xref: /linux/drivers/net/ethernet/sun/cassini.c (revision bfd5bb6f90af092aa345b15cd78143956a13c2a8)
1 // SPDX-License-Identifier: GPL-2.0
2 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3  *
4  * Copyright (C) 2004 Sun Microsystems Inc.
5  * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2 of the
10  * License, or (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, see <http://www.gnu.org/licenses/>.
19  *
20  * This driver uses the sungem driver (c) David Miller
21  * (davem@redhat.com) as its basis.
22  *
23  * The cassini chip has a number of features that distinguish it from
24  * the gem chip:
25  *  4 transmit descriptor rings that are used for either QoS (VLAN) or
26  *      load balancing (non-VLAN mode)
27  *  batching of multiple packets
28  *  multiple CPU dispatching
29  *  page-based RX descriptor engine with separate completion rings
30  *  Gigabit support (GMII and PCS interface)
31  *  MIF link up/down detection works
32  *
33  * RX is handled by page sized buffers that are attached as fragments to
34  * the skb. here's what's done:
35  *  -- driver allocates pages at a time and keeps reference counts
36  *     on them.
37  *  -- the upper protocol layers assume that the header is in the skb
38  *     itself. as a result, cassini will copy a small amount (64 bytes)
39  *     to make them happy.
40  *  -- driver appends the rest of the data pages as frags to skbuffs
41  *     and increments the reference count
42  *  -- on page reclamation, the driver swaps the page with a spare page.
43  *     if that page is still in use, it frees its reference to that page,
44  *     and allocates a new page for use. otherwise, it just recycles the
45  *     the page.
46  *
47  * NOTE: cassini can parse the header. however, it's not worth it
48  *       as long as the network stack requires a header copy.
49  *
50  * TX has 4 queues. currently these queues are used in a round-robin
51  * fashion for load balancing. They can also be used for QoS. for that
52  * to work, however, QoS information needs to be exposed down to the driver
53  * level so that subqueues get targeted to particular transmit rings.
54  * alternatively, the queues can be configured via use of the all-purpose
55  * ioctl.
56  *
57  * RX DATA: the rx completion ring has all the info, but the rx desc
58  * ring has all of the data. RX can conceivably come in under multiple
59  * interrupts, but the INT# assignment needs to be set up properly by
60  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
61  * that. also, the two descriptor rings are designed to distinguish between
62  * encrypted and non-encrypted packets, but we use them for buffering
63  * instead.
64  *
65  * by default, the selective clear mask is set up to process rx packets.
66  */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/types.h>
73 #include <linux/compiler.h>
74 #include <linux/slab.h>
75 #include <linux/delay.h>
76 #include <linux/init.h>
77 #include <linux/interrupt.h>
78 #include <linux/vmalloc.h>
79 #include <linux/ioport.h>
80 #include <linux/pci.h>
81 #include <linux/mm.h>
82 #include <linux/highmem.h>
83 #include <linux/list.h>
84 #include <linux/dma-mapping.h>
85 
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
89 #include <linux/ethtool.h>
90 #include <linux/crc32.h>
91 #include <linux/random.h>
92 #include <linux/mii.h>
93 #include <linux/ip.h>
94 #include <linux/tcp.h>
95 #include <linux/mutex.h>
96 #include <linux/firmware.h>
97 
98 #include <net/checksum.h>
99 
100 #include <linux/atomic.h>
101 #include <asm/io.h>
102 #include <asm/byteorder.h>
103 #include <linux/uaccess.h>
104 
105 #define cas_page_map(x)      kmap_atomic((x))
106 #define cas_page_unmap(x)    kunmap_atomic((x))
107 #define CAS_NCPUS            num_online_cpus()
108 
109 #define cas_skb_release(x)  netif_rx(x)
110 
111 /* select which firmware to use */
112 #define USE_HP_WORKAROUND
113 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
114 #define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
115 
116 #include "cassini.h"
117 
118 #define USE_TX_COMPWB      /* use completion writeback registers */
119 #define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
120 #define USE_RX_BLANK       /* hw interrupt mitigation */
121 #undef USE_ENTROPY_DEV     /* don't test for entropy device */
122 
123 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
124  * also, we need to make cp->lock finer-grained.
125  */
126 #undef  USE_PCI_INTB
127 #undef  USE_PCI_INTC
128 #undef  USE_PCI_INTD
129 #undef  USE_QOS
130 
131 #undef  USE_VPD_DEBUG       /* debug vpd information if defined */
132 
133 /* rx processing options */
134 #define USE_PAGE_ORDER      /* specify to allocate large rx pages */
135 #define RX_DONT_BATCH  0    /* if 1, don't batch flows */
136 #define RX_COPY_ALWAYS 0    /* if 0, use frags */
137 #define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
138 #undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
139 
140 #define DRV_MODULE_NAME		"cassini"
141 #define DRV_MODULE_VERSION	"1.6"
142 #define DRV_MODULE_RELDATE	"21 May 2008"
143 
144 #define CAS_DEF_MSG_ENABLE	  \
145 	(NETIF_MSG_DRV		| \
146 	 NETIF_MSG_PROBE	| \
147 	 NETIF_MSG_LINK		| \
148 	 NETIF_MSG_TIMER	| \
149 	 NETIF_MSG_IFDOWN	| \
150 	 NETIF_MSG_IFUP		| \
151 	 NETIF_MSG_RX_ERR	| \
152 	 NETIF_MSG_TX_ERR)
153 
154 /* length of time before we decide the hardware is borked,
155  * and dev->tx_timeout() should be called to fix the problem
156  */
157 #define CAS_TX_TIMEOUT			(HZ)
158 #define CAS_LINK_TIMEOUT                (22*HZ/10)
159 #define CAS_LINK_FAST_TIMEOUT           (1)
160 
161 /* timeout values for state changing. these specify the number
162  * of 10us delays to be used before giving up.
163  */
164 #define STOP_TRIES_PHY 1000
165 #define STOP_TRIES     5000
166 
167 /* specify a minimum frame size to deal with some fifo issues
168  * max mtu == 2 * page size - ethernet header - 64 - swivel =
169  *            2 * page_size - 0x50
170  */
171 #define CAS_MIN_FRAME			97
172 #define CAS_1000MB_MIN_FRAME            255
173 #define CAS_MIN_MTU                     60
174 #define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
175 
176 #if 1
177 /*
178  * Eliminate these and use separate atomic counters for each, to
179  * avoid a race condition.
180  */
181 #else
182 #define CAS_RESET_MTU                   1
183 #define CAS_RESET_ALL                   2
184 #define CAS_RESET_SPARE                 3
185 #endif
186 
187 static char version[] =
188 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
189 
190 static int cassini_debug = -1;	/* -1 == use CAS_DEF_MSG_ENABLE as value */
191 static int link_mode;
192 
193 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
194 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
195 MODULE_LICENSE("GPL");
196 MODULE_FIRMWARE("sun/cassini.bin");
197 module_param(cassini_debug, int, 0);
198 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
199 module_param(link_mode, int, 0);
200 MODULE_PARM_DESC(link_mode, "default link mode");
201 
202 /*
203  * Work around for a PCS bug in which the link goes down due to the chip
204  * being confused and never showing a link status of "up."
205  */
206 #define DEFAULT_LINKDOWN_TIMEOUT 5
207 /*
208  * Value in seconds, for user input.
209  */
210 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
211 module_param(linkdown_timeout, int, 0);
212 MODULE_PARM_DESC(linkdown_timeout,
213 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
214 
215 /*
216  * value in 'ticks' (units used by jiffies). Set when we init the
217  * module because 'HZ' in actually a function call on some flavors of
218  * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
219  */
220 static int link_transition_timeout;
221 
222 
223 
224 static u16 link_modes[] = {
225 	BMCR_ANENABLE,			 /* 0 : autoneg */
226 	0,				 /* 1 : 10bt half duplex */
227 	BMCR_SPEED100,			 /* 2 : 100bt half duplex */
228 	BMCR_FULLDPLX,			 /* 3 : 10bt full duplex */
229 	BMCR_SPEED100|BMCR_FULLDPLX,	 /* 4 : 100bt full duplex */
230 	CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
231 };
232 
233 static const struct pci_device_id cas_pci_tbl[] = {
234 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
235 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
236 	{ PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
237 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
238 	{ 0, }
239 };
240 
241 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
242 
243 static void cas_set_link_modes(struct cas *cp);
244 
245 static inline void cas_lock_tx(struct cas *cp)
246 {
247 	int i;
248 
249 	for (i = 0; i < N_TX_RINGS; i++)
250 		spin_lock_nested(&cp->tx_lock[i], i);
251 }
252 
253 static inline void cas_lock_all(struct cas *cp)
254 {
255 	spin_lock_irq(&cp->lock);
256 	cas_lock_tx(cp);
257 }
258 
259 /* WTZ: QA was finding deadlock problems with the previous
260  * versions after long test runs with multiple cards per machine.
261  * See if replacing cas_lock_all with safer versions helps. The
262  * symptoms QA is reporting match those we'd expect if interrupts
263  * aren't being properly restored, and we fixed a previous deadlock
264  * with similar symptoms by using save/restore versions in other
265  * places.
266  */
267 #define cas_lock_all_save(cp, flags) \
268 do { \
269 	struct cas *xxxcp = (cp); \
270 	spin_lock_irqsave(&xxxcp->lock, flags); \
271 	cas_lock_tx(xxxcp); \
272 } while (0)
273 
274 static inline void cas_unlock_tx(struct cas *cp)
275 {
276 	int i;
277 
278 	for (i = N_TX_RINGS; i > 0; i--)
279 		spin_unlock(&cp->tx_lock[i - 1]);
280 }
281 
282 static inline void cas_unlock_all(struct cas *cp)
283 {
284 	cas_unlock_tx(cp);
285 	spin_unlock_irq(&cp->lock);
286 }
287 
288 #define cas_unlock_all_restore(cp, flags) \
289 do { \
290 	struct cas *xxxcp = (cp); \
291 	cas_unlock_tx(xxxcp); \
292 	spin_unlock_irqrestore(&xxxcp->lock, flags); \
293 } while (0)
294 
295 static void cas_disable_irq(struct cas *cp, const int ring)
296 {
297 	/* Make sure we won't get any more interrupts */
298 	if (ring == 0) {
299 		writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
300 		return;
301 	}
302 
303 	/* disable completion interrupts and selectively mask */
304 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
305 		switch (ring) {
306 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
307 #ifdef USE_PCI_INTB
308 		case 1:
309 #endif
310 #ifdef USE_PCI_INTC
311 		case 2:
312 #endif
313 #ifdef USE_PCI_INTD
314 		case 3:
315 #endif
316 			writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
317 			       cp->regs + REG_PLUS_INTRN_MASK(ring));
318 			break;
319 #endif
320 		default:
321 			writel(INTRN_MASK_CLEAR_ALL, cp->regs +
322 			       REG_PLUS_INTRN_MASK(ring));
323 			break;
324 		}
325 	}
326 }
327 
328 static inline void cas_mask_intr(struct cas *cp)
329 {
330 	int i;
331 
332 	for (i = 0; i < N_RX_COMP_RINGS; i++)
333 		cas_disable_irq(cp, i);
334 }
335 
336 static void cas_enable_irq(struct cas *cp, const int ring)
337 {
338 	if (ring == 0) { /* all but TX_DONE */
339 		writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
340 		return;
341 	}
342 
343 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
344 		switch (ring) {
345 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
346 #ifdef USE_PCI_INTB
347 		case 1:
348 #endif
349 #ifdef USE_PCI_INTC
350 		case 2:
351 #endif
352 #ifdef USE_PCI_INTD
353 		case 3:
354 #endif
355 			writel(INTRN_MASK_RX_EN, cp->regs +
356 			       REG_PLUS_INTRN_MASK(ring));
357 			break;
358 #endif
359 		default:
360 			break;
361 		}
362 	}
363 }
364 
365 static inline void cas_unmask_intr(struct cas *cp)
366 {
367 	int i;
368 
369 	for (i = 0; i < N_RX_COMP_RINGS; i++)
370 		cas_enable_irq(cp, i);
371 }
372 
373 static inline void cas_entropy_gather(struct cas *cp)
374 {
375 #ifdef USE_ENTROPY_DEV
376 	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
377 		return;
378 
379 	batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
380 			    readl(cp->regs + REG_ENTROPY_IV),
381 			    sizeof(uint64_t)*8);
382 #endif
383 }
384 
385 static inline void cas_entropy_reset(struct cas *cp)
386 {
387 #ifdef USE_ENTROPY_DEV
388 	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
389 		return;
390 
391 	writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
392 	       cp->regs + REG_BIM_LOCAL_DEV_EN);
393 	writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
394 	writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
395 
396 	/* if we read back 0x0, we don't have an entropy device */
397 	if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
398 		cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
399 #endif
400 }
401 
402 /* access to the phy. the following assumes that we've initialized the MIF to
403  * be in frame rather than bit-bang mode
404  */
405 static u16 cas_phy_read(struct cas *cp, int reg)
406 {
407 	u32 cmd;
408 	int limit = STOP_TRIES_PHY;
409 
410 	cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
411 	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
412 	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
413 	cmd |= MIF_FRAME_TURN_AROUND_MSB;
414 	writel(cmd, cp->regs + REG_MIF_FRAME);
415 
416 	/* poll for completion */
417 	while (limit-- > 0) {
418 		udelay(10);
419 		cmd = readl(cp->regs + REG_MIF_FRAME);
420 		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
421 			return cmd & MIF_FRAME_DATA_MASK;
422 	}
423 	return 0xFFFF; /* -1 */
424 }
425 
426 static int cas_phy_write(struct cas *cp, int reg, u16 val)
427 {
428 	int limit = STOP_TRIES_PHY;
429 	u32 cmd;
430 
431 	cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
432 	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
433 	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
434 	cmd |= MIF_FRAME_TURN_AROUND_MSB;
435 	cmd |= val & MIF_FRAME_DATA_MASK;
436 	writel(cmd, cp->regs + REG_MIF_FRAME);
437 
438 	/* poll for completion */
439 	while (limit-- > 0) {
440 		udelay(10);
441 		cmd = readl(cp->regs + REG_MIF_FRAME);
442 		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
443 			return 0;
444 	}
445 	return -1;
446 }
447 
448 static void cas_phy_powerup(struct cas *cp)
449 {
450 	u16 ctl = cas_phy_read(cp, MII_BMCR);
451 
452 	if ((ctl & BMCR_PDOWN) == 0)
453 		return;
454 	ctl &= ~BMCR_PDOWN;
455 	cas_phy_write(cp, MII_BMCR, ctl);
456 }
457 
458 static void cas_phy_powerdown(struct cas *cp)
459 {
460 	u16 ctl = cas_phy_read(cp, MII_BMCR);
461 
462 	if (ctl & BMCR_PDOWN)
463 		return;
464 	ctl |= BMCR_PDOWN;
465 	cas_phy_write(cp, MII_BMCR, ctl);
466 }
467 
468 /* cp->lock held. note: the last put_page will free the buffer */
469 static int cas_page_free(struct cas *cp, cas_page_t *page)
470 {
471 	pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
472 		       PCI_DMA_FROMDEVICE);
473 	__free_pages(page->buffer, cp->page_order);
474 	kfree(page);
475 	return 0;
476 }
477 
478 #ifdef RX_COUNT_BUFFERS
479 #define RX_USED_ADD(x, y)       ((x)->used += (y))
480 #define RX_USED_SET(x, y)       ((x)->used  = (y))
481 #else
482 #define RX_USED_ADD(x, y)
483 #define RX_USED_SET(x, y)
484 #endif
485 
486 /* local page allocation routines for the receive buffers. jumbo pages
487  * require at least 8K contiguous and 8K aligned buffers.
488  */
489 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
490 {
491 	cas_page_t *page;
492 
493 	page = kmalloc(sizeof(cas_page_t), flags);
494 	if (!page)
495 		return NULL;
496 
497 	INIT_LIST_HEAD(&page->list);
498 	RX_USED_SET(page, 0);
499 	page->buffer = alloc_pages(flags, cp->page_order);
500 	if (!page->buffer)
501 		goto page_err;
502 	page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
503 				      cp->page_size, PCI_DMA_FROMDEVICE);
504 	return page;
505 
506 page_err:
507 	kfree(page);
508 	return NULL;
509 }
510 
511 /* initialize spare pool of rx buffers, but allocate during the open */
512 static void cas_spare_init(struct cas *cp)
513 {
514   	spin_lock(&cp->rx_inuse_lock);
515 	INIT_LIST_HEAD(&cp->rx_inuse_list);
516 	spin_unlock(&cp->rx_inuse_lock);
517 
518 	spin_lock(&cp->rx_spare_lock);
519 	INIT_LIST_HEAD(&cp->rx_spare_list);
520 	cp->rx_spares_needed = RX_SPARE_COUNT;
521 	spin_unlock(&cp->rx_spare_lock);
522 }
523 
524 /* used on close. free all the spare buffers. */
525 static void cas_spare_free(struct cas *cp)
526 {
527 	struct list_head list, *elem, *tmp;
528 
529 	/* free spare buffers */
530 	INIT_LIST_HEAD(&list);
531 	spin_lock(&cp->rx_spare_lock);
532 	list_splice_init(&cp->rx_spare_list, &list);
533 	spin_unlock(&cp->rx_spare_lock);
534 	list_for_each_safe(elem, tmp, &list) {
535 		cas_page_free(cp, list_entry(elem, cas_page_t, list));
536 	}
537 
538 	INIT_LIST_HEAD(&list);
539 #if 1
540 	/*
541 	 * Looks like Adrian had protected this with a different
542 	 * lock than used everywhere else to manipulate this list.
543 	 */
544 	spin_lock(&cp->rx_inuse_lock);
545 	list_splice_init(&cp->rx_inuse_list, &list);
546 	spin_unlock(&cp->rx_inuse_lock);
547 #else
548 	spin_lock(&cp->rx_spare_lock);
549 	list_splice_init(&cp->rx_inuse_list, &list);
550 	spin_unlock(&cp->rx_spare_lock);
551 #endif
552 	list_for_each_safe(elem, tmp, &list) {
553 		cas_page_free(cp, list_entry(elem, cas_page_t, list));
554 	}
555 }
556 
557 /* replenish spares if needed */
558 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
559 {
560 	struct list_head list, *elem, *tmp;
561 	int needed, i;
562 
563 	/* check inuse list. if we don't need any more free buffers,
564 	 * just free it
565 	 */
566 
567 	/* make a local copy of the list */
568 	INIT_LIST_HEAD(&list);
569 	spin_lock(&cp->rx_inuse_lock);
570 	list_splice_init(&cp->rx_inuse_list, &list);
571 	spin_unlock(&cp->rx_inuse_lock);
572 
573 	list_for_each_safe(elem, tmp, &list) {
574 		cas_page_t *page = list_entry(elem, cas_page_t, list);
575 
576 		/*
577 		 * With the lockless pagecache, cassini buffering scheme gets
578 		 * slightly less accurate: we might find that a page has an
579 		 * elevated reference count here, due to a speculative ref,
580 		 * and skip it as in-use. Ideally we would be able to reclaim
581 		 * it. However this would be such a rare case, it doesn't
582 		 * matter too much as we should pick it up the next time round.
583 		 *
584 		 * Importantly, if we find that the page has a refcount of 1
585 		 * here (our refcount), then we know it is definitely not inuse
586 		 * so we can reuse it.
587 		 */
588 		if (page_count(page->buffer) > 1)
589 			continue;
590 
591 		list_del(elem);
592 		spin_lock(&cp->rx_spare_lock);
593 		if (cp->rx_spares_needed > 0) {
594 			list_add(elem, &cp->rx_spare_list);
595 			cp->rx_spares_needed--;
596 			spin_unlock(&cp->rx_spare_lock);
597 		} else {
598 			spin_unlock(&cp->rx_spare_lock);
599 			cas_page_free(cp, page);
600 		}
601 	}
602 
603 	/* put any inuse buffers back on the list */
604 	if (!list_empty(&list)) {
605 		spin_lock(&cp->rx_inuse_lock);
606 		list_splice(&list, &cp->rx_inuse_list);
607 		spin_unlock(&cp->rx_inuse_lock);
608 	}
609 
610 	spin_lock(&cp->rx_spare_lock);
611 	needed = cp->rx_spares_needed;
612 	spin_unlock(&cp->rx_spare_lock);
613 	if (!needed)
614 		return;
615 
616 	/* we still need spares, so try to allocate some */
617 	INIT_LIST_HEAD(&list);
618 	i = 0;
619 	while (i < needed) {
620 		cas_page_t *spare = cas_page_alloc(cp, flags);
621 		if (!spare)
622 			break;
623 		list_add(&spare->list, &list);
624 		i++;
625 	}
626 
627 	spin_lock(&cp->rx_spare_lock);
628 	list_splice(&list, &cp->rx_spare_list);
629 	cp->rx_spares_needed -= i;
630 	spin_unlock(&cp->rx_spare_lock);
631 }
632 
633 /* pull a page from the list. */
634 static cas_page_t *cas_page_dequeue(struct cas *cp)
635 {
636 	struct list_head *entry;
637 	int recover;
638 
639 	spin_lock(&cp->rx_spare_lock);
640 	if (list_empty(&cp->rx_spare_list)) {
641 		/* try to do a quick recovery */
642 		spin_unlock(&cp->rx_spare_lock);
643 		cas_spare_recover(cp, GFP_ATOMIC);
644 		spin_lock(&cp->rx_spare_lock);
645 		if (list_empty(&cp->rx_spare_list)) {
646 			netif_err(cp, rx_err, cp->dev,
647 				  "no spare buffers available\n");
648 			spin_unlock(&cp->rx_spare_lock);
649 			return NULL;
650 		}
651 	}
652 
653 	entry = cp->rx_spare_list.next;
654 	list_del(entry);
655 	recover = ++cp->rx_spares_needed;
656 	spin_unlock(&cp->rx_spare_lock);
657 
658 	/* trigger the timer to do the recovery */
659 	if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
660 #if 1
661 		atomic_inc(&cp->reset_task_pending);
662 		atomic_inc(&cp->reset_task_pending_spare);
663 		schedule_work(&cp->reset_task);
664 #else
665 		atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
666 		schedule_work(&cp->reset_task);
667 #endif
668 	}
669 	return list_entry(entry, cas_page_t, list);
670 }
671 
672 
673 static void cas_mif_poll(struct cas *cp, const int enable)
674 {
675 	u32 cfg;
676 
677 	cfg  = readl(cp->regs + REG_MIF_CFG);
678 	cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
679 
680 	if (cp->phy_type & CAS_PHY_MII_MDIO1)
681 		cfg |= MIF_CFG_PHY_SELECT;
682 
683 	/* poll and interrupt on link status change. */
684 	if (enable) {
685 		cfg |= MIF_CFG_POLL_EN;
686 		cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
687 		cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
688 	}
689 	writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
690 	       cp->regs + REG_MIF_MASK);
691 	writel(cfg, cp->regs + REG_MIF_CFG);
692 }
693 
694 /* Must be invoked under cp->lock */
695 static void cas_begin_auto_negotiation(struct cas *cp,
696 				       const struct ethtool_link_ksettings *ep)
697 {
698 	u16 ctl;
699 #if 1
700 	int lcntl;
701 	int changed = 0;
702 	int oldstate = cp->lstate;
703 	int link_was_not_down = !(oldstate == link_down);
704 #endif
705 	/* Setup link parameters */
706 	if (!ep)
707 		goto start_aneg;
708 	lcntl = cp->link_cntl;
709 	if (ep->base.autoneg == AUTONEG_ENABLE) {
710 		cp->link_cntl = BMCR_ANENABLE;
711 	} else {
712 		u32 speed = ep->base.speed;
713 		cp->link_cntl = 0;
714 		if (speed == SPEED_100)
715 			cp->link_cntl |= BMCR_SPEED100;
716 		else if (speed == SPEED_1000)
717 			cp->link_cntl |= CAS_BMCR_SPEED1000;
718 		if (ep->base.duplex == DUPLEX_FULL)
719 			cp->link_cntl |= BMCR_FULLDPLX;
720 	}
721 #if 1
722 	changed = (lcntl != cp->link_cntl);
723 #endif
724 start_aneg:
725 	if (cp->lstate == link_up) {
726 		netdev_info(cp->dev, "PCS link down\n");
727 	} else {
728 		if (changed) {
729 			netdev_info(cp->dev, "link configuration changed\n");
730 		}
731 	}
732 	cp->lstate = link_down;
733 	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
734 	if (!cp->hw_running)
735 		return;
736 #if 1
737 	/*
738 	 * WTZ: If the old state was link_up, we turn off the carrier
739 	 * to replicate everything we do elsewhere on a link-down
740 	 * event when we were already in a link-up state..
741 	 */
742 	if (oldstate == link_up)
743 		netif_carrier_off(cp->dev);
744 	if (changed  && link_was_not_down) {
745 		/*
746 		 * WTZ: This branch will simply schedule a full reset after
747 		 * we explicitly changed link modes in an ioctl. See if this
748 		 * fixes the link-problems we were having for forced mode.
749 		 */
750 		atomic_inc(&cp->reset_task_pending);
751 		atomic_inc(&cp->reset_task_pending_all);
752 		schedule_work(&cp->reset_task);
753 		cp->timer_ticks = 0;
754 		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
755 		return;
756 	}
757 #endif
758 	if (cp->phy_type & CAS_PHY_SERDES) {
759 		u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
760 
761 		if (cp->link_cntl & BMCR_ANENABLE) {
762 			val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
763 			cp->lstate = link_aneg;
764 		} else {
765 			if (cp->link_cntl & BMCR_FULLDPLX)
766 				val |= PCS_MII_CTRL_DUPLEX;
767 			val &= ~PCS_MII_AUTONEG_EN;
768 			cp->lstate = link_force_ok;
769 		}
770 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
771 		writel(val, cp->regs + REG_PCS_MII_CTRL);
772 
773 	} else {
774 		cas_mif_poll(cp, 0);
775 		ctl = cas_phy_read(cp, MII_BMCR);
776 		ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
777 			 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
778 		ctl |= cp->link_cntl;
779 		if (ctl & BMCR_ANENABLE) {
780 			ctl |= BMCR_ANRESTART;
781 			cp->lstate = link_aneg;
782 		} else {
783 			cp->lstate = link_force_ok;
784 		}
785 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
786 		cas_phy_write(cp, MII_BMCR, ctl);
787 		cas_mif_poll(cp, 1);
788 	}
789 
790 	cp->timer_ticks = 0;
791 	mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
792 }
793 
794 /* Must be invoked under cp->lock. */
795 static int cas_reset_mii_phy(struct cas *cp)
796 {
797 	int limit = STOP_TRIES_PHY;
798 	u16 val;
799 
800 	cas_phy_write(cp, MII_BMCR, BMCR_RESET);
801 	udelay(100);
802 	while (--limit) {
803 		val = cas_phy_read(cp, MII_BMCR);
804 		if ((val & BMCR_RESET) == 0)
805 			break;
806 		udelay(10);
807 	}
808 	return limit <= 0;
809 }
810 
811 static void cas_saturn_firmware_init(struct cas *cp)
812 {
813 	const struct firmware *fw;
814 	const char fw_name[] = "sun/cassini.bin";
815 	int err;
816 
817 	if (PHY_NS_DP83065 != cp->phy_id)
818 		return;
819 
820 	err = request_firmware(&fw, fw_name, &cp->pdev->dev);
821 	if (err) {
822 		pr_err("Failed to load firmware \"%s\"\n",
823 		       fw_name);
824 		return;
825 	}
826 	if (fw->size < 2) {
827 		pr_err("bogus length %zu in \"%s\"\n",
828 		       fw->size, fw_name);
829 		goto out;
830 	}
831 	cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
832 	cp->fw_size = fw->size - 2;
833 	cp->fw_data = vmalloc(cp->fw_size);
834 	if (!cp->fw_data)
835 		goto out;
836 	memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
837 out:
838 	release_firmware(fw);
839 }
840 
841 static void cas_saturn_firmware_load(struct cas *cp)
842 {
843 	int i;
844 
845 	if (!cp->fw_data)
846 		return;
847 
848 	cas_phy_powerdown(cp);
849 
850 	/* expanded memory access mode */
851 	cas_phy_write(cp, DP83065_MII_MEM, 0x0);
852 
853 	/* pointer configuration for new firmware */
854 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
855 	cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
856 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
857 	cas_phy_write(cp, DP83065_MII_REGD, 0x82);
858 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
859 	cas_phy_write(cp, DP83065_MII_REGD, 0x0);
860 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
861 	cas_phy_write(cp, DP83065_MII_REGD, 0x39);
862 
863 	/* download new firmware */
864 	cas_phy_write(cp, DP83065_MII_MEM, 0x1);
865 	cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
866 	for (i = 0; i < cp->fw_size; i++)
867 		cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
868 
869 	/* enable firmware */
870 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
871 	cas_phy_write(cp, DP83065_MII_REGD, 0x1);
872 }
873 
874 
875 /* phy initialization */
876 static void cas_phy_init(struct cas *cp)
877 {
878 	u16 val;
879 
880 	/* if we're in MII/GMII mode, set up phy */
881 	if (CAS_PHY_MII(cp->phy_type)) {
882 		writel(PCS_DATAPATH_MODE_MII,
883 		       cp->regs + REG_PCS_DATAPATH_MODE);
884 
885 		cas_mif_poll(cp, 0);
886 		cas_reset_mii_phy(cp); /* take out of isolate mode */
887 
888 		if (PHY_LUCENT_B0 == cp->phy_id) {
889 			/* workaround link up/down issue with lucent */
890 			cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
891 			cas_phy_write(cp, MII_BMCR, 0x00f1);
892 			cas_phy_write(cp, LUCENT_MII_REG, 0x0);
893 
894 		} else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
895 			/* workarounds for broadcom phy */
896 			cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
897 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
898 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
899 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
900 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
901 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
902 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
903 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
904 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
905 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
906 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
907 
908 		} else if (PHY_BROADCOM_5411 == cp->phy_id) {
909 			val = cas_phy_read(cp, BROADCOM_MII_REG4);
910 			val = cas_phy_read(cp, BROADCOM_MII_REG4);
911 			if (val & 0x0080) {
912 				/* link workaround */
913 				cas_phy_write(cp, BROADCOM_MII_REG4,
914 					      val & ~0x0080);
915 			}
916 
917 		} else if (cp->cas_flags & CAS_FLAG_SATURN) {
918 			writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
919 			       SATURN_PCFG_FSI : 0x0,
920 			       cp->regs + REG_SATURN_PCFG);
921 
922 			/* load firmware to address 10Mbps auto-negotiation
923 			 * issue. NOTE: this will need to be changed if the
924 			 * default firmware gets fixed.
925 			 */
926 			if (PHY_NS_DP83065 == cp->phy_id) {
927 				cas_saturn_firmware_load(cp);
928 			}
929 			cas_phy_powerup(cp);
930 		}
931 
932 		/* advertise capabilities */
933 		val = cas_phy_read(cp, MII_BMCR);
934 		val &= ~BMCR_ANENABLE;
935 		cas_phy_write(cp, MII_BMCR, val);
936 		udelay(10);
937 
938 		cas_phy_write(cp, MII_ADVERTISE,
939 			      cas_phy_read(cp, MII_ADVERTISE) |
940 			      (ADVERTISE_10HALF | ADVERTISE_10FULL |
941 			       ADVERTISE_100HALF | ADVERTISE_100FULL |
942 			       CAS_ADVERTISE_PAUSE |
943 			       CAS_ADVERTISE_ASYM_PAUSE));
944 
945 		if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
946 			/* make sure that we don't advertise half
947 			 * duplex to avoid a chip issue
948 			 */
949 			val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
950 			val &= ~CAS_ADVERTISE_1000HALF;
951 			val |= CAS_ADVERTISE_1000FULL;
952 			cas_phy_write(cp, CAS_MII_1000_CTRL, val);
953 		}
954 
955 	} else {
956 		/* reset pcs for serdes */
957 		u32 val;
958 		int limit;
959 
960 		writel(PCS_DATAPATH_MODE_SERDES,
961 		       cp->regs + REG_PCS_DATAPATH_MODE);
962 
963 		/* enable serdes pins on saturn */
964 		if (cp->cas_flags & CAS_FLAG_SATURN)
965 			writel(0, cp->regs + REG_SATURN_PCFG);
966 
967 		/* Reset PCS unit. */
968 		val = readl(cp->regs + REG_PCS_MII_CTRL);
969 		val |= PCS_MII_RESET;
970 		writel(val, cp->regs + REG_PCS_MII_CTRL);
971 
972 		limit = STOP_TRIES;
973 		while (--limit > 0) {
974 			udelay(10);
975 			if ((readl(cp->regs + REG_PCS_MII_CTRL) &
976 			     PCS_MII_RESET) == 0)
977 				break;
978 		}
979 		if (limit <= 0)
980 			netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
981 				    readl(cp->regs + REG_PCS_STATE_MACHINE));
982 
983 		/* Make sure PCS is disabled while changing advertisement
984 		 * configuration.
985 		 */
986 		writel(0x0, cp->regs + REG_PCS_CFG);
987 
988 		/* Advertise all capabilities except half-duplex. */
989 		val  = readl(cp->regs + REG_PCS_MII_ADVERT);
990 		val &= ~PCS_MII_ADVERT_HD;
991 		val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
992 			PCS_MII_ADVERT_ASYM_PAUSE);
993 		writel(val, cp->regs + REG_PCS_MII_ADVERT);
994 
995 		/* enable PCS */
996 		writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
997 
998 		/* pcs workaround: enable sync detect */
999 		writel(PCS_SERDES_CTRL_SYNCD_EN,
1000 		       cp->regs + REG_PCS_SERDES_CTRL);
1001 	}
1002 }
1003 
1004 
1005 static int cas_pcs_link_check(struct cas *cp)
1006 {
1007 	u32 stat, state_machine;
1008 	int retval = 0;
1009 
1010 	/* The link status bit latches on zero, so you must
1011 	 * read it twice in such a case to see a transition
1012 	 * to the link being up.
1013 	 */
1014 	stat = readl(cp->regs + REG_PCS_MII_STATUS);
1015 	if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1016 		stat = readl(cp->regs + REG_PCS_MII_STATUS);
1017 
1018 	/* The remote-fault indication is only valid
1019 	 * when autoneg has completed.
1020 	 */
1021 	if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1022 		     PCS_MII_STATUS_REMOTE_FAULT)) ==
1023 	    (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1024 		netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1025 
1026 	/* work around link detection issue by querying the PCS state
1027 	 * machine directly.
1028 	 */
1029 	state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1030 	if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1031 		stat &= ~PCS_MII_STATUS_LINK_STATUS;
1032 	} else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1033 		stat |= PCS_MII_STATUS_LINK_STATUS;
1034 	}
1035 
1036 	if (stat & PCS_MII_STATUS_LINK_STATUS) {
1037 		if (cp->lstate != link_up) {
1038 			if (cp->opened) {
1039 				cp->lstate = link_up;
1040 				cp->link_transition = LINK_TRANSITION_LINK_UP;
1041 
1042 				cas_set_link_modes(cp);
1043 				netif_carrier_on(cp->dev);
1044 			}
1045 		}
1046 	} else if (cp->lstate == link_up) {
1047 		cp->lstate = link_down;
1048 		if (link_transition_timeout != 0 &&
1049 		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1050 		    !cp->link_transition_jiffies_valid) {
1051 			/*
1052 			 * force a reset, as a workaround for the
1053 			 * link-failure problem. May want to move this to a
1054 			 * point a bit earlier in the sequence. If we had
1055 			 * generated a reset a short time ago, we'll wait for
1056 			 * the link timer to check the status until a
1057 			 * timer expires (link_transistion_jiffies_valid is
1058 			 * true when the timer is running.)  Instead of using
1059 			 * a system timer, we just do a check whenever the
1060 			 * link timer is running - this clears the flag after
1061 			 * a suitable delay.
1062 			 */
1063 			retval = 1;
1064 			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1065 			cp->link_transition_jiffies = jiffies;
1066 			cp->link_transition_jiffies_valid = 1;
1067 		} else {
1068 			cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1069 		}
1070 		netif_carrier_off(cp->dev);
1071 		if (cp->opened)
1072 			netif_info(cp, link, cp->dev, "PCS link down\n");
1073 
1074 		/* Cassini only: if you force a mode, there can be
1075 		 * sync problems on link down. to fix that, the following
1076 		 * things need to be checked:
1077 		 * 1) read serialink state register
1078 		 * 2) read pcs status register to verify link down.
1079 		 * 3) if link down and serial link == 0x03, then you need
1080 		 *    to global reset the chip.
1081 		 */
1082 		if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1083 			/* should check to see if we're in a forced mode */
1084 			stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1085 			if (stat == 0x03)
1086 				return 1;
1087 		}
1088 	} else if (cp->lstate == link_down) {
1089 		if (link_transition_timeout != 0 &&
1090 		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1091 		    !cp->link_transition_jiffies_valid) {
1092 			/* force a reset, as a workaround for the
1093 			 * link-failure problem.  May want to move
1094 			 * this to a point a bit earlier in the
1095 			 * sequence.
1096 			 */
1097 			retval = 1;
1098 			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1099 			cp->link_transition_jiffies = jiffies;
1100 			cp->link_transition_jiffies_valid = 1;
1101 		} else {
1102 			cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1103 		}
1104 	}
1105 
1106 	return retval;
1107 }
1108 
1109 static int cas_pcs_interrupt(struct net_device *dev,
1110 			     struct cas *cp, u32 status)
1111 {
1112 	u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1113 
1114 	if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1115 		return 0;
1116 	return cas_pcs_link_check(cp);
1117 }
1118 
1119 static int cas_txmac_interrupt(struct net_device *dev,
1120 			       struct cas *cp, u32 status)
1121 {
1122 	u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1123 
1124 	if (!txmac_stat)
1125 		return 0;
1126 
1127 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1128 		     "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1129 
1130 	/* Defer timer expiration is quite normal,
1131 	 * don't even log the event.
1132 	 */
1133 	if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1134 	    !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1135 		return 0;
1136 
1137 	spin_lock(&cp->stat_lock[0]);
1138 	if (txmac_stat & MAC_TX_UNDERRUN) {
1139 		netdev_err(dev, "TX MAC xmit underrun\n");
1140 		cp->net_stats[0].tx_fifo_errors++;
1141 	}
1142 
1143 	if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1144 		netdev_err(dev, "TX MAC max packet size error\n");
1145 		cp->net_stats[0].tx_errors++;
1146 	}
1147 
1148 	/* The rest are all cases of one of the 16-bit TX
1149 	 * counters expiring.
1150 	 */
1151 	if (txmac_stat & MAC_TX_COLL_NORMAL)
1152 		cp->net_stats[0].collisions += 0x10000;
1153 
1154 	if (txmac_stat & MAC_TX_COLL_EXCESS) {
1155 		cp->net_stats[0].tx_aborted_errors += 0x10000;
1156 		cp->net_stats[0].collisions += 0x10000;
1157 	}
1158 
1159 	if (txmac_stat & MAC_TX_COLL_LATE) {
1160 		cp->net_stats[0].tx_aborted_errors += 0x10000;
1161 		cp->net_stats[0].collisions += 0x10000;
1162 	}
1163 	spin_unlock(&cp->stat_lock[0]);
1164 
1165 	/* We do not keep track of MAC_TX_COLL_FIRST and
1166 	 * MAC_TX_PEAK_ATTEMPTS events.
1167 	 */
1168 	return 0;
1169 }
1170 
1171 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1172 {
1173 	cas_hp_inst_t *inst;
1174 	u32 val;
1175 	int i;
1176 
1177 	i = 0;
1178 	while ((inst = firmware) && inst->note) {
1179 		writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1180 
1181 		val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1182 		val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1183 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1184 
1185 		val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1186 		val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1187 		val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1188 		val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1189 		val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1190 		val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1191 		val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1192 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1193 
1194 		val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1195 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1196 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1197 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1198 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1199 		++firmware;
1200 		++i;
1201 	}
1202 }
1203 
1204 static void cas_init_rx_dma(struct cas *cp)
1205 {
1206 	u64 desc_dma = cp->block_dvma;
1207 	u32 val;
1208 	int i, size;
1209 
1210 	/* rx free descriptors */
1211 	val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1212 	val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1213 	val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1214 	if ((N_RX_DESC_RINGS > 1) &&
1215 	    (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1216 		val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1217 	writel(val, cp->regs + REG_RX_CFG);
1218 
1219 	val = (unsigned long) cp->init_rxds[0] -
1220 		(unsigned long) cp->init_block;
1221 	writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1222 	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1223 	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1224 
1225 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1226 		/* rx desc 2 is for IPSEC packets. however,
1227 		 * we don't it that for that purpose.
1228 		 */
1229 		val = (unsigned long) cp->init_rxds[1] -
1230 			(unsigned long) cp->init_block;
1231 		writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1232 		writel((desc_dma + val) & 0xffffffff, cp->regs +
1233 		       REG_PLUS_RX_DB1_LOW);
1234 		writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1235 		       REG_PLUS_RX_KICK1);
1236 	}
1237 
1238 	/* rx completion registers */
1239 	val = (unsigned long) cp->init_rxcs[0] -
1240 		(unsigned long) cp->init_block;
1241 	writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1242 	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1243 
1244 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1245 		/* rx comp 2-4 */
1246 		for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1247 			val = (unsigned long) cp->init_rxcs[i] -
1248 				(unsigned long) cp->init_block;
1249 			writel((desc_dma + val) >> 32, cp->regs +
1250 			       REG_PLUS_RX_CBN_HI(i));
1251 			writel((desc_dma + val) & 0xffffffff, cp->regs +
1252 			       REG_PLUS_RX_CBN_LOW(i));
1253 		}
1254 	}
1255 
1256 	/* read selective clear regs to prevent spurious interrupts
1257 	 * on reset because complete == kick.
1258 	 * selective clear set up to prevent interrupts on resets
1259 	 */
1260 	readl(cp->regs + REG_INTR_STATUS_ALIAS);
1261 	writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1262 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1263 		for (i = 1; i < N_RX_COMP_RINGS; i++)
1264 			readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1265 
1266 		/* 2 is different from 3 and 4 */
1267 		if (N_RX_COMP_RINGS > 1)
1268 			writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1269 			       cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1270 
1271 		for (i = 2; i < N_RX_COMP_RINGS; i++)
1272 			writel(INTR_RX_DONE_ALT,
1273 			       cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1274 	}
1275 
1276 	/* set up pause thresholds */
1277 	val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1278 			cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1279 	val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1280 			cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1281 	writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1282 
1283 	/* zero out dma reassembly buffers */
1284 	for (i = 0; i < 64; i++) {
1285 		writel(i, cp->regs + REG_RX_TABLE_ADDR);
1286 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1287 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1288 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1289 	}
1290 
1291 	/* make sure address register is 0 for normal operation */
1292 	writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1293 	writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1294 
1295 	/* interrupt mitigation */
1296 #ifdef USE_RX_BLANK
1297 	val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1298 	val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1299 	writel(val, cp->regs + REG_RX_BLANK);
1300 #else
1301 	writel(0x0, cp->regs + REG_RX_BLANK);
1302 #endif
1303 
1304 	/* interrupt generation as a function of low water marks for
1305 	 * free desc and completion entries. these are used to trigger
1306 	 * housekeeping for rx descs. we don't use the free interrupt
1307 	 * as it's not very useful
1308 	 */
1309 	/* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1310 	val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1311 	writel(val, cp->regs + REG_RX_AE_THRESH);
1312 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1313 		val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1314 		writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1315 	}
1316 
1317 	/* Random early detect registers. useful for congestion avoidance.
1318 	 * this should be tunable.
1319 	 */
1320 	writel(0x0, cp->regs + REG_RX_RED);
1321 
1322 	/* receive page sizes. default == 2K (0x800) */
1323 	val = 0;
1324 	if (cp->page_size == 0x1000)
1325 		val = 0x1;
1326 	else if (cp->page_size == 0x2000)
1327 		val = 0x2;
1328 	else if (cp->page_size == 0x4000)
1329 		val = 0x3;
1330 
1331 	/* round mtu + offset. constrain to page size. */
1332 	size = cp->dev->mtu + 64;
1333 	if (size > cp->page_size)
1334 		size = cp->page_size;
1335 
1336 	if (size <= 0x400)
1337 		i = 0x0;
1338 	else if (size <= 0x800)
1339 		i = 0x1;
1340 	else if (size <= 0x1000)
1341 		i = 0x2;
1342 	else
1343 		i = 0x3;
1344 
1345 	cp->mtu_stride = 1 << (i + 10);
1346 	val  = CAS_BASE(RX_PAGE_SIZE, val);
1347 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1348 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1349 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1350 	writel(val, cp->regs + REG_RX_PAGE_SIZE);
1351 
1352 	/* enable the header parser if desired */
1353 	if (CAS_HP_FIRMWARE == cas_prog_null)
1354 		return;
1355 
1356 	val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1357 	val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1358 	val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1359 	writel(val, cp->regs + REG_HP_CFG);
1360 }
1361 
1362 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1363 {
1364 	memset(rxc, 0, sizeof(*rxc));
1365 	rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1366 }
1367 
1368 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1369  * flipping is protected by the fact that the chip will not
1370  * hand back the same page index while it's being processed.
1371  */
1372 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1373 {
1374 	cas_page_t *page = cp->rx_pages[1][index];
1375 	cas_page_t *new;
1376 
1377 	if (page_count(page->buffer) == 1)
1378 		return page;
1379 
1380 	new = cas_page_dequeue(cp);
1381 	if (new) {
1382 		spin_lock(&cp->rx_inuse_lock);
1383 		list_add(&page->list, &cp->rx_inuse_list);
1384 		spin_unlock(&cp->rx_inuse_lock);
1385 	}
1386 	return new;
1387 }
1388 
1389 /* this needs to be changed if we actually use the ENC RX DESC ring */
1390 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1391 				 const int index)
1392 {
1393 	cas_page_t **page0 = cp->rx_pages[0];
1394 	cas_page_t **page1 = cp->rx_pages[1];
1395 
1396 	/* swap if buffer is in use */
1397 	if (page_count(page0[index]->buffer) > 1) {
1398 		cas_page_t *new = cas_page_spare(cp, index);
1399 		if (new) {
1400 			page1[index] = page0[index];
1401 			page0[index] = new;
1402 		}
1403 	}
1404 	RX_USED_SET(page0[index], 0);
1405 	return page0[index];
1406 }
1407 
1408 static void cas_clean_rxds(struct cas *cp)
1409 {
1410 	/* only clean ring 0 as ring 1 is used for spare buffers */
1411         struct cas_rx_desc *rxd = cp->init_rxds[0];
1412 	int i, size;
1413 
1414 	/* release all rx flows */
1415 	for (i = 0; i < N_RX_FLOWS; i++) {
1416 		struct sk_buff *skb;
1417 		while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1418 			cas_skb_release(skb);
1419 		}
1420 	}
1421 
1422 	/* initialize descriptors */
1423 	size = RX_DESC_RINGN_SIZE(0);
1424 	for (i = 0; i < size; i++) {
1425 		cas_page_t *page = cas_page_swap(cp, 0, i);
1426 		rxd[i].buffer = cpu_to_le64(page->dma_addr);
1427 		rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1428 					    CAS_BASE(RX_INDEX_RING, 0));
1429 	}
1430 
1431 	cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1432 	cp->rx_last[0] = 0;
1433 	cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1434 }
1435 
1436 static void cas_clean_rxcs(struct cas *cp)
1437 {
1438 	int i, j;
1439 
1440 	/* take ownership of rx comp descriptors */
1441 	memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1442 	memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1443 	for (i = 0; i < N_RX_COMP_RINGS; i++) {
1444 		struct cas_rx_comp *rxc = cp->init_rxcs[i];
1445 		for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1446 			cas_rxc_init(rxc + j);
1447 		}
1448 	}
1449 }
1450 
1451 #if 0
1452 /* When we get a RX fifo overflow, the RX unit is probably hung
1453  * so we do the following.
1454  *
1455  * If any part of the reset goes wrong, we return 1 and that causes the
1456  * whole chip to be reset.
1457  */
1458 static int cas_rxmac_reset(struct cas *cp)
1459 {
1460 	struct net_device *dev = cp->dev;
1461 	int limit;
1462 	u32 val;
1463 
1464 	/* First, reset MAC RX. */
1465 	writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1466 	for (limit = 0; limit < STOP_TRIES; limit++) {
1467 		if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1468 			break;
1469 		udelay(10);
1470 	}
1471 	if (limit == STOP_TRIES) {
1472 		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1473 		return 1;
1474 	}
1475 
1476 	/* Second, disable RX DMA. */
1477 	writel(0, cp->regs + REG_RX_CFG);
1478 	for (limit = 0; limit < STOP_TRIES; limit++) {
1479 		if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1480 			break;
1481 		udelay(10);
1482 	}
1483 	if (limit == STOP_TRIES) {
1484 		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1485 		return 1;
1486 	}
1487 
1488 	mdelay(5);
1489 
1490 	/* Execute RX reset command. */
1491 	writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1492 	for (limit = 0; limit < STOP_TRIES; limit++) {
1493 		if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1494 			break;
1495 		udelay(10);
1496 	}
1497 	if (limit == STOP_TRIES) {
1498 		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1499 		return 1;
1500 	}
1501 
1502 	/* reset driver rx state */
1503 	cas_clean_rxds(cp);
1504 	cas_clean_rxcs(cp);
1505 
1506 	/* Now, reprogram the rest of RX unit. */
1507 	cas_init_rx_dma(cp);
1508 
1509 	/* re-enable */
1510 	val = readl(cp->regs + REG_RX_CFG);
1511 	writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1512 	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1513 	val = readl(cp->regs + REG_MAC_RX_CFG);
1514 	writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1515 	return 0;
1516 }
1517 #endif
1518 
1519 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1520 			       u32 status)
1521 {
1522 	u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1523 
1524 	if (!stat)
1525 		return 0;
1526 
1527 	netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1528 
1529 	/* these are all rollovers */
1530 	spin_lock(&cp->stat_lock[0]);
1531 	if (stat & MAC_RX_ALIGN_ERR)
1532 		cp->net_stats[0].rx_frame_errors += 0x10000;
1533 
1534 	if (stat & MAC_RX_CRC_ERR)
1535 		cp->net_stats[0].rx_crc_errors += 0x10000;
1536 
1537 	if (stat & MAC_RX_LEN_ERR)
1538 		cp->net_stats[0].rx_length_errors += 0x10000;
1539 
1540 	if (stat & MAC_RX_OVERFLOW) {
1541 		cp->net_stats[0].rx_over_errors++;
1542 		cp->net_stats[0].rx_fifo_errors++;
1543 	}
1544 
1545 	/* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1546 	 * events.
1547 	 */
1548 	spin_unlock(&cp->stat_lock[0]);
1549 	return 0;
1550 }
1551 
1552 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1553 			     u32 status)
1554 {
1555 	u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1556 
1557 	if (!stat)
1558 		return 0;
1559 
1560 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1561 		     "mac interrupt, stat: 0x%x\n", stat);
1562 
1563 	/* This interrupt is just for pause frame and pause
1564 	 * tracking.  It is useful for diagnostics and debug
1565 	 * but probably by default we will mask these events.
1566 	 */
1567 	if (stat & MAC_CTRL_PAUSE_STATE)
1568 		cp->pause_entered++;
1569 
1570 	if (stat & MAC_CTRL_PAUSE_RECEIVED)
1571 		cp->pause_last_time_recvd = (stat >> 16);
1572 
1573 	return 0;
1574 }
1575 
1576 
1577 /* Must be invoked under cp->lock. */
1578 static inline int cas_mdio_link_not_up(struct cas *cp)
1579 {
1580 	u16 val;
1581 
1582 	switch (cp->lstate) {
1583 	case link_force_ret:
1584 		netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1585 		cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1586 		cp->timer_ticks = 5;
1587 		cp->lstate = link_force_ok;
1588 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1589 		break;
1590 
1591 	case link_aneg:
1592 		val = cas_phy_read(cp, MII_BMCR);
1593 
1594 		/* Try forced modes. we try things in the following order:
1595 		 * 1000 full -> 100 full/half -> 10 half
1596 		 */
1597 		val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1598 		val |= BMCR_FULLDPLX;
1599 		val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1600 			CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1601 		cas_phy_write(cp, MII_BMCR, val);
1602 		cp->timer_ticks = 5;
1603 		cp->lstate = link_force_try;
1604 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1605 		break;
1606 
1607 	case link_force_try:
1608 		/* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1609 		val = cas_phy_read(cp, MII_BMCR);
1610 		cp->timer_ticks = 5;
1611 		if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1612 			val &= ~CAS_BMCR_SPEED1000;
1613 			val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1614 			cas_phy_write(cp, MII_BMCR, val);
1615 			break;
1616 		}
1617 
1618 		if (val & BMCR_SPEED100) {
1619 			if (val & BMCR_FULLDPLX) /* fd failed */
1620 				val &= ~BMCR_FULLDPLX;
1621 			else { /* 100Mbps failed */
1622 				val &= ~BMCR_SPEED100;
1623 			}
1624 			cas_phy_write(cp, MII_BMCR, val);
1625 			break;
1626 		}
1627 	default:
1628 		break;
1629 	}
1630 	return 0;
1631 }
1632 
1633 
1634 /* must be invoked with cp->lock held */
1635 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1636 {
1637 	int restart;
1638 
1639 	if (bmsr & BMSR_LSTATUS) {
1640 		/* Ok, here we got a link. If we had it due to a forced
1641 		 * fallback, and we were configured for autoneg, we
1642 		 * retry a short autoneg pass. If you know your hub is
1643 		 * broken, use ethtool ;)
1644 		 */
1645 		if ((cp->lstate == link_force_try) &&
1646 		    (cp->link_cntl & BMCR_ANENABLE)) {
1647 			cp->lstate = link_force_ret;
1648 			cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1649 			cas_mif_poll(cp, 0);
1650 			cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1651 			cp->timer_ticks = 5;
1652 			if (cp->opened)
1653 				netif_info(cp, link, cp->dev,
1654 					   "Got link after fallback, retrying autoneg once...\n");
1655 			cas_phy_write(cp, MII_BMCR,
1656 				      cp->link_fcntl | BMCR_ANENABLE |
1657 				      BMCR_ANRESTART);
1658 			cas_mif_poll(cp, 1);
1659 
1660 		} else if (cp->lstate != link_up) {
1661 			cp->lstate = link_up;
1662 			cp->link_transition = LINK_TRANSITION_LINK_UP;
1663 
1664 			if (cp->opened) {
1665 				cas_set_link_modes(cp);
1666 				netif_carrier_on(cp->dev);
1667 			}
1668 		}
1669 		return 0;
1670 	}
1671 
1672 	/* link not up. if the link was previously up, we restart the
1673 	 * whole process
1674 	 */
1675 	restart = 0;
1676 	if (cp->lstate == link_up) {
1677 		cp->lstate = link_down;
1678 		cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1679 
1680 		netif_carrier_off(cp->dev);
1681 		if (cp->opened)
1682 			netif_info(cp, link, cp->dev, "Link down\n");
1683 		restart = 1;
1684 
1685 	} else if (++cp->timer_ticks > 10)
1686 		cas_mdio_link_not_up(cp);
1687 
1688 	return restart;
1689 }
1690 
1691 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1692 			     u32 status)
1693 {
1694 	u32 stat = readl(cp->regs + REG_MIF_STATUS);
1695 	u16 bmsr;
1696 
1697 	/* check for a link change */
1698 	if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1699 		return 0;
1700 
1701 	bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1702 	return cas_mii_link_check(cp, bmsr);
1703 }
1704 
1705 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1706 			     u32 status)
1707 {
1708 	u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1709 
1710 	if (!stat)
1711 		return 0;
1712 
1713 	netdev_err(dev, "PCI error [%04x:%04x]",
1714 		   stat, readl(cp->regs + REG_BIM_DIAG));
1715 
1716 	/* cassini+ has this reserved */
1717 	if ((stat & PCI_ERR_BADACK) &&
1718 	    ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1719 		pr_cont(" <No ACK64# during ABS64 cycle>");
1720 
1721 	if (stat & PCI_ERR_DTRTO)
1722 		pr_cont(" <Delayed transaction timeout>");
1723 	if (stat & PCI_ERR_OTHER)
1724 		pr_cont(" <other>");
1725 	if (stat & PCI_ERR_BIM_DMA_WRITE)
1726 		pr_cont(" <BIM DMA 0 write req>");
1727 	if (stat & PCI_ERR_BIM_DMA_READ)
1728 		pr_cont(" <BIM DMA 0 read req>");
1729 	pr_cont("\n");
1730 
1731 	if (stat & PCI_ERR_OTHER) {
1732 		u16 cfg;
1733 
1734 		/* Interrogate PCI config space for the
1735 		 * true cause.
1736 		 */
1737 		pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1738 		netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1739 		if (cfg & PCI_STATUS_PARITY)
1740 			netdev_err(dev, "PCI parity error detected\n");
1741 		if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1742 			netdev_err(dev, "PCI target abort\n");
1743 		if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1744 			netdev_err(dev, "PCI master acks target abort\n");
1745 		if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1746 			netdev_err(dev, "PCI master abort\n");
1747 		if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1748 			netdev_err(dev, "PCI system error SERR#\n");
1749 		if (cfg & PCI_STATUS_DETECTED_PARITY)
1750 			netdev_err(dev, "PCI parity error\n");
1751 
1752 		/* Write the error bits back to clear them. */
1753 		cfg &= (PCI_STATUS_PARITY |
1754 			PCI_STATUS_SIG_TARGET_ABORT |
1755 			PCI_STATUS_REC_TARGET_ABORT |
1756 			PCI_STATUS_REC_MASTER_ABORT |
1757 			PCI_STATUS_SIG_SYSTEM_ERROR |
1758 			PCI_STATUS_DETECTED_PARITY);
1759 		pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1760 	}
1761 
1762 	/* For all PCI errors, we should reset the chip. */
1763 	return 1;
1764 }
1765 
1766 /* All non-normal interrupt conditions get serviced here.
1767  * Returns non-zero if we should just exit the interrupt
1768  * handler right now (ie. if we reset the card which invalidates
1769  * all of the other original irq status bits).
1770  */
1771 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1772 			    u32 status)
1773 {
1774 	if (status & INTR_RX_TAG_ERROR) {
1775 		/* corrupt RX tag framing */
1776 		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1777 			     "corrupt rx tag framing\n");
1778 		spin_lock(&cp->stat_lock[0]);
1779 		cp->net_stats[0].rx_errors++;
1780 		spin_unlock(&cp->stat_lock[0]);
1781 		goto do_reset;
1782 	}
1783 
1784 	if (status & INTR_RX_LEN_MISMATCH) {
1785 		/* length mismatch. */
1786 		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1787 			     "length mismatch for rx frame\n");
1788 		spin_lock(&cp->stat_lock[0]);
1789 		cp->net_stats[0].rx_errors++;
1790 		spin_unlock(&cp->stat_lock[0]);
1791 		goto do_reset;
1792 	}
1793 
1794 	if (status & INTR_PCS_STATUS) {
1795 		if (cas_pcs_interrupt(dev, cp, status))
1796 			goto do_reset;
1797 	}
1798 
1799 	if (status & INTR_TX_MAC_STATUS) {
1800 		if (cas_txmac_interrupt(dev, cp, status))
1801 			goto do_reset;
1802 	}
1803 
1804 	if (status & INTR_RX_MAC_STATUS) {
1805 		if (cas_rxmac_interrupt(dev, cp, status))
1806 			goto do_reset;
1807 	}
1808 
1809 	if (status & INTR_MAC_CTRL_STATUS) {
1810 		if (cas_mac_interrupt(dev, cp, status))
1811 			goto do_reset;
1812 	}
1813 
1814 	if (status & INTR_MIF_STATUS) {
1815 		if (cas_mif_interrupt(dev, cp, status))
1816 			goto do_reset;
1817 	}
1818 
1819 	if (status & INTR_PCI_ERROR_STATUS) {
1820 		if (cas_pci_interrupt(dev, cp, status))
1821 			goto do_reset;
1822 	}
1823 	return 0;
1824 
1825 do_reset:
1826 #if 1
1827 	atomic_inc(&cp->reset_task_pending);
1828 	atomic_inc(&cp->reset_task_pending_all);
1829 	netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1830 	schedule_work(&cp->reset_task);
1831 #else
1832 	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1833 	netdev_err(dev, "reset called in cas_abnormal_irq\n");
1834 	schedule_work(&cp->reset_task);
1835 #endif
1836 	return 1;
1837 }
1838 
1839 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1840  *       determining whether to do a netif_stop/wakeup
1841  */
1842 #define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1843 #define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1844 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1845 				  const int len)
1846 {
1847 	unsigned long off = addr + len;
1848 
1849 	if (CAS_TABORT(cp) == 1)
1850 		return 0;
1851 	if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1852 		return 0;
1853 	return TX_TARGET_ABORT_LEN;
1854 }
1855 
1856 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1857 {
1858 	struct cas_tx_desc *txds;
1859 	struct sk_buff **skbs;
1860 	struct net_device *dev = cp->dev;
1861 	int entry, count;
1862 
1863 	spin_lock(&cp->tx_lock[ring]);
1864 	txds = cp->init_txds[ring];
1865 	skbs = cp->tx_skbs[ring];
1866 	entry = cp->tx_old[ring];
1867 
1868 	count = TX_BUFF_COUNT(ring, entry, limit);
1869 	while (entry != limit) {
1870 		struct sk_buff *skb = skbs[entry];
1871 		dma_addr_t daddr;
1872 		u32 dlen;
1873 		int frag;
1874 
1875 		if (!skb) {
1876 			/* this should never occur */
1877 			entry = TX_DESC_NEXT(ring, entry);
1878 			continue;
1879 		}
1880 
1881 		/* however, we might get only a partial skb release. */
1882 		count -= skb_shinfo(skb)->nr_frags +
1883 			+ cp->tx_tiny_use[ring][entry].nbufs + 1;
1884 		if (count < 0)
1885 			break;
1886 
1887 		netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1888 			     "tx[%d] done, slot %d\n", ring, entry);
1889 
1890 		skbs[entry] = NULL;
1891 		cp->tx_tiny_use[ring][entry].nbufs = 0;
1892 
1893 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1894 			struct cas_tx_desc *txd = txds + entry;
1895 
1896 			daddr = le64_to_cpu(txd->buffer);
1897 			dlen = CAS_VAL(TX_DESC_BUFLEN,
1898 				       le64_to_cpu(txd->control));
1899 			pci_unmap_page(cp->pdev, daddr, dlen,
1900 				       PCI_DMA_TODEVICE);
1901 			entry = TX_DESC_NEXT(ring, entry);
1902 
1903 			/* tiny buffer may follow */
1904 			if (cp->tx_tiny_use[ring][entry].used) {
1905 				cp->tx_tiny_use[ring][entry].used = 0;
1906 				entry = TX_DESC_NEXT(ring, entry);
1907 			}
1908 		}
1909 
1910 		spin_lock(&cp->stat_lock[ring]);
1911 		cp->net_stats[ring].tx_packets++;
1912 		cp->net_stats[ring].tx_bytes += skb->len;
1913 		spin_unlock(&cp->stat_lock[ring]);
1914 		dev_kfree_skb_irq(skb);
1915 	}
1916 	cp->tx_old[ring] = entry;
1917 
1918 	/* this is wrong for multiple tx rings. the net device needs
1919 	 * multiple queues for this to do the right thing.  we wait
1920 	 * for 2*packets to be available when using tiny buffers
1921 	 */
1922 	if (netif_queue_stopped(dev) &&
1923 	    (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1924 		netif_wake_queue(dev);
1925 	spin_unlock(&cp->tx_lock[ring]);
1926 }
1927 
1928 static void cas_tx(struct net_device *dev, struct cas *cp,
1929 		   u32 status)
1930 {
1931         int limit, ring;
1932 #ifdef USE_TX_COMPWB
1933 	u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1934 #endif
1935 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1936 		     "tx interrupt, status: 0x%x, %llx\n",
1937 		     status, (unsigned long long)compwb);
1938 	/* process all the rings */
1939 	for (ring = 0; ring < N_TX_RINGS; ring++) {
1940 #ifdef USE_TX_COMPWB
1941 		/* use the completion writeback registers */
1942 		limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1943 			CAS_VAL(TX_COMPWB_LSB, compwb);
1944 		compwb = TX_COMPWB_NEXT(compwb);
1945 #else
1946 		limit = readl(cp->regs + REG_TX_COMPN(ring));
1947 #endif
1948 		if (cp->tx_old[ring] != limit)
1949 			cas_tx_ringN(cp, ring, limit);
1950 	}
1951 }
1952 
1953 
1954 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1955 			      int entry, const u64 *words,
1956 			      struct sk_buff **skbref)
1957 {
1958 	int dlen, hlen, len, i, alloclen;
1959 	int off, swivel = RX_SWIVEL_OFF_VAL;
1960 	struct cas_page *page;
1961 	struct sk_buff *skb;
1962 	void *addr, *crcaddr;
1963 	__sum16 csum;
1964 	char *p;
1965 
1966 	hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1967 	dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1968 	len  = hlen + dlen;
1969 
1970 	if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1971 		alloclen = len;
1972 	else
1973 		alloclen = max(hlen, RX_COPY_MIN);
1974 
1975 	skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1976 	if (skb == NULL)
1977 		return -1;
1978 
1979 	*skbref = skb;
1980 	skb_reserve(skb, swivel);
1981 
1982 	p = skb->data;
1983 	addr = crcaddr = NULL;
1984 	if (hlen) { /* always copy header pages */
1985 		i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1986 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1987 		off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1988 			swivel;
1989 
1990 		i = hlen;
1991 		if (!dlen) /* attach FCS */
1992 			i += cp->crc_size;
1993 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1994 				    PCI_DMA_FROMDEVICE);
1995 		addr = cas_page_map(page->buffer);
1996 		memcpy(p, addr + off, i);
1997 		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
1998 				    PCI_DMA_FROMDEVICE);
1999 		cas_page_unmap(addr);
2000 		RX_USED_ADD(page, 0x100);
2001 		p += hlen;
2002 		swivel = 0;
2003 	}
2004 
2005 
2006 	if (alloclen < (hlen + dlen)) {
2007 		skb_frag_t *frag = skb_shinfo(skb)->frags;
2008 
2009 		/* normal or jumbo packets. we use frags */
2010 		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2011 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2012 		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2013 
2014 		hlen = min(cp->page_size - off, dlen);
2015 		if (hlen < 0) {
2016 			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2017 				     "rx page overflow: %d\n", hlen);
2018 			dev_kfree_skb_irq(skb);
2019 			return -1;
2020 		}
2021 		i = hlen;
2022 		if (i == dlen)  /* attach FCS */
2023 			i += cp->crc_size;
2024 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2025 				    PCI_DMA_FROMDEVICE);
2026 
2027 		/* make sure we always copy a header */
2028 		swivel = 0;
2029 		if (p == (char *) skb->data) { /* not split */
2030 			addr = cas_page_map(page->buffer);
2031 			memcpy(p, addr + off, RX_COPY_MIN);
2032 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2033 					PCI_DMA_FROMDEVICE);
2034 			cas_page_unmap(addr);
2035 			off += RX_COPY_MIN;
2036 			swivel = RX_COPY_MIN;
2037 			RX_USED_ADD(page, cp->mtu_stride);
2038 		} else {
2039 			RX_USED_ADD(page, hlen);
2040 		}
2041 		skb_put(skb, alloclen);
2042 
2043 		skb_shinfo(skb)->nr_frags++;
2044 		skb->data_len += hlen - swivel;
2045 		skb->truesize += hlen - swivel;
2046 		skb->len      += hlen - swivel;
2047 
2048 		__skb_frag_set_page(frag, page->buffer);
2049 		__skb_frag_ref(frag);
2050 		frag->page_offset = off;
2051 		skb_frag_size_set(frag, hlen - swivel);
2052 
2053 		/* any more data? */
2054 		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2055 			hlen = dlen;
2056 			off = 0;
2057 
2058 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2059 			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2060 			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2061 					    hlen + cp->crc_size,
2062 					    PCI_DMA_FROMDEVICE);
2063 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2064 					    hlen + cp->crc_size,
2065 					    PCI_DMA_FROMDEVICE);
2066 
2067 			skb_shinfo(skb)->nr_frags++;
2068 			skb->data_len += hlen;
2069 			skb->len      += hlen;
2070 			frag++;
2071 
2072 			__skb_frag_set_page(frag, page->buffer);
2073 			__skb_frag_ref(frag);
2074 			frag->page_offset = 0;
2075 			skb_frag_size_set(frag, hlen);
2076 			RX_USED_ADD(page, hlen + cp->crc_size);
2077 		}
2078 
2079 		if (cp->crc_size) {
2080 			addr = cas_page_map(page->buffer);
2081 			crcaddr  = addr + off + hlen;
2082 		}
2083 
2084 	} else {
2085 		/* copying packet */
2086 		if (!dlen)
2087 			goto end_copy_pkt;
2088 
2089 		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2090 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2091 		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2092 		hlen = min(cp->page_size - off, dlen);
2093 		if (hlen < 0) {
2094 			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2095 				     "rx page overflow: %d\n", hlen);
2096 			dev_kfree_skb_irq(skb);
2097 			return -1;
2098 		}
2099 		i = hlen;
2100 		if (i == dlen) /* attach FCS */
2101 			i += cp->crc_size;
2102 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2103 				    PCI_DMA_FROMDEVICE);
2104 		addr = cas_page_map(page->buffer);
2105 		memcpy(p, addr + off, i);
2106 		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2107 				    PCI_DMA_FROMDEVICE);
2108 		cas_page_unmap(addr);
2109 		if (p == (char *) skb->data) /* not split */
2110 			RX_USED_ADD(page, cp->mtu_stride);
2111 		else
2112 			RX_USED_ADD(page, i);
2113 
2114 		/* any more data? */
2115 		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2116 			p += hlen;
2117 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2118 			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2119 			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2120 					    dlen + cp->crc_size,
2121 					    PCI_DMA_FROMDEVICE);
2122 			addr = cas_page_map(page->buffer);
2123 			memcpy(p, addr, dlen + cp->crc_size);
2124 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2125 					    dlen + cp->crc_size,
2126 					    PCI_DMA_FROMDEVICE);
2127 			cas_page_unmap(addr);
2128 			RX_USED_ADD(page, dlen + cp->crc_size);
2129 		}
2130 end_copy_pkt:
2131 		if (cp->crc_size) {
2132 			addr    = NULL;
2133 			crcaddr = skb->data + alloclen;
2134 		}
2135 		skb_put(skb, alloclen);
2136 	}
2137 
2138 	csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2139 	if (cp->crc_size) {
2140 		/* checksum includes FCS. strip it out. */
2141 		csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2142 					      csum_unfold(csum)));
2143 		if (addr)
2144 			cas_page_unmap(addr);
2145 	}
2146 	skb->protocol = eth_type_trans(skb, cp->dev);
2147 	if (skb->protocol == htons(ETH_P_IP)) {
2148 		skb->csum = csum_unfold(~csum);
2149 		skb->ip_summed = CHECKSUM_COMPLETE;
2150 	} else
2151 		skb_checksum_none_assert(skb);
2152 	return len;
2153 }
2154 
2155 
2156 /* we can handle up to 64 rx flows at a time. we do the same thing
2157  * as nonreassm except that we batch up the buffers.
2158  * NOTE: we currently just treat each flow as a bunch of packets that
2159  *       we pass up. a better way would be to coalesce the packets
2160  *       into a jumbo packet. to do that, we need to do the following:
2161  *       1) the first packet will have a clean split between header and
2162  *          data. save both.
2163  *       2) each time the next flow packet comes in, extend the
2164  *          data length and merge the checksums.
2165  *       3) on flow release, fix up the header.
2166  *       4) make sure the higher layer doesn't care.
2167  * because packets get coalesced, we shouldn't run into fragment count
2168  * issues.
2169  */
2170 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2171 				   struct sk_buff *skb)
2172 {
2173 	int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2174 	struct sk_buff_head *flow = &cp->rx_flows[flowid];
2175 
2176 	/* this is protected at a higher layer, so no need to
2177 	 * do any additional locking here. stick the buffer
2178 	 * at the end.
2179 	 */
2180 	__skb_queue_tail(flow, skb);
2181 	if (words[0] & RX_COMP1_RELEASE_FLOW) {
2182 		while ((skb = __skb_dequeue(flow))) {
2183 			cas_skb_release(skb);
2184 		}
2185 	}
2186 }
2187 
2188 /* put rx descriptor back on ring. if a buffer is in use by a higher
2189  * layer, this will need to put in a replacement.
2190  */
2191 static void cas_post_page(struct cas *cp, const int ring, const int index)
2192 {
2193 	cas_page_t *new;
2194 	int entry;
2195 
2196 	entry = cp->rx_old[ring];
2197 
2198 	new = cas_page_swap(cp, ring, index);
2199 	cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2200 	cp->init_rxds[ring][entry].index  =
2201 		cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2202 			    CAS_BASE(RX_INDEX_RING, ring));
2203 
2204 	entry = RX_DESC_ENTRY(ring, entry + 1);
2205 	cp->rx_old[ring] = entry;
2206 
2207 	if (entry % 4)
2208 		return;
2209 
2210 	if (ring == 0)
2211 		writel(entry, cp->regs + REG_RX_KICK);
2212 	else if ((N_RX_DESC_RINGS > 1) &&
2213 		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2214 		writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2215 }
2216 
2217 
2218 /* only when things are bad */
2219 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2220 {
2221 	unsigned int entry, last, count, released;
2222 	int cluster;
2223 	cas_page_t **page = cp->rx_pages[ring];
2224 
2225 	entry = cp->rx_old[ring];
2226 
2227 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2228 		     "rxd[%d] interrupt, done: %d\n", ring, entry);
2229 
2230 	cluster = -1;
2231 	count = entry & 0x3;
2232 	last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2233 	released = 0;
2234 	while (entry != last) {
2235 		/* make a new buffer if it's still in use */
2236 		if (page_count(page[entry]->buffer) > 1) {
2237 			cas_page_t *new = cas_page_dequeue(cp);
2238 			if (!new) {
2239 				/* let the timer know that we need to
2240 				 * do this again
2241 				 */
2242 				cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2243 				if (!timer_pending(&cp->link_timer))
2244 					mod_timer(&cp->link_timer, jiffies +
2245 						  CAS_LINK_FAST_TIMEOUT);
2246 				cp->rx_old[ring]  = entry;
2247 				cp->rx_last[ring] = num ? num - released : 0;
2248 				return -ENOMEM;
2249 			}
2250 			spin_lock(&cp->rx_inuse_lock);
2251 			list_add(&page[entry]->list, &cp->rx_inuse_list);
2252 			spin_unlock(&cp->rx_inuse_lock);
2253 			cp->init_rxds[ring][entry].buffer =
2254 				cpu_to_le64(new->dma_addr);
2255 			page[entry] = new;
2256 
2257 		}
2258 
2259 		if (++count == 4) {
2260 			cluster = entry;
2261 			count = 0;
2262 		}
2263 		released++;
2264 		entry = RX_DESC_ENTRY(ring, entry + 1);
2265 	}
2266 	cp->rx_old[ring] = entry;
2267 
2268 	if (cluster < 0)
2269 		return 0;
2270 
2271 	if (ring == 0)
2272 		writel(cluster, cp->regs + REG_RX_KICK);
2273 	else if ((N_RX_DESC_RINGS > 1) &&
2274 		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2275 		writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2276 	return 0;
2277 }
2278 
2279 
2280 /* process a completion ring. packets are set up in three basic ways:
2281  * small packets: should be copied header + data in single buffer.
2282  * large packets: header and data in a single buffer.
2283  * split packets: header in a separate buffer from data.
2284  *                data may be in multiple pages. data may be > 256
2285  *                bytes but in a single page.
2286  *
2287  * NOTE: RX page posting is done in this routine as well. while there's
2288  *       the capability of using multiple RX completion rings, it isn't
2289  *       really worthwhile due to the fact that the page posting will
2290  *       force serialization on the single descriptor ring.
2291  */
2292 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2293 {
2294 	struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2295 	int entry, drops;
2296 	int npackets = 0;
2297 
2298 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2299 		     "rx[%d] interrupt, done: %d/%d\n",
2300 		     ring,
2301 		     readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2302 
2303 	entry = cp->rx_new[ring];
2304 	drops = 0;
2305 	while (1) {
2306 		struct cas_rx_comp *rxc = rxcs + entry;
2307 		struct sk_buff *uninitialized_var(skb);
2308 		int type, len;
2309 		u64 words[4];
2310 		int i, dring;
2311 
2312 		words[0] = le64_to_cpu(rxc->word1);
2313 		words[1] = le64_to_cpu(rxc->word2);
2314 		words[2] = le64_to_cpu(rxc->word3);
2315 		words[3] = le64_to_cpu(rxc->word4);
2316 
2317 		/* don't touch if still owned by hw */
2318 		type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2319 		if (type == 0)
2320 			break;
2321 
2322 		/* hw hasn't cleared the zero bit yet */
2323 		if (words[3] & RX_COMP4_ZERO) {
2324 			break;
2325 		}
2326 
2327 		/* get info on the packet */
2328 		if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2329 			spin_lock(&cp->stat_lock[ring]);
2330 			cp->net_stats[ring].rx_errors++;
2331 			if (words[3] & RX_COMP4_LEN_MISMATCH)
2332 				cp->net_stats[ring].rx_length_errors++;
2333 			if (words[3] & RX_COMP4_BAD)
2334 				cp->net_stats[ring].rx_crc_errors++;
2335 			spin_unlock(&cp->stat_lock[ring]);
2336 
2337 			/* We'll just return it to Cassini. */
2338 		drop_it:
2339 			spin_lock(&cp->stat_lock[ring]);
2340 			++cp->net_stats[ring].rx_dropped;
2341 			spin_unlock(&cp->stat_lock[ring]);
2342 			goto next;
2343 		}
2344 
2345 		len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2346 		if (len < 0) {
2347 			++drops;
2348 			goto drop_it;
2349 		}
2350 
2351 		/* see if it's a flow re-assembly or not. the driver
2352 		 * itself handles release back up.
2353 		 */
2354 		if (RX_DONT_BATCH || (type == 0x2)) {
2355 			/* non-reassm: these always get released */
2356 			cas_skb_release(skb);
2357 		} else {
2358 			cas_rx_flow_pkt(cp, words, skb);
2359 		}
2360 
2361 		spin_lock(&cp->stat_lock[ring]);
2362 		cp->net_stats[ring].rx_packets++;
2363 		cp->net_stats[ring].rx_bytes += len;
2364 		spin_unlock(&cp->stat_lock[ring]);
2365 
2366 	next:
2367 		npackets++;
2368 
2369 		/* should it be released? */
2370 		if (words[0] & RX_COMP1_RELEASE_HDR) {
2371 			i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2372 			dring = CAS_VAL(RX_INDEX_RING, i);
2373 			i = CAS_VAL(RX_INDEX_NUM, i);
2374 			cas_post_page(cp, dring, i);
2375 		}
2376 
2377 		if (words[0] & RX_COMP1_RELEASE_DATA) {
2378 			i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2379 			dring = CAS_VAL(RX_INDEX_RING, i);
2380 			i = CAS_VAL(RX_INDEX_NUM, i);
2381 			cas_post_page(cp, dring, i);
2382 		}
2383 
2384 		if (words[0] & RX_COMP1_RELEASE_NEXT) {
2385 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2386 			dring = CAS_VAL(RX_INDEX_RING, i);
2387 			i = CAS_VAL(RX_INDEX_NUM, i);
2388 			cas_post_page(cp, dring, i);
2389 		}
2390 
2391 		/* skip to the next entry */
2392 		entry = RX_COMP_ENTRY(ring, entry + 1 +
2393 				      CAS_VAL(RX_COMP1_SKIP, words[0]));
2394 #ifdef USE_NAPI
2395 		if (budget && (npackets >= budget))
2396 			break;
2397 #endif
2398 	}
2399 	cp->rx_new[ring] = entry;
2400 
2401 	if (drops)
2402 		netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2403 	return npackets;
2404 }
2405 
2406 
2407 /* put completion entries back on the ring */
2408 static void cas_post_rxcs_ringN(struct net_device *dev,
2409 				struct cas *cp, int ring)
2410 {
2411 	struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2412 	int last, entry;
2413 
2414 	last = cp->rx_cur[ring];
2415 	entry = cp->rx_new[ring];
2416 	netif_printk(cp, intr, KERN_DEBUG, dev,
2417 		     "rxc[%d] interrupt, done: %d/%d\n",
2418 		     ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2419 
2420 	/* zero and re-mark descriptors */
2421 	while (last != entry) {
2422 		cas_rxc_init(rxc + last);
2423 		last = RX_COMP_ENTRY(ring, last + 1);
2424 	}
2425 	cp->rx_cur[ring] = last;
2426 
2427 	if (ring == 0)
2428 		writel(last, cp->regs + REG_RX_COMP_TAIL);
2429 	else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2430 		writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2431 }
2432 
2433 
2434 
2435 /* cassini can use all four PCI interrupts for the completion ring.
2436  * rings 3 and 4 are identical
2437  */
2438 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2439 static inline void cas_handle_irqN(struct net_device *dev,
2440 				   struct cas *cp, const u32 status,
2441 				   const int ring)
2442 {
2443 	if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2444 		cas_post_rxcs_ringN(dev, cp, ring);
2445 }
2446 
2447 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2448 {
2449 	struct net_device *dev = dev_id;
2450 	struct cas *cp = netdev_priv(dev);
2451 	unsigned long flags;
2452 	int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2453 	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2454 
2455 	/* check for shared irq */
2456 	if (status == 0)
2457 		return IRQ_NONE;
2458 
2459 	spin_lock_irqsave(&cp->lock, flags);
2460 	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2461 #ifdef USE_NAPI
2462 		cas_mask_intr(cp);
2463 		napi_schedule(&cp->napi);
2464 #else
2465 		cas_rx_ringN(cp, ring, 0);
2466 #endif
2467 		status &= ~INTR_RX_DONE_ALT;
2468 	}
2469 
2470 	if (status)
2471 		cas_handle_irqN(dev, cp, status, ring);
2472 	spin_unlock_irqrestore(&cp->lock, flags);
2473 	return IRQ_HANDLED;
2474 }
2475 #endif
2476 
2477 #ifdef USE_PCI_INTB
2478 /* everything but rx packets */
2479 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2480 {
2481 	if (status & INTR_RX_BUF_UNAVAIL_1) {
2482 		/* Frame arrived, no free RX buffers available.
2483 		 * NOTE: we can get this on a link transition. */
2484 		cas_post_rxds_ringN(cp, 1, 0);
2485 		spin_lock(&cp->stat_lock[1]);
2486 		cp->net_stats[1].rx_dropped++;
2487 		spin_unlock(&cp->stat_lock[1]);
2488 	}
2489 
2490 	if (status & INTR_RX_BUF_AE_1)
2491 		cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2492 				    RX_AE_FREEN_VAL(1));
2493 
2494 	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2495 		cas_post_rxcs_ringN(cp, 1);
2496 }
2497 
2498 /* ring 2 handles a few more events than 3 and 4 */
2499 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2500 {
2501 	struct net_device *dev = dev_id;
2502 	struct cas *cp = netdev_priv(dev);
2503 	unsigned long flags;
2504 	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2505 
2506 	/* check for shared interrupt */
2507 	if (status == 0)
2508 		return IRQ_NONE;
2509 
2510 	spin_lock_irqsave(&cp->lock, flags);
2511 	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2512 #ifdef USE_NAPI
2513 		cas_mask_intr(cp);
2514 		napi_schedule(&cp->napi);
2515 #else
2516 		cas_rx_ringN(cp, 1, 0);
2517 #endif
2518 		status &= ~INTR_RX_DONE_ALT;
2519 	}
2520 	if (status)
2521 		cas_handle_irq1(cp, status);
2522 	spin_unlock_irqrestore(&cp->lock, flags);
2523 	return IRQ_HANDLED;
2524 }
2525 #endif
2526 
2527 static inline void cas_handle_irq(struct net_device *dev,
2528 				  struct cas *cp, const u32 status)
2529 {
2530 	/* housekeeping interrupts */
2531 	if (status & INTR_ERROR_MASK)
2532 		cas_abnormal_irq(dev, cp, status);
2533 
2534 	if (status & INTR_RX_BUF_UNAVAIL) {
2535 		/* Frame arrived, no free RX buffers available.
2536 		 * NOTE: we can get this on a link transition.
2537 		 */
2538 		cas_post_rxds_ringN(cp, 0, 0);
2539 		spin_lock(&cp->stat_lock[0]);
2540 		cp->net_stats[0].rx_dropped++;
2541 		spin_unlock(&cp->stat_lock[0]);
2542 	} else if (status & INTR_RX_BUF_AE) {
2543 		cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2544 				    RX_AE_FREEN_VAL(0));
2545 	}
2546 
2547 	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2548 		cas_post_rxcs_ringN(dev, cp, 0);
2549 }
2550 
2551 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2552 {
2553 	struct net_device *dev = dev_id;
2554 	struct cas *cp = netdev_priv(dev);
2555 	unsigned long flags;
2556 	u32 status = readl(cp->regs + REG_INTR_STATUS);
2557 
2558 	if (status == 0)
2559 		return IRQ_NONE;
2560 
2561 	spin_lock_irqsave(&cp->lock, flags);
2562 	if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2563 		cas_tx(dev, cp, status);
2564 		status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2565 	}
2566 
2567 	if (status & INTR_RX_DONE) {
2568 #ifdef USE_NAPI
2569 		cas_mask_intr(cp);
2570 		napi_schedule(&cp->napi);
2571 #else
2572 		cas_rx_ringN(cp, 0, 0);
2573 #endif
2574 		status &= ~INTR_RX_DONE;
2575 	}
2576 
2577 	if (status)
2578 		cas_handle_irq(dev, cp, status);
2579 	spin_unlock_irqrestore(&cp->lock, flags);
2580 	return IRQ_HANDLED;
2581 }
2582 
2583 
2584 #ifdef USE_NAPI
2585 static int cas_poll(struct napi_struct *napi, int budget)
2586 {
2587 	struct cas *cp = container_of(napi, struct cas, napi);
2588 	struct net_device *dev = cp->dev;
2589 	int i, enable_intr, credits;
2590 	u32 status = readl(cp->regs + REG_INTR_STATUS);
2591 	unsigned long flags;
2592 
2593 	spin_lock_irqsave(&cp->lock, flags);
2594 	cas_tx(dev, cp, status);
2595 	spin_unlock_irqrestore(&cp->lock, flags);
2596 
2597 	/* NAPI rx packets. we spread the credits across all of the
2598 	 * rxc rings
2599 	 *
2600 	 * to make sure we're fair with the work we loop through each
2601 	 * ring N_RX_COMP_RING times with a request of
2602 	 * budget / N_RX_COMP_RINGS
2603 	 */
2604 	enable_intr = 1;
2605 	credits = 0;
2606 	for (i = 0; i < N_RX_COMP_RINGS; i++) {
2607 		int j;
2608 		for (j = 0; j < N_RX_COMP_RINGS; j++) {
2609 			credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2610 			if (credits >= budget) {
2611 				enable_intr = 0;
2612 				goto rx_comp;
2613 			}
2614 		}
2615 	}
2616 
2617 rx_comp:
2618 	/* final rx completion */
2619 	spin_lock_irqsave(&cp->lock, flags);
2620 	if (status)
2621 		cas_handle_irq(dev, cp, status);
2622 
2623 #ifdef USE_PCI_INTB
2624 	if (N_RX_COMP_RINGS > 1) {
2625 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2626 		if (status)
2627 			cas_handle_irq1(dev, cp, status);
2628 	}
2629 #endif
2630 
2631 #ifdef USE_PCI_INTC
2632 	if (N_RX_COMP_RINGS > 2) {
2633 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2634 		if (status)
2635 			cas_handle_irqN(dev, cp, status, 2);
2636 	}
2637 #endif
2638 
2639 #ifdef USE_PCI_INTD
2640 	if (N_RX_COMP_RINGS > 3) {
2641 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2642 		if (status)
2643 			cas_handle_irqN(dev, cp, status, 3);
2644 	}
2645 #endif
2646 	spin_unlock_irqrestore(&cp->lock, flags);
2647 	if (enable_intr) {
2648 		napi_complete(napi);
2649 		cas_unmask_intr(cp);
2650 	}
2651 	return credits;
2652 }
2653 #endif
2654 
2655 #ifdef CONFIG_NET_POLL_CONTROLLER
2656 static void cas_netpoll(struct net_device *dev)
2657 {
2658 	struct cas *cp = netdev_priv(dev);
2659 
2660 	cas_disable_irq(cp, 0);
2661 	cas_interrupt(cp->pdev->irq, dev);
2662 	cas_enable_irq(cp, 0);
2663 
2664 #ifdef USE_PCI_INTB
2665 	if (N_RX_COMP_RINGS > 1) {
2666 		/* cas_interrupt1(); */
2667 	}
2668 #endif
2669 #ifdef USE_PCI_INTC
2670 	if (N_RX_COMP_RINGS > 2) {
2671 		/* cas_interruptN(); */
2672 	}
2673 #endif
2674 #ifdef USE_PCI_INTD
2675 	if (N_RX_COMP_RINGS > 3) {
2676 		/* cas_interruptN(); */
2677 	}
2678 #endif
2679 }
2680 #endif
2681 
2682 static void cas_tx_timeout(struct net_device *dev)
2683 {
2684 	struct cas *cp = netdev_priv(dev);
2685 
2686 	netdev_err(dev, "transmit timed out, resetting\n");
2687 	if (!cp->hw_running) {
2688 		netdev_err(dev, "hrm.. hw not running!\n");
2689 		return;
2690 	}
2691 
2692 	netdev_err(dev, "MIF_STATE[%08x]\n",
2693 		   readl(cp->regs + REG_MIF_STATE_MACHINE));
2694 
2695 	netdev_err(dev, "MAC_STATE[%08x]\n",
2696 		   readl(cp->regs + REG_MAC_STATE_MACHINE));
2697 
2698 	netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2699 		   readl(cp->regs + REG_TX_CFG),
2700 		   readl(cp->regs + REG_MAC_TX_STATUS),
2701 		   readl(cp->regs + REG_MAC_TX_CFG),
2702 		   readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2703 		   readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2704 		   readl(cp->regs + REG_TX_FIFO_READ_PTR),
2705 		   readl(cp->regs + REG_TX_SM_1),
2706 		   readl(cp->regs + REG_TX_SM_2));
2707 
2708 	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2709 		   readl(cp->regs + REG_RX_CFG),
2710 		   readl(cp->regs + REG_MAC_RX_STATUS),
2711 		   readl(cp->regs + REG_MAC_RX_CFG));
2712 
2713 	netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2714 		   readl(cp->regs + REG_HP_STATE_MACHINE),
2715 		   readl(cp->regs + REG_HP_STATUS0),
2716 		   readl(cp->regs + REG_HP_STATUS1),
2717 		   readl(cp->regs + REG_HP_STATUS2));
2718 
2719 #if 1
2720 	atomic_inc(&cp->reset_task_pending);
2721 	atomic_inc(&cp->reset_task_pending_all);
2722 	schedule_work(&cp->reset_task);
2723 #else
2724 	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2725 	schedule_work(&cp->reset_task);
2726 #endif
2727 }
2728 
2729 static inline int cas_intme(int ring, int entry)
2730 {
2731 	/* Algorithm: IRQ every 1/2 of descriptors. */
2732 	if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2733 		return 1;
2734 	return 0;
2735 }
2736 
2737 
2738 static void cas_write_txd(struct cas *cp, int ring, int entry,
2739 			  dma_addr_t mapping, int len, u64 ctrl, int last)
2740 {
2741 	struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2742 
2743 	ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2744 	if (cas_intme(ring, entry))
2745 		ctrl |= TX_DESC_INTME;
2746 	if (last)
2747 		ctrl |= TX_DESC_EOF;
2748 	txd->control = cpu_to_le64(ctrl);
2749 	txd->buffer = cpu_to_le64(mapping);
2750 }
2751 
2752 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2753 				const int entry)
2754 {
2755 	return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2756 }
2757 
2758 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2759 				     const int entry, const int tentry)
2760 {
2761 	cp->tx_tiny_use[ring][tentry].nbufs++;
2762 	cp->tx_tiny_use[ring][entry].used = 1;
2763 	return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2764 }
2765 
2766 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2767 				    struct sk_buff *skb)
2768 {
2769 	struct net_device *dev = cp->dev;
2770 	int entry, nr_frags, frag, tabort, tentry;
2771 	dma_addr_t mapping;
2772 	unsigned long flags;
2773 	u64 ctrl;
2774 	u32 len;
2775 
2776 	spin_lock_irqsave(&cp->tx_lock[ring], flags);
2777 
2778 	/* This is a hard error, log it. */
2779 	if (TX_BUFFS_AVAIL(cp, ring) <=
2780 	    CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2781 		netif_stop_queue(dev);
2782 		spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2783 		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2784 		return 1;
2785 	}
2786 
2787 	ctrl = 0;
2788 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2789 		const u64 csum_start_off = skb_checksum_start_offset(skb);
2790 		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2791 
2792 		ctrl =  TX_DESC_CSUM_EN |
2793 			CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2794 			CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2795 	}
2796 
2797 	entry = cp->tx_new[ring];
2798 	cp->tx_skbs[ring][entry] = skb;
2799 
2800 	nr_frags = skb_shinfo(skb)->nr_frags;
2801 	len = skb_headlen(skb);
2802 	mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2803 			       offset_in_page(skb->data), len,
2804 			       PCI_DMA_TODEVICE);
2805 
2806 	tentry = entry;
2807 	tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2808 	if (unlikely(tabort)) {
2809 		/* NOTE: len is always >  tabort */
2810 		cas_write_txd(cp, ring, entry, mapping, len - tabort,
2811 			      ctrl | TX_DESC_SOF, 0);
2812 		entry = TX_DESC_NEXT(ring, entry);
2813 
2814 		skb_copy_from_linear_data_offset(skb, len - tabort,
2815 			      tx_tiny_buf(cp, ring, entry), tabort);
2816 		mapping = tx_tiny_map(cp, ring, entry, tentry);
2817 		cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2818 			      (nr_frags == 0));
2819 	} else {
2820 		cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2821 			      TX_DESC_SOF, (nr_frags == 0));
2822 	}
2823 	entry = TX_DESC_NEXT(ring, entry);
2824 
2825 	for (frag = 0; frag < nr_frags; frag++) {
2826 		const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2827 
2828 		len = skb_frag_size(fragp);
2829 		mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2830 					   DMA_TO_DEVICE);
2831 
2832 		tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2833 		if (unlikely(tabort)) {
2834 			void *addr;
2835 
2836 			/* NOTE: len is always > tabort */
2837 			cas_write_txd(cp, ring, entry, mapping, len - tabort,
2838 				      ctrl, 0);
2839 			entry = TX_DESC_NEXT(ring, entry);
2840 
2841 			addr = cas_page_map(skb_frag_page(fragp));
2842 			memcpy(tx_tiny_buf(cp, ring, entry),
2843 			       addr + fragp->page_offset + len - tabort,
2844 			       tabort);
2845 			cas_page_unmap(addr);
2846 			mapping = tx_tiny_map(cp, ring, entry, tentry);
2847 			len     = tabort;
2848 		}
2849 
2850 		cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2851 			      (frag + 1 == nr_frags));
2852 		entry = TX_DESC_NEXT(ring, entry);
2853 	}
2854 
2855 	cp->tx_new[ring] = entry;
2856 	if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2857 		netif_stop_queue(dev);
2858 
2859 	netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2860 		     "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2861 		     ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2862 	writel(entry, cp->regs + REG_TX_KICKN(ring));
2863 	spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2864 	return 0;
2865 }
2866 
2867 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2868 {
2869 	struct cas *cp = netdev_priv(dev);
2870 
2871 	/* this is only used as a load-balancing hint, so it doesn't
2872 	 * need to be SMP safe
2873 	 */
2874 	static int ring;
2875 
2876 	if (skb_padto(skb, cp->min_frame_size))
2877 		return NETDEV_TX_OK;
2878 
2879 	/* XXX: we need some higher-level QoS hooks to steer packets to
2880 	 *      individual queues.
2881 	 */
2882 	if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2883 		return NETDEV_TX_BUSY;
2884 	return NETDEV_TX_OK;
2885 }
2886 
2887 static void cas_init_tx_dma(struct cas *cp)
2888 {
2889 	u64 desc_dma = cp->block_dvma;
2890 	unsigned long off;
2891 	u32 val;
2892 	int i;
2893 
2894 	/* set up tx completion writeback registers. must be 8-byte aligned */
2895 #ifdef USE_TX_COMPWB
2896 	off = offsetof(struct cas_init_block, tx_compwb);
2897 	writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2898 	writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2899 #endif
2900 
2901 	/* enable completion writebacks, enable paced mode,
2902 	 * disable read pipe, and disable pre-interrupt compwbs
2903 	 */
2904 	val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2905 		TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2906 		TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2907 		TX_CFG_INTR_COMPWB_DIS;
2908 
2909 	/* write out tx ring info and tx desc bases */
2910 	for (i = 0; i < MAX_TX_RINGS; i++) {
2911 		off = (unsigned long) cp->init_txds[i] -
2912 			(unsigned long) cp->init_block;
2913 
2914 		val |= CAS_TX_RINGN_BASE(i);
2915 		writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2916 		writel((desc_dma + off) & 0xffffffff, cp->regs +
2917 		       REG_TX_DBN_LOW(i));
2918 		/* don't zero out the kick register here as the system
2919 		 * will wedge
2920 		 */
2921 	}
2922 	writel(val, cp->regs + REG_TX_CFG);
2923 
2924 	/* program max burst sizes. these numbers should be different
2925 	 * if doing QoS.
2926 	 */
2927 #ifdef USE_QOS
2928 	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2929 	writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2930 	writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2931 	writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2932 #else
2933 	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2934 	writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2935 	writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2936 	writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2937 #endif
2938 }
2939 
2940 /* Must be invoked under cp->lock. */
2941 static inline void cas_init_dma(struct cas *cp)
2942 {
2943 	cas_init_tx_dma(cp);
2944 	cas_init_rx_dma(cp);
2945 }
2946 
2947 static void cas_process_mc_list(struct cas *cp)
2948 {
2949 	u16 hash_table[16];
2950 	u32 crc;
2951 	struct netdev_hw_addr *ha;
2952 	int i = 1;
2953 
2954 	memset(hash_table, 0, sizeof(hash_table));
2955 	netdev_for_each_mc_addr(ha, cp->dev) {
2956 		if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2957 			/* use the alternate mac address registers for the
2958 			 * first 15 multicast addresses
2959 			 */
2960 			writel((ha->addr[4] << 8) | ha->addr[5],
2961 			       cp->regs + REG_MAC_ADDRN(i*3 + 0));
2962 			writel((ha->addr[2] << 8) | ha->addr[3],
2963 			       cp->regs + REG_MAC_ADDRN(i*3 + 1));
2964 			writel((ha->addr[0] << 8) | ha->addr[1],
2965 			       cp->regs + REG_MAC_ADDRN(i*3 + 2));
2966 			i++;
2967 		}
2968 		else {
2969 			/* use hw hash table for the next series of
2970 			 * multicast addresses
2971 			 */
2972 			crc = ether_crc_le(ETH_ALEN, ha->addr);
2973 			crc >>= 24;
2974 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2975 		}
2976 	}
2977 	for (i = 0; i < 16; i++)
2978 		writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2979 }
2980 
2981 /* Must be invoked under cp->lock. */
2982 static u32 cas_setup_multicast(struct cas *cp)
2983 {
2984 	u32 rxcfg = 0;
2985 	int i;
2986 
2987 	if (cp->dev->flags & IFF_PROMISC) {
2988 		rxcfg |= MAC_RX_CFG_PROMISC_EN;
2989 
2990 	} else if (cp->dev->flags & IFF_ALLMULTI) {
2991 	    	for (i=0; i < 16; i++)
2992 			writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2993 		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2994 
2995 	} else {
2996 		cas_process_mc_list(cp);
2997 		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2998 	}
2999 
3000 	return rxcfg;
3001 }
3002 
3003 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3004 static void cas_clear_mac_err(struct cas *cp)
3005 {
3006 	writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3007 	writel(0, cp->regs + REG_MAC_COLL_FIRST);
3008 	writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3009 	writel(0, cp->regs + REG_MAC_COLL_LATE);
3010 	writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3011 	writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3012 	writel(0, cp->regs + REG_MAC_RECV_FRAME);
3013 	writel(0, cp->regs + REG_MAC_LEN_ERR);
3014 	writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3015 	writel(0, cp->regs + REG_MAC_FCS_ERR);
3016 	writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3017 }
3018 
3019 
3020 static void cas_mac_reset(struct cas *cp)
3021 {
3022 	int i;
3023 
3024 	/* do both TX and RX reset */
3025 	writel(0x1, cp->regs + REG_MAC_TX_RESET);
3026 	writel(0x1, cp->regs + REG_MAC_RX_RESET);
3027 
3028 	/* wait for TX */
3029 	i = STOP_TRIES;
3030 	while (i-- > 0) {
3031 		if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3032 			break;
3033 		udelay(10);
3034 	}
3035 
3036 	/* wait for RX */
3037 	i = STOP_TRIES;
3038 	while (i-- > 0) {
3039 		if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3040 			break;
3041 		udelay(10);
3042 	}
3043 
3044 	if (readl(cp->regs + REG_MAC_TX_RESET) |
3045 	    readl(cp->regs + REG_MAC_RX_RESET))
3046 		netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3047 			   readl(cp->regs + REG_MAC_TX_RESET),
3048 			   readl(cp->regs + REG_MAC_RX_RESET),
3049 			   readl(cp->regs + REG_MAC_STATE_MACHINE));
3050 }
3051 
3052 
3053 /* Must be invoked under cp->lock. */
3054 static void cas_init_mac(struct cas *cp)
3055 {
3056 	unsigned char *e = &cp->dev->dev_addr[0];
3057 	int i;
3058 	cas_mac_reset(cp);
3059 
3060 	/* setup core arbitration weight register */
3061 	writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3062 
3063 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3064 	/* set the infinite burst register for chips that don't have
3065 	 * pci issues.
3066 	 */
3067 	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3068 		writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3069 #endif
3070 
3071 	writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3072 
3073 	writel(0x00, cp->regs + REG_MAC_IPG0);
3074 	writel(0x08, cp->regs + REG_MAC_IPG1);
3075 	writel(0x04, cp->regs + REG_MAC_IPG2);
3076 
3077 	/* change later for 802.3z */
3078 	writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3079 
3080 	/* min frame + FCS */
3081 	writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3082 
3083 	/* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3084 	 * specify the maximum frame size to prevent RX tag errors on
3085 	 * oversized frames.
3086 	 */
3087 	writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3088 	       CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3089 			(CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3090 	       cp->regs + REG_MAC_FRAMESIZE_MAX);
3091 
3092 	/* NOTE: crc_size is used as a surrogate for half-duplex.
3093 	 * workaround saturn half-duplex issue by increasing preamble
3094 	 * size to 65 bytes.
3095 	 */
3096 	if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3097 		writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3098 	else
3099 		writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3100 	writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3101 	writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3102 	writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3103 
3104 	writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3105 
3106 	writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3107 	writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3108 	writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3109 	writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3110 	writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3111 
3112 	/* setup mac address in perfect filter array */
3113 	for (i = 0; i < 45; i++)
3114 		writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3115 
3116 	writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3117 	writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3118 	writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3119 
3120 	writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3121 	writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3122 	writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3123 
3124 	cp->mac_rx_cfg = cas_setup_multicast(cp);
3125 
3126 	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3127 	cas_clear_mac_err(cp);
3128 	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3129 
3130 	/* Setup MAC interrupts.  We want to get all of the interesting
3131 	 * counter expiration events, but we do not want to hear about
3132 	 * normal rx/tx as the DMA engine tells us that.
3133 	 */
3134 	writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3135 	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3136 
3137 	/* Don't enable even the PAUSE interrupts for now, we
3138 	 * make no use of those events other than to record them.
3139 	 */
3140 	writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3141 }
3142 
3143 /* Must be invoked under cp->lock. */
3144 static void cas_init_pause_thresholds(struct cas *cp)
3145 {
3146 	/* Calculate pause thresholds.  Setting the OFF threshold to the
3147 	 * full RX fifo size effectively disables PAUSE generation
3148 	 */
3149 	if (cp->rx_fifo_size <= (2 * 1024)) {
3150 		cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3151 	} else {
3152 		int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3153 		if (max_frame * 3 > cp->rx_fifo_size) {
3154 			cp->rx_pause_off = 7104;
3155 			cp->rx_pause_on  = 960;
3156 		} else {
3157 			int off = (cp->rx_fifo_size - (max_frame * 2));
3158 			int on = off - max_frame;
3159 			cp->rx_pause_off = off;
3160 			cp->rx_pause_on = on;
3161 		}
3162 	}
3163 }
3164 
3165 static int cas_vpd_match(const void __iomem *p, const char *str)
3166 {
3167 	int len = strlen(str) + 1;
3168 	int i;
3169 
3170 	for (i = 0; i < len; i++) {
3171 		if (readb(p + i) != str[i])
3172 			return 0;
3173 	}
3174 	return 1;
3175 }
3176 
3177 
3178 /* get the mac address by reading the vpd information in the rom.
3179  * also get the phy type and determine if there's an entropy generator.
3180  * NOTE: this is a bit convoluted for the following reasons:
3181  *  1) vpd info has order-dependent mac addresses for multinic cards
3182  *  2) the only way to determine the nic order is to use the slot
3183  *     number.
3184  *  3) fiber cards don't have bridges, so their slot numbers don't
3185  *     mean anything.
3186  *  4) we don't actually know we have a fiber card until after
3187  *     the mac addresses are parsed.
3188  */
3189 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3190 			    const int offset)
3191 {
3192 	void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3193 	void __iomem *base, *kstart;
3194 	int i, len;
3195 	int found = 0;
3196 #define VPD_FOUND_MAC        0x01
3197 #define VPD_FOUND_PHY        0x02
3198 
3199 	int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3200 	int mac_off  = 0;
3201 
3202 #if defined(CONFIG_SPARC)
3203 	const unsigned char *addr;
3204 #endif
3205 
3206 	/* give us access to the PROM */
3207 	writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3208 	       cp->regs + REG_BIM_LOCAL_DEV_EN);
3209 
3210 	/* check for an expansion rom */
3211 	if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3212 		goto use_random_mac_addr;
3213 
3214 	/* search for beginning of vpd */
3215 	base = NULL;
3216 	for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3217 		/* check for PCIR */
3218 		if ((readb(p + i + 0) == 0x50) &&
3219 		    (readb(p + i + 1) == 0x43) &&
3220 		    (readb(p + i + 2) == 0x49) &&
3221 		    (readb(p + i + 3) == 0x52)) {
3222 			base = p + (readb(p + i + 8) |
3223 				    (readb(p + i + 9) << 8));
3224 			break;
3225 		}
3226 	}
3227 
3228 	if (!base || (readb(base) != 0x82))
3229 		goto use_random_mac_addr;
3230 
3231 	i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3232 	while (i < EXPANSION_ROM_SIZE) {
3233 		if (readb(base + i) != 0x90) /* no vpd found */
3234 			goto use_random_mac_addr;
3235 
3236 		/* found a vpd field */
3237 		len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3238 
3239 		/* extract keywords */
3240 		kstart = base + i + 3;
3241 		p = kstart;
3242 		while ((p - kstart) < len) {
3243 			int klen = readb(p + 2);
3244 			int j;
3245 			char type;
3246 
3247 			p += 3;
3248 
3249 			/* look for the following things:
3250 			 * -- correct length == 29
3251 			 * 3 (type) + 2 (size) +
3252 			 * 18 (strlen("local-mac-address") + 1) +
3253 			 * 6 (mac addr)
3254 			 * -- VPD Instance 'I'
3255 			 * -- VPD Type Bytes 'B'
3256 			 * -- VPD data length == 6
3257 			 * -- property string == local-mac-address
3258 			 *
3259 			 * -- correct length == 24
3260 			 * 3 (type) + 2 (size) +
3261 			 * 12 (strlen("entropy-dev") + 1) +
3262 			 * 7 (strlen("vms110") + 1)
3263 			 * -- VPD Instance 'I'
3264 			 * -- VPD Type String 'B'
3265 			 * -- VPD data length == 7
3266 			 * -- property string == entropy-dev
3267 			 *
3268 			 * -- correct length == 18
3269 			 * 3 (type) + 2 (size) +
3270 			 * 9 (strlen("phy-type") + 1) +
3271 			 * 4 (strlen("pcs") + 1)
3272 			 * -- VPD Instance 'I'
3273 			 * -- VPD Type String 'S'
3274 			 * -- VPD data length == 4
3275 			 * -- property string == phy-type
3276 			 *
3277 			 * -- correct length == 23
3278 			 * 3 (type) + 2 (size) +
3279 			 * 14 (strlen("phy-interface") + 1) +
3280 			 * 4 (strlen("pcs") + 1)
3281 			 * -- VPD Instance 'I'
3282 			 * -- VPD Type String 'S'
3283 			 * -- VPD data length == 4
3284 			 * -- property string == phy-interface
3285 			 */
3286 			if (readb(p) != 'I')
3287 				goto next;
3288 
3289 			/* finally, check string and length */
3290 			type = readb(p + 3);
3291 			if (type == 'B') {
3292 				if ((klen == 29) && readb(p + 4) == 6 &&
3293 				    cas_vpd_match(p + 5,
3294 						  "local-mac-address")) {
3295 					if (mac_off++ > offset)
3296 						goto next;
3297 
3298 					/* set mac address */
3299 					for (j = 0; j < 6; j++)
3300 						dev_addr[j] =
3301 							readb(p + 23 + j);
3302 					goto found_mac;
3303 				}
3304 			}
3305 
3306 			if (type != 'S')
3307 				goto next;
3308 
3309 #ifdef USE_ENTROPY_DEV
3310 			if ((klen == 24) &&
3311 			    cas_vpd_match(p + 5, "entropy-dev") &&
3312 			    cas_vpd_match(p + 17, "vms110")) {
3313 				cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3314 				goto next;
3315 			}
3316 #endif
3317 
3318 			if (found & VPD_FOUND_PHY)
3319 				goto next;
3320 
3321 			if ((klen == 18) && readb(p + 4) == 4 &&
3322 			    cas_vpd_match(p + 5, "phy-type")) {
3323 				if (cas_vpd_match(p + 14, "pcs")) {
3324 					phy_type = CAS_PHY_SERDES;
3325 					goto found_phy;
3326 				}
3327 			}
3328 
3329 			if ((klen == 23) && readb(p + 4) == 4 &&
3330 			    cas_vpd_match(p + 5, "phy-interface")) {
3331 				if (cas_vpd_match(p + 19, "pcs")) {
3332 					phy_type = CAS_PHY_SERDES;
3333 					goto found_phy;
3334 				}
3335 			}
3336 found_mac:
3337 			found |= VPD_FOUND_MAC;
3338 			goto next;
3339 
3340 found_phy:
3341 			found |= VPD_FOUND_PHY;
3342 
3343 next:
3344 			p += klen;
3345 		}
3346 		i += len + 3;
3347 	}
3348 
3349 use_random_mac_addr:
3350 	if (found & VPD_FOUND_MAC)
3351 		goto done;
3352 
3353 #if defined(CONFIG_SPARC)
3354 	addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3355 	if (addr != NULL) {
3356 		memcpy(dev_addr, addr, ETH_ALEN);
3357 		goto done;
3358 	}
3359 #endif
3360 
3361 	/* Sun MAC prefix then 3 random bytes. */
3362 	pr_info("MAC address not found in ROM VPD\n");
3363 	dev_addr[0] = 0x08;
3364 	dev_addr[1] = 0x00;
3365 	dev_addr[2] = 0x20;
3366 	get_random_bytes(dev_addr + 3, 3);
3367 
3368 done:
3369 	writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3370 	return phy_type;
3371 }
3372 
3373 /* check pci invariants */
3374 static void cas_check_pci_invariants(struct cas *cp)
3375 {
3376 	struct pci_dev *pdev = cp->pdev;
3377 
3378 	cp->cas_flags = 0;
3379 	if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3380 	    (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3381 		if (pdev->revision >= CAS_ID_REVPLUS)
3382 			cp->cas_flags |= CAS_FLAG_REG_PLUS;
3383 		if (pdev->revision < CAS_ID_REVPLUS02u)
3384 			cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3385 
3386 		/* Original Cassini supports HW CSUM, but it's not
3387 		 * enabled by default as it can trigger TX hangs.
3388 		 */
3389 		if (pdev->revision < CAS_ID_REV2)
3390 			cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3391 	} else {
3392 		/* Only sun has original cassini chips.  */
3393 		cp->cas_flags |= CAS_FLAG_REG_PLUS;
3394 
3395 		/* We use a flag because the same phy might be externally
3396 		 * connected.
3397 		 */
3398 		if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3399 		    (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3400 			cp->cas_flags |= CAS_FLAG_SATURN;
3401 	}
3402 }
3403 
3404 
3405 static int cas_check_invariants(struct cas *cp)
3406 {
3407 	struct pci_dev *pdev = cp->pdev;
3408 	u32 cfg;
3409 	int i;
3410 
3411 	/* get page size for rx buffers. */
3412 	cp->page_order = 0;
3413 #ifdef USE_PAGE_ORDER
3414 	if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3415 		/* see if we can allocate larger pages */
3416 		struct page *page = alloc_pages(GFP_ATOMIC,
3417 						CAS_JUMBO_PAGE_SHIFT -
3418 						PAGE_SHIFT);
3419 		if (page) {
3420 			__free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3421 			cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3422 		} else {
3423 			printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3424 		}
3425 	}
3426 #endif
3427 	cp->page_size = (PAGE_SIZE << cp->page_order);
3428 
3429 	/* Fetch the FIFO configurations. */
3430 	cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3431 	cp->rx_fifo_size = RX_FIFO_SIZE;
3432 
3433 	/* finish phy determination. MDIO1 takes precedence over MDIO0 if
3434 	 * they're both connected.
3435 	 */
3436 	cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3437 					PCI_SLOT(pdev->devfn));
3438 	if (cp->phy_type & CAS_PHY_SERDES) {
3439 		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3440 		return 0; /* no more checking needed */
3441 	}
3442 
3443 	/* MII */
3444 	cfg = readl(cp->regs + REG_MIF_CFG);
3445 	if (cfg & MIF_CFG_MDIO_1) {
3446 		cp->phy_type = CAS_PHY_MII_MDIO1;
3447 	} else if (cfg & MIF_CFG_MDIO_0) {
3448 		cp->phy_type = CAS_PHY_MII_MDIO0;
3449 	}
3450 
3451 	cas_mif_poll(cp, 0);
3452 	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3453 
3454 	for (i = 0; i < 32; i++) {
3455 		u32 phy_id;
3456 		int j;
3457 
3458 		for (j = 0; j < 3; j++) {
3459 			cp->phy_addr = i;
3460 			phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3461 			phy_id |= cas_phy_read(cp, MII_PHYSID2);
3462 			if (phy_id && (phy_id != 0xFFFFFFFF)) {
3463 				cp->phy_id = phy_id;
3464 				goto done;
3465 			}
3466 		}
3467 	}
3468 	pr_err("MII phy did not respond [%08x]\n",
3469 	       readl(cp->regs + REG_MIF_STATE_MACHINE));
3470 	return -1;
3471 
3472 done:
3473 	/* see if we can do gigabit */
3474 	cfg = cas_phy_read(cp, MII_BMSR);
3475 	if ((cfg & CAS_BMSR_1000_EXTEND) &&
3476 	    cas_phy_read(cp, CAS_MII_1000_EXTEND))
3477 		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3478 	return 0;
3479 }
3480 
3481 /* Must be invoked under cp->lock. */
3482 static inline void cas_start_dma(struct cas *cp)
3483 {
3484 	int i;
3485 	u32 val;
3486 	int txfailed = 0;
3487 
3488 	/* enable dma */
3489 	val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3490 	writel(val, cp->regs + REG_TX_CFG);
3491 	val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3492 	writel(val, cp->regs + REG_RX_CFG);
3493 
3494 	/* enable the mac */
3495 	val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3496 	writel(val, cp->regs + REG_MAC_TX_CFG);
3497 	val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3498 	writel(val, cp->regs + REG_MAC_RX_CFG);
3499 
3500 	i = STOP_TRIES;
3501 	while (i-- > 0) {
3502 		val = readl(cp->regs + REG_MAC_TX_CFG);
3503 		if ((val & MAC_TX_CFG_EN))
3504 			break;
3505 		udelay(10);
3506 	}
3507 	if (i < 0) txfailed = 1;
3508 	i = STOP_TRIES;
3509 	while (i-- > 0) {
3510 		val = readl(cp->regs + REG_MAC_RX_CFG);
3511 		if ((val & MAC_RX_CFG_EN)) {
3512 			if (txfailed) {
3513 				netdev_err(cp->dev,
3514 					   "enabling mac failed [tx:%08x:%08x]\n",
3515 					   readl(cp->regs + REG_MIF_STATE_MACHINE),
3516 					   readl(cp->regs + REG_MAC_STATE_MACHINE));
3517 			}
3518 			goto enable_rx_done;
3519 		}
3520 		udelay(10);
3521 	}
3522 	netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3523 		   (txfailed ? "tx,rx" : "rx"),
3524 		   readl(cp->regs + REG_MIF_STATE_MACHINE),
3525 		   readl(cp->regs + REG_MAC_STATE_MACHINE));
3526 
3527 enable_rx_done:
3528 	cas_unmask_intr(cp); /* enable interrupts */
3529 	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3530 	writel(0, cp->regs + REG_RX_COMP_TAIL);
3531 
3532 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3533 		if (N_RX_DESC_RINGS > 1)
3534 			writel(RX_DESC_RINGN_SIZE(1) - 4,
3535 			       cp->regs + REG_PLUS_RX_KICK1);
3536 
3537 		for (i = 1; i < N_RX_COMP_RINGS; i++)
3538 			writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3539 	}
3540 }
3541 
3542 /* Must be invoked under cp->lock. */
3543 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3544 				   int *pause)
3545 {
3546 	u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3547 	*fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3548 	*pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3549 	if (val & PCS_MII_LPA_ASYM_PAUSE)
3550 		*pause |= 0x10;
3551 	*spd = 1000;
3552 }
3553 
3554 /* Must be invoked under cp->lock. */
3555 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3556 				   int *pause)
3557 {
3558 	u32 val;
3559 
3560 	*fd = 0;
3561 	*spd = 10;
3562 	*pause = 0;
3563 
3564 	/* use GMII registers */
3565 	val = cas_phy_read(cp, MII_LPA);
3566 	if (val & CAS_LPA_PAUSE)
3567 		*pause = 0x01;
3568 
3569 	if (val & CAS_LPA_ASYM_PAUSE)
3570 		*pause |= 0x10;
3571 
3572 	if (val & LPA_DUPLEX)
3573 		*fd = 1;
3574 	if (val & LPA_100)
3575 		*spd = 100;
3576 
3577 	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3578 		val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3579 		if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3580 			*spd = 1000;
3581 		if (val & CAS_LPA_1000FULL)
3582 			*fd = 1;
3583 	}
3584 }
3585 
3586 /* A link-up condition has occurred, initialize and enable the
3587  * rest of the chip.
3588  *
3589  * Must be invoked under cp->lock.
3590  */
3591 static void cas_set_link_modes(struct cas *cp)
3592 {
3593 	u32 val;
3594 	int full_duplex, speed, pause;
3595 
3596 	full_duplex = 0;
3597 	speed = 10;
3598 	pause = 0;
3599 
3600 	if (CAS_PHY_MII(cp->phy_type)) {
3601 		cas_mif_poll(cp, 0);
3602 		val = cas_phy_read(cp, MII_BMCR);
3603 		if (val & BMCR_ANENABLE) {
3604 			cas_read_mii_link_mode(cp, &full_duplex, &speed,
3605 					       &pause);
3606 		} else {
3607 			if (val & BMCR_FULLDPLX)
3608 				full_duplex = 1;
3609 
3610 			if (val & BMCR_SPEED100)
3611 				speed = 100;
3612 			else if (val & CAS_BMCR_SPEED1000)
3613 				speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3614 					1000 : 100;
3615 		}
3616 		cas_mif_poll(cp, 1);
3617 
3618 	} else {
3619 		val = readl(cp->regs + REG_PCS_MII_CTRL);
3620 		cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3621 		if ((val & PCS_MII_AUTONEG_EN) == 0) {
3622 			if (val & PCS_MII_CTRL_DUPLEX)
3623 				full_duplex = 1;
3624 		}
3625 	}
3626 
3627 	netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3628 		   speed, full_duplex ? "full" : "half");
3629 
3630 	val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3631 	if (CAS_PHY_MII(cp->phy_type)) {
3632 		val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3633 		if (!full_duplex)
3634 			val |= MAC_XIF_DISABLE_ECHO;
3635 	}
3636 	if (full_duplex)
3637 		val |= MAC_XIF_FDPLX_LED;
3638 	if (speed == 1000)
3639 		val |= MAC_XIF_GMII_MODE;
3640 	writel(val, cp->regs + REG_MAC_XIF_CFG);
3641 
3642 	/* deal with carrier and collision detect. */
3643 	val = MAC_TX_CFG_IPG_EN;
3644 	if (full_duplex) {
3645 		val |= MAC_TX_CFG_IGNORE_CARRIER;
3646 		val |= MAC_TX_CFG_IGNORE_COLL;
3647 	} else {
3648 #ifndef USE_CSMA_CD_PROTO
3649 		val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3650 		val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3651 #endif
3652 	}
3653 	/* val now set up for REG_MAC_TX_CFG */
3654 
3655 	/* If gigabit and half-duplex, enable carrier extension
3656 	 * mode.  increase slot time to 512 bytes as well.
3657 	 * else, disable it and make sure slot time is 64 bytes.
3658 	 * also activate checksum bug workaround
3659 	 */
3660 	if ((speed == 1000) && !full_duplex) {
3661 		writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3662 		       cp->regs + REG_MAC_TX_CFG);
3663 
3664 		val = readl(cp->regs + REG_MAC_RX_CFG);
3665 		val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3666 		writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3667 		       cp->regs + REG_MAC_RX_CFG);
3668 
3669 		writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3670 
3671 		cp->crc_size = 4;
3672 		/* minimum size gigabit frame at half duplex */
3673 		cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3674 
3675 	} else {
3676 		writel(val, cp->regs + REG_MAC_TX_CFG);
3677 
3678 		/* checksum bug workaround. don't strip FCS when in
3679 		 * half-duplex mode
3680 		 */
3681 		val = readl(cp->regs + REG_MAC_RX_CFG);
3682 		if (full_duplex) {
3683 			val |= MAC_RX_CFG_STRIP_FCS;
3684 			cp->crc_size = 0;
3685 			cp->min_frame_size = CAS_MIN_MTU;
3686 		} else {
3687 			val &= ~MAC_RX_CFG_STRIP_FCS;
3688 			cp->crc_size = 4;
3689 			cp->min_frame_size = CAS_MIN_FRAME;
3690 		}
3691 		writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3692 		       cp->regs + REG_MAC_RX_CFG);
3693 		writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3694 	}
3695 
3696 	if (netif_msg_link(cp)) {
3697 		if (pause & 0x01) {
3698 			netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3699 				    cp->rx_fifo_size,
3700 				    cp->rx_pause_off,
3701 				    cp->rx_pause_on);
3702 		} else if (pause & 0x10) {
3703 			netdev_info(cp->dev, "TX pause enabled\n");
3704 		} else {
3705 			netdev_info(cp->dev, "Pause is disabled\n");
3706 		}
3707 	}
3708 
3709 	val = readl(cp->regs + REG_MAC_CTRL_CFG);
3710 	val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3711 	if (pause) { /* symmetric or asymmetric pause */
3712 		val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3713 		if (pause & 0x01) { /* symmetric pause */
3714 			val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3715 		}
3716 	}
3717 	writel(val, cp->regs + REG_MAC_CTRL_CFG);
3718 	cas_start_dma(cp);
3719 }
3720 
3721 /* Must be invoked under cp->lock. */
3722 static void cas_init_hw(struct cas *cp, int restart_link)
3723 {
3724 	if (restart_link)
3725 		cas_phy_init(cp);
3726 
3727 	cas_init_pause_thresholds(cp);
3728 	cas_init_mac(cp);
3729 	cas_init_dma(cp);
3730 
3731 	if (restart_link) {
3732 		/* Default aneg parameters */
3733 		cp->timer_ticks = 0;
3734 		cas_begin_auto_negotiation(cp, NULL);
3735 	} else if (cp->lstate == link_up) {
3736 		cas_set_link_modes(cp);
3737 		netif_carrier_on(cp->dev);
3738 	}
3739 }
3740 
3741 /* Must be invoked under cp->lock. on earlier cassini boards,
3742  * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3743  * let it settle out, and then restore pci state.
3744  */
3745 static void cas_hard_reset(struct cas *cp)
3746 {
3747 	writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3748 	udelay(20);
3749 	pci_restore_state(cp->pdev);
3750 }
3751 
3752 
3753 static void cas_global_reset(struct cas *cp, int blkflag)
3754 {
3755 	int limit;
3756 
3757 	/* issue a global reset. don't use RSTOUT. */
3758 	if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3759 		/* For PCS, when the blkflag is set, we should set the
3760 		 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3761 		 * the last autonegotiation from being cleared.  We'll
3762 		 * need some special handling if the chip is set into a
3763 		 * loopback mode.
3764 		 */
3765 		writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3766 		       cp->regs + REG_SW_RESET);
3767 	} else {
3768 		writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3769 	}
3770 
3771 	/* need to wait at least 3ms before polling register */
3772 	mdelay(3);
3773 
3774 	limit = STOP_TRIES;
3775 	while (limit-- > 0) {
3776 		u32 val = readl(cp->regs + REG_SW_RESET);
3777 		if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3778 			goto done;
3779 		udelay(10);
3780 	}
3781 	netdev_err(cp->dev, "sw reset failed\n");
3782 
3783 done:
3784 	/* enable various BIM interrupts */
3785 	writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3786 	       BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3787 
3788 	/* clear out pci error status mask for handled errors.
3789 	 * we don't deal with DMA counter overflows as they happen
3790 	 * all the time.
3791 	 */
3792 	writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3793 			       PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3794 			       PCI_ERR_BIM_DMA_READ), cp->regs +
3795 	       REG_PCI_ERR_STATUS_MASK);
3796 
3797 	/* set up for MII by default to address mac rx reset timeout
3798 	 * issue
3799 	 */
3800 	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3801 }
3802 
3803 static void cas_reset(struct cas *cp, int blkflag)
3804 {
3805 	u32 val;
3806 
3807 	cas_mask_intr(cp);
3808 	cas_global_reset(cp, blkflag);
3809 	cas_mac_reset(cp);
3810 	cas_entropy_reset(cp);
3811 
3812 	/* disable dma engines. */
3813 	val = readl(cp->regs + REG_TX_CFG);
3814 	val &= ~TX_CFG_DMA_EN;
3815 	writel(val, cp->regs + REG_TX_CFG);
3816 
3817 	val = readl(cp->regs + REG_RX_CFG);
3818 	val &= ~RX_CFG_DMA_EN;
3819 	writel(val, cp->regs + REG_RX_CFG);
3820 
3821 	/* program header parser */
3822 	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3823 	    (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3824 		cas_load_firmware(cp, CAS_HP_FIRMWARE);
3825 	} else {
3826 		cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3827 	}
3828 
3829 	/* clear out error registers */
3830 	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3831 	cas_clear_mac_err(cp);
3832 	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3833 }
3834 
3835 /* Shut down the chip, must be called with pm_mutex held.  */
3836 static void cas_shutdown(struct cas *cp)
3837 {
3838 	unsigned long flags;
3839 
3840 	/* Make us not-running to avoid timers respawning */
3841 	cp->hw_running = 0;
3842 
3843 	del_timer_sync(&cp->link_timer);
3844 
3845 	/* Stop the reset task */
3846 #if 0
3847 	while (atomic_read(&cp->reset_task_pending_mtu) ||
3848 	       atomic_read(&cp->reset_task_pending_spare) ||
3849 	       atomic_read(&cp->reset_task_pending_all))
3850 		schedule();
3851 
3852 #else
3853 	while (atomic_read(&cp->reset_task_pending))
3854 		schedule();
3855 #endif
3856 	/* Actually stop the chip */
3857 	cas_lock_all_save(cp, flags);
3858 	cas_reset(cp, 0);
3859 	if (cp->cas_flags & CAS_FLAG_SATURN)
3860 		cas_phy_powerdown(cp);
3861 	cas_unlock_all_restore(cp, flags);
3862 }
3863 
3864 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3865 {
3866 	struct cas *cp = netdev_priv(dev);
3867 
3868 	dev->mtu = new_mtu;
3869 	if (!netif_running(dev) || !netif_device_present(dev))
3870 		return 0;
3871 
3872 	/* let the reset task handle it */
3873 #if 1
3874 	atomic_inc(&cp->reset_task_pending);
3875 	if ((cp->phy_type & CAS_PHY_SERDES)) {
3876 		atomic_inc(&cp->reset_task_pending_all);
3877 	} else {
3878 		atomic_inc(&cp->reset_task_pending_mtu);
3879 	}
3880 	schedule_work(&cp->reset_task);
3881 #else
3882 	atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3883 		   CAS_RESET_ALL : CAS_RESET_MTU);
3884 	pr_err("reset called in cas_change_mtu\n");
3885 	schedule_work(&cp->reset_task);
3886 #endif
3887 
3888 	flush_work(&cp->reset_task);
3889 	return 0;
3890 }
3891 
3892 static void cas_clean_txd(struct cas *cp, int ring)
3893 {
3894 	struct cas_tx_desc *txd = cp->init_txds[ring];
3895 	struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3896 	u64 daddr, dlen;
3897 	int i, size;
3898 
3899 	size = TX_DESC_RINGN_SIZE(ring);
3900 	for (i = 0; i < size; i++) {
3901 		int frag;
3902 
3903 		if (skbs[i] == NULL)
3904 			continue;
3905 
3906 		skb = skbs[i];
3907 		skbs[i] = NULL;
3908 
3909 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3910 			int ent = i & (size - 1);
3911 
3912 			/* first buffer is never a tiny buffer and so
3913 			 * needs to be unmapped.
3914 			 */
3915 			daddr = le64_to_cpu(txd[ent].buffer);
3916 			dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3917 					 le64_to_cpu(txd[ent].control));
3918 			pci_unmap_page(cp->pdev, daddr, dlen,
3919 				       PCI_DMA_TODEVICE);
3920 
3921 			if (frag != skb_shinfo(skb)->nr_frags) {
3922 				i++;
3923 
3924 				/* next buffer might by a tiny buffer.
3925 				 * skip past it.
3926 				 */
3927 				ent = i & (size - 1);
3928 				if (cp->tx_tiny_use[ring][ent].used)
3929 					i++;
3930 			}
3931 		}
3932 		dev_kfree_skb_any(skb);
3933 	}
3934 
3935 	/* zero out tiny buf usage */
3936 	memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3937 }
3938 
3939 /* freed on close */
3940 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3941 {
3942 	cas_page_t **page = cp->rx_pages[ring];
3943 	int i, size;
3944 
3945 	size = RX_DESC_RINGN_SIZE(ring);
3946 	for (i = 0; i < size; i++) {
3947 		if (page[i]) {
3948 			cas_page_free(cp, page[i]);
3949 			page[i] = NULL;
3950 		}
3951 	}
3952 }
3953 
3954 static void cas_free_rxds(struct cas *cp)
3955 {
3956 	int i;
3957 
3958 	for (i = 0; i < N_RX_DESC_RINGS; i++)
3959 		cas_free_rx_desc(cp, i);
3960 }
3961 
3962 /* Must be invoked under cp->lock. */
3963 static void cas_clean_rings(struct cas *cp)
3964 {
3965 	int i;
3966 
3967 	/* need to clean all tx rings */
3968 	memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3969 	memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3970 	for (i = 0; i < N_TX_RINGS; i++)
3971 		cas_clean_txd(cp, i);
3972 
3973 	/* zero out init block */
3974 	memset(cp->init_block, 0, sizeof(struct cas_init_block));
3975 	cas_clean_rxds(cp);
3976 	cas_clean_rxcs(cp);
3977 }
3978 
3979 /* allocated on open */
3980 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3981 {
3982 	cas_page_t **page = cp->rx_pages[ring];
3983 	int size, i = 0;
3984 
3985 	size = RX_DESC_RINGN_SIZE(ring);
3986 	for (i = 0; i < size; i++) {
3987 		if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3988 			return -1;
3989 	}
3990 	return 0;
3991 }
3992 
3993 static int cas_alloc_rxds(struct cas *cp)
3994 {
3995 	int i;
3996 
3997 	for (i = 0; i < N_RX_DESC_RINGS; i++) {
3998 		if (cas_alloc_rx_desc(cp, i) < 0) {
3999 			cas_free_rxds(cp);
4000 			return -1;
4001 		}
4002 	}
4003 	return 0;
4004 }
4005 
4006 static void cas_reset_task(struct work_struct *work)
4007 {
4008 	struct cas *cp = container_of(work, struct cas, reset_task);
4009 #if 0
4010 	int pending = atomic_read(&cp->reset_task_pending);
4011 #else
4012 	int pending_all = atomic_read(&cp->reset_task_pending_all);
4013 	int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4014 	int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4015 
4016 	if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4017 		/* We can have more tasks scheduled than actually
4018 		 * needed.
4019 		 */
4020 		atomic_dec(&cp->reset_task_pending);
4021 		return;
4022 	}
4023 #endif
4024 	/* The link went down, we reset the ring, but keep
4025 	 * DMA stopped. Use this function for reset
4026 	 * on error as well.
4027 	 */
4028 	if (cp->hw_running) {
4029 		unsigned long flags;
4030 
4031 		/* Make sure we don't get interrupts or tx packets */
4032 		netif_device_detach(cp->dev);
4033 		cas_lock_all_save(cp, flags);
4034 
4035 		if (cp->opened) {
4036 			/* We call cas_spare_recover when we call cas_open.
4037 			 * but we do not initialize the lists cas_spare_recover
4038 			 * uses until cas_open is called.
4039 			 */
4040 			cas_spare_recover(cp, GFP_ATOMIC);
4041 		}
4042 #if 1
4043 		/* test => only pending_spare set */
4044 		if (!pending_all && !pending_mtu)
4045 			goto done;
4046 #else
4047 		if (pending == CAS_RESET_SPARE)
4048 			goto done;
4049 #endif
4050 		/* when pending == CAS_RESET_ALL, the following
4051 		 * call to cas_init_hw will restart auto negotiation.
4052 		 * Setting the second argument of cas_reset to
4053 		 * !(pending == CAS_RESET_ALL) will set this argument
4054 		 * to 1 (avoiding reinitializing the PHY for the normal
4055 		 * PCS case) when auto negotiation is not restarted.
4056 		 */
4057 #if 1
4058 		cas_reset(cp, !(pending_all > 0));
4059 		if (cp->opened)
4060 			cas_clean_rings(cp);
4061 		cas_init_hw(cp, (pending_all > 0));
4062 #else
4063 		cas_reset(cp, !(pending == CAS_RESET_ALL));
4064 		if (cp->opened)
4065 			cas_clean_rings(cp);
4066 		cas_init_hw(cp, pending == CAS_RESET_ALL);
4067 #endif
4068 
4069 done:
4070 		cas_unlock_all_restore(cp, flags);
4071 		netif_device_attach(cp->dev);
4072 	}
4073 #if 1
4074 	atomic_sub(pending_all, &cp->reset_task_pending_all);
4075 	atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4076 	atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4077 	atomic_dec(&cp->reset_task_pending);
4078 #else
4079 	atomic_set(&cp->reset_task_pending, 0);
4080 #endif
4081 }
4082 
4083 static void cas_link_timer(struct timer_list *t)
4084 {
4085 	struct cas *cp = from_timer(cp, t, link_timer);
4086 	int mask, pending = 0, reset = 0;
4087 	unsigned long flags;
4088 
4089 	if (link_transition_timeout != 0 &&
4090 	    cp->link_transition_jiffies_valid &&
4091 	    ((jiffies - cp->link_transition_jiffies) >
4092 	      (link_transition_timeout))) {
4093 		/* One-second counter so link-down workaround doesn't
4094 		 * cause resets to occur so fast as to fool the switch
4095 		 * into thinking the link is down.
4096 		 */
4097 		cp->link_transition_jiffies_valid = 0;
4098 	}
4099 
4100 	if (!cp->hw_running)
4101 		return;
4102 
4103 	spin_lock_irqsave(&cp->lock, flags);
4104 	cas_lock_tx(cp);
4105 	cas_entropy_gather(cp);
4106 
4107 	/* If the link task is still pending, we just
4108 	 * reschedule the link timer
4109 	 */
4110 #if 1
4111 	if (atomic_read(&cp->reset_task_pending_all) ||
4112 	    atomic_read(&cp->reset_task_pending_spare) ||
4113 	    atomic_read(&cp->reset_task_pending_mtu))
4114 		goto done;
4115 #else
4116 	if (atomic_read(&cp->reset_task_pending))
4117 		goto done;
4118 #endif
4119 
4120 	/* check for rx cleaning */
4121 	if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4122 		int i, rmask;
4123 
4124 		for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4125 			rmask = CAS_FLAG_RXD_POST(i);
4126 			if ((mask & rmask) == 0)
4127 				continue;
4128 
4129 			/* post_rxds will do a mod_timer */
4130 			if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4131 				pending = 1;
4132 				continue;
4133 			}
4134 			cp->cas_flags &= ~rmask;
4135 		}
4136 	}
4137 
4138 	if (CAS_PHY_MII(cp->phy_type)) {
4139 		u16 bmsr;
4140 		cas_mif_poll(cp, 0);
4141 		bmsr = cas_phy_read(cp, MII_BMSR);
4142 		/* WTZ: Solaris driver reads this twice, but that
4143 		 * may be due to the PCS case and the use of a
4144 		 * common implementation. Read it twice here to be
4145 		 * safe.
4146 		 */
4147 		bmsr = cas_phy_read(cp, MII_BMSR);
4148 		cas_mif_poll(cp, 1);
4149 		readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4150 		reset = cas_mii_link_check(cp, bmsr);
4151 	} else {
4152 		reset = cas_pcs_link_check(cp);
4153 	}
4154 
4155 	if (reset)
4156 		goto done;
4157 
4158 	/* check for tx state machine confusion */
4159 	if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4160 		u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4161 		u32 wptr, rptr;
4162 		int tlm  = CAS_VAL(MAC_SM_TLM, val);
4163 
4164 		if (((tlm == 0x5) || (tlm == 0x3)) &&
4165 		    (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4166 			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4167 				     "tx err: MAC_STATE[%08x]\n", val);
4168 			reset = 1;
4169 			goto done;
4170 		}
4171 
4172 		val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4173 		wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4174 		rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4175 		if ((val == 0) && (wptr != rptr)) {
4176 			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4177 				     "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4178 				     val, wptr, rptr);
4179 			reset = 1;
4180 		}
4181 
4182 		if (reset)
4183 			cas_hard_reset(cp);
4184 	}
4185 
4186 done:
4187 	if (reset) {
4188 #if 1
4189 		atomic_inc(&cp->reset_task_pending);
4190 		atomic_inc(&cp->reset_task_pending_all);
4191 		schedule_work(&cp->reset_task);
4192 #else
4193 		atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4194 		pr_err("reset called in cas_link_timer\n");
4195 		schedule_work(&cp->reset_task);
4196 #endif
4197 	}
4198 
4199 	if (!pending)
4200 		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4201 	cas_unlock_tx(cp);
4202 	spin_unlock_irqrestore(&cp->lock, flags);
4203 }
4204 
4205 /* tiny buffers are used to avoid target abort issues with
4206  * older cassini's
4207  */
4208 static void cas_tx_tiny_free(struct cas *cp)
4209 {
4210 	struct pci_dev *pdev = cp->pdev;
4211 	int i;
4212 
4213 	for (i = 0; i < N_TX_RINGS; i++) {
4214 		if (!cp->tx_tiny_bufs[i])
4215 			continue;
4216 
4217 		pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4218 				    cp->tx_tiny_bufs[i],
4219 				    cp->tx_tiny_dvma[i]);
4220 		cp->tx_tiny_bufs[i] = NULL;
4221 	}
4222 }
4223 
4224 static int cas_tx_tiny_alloc(struct cas *cp)
4225 {
4226 	struct pci_dev *pdev = cp->pdev;
4227 	int i;
4228 
4229 	for (i = 0; i < N_TX_RINGS; i++) {
4230 		cp->tx_tiny_bufs[i] =
4231 			pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4232 					     &cp->tx_tiny_dvma[i]);
4233 		if (!cp->tx_tiny_bufs[i]) {
4234 			cas_tx_tiny_free(cp);
4235 			return -1;
4236 		}
4237 	}
4238 	return 0;
4239 }
4240 
4241 
4242 static int cas_open(struct net_device *dev)
4243 {
4244 	struct cas *cp = netdev_priv(dev);
4245 	int hw_was_up, err;
4246 	unsigned long flags;
4247 
4248 	mutex_lock(&cp->pm_mutex);
4249 
4250 	hw_was_up = cp->hw_running;
4251 
4252 	/* The power-management mutex protects the hw_running
4253 	 * etc. state so it is safe to do this bit without cp->lock
4254 	 */
4255 	if (!cp->hw_running) {
4256 		/* Reset the chip */
4257 		cas_lock_all_save(cp, flags);
4258 		/* We set the second arg to cas_reset to zero
4259 		 * because cas_init_hw below will have its second
4260 		 * argument set to non-zero, which will force
4261 		 * autonegotiation to start.
4262 		 */
4263 		cas_reset(cp, 0);
4264 		cp->hw_running = 1;
4265 		cas_unlock_all_restore(cp, flags);
4266 	}
4267 
4268 	err = -ENOMEM;
4269 	if (cas_tx_tiny_alloc(cp) < 0)
4270 		goto err_unlock;
4271 
4272 	/* alloc rx descriptors */
4273 	if (cas_alloc_rxds(cp) < 0)
4274 		goto err_tx_tiny;
4275 
4276 	/* allocate spares */
4277 	cas_spare_init(cp);
4278 	cas_spare_recover(cp, GFP_KERNEL);
4279 
4280 	/* We can now request the interrupt as we know it's masked
4281 	 * on the controller. cassini+ has up to 4 interrupts
4282 	 * that can be used, but you need to do explicit pci interrupt
4283 	 * mapping to expose them
4284 	 */
4285 	if (request_irq(cp->pdev->irq, cas_interrupt,
4286 			IRQF_SHARED, dev->name, (void *) dev)) {
4287 		netdev_err(cp->dev, "failed to request irq !\n");
4288 		err = -EAGAIN;
4289 		goto err_spare;
4290 	}
4291 
4292 #ifdef USE_NAPI
4293 	napi_enable(&cp->napi);
4294 #endif
4295 	/* init hw */
4296 	cas_lock_all_save(cp, flags);
4297 	cas_clean_rings(cp);
4298 	cas_init_hw(cp, !hw_was_up);
4299 	cp->opened = 1;
4300 	cas_unlock_all_restore(cp, flags);
4301 
4302 	netif_start_queue(dev);
4303 	mutex_unlock(&cp->pm_mutex);
4304 	return 0;
4305 
4306 err_spare:
4307 	cas_spare_free(cp);
4308 	cas_free_rxds(cp);
4309 err_tx_tiny:
4310 	cas_tx_tiny_free(cp);
4311 err_unlock:
4312 	mutex_unlock(&cp->pm_mutex);
4313 	return err;
4314 }
4315 
4316 static int cas_close(struct net_device *dev)
4317 {
4318 	unsigned long flags;
4319 	struct cas *cp = netdev_priv(dev);
4320 
4321 #ifdef USE_NAPI
4322 	napi_disable(&cp->napi);
4323 #endif
4324 	/* Make sure we don't get distracted by suspend/resume */
4325 	mutex_lock(&cp->pm_mutex);
4326 
4327 	netif_stop_queue(dev);
4328 
4329 	/* Stop traffic, mark us closed */
4330 	cas_lock_all_save(cp, flags);
4331 	cp->opened = 0;
4332 	cas_reset(cp, 0);
4333 	cas_phy_init(cp);
4334 	cas_begin_auto_negotiation(cp, NULL);
4335 	cas_clean_rings(cp);
4336 	cas_unlock_all_restore(cp, flags);
4337 
4338 	free_irq(cp->pdev->irq, (void *) dev);
4339 	cas_spare_free(cp);
4340 	cas_free_rxds(cp);
4341 	cas_tx_tiny_free(cp);
4342 	mutex_unlock(&cp->pm_mutex);
4343 	return 0;
4344 }
4345 
4346 static struct {
4347 	const char name[ETH_GSTRING_LEN];
4348 } ethtool_cassini_statnames[] = {
4349 	{"collisions"},
4350 	{"rx_bytes"},
4351 	{"rx_crc_errors"},
4352 	{"rx_dropped"},
4353 	{"rx_errors"},
4354 	{"rx_fifo_errors"},
4355 	{"rx_frame_errors"},
4356 	{"rx_length_errors"},
4357 	{"rx_over_errors"},
4358 	{"rx_packets"},
4359 	{"tx_aborted_errors"},
4360 	{"tx_bytes"},
4361 	{"tx_dropped"},
4362 	{"tx_errors"},
4363 	{"tx_fifo_errors"},
4364 	{"tx_packets"}
4365 };
4366 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4367 
4368 static struct {
4369 	const int offsets;	/* neg. values for 2nd arg to cas_read_phy */
4370 } ethtool_register_table[] = {
4371 	{-MII_BMSR},
4372 	{-MII_BMCR},
4373 	{REG_CAWR},
4374 	{REG_INF_BURST},
4375 	{REG_BIM_CFG},
4376 	{REG_RX_CFG},
4377 	{REG_HP_CFG},
4378 	{REG_MAC_TX_CFG},
4379 	{REG_MAC_RX_CFG},
4380 	{REG_MAC_CTRL_CFG},
4381 	{REG_MAC_XIF_CFG},
4382 	{REG_MIF_CFG},
4383 	{REG_PCS_CFG},
4384 	{REG_SATURN_PCFG},
4385 	{REG_PCS_MII_STATUS},
4386 	{REG_PCS_STATE_MACHINE},
4387 	{REG_MAC_COLL_EXCESS},
4388 	{REG_MAC_COLL_LATE}
4389 };
4390 #define CAS_REG_LEN 	ARRAY_SIZE(ethtool_register_table)
4391 #define CAS_MAX_REGS 	(sizeof (u32)*CAS_REG_LEN)
4392 
4393 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4394 {
4395 	u8 *p;
4396 	int i;
4397 	unsigned long flags;
4398 
4399 	spin_lock_irqsave(&cp->lock, flags);
4400 	for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4401 		u16 hval;
4402 		u32 val;
4403 		if (ethtool_register_table[i].offsets < 0) {
4404 			hval = cas_phy_read(cp,
4405 				    -ethtool_register_table[i].offsets);
4406 			val = hval;
4407 		} else {
4408 			val= readl(cp->regs+ethtool_register_table[i].offsets);
4409 		}
4410 		memcpy(p, (u8 *)&val, sizeof(u32));
4411 	}
4412 	spin_unlock_irqrestore(&cp->lock, flags);
4413 }
4414 
4415 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4416 {
4417 	struct cas *cp = netdev_priv(dev);
4418 	struct net_device_stats *stats = cp->net_stats;
4419 	unsigned long flags;
4420 	int i;
4421 	unsigned long tmp;
4422 
4423 	/* we collate all of the stats into net_stats[N_TX_RING] */
4424 	if (!cp->hw_running)
4425 		return stats + N_TX_RINGS;
4426 
4427 	/* collect outstanding stats */
4428 	/* WTZ: the Cassini spec gives these as 16 bit counters but
4429 	 * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4430 	 * in case the chip somehow puts any garbage in the other bits.
4431 	 * Also, counter usage didn't seem to mach what Adrian did
4432 	 * in the parts of the code that set these quantities. Made
4433 	 * that consistent.
4434 	 */
4435 	spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4436 	stats[N_TX_RINGS].rx_crc_errors +=
4437 	  readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4438 	stats[N_TX_RINGS].rx_frame_errors +=
4439 		readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4440 	stats[N_TX_RINGS].rx_length_errors +=
4441 		readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4442 #if 1
4443 	tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4444 		(readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4445 	stats[N_TX_RINGS].tx_aborted_errors += tmp;
4446 	stats[N_TX_RINGS].collisions +=
4447 	  tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4448 #else
4449 	stats[N_TX_RINGS].tx_aborted_errors +=
4450 		readl(cp->regs + REG_MAC_COLL_EXCESS);
4451 	stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4452 		readl(cp->regs + REG_MAC_COLL_LATE);
4453 #endif
4454 	cas_clear_mac_err(cp);
4455 
4456 	/* saved bits that are unique to ring 0 */
4457 	spin_lock(&cp->stat_lock[0]);
4458 	stats[N_TX_RINGS].collisions        += stats[0].collisions;
4459 	stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4460 	stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4461 	stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4462 	stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4463 	stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4464 	spin_unlock(&cp->stat_lock[0]);
4465 
4466 	for (i = 0; i < N_TX_RINGS; i++) {
4467 		spin_lock(&cp->stat_lock[i]);
4468 		stats[N_TX_RINGS].rx_length_errors +=
4469 			stats[i].rx_length_errors;
4470 		stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4471 		stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4472 		stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4473 		stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4474 		stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4475 		stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4476 		stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4477 		stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4478 		stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4479 		memset(stats + i, 0, sizeof(struct net_device_stats));
4480 		spin_unlock(&cp->stat_lock[i]);
4481 	}
4482 	spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4483 	return stats + N_TX_RINGS;
4484 }
4485 
4486 
4487 static void cas_set_multicast(struct net_device *dev)
4488 {
4489 	struct cas *cp = netdev_priv(dev);
4490 	u32 rxcfg, rxcfg_new;
4491 	unsigned long flags;
4492 	int limit = STOP_TRIES;
4493 
4494 	if (!cp->hw_running)
4495 		return;
4496 
4497 	spin_lock_irqsave(&cp->lock, flags);
4498 	rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4499 
4500 	/* disable RX MAC and wait for completion */
4501 	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4502 	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4503 		if (!limit--)
4504 			break;
4505 		udelay(10);
4506 	}
4507 
4508 	/* disable hash filter and wait for completion */
4509 	limit = STOP_TRIES;
4510 	rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4511 	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4512 	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4513 		if (!limit--)
4514 			break;
4515 		udelay(10);
4516 	}
4517 
4518 	/* program hash filters */
4519 	cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4520 	rxcfg |= rxcfg_new;
4521 	writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4522 	spin_unlock_irqrestore(&cp->lock, flags);
4523 }
4524 
4525 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4526 {
4527 	struct cas *cp = netdev_priv(dev);
4528 	strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4529 	strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4530 	strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4531 }
4532 
4533 static int cas_get_link_ksettings(struct net_device *dev,
4534 				  struct ethtool_link_ksettings *cmd)
4535 {
4536 	struct cas *cp = netdev_priv(dev);
4537 	u16 bmcr;
4538 	int full_duplex, speed, pause;
4539 	unsigned long flags;
4540 	enum link_state linkstate = link_up;
4541 	u32 supported, advertising;
4542 
4543 	advertising = 0;
4544 	supported = SUPPORTED_Autoneg;
4545 	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4546 		supported |= SUPPORTED_1000baseT_Full;
4547 		advertising |= ADVERTISED_1000baseT_Full;
4548 	}
4549 
4550 	/* Record PHY settings if HW is on. */
4551 	spin_lock_irqsave(&cp->lock, flags);
4552 	bmcr = 0;
4553 	linkstate = cp->lstate;
4554 	if (CAS_PHY_MII(cp->phy_type)) {
4555 		cmd->base.port = PORT_MII;
4556 		cmd->base.phy_address = cp->phy_addr;
4557 		advertising |= ADVERTISED_TP | ADVERTISED_MII |
4558 			ADVERTISED_10baseT_Half |
4559 			ADVERTISED_10baseT_Full |
4560 			ADVERTISED_100baseT_Half |
4561 			ADVERTISED_100baseT_Full;
4562 
4563 		supported |=
4564 			(SUPPORTED_10baseT_Half |
4565 			 SUPPORTED_10baseT_Full |
4566 			 SUPPORTED_100baseT_Half |
4567 			 SUPPORTED_100baseT_Full |
4568 			 SUPPORTED_TP | SUPPORTED_MII);
4569 
4570 		if (cp->hw_running) {
4571 			cas_mif_poll(cp, 0);
4572 			bmcr = cas_phy_read(cp, MII_BMCR);
4573 			cas_read_mii_link_mode(cp, &full_duplex,
4574 					       &speed, &pause);
4575 			cas_mif_poll(cp, 1);
4576 		}
4577 
4578 	} else {
4579 		cmd->base.port = PORT_FIBRE;
4580 		cmd->base.phy_address = 0;
4581 		supported   |= SUPPORTED_FIBRE;
4582 		advertising |= ADVERTISED_FIBRE;
4583 
4584 		if (cp->hw_running) {
4585 			/* pcs uses the same bits as mii */
4586 			bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4587 			cas_read_pcs_link_mode(cp, &full_duplex,
4588 					       &speed, &pause);
4589 		}
4590 	}
4591 	spin_unlock_irqrestore(&cp->lock, flags);
4592 
4593 	if (bmcr & BMCR_ANENABLE) {
4594 		advertising |= ADVERTISED_Autoneg;
4595 		cmd->base.autoneg = AUTONEG_ENABLE;
4596 		cmd->base.speed =  ((speed == 10) ?
4597 					    SPEED_10 :
4598 					    ((speed == 1000) ?
4599 					     SPEED_1000 : SPEED_100));
4600 		cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4601 	} else {
4602 		cmd->base.autoneg = AUTONEG_DISABLE;
4603 		cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ?
4604 					    SPEED_1000 :
4605 					    ((bmcr & BMCR_SPEED100) ?
4606 					     SPEED_100 : SPEED_10));
4607 		cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ?
4608 			DUPLEX_FULL : DUPLEX_HALF;
4609 	}
4610 	if (linkstate != link_up) {
4611 		/* Force these to "unknown" if the link is not up and
4612 		 * autonogotiation in enabled. We can set the link
4613 		 * speed to 0, but not cmd->duplex,
4614 		 * because its legal values are 0 and 1.  Ethtool will
4615 		 * print the value reported in parentheses after the
4616 		 * word "Unknown" for unrecognized values.
4617 		 *
4618 		 * If in forced mode, we report the speed and duplex
4619 		 * settings that we configured.
4620 		 */
4621 		if (cp->link_cntl & BMCR_ANENABLE) {
4622 			cmd->base.speed = 0;
4623 			cmd->base.duplex = 0xff;
4624 		} else {
4625 			cmd->base.speed = SPEED_10;
4626 			if (cp->link_cntl & BMCR_SPEED100) {
4627 				cmd->base.speed = SPEED_100;
4628 			} else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4629 				cmd->base.speed = SPEED_1000;
4630 			}
4631 			cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ?
4632 				DUPLEX_FULL : DUPLEX_HALF;
4633 		}
4634 	}
4635 
4636 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
4637 						supported);
4638 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
4639 						advertising);
4640 
4641 	return 0;
4642 }
4643 
4644 static int cas_set_link_ksettings(struct net_device *dev,
4645 				  const struct ethtool_link_ksettings *cmd)
4646 {
4647 	struct cas *cp = netdev_priv(dev);
4648 	unsigned long flags;
4649 	u32 speed = cmd->base.speed;
4650 
4651 	/* Verify the settings we care about. */
4652 	if (cmd->base.autoneg != AUTONEG_ENABLE &&
4653 	    cmd->base.autoneg != AUTONEG_DISABLE)
4654 		return -EINVAL;
4655 
4656 	if (cmd->base.autoneg == AUTONEG_DISABLE &&
4657 	    ((speed != SPEED_1000 &&
4658 	      speed != SPEED_100 &&
4659 	      speed != SPEED_10) ||
4660 	     (cmd->base.duplex != DUPLEX_HALF &&
4661 	      cmd->base.duplex != DUPLEX_FULL)))
4662 		return -EINVAL;
4663 
4664 	/* Apply settings and restart link process. */
4665 	spin_lock_irqsave(&cp->lock, flags);
4666 	cas_begin_auto_negotiation(cp, cmd);
4667 	spin_unlock_irqrestore(&cp->lock, flags);
4668 	return 0;
4669 }
4670 
4671 static int cas_nway_reset(struct net_device *dev)
4672 {
4673 	struct cas *cp = netdev_priv(dev);
4674 	unsigned long flags;
4675 
4676 	if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4677 		return -EINVAL;
4678 
4679 	/* Restart link process. */
4680 	spin_lock_irqsave(&cp->lock, flags);
4681 	cas_begin_auto_negotiation(cp, NULL);
4682 	spin_unlock_irqrestore(&cp->lock, flags);
4683 
4684 	return 0;
4685 }
4686 
4687 static u32 cas_get_link(struct net_device *dev)
4688 {
4689 	struct cas *cp = netdev_priv(dev);
4690 	return cp->lstate == link_up;
4691 }
4692 
4693 static u32 cas_get_msglevel(struct net_device *dev)
4694 {
4695 	struct cas *cp = netdev_priv(dev);
4696 	return cp->msg_enable;
4697 }
4698 
4699 static void cas_set_msglevel(struct net_device *dev, u32 value)
4700 {
4701 	struct cas *cp = netdev_priv(dev);
4702 	cp->msg_enable = value;
4703 }
4704 
4705 static int cas_get_regs_len(struct net_device *dev)
4706 {
4707 	struct cas *cp = netdev_priv(dev);
4708 	return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4709 }
4710 
4711 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4712 			     void *p)
4713 {
4714 	struct cas *cp = netdev_priv(dev);
4715 	regs->version = 0;
4716 	/* cas_read_regs handles locks (cp->lock).  */
4717 	cas_read_regs(cp, p, regs->len / sizeof(u32));
4718 }
4719 
4720 static int cas_get_sset_count(struct net_device *dev, int sset)
4721 {
4722 	switch (sset) {
4723 	case ETH_SS_STATS:
4724 		return CAS_NUM_STAT_KEYS;
4725 	default:
4726 		return -EOPNOTSUPP;
4727 	}
4728 }
4729 
4730 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4731 {
4732 	 memcpy(data, &ethtool_cassini_statnames,
4733 					 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4734 }
4735 
4736 static void cas_get_ethtool_stats(struct net_device *dev,
4737 				      struct ethtool_stats *estats, u64 *data)
4738 {
4739 	struct cas *cp = netdev_priv(dev);
4740 	struct net_device_stats *stats = cas_get_stats(cp->dev);
4741 	int i = 0;
4742 	data[i++] = stats->collisions;
4743 	data[i++] = stats->rx_bytes;
4744 	data[i++] = stats->rx_crc_errors;
4745 	data[i++] = stats->rx_dropped;
4746 	data[i++] = stats->rx_errors;
4747 	data[i++] = stats->rx_fifo_errors;
4748 	data[i++] = stats->rx_frame_errors;
4749 	data[i++] = stats->rx_length_errors;
4750 	data[i++] = stats->rx_over_errors;
4751 	data[i++] = stats->rx_packets;
4752 	data[i++] = stats->tx_aborted_errors;
4753 	data[i++] = stats->tx_bytes;
4754 	data[i++] = stats->tx_dropped;
4755 	data[i++] = stats->tx_errors;
4756 	data[i++] = stats->tx_fifo_errors;
4757 	data[i++] = stats->tx_packets;
4758 	BUG_ON(i != CAS_NUM_STAT_KEYS);
4759 }
4760 
4761 static const struct ethtool_ops cas_ethtool_ops = {
4762 	.get_drvinfo		= cas_get_drvinfo,
4763 	.nway_reset		= cas_nway_reset,
4764 	.get_link		= cas_get_link,
4765 	.get_msglevel		= cas_get_msglevel,
4766 	.set_msglevel		= cas_set_msglevel,
4767 	.get_regs_len		= cas_get_regs_len,
4768 	.get_regs		= cas_get_regs,
4769 	.get_sset_count		= cas_get_sset_count,
4770 	.get_strings		= cas_get_strings,
4771 	.get_ethtool_stats	= cas_get_ethtool_stats,
4772 	.get_link_ksettings	= cas_get_link_ksettings,
4773 	.set_link_ksettings	= cas_set_link_ksettings,
4774 };
4775 
4776 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4777 {
4778 	struct cas *cp = netdev_priv(dev);
4779 	struct mii_ioctl_data *data = if_mii(ifr);
4780 	unsigned long flags;
4781 	int rc = -EOPNOTSUPP;
4782 
4783 	/* Hold the PM mutex while doing ioctl's or we may collide
4784 	 * with open/close and power management and oops.
4785 	 */
4786 	mutex_lock(&cp->pm_mutex);
4787 	switch (cmd) {
4788 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
4789 		data->phy_id = cp->phy_addr;
4790 		/* Fallthrough... */
4791 
4792 	case SIOCGMIIREG:		/* Read MII PHY register. */
4793 		spin_lock_irqsave(&cp->lock, flags);
4794 		cas_mif_poll(cp, 0);
4795 		data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4796 		cas_mif_poll(cp, 1);
4797 		spin_unlock_irqrestore(&cp->lock, flags);
4798 		rc = 0;
4799 		break;
4800 
4801 	case SIOCSMIIREG:		/* Write MII PHY register. */
4802 		spin_lock_irqsave(&cp->lock, flags);
4803 		cas_mif_poll(cp, 0);
4804 		rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4805 		cas_mif_poll(cp, 1);
4806 		spin_unlock_irqrestore(&cp->lock, flags);
4807 		break;
4808 	default:
4809 		break;
4810 	}
4811 
4812 	mutex_unlock(&cp->pm_mutex);
4813 	return rc;
4814 }
4815 
4816 /* When this chip sits underneath an Intel 31154 bridge, it is the
4817  * only subordinate device and we can tweak the bridge settings to
4818  * reflect that fact.
4819  */
4820 static void cas_program_bridge(struct pci_dev *cas_pdev)
4821 {
4822 	struct pci_dev *pdev = cas_pdev->bus->self;
4823 	u32 val;
4824 
4825 	if (!pdev)
4826 		return;
4827 
4828 	if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4829 		return;
4830 
4831 	/* Clear bit 10 (Bus Parking Control) in the Secondary
4832 	 * Arbiter Control/Status Register which lives at offset
4833 	 * 0x41.  Using a 32-bit word read/modify/write at 0x40
4834 	 * is much simpler so that's how we do this.
4835 	 */
4836 	pci_read_config_dword(pdev, 0x40, &val);
4837 	val &= ~0x00040000;
4838 	pci_write_config_dword(pdev, 0x40, val);
4839 
4840 	/* Max out the Multi-Transaction Timer settings since
4841 	 * Cassini is the only device present.
4842 	 *
4843 	 * The register is 16-bit and lives at 0x50.  When the
4844 	 * settings are enabled, it extends the GRANT# signal
4845 	 * for a requestor after a transaction is complete.  This
4846 	 * allows the next request to run without first needing
4847 	 * to negotiate the GRANT# signal back.
4848 	 *
4849 	 * Bits 12:10 define the grant duration:
4850 	 *
4851 	 *	1	--	16 clocks
4852 	 *	2	--	32 clocks
4853 	 *	3	--	64 clocks
4854 	 *	4	--	128 clocks
4855 	 *	5	--	256 clocks
4856 	 *
4857 	 * All other values are illegal.
4858 	 *
4859 	 * Bits 09:00 define which REQ/GNT signal pairs get the
4860 	 * GRANT# signal treatment.  We set them all.
4861 	 */
4862 	pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4863 
4864 	/* The Read Prefecth Policy register is 16-bit and sits at
4865 	 * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4866 	 * enable it and max out all of the settings since only one
4867 	 * device is sitting underneath and thus bandwidth sharing is
4868 	 * not an issue.
4869 	 *
4870 	 * The register has several 3 bit fields, which indicates a
4871 	 * multiplier applied to the base amount of prefetching the
4872 	 * chip would do.  These fields are at:
4873 	 *
4874 	 *	15:13	---	ReRead Primary Bus
4875 	 *	12:10	---	FirstRead Primary Bus
4876 	 *	09:07	---	ReRead Secondary Bus
4877 	 *	06:04	---	FirstRead Secondary Bus
4878 	 *
4879 	 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4880 	 * get enabled on.  Bit 3 is a grouped enabler which controls
4881 	 * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4882 	 * the individual REQ/GNT pairs [2:0].
4883 	 */
4884 	pci_write_config_word(pdev, 0x52,
4885 			      (0x7 << 13) |
4886 			      (0x7 << 10) |
4887 			      (0x7 <<  7) |
4888 			      (0x7 <<  4) |
4889 			      (0xf <<  0));
4890 
4891 	/* Force cacheline size to 0x8 */
4892 	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4893 
4894 	/* Force latency timer to maximum setting so Cassini can
4895 	 * sit on the bus as long as it likes.
4896 	 */
4897 	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4898 }
4899 
4900 static const struct net_device_ops cas_netdev_ops = {
4901 	.ndo_open		= cas_open,
4902 	.ndo_stop		= cas_close,
4903 	.ndo_start_xmit		= cas_start_xmit,
4904 	.ndo_get_stats 		= cas_get_stats,
4905 	.ndo_set_rx_mode	= cas_set_multicast,
4906 	.ndo_do_ioctl		= cas_ioctl,
4907 	.ndo_tx_timeout		= cas_tx_timeout,
4908 	.ndo_change_mtu		= cas_change_mtu,
4909 	.ndo_set_mac_address	= eth_mac_addr,
4910 	.ndo_validate_addr	= eth_validate_addr,
4911 #ifdef CONFIG_NET_POLL_CONTROLLER
4912 	.ndo_poll_controller	= cas_netpoll,
4913 #endif
4914 };
4915 
4916 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4917 {
4918 	static int cas_version_printed = 0;
4919 	unsigned long casreg_len;
4920 	struct net_device *dev;
4921 	struct cas *cp;
4922 	int i, err, pci_using_dac;
4923 	u16 pci_cmd;
4924 	u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4925 
4926 	if (cas_version_printed++ == 0)
4927 		pr_info("%s", version);
4928 
4929 	err = pci_enable_device(pdev);
4930 	if (err) {
4931 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4932 		return err;
4933 	}
4934 
4935 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4936 		dev_err(&pdev->dev, "Cannot find proper PCI device "
4937 		       "base address, aborting\n");
4938 		err = -ENODEV;
4939 		goto err_out_disable_pdev;
4940 	}
4941 
4942 	dev = alloc_etherdev(sizeof(*cp));
4943 	if (!dev) {
4944 		err = -ENOMEM;
4945 		goto err_out_disable_pdev;
4946 	}
4947 	SET_NETDEV_DEV(dev, &pdev->dev);
4948 
4949 	err = pci_request_regions(pdev, dev->name);
4950 	if (err) {
4951 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4952 		goto err_out_free_netdev;
4953 	}
4954 	pci_set_master(pdev);
4955 
4956 	/* we must always turn on parity response or else parity
4957 	 * doesn't get generated properly. disable SERR/PERR as well.
4958 	 * in addition, we want to turn MWI on.
4959 	 */
4960 	pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4961 	pci_cmd &= ~PCI_COMMAND_SERR;
4962 	pci_cmd |= PCI_COMMAND_PARITY;
4963 	pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4964 	if (pci_try_set_mwi(pdev))
4965 		pr_warn("Could not enable MWI for %s\n", pci_name(pdev));
4966 
4967 	cas_program_bridge(pdev);
4968 
4969 	/*
4970 	 * On some architectures, the default cache line size set
4971 	 * by pci_try_set_mwi reduces perforamnce.  We have to increase
4972 	 * it for this case.  To start, we'll print some configuration
4973 	 * data.
4974 	 */
4975 #if 1
4976 	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4977 			     &orig_cacheline_size);
4978 	if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4979 		cas_cacheline_size =
4980 			(CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4981 			CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4982 		if (pci_write_config_byte(pdev,
4983 					  PCI_CACHE_LINE_SIZE,
4984 					  cas_cacheline_size)) {
4985 			dev_err(&pdev->dev, "Could not set PCI cache "
4986 			       "line size\n");
4987 			goto err_write_cacheline;
4988 		}
4989 	}
4990 #endif
4991 
4992 
4993 	/* Configure DMA attributes. */
4994 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4995 		pci_using_dac = 1;
4996 		err = pci_set_consistent_dma_mask(pdev,
4997 						  DMA_BIT_MASK(64));
4998 		if (err < 0) {
4999 			dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5000 			       "for consistent allocations\n");
5001 			goto err_out_free_res;
5002 		}
5003 
5004 	} else {
5005 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5006 		if (err) {
5007 			dev_err(&pdev->dev, "No usable DMA configuration, "
5008 			       "aborting\n");
5009 			goto err_out_free_res;
5010 		}
5011 		pci_using_dac = 0;
5012 	}
5013 
5014 	casreg_len = pci_resource_len(pdev, 0);
5015 
5016 	cp = netdev_priv(dev);
5017 	cp->pdev = pdev;
5018 #if 1
5019 	/* A value of 0 indicates we never explicitly set it */
5020 	cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5021 #endif
5022 	cp->dev = dev;
5023 	cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5024 	  cassini_debug;
5025 
5026 #if defined(CONFIG_SPARC)
5027 	cp->of_node = pci_device_to_OF_node(pdev);
5028 #endif
5029 
5030 	cp->link_transition = LINK_TRANSITION_UNKNOWN;
5031 	cp->link_transition_jiffies_valid = 0;
5032 
5033 	spin_lock_init(&cp->lock);
5034 	spin_lock_init(&cp->rx_inuse_lock);
5035 	spin_lock_init(&cp->rx_spare_lock);
5036 	for (i = 0; i < N_TX_RINGS; i++) {
5037 		spin_lock_init(&cp->stat_lock[i]);
5038 		spin_lock_init(&cp->tx_lock[i]);
5039 	}
5040 	spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5041 	mutex_init(&cp->pm_mutex);
5042 
5043 	timer_setup(&cp->link_timer, cas_link_timer, 0);
5044 
5045 #if 1
5046 	/* Just in case the implementation of atomic operations
5047 	 * change so that an explicit initialization is necessary.
5048 	 */
5049 	atomic_set(&cp->reset_task_pending, 0);
5050 	atomic_set(&cp->reset_task_pending_all, 0);
5051 	atomic_set(&cp->reset_task_pending_spare, 0);
5052 	atomic_set(&cp->reset_task_pending_mtu, 0);
5053 #endif
5054 	INIT_WORK(&cp->reset_task, cas_reset_task);
5055 
5056 	/* Default link parameters */
5057 	if (link_mode >= 0 && link_mode < 6)
5058 		cp->link_cntl = link_modes[link_mode];
5059 	else
5060 		cp->link_cntl = BMCR_ANENABLE;
5061 	cp->lstate = link_down;
5062 	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5063 	netif_carrier_off(cp->dev);
5064 	cp->timer_ticks = 0;
5065 
5066 	/* give us access to cassini registers */
5067 	cp->regs = pci_iomap(pdev, 0, casreg_len);
5068 	if (!cp->regs) {
5069 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5070 		goto err_out_free_res;
5071 	}
5072 	cp->casreg_len = casreg_len;
5073 
5074 	pci_save_state(pdev);
5075 	cas_check_pci_invariants(cp);
5076 	cas_hard_reset(cp);
5077 	cas_reset(cp, 0);
5078 	if (cas_check_invariants(cp))
5079 		goto err_out_iounmap;
5080 	if (cp->cas_flags & CAS_FLAG_SATURN)
5081 		cas_saturn_firmware_init(cp);
5082 
5083 	cp->init_block = (struct cas_init_block *)
5084 		pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5085 				     &cp->block_dvma);
5086 	if (!cp->init_block) {
5087 		dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5088 		goto err_out_iounmap;
5089 	}
5090 
5091 	for (i = 0; i < N_TX_RINGS; i++)
5092 		cp->init_txds[i] = cp->init_block->txds[i];
5093 
5094 	for (i = 0; i < N_RX_DESC_RINGS; i++)
5095 		cp->init_rxds[i] = cp->init_block->rxds[i];
5096 
5097 	for (i = 0; i < N_RX_COMP_RINGS; i++)
5098 		cp->init_rxcs[i] = cp->init_block->rxcs[i];
5099 
5100 	for (i = 0; i < N_RX_FLOWS; i++)
5101 		skb_queue_head_init(&cp->rx_flows[i]);
5102 
5103 	dev->netdev_ops = &cas_netdev_ops;
5104 	dev->ethtool_ops = &cas_ethtool_ops;
5105 	dev->watchdog_timeo = CAS_TX_TIMEOUT;
5106 
5107 #ifdef USE_NAPI
5108 	netif_napi_add(dev, &cp->napi, cas_poll, 64);
5109 #endif
5110 	dev->irq = pdev->irq;
5111 	dev->dma = 0;
5112 
5113 	/* Cassini features. */
5114 	if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5115 		dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5116 
5117 	if (pci_using_dac)
5118 		dev->features |= NETIF_F_HIGHDMA;
5119 
5120 	/* MTU range: 60 - varies or 9000 */
5121 	dev->min_mtu = CAS_MIN_MTU;
5122 	dev->max_mtu = CAS_MAX_MTU;
5123 
5124 	if (register_netdev(dev)) {
5125 		dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5126 		goto err_out_free_consistent;
5127 	}
5128 
5129 	i = readl(cp->regs + REG_BIM_CFG);
5130 	netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5131 		    (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5132 		    (i & BIM_CFG_32BIT) ? "32" : "64",
5133 		    (i & BIM_CFG_66MHZ) ? "66" : "33",
5134 		    (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5135 		    dev->dev_addr);
5136 
5137 	pci_set_drvdata(pdev, dev);
5138 	cp->hw_running = 1;
5139 	cas_entropy_reset(cp);
5140 	cas_phy_init(cp);
5141 	cas_begin_auto_negotiation(cp, NULL);
5142 	return 0;
5143 
5144 err_out_free_consistent:
5145 	pci_free_consistent(pdev, sizeof(struct cas_init_block),
5146 			    cp->init_block, cp->block_dvma);
5147 
5148 err_out_iounmap:
5149 	mutex_lock(&cp->pm_mutex);
5150 	if (cp->hw_running)
5151 		cas_shutdown(cp);
5152 	mutex_unlock(&cp->pm_mutex);
5153 
5154 	pci_iounmap(pdev, cp->regs);
5155 
5156 
5157 err_out_free_res:
5158 	pci_release_regions(pdev);
5159 
5160 err_write_cacheline:
5161 	/* Try to restore it in case the error occurred after we
5162 	 * set it.
5163 	 */
5164 	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5165 
5166 err_out_free_netdev:
5167 	free_netdev(dev);
5168 
5169 err_out_disable_pdev:
5170 	pci_disable_device(pdev);
5171 	return -ENODEV;
5172 }
5173 
5174 static void cas_remove_one(struct pci_dev *pdev)
5175 {
5176 	struct net_device *dev = pci_get_drvdata(pdev);
5177 	struct cas *cp;
5178 	if (!dev)
5179 		return;
5180 
5181 	cp = netdev_priv(dev);
5182 	unregister_netdev(dev);
5183 
5184 	vfree(cp->fw_data);
5185 
5186 	mutex_lock(&cp->pm_mutex);
5187 	cancel_work_sync(&cp->reset_task);
5188 	if (cp->hw_running)
5189 		cas_shutdown(cp);
5190 	mutex_unlock(&cp->pm_mutex);
5191 
5192 #if 1
5193 	if (cp->orig_cacheline_size) {
5194 		/* Restore the cache line size if we had modified
5195 		 * it.
5196 		 */
5197 		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5198 				      cp->orig_cacheline_size);
5199 	}
5200 #endif
5201 	pci_free_consistent(pdev, sizeof(struct cas_init_block),
5202 			    cp->init_block, cp->block_dvma);
5203 	pci_iounmap(pdev, cp->regs);
5204 	free_netdev(dev);
5205 	pci_release_regions(pdev);
5206 	pci_disable_device(pdev);
5207 }
5208 
5209 #ifdef CONFIG_PM
5210 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5211 {
5212 	struct net_device *dev = pci_get_drvdata(pdev);
5213 	struct cas *cp = netdev_priv(dev);
5214 	unsigned long flags;
5215 
5216 	mutex_lock(&cp->pm_mutex);
5217 
5218 	/* If the driver is opened, we stop the DMA */
5219 	if (cp->opened) {
5220 		netif_device_detach(dev);
5221 
5222 		cas_lock_all_save(cp, flags);
5223 
5224 		/* We can set the second arg of cas_reset to 0
5225 		 * because on resume, we'll call cas_init_hw with
5226 		 * its second arg set so that autonegotiation is
5227 		 * restarted.
5228 		 */
5229 		cas_reset(cp, 0);
5230 		cas_clean_rings(cp);
5231 		cas_unlock_all_restore(cp, flags);
5232 	}
5233 
5234 	if (cp->hw_running)
5235 		cas_shutdown(cp);
5236 	mutex_unlock(&cp->pm_mutex);
5237 
5238 	return 0;
5239 }
5240 
5241 static int cas_resume(struct pci_dev *pdev)
5242 {
5243 	struct net_device *dev = pci_get_drvdata(pdev);
5244 	struct cas *cp = netdev_priv(dev);
5245 
5246 	netdev_info(dev, "resuming\n");
5247 
5248 	mutex_lock(&cp->pm_mutex);
5249 	cas_hard_reset(cp);
5250 	if (cp->opened) {
5251 		unsigned long flags;
5252 		cas_lock_all_save(cp, flags);
5253 		cas_reset(cp, 0);
5254 		cp->hw_running = 1;
5255 		cas_clean_rings(cp);
5256 		cas_init_hw(cp, 1);
5257 		cas_unlock_all_restore(cp, flags);
5258 
5259 		netif_device_attach(dev);
5260 	}
5261 	mutex_unlock(&cp->pm_mutex);
5262 	return 0;
5263 }
5264 #endif /* CONFIG_PM */
5265 
5266 static struct pci_driver cas_driver = {
5267 	.name		= DRV_MODULE_NAME,
5268 	.id_table	= cas_pci_tbl,
5269 	.probe		= cas_init_one,
5270 	.remove		= cas_remove_one,
5271 #ifdef CONFIG_PM
5272 	.suspend	= cas_suspend,
5273 	.resume		= cas_resume
5274 #endif
5275 };
5276 
5277 static int __init cas_init(void)
5278 {
5279 	if (linkdown_timeout > 0)
5280 		link_transition_timeout = linkdown_timeout * HZ;
5281 	else
5282 		link_transition_timeout = 0;
5283 
5284 	return pci_register_driver(&cas_driver);
5285 }
5286 
5287 static void __exit cas_cleanup(void)
5288 {
5289 	pci_unregister_driver(&cas_driver);
5290 }
5291 
5292 module_init(cas_init);
5293 module_exit(cas_cleanup);
5294