modes. we try things in the following order:
1557 		 * 1000 full -> 100 full/half -> 10 half
1558 		 */
1559 		val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1560 		val |= BMCR_FULLDPLX;
1561 		val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1562 			CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1563 		cas_phy_write(cp, MII_BMCR, val);
1564 		cp->timer_ticks = 5;
1565 		cp->lstate = link_force_try;
1566 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1567 		break;
1568 
1569 	case link_force_try:
1570 		/* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1571 		val = cas_phy_read(cp, MII_BMCR);
1572 		cp->timer_ticks = 5;
1573 		if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1574 			val &= ~CAS_BMCR_SPEED1000;
1575 			val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1576 			cas_phy_write(cp, MII_BMCR, val);
1577 			break;
1578 		}
1579 
1580 		if (val & BMCR_SPEED100) {
1581 			if (val & BMCR_FULLDPLX) /* fd failed */
1582 				val &= ~BMCR_FULLDPLX;
1583 			else { /* 100Mbps failed */
1584 				val &= ~BMCR_SPEED100;
1585 			}
1586 			cas_phy_write(cp, MII_BMCR, val);
1587 			break;
1588 		}
1589 		break;
1590 	default:
1591 		break;
1592 	}
1593 	return 0;
1594 }
1595 
1596 
1597 /* must be invoked with cp->lock held */
1598 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1599 {
1600 	int restart;
1601 
1602 	if (bmsr & BMSR_LSTATUS) {
1603 		/* Ok, here we got a link. If we had it due to a forced
1604 		 * fallback, and we were configured for autoneg, we
1605 		 * retry a short autoneg pass. If you know your hub is
1606 		 * broken, use ethtool ;)
1607 		 */
1608 		if ((cp->lstate == link_force_try) &&
1609 		    (cp->link_cntl & BMCR_ANENABLE)) {
1610 			cp->lstate = link_force_ret;
1611 			cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1612 			cas_mif_poll(cp, 0);
1613 			cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1614 			cp->timer_ticks = 5;
1615 			if (cp->opened)
1616 				netif_info(cp, link, cp->dev,
1617 					   "Got link after fallback, retrying autoneg once...\n");
1618 			cas_phy_write(cp, MII_BMCR,
1619 				      cp->link_fcntl | BMCR_ANENABLE |
1620 				      BMCR_ANRESTART);
1621 			cas_mif_poll(cp, 1);
1622 
1623 		} else if (cp->lstate != link_up) {
1624 			cp->lstate = link_up;
1625 			cp->link_transition = LINK_TRANSITION_LINK_UP;
1626 
1627 			if (cp->opened) {
1628 				cas_set_link_modes(cp);
1629 				netif_carrier_on(cp->dev);
1630 			}
1631 		}
1632 		return 0;
1633 	}
1634 
1635 	/* link not up. if the link was previously up, we restart the
1636 	 * whole process
1637 	 */
1638 	restart = 0;
1639 	if (cp->lstate == link_up) {
1640 		cp->lstate = link_down;
1641 		cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1642 
1643 		netif_carrier_off(cp->dev);
1644 		if (cp->opened)
1645 			netif_info(cp, link, cp->dev, "Link down\n");
1646 		restart = 1;
1647 
1648 	} else if (++cp->timer_ticks > 10)
1649 		cas_mdio_link_not_up(cp);
1650 
1651 	return restart;
1652 }
1653 
1654 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1655 			     u32 status)
1656 {
1657 	u32 stat = readl(cp->regs + REG_MIF_STATUS);
1658 	u16 bmsr;
1659 
1660 	/* check for a link change */
1661 	if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1662 		return 0;
1663 
1664 	bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1665 	return cas_mii_link_check(cp, bmsr);
1666 }
1667 
1668 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1669 			     u32 status)
1670 {
1671 	u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1672 
1673 	if (!stat)
1674 		return 0;
1675 
1676 	netdev_err(dev, "PCI error [%04x:%04x]",
1677 		   stat, readl(cp->regs + REG_BIM_DIAG));
1678 
1679 	/* cassini+ has this reserved */
1680 	if ((stat & PCI_ERR_BADACK) &&
1681 	    ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1682 		pr_cont(" <No ACK64# during ABS64 cycle>");
1683 
1684 	if (stat & PCI_ERR_DTRTO)
1685 		pr_cont(" <Delayed transaction timeout>");
1686 	if (stat & PCI_ERR_OTHER)
1687 		pr_cont(" <other>");
1688 	if (stat & PCI_ERR_BIM_DMA_WRITE)
1689 		pr_cont(" <BIM DMA 0 write req>");
1690 	if (stat & PCI_ERR_BIM_DMA_READ)
1691 		pr_cont(" <BIM DMA 0 read req>");
1692 	pr_cont("\n");
1693 
1694 	if (stat & PCI_ERR_OTHER) {
1695 		int pci_errs;
1696 
1697 		/* Interrogate PCI config space for the
1698 		 * true cause.
1699 		 */
1700 		pci_errs = pci_status_get_and_clear_errors(cp->pdev);
1701 
1702 		netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
1703 		if (pci_errs & PCI_STATUS_PARITY)
1704 			netdev_err(dev, "PCI parity error detected\n");
1705 		if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
1706 			netdev_err(dev, "PCI target abort\n");
1707 		if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
1708 			netdev_err(dev, "PCI master acks target abort\n");
1709 		if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
1710 			netdev_err(dev, "PCI master abort\n");
1711 		if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
1712 			netdev_err(dev, "PCI system error SERR#\n");
1713 		if (pci_errs & PCI_STATUS_DETECTED_PARITY)
1714 			netdev_err(dev, "PCI parity error\n");
1715 	}
1716 
1717 	/* For all PCI errors, we should reset the chip. */
1718 	return 1;
1719 }
1720 
1721 /* All non-normal interrupt conditions get serviced here.
1722  * Returns non-zero if we should just exit the interrupt
1723  * handler right now (ie. if we reset the card which invalidates
1724  * all of the other original irq status bits).
1725  */
1726 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1727 			    u32 status)
1728 {
1729 	if (status & INTR_RX_TAG_ERROR) {
1730 		/* corrupt RX tag framing */
1731 		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1732 			     "corrupt rx tag framing\n");
1733 		spin_lock(&cp->stat_lock[0]);
1734 		cp->net_stats[0].rx_errors++;
1735 		spin_unlock(&cp->stat_lock[0]);
1736 		goto do_reset;
1737 	}
1738 
1739 	if (status & INTR_RX_LEN_MISMATCH) {
1740 		/* length mismatch. */
1741 		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1742 			     "length mismatch for rx frame\n");
1743 		spin_lock(&cp->stat_lock[0]);
1744 		cp->net_stats[0].rx_errors++;
1745 		spin_unlock(&cp->stat_lock[0]);
1746 		goto do_reset;
1747 	}
1748 
1749 	if (status & INTR_PCS_STATUS) {
1750 		if (cas_pcs_interrupt(dev, cp, status))
1751 			goto do_reset;
1752 	}
1753 
1754 	if (status & INTR_TX_MAC_STATUS) {
1755 		if (cas_txmac_interrupt(dev, cp, status))
1756 			goto do_reset;
1757 	}
1758 
1759 	if (status & INTR_RX_MAC_STATUS) {
1760 		if (cas_rxmac_interrupt(dev, cp, status))
1761 			goto do_reset;
1762 	}
1763 
1764 	if (status & INTR_MAC_CTRL_STATUS) {
1765 		if (cas_mac_interrupt(dev, cp, status))
1766 			goto do_reset;
1767 	}
1768 
1769 	if (status & INTR_MIF_STATUS) {
1770 		if (cas_mif_interrupt(dev, cp, status))
1771 			goto do_reset;
1772 	}
1773 
1774 	if (status & INTR_PCI_ERROR_STATUS) {
1775 		if (cas_pci_interrupt(dev, cp, status))
1776 			goto do_reset;
1777 	}
1778 	return 0;
1779 
1780 do_reset:
1781 #if 1
1782 	atomic_inc(&cp->reset_task_pending);
1783 	atomic_inc(&cp->reset_task_pending_all);
1784 	netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1785 	schedule_work(&cp->reset_task);
1786 #else
1787 	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1788 	netdev_err(dev, "reset called in cas_abnormal_irq\n");
1789 	schedule_work(&cp->reset_task);
1790 #endif
1791 	return 1;
1792 }
1793 
1794 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1795  *       determining whether to do a netif_stop/wakeup
1796  */
1797 #define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1798 #define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1799 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1800 				  const int len)
1801 {
1802 	unsigned long off = addr + len;
1803 
1804 	if (CAS_TABORT(cp) == 1)
1805 		return 0;
1806 	if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1807 		return 0;
1808 	return TX_TARGET_ABORT_LEN;
1809 }
1810 
1811 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1812 {
1813 	struct cas_tx_desc *txds;
1814 	struct sk_buff **skbs;
1815 	struct net_device *dev = cp->dev;
1816 	int entry, count;
1817 
1818 	spin_lock(&cp->tx_lock[ring]);
1819 	txds = cp->init_txds[ring];
1820 	skbs = cp->tx_skbs[ring];
1821 	entry = cp->tx_old[ring];
1822 
1823 	count = TX_BUFF_COUNT(ring, entry, limit);
1824 	while (entry != limit) {
1825 		struct sk_buff *skb = skbs[entry];
1826 		dma_addr_t daddr;
1827 		u32 dlen;
1828 		int frag;
1829 
1830 		if (!skb) {
1831 			/* this should never occur */
1832 			entry = TX_DESC_NEXT(ring, entry);
1833 			continue;
1834 		}
1835 
1836 		/* however, we might get only a partial skb release. */
1837 		count -= skb_shinfo(skb)->nr_frags +
1838 			+ cp->tx_tiny_use[ring][entry].nbufs + 1;
1839 		if (count < 0)
1840 			break;
1841 
1842 		netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1843 			     "tx[%d] done, slot %d\n", ring, entry);
1844 
1845 		skbs[entry] = NULL;
1846 		cp->tx_tiny_use[ring][entry].nbufs = 0;
1847 
1848 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1849 			struct cas_tx_desc *txd = txds + entry;
1850 
1851 			daddr = le64_to_cpu(txd->buffer);
1852 			dlen = CAS_VAL(TX_DESC_BUFLEN,
1853 				       le64_to_cpu(txd->control));
1854 			dma_unmap_page(&cp->pdev->dev, daddr, dlen,
1855 				       DMA_TO_DEVICE);
1856 			entry = TX_DESC_NEXT(ring, entry);
1857 
1858 			/* tiny buffer may follow */
1859 			if (cp->tx_tiny_use[ring][entry].used) {
1860 				cp->tx_tiny_use[ring][entry].used = 0;
1861 				entry = TX_DESC_NEXT(ring, entry);
1862 			}
1863 		}
1864 
1865 		spin_lock(&cp->stat_lock[ring]);
1866 		cp->net_stats[ring].tx_packets++;
1867 		cp->net_stats[ring].tx_bytes += skb->len;
1868 		spin_unlock(&cp->stat_lock[ring]);
1869 		dev_consume_skb_irq(skb);
1870 	}
1871 	cp->tx_old[ring] = entry;
1872 
1873 	/* this is wrong for multiple tx rings. the net device needs
1874 	 * multiple queues for this to do the right thing.  we wait
1875 	 * for 2*packets to be available when using tiny buffers
1876 	 */
1877 	if (netif_queue_stopped(dev) &&
1878 	    (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1879 		netif_wake_queue(dev);
1880 	spin_unlock(&cp->tx_lock[ring]);
1881 }
1882 
1883 static void cas_tx(struct net_device *dev, struct cas *cp,
1884 		   u32 status)
1885 {
1886         int limit, ring;
1887 #ifdef USE_TX_COMPWB
1888 	u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1889 #endif
1890 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1891 		     "tx interrupt, status: 0x%x, %llx\n",
1892 		     status, (unsigned long long)compwb);
1893 	/* process all the rings */
1894 	for (ring = 0; ring < N_TX_RINGS; ring++) {
1895 #ifdef USE_TX_COMPWB
1896 		/* use the completion writeback registers */
1897 		limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1898 			CAS_VAL(TX_COMPWB_LSB, compwb);
1899 		compwb = TX_COMPWB_NEXT(compwb);
1900 #else
1901 		limit = readl(cp->regs + REG_TX_COMPN(ring));
1902 #endif
1903 		if (cp->tx_old[ring] != limit)
1904 			cas_tx_ringN(cp, ring, limit);
1905 	}
1906 }
1907 
1908 
1909 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1910 			      int entry, const u64 *words,
1911 			      struct sk_buff **skbref)
1912 {
1913 	int dlen, hlen, len, i, alloclen;
1914 	int off, swivel = RX_SWIVEL_OFF_VAL;
1915 	struct cas_page *page;
1916 	struct sk_buff *skb;
1917 	void *crcaddr;
1918 	__sum16 csum;
1919 	char *p;
1920 
1921 	hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1922 	dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1923 	len  = hlen + dlen;
1924 
1925 	if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1926 		alloclen = len;
1927 	else
1928 		alloclen = max(hlen, RX_COPY_MIN);
1929 
1930 	skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1931 	if (skb == NULL)
1932 		return -1;
1933 
1934 	*skbref = skb;
1935 	skb_reserve(skb, swivel);
1936 
1937 	p = skb->data;
1938 	crcaddr = NULL;
1939 	if (hlen) { /* always copy header pages */
1940 		i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1941 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1942 		off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1943 			swivel;
1944 
1945 		i = hlen;
1946 		if (!dlen) /* attach FCS */
1947 			i += cp->crc_size;
1948 		dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1949 					i, DMA_FROM_DEVICE);
1950 		memcpy(p, page_address(page->buffer) + off, i);
1951 		dma_sync_single_for_device(&cp->pdev->dev,
1952 					   page->dma_addr + off, i,
1953 					   DMA_FROM_DEVICE);
1954 		RX_USED_ADD(page, 0x100);
1955 		p += hlen;
1956 		swivel = 0;
1957 	}
1958 
1959 
1960 	if (alloclen < (hlen + dlen)) {
1961 		skb_frag_t *frag = skb_shinfo(skb)->frags;
1962 
1963 		/* normal or jumbo packets. we use frags */
1964 		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
1965 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1966 		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
1967 
1968 		hlen = min(cp->page_size - off, dlen);
1969 		if (hlen < 0) {
1970 			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1971 				     "rx page overflow: %d\n", hlen);
1972 			dev_kfree_skb_irq(skb);
1973 			return -1;
1974 		}
1975 		i = hlen;
1976 		if (i == dlen)  /* attach FCS */
1977 			i += cp->crc_size;
1978 		dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1979 					i, DMA_FROM_DEVICE);
1980 
1981 		/* make sure we always copy a header */
1982 		swivel = 0;
1983 		if (p == (char *) skb->data) { /* not split */
1984 			memcpy(p, page_address(page->buffer) + off,
1985 			       RX_COPY_MIN);
1986 			dma_sync_single_for_device(&cp->pdev->dev,
1987 						   page->dma_addr + off, i,
1988 						   DMA_FROM_DEVICE);
1989 			off += RX_COPY_MIN;
1990 			swivel = RX_COPY_MIN;
1991 			RX_USED_ADD(page, cp->mtu_stride);
1992 		} else {
1993 			RX_USED_ADD(page, hlen);
1994 		}
1995 		skb_put(skb, alloclen);
1996 
1997 		skb_shinfo(skb)->nr_frags++;
1998 		skb->data_len += hlen - swivel;
1999 		skb->truesize += hlen - swivel;
2000 		skb->len      += hlen - swivel;
2001 
2002 		skb_frag_fill_page_desc(frag, page->buffer, off, hlen - swivel);
2003 		__skb_frag_ref(frag);
2004 
2005 		/* any more data? */
2006 		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2007 			hlen = dlen;
2008 			off = 0;
2009 
2010 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2011 			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2012 			dma_sync_single_for_cpu(&cp->pdev->dev,
2013 						page->dma_addr,
2014 						hlen + cp->crc_size,
2015 						DMA_FROM_DEVICE);
2016 			dma_sync_single_for_device(&cp->pdev->dev,
2017 						   page->dma_addr,
2018 						   hlen + cp->crc_size,
2019 						   DMA_FROM_DEVICE);
2020 
2021 			skb_shinfo(skb)->nr_frags++;
2022 			skb->data_len += hlen;
2023 			skb->len      += hlen;
2024 			frag++;
2025 
2026 			skb_frag_fill_page_desc(frag, page->buffer, 0, hlen);
2027 			__skb_frag_ref(frag);
2028 			RX_USED_ADD(page, hlen + cp->crc_size);
2029 		}
2030 
2031 		if (cp->crc_size)
2032 			crcaddr = page_address(page->buffer) + off + hlen;
2033 
2034 	} else {
2035 		/* copying packet */
2036 		if (!dlen)
2037 			goto end_copy_pkt;
2038 
2039 		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2040 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2041 		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2042 		hlen = min(cp->page_size - off, dlen);
2043 		if (hlen < 0) {
2044 			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2045 				     "rx page overflow: %d\n", hlen);
2046 			dev_kfree_skb_irq(skb);
2047 			return -1;
2048 		}
2049 		i = hlen;
2050 		if (i == dlen) /* attach FCS */
2051 			i += cp->crc_size;
2052 		dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
2053 					i, DMA_FROM_DEVICE);
2054 		memcpy(p, page_address(page->buffer) + off, i);
2055 		dma_sync_single_for_device(&cp->pdev->dev,
2056 					   page->dma_addr + off, i,
2057 					   DMA_FROM_DEVICE);
2058 		if (p == (char *) skb->data) /* not split */
2059 			RX_USED_ADD(page, cp->mtu_stride);
2060 		else
2061 			RX_USED_ADD(page, i);
2062 
2063 		/* any more data? */
2064 		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2065 			p += hlen;
2066 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2067 			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2068 			dma_sync_single_for_cpu(&cp->pdev->dev,
2069 						page->dma_addr,
2070 						dlen + cp->crc_size,
2071 						DMA_FROM_DEVICE);
2072 			memcpy(p, page_address(page->buffer), dlen + cp->crc_size);
2073 			dma_sync_single_for_device(&cp->pdev->dev,
2074 						   page->dma_addr,
2075 						   dlen + cp->crc_size,
2076 						   DMA_FROM_DEVICE);
2077 			RX_USED_ADD(page, dlen + cp->crc_size);
2078 		}
2079 end_copy_pkt:
2080 		if (cp->crc_size)
2081 			crcaddr = skb->data + alloclen;
2082 
2083 		skb_put(skb, alloclen);
2084 	}
2085 
2086 	csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2087 	if (cp->crc_size) {
2088 		/* checksum includes FCS. strip it out. */
2089 		csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2090 					      csum_unfold(csum)));
2091 	}
2092 	skb->protocol = eth_type_trans(skb, cp->dev);
2093 	if (skb->protocol == htons(ETH_P_IP)) {
2094 		skb->csum = csum_unfold(~csum);
2095 		skb->ip_summed = CHECKSUM_COMPLETE;
2096 	} else
2097 		skb_checksum_none_assert(skb);
2098 	return len;
2099 }
2100 
2101 
2102 /* we can handle up to 64 rx flows at a time. we do the same thing
2103  * as nonreassm except that we batch up the buffers.
2104  * NOTE: we currently just treat each flow as a bunch of packets that
2105  *       we pass up. a better way would be to coalesce the packets
2106  *       into a jumbo packet. to do that, we need to do the following:
2107  *       1) the first packet will have a clean split between header and
2108  *          data. save both.
2109  *       2) each time the next flow packet comes in, extend the
2110  *          data length and merge the checksums.
2111  *       3) on flow release, fix up the header.
2112  *       4) make sure the higher layer doesn't care.
2113  * because packets get coalesced, we shouldn't run into fragment count
2114  * issues.
2115  */
2116 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2117 				   struct sk_buff *skb)
2118 {
2119 	int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2120 	struct sk_buff_head *flow = &cp->rx_flows[flowid];
2121 
2122 	/* this is protected at a higher layer, so no need to
2123 	 * do any additional locking here. stick the buffer
2124 	 * at the end.
2125 	 */
2126 	__skb_queue_tail(flow, skb);
2127 	if (words[0] & RX_COMP1_RELEASE_FLOW) {
2128 		while ((skb = __skb_dequeue(flow))) {
2129 			cas_skb_release(skb);
2130 		}
2131 	}
2132 }
2133 
2134 /* put rx descriptor back on ring. if a buffer is in use by a higher
2135  * layer, this will need to put in a replacement.
2136  */
2137 static void cas_post_page(struct cas *cp, const int ring, const int index)
2138 {
2139 	cas_page_t *new;
2140 	int entry;
2141 
2142 	entry = cp->rx_old[ring];
2143 
2144 	new = cas_page_swap(cp, ring, index);
2145 	cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2146 	cp->init_rxds[ring][entry].index  =
2147 		cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2148 			    CAS_BASE(RX_INDEX_RING, ring));
2149 
2150 	entry = RX_DESC_ENTRY(ring, entry + 1);
2151 	cp->rx_old[ring] = entry;
2152 
2153 	if (entry % 4)
2154 		return;
2155 
2156 	if (ring == 0)
2157 		writel(entry, cp->regs + REG_RX_KICK);
2158 	else if ((N_RX_DESC_RINGS > 1) &&
2159 		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2160 		writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2161 }
2162 
2163 
2164 /* only when things are bad */
2165 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2166 {
2167 	unsigned int entry, last, count, released;
2168 	int cluster;
2169 	cas_page_t **page = cp->rx_pages[ring];
2170 
2171 	entry = cp->rx_old[ring];
2172 
2173 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2174 		     "rxd[%d] interrupt, done: %d\n", ring, entry);
2175 
2176 	cluster = -1;
2177 	count = entry & 0x3;
2178 	last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2179 	released = 0;
2180 	while (entry != last) {
2181 		/* make a new buffer if it's still in use */
2182 		if (page_count(page[entry]->buffer) > 1) {
2183 			cas_page_t *new = cas_page_dequeue(cp);
2184 			if (!new) {
2185 				/* let the timer know that we need to
2186 				 * do this again
2187 				 */
2188 				cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2189 				if (!timer_pending(&cp->link_timer))
2190 					mod_timer(&cp->link_timer, jiffies +
2191 						  CAS_LINK_FAST_TIMEOUT);
2192 				cp->rx_old[ring]  = entry;
2193 				cp->rx_last[ring] = num ? num - released : 0;
2194 				return -ENOMEM;
2195 			}
2196 			spin_lock(&cp->rx_inuse_lock);
2197 			list_add(&page[entry]->list, &cp->rx_inuse_list);
2198 			spin_unlock(&cp->rx_inuse_lock);
2199 			cp->init_rxds[ring][entry].buffer =
2200 				cpu_to_le64(new->dma_addr);
2201 			page[entry] = new;
2202 
2203 		}
2204 
2205 		if (++count == 4) {
2206 			cluster = entry;
2207 			count = 0;
2208 		}
2209 		released++;
2210 		entry = RX_DESC_ENTRY(ring, entry + 1);
2211 	}
2212 	cp->rx_old[ring] = entry;
2213 
2214 	if (cluster < 0)
2215 		return 0;
2216 
2217 	if (ring == 0)
2218 		writel(cluster, cp->regs + REG_RX_KICK);
2219 	else if ((N_RX_DESC_RINGS > 1) &&
2220 		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2221 		writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2222 	return 0;
2223 }
2224 
2225 
2226 /* process a completion ring. packets are set up in three basic ways:
2227  * small packets: should be copied header + data in single buffer.
2228  * large packets: header and data in a single buffer.
2229  * split packets: header in a separate buffer from data.
2230  *                data may be in multiple pages. data may be > 256
2231  *                bytes but in a single page.
2232  *
2233  * NOTE: RX page posting is done in this routine as well. while there's
2234  *       the capability of using multiple RX completion rings, it isn't
2235  *       really worthwhile due to the fact that the page posting will
2236  *       force serialization on the single descriptor ring.
2237  */
2238 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2239 {
2240 	struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2241 	int entry, drops;
2242 	int npackets = 0;
2243 
2244 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2245 		     "rx[%d] interrupt, done: %d/%d\n",
2246 		     ring,
2247 		     readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2248 
2249 	entry = cp->rx_new[ring];
2250 	drops = 0;
2251 	while (1) {
2252 		struct cas_rx_comp *rxc = rxcs + entry;
2253 		struct sk_buff *skb;
2254 		int type, len;
2255 		u64 words[4];
2256 		int i, dring;
2257 
2258 		words[0] = le64_to_cpu(rxc->word1);
2259 		words[1] = le64_to_cpu(rxc->word2);
2260 		words[2] = le64_to_cpu(rxc->word3);
2261 		words[3] = le64_to_cpu(rxc->word4);
2262 
2263 		/* don't touch if still owned by hw */
2264 		type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2265 		if (type == 0)
2266 			break;
2267 
2268 		/* hw hasn't cleared the zero bit yet */
2269 		if (words[3] & RX_COMP4_ZERO) {
2270 			break;
2271 		}
2272 
2273 		/* get info on the packet */
2274 		if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2275 			spin_lock(&cp->stat_lock[ring]);
2276 			cp->net_stats[ring].rx_errors++;
2277 			if (words[3] & RX_COMP4_LEN_MISMATCH)
2278 				cp->net_stats[ring].rx_length_errors++;
2279 			if (words[3] & RX_COMP4_BAD)
2280 				cp->net_stats[ring].rx_crc_errors++;
2281 			spin_unlock(&cp->stat_lock[ring]);
2282 
2283 			/* We'll just return it to Cassini. */
2284 		drop_it:
2285 			spin_lock(&cp->stat_lock[ring]);
2286 			++cp->net_stats[ring].rx_dropped;
2287 			spin_unlock(&cp->stat_lock[ring]);
2288 			goto next;
2289 		}
2290 
2291 		len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2292 		if (len < 0) {
2293 			++drops;
2294 			goto drop_it;
2295 		}
2296 
2297 		/* see if it's a flow re-assembly or not. the driver
2298 		 * itself handles release back up.
2299 		 */
2300 		if (RX_DONT_BATCH || (type == 0x2)) {
2301 			/* non-reassm: these always get released */
2302 			cas_skb_release(skb);
2303 		} else {
2304 			cas_rx_flow_pkt(cp, words, skb);
2305 		}
2306 
2307 		spin_lock(&cp->stat_lock[ring]);
2308 		cp->net_stats[ring].rx_packets++;
2309 		cp->net_stats[ring].rx_bytes += len;
2310 		spin_unlock(&cp->stat_lock[ring]);
2311 
2312 	next:
2313 		npackets++;
2314 
2315 		/* should it be released? */
2316 		if (words[0] & RX_COMP1_RELEASE_HDR) {
2317 			i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2318 			dring = CAS_VAL(RX_INDEX_RING, i);
2319 			i = CAS_VAL(RX_INDEX_NUM, i);
2320 			cas_post_page(cp, dring, i);
2321 		}
2322 
2323 		if (words[0] & RX_COMP1_RELEASE_DATA) {
2324 			i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2325 			dring = CAS_VAL(RX_INDEX_RING, i);
2326 			i = CAS_VAL(RX_INDEX_NUM, i);
2327 			cas_post_page(cp, dring, i);
2328 		}
2329 
2330 		if (words[0] & RX_COMP1_RELEASE_NEXT) {
2331 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2332 			dring = CAS_VAL(RX_INDEX_RING, i);
2333 			i = CAS_VAL(RX_INDEX_NUM, i);
2334 			cas_post_page(cp, dring, i);
2335 		}
2336 
2337 		/* skip to the next entry */
2338 		entry = RX_COMP_ENTRY(ring, entry + 1 +
2339 				      CAS_VAL(RX_COMP1_SKIP, words[0]));
2340 #ifdef USE_NAPI
2341 		if (budget && (npackets >= budget))
2342 			break;
2343 #endif
2344 	}
2345 	cp->rx_new[ring] = entry;
2346 
2347 	if (drops)
2348 		netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2349 	return npackets;
2350 }
2351 
2352 
2353 /* put completion entries back on the ring */
2354 static void cas_post_rxcs_ringN(struct net_device *dev,
2355 				struct cas *cp, int ring)
2356 {
2357 	struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2358 	int last, entry;
2359 
2360 	last = cp->rx_cur[ring];
2361 	entry = cp->rx_new[ring];
2362 	netif_printk(cp, intr, KERN_DEBUG, dev,
2363 		     "rxc[%d] interrupt, done: %d/%d\n",
2364 		     ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2365 
2366 	/* zero and re-mark descriptors */
2367 	while (last != entry) {
2368 		cas_rxc_init(rxc + last);
2369 		last = RX_COMP_ENTRY(ring, last + 1);
2370 	}
2371 	cp->rx_cur[ring] = last;
2372 
2373 	if (ring == 0)
2374 		writel(last, cp->regs + REG_RX_COMP_TAIL);
2375 	else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2376 		writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2377 }
2378 
2379 
2380 
2381 /* cassini can use all four PCI interrupts for the completion ring.
2382  * rings 3 and 4 are identical
2383  */
2384 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2385 static inline void cas_handle_irqN(struct net_device *dev,
2386 				   struct cas *cp, const u32 status,
2387 				   const int ring)
2388 {
2389 	if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2390 		cas_post_rxcs_ringN(dev, cp, ring);
2391 }
2392 
2393 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2394 {
2395 	struct net_device *dev = dev_id;
2396 	struct cas *cp = netdev_priv(dev);
2397 	unsigned long flags;
2398 	int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2399 	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2400 
2401 	/* check for shared irq */
2402 	if (status == 0)
2403 		return IRQ_NONE;
2404 
2405 	spin_lock_irqsave(&cp->lock, flags);
2406 	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2407 #ifdef USE_NAPI
2408 		cas_mask_intr(cp);
2409 		napi_schedule(&cp->napi);
2410 #else
2411 		cas_rx_ringN(cp, ring, 0);
2412 #endif
2413 		status &= ~INTR_RX_DONE_ALT;
2414 	}
2415 
2416 	if (status)
2417 		cas_handle_irqN(dev, cp, status, ring);
2418 	spin_unlock_irqrestore(&cp->lock, flags);
2419 	return IRQ_HANDLED;
2420 }
2421 #endif
2422 
2423 #ifdef USE_PCI_INTB
2424 /* everything but rx packets */
2425 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2426 {
2427 	if (status & INTR_RX_BUF_UNAVAIL_1) {
2428 		/* Frame arrived, no free RX buffers available.
2429 		 * NOTE: we can get this on a link transition. */
2430 		cas_post_rxds_ringN(cp, 1, 0);
2431 		spin_lock(&cp->stat_lock[1]);
2432 		cp->net_stats[1].rx_dropped++;
2433 		spin_unlock(&cp->stat_lock[1]);
2434 	}
2435 
2436 	if (status & INTR_RX_BUF_AE_1)
2437 		cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2438 				    RX_AE_FREEN_VAL(1));
2439 
2440 	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2441 		cas_post_rxcs_ringN(cp, 1);
2442 }
2443 
2444 /* ring 2 handles a few more events than 3 and 4 */
2445 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2446 {
2447 	struct net_device *dev = dev_id;
2448 	struct cas *cp = netdev_priv(dev);
2449 	unsigned long flags;
2450 	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2451 
2452 	/* check for shared interrupt */
2453 	if (status == 0)
2454 		return IRQ_NONE;
2455 
2456 	spin_lock_irqsave(&cp->lock, flags);
2457 	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2458 #ifdef USE_NAPI
2459 		cas_mask_intr(cp);
2460 		napi_schedule(&cp->napi);
2461 #else
2462 		cas_rx_ringN(cp, 1, 0);
2463 #endif
2464 		status &= ~INTR_RX_DONE_ALT;
2465 	}
2466 	if (status)
2467 		cas_handle_irq1(cp, status);
2468 	spin_unlock_irqrestore(&cp->lock, flags);
2469 	return IRQ_HANDLED;
2470 }
2471 #endif
2472 
2473 static inline void cas_handle_irq(struct net_device *dev,
2474 				  struct cas *cp, const u32 status)
2475 {
2476 	/* housekeeping interrupts */
2477 	if (status & INTR_ERROR_MASK)
2478 		cas_abnormal_irq(dev, cp, status);
2479 
2480 	if (status & INTR_RX_BUF_UNAVAIL) {
2481 		/* Frame arrived, no free RX buffers available.
2482 		 * NOTE: we can get this on a link transition.
2483 		 */
2484 		cas_post_rxds_ringN(cp, 0, 0);
2485 		spin_lock(&cp->stat_lock[0]);
2486 		cp->net_stats[0].rx_dropped++;
2487 		spin_unlock(&cp->stat_lock[0]);
2488 	} else if (status & INTR_RX_BUF_AE) {
2489 		cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2490 				    RX_AE_FREEN_VAL(0));
2491 	}
2492 
2493 	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2494 		cas_post_rxcs_ringN(dev, cp, 0);
2495 }
2496 
2497 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2498 {
2499 	struct net_device *dev = dev_id;
2500 	struct cas *cp = netdev_priv(dev);
2501 	unsigned long flags;
2502 	u32 status = readl(cp->regs + REG_INTR_STATUS);
2503 
2504 	if (status == 0)
2505 		return IRQ_NONE;
2506 
2507 	spin_lock_irqsave(&cp->lock, flags);
2508 	if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2509 		cas_tx(dev, cp, status);
2510 		status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2511 	}
2512 
2513 	if (status & INTR_RX_DONE) {
2514 #ifdef USE_NAPI
2515 		cas_mask_intr(cp);
2516 		napi_schedule(&cp->napi);
2517 #else
2518 		cas_rx_ringN(cp, 0, 0);
2519 #endif
2520 		status &= ~INTR_RX_DONE;
2521 	}
2522 
2523 	if (status)
2524 		cas_handle_irq(dev, cp, status);
2525 	spin_unlock_irqrestore(&cp->lock, flags);
2526 	return IRQ_HANDLED;
2527 }
2528 
2529 
2530 #ifdef USE_NAPI
2531 static int cas_poll(struct napi_struct *napi, int budget)
2532 {
2533 	struct cas *cp = container_of(napi, struct cas, napi);
2534 	struct net_device *dev = cp->dev;
2535 	int i, enable_intr, credits;
2536 	u32 status = readl(cp->regs + REG_INTR_STATUS);
2537 	unsigned long flags;
2538 
2539 	spin_lock_irqsave(&cp->lock, flags);
2540 	cas_tx(dev, cp, status);
2541 	spin_unlock_irqrestore(&cp->lock, flags);
2542 
2543 	/* NAPI rx packets. we spread the credits across all of the
2544 	 * rxc rings
2545 	 *
2546 	 * to make sure we're fair with the work we loop through each
2547 	 * ring N_RX_COMP_RING times with a request of
2548 	 * budget / N_RX_COMP_RINGS
2549 	 */
2550 	enable_intr = 1;
2551 	credits = 0;
2552 	for (i = 0; i < N_RX_COMP_RINGS; i++) {
2553 		int j;
2554 		for (j = 0; j < N_RX_COMP_RINGS; j++) {
2555 			credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2556 			if (credits >= budget) {
2557 				enable_intr = 0;
2558 				goto rx_comp;
2559 			}
2560 		}
2561 	}
2562 
2563 rx_comp:
2564 	/* final rx completion */
2565 	spin_lock_irqsave(&cp->lock, flags);
2566 	if (status)
2567 		cas_handle_irq(dev, cp, status);
2568 
2569 #ifdef USE_PCI_INTB
2570 	if (N_RX_COMP_RINGS > 1) {
2571 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2572 		if (status)
2573 			cas_handle_irq1(dev, cp, status);
2574 	}
2575 #endif
2576 
2577 #ifdef USE_PCI_INTC
2578 	if (N_RX_COMP_RINGS > 2) {
2579 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2580 		if (status)
2581 			cas_handle_irqN(dev, cp, status, 2);
2582 	}
2583 #endif
2584 
2585 #ifdef USE_PCI_INTD
2586 	if (N_RX_COMP_RINGS > 3) {
2587 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2588 		if (status)
2589 			cas_handle_irqN(dev, cp, status, 3);
2590 	}
2591 #endif
2592 	spin_unlock_irqrestore(&cp->lock, flags);
2593 	if (enable_intr) {
2594 		napi_complete(napi);
2595 		cas_unmask_intr(cp);
2596 	}
2597 	return credits;
2598 }
2599 #endif
2600 
2601 #ifdef CONFIG_NET_POLL_CONTROLLER
2602 static void cas_netpoll(struct net_device *dev)
2603 {
2604 	struct cas *cp = netdev_priv(dev);
2605 
2606 	cas_disable_irq(cp, 0);
2607 	cas_interrupt(cp->pdev->irq, dev);
2608 	cas_enable_irq(cp, 0);
2609 
2610 #ifdef USE_PCI_INTB
2611 	if (N_RX_COMP_RINGS > 1) {
2612 		/* cas_interrupt1(); */
2613 	}
2614 #endif
2615 #ifdef USE_PCI_INTC
2616 	if (N_RX_COMP_RINGS > 2) {
2617 		/* cas_interruptN(); */
2618 	}
2619 #endif
2620 #ifdef USE_PCI_INTD
2621 	if (N_RX_COMP_RINGS > 3) {
2622 		/* cas_interruptN(); */
2623 	}
2624 #endif
2625 }
2626 #endif
2627 
2628 static void cas_tx_timeout(struct net_device *dev, unsigned int txqueue)
2629 {
2630 	struct cas *cp = netdev_priv(dev);
2631 
2632 	netdev_err(dev, "transmit timed out, resetting\n");
2633 	if (!cp->hw_running) {
2634 		netdev_err(dev, "hrm.. hw not running!\n");
2635 		return;
2636 	}
2637 
2638 	netdev_err(dev, "MIF_STATE[%08x]\n",
2639 		   readl(cp->regs + REG_MIF_STATE_MACHINE));
2640 
2641 	netdev_err(dev, "MAC_STATE[%08x]\n",
2642 		   readl(cp->regs + REG_MAC_STATE_MACHINE));
2643 
2644 	netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2645 		   readl(cp->regs + REG_TX_CFG),
2646 		   readl(cp->regs + REG_MAC_TX_STATUS),
2647 		   readl(cp->regs + REG_MAC_TX_CFG),
2648 		   readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2649 		   readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2650 		   readl(cp->regs + REG_TX_FIFO_READ_PTR),
2651 		   readl(cp->regs + REG_TX_SM_1),
2652 		   readl(cp->regs + REG_TX_SM_2));
2653 
2654 	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2655 		   readl(cp->regs + REG_RX_CFG),
2656 		   readl(cp->regs + REG_MAC_RX_STATUS),
2657 		   readl(cp->regs + REG_MAC_RX_CFG));
2658 
2659 	netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2660 		   readl(cp->regs + REG_HP_STATE_MACHINE),
2661 		   readl(cp->regs + REG_HP_STATUS0),
2662 		   readl(cp->regs + REG_HP_STATUS1),
2663 		   readl(cp->regs + REG_HP_STATUS2));
2664 
2665 #if 1
2666 	atomic_inc(&cp->reset_task_pending);
2667 	atomic_inc(&cp->reset_task_pending_all);
2668 	schedule_work(&cp->reset_task);
2669 #else
2670 	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2671 	schedule_work(&cp->reset_task);
2672 #endif
2673 }
2674 
2675 static inline int cas_intme(int ring, int entry)
2676 {
2677 	/* Algorithm: IRQ every 1/2 of descriptors. */
2678 	if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2679 		return 1;
2680 	return 0;
2681 }
2682 
2683 
2684 static void cas_write_txd(struct cas *cp, int ring, int entry,
2685 			  dma_addr_t mapping, int len, u64 ctrl, int last)
2686 {
2687 	struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2688 
2689 	ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2690 	if (cas_intme(ring, entry))
2691 		ctrl |= TX_DESC_INTME;
2692 	if (last)
2693 		ctrl |= TX_DESC_EOF;
2694 	txd->control = cpu_to_le64(ctrl);
2695 	txd->buffer = cpu_to_le64(mapping);
2696 }
2697 
2698 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2699 				const int entry)
2700 {
2701 	return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2702 }
2703 
2704 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2705 				     const int entry, const int tentry)
2706 {
2707 	cp->tx_tiny_use[ring][tentry].nbufs++;
2708 	cp->tx_tiny_use[ring][entry].used = 1;
2709 	return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2710 }
2711 
2712 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2713 				    struct sk_buff *skb)
2714 {
2715 	struct net_device *dev = cp->dev;
2716 	int entry, nr_frags, frag, tabort, tentry;
2717 	dma_addr_t mapping;
2718 	unsigned long flags;
2719 	u64 ctrl;
2720 	u32 len;
2721 
2722 	spin_lock_irqsave(&cp->tx_lock[ring], flags);
2723 
2724 	/* This is a hard error, log it. */
2725 	if (TX_BUFFS_AVAIL(cp, ring) <=
2726 	    CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2727 		netif_stop_queue(dev);
2728 		spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2729 		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2730 		return 1;
2731 	}
2732 
2733 	ctrl = 0;
2734 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2735 		const u64 csum_start_off = skb_checksum_start_offset(skb);
2736 		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2737 
2738 		ctrl =  TX_DESC_CSUM_EN |
2739 			CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2740 			CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2741 	}
2742 
2743 	entry = cp->tx_new[ring];
2744 	cp->tx_skbs[ring][entry] = skb;
2745 
2746 	nr_frags = skb_shinfo(skb)->nr_frags;
2747 	len = skb_headlen(skb);
2748 	mapping = dma_map_page(&cp->pdev->dev, virt_to_page(skb->data),
2749 			       offset_in_page(skb->data), len, DMA_TO_DEVICE);
2750 
2751 	tentry = entry;
2752 	tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2753 	if (unlikely(tabort)) {
2754 		/* NOTE: len is always >  tabort */
2755 		cas_write_txd(cp, ring, entry, mapping, len - tabort,
2756 			      ctrl | TX_DESC_SOF, 0);
2757 		entry = TX_DESC_NEXT(ring, entry);
2758 
2759 		skb_copy_from_linear_data_offset(skb, len - tabort,
2760 			      tx_tiny_buf(cp, ring, entry), tabort);
2761 		mapping = tx_tiny_map(cp, ring, entry, tentry);
2762 		cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2763 			      (nr_frags == 0));
2764 	} else {
2765 		cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2766 			      TX_DESC_SOF, (nr_frags == 0));
2767 	}
2768 	entry = TX_DESC_NEXT(ring, entry);
2769 
2770 	for (frag = 0; frag < nr_frags; frag++) {
2771 		const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2772 
2773 		len = skb_frag_size(fragp);
2774 		mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2775 					   DMA_TO_DEVICE);
2776 
2777 		tabort = cas_calc_tabort(cp, skb_frag_off(fragp), len);
2778 		if (unlikely(tabort)) {
2779 			/* NOTE: len is always > tabort */
2780 			cas_write_txd(cp, ring, entry, mapping, len - tabort,
2781 				      ctrl, 0);
2782 			entry = TX_DESC_NEXT(ring, entry);
2783 			memcpy_from_page(tx_tiny_buf(cp, ring, entry),
2784 					 skb_frag_page(fragp),
2785 					 skb_frag_off(fragp) + len - tabort,
2786 					 tabort);
2787 			mapping = tx_tiny_map(cp, ring, entry, tentry);
2788 			len     = tabort;
2789 		}
2790 
2791 		cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2792 			      (frag + 1 == nr_frags));
2793 		entry = TX_DESC_NEXT(ring, entry);
2794 	}
2795 
2796 	cp->tx_new[ring] = entry;
2797 	if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2798 		netif_stop_queue(dev);
2799 
2800 	netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2801 		     "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2802 		     ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2803 	writel(entry, cp->regs + REG_TX_KICKN(ring));
2804 	spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2805 	return 0;
2806 }
2807 
2808 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2809 {
2810 	struct cas *cp = netdev_priv(dev);
2811 
2812 	/* this is only used as a load-balancing hint, so it doesn't
2813 	 * need to be SMP safe
2814 	 */
2815 	static int ring;
2816 
2817 	if (skb_padto(skb, cp->min_frame_size))
2818 		return NETDEV_TX_OK;
2819 
2820 	/* XXX: we need some higher-level QoS hooks to steer packets to
2821 	 *      individual queues.
2822 	 */
2823 	if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2824 		return NETDEV_TX_BUSY;
2825 	return NETDEV_TX_OK;
2826 }
2827 
2828 static void cas_init_tx_dma(struct cas *cp)
2829 {
2830 	u64 desc_dma = cp->block_dvma;
2831 	unsigned long off;
2832 	u32 val;
2833 	int i;
2834 
2835 	/* set up tx completion writeback registers. must be 8-byte aligned */
2836 #ifdef USE_TX_COMPWB
2837 	off = offsetof(struct cas_init_block, tx_compwb);
2838 	writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2839 	writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2840 #endif
2841 
2842 	/* enable completion writebacks, enable paced mode,
2843 	 * disable read pipe, and disable pre-interrupt compwbs
2844 	 */
2845 	val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2846 		TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2847 		TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2848 		TX_CFG_INTR_COMPWB_DIS;
2849 
2850 	/* write out tx ring info and tx desc bases */
2851 	for (i = 0; i < MAX_TX_RINGS; i++) {
2852 		off = (unsigned long) cp->init_txds[i] -
2853 			(unsigned long) cp->init_block;
2854 
2855 		val |= CAS_TX_RINGN_BASE(i);
2856 		writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2857 		writel((desc_dma + off) & 0xffffffff, cp->regs +
2858 		       REG_TX_DBN_LOW(i));
2859 		/* don't zero out the kick register here as the system
2860 		 * will wedge
2861 		 */
2862 	}
2863 	writel(val, cp->regs + REG_TX_CFG);
2864 
2865 	/* program max burst sizes. these numbers should be different
2866 	 * if doing QoS.
2867 	 */
2868 #ifdef USE_QOS
2869 	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2870 	writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2871 	writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2872 	writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2873 #else
2874 	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2875 	writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2876 	writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2877 	writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2878 #endif
2879 }
2880 
2881 /* Must be invoked under cp->lock. */
2882 static inline void cas_init_dma(struct cas *cp)
2883 {
2884 	cas_init_tx_dma(cp);
2885 	cas_init_rx_dma(cp);
2886 }
2887 
2888 static void cas_process_mc_list(struct cas *cp)
2889 {
2890 	u16 hash_table[16];
2891 	u32 crc;
2892 	struct netdev_hw_addr *ha;
2893 	int i = 1;
2894 
2895 	memset(hash_table, 0, sizeof(hash_table));
2896 	netdev_for_each_mc_addr(ha, cp->dev) {
2897 		if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2898 			/* use the alternate mac address registers for the
2899 			 * first 15 multicast addresses
2900 			 */
2901 			writel((ha->addr[4] << 8) | ha->addr[5],
2902 			       cp->regs + REG_MAC_ADDRN(i*3 + 0));
2903 			writel((ha->addr[2] << 8) | ha->addr[3],
2904 			       cp->regs + REG_MAC_ADDRN(i*3 + 1));
2905 			writel((ha->addr[0] << 8) | ha->addr[1],
2906 			       cp->regs + REG_MAC_ADDRN(i*3 + 2));
2907 			i++;
2908 		}
2909 		else {
2910 			/* use hw hash table for the next series of
2911 			 * multicast addresses
2912 			 */
2913 			crc = ether_crc_le(ETH_ALEN, ha->addr);
2914 			crc >>= 24;
2915 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2916 		}
2917 	}
2918 	for (i = 0; i < 16; i++)
2919 		writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2920 }
2921 
2922 /* Must be invoked under cp->lock. */
2923 static u32 cas_setup_multicast(struct cas *cp)
2924 {
2925 	u32 rxcfg = 0;
2926 	int i;
2927 
2928 	if (cp->dev->flags & IFF_PROMISC) {
2929 		rxcfg |= MAC_RX_CFG_PROMISC_EN;
2930 
2931 	} else if (cp->dev->flags & IFF_ALLMULTI) {
2932 	    	for (i=0; i < 16; i++)
2933 			writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2934 		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2935 
2936 	} else {
2937 		cas_process_mc_list(cp);
2938 		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2939 	}
2940 
2941 	return rxcfg;
2942 }
2943 
2944 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
2945 static void cas_clear_mac_err(struct cas *cp)
2946 {
2947 	writel(0, cp->regs + REG_MAC_COLL_NORMAL);
2948 	writel(0, cp->regs + REG_MAC_COLL_FIRST);
2949 	writel(0, cp->regs + REG_MAC_COLL_EXCESS);
2950 	writel(0, cp->regs + REG_MAC_COLL_LATE);
2951 	writel(0, cp->regs + REG_MAC_TIMER_DEFER);
2952 	writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
2953 	writel(0, cp->regs + REG_MAC_RECV_FRAME);
2954 	writel(0, cp->regs + REG_MAC_LEN_ERR);
2955 	writel(0, cp->regs + REG_MAC_ALIGN_ERR);
2956 	writel(0, cp->regs + REG_MAC_FCS_ERR);
2957 	writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
2958 }
2959 
2960 
2961 static void cas_mac_reset(struct cas *cp)
2962 {
2963 	int i;
2964 
2965 	/* do both TX and RX reset */
2966 	writel(0x1, cp->regs + REG_MAC_TX_RESET);
2967 	writel(0x1, cp->regs + REG_MAC_RX_RESET);
2968 
2969 	/* wait for TX */
2970 	i = STOP_TRIES;
2971 	while (i-- > 0) {
2972 		if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
2973 			break;
2974 		udelay(10);
2975 	}
2976 
2977 	/* wait for RX */
2978 	i = STOP_TRIES;
2979 	while (i-- > 0) {
2980 		if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
2981 			break;
2982 		udelay(10);
2983 	}
2984 
2985 	if (readl(cp->regs + REG_MAC_TX_RESET) |
2986 	    readl(cp->regs + REG_MAC_RX_RESET))
2987 		netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
2988 			   readl(cp->regs + REG_MAC_TX_RESET),
2989 			   readl(cp->regs + REG_MAC_RX_RESET),
2990 			   readl(cp->regs + REG_MAC_STATE_MACHINE));
2991 }
2992 
2993 
2994 /* Must be invoked under cp->lock. */
2995 static void cas_init_mac(struct cas *cp)
2996 {
2997 	const unsigned char *e = &cp->dev->dev_addr[0];
2998 	int i;
2999 	cas_mac_reset(cp);
3000 
3001 	/* setup core arbitration weight register */
3002 	writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3003 
3004 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3005 	/* set the infinite burst register for chips that don't have
3006 	 * pci issues.
3007 	 */
3008 	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3009 		writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3010 #endif
3011 
3012 	writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3013 
3014 	writel(0x00, cp->regs + REG_MAC_IPG0);
3015 	writel(0x08, cp->regs + REG_MAC_IPG1);
3016 	writel(0x04, cp->regs + REG_MAC_IPG2);
3017 
3018 	/* change later for 802.3z */
3019 	writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3020 
3021 	/* min frame + FCS */
3022 	writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3023 
3024 	/* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3025 	 * specify the maximum frame size to prevent RX tag errors on
3026 	 * oversized frames.
3027 	 */
3028 	writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3029 	       CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3030 			(CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3031 	       cp->regs + REG_MAC_FRAMESIZE_MAX);
3032 
3033 	/* NOTE: crc_size is used as a surrogate for half-duplex.
3034 	 * workaround saturn half-duplex issue by increasing preamble
3035 	 * size to 65 bytes.
3036 	 */
3037 	if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3038 		writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3039 	else
3040 		writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3041 	writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3042 	writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3043 	writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3044 
3045 	writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3046 
3047 	writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3048 	writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3049 	writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3050 	writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3051 	writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3052 
3053 	/* setup mac address in perfect filter array */
3054 	for (i = 0; i < 45; i++)
3055 		writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3056 
3057 	writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3058 	writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3059 	writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3060 
3061 	writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3062 	writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3063 	writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3064 
3065 	cp->mac_rx_cfg = cas_setup_multicast(cp);
3066 
3067 	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3068 	cas_clear_mac_err(cp);
3069 	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3070 
3071 	/* Setup MAC interrupts.  We want to get all of the interesting
3072 	 * counter expiration events, but we do not want to hear about
3073 	 * normal rx/tx as the DMA engine tells us that.
3074 	 */
3075 	writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3076 	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3077 
3078 	/* Don't enable even the PAUSE interrupts for now, we
3079 	 * make no use of those events other than to record them.
3080 	 */
3081 	writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3082 }
3083 
3084 /* Must be invoked under cp->lock. */
3085 static void cas_init_pause_thresholds(struct cas *cp)
3086 {
3087 	/* Calculate pause thresholds.  Setting the OFF threshold to the
3088 	 * full RX fifo size effectively disables PAUSE generation
3089 	 */
3090 	if (cp->rx_fifo_size <= (2 * 1024)) {
3091 		cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3092 	} else {
3093 		int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3094 		if (max_frame * 3 > cp->rx_fifo_size) {
3095 			cp->rx_pause_off = 7104;
3096 			cp->rx_pause_on  = 960;
3097 		} else {
3098 			int off = (cp->rx_fifo_size - (max_frame * 2));
3099 			int on = off - max_frame;
3100 			cp->rx_pause_off = off;
3101 			cp->rx_pause_on = on;
3102 		}
3103 	}
3104 }
3105 
3106 static int cas_vpd_match(const void __iomem *p, const char *str)
3107 {
3108 	int len = strlen(str) + 1;
3109 	int i;
3110 
3111 	for (i = 0; i < len; i++) {
3112 		if (readb(p + i) != str[i])
3113 			return 0;
3114 	}
3115 	return 1;
3116 }
3117 
3118 
3119 /* get the mac address by reading the vpd information in the rom.
3120  * also get the phy type and determine if there's an entropy generator.
3121  * NOTE: this is a bit convoluted for the following reasons:
3122  *  1) vpd info has order-dependent mac addresses for multinic cards
3123  *  2) the only way to determine the nic order is to use the slot
3124  *     number.
3125  *  3) fiber cards don't have bridges, so their slot numbers don't
3126  *     mean anything.
3127  *  4) we don't actually know we have a fiber card until after
3128  *     the mac addresses are parsed.
3129  */
3130 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3131 			    const int offset)
3132 {
3133 	void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3134 	void __iomem *base, *kstart;
3135 	int i, len;
3136 	int found = 0;
3137 #define VPD_FOUND_MAC        0x01
3138 #define VPD_FOUND_PHY        0x02
3139 
3140 	int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3141 	int mac_off  = 0;
3142 
3143 #if defined(CONFIG_SPARC)
3144 	const unsigned char *addr;
3145 #endif
3146 
3147 	/* give us access to the PROM */
3148 	writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3149 	       cp->regs + REG_BIM_LOCAL_DEV_EN);
3150 
3151 	/* check for an expansion rom */
3152 	if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3153 		goto use_random_mac_addr;
3154 
3155 	/* search for beginning of vpd */
3156 	base = NULL;
3157 	for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3158 		/* check for PCIR */
3159 		if ((readb(p + i + 0) == 0x50) &&
3160 		    (readb(p + i + 1) == 0x43) &&
3161 		    (readb(p + i + 2) == 0x49) &&
3162 		    (readb(p + i + 3) == 0x52)) {
3163 			base = p + (readb(p + i + 8) |
3164 				    (readb(p + i + 9) << 8));
3165 			break;
3166 		}
3167 	}
3168 
3169 	if (!base || (readb(base) != 0x82))
3170 		goto use_random_mac_addr;
3171 
3172 	i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3173 	while (i < EXPANSION_ROM_SIZE) {
3174 		if (readb(base + i) != 0x90) /* no vpd found */
3175 			goto use_random_mac_addr;
3176 
3177 		/* found a vpd field */
3178 		len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3179 
3180 		/* extract keywords */
3181 		kstart = base + i + 3;
3182 		p = kstart;
3183 		while ((p - kstart) < len) {
3184 			int klen = readb(p + 2);
3185 			int j;
3186 			char type;
3187 
3188 			p += 3;
3189 
3190 			/* look for the following things:
3191 			 * -- correct length == 29
3192 			 * 3 (type) + 2 (size) +
3193 			 * 18 (strlen("local-mac-address") + 1) +
3194 			 * 6 (mac addr)
3195 			 * -- VPD Instance 'I'
3196 			 * -- VPD Type Bytes 'B'
3197 			 * -- VPD data length == 6
3198 			 * -- property string == local-mac-address
3199 			 *
3200 			 * -- correct length == 24
3201 			 * 3 (type) + 2 (size) +
3202 			 * 12 (strlen("entropy-dev") + 1) +
3203 			 * 7 (strlen("vms110") + 1)
3204 			 * -- VPD Instance 'I'
3205 			 * -- VPD Type String 'B'
3206 			 * -- VPD data length == 7
3207 			 * -- property string == entropy-dev
3208 			 *
3209 			 * -- correct length == 18
3210 			 * 3 (type) + 2 (size) +
3211 			 * 9 (strlen("phy-type") + 1) +
3212 			 * 4 (strlen("pcs") + 1)
3213 			 * -- VPD Instance 'I'
3214 			 * -- VPD Type String 'S'
3215 			 * -- VPD data length == 4
3216 			 * -- property string == phy-type
3217 			 *
3218 			 * -- correct length == 23
3219 			 * 3 (type) + 2 (size) +
3220 			 * 14 (strlen("phy-interface") + 1) +
3221 			 * 4 (strlen("pcs") + 1)
3222 			 * -- VPD Instance 'I'
3223 			 * -- VPD Type String 'S'
3224 			 * -- VPD data length == 4
3225 			 * -- property string == phy-interface
3226 			 */
3227 			if (readb(p) != 'I')
3228 				goto next;
3229 
3230 			/* finally, check string and length */
3231 			type = readb(p + 3);
3232 			if (type == 'B') {
3233 				if ((klen == 29) && readb(p + 4) == 6 &&
3234 				    cas_vpd_match(p + 5,
3235 						  "local-mac-address")) {
3236 					if (mac_off++ > offset)
3237 						goto next;
3238 
3239 					/* set mac address */
3240 					for (j = 0; j < 6; j++)
3241 						dev_addr[j] =
3242 							readb(p + 23 + j);
3243 					goto found_mac;
3244 				}
3245 			}
3246 
3247 			if (type != 'S')
3248 				goto next;
3249 
3250 #ifdef USE_ENTROPY_DEV
3251 			if ((klen == 24) &&
3252 			    cas_vpd_match(p + 5, "entropy-dev") &&
3253 			    cas_vpd_match(p + 17, "vms110")) {
3254 				cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3255 				goto next;
3256 			}
3257 #endif
3258 
3259 			if (found & VPD_FOUND_PHY)
3260 				goto next;
3261 
3262 			if ((klen == 18) && readb(p + 4) == 4 &&
3263 			    cas_vpd_match(p + 5, "phy-type")) {
3264 				if (cas_vpd_match(p + 14, "pcs")) {
3265 					phy_type = CAS_PHY_SERDES;
3266 					goto found_phy;
3267 				}
3268 			}
3269 
3270 			if ((klen == 23) && readb(p + 4) == 4 &&
3271 			    cas_vpd_match(p + 5, "phy-interface")) {
3272 				if (cas_vpd_match(p + 19, "pcs")) {
3273 					phy_type = CAS_PHY_SERDES;
3274 					goto found_phy;
3275 				}
3276 			}
3277 found_mac:
3278 			found |= VPD_FOUND_MAC;
3279 			goto next;
3280 
3281 found_phy:
3282 			found |= VPD_FOUND_PHY;
3283 
3284 next:
3285 			p += klen;
3286 		}
3287 		i += len + 3;
3288 	}
3289 
3290 use_random_mac_addr:
3291 	if (found & VPD_FOUND_MAC)
3292 		goto done;
3293 
3294 #if defined(CONFIG_SPARC)
3295 	addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3296 	if (addr != NULL) {
3297 		memcpy(dev_addr, addr, ETH_ALEN);
3298 		goto done;
3299 	}
3300 #endif
3301 
3302 	/* Sun MAC prefix then 3 random bytes. */
3303 	pr_info("MAC address not found in ROM VPD\n");
3304 	dev_addr[0] = 0x08;
3305 	dev_addr[1] = 0x00;
3306 	dev_addr[2] = 0x20;
3307 	get_random_bytes(dev_addr + 3, 3);
3308 
3309 done:
3310 	writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3311 	return phy_type;
3312 }
3313 
3314 /* check pci invariants */
3315 static void cas_check_pci_invariants(struct cas *cp)
3316 {
3317 	struct pci_dev *pdev = cp->pdev;
3318 
3319 	cp->cas_flags = 0;
3320 	if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3321 	    (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3322 		if (pdev->revision >= CAS_ID_REVPLUS)
3323 			cp->cas_flags |= CAS_FLAG_REG_PLUS;
3324 		if (pdev->revision < CAS_ID_REVPLUS02u)
3325 			cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3326 
3327 		/* Original Cassini supports HW CSUM, but it's not
3328 		 * enabled by default as it can trigger TX hangs.
3329 		 */
3330 		if (pdev->revision < CAS_ID_REV2)
3331 			cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3332 	} else {
3333 		/* Only sun has original cassini chips.  */
3334 		cp->cas_flags |= CAS_FLAG_REG_PLUS;
3335 
3336 		/* We use a flag because the same phy might be externally
3337 		 * connected.
3338 		 */
3339 		if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3340 		    (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3341 			cp->cas_flags |= CAS_FLAG_SATURN;
3342 	}
3343 }
3344 
3345 
3346 static int cas_check_invariants(struct cas *cp)
3347 {
3348 	struct pci_dev *pdev = cp->pdev;
3349 	u8 addr[ETH_ALEN];
3350 	u32 cfg;
3351 	int i;
3352 
3353 	/* get page size for rx buffers. */
3354 	cp->page_order = 0;
3355 #ifdef USE_PAGE_ORDER
3356 	if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3357 		/* see if we can allocate larger pages */
3358 		struct page *page = alloc_pages(GFP_ATOMIC,
3359 						CAS_JUMBO_PAGE_SHIFT -
3360 						PAGE_SHIFT);
3361 		if (page) {
3362 			__free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3363 			cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3364 		} else {
3365 			printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3366 		}
3367 	}
3368 #endif
3369 	cp->page_size = (PAGE_SIZE << cp->page_order);
3370 
3371 	/* Fetch the FIFO configurations. */
3372 	cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3373 	cp->rx_fifo_size = RX_FIFO_SIZE;
3374 
3375 	/* finish phy determination. MDIO1 takes precedence over MDIO0 if
3376 	 * they're both connected.
3377 	 */
3378 	cp->phy_type = cas_get_vpd_info(cp, addr, PCI_SLOT(pdev->devfn));
3379 	eth_hw_addr_set(cp->dev, addr);
3380 	if (cp->phy_type & CAS_PHY_SERDES) {
3381 		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3382 		return 0; /* no more checking needed */
3383 	}
3384 
3385 	/* MII */
3386 	cfg = readl(cp->regs + REG_MIF_CFG);
3387 	if (cfg & MIF_CFG_MDIO_1) {
3388 		cp->phy_type = CAS_PHY_MII_MDIO1;
3389 	} else if (cfg & MIF_CFG_MDIO_0) {
3390 		cp->phy_type = CAS_PHY_MII_MDIO0;
3391 	}
3392 
3393 	cas_mif_poll(cp, 0);
3394 	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3395 
3396 	for (i = 0; i < 32; i++) {
3397 		u32 phy_id;
3398 		int j;
3399 
3400 		for (j = 0; j < 3; j++) {
3401 			cp->phy_addr = i;
3402 			phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3403 			phy_id |= cas_phy_read(cp, MII_PHYSID2);
3404 			if (phy_id && (phy_id != 0xFFFFFFFF)) {
3405 				cp->phy_id = phy_id;
3406 				goto done;
3407 			}
3408 		}
3409 	}
3410 	pr_err("MII phy did not respond [%08x]\n",
3411 	       readl(cp->regs + REG_MIF_STATE_MACHINE));
3412 	return -1;
3413 
3414 done:
3415 	/* see if we can do gigabit */
3416 	cfg = cas_phy_read(cp, MII_BMSR);
3417 	if ((cfg & CAS_BMSR_1000_EXTEND) &&
3418 	    cas_phy_read(cp, CAS_MII_1000_EXTEND))
3419 		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3420 	return 0;
3421 }
3422 
3423 /* Must be invoked under cp->lock. */
3424 static inline void cas_start_dma(struct cas *cp)
3425 {
3426 	int i;
3427 	u32 val;
3428 	int txfailed = 0;
3429 
3430 	/* enable dma */
3431 	val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3432 	writel(val, cp->regs + REG_TX_CFG);
3433 	val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3434 	writel(val, cp->regs + REG_RX_CFG);
3435 
3436 	/* enable the mac */
3437 	val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3438 	writel(val, cp->regs + REG_MAC_TX_CFG);
3439 	val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3440 	writel(val, cp->regs + REG_MAC_RX_CFG);
3441 
3442 	i = STOP_TRIES;
3443 	while (i-- > 0) {
3444 		val = readl(cp->regs + REG_MAC_TX_CFG);
3445 		if ((val & MAC_TX_CFG_EN))
3446 			break;
3447 		udelay(10);
3448 	}
3449 	if (i < 0) txfailed = 1;
3450 	i = STOP_TRIES;
3451 	while (i-- > 0) {
3452 		val = readl(cp->regs + REG_MAC_RX_CFG);
3453 		if ((val & MAC_RX_CFG_EN)) {
3454 			if (txfailed) {
3455 				netdev_err(cp->dev,
3456 					   "enabling mac failed [tx:%08x:%08x]\n",
3457 					   readl(cp->regs + REG_MIF_STATE_MACHINE),
3458 					   readl(cp->regs + REG_MAC_STATE_MACHINE));
3459 			}
3460 			goto enable_rx_done;
3461 		}
3462 		udelay(10);
3463 	}
3464 	netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3465 		   (txfailed ? "tx,rx" : "rx"),
3466 		   readl(cp->regs + REG_MIF_STATE_MACHINE),
3467 		   readl(cp->regs + REG_MAC_STATE_MACHINE));
3468 
3469 enable_rx_done:
3470 	cas_unmask_intr(cp); /* enable interrupts */
3471 	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3472 	writel(0, cp->regs + REG_RX_COMP_TAIL);
3473 
3474 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3475 		if (N_RX_DESC_RINGS > 1)
3476 			writel(RX_DESC_RINGN_SIZE(1) - 4,
3477 			       cp->regs + REG_PLUS_RX_KICK1);
3478 	}
3479 }
3480 
3481 /* Must be invoked under cp->lock. */
3482 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3483 				   int *pause)
3484 {
3485 	u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3486 	*fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3487 	*pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3488 	if (val & PCS_MII_LPA_ASYM_PAUSE)
3489 		*pause |= 0x10;
3490 	*spd = 1000;
3491 }
3492 
3493 /* Must be invoked under cp->lock. */
3494 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3495 				   int *pause)
3496 {
3497 	u32 val;
3498 
3499 	*fd = 0;
3500 	*spd = 10;
3501 	*pause = 0;
3502 
3503 	/* use GMII registers */
3504 	val = cas_phy_read(cp, MII_LPA);
3505 	if (val & CAS_LPA_PAUSE)
3506 		*pause = 0x01;
3507 
3508 	if (val & CAS_LPA_ASYM_PAUSE)
3509 		*pause |= 0x10;
3510 
3511 	if (val & LPA_DUPLEX)
3512 		*fd = 1;
3513 	if (val & LPA_100)
3514 		*spd = 100;
3515 
3516 	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3517 		val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3518 		if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3519 			*spd = 1000;
3520 		if (val & CAS_LPA_1000FULL)
3521 			*fd = 1;
3522 	}
3523 }
3524 
3525 /* A link-up condition has occurred, initialize and enable the
3526  * rest of the chip.
3527  *
3528  * Must be invoked under cp->lock.
3529  */
3530 static void cas_set_link_modes(struct cas *cp)
3531 {
3532 	u32 val;
3533 	int full_duplex, speed, pause;
3534 
3535 	full_duplex = 0;
3536 	speed = 10;
3537 	pause = 0;
3538 
3539 	if (CAS_PHY_MII(cp->phy_type)) {
3540 		cas_mif_poll(cp, 0);
3541 		val = cas_phy_read(cp, MII_BMCR);
3542 		if (val & BMCR_ANENABLE) {
3543 			cas_read_mii_link_mode(cp, &full_duplex, &speed,
3544 					       &pause);
3545 		} else {
3546 			if (val & BMCR_FULLDPLX)
3547 				full_duplex = 1;
3548 
3549 			if (val & BMCR_SPEED100)
3550 				speed = 100;
3551 			else if (val & CAS_BMCR_SPEED1000)
3552 				speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3553 					1000 : 100;
3554 		}
3555 		cas_mif_poll(cp, 1);
3556 
3557 	} else {
3558 		val = readl(cp->regs + REG_PCS_MII_CTRL);
3559 		cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3560 		if ((val & PCS_MII_AUTONEG_EN) == 0) {
3561 			if (val & PCS_MII_CTRL_DUPLEX)
3562 				full_duplex = 1;
3563 		}
3564 	}
3565 
3566 	netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3567 		   speed, full_duplex ? "full" : "half");
3568 
3569 	val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3570 	if (CAS_PHY_MII(cp->phy_type)) {
3571 		val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3572 		if (!full_duplex)
3573 			val |= MAC_XIF_DISABLE_ECHO;
3574 	}
3575 	if (full_duplex)
3576 		val |= MAC_XIF_FDPLX_LED;
3577 	if (speed == 1000)
3578 		val |= MAC_XIF_GMII_MODE;
3579 	writel(val, cp->regs + REG_MAC_XIF_CFG);
3580 
3581 	/* deal with carrier and collision detect. */
3582 	val = MAC_TX_CFG_IPG_EN;
3583 	if (full_duplex) {
3584 		val |= MAC_TX_CFG_IGNORE_CARRIER;
3585 		val |= MAC_TX_CFG_IGNORE_COLL;
3586 	} else {
3587 #ifndef USE_CSMA_CD_PROTO
3588 		val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3589 		val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3590 #endif
3591 	}
3592 	/* val now set up for REG_MAC_TX_CFG */
3593 
3594 	/* If gigabit and half-duplex, enable carrier extension
3595 	 * mode.  increase slot time to 512 bytes as well.
3596 	 * else, disable it and make sure slot time is 64 bytes.
3597 	 * also activate checksum bug workaround
3598 	 */
3599 	if ((speed == 1000) && !full_duplex) {
3600 		writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3601 		       cp->regs + REG_MAC_TX_CFG);
3602 
3603 		val = readl(cp->regs + REG_MAC_RX_CFG);
3604 		val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3605 		writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3606 		       cp->regs + REG_MAC_RX_CFG);
3607 
3608 		writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3609 
3610 		cp->crc_size = 4;
3611 		/* minimum size gigabit frame at half duplex */
3612 		cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3613 
3614 	} else {
3615 		writel(val, cp->regs + REG_MAC_TX_CFG);
3616 
3617 		/* checksum bug workaround. don't strip FCS when in
3618 		 * half-duplex mode
3619 		 */
3620 		val = readl(cp->regs + REG_MAC_RX_CFG);
3621 		if (full_duplex) {
3622 			val |= MAC_RX_CFG_STRIP_FCS;
3623 			cp->crc_size = 0;
3624 			cp->min_frame_size = CAS_MIN_MTU;
3625 		} else {
3626 			val &= ~MAC_RX_CFG_STRIP_FCS;
3627 			cp->crc_size = 4;
3628 			cp->min_frame_size = CAS_MIN_FRAME;
3629 		}
3630 		writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3631 		       cp->regs + REG_MAC_RX_CFG);
3632 		writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3633 	}
3634 
3635 	if (netif_msg_link(cp)) {
3636 		if (pause & 0x01) {
3637 			netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3638 				    cp->rx_fifo_size,
3639 				    cp->rx_pause_off,
3640 				    cp->rx_pause_on);
3641 		} else if (pause & 0x10) {
3642 			netdev_info(cp->dev, "TX pause enabled\n");
3643 		} else {
3644 			netdev_info(cp->dev, "Pause is disabled\n");
3645 		}
3646 	}
3647 
3648 	val = readl(cp->regs + REG_MAC_CTRL_CFG);
3649 	val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3650 	if (pause) { /* symmetric or asymmetric pause */
3651 		val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3652 		if (pause & 0x01) { /* symmetric pause */
3653 			val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3654 		}
3655 	}
3656 	writel(val, cp->regs + REG_MAC_CTRL_CFG);
3657 	cas_start_dma(cp);
3658 }
3659 
3660 /* Must be invoked under cp->lock. */
3661 static void cas_init_hw(struct cas *cp, int restart_link)
3662 {
3663 	if (restart_link)
3664 		cas_phy_init(cp);
3665 
3666 	cas_init_pause_thresholds(cp);
3667 	cas_init_mac(cp);
3668 	cas_init_dma(cp);
3669 
3670 	if (restart_link) {
3671 		/* Default aneg parameters */
3672 		cp->timer_ticks = 0;
3673 		cas_begin_auto_negotiation(cp, NULL);
3674 	} else if (cp->lstate == link_up) {
3675 		cas_set_link_modes(cp);
3676 		netif_carrier_on(cp->dev);
3677 	}
3678 }
3679 
3680 /* Must be invoked under cp->lock. on earlier cassini boards,
3681  * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3682  * let it settle out, and then restore pci state.
3683  */
3684 static void cas_hard_reset(struct cas *cp)
3685 {
3686 	writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3687 	udelay(20);
3688 	pci_restore_state(cp->pdev);
3689 }
3690 
3691 
3692 static void cas_global_reset(struct cas *cp, int blkflag)
3693 {
3694 	int limit;
3695 
3696 	/* issue a global reset. don't use RSTOUT. */
3697 	if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3698 		/* For PCS, when the blkflag is set, we should set the
3699 		 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3700 		 * the last autonegotiation from being cleared.  We'll
3701 		 * need some special handling if the chip is set into a
3702 		 * loopback mode.
3703 		 */
3704 		writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3705 		       cp->regs + REG_SW_RESET);
3706 	} else {
3707 		writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3708 	}
3709 
3710 	/* need to wait at least 3ms before polling register */
3711 	mdelay(3);
3712 
3713 	limit = STOP_TRIES;
3714 	while (limit-- > 0) {
3715 		u32 val = readl(cp->regs + REG_SW_RESET);
3716 		if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3717 			goto done;
3718 		udelay(10);
3719 	}
3720 	netdev_err(cp->dev, "sw reset failed\n");
3721 
3722 done:
3723 	/* enable various BIM interrupts */
3724 	writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3725 	       BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3726 
3727 	/* clear out pci error status mask for handled errors.
3728 	 * we don't deal with DMA counter overflows as they happen
3729 	 * all the time.
3730 	 */
3731 	writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3732 			       PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3733 			       PCI_ERR_BIM_DMA_READ), cp->regs +
3734 	       REG_PCI_ERR_STATUS_MASK);
3735 
3736 	/* set up for MII by default to address mac rx reset timeout
3737 	 * issue
3738 	 */
3739 	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3740 }
3741 
3742 static void cas_reset(struct cas *cp, int blkflag)
3743 {
3744 	u32 val;
3745 
3746 	cas_mask_intr(cp);
3747 	cas_global_reset(cp, blkflag);
3748 	cas_mac_reset(cp);
3749 	cas_entropy_reset(cp);
3750 
3751 	/* disable dma engines. */
3752 	val = readl(cp->regs + REG_TX_CFG);
3753 	val &= ~TX_CFG_DMA_EN;
3754 	writel(val, cp->regs + REG_TX_CFG);
3755 
3756 	val = readl(cp->regs + REG_RX_CFG);
3757 	val &= ~RX_CFG_DMA_EN;
3758 	writel(val, cp->regs + REG_RX_CFG);
3759 
3760 	/* program header parser */
3761 	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3762 	    (&CAS_HP_ALT_FIRMWARE[0] == &cas_prog_null[0])) {
3763 		cas_load_firmware(cp, CAS_HP_FIRMWARE);
3764 	} else {
3765 		cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3766 	}
3767 
3768 	/* clear out error registers */
3769 	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3770 	cas_clear_mac_err(cp);
3771 	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3772 }
3773 
3774 /* Shut down the chip, must be called with pm_mutex held.  */
3775 static void cas_shutdown(struct cas *cp)
3776 {
3777 	unsigned long flags;
3778 
3779 	/* Make us not-running to avoid timers respawning */
3780 	cp->hw_running = 0;
3781 
3782 	del_timer_sync(&cp->link_timer);
3783 
3784 	/* Stop the reset task */
3785 #if 0
3786 	while (atomic_read(&cp->reset_task_pending_mtu) ||
3787 	       atomic_read(&cp->reset_task_pending_spare) ||
3788 	       atomic_read(&cp->reset_task_pending_all))
3789 		schedule();
3790 
3791 #else
3792 	while (atomic_read(&cp->reset_task_pending))
3793 		schedule();
3794 #endif
3795 	/* Actually stop the chip */
3796 	cas_lock_all_save(cp, flags);
3797 	cas_reset(cp, 0);
3798 	if (cp->cas_flags & CAS_FLAG_SATURN)
3799 		cas_phy_powerdown(cp);
3800 	cas_unlock_all_restore(cp, flags);
3801 }
3802 
3803 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3804 {
3805 	struct cas *cp = netdev_priv(dev);
3806 
3807 	WRITE_ONCE(dev->mtu, new_mtu);
3808 	if (!netif_running(dev) || !netif_device_present(dev))
3809 		return 0;
3810 
3811 	/* let the reset task handle it */
3812 #if 1
3813 	atomic_inc(&cp->reset_task_pending);
3814 	if ((cp->phy_type & CAS_PHY_SERDES)) {
3815 		atomic_inc(&cp->reset_task_pending_all);
3816 	} else {
3817 		atomic_inc(&cp->reset_task_pending_mtu);
3818 	}
3819 	schedule_work(&cp->reset_task);
3820 #else
3821 	atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3822 		   CAS_RESET_ALL : CAS_RESET_MTU);
3823 	pr_err("reset called in cas_change_mtu\n");
3824 	schedule_work(&cp->reset_task);
3825 #endif
3826 
3827 	flush_work(&cp->reset_task);
3828 	return 0;
3829 }
3830 
3831 static void cas_clean_txd(struct cas *cp, int ring)
3832 {
3833 	struct cas_tx_desc *txd = cp->init_txds[ring];
3834 	struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3835 	u64 daddr, dlen;
3836 	int i, size;
3837 
3838 	size = TX_DESC_RINGN_SIZE(ring);
3839 	for (i = 0; i < size; i++) {
3840 		int frag;
3841 
3842 		if (skbs[i] == NULL)
3843 			continue;
3844 
3845 		skb = skbs[i];
3846 		skbs[i] = NULL;
3847 
3848 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3849 			int ent = i & (size - 1);
3850 
3851 			/* first buffer is never a tiny buffer and so
3852 			 * needs to be unmapped.
3853 			 */
3854 			daddr = le64_to_cpu(txd[ent].buffer);
3855 			dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3856 					 le64_to_cpu(txd[ent].control));
3857 			dma_unmap_page(&cp->pdev->dev, daddr, dlen,
3858 				       DMA_TO_DEVICE);
3859 
3860 			if (frag != skb_shinfo(skb)->nr_frags) {
3861 				i++;
3862 
3863 				/* next buffer might by a tiny buffer.
3864 				 * skip past it.
3865 				 */
3866 				ent = i & (size - 1);
3867 				if (cp->tx_tiny_use[ring][ent].used)
3868 					i++;
3869 			}
3870 		}
3871 		dev_kfree_skb_any(skb);
3872 	}
3873 
3874 	/* zero out tiny buf usage */
3875 	memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3876 }
3877 
3878 /* freed on close */
3879 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3880 {
3881 	cas_page_t **page = cp->rx_pages[ring];
3882 	int i, size;
3883 
3884 	size = RX_DESC_RINGN_SIZE(ring);
3885 	for (i = 0; i < size; i++) {
3886 		if (page[i]) {
3887 			cas_page_free(cp, page[i]);
3888 			page[i] = NULL;
3889 		}
3890 	}
3891 }
3892 
3893 static void cas_free_rxds(struct cas *cp)
3894 {
3895 	int i;
3896 
3897 	for (i = 0; i < N_RX_DESC_RINGS; i++)
3898 		cas_free_rx_desc(cp, i);
3899 }
3900 
3901 /* Must be invoked under cp->lock. */
3902 static void cas_clean_rings(struct cas *cp)
3903 {
3904 	int i;
3905 
3906 	/* need to clean all tx rings */
3907 	memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3908 	memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3909 	for (i = 0; i < N_TX_RINGS; i++)
3910 		cas_clean_txd(cp, i);
3911 
3912 	/* zero out init block */
3913 	memset(cp->init_block, 0, sizeof(struct cas_init_block));
3914 	cas_clean_rxds(cp);
3915 	cas_clean_rxcs(cp);
3916 }
3917 
3918 /* allocated on open */
3919 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3920 {
3921 	cas_page_t **page = cp->rx_pages[ring];
3922 	int size, i = 0;
3923 
3924 	size = RX_DESC_RINGN_SIZE(ring);
3925 	for (i = 0; i < size; i++) {
3926 		if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3927 			return -1;
3928 	}
3929 	return 0;
3930 }
3931 
3932 static int cas_alloc_rxds(struct cas *cp)
3933 {
3934 	int i;
3935 
3936 	for (i = 0; i < N_RX_DESC_RINGS; i++) {
3937 		if (cas_alloc_rx_desc(cp, i) < 0) {
3938 			cas_free_rxds(cp);
3939 			return -1;
3940 		}
3941 	}
3942 	return 0;
3943 }
3944 
3945 static void cas_reset_task(struct work_struct *work)
3946 {
3947 	struct cas *cp = container_of(work, struct cas, reset_task);
3948 #if 0
3949 	int pending = atomic_read(&cp->reset_task_pending);
3950 #else
3951 	int pending_all = atomic_read(&cp->reset_task_pending_all);
3952 	int pending_spare = atomic_read(&cp->reset_task_pending_spare);
3953 	int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
3954 
3955 	if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
3956 		/* We can have more tasks scheduled than actually
3957 		 * needed.
3958 		 */
3959 		atomic_dec(&cp->reset_task_pending);
3960 		return;
3961 	}
3962 #endif
3963 	/* The link went down, we reset the ring, but keep
3964 	 * DMA stopped. Use this function for reset
3965 	 * on error as well.
3966 	 */
3967 	if (cp->hw_running) {
3968 		unsigned long flags;
3969 
3970 		/* Make sure we don't get interrupts or tx packets */
3971 		netif_device_detach(cp->dev);
3972 		cas_lock_all_save(cp, flags);
3973 
3974 		if (cp->opened) {
3975 			/* We call cas_spare_recover when we call cas_open.
3976 			 * but we do not initialize the lists cas_spare_recover
3977 			 * uses until cas_open is called.
3978 			 */
3979 			cas_spare_recover(cp, GFP_ATOMIC);
3980 		}
3981 #if 1
3982 		/* test => only pending_spare set */
3983 		if (!pending_all && !pending_mtu)
3984 			goto done;
3985 #else
3986 		if (pending == CAS_RESET_SPARE)
3987 			goto done;
3988 #endif
3989 		/* when pending == CAS_RESET_ALL, the following
3990 		 * call to cas_init_hw will restart auto negotiation.
3991 		 * Setting the second argument of cas_reset to
3992 		 * !(pending == CAS_RESET_ALL) will set this argument
3993 		 * to 1 (avoiding reinitializing the PHY for the normal
3994 		 * PCS case) when auto negotiation is not restarted.
3995 		 */
3996 #if 1
3997 		cas_reset(cp, !(pending_all > 0));
3998 		if (cp->opened)
3999 			cas_clean_rings(cp);
4000 		cas_init_hw(cp, (pending_all > 0));
4001 #else
4002 		cas_reset(cp, !(pending == CAS_RESET_ALL));
4003 		if (cp->opened)
4004 			cas_clean_rings(cp);
4005 		cas_init_hw(cp, pending == CAS_RESET_ALL);
4006 #endif
4007 
4008 done:
4009 		cas_unlock_all_restore(cp, flags);
4010 		netif_device_attach(cp->dev);
4011 	}
4012 #if 1
4013 	atomic_sub(pending_all, &cp->reset_task_pending_all);
4014 	atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4015 	atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4016 	atomic_dec(&cp->reset_task_pending);
4017 #else
4018 	atomic_set(&cp->reset_task_pending, 0);
4019 #endif
4020 }
4021 
4022 static void cas_link_timer(struct timer_list *t)
4023 {
4024 	struct cas *cp = from_timer(cp, t, link_timer);
4025 	int mask, pending = 0, reset = 0;
4026 	unsigned long flags;
4027 
4028 	if (link_transition_timeout != 0 &&
4029 	    cp->link_transition_jiffies_valid &&
4030 	    time_is_before_jiffies(cp->link_transition_jiffies +
4031 	      link_transition_timeout)) {
4032 		/* One-second counter so link-down workaround doesn't
4033 		 * cause resets to occur so fast as to fool the switch
4034 		 * into thinking the link is down.
4035 		 */
4036 		cp->link_transition_jiffies_valid = 0;
4037 	}
4038 
4039 	if (!cp->hw_running)
4040 		return;
4041 
4042 	spin_lock_irqsave(&cp->lock, flags);
4043 	cas_lock_tx(cp);
4044 	cas_entropy_gather(cp);
4045 
4046 	/* If the link task is still pending, we just
4047 	 * reschedule the link timer
4048 	 */
4049 #if 1
4050 	if (atomic_read(&cp->reset_task_pending_all) ||
4051 	    atomic_read(&cp->reset_task_pending_spare) ||
4052 	    atomic_read(&cp->reset_task_pending_mtu))
4053 		goto done;
4054 #else
4055 	if (atomic_read(&cp->reset_task_pending))
4056 		goto done;
4057 #endif
4058 
4059 	/* check for rx cleaning */
4060 	if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4061 		int i, rmask;
4062 
4063 		for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4064 			rmask = CAS_FLAG_RXD_POST(i);
4065 			if ((mask & rmask) == 0)
4066 				continue;
4067 
4068 			/* post_rxds will do a mod_timer */
4069 			if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4070 				pending = 1;
4071 				continue;
4072 			}
4073 			cp->cas_flags &= ~rmask;
4074 		}
4075 	}
4076 
4077 	if (CAS_PHY_MII(cp->phy_type)) {
4078 		u16 bmsr;
4079 		cas_mif_poll(cp, 0);
4080 		bmsr = cas_phy_read(cp, MII_BMSR);
4081 		/* WTZ: Solaris driver reads this twice, but that
4082 		 * may be due to the PCS case and the use of a
4083 		 * common implementation. Read it twice here to be
4084 		 * safe.
4085 		 */
4086 		bmsr = cas_phy_read(cp, MII_BMSR);
4087 		cas_mif_poll(cp, 1);
4088 		readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4089 		reset = cas_mii_link_check(cp, bmsr);
4090 	} else {
4091 		reset = cas_pcs_link_check(cp);
4092 	}
4093 
4094 	if (reset)
4095 		goto done;
4096 
4097 	/* check for tx state machine confusion */
4098 	if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4099 		u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4100 		u32 wptr, rptr;
4101 		int tlm  = CAS_VAL(MAC_SM_TLM, val);
4102 
4103 		if (((tlm == 0x5) || (tlm == 0x3)) &&
4104 		    (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4105 			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4106 				     "tx err: MAC_STATE[%08x]\n", val);
4107 			reset = 1;
4108 			goto done;
4109 		}
4110 
4111 		val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4112 		wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4113 		rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4114 		if ((val == 0) && (wptr != rptr)) {
4115 			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4116 				     "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4117 				     val, wptr, rptr);
4118 			reset = 1;
4119 		}
4120 
4121 		if (reset)
4122 			cas_hard_reset(cp);
4123 	}
4124 
4125 done:
4126 	if (reset) {
4127 #if 1
4128 		atomic_inc(&cp->reset_task_pending);
4129 		atomic_inc(&cp->reset_task_pending_all);
4130 		schedule_work(&cp->reset_task);
4131 #else
4132 		atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4133 		pr_err("reset called in cas_link_timer\n");
4134 		schedule_work(&cp->reset_task);
4135 #endif
4136 	}
4137 
4138 	if (!pending)
4139 		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4140 	cas_unlock_tx(cp);
4141 	spin_unlock_irqrestore(&cp->lock, flags);
4142 }
4143 
4144 /* tiny buffers are used to avoid target abort issues with
4145  * older cassini's
4146  */
4147 static void cas_tx_tiny_free(struct cas *cp)
4148 {
4149 	struct pci_dev *pdev = cp->pdev;
4150 	int i;
4151 
4152 	for (i = 0; i < N_TX_RINGS; i++) {
4153 		if (!cp->tx_tiny_bufs[i])
4154 			continue;
4155 
4156 		dma_free_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
4157 				  cp->tx_tiny_bufs[i], cp->tx_tiny_dvma[i]);
4158 		cp->tx_tiny_bufs[i] = NULL;
4159 	}
4160 }
4161 
4162 static int cas_tx_tiny_alloc(struct cas *cp)
4163 {
4164 	struct pci_dev *pdev = cp->pdev;
4165 	int i;
4166 
4167 	for (i = 0; i < N_TX_RINGS; i++) {
4168 		cp->tx_tiny_bufs[i] =
4169 			dma_alloc_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
4170 					   &cp->tx_tiny_dvma[i], GFP_KERNEL);
4171 		if (!cp->tx_tiny_bufs[i]) {
4172 			cas_tx_tiny_free(cp);
4173 			return -1;
4174 		}
4175 	}
4176 	return 0;
4177 }
4178 
4179 
4180 static int cas_open(struct net_device *dev)
4181 {
4182 	struct cas *cp = netdev_priv(dev);
4183 	int hw_was_up, err;
4184 	unsigned long flags;
4185 
4186 	mutex_lock(&cp->pm_mutex);
4187 
4188 	hw_was_up = cp->hw_running;
4189 
4190 	/* The power-management mutex protects the hw_running
4191 	 * etc. state so it is safe to do this bit without cp->lock
4192 	 */
4193 	if (!cp->hw_running) {
4194 		/* Reset the chip */
4195 		cas_lock_all_save(cp, flags);
4196 		/* We set the second arg to cas_reset to zero
4197 		 * because cas_init_hw below will have its second
4198 		 * argument set to non-zero, which will force
4199 		 * autonegotiation to start.
4200 		 */
4201 		cas_reset(cp, 0);
4202 		cp->hw_running = 1;
4203 		cas_unlock_all_restore(cp, flags);
4204 	}
4205 
4206 	err = -ENOMEM;
4207 	if (cas_tx_tiny_alloc(cp) < 0)
4208 		goto err_unlock;
4209 
4210 	/* alloc rx descriptors */
4211 	if (cas_alloc_rxds(cp) < 0)
4212 		goto err_tx_tiny;
4213 
4214 	/* allocate spares */
4215 	cas_spare_init(cp);
4216 	cas_spare_recover(cp, GFP_KERNEL);
4217 
4218 	/* We can now request the interrupt as we know it's masked
4219 	 * on the controller. cassini+ has up to 4 interrupts
4220 	 * that can be used, but you need to do explicit pci interrupt
4221 	 * mapping to expose them
4222 	 */
4223 	if (request_irq(cp->pdev->irq, cas_interrupt,
4224 			IRQF_SHARED, dev->name, (void *) dev)) {
4225 		netdev_err(cp->dev, "failed to request irq !\n");
4226 		err = -EAGAIN;
4227 		goto err_spare;
4228 	}
4229 
4230 #ifdef USE_NAPI
4231 	napi_enable(&cp->napi);
4232 #endif
4233 	/* init hw */
4234 	cas_lock_all_save(cp, flags);
4235 	cas_clean_rings(cp);
4236 	cas_init_hw(cp, !hw_was_up);
4237 	cp->opened = 1;
4238 	cas_unlock_all_restore(cp, flags);
4239 
4240 	netif_start_queue(dev);
4241 	mutex_unlock(&cp->pm_mutex);
4242 	return 0;
4243 
4244 err_spare:
4245 	cas_spare_free(cp);
4246 	cas_free_rxds(cp);
4247 err_tx_tiny:
4248 	cas_tx_tiny_free(cp);
4249 err_unlock:
4250 	mutex_unlock(&cp->pm_mutex);
4251 	return err;
4252 }
4253 
4254 static int cas_close(struct net_device *dev)
4255 {
4256 	unsigned long flags;
4257 	struct cas *cp = netdev_priv(dev);
4258 
4259 #ifdef USE_NAPI
4260 	napi_disable(&cp->napi);
4261 #endif
4262 	/* Make sure we don't get distracted by suspend/resume */
4263 	mutex_lock(&cp->pm_mutex);
4264 
4265 	netif_stop_queue(dev);
4266 
4267 	/* Stop traffic, mark us closed */
4268 	cas_lock_all_save(cp, flags);
4269 	cp->opened = 0;
4270 	cas_reset(cp, 0);
4271 	cas_phy_init(cp);
4272 	cas_begin_auto_negotiation(cp, NULL);
4273 	cas_clean_rings(cp);
4274 	cas_unlock_all_restore(cp, flags);
4275 
4276 	free_irq(cp->pdev->irq, (void *) dev);
4277 	cas_spare_free(cp);
4278 	cas_free_rxds(cp);
4279 	cas_tx_tiny_free(cp);
4280 	mutex_unlock(&cp->pm_mutex);
4281 	return 0;
4282 }
4283 
4284 static struct {
4285 	const char name[ETH_GSTRING_LEN];
4286 } ethtool_cassini_statnames[] = {
4287 	{"collisions"},
4288 	{"rx_bytes"},
4289 	{"rx_crc_errors"},
4290 	{"rx_dropped"},
4291 	{"rx_errors"},
4292 	{"rx_fifo_errors"},
4293 	{"rx_frame_errors"},
4294 	{"rx_length_errors"},
4295 	{"rx_over_errors"},
4296 	{"rx_packets"},
4297 	{"tx_aborted_errors"},
4298 	{"tx_bytes"},
4299 	{"tx_dropped"},
4300 	{"tx_errors"},
4301 	{"tx_fifo_errors"},
4302 	{"tx_packets"}
4303 };
4304 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4305 
4306 static struct {
4307 	const int offsets;	/* neg. values for 2nd arg to cas_read_phy */
4308 } ethtool_register_table[] = {
4309 	{-MII_BMSR},
4310 	{-MII_BMCR},
4311 	{REG_CAWR},
4312 	{REG_INF_BURST},
4313 	{REG_BIM_CFG},
4314 	{REG_RX_CFG},
4315 	{REG_HP_CFG},
4316 	{REG_MAC_TX_CFG},
4317 	{REG_MAC_RX_CFG},
4318 	{REG_MAC_CTRL_CFG},
4319 	{REG_MAC_XIF_CFG},
4320 	{REG_MIF_CFG},
4321 	{REG_PCS_CFG},
4322 	{REG_SATURN_PCFG},
4323 	{REG_PCS_MII_STATUS},
4324 	{REG_PCS_STATE_MACHINE},
4325 	{REG_MAC_COLL_EXCESS},
4326 	{REG_MAC_COLL_LATE}
4327 };
4328 #define CAS_REG_LEN 	ARRAY_SIZE(ethtool_register_table)
4329 #define CAS_MAX_REGS 	(sizeof (u32)*CAS_REG_LEN)
4330 
4331 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4332 {
4333 	u8 *p;
4334 	int i;
4335 	unsigned long flags;
4336 
4337 	spin_lock_irqsave(&cp->lock, flags);
4338 	for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4339 		u16 hval;
4340 		u32 val;
4341 		if (ethtool_register_table[i].offsets < 0) {
4342 			hval = cas_phy_read(cp,
4343 				    -ethtool_register_table[i].offsets);
4344 			val = hval;
4345 		} else {
4346 			val= readl(cp->regs+ethtool_register_table[i].offsets);
4347 		}
4348 		memcpy(p, (u8 *)&val, sizeof(u32));
4349 	}
4350 	spin_unlock_irqrestore(&cp->lock, flags);
4351 }
4352 
4353 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4354 {
4355 	struct cas *cp = netdev_priv(dev);
4356 	struct net_device_stats *stats = cp->net_stats;
4357 	unsigned long flags;
4358 	int i;
4359 	unsigned long tmp;
4360 
4361 	/* we collate all of the stats into net_stats[N_TX_RING] */
4362 	if (!cp->hw_running)
4363 		return stats + N_TX_RINGS;
4364 
4365 	/* collect outstanding stats */
4366 	/* WTZ: the Cassini spec gives these as 16 bit counters but
4367 	 * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4368 	 * in case the chip somehow puts any garbage in the other bits.
4369 	 * Also, counter usage didn't seem to mach what Adrian did
4370 	 * in the parts of the code that set these quantities. Made
4371 	 * that consistent.
4372 	 */
4373 	spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4374 	stats[N_TX_RINGS].rx_crc_errors +=
4375 	  readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4376 	stats[N_TX_RINGS].rx_frame_errors +=
4377 		readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4378 	stats[N_TX_RINGS].rx_length_errors +=
4379 		readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4380 #if 1
4381 	tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4382 		(readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4383 	stats[N_TX_RINGS].tx_aborted_errors += tmp;
4384 	stats[N_TX_RINGS].collisions +=
4385 	  tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4386 #else
4387 	stats[N_TX_RINGS].tx_aborted_errors +=
4388 		readl(cp->regs + REG_MAC_COLL_EXCESS);
4389 	stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4390 		readl(cp->regs + REG_MAC_COLL_LATE);
4391 #endif
4392 	cas_clear_mac_err(cp);
4393 
4394 	/* saved bits that are unique to ring 0 */
4395 	spin_lock(&cp->stat_lock[0]);
4396 	stats[N_TX_RINGS].collisions        += stats[0].collisions;
4397 	stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4398 	stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4399 	stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4400 	stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4401 	stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4402 	spin_unlock(&cp->stat_lock[0]);
4403 
4404 	for (i = 0; i < N_TX_RINGS; i++) {
4405 		spin_lock(&cp->stat_lock[i]);
4406 		stats[N_TX_RINGS].rx_length_errors +=
4407 			stats[i].rx_length_errors;
4408 		stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4409 		stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4410 		stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4411 		stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4412 		stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4413 		stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4414 		stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4415 		stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4416 		stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4417 		memset(stats + i, 0, sizeof(struct net_device_stats));
4418 		spin_unlock(&cp->stat_lock[i]);
4419 	}
4420 	spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4421 	return stats + N_TX_RINGS;
4422 }
4423 
4424 
4425 static void cas_set_multicast(struct net_device *dev)
4426 {
4427 	struct cas *cp = netdev_priv(dev);
4428 	u32 rxcfg, rxcfg_new;
4429 	unsigned long flags;
4430 	int limit = STOP_TRIES;
4431 
4432 	if (!cp->hw_running)
4433 		return;
4434 
4435 	spin_lock_irqsave(&cp->lock, flags);
4436 	rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4437 
4438 	/* disable RX MAC and wait for completion */
4439 	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4440 	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4441 		if (!limit--)
4442 			break;
4443 		udelay(10);
4444 	}
4445 
4446 	/* disable hash filter and wait for completion */
4447 	limit = STOP_TRIES;
4448 	rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4449 	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4450 	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4451 		if (!limit--)
4452 			break;
4453 		udelay(10);
4454 	}
4455 
4456 	/* program hash filters */
4457 	cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4458 	rxcfg |= rxcfg_new;
4459 	writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4460 	spin_unlock_irqrestore(&cp->lock, flags);
4461 }
4462 
4463 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4464 {
4465 	struct cas *cp = netdev_priv(dev);
4466 	strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4467 	strscpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4468 	strscpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4469 }
4470 
4471 static int cas_get_link_ksettings(struct net_device *dev,
4472 				  struct ethtool_link_ksettings *cmd)
4473 {
4474 	struct cas *cp = netdev_priv(dev);
4475 	u16 bmcr;
4476 	int full_duplex, speed, pause;
4477 	unsigned long flags;
4478 	enum link_state linkstate = link_up;
4479 	u32 supported, advertising;
4480 
4481 	advertising = 0;
4482 	supported = SUPPORTED_Autoneg;
4483 	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4484 		supported |= SUPPORTED_1000baseT_Full;
4485 		advertising |= ADVERTISED_1000baseT_Full;
4486 	}
4487 
4488 	/* Record PHY settings if HW is on. */
4489 	spin_lock_irqsave(&cp->lock, flags);
4490 	bmcr = 0;
4491 	linkstate = cp->lstate;
4492 	if (CAS_PHY_MII(cp->phy_type)) {
4493 		cmd->base.port = PORT_MII;
4494 		cmd->base.phy_address = cp->phy_addr;
4495 		advertising |= ADVERTISED_TP | ADVERTISED_MII |
4496 			ADVERTISED_10baseT_Half |
4497 			ADVERTISED_10baseT_Full |
4498 			ADVERTISED_100baseT_Half |
4499 			ADVERTISED_100baseT_Full;
4500 
4501 		supported |=
4502 			(SUPPORTED_10baseT_Half |
4503 			 SUPPORTED_10baseT_Full |
4504 			 SUPPORTED_100baseT_Half |
4505 			 SUPPORTED_100baseT_Full |
4506 			 SUPPORTED_TP | SUPPORTED_MII);
4507 
4508 		if (cp->hw_running) {
4509 			cas_mif_poll(cp, 0);
4510 			bmcr = cas_phy_read(cp, MII_BMCR);
4511 			cas_read_mii_link_mode(cp, &full_duplex,
4512 					       &speed, &pause);
4513 			cas_mif_poll(cp, 1);
4514 		}
4515 
4516 	} else {
4517 		cmd->base.port = PORT_FIBRE;
4518 		cmd->base.phy_address = 0;
4519 		supported   |= SUPPORTED_FIBRE;
4520 		advertising |= ADVERTISED_FIBRE;
4521 
4522 		if (cp->hw_running) {
4523 			/* pcs uses the same bits as mii */
4524 			bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4525 			cas_read_pcs_link_mode(cp, &full_duplex,
4526 					       &speed, &pause);
4527 		}
4528 	}
4529 	spin_unlock_irqrestore(&cp->lock, flags);
4530 
4531 	if (bmcr & BMCR_ANENABLE) {
4532 		advertising |= ADVERTISED_Autoneg;
4533 		cmd->base.autoneg = AUTONEG_ENABLE;
4534 		cmd->base.speed =  ((speed == 10) ?
4535 					    SPEED_10 :
4536 					    ((speed == 1000) ?
4537 					     SPEED_1000 : SPEED_100));
4538 		cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4539 	} else {
4540 		cmd->base.autoneg = AUTONEG_DISABLE;
4541 		cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ?
4542 					    SPEED_1000 :
4543 					    ((bmcr & BMCR_SPEED100) ?
4544 					     SPEED_100 : SPEED_10));
4545 		cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ?
4546 			DUPLEX_FULL : DUPLEX_HALF;
4547 	}
4548 	if (linkstate != link_up) {
4549 		/* Force these to "unknown" if the link is not up and
4550 		 * autonogotiation in enabled. We can set the link
4551 		 * speed to 0, but not cmd->duplex,
4552 		 * because its legal values are 0 and 1.  Ethtool will
4553 		 * print the value reported in parentheses after the
4554 		 * word "Unknown" for unrecognized values.
4555 		 *
4556 		 * If in forced mode, we report the speed and duplex
4557 		 * settings that we configured.
4558 		 */
4559 		if (cp->link_cntl & BMCR_ANENABLE) {
4560 			cmd->base.speed = 0;
4561 			cmd->base.duplex = 0xff;
4562 		} else {
4563 			cmd->base.speed = SPEED_10;
4564 			if (cp->link_cntl & BMCR_SPEED100) {
4565 				cmd->base.speed = SPEED_100;
4566 			} else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4567 				cmd->base.speed = SPEED_1000;
4568 			}
4569 			cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ?
4570 				DUPLEX_FULL : DUPLEX_HALF;
4571 		}
4572 	}
4573 
4574 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
4575 						supported);
4576 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
4577 						advertising);
4578 
4579 	return 0;
4580 }
4581 
4582 static int cas_set_link_ksettings(struct net_device *dev,
4583 				  const struct ethtool_link_ksettings *cmd)
4584 {
4585 	struct cas *cp = netdev_priv(dev);
4586 	unsigned long flags;
4587 	u32 speed = cmd->base.speed;
4588 
4589 	/* Verify the settings we care about. */
4590 	if (cmd->base.autoneg != AUTONEG_ENABLE &&
4591 	    cmd->base.autoneg != AUTONEG_DISABLE)
4592 		return -EINVAL;
4593 
4594 	if (cmd->base.autoneg == AUTONEG_DISABLE &&
4595 	    ((speed != SPEED_1000 &&
4596 	      speed != SPEED_100 &&
4597 	      speed != SPEED_10) ||
4598 	     (cmd->base.duplex != DUPLEX_HALF &&
4599 	      cmd->base.duplex != DUPLEX_FULL)))
4600 		return -EINVAL;
4601 
4602 	/* Apply settings and restart link process. */
4603 	spin_lock_irqsave(&cp->lock, flags);
4604 	cas_begin_auto_negotiation(cp, cmd);
4605 	spin_unlock_irqrestore(&cp->lock, flags);
4606 	return 0;
4607 }
4608 
4609 static int cas_nway_reset(struct net_device *dev)
4610 {
4611 	struct cas *cp = netdev_priv(dev);
4612 	unsigned long flags;
4613 
4614 	if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4615 		return -EINVAL;
4616 
4617 	/* Restart link process. */
4618 	spin_lock_irqsave(&cp->lock, flags);
4619 	cas_begin_auto_negotiation(cp, NULL);
4620 	spin_unlock_irqrestore(&cp->lock, flags);
4621 
4622 	return 0;
4623 }
4624 
4625 static u32 cas_get_link(struct net_device *dev)
4626 {
4627 	struct cas *cp = netdev_priv(dev);
4628 	return cp->lstate == link_up;
4629 }
4630 
4631 static u32 cas_get_msglevel(struct net_device *dev)
4632 {
4633 	struct cas *cp = netdev_priv(dev);
4634 	return cp->msg_enable;
4635 }
4636 
4637 static void cas_set_msglevel(struct net_device *dev, u32 value)
4638 {
4639 	struct cas *cp = netdev_priv(dev);
4640 	cp->msg_enable = value;
4641 }
4642 
4643 static int cas_get_regs_len(struct net_device *dev)
4644 {
4645 	struct cas *cp = netdev_priv(dev);
4646 	return min_t(int, cp->casreg_len, CAS_MAX_REGS);
4647 }
4648 
4649 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4650 			     void *p)
4651 {
4652 	struct cas *cp = netdev_priv(dev);
4653 	regs->version = 0;
4654 	/* cas_read_regs handles locks (cp->lock).  */
4655 	cas_read_regs(cp, p, regs->len / sizeof(u32));
4656 }
4657 
4658 static int cas_get_sset_count(struct net_device *dev, int sset)
4659 {
4660 	switch (sset) {
4661 	case ETH_SS_STATS:
4662 		return CAS_NUM_STAT_KEYS;
4663 	default:
4664 		return -EOPNOTSUPP;
4665 	}
4666 }
4667 
4668 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4669 {
4670 	 memcpy(data, &ethtool_cassini_statnames,
4671 					 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4672 }
4673 
4674 static void cas_get_ethtool_stats(struct net_device *dev,
4675 				      struct ethtool_stats *estats, u64 *data)
4676 {
4677 	struct cas *cp = netdev_priv(dev);
4678 	struct net_device_stats *stats = cas_get_stats(cp->dev);
4679 	int i = 0;
4680 	data[i++] = stats->collisions;
4681 	data[i++] = stats->rx_bytes;
4682 	data[i++] = stats->rx_crc_errors;
4683 	data[i++] = stats->rx_dropped;
4684 	data[i++] = stats->rx_errors;
4685 	data[i++] = stats->rx_fifo_errors;
4686 	data[i++] = stats->rx_frame_errors;
4687 	data[i++] = stats->rx_length_errors;
4688 	data[i++] = stats->rx_over_errors;
4689 	data[i++] = stats->rx_packets;
4690 	data[i++] = stats->tx_aborted_errors;
4691 	data[i++] = stats->tx_bytes;
4692 	data[i++] = stats->tx_dropped;
4693 	data[i++] = stats->tx_errors;
4694 	data[i++] = stats->tx_fifo_errors;
4695 	data[i++] = stats->tx_packets;
4696 	BUG_ON(i != CAS_NUM_STAT_KEYS);
4697 }
4698 
4699 static const struct ethtool_ops cas_ethtool_ops = {
4700 	.get_drvinfo		= cas_get_drvinfo,
4701 	.nway_reset		= cas_nway_reset,
4702 	.get_link		= cas_get_link,
4703 	.get_msglevel		= cas_get_msglevel,
4704 	.set_msglevel		= cas_set_msglevel,
4705 	.get_regs_len		= cas_get_regs_len,
4706 	.get_regs		= cas_get_regs,
4707 	.get_sset_count		= cas_get_sset_count,
4708 	.get_strings		= cas_get_strings,
4709 	.get_ethtool_stats	= cas_get_ethtool_stats,
4710 	.get_link_ksettings	= cas_get_link_ksettings,
4711 	.set_link_ksettings	= cas_set_link_ksettings,
4712 };
4713 
4714 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4715 {
4716 	struct cas *cp = netdev_priv(dev);
4717 	struct mii_ioctl_data *data = if_mii(ifr);
4718 	unsigned long flags;
4719 	int rc = -EOPNOTSUPP;
4720 
4721 	/* Hold the PM mutex while doing ioctl's or we may collide
4722 	 * with open/close and power management and oops.
4723 	 */
4724 	mutex_lock(&cp->pm_mutex);
4725 	switch (cmd) {
4726 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
4727 		data->phy_id = cp->phy_addr;
4728 		fallthrough;
4729 
4730 	case SIOCGMIIREG:		/* Read MII PHY register. */
4731 		spin_lock_irqsave(&cp->lock, flags);
4732 		cas_mif_poll(cp, 0);
4733 		data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4734 		cas_mif_poll(cp, 1);
4735 		spin_unlock_irqrestore(&cp->lock, flags);
4736 		rc = 0;
4737 		break;
4738 
4739 	case SIOCSMIIREG:		/* Write MII PHY register. */
4740 		spin_lock_irqsave(&cp->lock, flags);
4741 		cas_mif_poll(cp, 0);
4742 		rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4743 		cas_mif_poll(cp, 1);
4744 		spin_unlock_irqrestore(&cp->lock, flags);
4745 		break;
4746 	default:
4747 		break;
4748 	}
4749 
4750 	mutex_unlock(&cp->pm_mutex);
4751 	return rc;
4752 }
4753 
4754 /* When this chip sits underneath an Intel 31154 bridge, it is the
4755  * only subordinate device and we can tweak the bridge settings to
4756  * reflect that fact.
4757  */
4758 static void cas_program_bridge(struct pci_dev *cas_pdev)
4759 {
4760 	struct pci_dev *pdev = cas_pdev->bus->self;
4761 	u32 val;
4762 
4763 	if (!pdev)
4764 		return;
4765 
4766 	if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4767 		return;
4768 
4769 	/* Clear bit 10 (Bus Parking Control) in the Secondary
4770 	 * Arbiter Control/Status Register which lives at offset
4771 	 * 0x41.  Using a 32-bit word read/modify/write at 0x40
4772 	 * is much simpler so that's how we do this.
4773 	 */
4774 	pci_read_config_dword(pdev, 0x40, &val);
4775 	val &= ~0x00040000;
4776 	pci_write_config_dword(pdev, 0x40, val);
4777 
4778 	/* Max out the Multi-Transaction Timer settings since
4779 	 * Cassini is the only device present.
4780 	 *
4781 	 * The register is 16-bit and lives at 0x50.  When the
4782 	 * settings are enabled, it extends the GRANT# signal
4783 	 * for a requestor after a transaction is complete.  This
4784 	 * allows the next request to run without first needing
4785 	 * to negotiate the GRANT# signal back.
4786 	 *
4787 	 * Bits 12:10 define the grant duration:
4788 	 *
4789 	 *	1	--	16 clocks
4790 	 *	2	--	32 clocks
4791 	 *	3	--	64 clocks
4792 	 *	4	--	128 clocks
4793 	 *	5	--	256 clocks
4794 	 *
4795 	 * All other values are illegal.
4796 	 *
4797 	 * Bits 09:00 define which REQ/GNT signal pairs get the
4798 	 * GRANT# signal treatment.  We set them all.
4799 	 */
4800 	pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4801 
4802 	/* The Read Prefecth Policy register is 16-bit and sits at
4803 	 * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4804 	 * enable it and max out all of the settings since only one
4805 	 * device is sitting underneath and thus bandwidth sharing is
4806 	 * not an issue.
4807 	 *
4808 	 * The register has several 3 bit fields, which indicates a
4809 	 * multiplier applied to the base amount of prefetching the
4810 	 * chip would do.  These fields are at:
4811 	 *
4812 	 *	15:13	---	ReRead Primary Bus
4813 	 *	12:10	---	FirstRead Primary Bus
4814 	 *	09:07	---	ReRead Secondary Bus
4815 	 *	06:04	---	FirstRead Secondary Bus
4816 	 *
4817 	 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4818 	 * get enabled on.  Bit 3 is a grouped enabler which controls
4819 	 * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4820 	 * the individual REQ/GNT pairs [2:0].
4821 	 */
4822 	pci_write_config_word(pdev, 0x52,
4823 			      (0x7 << 13) |
4824 			      (0x7 << 10) |
4825 			      (0x7 <<  7) |
4826 			      (0x7 <<  4) |
4827 			      (0xf <<  0));
4828 
4829 	/* Force cacheline size to 0x8 */
4830 	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4831 
4832 	/* Force latency timer to maximum setting so Cassini can
4833 	 * sit on the bus as long as it likes.
4834 	 */
4835 	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4836 }
4837 
4838 static const struct net_device_ops cas_netdev_ops = {
4839 	.ndo_open		= cas_open,
4840 	.ndo_stop		= cas_close,
4841 	.ndo_start_xmit		= cas_start_xmit,
4842 	.ndo_get_stats 		= cas_get_stats,
4843 	.ndo_set_rx_mode	= cas_set_multicast,
4844 	.ndo_eth_ioctl		= cas_ioctl,
4845 	.ndo_tx_timeout		= cas_tx_timeout,
4846 	.ndo_change_mtu		= cas_change_mtu,
4847 	.ndo_set_mac_address	= eth_mac_addr,
4848 	.ndo_validate_addr	= eth_validate_addr,
4849 #ifdef CONFIG_NET_POLL_CONTROLLER
4850 	.ndo_poll_controller	= cas_netpoll,
4851 #endif
4852 };
4853 
4854 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4855 {
4856 	static int cas_version_printed = 0;
4857 	unsigned long casreg_len;
4858 	struct net_device *dev;
4859 	struct cas *cp;
4860 	u16 pci_cmd;
4861 	int i, err;
4862 	u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4863 
4864 	if (cas_version_printed++ == 0)
4865 		pr_info("%s", version);
4866 
4867 	err = pci_enable_device(pdev);
4868 	if (err) {
4869 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4870 		return err;
4871 	}
4872 
4873 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4874 		dev_err(&pdev->dev, "Cannot find proper PCI device "
4875 		       "base address, aborting\n");
4876 		err = -ENODEV;
4877 		goto err_out_disable_pdev;
4878 	}
4879 
4880 	dev = alloc_etherdev(sizeof(*cp));
4881 	if (!dev) {
4882 		err = -ENOMEM;
4883 		goto err_out_disable_pdev;
4884 	}
4885 	SET_NETDEV_DEV(dev, &pdev->dev);
4886 
4887 	err = pci_request_regions(pdev, dev->name);
4888 	if (err) {
4889 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4890 		goto err_out_free_netdev;
4891 	}
4892 	pci_set_master(pdev);
4893 
4894 	/* we must always turn on parity response or else parity
4895 	 * doesn't get generated properly. disable SERR/PERR as well.
4896 	 * in addition, we want to turn MWI on.
4897 	 */
4898 	pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4899 	pci_cmd &= ~PCI_COMMAND_SERR;
4900 	pci_cmd |= PCI_COMMAND_PARITY;
4901 	pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4902 	if (pci_try_set_mwi(pdev))
4903 		pr_warn("Could not enable MWI for %s\n", pci_name(pdev));
4904 
4905 	cas_program_bridge(pdev);
4906 
4907 	/*
4908 	 * On some architectures, the default cache line size set
4909 	 * by pci_try_set_mwi reduces perforamnce.  We have to increase
4910 	 * it for this case.  To start, we'll print some configuration
4911 	 * data.
4912 	 */
4913 #if 1
4914 	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4915 			     &orig_cacheline_size);
4916 	if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4917 		cas_cacheline_size =
4918 			(CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4919 			CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4920 		if (pci_write_config_byte(pdev,
4921 					  PCI_CACHE_LINE_SIZE,
4922 					  cas_cacheline_size)) {
4923 			dev_err(&pdev->dev, "Could not set PCI cache "
4924 			       "line size\n");
4925 			goto err_out_free_res;
4926 		}
4927 	}
4928 #endif
4929 
4930 
4931 	/* Configure DMA attributes. */
4932 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4933 	if (err) {
4934 		dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
4935 		goto err_out_free_res;
4936 	}
4937 
4938 	casreg_len = pci_resource_len(pdev, 0);
4939 
4940 	cp = netdev_priv(dev);
4941 	cp->pdev = pdev;
4942 #if 1
4943 	/* A value of 0 indicates we never explicitly set it */
4944 	cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
4945 #endif
4946 	cp->dev = dev;
4947 	cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
4948 	  cassini_debug;
4949 
4950 #if defined(CONFIG_SPARC)
4951 	cp->of_node = pci_device_to_OF_node(pdev);
4952 #endif
4953 
4954 	cp->link_transition = LINK_TRANSITION_UNKNOWN;
4955 	cp->link_transition_jiffies_valid = 0;
4956 
4957 	spin_lock_init(&cp->lock);
4958 	spin_lock_init(&cp->rx_inuse_lock);
4959 	spin_lock_init(&cp->rx_spare_lock);
4960 	for (i = 0; i < N_TX_RINGS; i++) {
4961 		spin_lock_init(&cp->stat_lock[i]);
4962 		spin_lock_init(&cp->tx_lock[i]);
4963 	}
4964 	spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
4965 	mutex_init(&cp->pm_mutex);
4966 
4967 	timer_setup(&cp->link_timer, cas_link_timer, 0);
4968 
4969 #if 1
4970 	/* Just in case the implementation of atomic operations
4971 	 * change so that an explicit initialization is necessary.
4972 	 */
4973 	atomic_set(&cp->reset_task_pending, 0);
4974 	atomic_set(&cp->reset_task_pending_all, 0);
4975 	atomic_set(&cp->reset_task_pending_spare, 0);
4976 	atomic_set(&cp->reset_task_pending_mtu, 0);
4977 #endif
4978 	INIT_WORK(&cp->reset_task, cas_reset_task);
4979 
4980 	/* Default link parameters */
4981 	if (link_mode >= 0 && link_mode < 6)
4982 		cp->link_cntl = link_modes[link_mode];
4983 	else
4984 		cp->link_cntl = BMCR_ANENABLE;
4985 	cp->lstate = link_down;
4986 	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
4987 	netif_carrier_off(cp->dev);
4988 	cp->timer_ticks = 0;
4989 
4990 	/* give us access to cassini registers */
4991 	cp->regs = pci_iomap(pdev, 0, casreg_len);
4992 	if (!cp->regs) {
4993 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
4994 		goto err_out_free_res;
4995 	}
4996 	cp->casreg_len = casreg_len;
4997 
4998 	pci_save_state(pdev);
4999 	cas_check_pci_invariants(cp);
5000 	cas_hard_reset(cp);
5001 	cas_reset(cp, 0);
5002 	if (cas_check_invariants(cp))
5003 		goto err_out_iounmap;
5004 	if (cp->cas_flags & CAS_FLAG_SATURN)
5005 		cas_saturn_firmware_init(cp);
5006 
5007 	cp->init_block =
5008 		dma_alloc_coherent(&pdev->dev, sizeof(struct cas_init_block),
5009 				   &cp->block_dvma, GFP_KERNEL);
5010 	if (!cp->init_block) {
5011 		dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5012 		goto err_out_iounmap;
5013 	}
5014 
5015 	for (i = 0; i < N_TX_RINGS; i++)
5016 		cp->init_txds[i] = cp->init_block->txds[i];
5017 
5018 	for (i = 0; i < N_RX_DESC_RINGS; i++)
5019 		cp->init_rxds[i] = cp->init_block->rxds[i];
5020 
5021 	for (i = 0; i < N_RX_COMP_RINGS; i++)
5022 		cp->init_rxcs[i] = cp->init_block->rxcs[i];
5023 
5024 	for (i = 0; i < N_RX_FLOWS; i++)
5025 		skb_queue_head_init(&cp->rx_flows[i]);
5026 
5027 	dev->netdev_ops = &cas_netdev_ops;
5028 	dev->ethtool_ops = &cas_ethtool_ops;
5029 	dev->watchdog_timeo = CAS_TX_TIMEOUT;
5030 
5031 #ifdef USE_NAPI
5032 	netif_napi_add(dev, &cp->napi, cas_poll);
5033 #endif
5034 	dev->irq = pdev->irq;
5035 	dev->dma = 0;
5036 
5037 	/* Cassini features. */
5038 	if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5039 		dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5040 
5041 	dev->features |= NETIF_F_HIGHDMA;
5042 
5043 	/* MTU range: 60 - varies or 9000 */
5044 	dev->min_mtu = CAS_MIN_MTU;
5045 	dev->max_mtu = CAS_MAX_MTU;
5046 
5047 	if (register_netdev(dev)) {
5048 		dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5049 		goto err_out_free_consistent;
5050 	}
5051 
5052 	i = readl(cp->regs + REG_BIM_CFG);
5053 	netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5054 		    (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5055 		    (i & BIM_CFG_32BIT) ? "32" : "64",
5056 		    (i & BIM_CFG_66MHZ) ? "66" : "33",
5057 		    (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5058 		    dev->dev_addr);
5059 
5060 	pci_set_drvdata(pdev, dev);
5061 	cp->hw_running = 1;
5062 	cas_entropy_reset(cp);
5063 	cas_phy_init(cp);
5064 	cas_begin_auto_negotiation(cp, NULL);
5065 	return 0;
5066 
5067 err_out_free_consistent:
5068 	dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
5069 			  cp->init_block, cp->block_dvma);
5070 
5071 err_out_iounmap:
5072 	mutex_lock(&cp->pm_mutex);
5073 	if (cp->hw_running)
5074 		cas_shutdown(cp);
5075 	mutex_unlock(&cp->pm_mutex);
5076 
5077 	vfree(cp->fw_data);
5078 
5079 	pci_iounmap(pdev, cp->regs);
5080 
5081 
5082 err_out_free_res:
5083 	pci_release_regions(pdev);
5084 
5085 	/* Try to restore it in case the error occurred after we
5086 	 * set it.
5087 	 */
5088 	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5089 
5090 err_out_free_netdev:
5091 	free_netdev(dev);
5092 
5093 err_out_disable_pdev:
5094 	pci_disable_device(pdev);
5095 	return -ENODEV;
5096 }
5097 
5098 static void cas_remove_one(struct pci_dev *pdev)
5099 {
5100 	struct net_device *dev = pci_get_drvdata(pdev);
5101 	struct cas *cp;
5102 	if (!dev)
5103 		return;
5104 
5105 	cp = netdev_priv(dev);
5106 	unregister_netdev(dev);
5107 
5108 	vfree(cp->fw_data);
5109 
5110 	mutex_lock(&cp->pm_mutex);
5111 	cancel_work_sync(&cp->reset_task);
5112 	if (cp->hw_running)
5113 		cas_shutdown(cp);
5114 	mutex_unlock(&cp->pm_mutex);
5115 
5116 #if 1
5117 	if (cp->orig_cacheline_size) {
5118 		/* Restore the cache line size if we had modified
5119 		 * it.
5120 		 */
5121 		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5122 				      cp->orig_cacheline_size);
5123 	}
5124 #endif
5125 	dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
5126 			  cp->init_block, cp->block_dvma);
5127 	pci_iounmap(pdev, cp->regs);
5128 	free_netdev(dev);
5129 	pci_release_regions(pdev);
5130 	pci_disable_device(pdev);
5131 }
5132 
5133 static int __maybe_unused cas_suspend(struct device *dev_d)
5134 {
5135 	struct net_device *dev = dev_get_drvdata(dev_d);
5136 	struct cas *cp = netdev_priv(dev);
5137 	unsigned long flags;
5138 
5139 	mutex_lock(&cp->pm_mutex);
5140 
5141 	/* If the driver is opened, we stop the DMA */
5142 	if (cp->opened) {
5143 		netif_device_detach(dev);
5144 
5145 		cas_lock_all_save(cp, flags);
5146 
5147 		/* We can set the second arg of cas_reset to 0
5148 		 * because on resume, we'll call cas_init_hw with
5149 		 * its second arg set so that autonegotiation is
5150 		 * restarted.
5151 		 */
5152 		cas_reset(cp, 0);
5153 		cas_clean_rings(cp);
5154 		cas_unlock_all_restore(cp, flags);
5155 	}
5156 
5157 	if (cp->hw_running)
5158 		cas_shutdown(cp);
5159 	mutex_unlock(&cp->pm_mutex);
5160 
5161 	return 0;
5162 }
5163 
5164 static int __maybe_unused cas_resume(struct device *dev_d)
5165 {
5166 	struct net_device *dev = dev_get_drvdata(dev_d);
5167 	struct cas *cp = netdev_priv(dev);
5168 
5169 	netdev_info(dev, "resuming\n");
5170 
5171 	mutex_lock(&cp->pm_mutex);
5172 	cas_hard_reset(cp);
5173 	if (cp->opened) {
5174 		unsigned long flags;
5175 		cas_lock_all_save(cp, flags);
5176 		cas_reset(cp, 0);
5177 		cp->hw_running = 1;
5178 		cas_clean_rings(cp);
5179 		cas_init_hw(cp, 1);
5180 		cas_unlock_all_restore(cp, flags);
5181 
5182 		netif_device_attach(dev);
5183 	}
5184 	mutex_unlock(&cp->pm_mutex);
5185 	return 0;
5186 }
5187 
5188 static SIMPLE_DEV_PM_OPS(cas_pm_ops, cas_suspend, cas_resume);
5189 
5190 static struct pci_driver cas_driver = {
5191 	.name		= DRV_MODULE_NAME,
5192 	.id_table	= cas_pci_tbl,
5193 	.probe		= cas_init_one,
5194 	.remove		= cas_remove_one,
5195 	.driver.pm	= &cas_pm_ops,
5196 };
5197 
5198 static int __init cas_init(void)
5199 {
5200 	if (linkdown_timeout > 0)
5201 		link_transition_timeout = linkdown_timeout * HZ;
5202 	else
5203 		link_transition_timeout = 0;
5204 
5205 	return pci_register_driver(&cas_driver);
5206 }
5207 
5208 static void __exit cas_cleanup(void)
5209 {
5210 	pci_unregister_driver(&cas_driver);
5211 }
5212 
5213 module_init(cas_init);
5214 module_exit(cas_cleanup);
5215