xref: /linux/drivers/net/ethernet/sun/cassini.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2  *
3  * Copyright (C) 2004 Sun Microsystems Inc.
4  * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 of the
9  * License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19  * 02111-1307, USA.
20  *
21  * This driver uses the sungem driver (c) David Miller
22  * (davem@redhat.com) as its basis.
23  *
24  * The cassini chip has a number of features that distinguish it from
25  * the gem chip:
26  *  4 transmit descriptor rings that are used for either QoS (VLAN) or
27  *      load balancing (non-VLAN mode)
28  *  batching of multiple packets
29  *  multiple CPU dispatching
30  *  page-based RX descriptor engine with separate completion rings
31  *  Gigabit support (GMII and PCS interface)
32  *  MIF link up/down detection works
33  *
34  * RX is handled by page sized buffers that are attached as fragments to
35  * the skb. here's what's done:
36  *  -- driver allocates pages at a time and keeps reference counts
37  *     on them.
38  *  -- the upper protocol layers assume that the header is in the skb
39  *     itself. as a result, cassini will copy a small amount (64 bytes)
40  *     to make them happy.
41  *  -- driver appends the rest of the data pages as frags to skbuffs
42  *     and increments the reference count
43  *  -- on page reclamation, the driver swaps the page with a spare page.
44  *     if that page is still in use, it frees its reference to that page,
45  *     and allocates a new page for use. otherwise, it just recycles the
46  *     the page.
47  *
48  * NOTE: cassini can parse the header. however, it's not worth it
49  *       as long as the network stack requires a header copy.
50  *
51  * TX has 4 queues. currently these queues are used in a round-robin
52  * fashion for load balancing. They can also be used for QoS. for that
53  * to work, however, QoS information needs to be exposed down to the driver
54  * level so that subqueues get targeted to particular transmit rings.
55  * alternatively, the queues can be configured via use of the all-purpose
56  * ioctl.
57  *
58  * RX DATA: the rx completion ring has all the info, but the rx desc
59  * ring has all of the data. RX can conceivably come in under multiple
60  * interrupts, but the INT# assignment needs to be set up properly by
61  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62  * that. also, the two descriptor rings are designed to distinguish between
63  * encrypted and non-encrypted packets, but we use them for buffering
64  * instead.
65  *
66  * by default, the selective clear mask is set up to process rx packets.
67  */
68 
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
74 #include <linux/compiler.h>
75 #include <linux/slab.h>
76 #include <linux/delay.h>
77 #include <linux/init.h>
78 #include <linux/interrupt.h>
79 #include <linux/vmalloc.h>
80 #include <linux/ioport.h>
81 #include <linux/pci.h>
82 #include <linux/mm.h>
83 #include <linux/highmem.h>
84 #include <linux/list.h>
85 #include <linux/dma-mapping.h>
86 
87 #include <linux/netdevice.h>
88 #include <linux/etherdevice.h>
89 #include <linux/skbuff.h>
90 #include <linux/ethtool.h>
91 #include <linux/crc32.h>
92 #include <linux/random.h>
93 #include <linux/mii.h>
94 #include <linux/ip.h>
95 #include <linux/tcp.h>
96 #include <linux/mutex.h>
97 #include <linux/firmware.h>
98 
99 #include <net/checksum.h>
100 
101 #include <linux/atomic.h>
102 #include <asm/system.h>
103 #include <asm/io.h>
104 #include <asm/byteorder.h>
105 #include <asm/uaccess.h>
106 
107 #define cas_page_map(x)      kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
108 #define cas_page_unmap(x)    kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
109 #define CAS_NCPUS            num_online_cpus()
110 
111 #define cas_skb_release(x)  netif_rx(x)
112 
113 /* select which firmware to use */
114 #define USE_HP_WORKAROUND
115 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
116 #define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
117 
118 #include "cassini.h"
119 
120 #define USE_TX_COMPWB      /* use completion writeback registers */
121 #define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
122 #define USE_RX_BLANK       /* hw interrupt mitigation */
123 #undef USE_ENTROPY_DEV     /* don't test for entropy device */
124 
125 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
126  * also, we need to make cp->lock finer-grained.
127  */
128 #undef  USE_PCI_INTB
129 #undef  USE_PCI_INTC
130 #undef  USE_PCI_INTD
131 #undef  USE_QOS
132 
133 #undef  USE_VPD_DEBUG       /* debug vpd information if defined */
134 
135 /* rx processing options */
136 #define USE_PAGE_ORDER      /* specify to allocate large rx pages */
137 #define RX_DONT_BATCH  0    /* if 1, don't batch flows */
138 #define RX_COPY_ALWAYS 0    /* if 0, use frags */
139 #define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
140 #undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
141 
142 #define DRV_MODULE_NAME		"cassini"
143 #define DRV_MODULE_VERSION	"1.6"
144 #define DRV_MODULE_RELDATE	"21 May 2008"
145 
146 #define CAS_DEF_MSG_ENABLE	  \
147 	(NETIF_MSG_DRV		| \
148 	 NETIF_MSG_PROBE	| \
149 	 NETIF_MSG_LINK		| \
150 	 NETIF_MSG_TIMER	| \
151 	 NETIF_MSG_IFDOWN	| \
152 	 NETIF_MSG_IFUP		| \
153 	 NETIF_MSG_RX_ERR	| \
154 	 NETIF_MSG_TX_ERR)
155 
156 /* length of time before we decide the hardware is borked,
157  * and dev->tx_timeout() should be called to fix the problem
158  */
159 #define CAS_TX_TIMEOUT			(HZ)
160 #define CAS_LINK_TIMEOUT                (22*HZ/10)
161 #define CAS_LINK_FAST_TIMEOUT           (1)
162 
163 /* timeout values for state changing. these specify the number
164  * of 10us delays to be used before giving up.
165  */
166 #define STOP_TRIES_PHY 1000
167 #define STOP_TRIES     5000
168 
169 /* specify a minimum frame size to deal with some fifo issues
170  * max mtu == 2 * page size - ethernet header - 64 - swivel =
171  *            2 * page_size - 0x50
172  */
173 #define CAS_MIN_FRAME			97
174 #define CAS_1000MB_MIN_FRAME            255
175 #define CAS_MIN_MTU                     60
176 #define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
177 
178 #if 1
179 /*
180  * Eliminate these and use separate atomic counters for each, to
181  * avoid a race condition.
182  */
183 #else
184 #define CAS_RESET_MTU                   1
185 #define CAS_RESET_ALL                   2
186 #define CAS_RESET_SPARE                 3
187 #endif
188 
189 static char version[] __devinitdata =
190 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
191 
192 static int cassini_debug = -1;	/* -1 == use CAS_DEF_MSG_ENABLE as value */
193 static int link_mode;
194 
195 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
196 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
197 MODULE_LICENSE("GPL");
198 MODULE_FIRMWARE("sun/cassini.bin");
199 module_param(cassini_debug, int, 0);
200 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
201 module_param(link_mode, int, 0);
202 MODULE_PARM_DESC(link_mode, "default link mode");
203 
204 /*
205  * Work around for a PCS bug in which the link goes down due to the chip
206  * being confused and never showing a link status of "up."
207  */
208 #define DEFAULT_LINKDOWN_TIMEOUT 5
209 /*
210  * Value in seconds, for user input.
211  */
212 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
213 module_param(linkdown_timeout, int, 0);
214 MODULE_PARM_DESC(linkdown_timeout,
215 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
216 
217 /*
218  * value in 'ticks' (units used by jiffies). Set when we init the
219  * module because 'HZ' in actually a function call on some flavors of
220  * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
221  */
222 static int link_transition_timeout;
223 
224 
225 
226 static u16 link_modes[] __devinitdata = {
227 	BMCR_ANENABLE,			 /* 0 : autoneg */
228 	0,				 /* 1 : 10bt half duplex */
229 	BMCR_SPEED100,			 /* 2 : 100bt half duplex */
230 	BMCR_FULLDPLX,			 /* 3 : 10bt full duplex */
231 	BMCR_SPEED100|BMCR_FULLDPLX,	 /* 4 : 100bt full duplex */
232 	CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
233 };
234 
235 static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl) = {
236 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
237 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
238 	{ PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
239 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
240 	{ 0, }
241 };
242 
243 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
244 
245 static void cas_set_link_modes(struct cas *cp);
246 
247 static inline void cas_lock_tx(struct cas *cp)
248 {
249 	int i;
250 
251 	for (i = 0; i < N_TX_RINGS; i++)
252 		spin_lock(&cp->tx_lock[i]);
253 }
254 
255 static inline void cas_lock_all(struct cas *cp)
256 {
257 	spin_lock_irq(&cp->lock);
258 	cas_lock_tx(cp);
259 }
260 
261 /* WTZ: QA was finding deadlock problems with the previous
262  * versions after long test runs with multiple cards per machine.
263  * See if replacing cas_lock_all with safer versions helps. The
264  * symptoms QA is reporting match those we'd expect if interrupts
265  * aren't being properly restored, and we fixed a previous deadlock
266  * with similar symptoms by using save/restore versions in other
267  * places.
268  */
269 #define cas_lock_all_save(cp, flags) \
270 do { \
271 	struct cas *xxxcp = (cp); \
272 	spin_lock_irqsave(&xxxcp->lock, flags); \
273 	cas_lock_tx(xxxcp); \
274 } while (0)
275 
276 static inline void cas_unlock_tx(struct cas *cp)
277 {
278 	int i;
279 
280 	for (i = N_TX_RINGS; i > 0; i--)
281 		spin_unlock(&cp->tx_lock[i - 1]);
282 }
283 
284 static inline void cas_unlock_all(struct cas *cp)
285 {
286 	cas_unlock_tx(cp);
287 	spin_unlock_irq(&cp->lock);
288 }
289 
290 #define cas_unlock_all_restore(cp, flags) \
291 do { \
292 	struct cas *xxxcp = (cp); \
293 	cas_unlock_tx(xxxcp); \
294 	spin_unlock_irqrestore(&xxxcp->lock, flags); \
295 } while (0)
296 
297 static void cas_disable_irq(struct cas *cp, const int ring)
298 {
299 	/* Make sure we won't get any more interrupts */
300 	if (ring == 0) {
301 		writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
302 		return;
303 	}
304 
305 	/* disable completion interrupts and selectively mask */
306 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
307 		switch (ring) {
308 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
309 #ifdef USE_PCI_INTB
310 		case 1:
311 #endif
312 #ifdef USE_PCI_INTC
313 		case 2:
314 #endif
315 #ifdef USE_PCI_INTD
316 		case 3:
317 #endif
318 			writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
319 			       cp->regs + REG_PLUS_INTRN_MASK(ring));
320 			break;
321 #endif
322 		default:
323 			writel(INTRN_MASK_CLEAR_ALL, cp->regs +
324 			       REG_PLUS_INTRN_MASK(ring));
325 			break;
326 		}
327 	}
328 }
329 
330 static inline void cas_mask_intr(struct cas *cp)
331 {
332 	int i;
333 
334 	for (i = 0; i < N_RX_COMP_RINGS; i++)
335 		cas_disable_irq(cp, i);
336 }
337 
338 static void cas_enable_irq(struct cas *cp, const int ring)
339 {
340 	if (ring == 0) { /* all but TX_DONE */
341 		writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
342 		return;
343 	}
344 
345 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
346 		switch (ring) {
347 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
348 #ifdef USE_PCI_INTB
349 		case 1:
350 #endif
351 #ifdef USE_PCI_INTC
352 		case 2:
353 #endif
354 #ifdef USE_PCI_INTD
355 		case 3:
356 #endif
357 			writel(INTRN_MASK_RX_EN, cp->regs +
358 			       REG_PLUS_INTRN_MASK(ring));
359 			break;
360 #endif
361 		default:
362 			break;
363 		}
364 	}
365 }
366 
367 static inline void cas_unmask_intr(struct cas *cp)
368 {
369 	int i;
370 
371 	for (i = 0; i < N_RX_COMP_RINGS; i++)
372 		cas_enable_irq(cp, i);
373 }
374 
375 static inline void cas_entropy_gather(struct cas *cp)
376 {
377 #ifdef USE_ENTROPY_DEV
378 	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
379 		return;
380 
381 	batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
382 			    readl(cp->regs + REG_ENTROPY_IV),
383 			    sizeof(uint64_t)*8);
384 #endif
385 }
386 
387 static inline void cas_entropy_reset(struct cas *cp)
388 {
389 #ifdef USE_ENTROPY_DEV
390 	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
391 		return;
392 
393 	writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
394 	       cp->regs + REG_BIM_LOCAL_DEV_EN);
395 	writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
396 	writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
397 
398 	/* if we read back 0x0, we don't have an entropy device */
399 	if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
400 		cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
401 #endif
402 }
403 
404 /* access to the phy. the following assumes that we've initialized the MIF to
405  * be in frame rather than bit-bang mode
406  */
407 static u16 cas_phy_read(struct cas *cp, int reg)
408 {
409 	u32 cmd;
410 	int limit = STOP_TRIES_PHY;
411 
412 	cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
413 	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
414 	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
415 	cmd |= MIF_FRAME_TURN_AROUND_MSB;
416 	writel(cmd, cp->regs + REG_MIF_FRAME);
417 
418 	/* poll for completion */
419 	while (limit-- > 0) {
420 		udelay(10);
421 		cmd = readl(cp->regs + REG_MIF_FRAME);
422 		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
423 			return cmd & MIF_FRAME_DATA_MASK;
424 	}
425 	return 0xFFFF; /* -1 */
426 }
427 
428 static int cas_phy_write(struct cas *cp, int reg, u16 val)
429 {
430 	int limit = STOP_TRIES_PHY;
431 	u32 cmd;
432 
433 	cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
434 	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
435 	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
436 	cmd |= MIF_FRAME_TURN_AROUND_MSB;
437 	cmd |= val & MIF_FRAME_DATA_MASK;
438 	writel(cmd, cp->regs + REG_MIF_FRAME);
439 
440 	/* poll for completion */
441 	while (limit-- > 0) {
442 		udelay(10);
443 		cmd = readl(cp->regs + REG_MIF_FRAME);
444 		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
445 			return 0;
446 	}
447 	return -1;
448 }
449 
450 static void cas_phy_powerup(struct cas *cp)
451 {
452 	u16 ctl = cas_phy_read(cp, MII_BMCR);
453 
454 	if ((ctl & BMCR_PDOWN) == 0)
455 		return;
456 	ctl &= ~BMCR_PDOWN;
457 	cas_phy_write(cp, MII_BMCR, ctl);
458 }
459 
460 static void cas_phy_powerdown(struct cas *cp)
461 {
462 	u16 ctl = cas_phy_read(cp, MII_BMCR);
463 
464 	if (ctl & BMCR_PDOWN)
465 		return;
466 	ctl |= BMCR_PDOWN;
467 	cas_phy_write(cp, MII_BMCR, ctl);
468 }
469 
470 /* cp->lock held. note: the last put_page will free the buffer */
471 static int cas_page_free(struct cas *cp, cas_page_t *page)
472 {
473 	pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
474 		       PCI_DMA_FROMDEVICE);
475 	__free_pages(page->buffer, cp->page_order);
476 	kfree(page);
477 	return 0;
478 }
479 
480 #ifdef RX_COUNT_BUFFERS
481 #define RX_USED_ADD(x, y)       ((x)->used += (y))
482 #define RX_USED_SET(x, y)       ((x)->used  = (y))
483 #else
484 #define RX_USED_ADD(x, y)
485 #define RX_USED_SET(x, y)
486 #endif
487 
488 /* local page allocation routines for the receive buffers. jumbo pages
489  * require at least 8K contiguous and 8K aligned buffers.
490  */
491 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
492 {
493 	cas_page_t *page;
494 
495 	page = kmalloc(sizeof(cas_page_t), flags);
496 	if (!page)
497 		return NULL;
498 
499 	INIT_LIST_HEAD(&page->list);
500 	RX_USED_SET(page, 0);
501 	page->buffer = alloc_pages(flags, cp->page_order);
502 	if (!page->buffer)
503 		goto page_err;
504 	page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
505 				      cp->page_size, PCI_DMA_FROMDEVICE);
506 	return page;
507 
508 page_err:
509 	kfree(page);
510 	return NULL;
511 }
512 
513 /* initialize spare pool of rx buffers, but allocate during the open */
514 static void cas_spare_init(struct cas *cp)
515 {
516   	spin_lock(&cp->rx_inuse_lock);
517 	INIT_LIST_HEAD(&cp->rx_inuse_list);
518 	spin_unlock(&cp->rx_inuse_lock);
519 
520 	spin_lock(&cp->rx_spare_lock);
521 	INIT_LIST_HEAD(&cp->rx_spare_list);
522 	cp->rx_spares_needed = RX_SPARE_COUNT;
523 	spin_unlock(&cp->rx_spare_lock);
524 }
525 
526 /* used on close. free all the spare buffers. */
527 static void cas_spare_free(struct cas *cp)
528 {
529 	struct list_head list, *elem, *tmp;
530 
531 	/* free spare buffers */
532 	INIT_LIST_HEAD(&list);
533 	spin_lock(&cp->rx_spare_lock);
534 	list_splice_init(&cp->rx_spare_list, &list);
535 	spin_unlock(&cp->rx_spare_lock);
536 	list_for_each_safe(elem, tmp, &list) {
537 		cas_page_free(cp, list_entry(elem, cas_page_t, list));
538 	}
539 
540 	INIT_LIST_HEAD(&list);
541 #if 1
542 	/*
543 	 * Looks like Adrian had protected this with a different
544 	 * lock than used everywhere else to manipulate this list.
545 	 */
546 	spin_lock(&cp->rx_inuse_lock);
547 	list_splice_init(&cp->rx_inuse_list, &list);
548 	spin_unlock(&cp->rx_inuse_lock);
549 #else
550 	spin_lock(&cp->rx_spare_lock);
551 	list_splice_init(&cp->rx_inuse_list, &list);
552 	spin_unlock(&cp->rx_spare_lock);
553 #endif
554 	list_for_each_safe(elem, tmp, &list) {
555 		cas_page_free(cp, list_entry(elem, cas_page_t, list));
556 	}
557 }
558 
559 /* replenish spares if needed */
560 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
561 {
562 	struct list_head list, *elem, *tmp;
563 	int needed, i;
564 
565 	/* check inuse list. if we don't need any more free buffers,
566 	 * just free it
567 	 */
568 
569 	/* make a local copy of the list */
570 	INIT_LIST_HEAD(&list);
571 	spin_lock(&cp->rx_inuse_lock);
572 	list_splice_init(&cp->rx_inuse_list, &list);
573 	spin_unlock(&cp->rx_inuse_lock);
574 
575 	list_for_each_safe(elem, tmp, &list) {
576 		cas_page_t *page = list_entry(elem, cas_page_t, list);
577 
578 		/*
579 		 * With the lockless pagecache, cassini buffering scheme gets
580 		 * slightly less accurate: we might find that a page has an
581 		 * elevated reference count here, due to a speculative ref,
582 		 * and skip it as in-use. Ideally we would be able to reclaim
583 		 * it. However this would be such a rare case, it doesn't
584 		 * matter too much as we should pick it up the next time round.
585 		 *
586 		 * Importantly, if we find that the page has a refcount of 1
587 		 * here (our refcount), then we know it is definitely not inuse
588 		 * so we can reuse it.
589 		 */
590 		if (page_count(page->buffer) > 1)
591 			continue;
592 
593 		list_del(elem);
594 		spin_lock(&cp->rx_spare_lock);
595 		if (cp->rx_spares_needed > 0) {
596 			list_add(elem, &cp->rx_spare_list);
597 			cp->rx_spares_needed--;
598 			spin_unlock(&cp->rx_spare_lock);
599 		} else {
600 			spin_unlock(&cp->rx_spare_lock);
601 			cas_page_free(cp, page);
602 		}
603 	}
604 
605 	/* put any inuse buffers back on the list */
606 	if (!list_empty(&list)) {
607 		spin_lock(&cp->rx_inuse_lock);
608 		list_splice(&list, &cp->rx_inuse_list);
609 		spin_unlock(&cp->rx_inuse_lock);
610 	}
611 
612 	spin_lock(&cp->rx_spare_lock);
613 	needed = cp->rx_spares_needed;
614 	spin_unlock(&cp->rx_spare_lock);
615 	if (!needed)
616 		return;
617 
618 	/* we still need spares, so try to allocate some */
619 	INIT_LIST_HEAD(&list);
620 	i = 0;
621 	while (i < needed) {
622 		cas_page_t *spare = cas_page_alloc(cp, flags);
623 		if (!spare)
624 			break;
625 		list_add(&spare->list, &list);
626 		i++;
627 	}
628 
629 	spin_lock(&cp->rx_spare_lock);
630 	list_splice(&list, &cp->rx_spare_list);
631 	cp->rx_spares_needed -= i;
632 	spin_unlock(&cp->rx_spare_lock);
633 }
634 
635 /* pull a page from the list. */
636 static cas_page_t *cas_page_dequeue(struct cas *cp)
637 {
638 	struct list_head *entry;
639 	int recover;
640 
641 	spin_lock(&cp->rx_spare_lock);
642 	if (list_empty(&cp->rx_spare_list)) {
643 		/* try to do a quick recovery */
644 		spin_unlock(&cp->rx_spare_lock);
645 		cas_spare_recover(cp, GFP_ATOMIC);
646 		spin_lock(&cp->rx_spare_lock);
647 		if (list_empty(&cp->rx_spare_list)) {
648 			netif_err(cp, rx_err, cp->dev,
649 				  "no spare buffers available\n");
650 			spin_unlock(&cp->rx_spare_lock);
651 			return NULL;
652 		}
653 	}
654 
655 	entry = cp->rx_spare_list.next;
656 	list_del(entry);
657 	recover = ++cp->rx_spares_needed;
658 	spin_unlock(&cp->rx_spare_lock);
659 
660 	/* trigger the timer to do the recovery */
661 	if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
662 #if 1
663 		atomic_inc(&cp->reset_task_pending);
664 		atomic_inc(&cp->reset_task_pending_spare);
665 		schedule_work(&cp->reset_task);
666 #else
667 		atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
668 		schedule_work(&cp->reset_task);
669 #endif
670 	}
671 	return list_entry(entry, cas_page_t, list);
672 }
673 
674 
675 static void cas_mif_poll(struct cas *cp, const int enable)
676 {
677 	u32 cfg;
678 
679 	cfg  = readl(cp->regs + REG_MIF_CFG);
680 	cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
681 
682 	if (cp->phy_type & CAS_PHY_MII_MDIO1)
683 		cfg |= MIF_CFG_PHY_SELECT;
684 
685 	/* poll and interrupt on link status change. */
686 	if (enable) {
687 		cfg |= MIF_CFG_POLL_EN;
688 		cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
689 		cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
690 	}
691 	writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
692 	       cp->regs + REG_MIF_MASK);
693 	writel(cfg, cp->regs + REG_MIF_CFG);
694 }
695 
696 /* Must be invoked under cp->lock */
697 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
698 {
699 	u16 ctl;
700 #if 1
701 	int lcntl;
702 	int changed = 0;
703 	int oldstate = cp->lstate;
704 	int link_was_not_down = !(oldstate == link_down);
705 #endif
706 	/* Setup link parameters */
707 	if (!ep)
708 		goto start_aneg;
709 	lcntl = cp->link_cntl;
710 	if (ep->autoneg == AUTONEG_ENABLE)
711 		cp->link_cntl = BMCR_ANENABLE;
712 	else {
713 		u32 speed = ethtool_cmd_speed(ep);
714 		cp->link_cntl = 0;
715 		if (speed == SPEED_100)
716 			cp->link_cntl |= BMCR_SPEED100;
717 		else if (speed == SPEED_1000)
718 			cp->link_cntl |= CAS_BMCR_SPEED1000;
719 		if (ep->duplex == DUPLEX_FULL)
720 			cp->link_cntl |= BMCR_FULLDPLX;
721 	}
722 #if 1
723 	changed = (lcntl != cp->link_cntl);
724 #endif
725 start_aneg:
726 	if (cp->lstate == link_up) {
727 		netdev_info(cp->dev, "PCS link down\n");
728 	} else {
729 		if (changed) {
730 			netdev_info(cp->dev, "link configuration changed\n");
731 		}
732 	}
733 	cp->lstate = link_down;
734 	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
735 	if (!cp->hw_running)
736 		return;
737 #if 1
738 	/*
739 	 * WTZ: If the old state was link_up, we turn off the carrier
740 	 * to replicate everything we do elsewhere on a link-down
741 	 * event when we were already in a link-up state..
742 	 */
743 	if (oldstate == link_up)
744 		netif_carrier_off(cp->dev);
745 	if (changed  && link_was_not_down) {
746 		/*
747 		 * WTZ: This branch will simply schedule a full reset after
748 		 * we explicitly changed link modes in an ioctl. See if this
749 		 * fixes the link-problems we were having for forced mode.
750 		 */
751 		atomic_inc(&cp->reset_task_pending);
752 		atomic_inc(&cp->reset_task_pending_all);
753 		schedule_work(&cp->reset_task);
754 		cp->timer_ticks = 0;
755 		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
756 		return;
757 	}
758 #endif
759 	if (cp->phy_type & CAS_PHY_SERDES) {
760 		u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
761 
762 		if (cp->link_cntl & BMCR_ANENABLE) {
763 			val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
764 			cp->lstate = link_aneg;
765 		} else {
766 			if (cp->link_cntl & BMCR_FULLDPLX)
767 				val |= PCS_MII_CTRL_DUPLEX;
768 			val &= ~PCS_MII_AUTONEG_EN;
769 			cp->lstate = link_force_ok;
770 		}
771 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
772 		writel(val, cp->regs + REG_PCS_MII_CTRL);
773 
774 	} else {
775 		cas_mif_poll(cp, 0);
776 		ctl = cas_phy_read(cp, MII_BMCR);
777 		ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
778 			 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
779 		ctl |= cp->link_cntl;
780 		if (ctl & BMCR_ANENABLE) {
781 			ctl |= BMCR_ANRESTART;
782 			cp->lstate = link_aneg;
783 		} else {
784 			cp->lstate = link_force_ok;
785 		}
786 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
787 		cas_phy_write(cp, MII_BMCR, ctl);
788 		cas_mif_poll(cp, 1);
789 	}
790 
791 	cp->timer_ticks = 0;
792 	mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
793 }
794 
795 /* Must be invoked under cp->lock. */
796 static int cas_reset_mii_phy(struct cas *cp)
797 {
798 	int limit = STOP_TRIES_PHY;
799 	u16 val;
800 
801 	cas_phy_write(cp, MII_BMCR, BMCR_RESET);
802 	udelay(100);
803 	while (--limit) {
804 		val = cas_phy_read(cp, MII_BMCR);
805 		if ((val & BMCR_RESET) == 0)
806 			break;
807 		udelay(10);
808 	}
809 	return limit <= 0;
810 }
811 
812 static int cas_saturn_firmware_init(struct cas *cp)
813 {
814 	const struct firmware *fw;
815 	const char fw_name[] = "sun/cassini.bin";
816 	int err;
817 
818 	if (PHY_NS_DP83065 != cp->phy_id)
819 		return 0;
820 
821 	err = request_firmware(&fw, fw_name, &cp->pdev->dev);
822 	if (err) {
823 		pr_err("Failed to load firmware \"%s\"\n",
824 		       fw_name);
825 		return err;
826 	}
827 	if (fw->size < 2) {
828 		pr_err("bogus length %zu in \"%s\"\n",
829 		       fw->size, fw_name);
830 		err = -EINVAL;
831 		goto out;
832 	}
833 	cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
834 	cp->fw_size = fw->size - 2;
835 	cp->fw_data = vmalloc(cp->fw_size);
836 	if (!cp->fw_data) {
837 		err = -ENOMEM;
838 		pr_err("\"%s\" Failed %d\n", fw_name, err);
839 		goto out;
840 	}
841 	memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
842 out:
843 	release_firmware(fw);
844 	return err;
845 }
846 
847 static void cas_saturn_firmware_load(struct cas *cp)
848 {
849 	int i;
850 
851 	cas_phy_powerdown(cp);
852 
853 	/* expanded memory access mode */
854 	cas_phy_write(cp, DP83065_MII_MEM, 0x0);
855 
856 	/* pointer configuration for new firmware */
857 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
858 	cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
859 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
860 	cas_phy_write(cp, DP83065_MII_REGD, 0x82);
861 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
862 	cas_phy_write(cp, DP83065_MII_REGD, 0x0);
863 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
864 	cas_phy_write(cp, DP83065_MII_REGD, 0x39);
865 
866 	/* download new firmware */
867 	cas_phy_write(cp, DP83065_MII_MEM, 0x1);
868 	cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
869 	for (i = 0; i < cp->fw_size; i++)
870 		cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
871 
872 	/* enable firmware */
873 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
874 	cas_phy_write(cp, DP83065_MII_REGD, 0x1);
875 }
876 
877 
878 /* phy initialization */
879 static void cas_phy_init(struct cas *cp)
880 {
881 	u16 val;
882 
883 	/* if we're in MII/GMII mode, set up phy */
884 	if (CAS_PHY_MII(cp->phy_type)) {
885 		writel(PCS_DATAPATH_MODE_MII,
886 		       cp->regs + REG_PCS_DATAPATH_MODE);
887 
888 		cas_mif_poll(cp, 0);
889 		cas_reset_mii_phy(cp); /* take out of isolate mode */
890 
891 		if (PHY_LUCENT_B0 == cp->phy_id) {
892 			/* workaround link up/down issue with lucent */
893 			cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
894 			cas_phy_write(cp, MII_BMCR, 0x00f1);
895 			cas_phy_write(cp, LUCENT_MII_REG, 0x0);
896 
897 		} else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
898 			/* workarounds for broadcom phy */
899 			cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
900 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
901 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
902 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
903 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
904 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
905 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
906 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
907 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
908 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
909 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
910 
911 		} else if (PHY_BROADCOM_5411 == cp->phy_id) {
912 			val = cas_phy_read(cp, BROADCOM_MII_REG4);
913 			val = cas_phy_read(cp, BROADCOM_MII_REG4);
914 			if (val & 0x0080) {
915 				/* link workaround */
916 				cas_phy_write(cp, BROADCOM_MII_REG4,
917 					      val & ~0x0080);
918 			}
919 
920 		} else if (cp->cas_flags & CAS_FLAG_SATURN) {
921 			writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
922 			       SATURN_PCFG_FSI : 0x0,
923 			       cp->regs + REG_SATURN_PCFG);
924 
925 			/* load firmware to address 10Mbps auto-negotiation
926 			 * issue. NOTE: this will need to be changed if the
927 			 * default firmware gets fixed.
928 			 */
929 			if (PHY_NS_DP83065 == cp->phy_id) {
930 				cas_saturn_firmware_load(cp);
931 			}
932 			cas_phy_powerup(cp);
933 		}
934 
935 		/* advertise capabilities */
936 		val = cas_phy_read(cp, MII_BMCR);
937 		val &= ~BMCR_ANENABLE;
938 		cas_phy_write(cp, MII_BMCR, val);
939 		udelay(10);
940 
941 		cas_phy_write(cp, MII_ADVERTISE,
942 			      cas_phy_read(cp, MII_ADVERTISE) |
943 			      (ADVERTISE_10HALF | ADVERTISE_10FULL |
944 			       ADVERTISE_100HALF | ADVERTISE_100FULL |
945 			       CAS_ADVERTISE_PAUSE |
946 			       CAS_ADVERTISE_ASYM_PAUSE));
947 
948 		if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
949 			/* make sure that we don't advertise half
950 			 * duplex to avoid a chip issue
951 			 */
952 			val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
953 			val &= ~CAS_ADVERTISE_1000HALF;
954 			val |= CAS_ADVERTISE_1000FULL;
955 			cas_phy_write(cp, CAS_MII_1000_CTRL, val);
956 		}
957 
958 	} else {
959 		/* reset pcs for serdes */
960 		u32 val;
961 		int limit;
962 
963 		writel(PCS_DATAPATH_MODE_SERDES,
964 		       cp->regs + REG_PCS_DATAPATH_MODE);
965 
966 		/* enable serdes pins on saturn */
967 		if (cp->cas_flags & CAS_FLAG_SATURN)
968 			writel(0, cp->regs + REG_SATURN_PCFG);
969 
970 		/* Reset PCS unit. */
971 		val = readl(cp->regs + REG_PCS_MII_CTRL);
972 		val |= PCS_MII_RESET;
973 		writel(val, cp->regs + REG_PCS_MII_CTRL);
974 
975 		limit = STOP_TRIES;
976 		while (--limit > 0) {
977 			udelay(10);
978 			if ((readl(cp->regs + REG_PCS_MII_CTRL) &
979 			     PCS_MII_RESET) == 0)
980 				break;
981 		}
982 		if (limit <= 0)
983 			netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
984 				    readl(cp->regs + REG_PCS_STATE_MACHINE));
985 
986 		/* Make sure PCS is disabled while changing advertisement
987 		 * configuration.
988 		 */
989 		writel(0x0, cp->regs + REG_PCS_CFG);
990 
991 		/* Advertise all capabilities except half-duplex. */
992 		val  = readl(cp->regs + REG_PCS_MII_ADVERT);
993 		val &= ~PCS_MII_ADVERT_HD;
994 		val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
995 			PCS_MII_ADVERT_ASYM_PAUSE);
996 		writel(val, cp->regs + REG_PCS_MII_ADVERT);
997 
998 		/* enable PCS */
999 		writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
1000 
1001 		/* pcs workaround: enable sync detect */
1002 		writel(PCS_SERDES_CTRL_SYNCD_EN,
1003 		       cp->regs + REG_PCS_SERDES_CTRL);
1004 	}
1005 }
1006 
1007 
1008 static int cas_pcs_link_check(struct cas *cp)
1009 {
1010 	u32 stat, state_machine;
1011 	int retval = 0;
1012 
1013 	/* The link status bit latches on zero, so you must
1014 	 * read it twice in such a case to see a transition
1015 	 * to the link being up.
1016 	 */
1017 	stat = readl(cp->regs + REG_PCS_MII_STATUS);
1018 	if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1019 		stat = readl(cp->regs + REG_PCS_MII_STATUS);
1020 
1021 	/* The remote-fault indication is only valid
1022 	 * when autoneg has completed.
1023 	 */
1024 	if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1025 		     PCS_MII_STATUS_REMOTE_FAULT)) ==
1026 	    (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1027 		netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1028 
1029 	/* work around link detection issue by querying the PCS state
1030 	 * machine directly.
1031 	 */
1032 	state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1033 	if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1034 		stat &= ~PCS_MII_STATUS_LINK_STATUS;
1035 	} else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1036 		stat |= PCS_MII_STATUS_LINK_STATUS;
1037 	}
1038 
1039 	if (stat & PCS_MII_STATUS_LINK_STATUS) {
1040 		if (cp->lstate != link_up) {
1041 			if (cp->opened) {
1042 				cp->lstate = link_up;
1043 				cp->link_transition = LINK_TRANSITION_LINK_UP;
1044 
1045 				cas_set_link_modes(cp);
1046 				netif_carrier_on(cp->dev);
1047 			}
1048 		}
1049 	} else if (cp->lstate == link_up) {
1050 		cp->lstate = link_down;
1051 		if (link_transition_timeout != 0 &&
1052 		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1053 		    !cp->link_transition_jiffies_valid) {
1054 			/*
1055 			 * force a reset, as a workaround for the
1056 			 * link-failure problem. May want to move this to a
1057 			 * point a bit earlier in the sequence. If we had
1058 			 * generated a reset a short time ago, we'll wait for
1059 			 * the link timer to check the status until a
1060 			 * timer expires (link_transistion_jiffies_valid is
1061 			 * true when the timer is running.)  Instead of using
1062 			 * a system timer, we just do a check whenever the
1063 			 * link timer is running - this clears the flag after
1064 			 * a suitable delay.
1065 			 */
1066 			retval = 1;
1067 			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1068 			cp->link_transition_jiffies = jiffies;
1069 			cp->link_transition_jiffies_valid = 1;
1070 		} else {
1071 			cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1072 		}
1073 		netif_carrier_off(cp->dev);
1074 		if (cp->opened)
1075 			netif_info(cp, link, cp->dev, "PCS link down\n");
1076 
1077 		/* Cassini only: if you force a mode, there can be
1078 		 * sync problems on link down. to fix that, the following
1079 		 * things need to be checked:
1080 		 * 1) read serialink state register
1081 		 * 2) read pcs status register to verify link down.
1082 		 * 3) if link down and serial link == 0x03, then you need
1083 		 *    to global reset the chip.
1084 		 */
1085 		if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1086 			/* should check to see if we're in a forced mode */
1087 			stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1088 			if (stat == 0x03)
1089 				return 1;
1090 		}
1091 	} else if (cp->lstate == link_down) {
1092 		if (link_transition_timeout != 0 &&
1093 		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1094 		    !cp->link_transition_jiffies_valid) {
1095 			/* force a reset, as a workaround for the
1096 			 * link-failure problem.  May want to move
1097 			 * this to a point a bit earlier in the
1098 			 * sequence.
1099 			 */
1100 			retval = 1;
1101 			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1102 			cp->link_transition_jiffies = jiffies;
1103 			cp->link_transition_jiffies_valid = 1;
1104 		} else {
1105 			cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1106 		}
1107 	}
1108 
1109 	return retval;
1110 }
1111 
1112 static int cas_pcs_interrupt(struct net_device *dev,
1113 			     struct cas *cp, u32 status)
1114 {
1115 	u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1116 
1117 	if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1118 		return 0;
1119 	return cas_pcs_link_check(cp);
1120 }
1121 
1122 static int cas_txmac_interrupt(struct net_device *dev,
1123 			       struct cas *cp, u32 status)
1124 {
1125 	u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1126 
1127 	if (!txmac_stat)
1128 		return 0;
1129 
1130 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1131 		     "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1132 
1133 	/* Defer timer expiration is quite normal,
1134 	 * don't even log the event.
1135 	 */
1136 	if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1137 	    !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1138 		return 0;
1139 
1140 	spin_lock(&cp->stat_lock[0]);
1141 	if (txmac_stat & MAC_TX_UNDERRUN) {
1142 		netdev_err(dev, "TX MAC xmit underrun\n");
1143 		cp->net_stats[0].tx_fifo_errors++;
1144 	}
1145 
1146 	if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1147 		netdev_err(dev, "TX MAC max packet size error\n");
1148 		cp->net_stats[0].tx_errors++;
1149 	}
1150 
1151 	/* The rest are all cases of one of the 16-bit TX
1152 	 * counters expiring.
1153 	 */
1154 	if (txmac_stat & MAC_TX_COLL_NORMAL)
1155 		cp->net_stats[0].collisions += 0x10000;
1156 
1157 	if (txmac_stat & MAC_TX_COLL_EXCESS) {
1158 		cp->net_stats[0].tx_aborted_errors += 0x10000;
1159 		cp->net_stats[0].collisions += 0x10000;
1160 	}
1161 
1162 	if (txmac_stat & MAC_TX_COLL_LATE) {
1163 		cp->net_stats[0].tx_aborted_errors += 0x10000;
1164 		cp->net_stats[0].collisions += 0x10000;
1165 	}
1166 	spin_unlock(&cp->stat_lock[0]);
1167 
1168 	/* We do not keep track of MAC_TX_COLL_FIRST and
1169 	 * MAC_TX_PEAK_ATTEMPTS events.
1170 	 */
1171 	return 0;
1172 }
1173 
1174 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1175 {
1176 	cas_hp_inst_t *inst;
1177 	u32 val;
1178 	int i;
1179 
1180 	i = 0;
1181 	while ((inst = firmware) && inst->note) {
1182 		writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1183 
1184 		val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1185 		val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1186 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1187 
1188 		val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1189 		val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1190 		val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1191 		val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1192 		val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1193 		val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1194 		val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1195 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1196 
1197 		val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1198 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1199 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1200 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1201 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1202 		++firmware;
1203 		++i;
1204 	}
1205 }
1206 
1207 static void cas_init_rx_dma(struct cas *cp)
1208 {
1209 	u64 desc_dma = cp->block_dvma;
1210 	u32 val;
1211 	int i, size;
1212 
1213 	/* rx free descriptors */
1214 	val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1215 	val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1216 	val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1217 	if ((N_RX_DESC_RINGS > 1) &&
1218 	    (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1219 		val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1220 	writel(val, cp->regs + REG_RX_CFG);
1221 
1222 	val = (unsigned long) cp->init_rxds[0] -
1223 		(unsigned long) cp->init_block;
1224 	writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1225 	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1226 	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1227 
1228 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1229 		/* rx desc 2 is for IPSEC packets. however,
1230 		 * we don't it that for that purpose.
1231 		 */
1232 		val = (unsigned long) cp->init_rxds[1] -
1233 			(unsigned long) cp->init_block;
1234 		writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1235 		writel((desc_dma + val) & 0xffffffff, cp->regs +
1236 		       REG_PLUS_RX_DB1_LOW);
1237 		writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1238 		       REG_PLUS_RX_KICK1);
1239 	}
1240 
1241 	/* rx completion registers */
1242 	val = (unsigned long) cp->init_rxcs[0] -
1243 		(unsigned long) cp->init_block;
1244 	writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1245 	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1246 
1247 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1248 		/* rx comp 2-4 */
1249 		for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1250 			val = (unsigned long) cp->init_rxcs[i] -
1251 				(unsigned long) cp->init_block;
1252 			writel((desc_dma + val) >> 32, cp->regs +
1253 			       REG_PLUS_RX_CBN_HI(i));
1254 			writel((desc_dma + val) & 0xffffffff, cp->regs +
1255 			       REG_PLUS_RX_CBN_LOW(i));
1256 		}
1257 	}
1258 
1259 	/* read selective clear regs to prevent spurious interrupts
1260 	 * on reset because complete == kick.
1261 	 * selective clear set up to prevent interrupts on resets
1262 	 */
1263 	readl(cp->regs + REG_INTR_STATUS_ALIAS);
1264 	writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1265 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1266 		for (i = 1; i < N_RX_COMP_RINGS; i++)
1267 			readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1268 
1269 		/* 2 is different from 3 and 4 */
1270 		if (N_RX_COMP_RINGS > 1)
1271 			writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1272 			       cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1273 
1274 		for (i = 2; i < N_RX_COMP_RINGS; i++)
1275 			writel(INTR_RX_DONE_ALT,
1276 			       cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1277 	}
1278 
1279 	/* set up pause thresholds */
1280 	val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1281 			cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1282 	val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1283 			cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1284 	writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1285 
1286 	/* zero out dma reassembly buffers */
1287 	for (i = 0; i < 64; i++) {
1288 		writel(i, cp->regs + REG_RX_TABLE_ADDR);
1289 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1290 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1291 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1292 	}
1293 
1294 	/* make sure address register is 0 for normal operation */
1295 	writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1296 	writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1297 
1298 	/* interrupt mitigation */
1299 #ifdef USE_RX_BLANK
1300 	val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1301 	val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1302 	writel(val, cp->regs + REG_RX_BLANK);
1303 #else
1304 	writel(0x0, cp->regs + REG_RX_BLANK);
1305 #endif
1306 
1307 	/* interrupt generation as a function of low water marks for
1308 	 * free desc and completion entries. these are used to trigger
1309 	 * housekeeping for rx descs. we don't use the free interrupt
1310 	 * as it's not very useful
1311 	 */
1312 	/* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1313 	val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1314 	writel(val, cp->regs + REG_RX_AE_THRESH);
1315 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1316 		val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1317 		writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1318 	}
1319 
1320 	/* Random early detect registers. useful for congestion avoidance.
1321 	 * this should be tunable.
1322 	 */
1323 	writel(0x0, cp->regs + REG_RX_RED);
1324 
1325 	/* receive page sizes. default == 2K (0x800) */
1326 	val = 0;
1327 	if (cp->page_size == 0x1000)
1328 		val = 0x1;
1329 	else if (cp->page_size == 0x2000)
1330 		val = 0x2;
1331 	else if (cp->page_size == 0x4000)
1332 		val = 0x3;
1333 
1334 	/* round mtu + offset. constrain to page size. */
1335 	size = cp->dev->mtu + 64;
1336 	if (size > cp->page_size)
1337 		size = cp->page_size;
1338 
1339 	if (size <= 0x400)
1340 		i = 0x0;
1341 	else if (size <= 0x800)
1342 		i = 0x1;
1343 	else if (size <= 0x1000)
1344 		i = 0x2;
1345 	else
1346 		i = 0x3;
1347 
1348 	cp->mtu_stride = 1 << (i + 10);
1349 	val  = CAS_BASE(RX_PAGE_SIZE, val);
1350 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1351 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1352 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1353 	writel(val, cp->regs + REG_RX_PAGE_SIZE);
1354 
1355 	/* enable the header parser if desired */
1356 	if (CAS_HP_FIRMWARE == cas_prog_null)
1357 		return;
1358 
1359 	val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1360 	val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1361 	val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1362 	writel(val, cp->regs + REG_HP_CFG);
1363 }
1364 
1365 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1366 {
1367 	memset(rxc, 0, sizeof(*rxc));
1368 	rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1369 }
1370 
1371 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1372  * flipping is protected by the fact that the chip will not
1373  * hand back the same page index while it's being processed.
1374  */
1375 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1376 {
1377 	cas_page_t *page = cp->rx_pages[1][index];
1378 	cas_page_t *new;
1379 
1380 	if (page_count(page->buffer) == 1)
1381 		return page;
1382 
1383 	new = cas_page_dequeue(cp);
1384 	if (new) {
1385 		spin_lock(&cp->rx_inuse_lock);
1386 		list_add(&page->list, &cp->rx_inuse_list);
1387 		spin_unlock(&cp->rx_inuse_lock);
1388 	}
1389 	return new;
1390 }
1391 
1392 /* this needs to be changed if we actually use the ENC RX DESC ring */
1393 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1394 				 const int index)
1395 {
1396 	cas_page_t **page0 = cp->rx_pages[0];
1397 	cas_page_t **page1 = cp->rx_pages[1];
1398 
1399 	/* swap if buffer is in use */
1400 	if (page_count(page0[index]->buffer) > 1) {
1401 		cas_page_t *new = cas_page_spare(cp, index);
1402 		if (new) {
1403 			page1[index] = page0[index];
1404 			page0[index] = new;
1405 		}
1406 	}
1407 	RX_USED_SET(page0[index], 0);
1408 	return page0[index];
1409 }
1410 
1411 static void cas_clean_rxds(struct cas *cp)
1412 {
1413 	/* only clean ring 0 as ring 1 is used for spare buffers */
1414         struct cas_rx_desc *rxd = cp->init_rxds[0];
1415 	int i, size;
1416 
1417 	/* release all rx flows */
1418 	for (i = 0; i < N_RX_FLOWS; i++) {
1419 		struct sk_buff *skb;
1420 		while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1421 			cas_skb_release(skb);
1422 		}
1423 	}
1424 
1425 	/* initialize descriptors */
1426 	size = RX_DESC_RINGN_SIZE(0);
1427 	for (i = 0; i < size; i++) {
1428 		cas_page_t *page = cas_page_swap(cp, 0, i);
1429 		rxd[i].buffer = cpu_to_le64(page->dma_addr);
1430 		rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1431 					    CAS_BASE(RX_INDEX_RING, 0));
1432 	}
1433 
1434 	cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1435 	cp->rx_last[0] = 0;
1436 	cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1437 }
1438 
1439 static void cas_clean_rxcs(struct cas *cp)
1440 {
1441 	int i, j;
1442 
1443 	/* take ownership of rx comp descriptors */
1444 	memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1445 	memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1446 	for (i = 0; i < N_RX_COMP_RINGS; i++) {
1447 		struct cas_rx_comp *rxc = cp->init_rxcs[i];
1448 		for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1449 			cas_rxc_init(rxc + j);
1450 		}
1451 	}
1452 }
1453 
1454 #if 0
1455 /* When we get a RX fifo overflow, the RX unit is probably hung
1456  * so we do the following.
1457  *
1458  * If any part of the reset goes wrong, we return 1 and that causes the
1459  * whole chip to be reset.
1460  */
1461 static int cas_rxmac_reset(struct cas *cp)
1462 {
1463 	struct net_device *dev = cp->dev;
1464 	int limit;
1465 	u32 val;
1466 
1467 	/* First, reset MAC RX. */
1468 	writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1469 	for (limit = 0; limit < STOP_TRIES; limit++) {
1470 		if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1471 			break;
1472 		udelay(10);
1473 	}
1474 	if (limit == STOP_TRIES) {
1475 		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1476 		return 1;
1477 	}
1478 
1479 	/* Second, disable RX DMA. */
1480 	writel(0, cp->regs + REG_RX_CFG);
1481 	for (limit = 0; limit < STOP_TRIES; limit++) {
1482 		if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1483 			break;
1484 		udelay(10);
1485 	}
1486 	if (limit == STOP_TRIES) {
1487 		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1488 		return 1;
1489 	}
1490 
1491 	mdelay(5);
1492 
1493 	/* Execute RX reset command. */
1494 	writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1495 	for (limit = 0; limit < STOP_TRIES; limit++) {
1496 		if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1497 			break;
1498 		udelay(10);
1499 	}
1500 	if (limit == STOP_TRIES) {
1501 		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1502 		return 1;
1503 	}
1504 
1505 	/* reset driver rx state */
1506 	cas_clean_rxds(cp);
1507 	cas_clean_rxcs(cp);
1508 
1509 	/* Now, reprogram the rest of RX unit. */
1510 	cas_init_rx_dma(cp);
1511 
1512 	/* re-enable */
1513 	val = readl(cp->regs + REG_RX_CFG);
1514 	writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1515 	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1516 	val = readl(cp->regs + REG_MAC_RX_CFG);
1517 	writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1518 	return 0;
1519 }
1520 #endif
1521 
1522 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1523 			       u32 status)
1524 {
1525 	u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1526 
1527 	if (!stat)
1528 		return 0;
1529 
1530 	netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1531 
1532 	/* these are all rollovers */
1533 	spin_lock(&cp->stat_lock[0]);
1534 	if (stat & MAC_RX_ALIGN_ERR)
1535 		cp->net_stats[0].rx_frame_errors += 0x10000;
1536 
1537 	if (stat & MAC_RX_CRC_ERR)
1538 		cp->net_stats[0].rx_crc_errors += 0x10000;
1539 
1540 	if (stat & MAC_RX_LEN_ERR)
1541 		cp->net_stats[0].rx_length_errors += 0x10000;
1542 
1543 	if (stat & MAC_RX_OVERFLOW) {
1544 		cp->net_stats[0].rx_over_errors++;
1545 		cp->net_stats[0].rx_fifo_errors++;
1546 	}
1547 
1548 	/* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1549 	 * events.
1550 	 */
1551 	spin_unlock(&cp->stat_lock[0]);
1552 	return 0;
1553 }
1554 
1555 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1556 			     u32 status)
1557 {
1558 	u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1559 
1560 	if (!stat)
1561 		return 0;
1562 
1563 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1564 		     "mac interrupt, stat: 0x%x\n", stat);
1565 
1566 	/* This interrupt is just for pause frame and pause
1567 	 * tracking.  It is useful for diagnostics and debug
1568 	 * but probably by default we will mask these events.
1569 	 */
1570 	if (stat & MAC_CTRL_PAUSE_STATE)
1571 		cp->pause_entered++;
1572 
1573 	if (stat & MAC_CTRL_PAUSE_RECEIVED)
1574 		cp->pause_last_time_recvd = (stat >> 16);
1575 
1576 	return 0;
1577 }
1578 
1579 
1580 /* Must be invoked under cp->lock. */
1581 static inline int cas_mdio_link_not_up(struct cas *cp)
1582 {
1583 	u16 val;
1584 
1585 	switch (cp->lstate) {
1586 	case link_force_ret:
1587 		netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1588 		cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1589 		cp->timer_ticks = 5;
1590 		cp->lstate = link_force_ok;
1591 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1592 		break;
1593 
1594 	case link_aneg:
1595 		val = cas_phy_read(cp, MII_BMCR);
1596 
1597 		/* Try forced modes. we try things in the following order:
1598 		 * 1000 full -> 100 full/half -> 10 half
1599 		 */
1600 		val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1601 		val |= BMCR_FULLDPLX;
1602 		val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1603 			CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1604 		cas_phy_write(cp, MII_BMCR, val);
1605 		cp->timer_ticks = 5;
1606 		cp->lstate = link_force_try;
1607 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1608 		break;
1609 
1610 	case link_force_try:
1611 		/* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1612 		val = cas_phy_read(cp, MII_BMCR);
1613 		cp->timer_ticks = 5;
1614 		if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1615 			val &= ~CAS_BMCR_SPEED1000;
1616 			val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1617 			cas_phy_write(cp, MII_BMCR, val);
1618 			break;
1619 		}
1620 
1621 		if (val & BMCR_SPEED100) {
1622 			if (val & BMCR_FULLDPLX) /* fd failed */
1623 				val &= ~BMCR_FULLDPLX;
1624 			else { /* 100Mbps failed */
1625 				val &= ~BMCR_SPEED100;
1626 			}
1627 			cas_phy_write(cp, MII_BMCR, val);
1628 			break;
1629 		}
1630 	default:
1631 		break;
1632 	}
1633 	return 0;
1634 }
1635 
1636 
1637 /* must be invoked with cp->lock held */
1638 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1639 {
1640 	int restart;
1641 
1642 	if (bmsr & BMSR_LSTATUS) {
1643 		/* Ok, here we got a link. If we had it due to a forced
1644 		 * fallback, and we were configured for autoneg, we
1645 		 * retry a short autoneg pass. If you know your hub is
1646 		 * broken, use ethtool ;)
1647 		 */
1648 		if ((cp->lstate == link_force_try) &&
1649 		    (cp->link_cntl & BMCR_ANENABLE)) {
1650 			cp->lstate = link_force_ret;
1651 			cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1652 			cas_mif_poll(cp, 0);
1653 			cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1654 			cp->timer_ticks = 5;
1655 			if (cp->opened)
1656 				netif_info(cp, link, cp->dev,
1657 					   "Got link after fallback, retrying autoneg once...\n");
1658 			cas_phy_write(cp, MII_BMCR,
1659 				      cp->link_fcntl | BMCR_ANENABLE |
1660 				      BMCR_ANRESTART);
1661 			cas_mif_poll(cp, 1);
1662 
1663 		} else if (cp->lstate != link_up) {
1664 			cp->lstate = link_up;
1665 			cp->link_transition = LINK_TRANSITION_LINK_UP;
1666 
1667 			if (cp->opened) {
1668 				cas_set_link_modes(cp);
1669 				netif_carrier_on(cp->dev);
1670 			}
1671 		}
1672 		return 0;
1673 	}
1674 
1675 	/* link not up. if the link was previously up, we restart the
1676 	 * whole process
1677 	 */
1678 	restart = 0;
1679 	if (cp->lstate == link_up) {
1680 		cp->lstate = link_down;
1681 		cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1682 
1683 		netif_carrier_off(cp->dev);
1684 		if (cp->opened)
1685 			netif_info(cp, link, cp->dev, "Link down\n");
1686 		restart = 1;
1687 
1688 	} else if (++cp->timer_ticks > 10)
1689 		cas_mdio_link_not_up(cp);
1690 
1691 	return restart;
1692 }
1693 
1694 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1695 			     u32 status)
1696 {
1697 	u32 stat = readl(cp->regs + REG_MIF_STATUS);
1698 	u16 bmsr;
1699 
1700 	/* check for a link change */
1701 	if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1702 		return 0;
1703 
1704 	bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1705 	return cas_mii_link_check(cp, bmsr);
1706 }
1707 
1708 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1709 			     u32 status)
1710 {
1711 	u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1712 
1713 	if (!stat)
1714 		return 0;
1715 
1716 	netdev_err(dev, "PCI error [%04x:%04x]",
1717 		   stat, readl(cp->regs + REG_BIM_DIAG));
1718 
1719 	/* cassini+ has this reserved */
1720 	if ((stat & PCI_ERR_BADACK) &&
1721 	    ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1722 		pr_cont(" <No ACK64# during ABS64 cycle>");
1723 
1724 	if (stat & PCI_ERR_DTRTO)
1725 		pr_cont(" <Delayed transaction timeout>");
1726 	if (stat & PCI_ERR_OTHER)
1727 		pr_cont(" <other>");
1728 	if (stat & PCI_ERR_BIM_DMA_WRITE)
1729 		pr_cont(" <BIM DMA 0 write req>");
1730 	if (stat & PCI_ERR_BIM_DMA_READ)
1731 		pr_cont(" <BIM DMA 0 read req>");
1732 	pr_cont("\n");
1733 
1734 	if (stat & PCI_ERR_OTHER) {
1735 		u16 cfg;
1736 
1737 		/* Interrogate PCI config space for the
1738 		 * true cause.
1739 		 */
1740 		pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1741 		netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1742 		if (cfg & PCI_STATUS_PARITY)
1743 			netdev_err(dev, "PCI parity error detected\n");
1744 		if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1745 			netdev_err(dev, "PCI target abort\n");
1746 		if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1747 			netdev_err(dev, "PCI master acks target abort\n");
1748 		if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1749 			netdev_err(dev, "PCI master abort\n");
1750 		if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1751 			netdev_err(dev, "PCI system error SERR#\n");
1752 		if (cfg & PCI_STATUS_DETECTED_PARITY)
1753 			netdev_err(dev, "PCI parity error\n");
1754 
1755 		/* Write the error bits back to clear them. */
1756 		cfg &= (PCI_STATUS_PARITY |
1757 			PCI_STATUS_SIG_TARGET_ABORT |
1758 			PCI_STATUS_REC_TARGET_ABORT |
1759 			PCI_STATUS_REC_MASTER_ABORT |
1760 			PCI_STATUS_SIG_SYSTEM_ERROR |
1761 			PCI_STATUS_DETECTED_PARITY);
1762 		pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1763 	}
1764 
1765 	/* For all PCI errors, we should reset the chip. */
1766 	return 1;
1767 }
1768 
1769 /* All non-normal interrupt conditions get serviced here.
1770  * Returns non-zero if we should just exit the interrupt
1771  * handler right now (ie. if we reset the card which invalidates
1772  * all of the other original irq status bits).
1773  */
1774 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1775 			    u32 status)
1776 {
1777 	if (status & INTR_RX_TAG_ERROR) {
1778 		/* corrupt RX tag framing */
1779 		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1780 			     "corrupt rx tag framing\n");
1781 		spin_lock(&cp->stat_lock[0]);
1782 		cp->net_stats[0].rx_errors++;
1783 		spin_unlock(&cp->stat_lock[0]);
1784 		goto do_reset;
1785 	}
1786 
1787 	if (status & INTR_RX_LEN_MISMATCH) {
1788 		/* length mismatch. */
1789 		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1790 			     "length mismatch for rx frame\n");
1791 		spin_lock(&cp->stat_lock[0]);
1792 		cp->net_stats[0].rx_errors++;
1793 		spin_unlock(&cp->stat_lock[0]);
1794 		goto do_reset;
1795 	}
1796 
1797 	if (status & INTR_PCS_STATUS) {
1798 		if (cas_pcs_interrupt(dev, cp, status))
1799 			goto do_reset;
1800 	}
1801 
1802 	if (status & INTR_TX_MAC_STATUS) {
1803 		if (cas_txmac_interrupt(dev, cp, status))
1804 			goto do_reset;
1805 	}
1806 
1807 	if (status & INTR_RX_MAC_STATUS) {
1808 		if (cas_rxmac_interrupt(dev, cp, status))
1809 			goto do_reset;
1810 	}
1811 
1812 	if (status & INTR_MAC_CTRL_STATUS) {
1813 		if (cas_mac_interrupt(dev, cp, status))
1814 			goto do_reset;
1815 	}
1816 
1817 	if (status & INTR_MIF_STATUS) {
1818 		if (cas_mif_interrupt(dev, cp, status))
1819 			goto do_reset;
1820 	}
1821 
1822 	if (status & INTR_PCI_ERROR_STATUS) {
1823 		if (cas_pci_interrupt(dev, cp, status))
1824 			goto do_reset;
1825 	}
1826 	return 0;
1827 
1828 do_reset:
1829 #if 1
1830 	atomic_inc(&cp->reset_task_pending);
1831 	atomic_inc(&cp->reset_task_pending_all);
1832 	netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1833 	schedule_work(&cp->reset_task);
1834 #else
1835 	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1836 	netdev_err(dev, "reset called in cas_abnormal_irq\n");
1837 	schedule_work(&cp->reset_task);
1838 #endif
1839 	return 1;
1840 }
1841 
1842 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1843  *       determining whether to do a netif_stop/wakeup
1844  */
1845 #define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1846 #define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1847 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1848 				  const int len)
1849 {
1850 	unsigned long off = addr + len;
1851 
1852 	if (CAS_TABORT(cp) == 1)
1853 		return 0;
1854 	if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1855 		return 0;
1856 	return TX_TARGET_ABORT_LEN;
1857 }
1858 
1859 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1860 {
1861 	struct cas_tx_desc *txds;
1862 	struct sk_buff **skbs;
1863 	struct net_device *dev = cp->dev;
1864 	int entry, count;
1865 
1866 	spin_lock(&cp->tx_lock[ring]);
1867 	txds = cp->init_txds[ring];
1868 	skbs = cp->tx_skbs[ring];
1869 	entry = cp->tx_old[ring];
1870 
1871 	count = TX_BUFF_COUNT(ring, entry, limit);
1872 	while (entry != limit) {
1873 		struct sk_buff *skb = skbs[entry];
1874 		dma_addr_t daddr;
1875 		u32 dlen;
1876 		int frag;
1877 
1878 		if (!skb) {
1879 			/* this should never occur */
1880 			entry = TX_DESC_NEXT(ring, entry);
1881 			continue;
1882 		}
1883 
1884 		/* however, we might get only a partial skb release. */
1885 		count -= skb_shinfo(skb)->nr_frags +
1886 			+ cp->tx_tiny_use[ring][entry].nbufs + 1;
1887 		if (count < 0)
1888 			break;
1889 
1890 		netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1891 			     "tx[%d] done, slot %d\n", ring, entry);
1892 
1893 		skbs[entry] = NULL;
1894 		cp->tx_tiny_use[ring][entry].nbufs = 0;
1895 
1896 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1897 			struct cas_tx_desc *txd = txds + entry;
1898 
1899 			daddr = le64_to_cpu(txd->buffer);
1900 			dlen = CAS_VAL(TX_DESC_BUFLEN,
1901 				       le64_to_cpu(txd->control));
1902 			pci_unmap_page(cp->pdev, daddr, dlen,
1903 				       PCI_DMA_TODEVICE);
1904 			entry = TX_DESC_NEXT(ring, entry);
1905 
1906 			/* tiny buffer may follow */
1907 			if (cp->tx_tiny_use[ring][entry].used) {
1908 				cp->tx_tiny_use[ring][entry].used = 0;
1909 				entry = TX_DESC_NEXT(ring, entry);
1910 			}
1911 		}
1912 
1913 		spin_lock(&cp->stat_lock[ring]);
1914 		cp->net_stats[ring].tx_packets++;
1915 		cp->net_stats[ring].tx_bytes += skb->len;
1916 		spin_unlock(&cp->stat_lock[ring]);
1917 		dev_kfree_skb_irq(skb);
1918 	}
1919 	cp->tx_old[ring] = entry;
1920 
1921 	/* this is wrong for multiple tx rings. the net device needs
1922 	 * multiple queues for this to do the right thing.  we wait
1923 	 * for 2*packets to be available when using tiny buffers
1924 	 */
1925 	if (netif_queue_stopped(dev) &&
1926 	    (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1927 		netif_wake_queue(dev);
1928 	spin_unlock(&cp->tx_lock[ring]);
1929 }
1930 
1931 static void cas_tx(struct net_device *dev, struct cas *cp,
1932 		   u32 status)
1933 {
1934         int limit, ring;
1935 #ifdef USE_TX_COMPWB
1936 	u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1937 #endif
1938 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1939 		     "tx interrupt, status: 0x%x, %llx\n",
1940 		     status, (unsigned long long)compwb);
1941 	/* process all the rings */
1942 	for (ring = 0; ring < N_TX_RINGS; ring++) {
1943 #ifdef USE_TX_COMPWB
1944 		/* use the completion writeback registers */
1945 		limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1946 			CAS_VAL(TX_COMPWB_LSB, compwb);
1947 		compwb = TX_COMPWB_NEXT(compwb);
1948 #else
1949 		limit = readl(cp->regs + REG_TX_COMPN(ring));
1950 #endif
1951 		if (cp->tx_old[ring] != limit)
1952 			cas_tx_ringN(cp, ring, limit);
1953 	}
1954 }
1955 
1956 
1957 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1958 			      int entry, const u64 *words,
1959 			      struct sk_buff **skbref)
1960 {
1961 	int dlen, hlen, len, i, alloclen;
1962 	int off, swivel = RX_SWIVEL_OFF_VAL;
1963 	struct cas_page *page;
1964 	struct sk_buff *skb;
1965 	void *addr, *crcaddr;
1966 	__sum16 csum;
1967 	char *p;
1968 
1969 	hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1970 	dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1971 	len  = hlen + dlen;
1972 
1973 	if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1974 		alloclen = len;
1975 	else
1976 		alloclen = max(hlen, RX_COPY_MIN);
1977 
1978 	skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
1979 	if (skb == NULL)
1980 		return -1;
1981 
1982 	*skbref = skb;
1983 	skb_reserve(skb, swivel);
1984 
1985 	p = skb->data;
1986 	addr = crcaddr = NULL;
1987 	if (hlen) { /* always copy header pages */
1988 		i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1989 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1990 		off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1991 			swivel;
1992 
1993 		i = hlen;
1994 		if (!dlen) /* attach FCS */
1995 			i += cp->crc_size;
1996 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1997 				    PCI_DMA_FROMDEVICE);
1998 		addr = cas_page_map(page->buffer);
1999 		memcpy(p, addr + off, i);
2000 		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2001 				    PCI_DMA_FROMDEVICE);
2002 		cas_page_unmap(addr);
2003 		RX_USED_ADD(page, 0x100);
2004 		p += hlen;
2005 		swivel = 0;
2006 	}
2007 
2008 
2009 	if (alloclen < (hlen + dlen)) {
2010 		skb_frag_t *frag = skb_shinfo(skb)->frags;
2011 
2012 		/* normal or jumbo packets. we use frags */
2013 		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2014 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2015 		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2016 
2017 		hlen = min(cp->page_size - off, dlen);
2018 		if (hlen < 0) {
2019 			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2020 				     "rx page overflow: %d\n", hlen);
2021 			dev_kfree_skb_irq(skb);
2022 			return -1;
2023 		}
2024 		i = hlen;
2025 		if (i == dlen)  /* attach FCS */
2026 			i += cp->crc_size;
2027 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2028 				    PCI_DMA_FROMDEVICE);
2029 
2030 		/* make sure we always copy a header */
2031 		swivel = 0;
2032 		if (p == (char *) skb->data) { /* not split */
2033 			addr = cas_page_map(page->buffer);
2034 			memcpy(p, addr + off, RX_COPY_MIN);
2035 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2036 					PCI_DMA_FROMDEVICE);
2037 			cas_page_unmap(addr);
2038 			off += RX_COPY_MIN;
2039 			swivel = RX_COPY_MIN;
2040 			RX_USED_ADD(page, cp->mtu_stride);
2041 		} else {
2042 			RX_USED_ADD(page, hlen);
2043 		}
2044 		skb_put(skb, alloclen);
2045 
2046 		skb_shinfo(skb)->nr_frags++;
2047 		skb->data_len += hlen - swivel;
2048 		skb->truesize += hlen - swivel;
2049 		skb->len      += hlen - swivel;
2050 
2051 		__skb_frag_set_page(frag, page->buffer);
2052 		__skb_frag_ref(frag);
2053 		frag->page_offset = off;
2054 		skb_frag_size_set(frag, hlen - swivel);
2055 
2056 		/* any more data? */
2057 		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2058 			hlen = dlen;
2059 			off = 0;
2060 
2061 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2062 			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2063 			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2064 					    hlen + cp->crc_size,
2065 					    PCI_DMA_FROMDEVICE);
2066 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2067 					    hlen + cp->crc_size,
2068 					    PCI_DMA_FROMDEVICE);
2069 
2070 			skb_shinfo(skb)->nr_frags++;
2071 			skb->data_len += hlen;
2072 			skb->len      += hlen;
2073 			frag++;
2074 
2075 			__skb_frag_set_page(frag, page->buffer);
2076 			__skb_frag_ref(frag);
2077 			frag->page_offset = 0;
2078 			skb_frag_size_set(frag, hlen);
2079 			RX_USED_ADD(page, hlen + cp->crc_size);
2080 		}
2081 
2082 		if (cp->crc_size) {
2083 			addr = cas_page_map(page->buffer);
2084 			crcaddr  = addr + off + hlen;
2085 		}
2086 
2087 	} else {
2088 		/* copying packet */
2089 		if (!dlen)
2090 			goto end_copy_pkt;
2091 
2092 		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2093 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2094 		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2095 		hlen = min(cp->page_size - off, dlen);
2096 		if (hlen < 0) {
2097 			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2098 				     "rx page overflow: %d\n", hlen);
2099 			dev_kfree_skb_irq(skb);
2100 			return -1;
2101 		}
2102 		i = hlen;
2103 		if (i == dlen) /* attach FCS */
2104 			i += cp->crc_size;
2105 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2106 				    PCI_DMA_FROMDEVICE);
2107 		addr = cas_page_map(page->buffer);
2108 		memcpy(p, addr + off, i);
2109 		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2110 				    PCI_DMA_FROMDEVICE);
2111 		cas_page_unmap(addr);
2112 		if (p == (char *) skb->data) /* not split */
2113 			RX_USED_ADD(page, cp->mtu_stride);
2114 		else
2115 			RX_USED_ADD(page, i);
2116 
2117 		/* any more data? */
2118 		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2119 			p += hlen;
2120 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2121 			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2122 			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2123 					    dlen + cp->crc_size,
2124 					    PCI_DMA_FROMDEVICE);
2125 			addr = cas_page_map(page->buffer);
2126 			memcpy(p, addr, dlen + cp->crc_size);
2127 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2128 					    dlen + cp->crc_size,
2129 					    PCI_DMA_FROMDEVICE);
2130 			cas_page_unmap(addr);
2131 			RX_USED_ADD(page, dlen + cp->crc_size);
2132 		}
2133 end_copy_pkt:
2134 		if (cp->crc_size) {
2135 			addr    = NULL;
2136 			crcaddr = skb->data + alloclen;
2137 		}
2138 		skb_put(skb, alloclen);
2139 	}
2140 
2141 	csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2142 	if (cp->crc_size) {
2143 		/* checksum includes FCS. strip it out. */
2144 		csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2145 					      csum_unfold(csum)));
2146 		if (addr)
2147 			cas_page_unmap(addr);
2148 	}
2149 	skb->protocol = eth_type_trans(skb, cp->dev);
2150 	if (skb->protocol == htons(ETH_P_IP)) {
2151 		skb->csum = csum_unfold(~csum);
2152 		skb->ip_summed = CHECKSUM_COMPLETE;
2153 	} else
2154 		skb_checksum_none_assert(skb);
2155 	return len;
2156 }
2157 
2158 
2159 /* we can handle up to 64 rx flows at a time. we do the same thing
2160  * as nonreassm except that we batch up the buffers.
2161  * NOTE: we currently just treat each flow as a bunch of packets that
2162  *       we pass up. a better way would be to coalesce the packets
2163  *       into a jumbo packet. to do that, we need to do the following:
2164  *       1) the first packet will have a clean split between header and
2165  *          data. save both.
2166  *       2) each time the next flow packet comes in, extend the
2167  *          data length and merge the checksums.
2168  *       3) on flow release, fix up the header.
2169  *       4) make sure the higher layer doesn't care.
2170  * because packets get coalesced, we shouldn't run into fragment count
2171  * issues.
2172  */
2173 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2174 				   struct sk_buff *skb)
2175 {
2176 	int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2177 	struct sk_buff_head *flow = &cp->rx_flows[flowid];
2178 
2179 	/* this is protected at a higher layer, so no need to
2180 	 * do any additional locking here. stick the buffer
2181 	 * at the end.
2182 	 */
2183 	__skb_queue_tail(flow, skb);
2184 	if (words[0] & RX_COMP1_RELEASE_FLOW) {
2185 		while ((skb = __skb_dequeue(flow))) {
2186 			cas_skb_release(skb);
2187 		}
2188 	}
2189 }
2190 
2191 /* put rx descriptor back on ring. if a buffer is in use by a higher
2192  * layer, this will need to put in a replacement.
2193  */
2194 static void cas_post_page(struct cas *cp, const int ring, const int index)
2195 {
2196 	cas_page_t *new;
2197 	int entry;
2198 
2199 	entry = cp->rx_old[ring];
2200 
2201 	new = cas_page_swap(cp, ring, index);
2202 	cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2203 	cp->init_rxds[ring][entry].index  =
2204 		cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2205 			    CAS_BASE(RX_INDEX_RING, ring));
2206 
2207 	entry = RX_DESC_ENTRY(ring, entry + 1);
2208 	cp->rx_old[ring] = entry;
2209 
2210 	if (entry % 4)
2211 		return;
2212 
2213 	if (ring == 0)
2214 		writel(entry, cp->regs + REG_RX_KICK);
2215 	else if ((N_RX_DESC_RINGS > 1) &&
2216 		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2217 		writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2218 }
2219 
2220 
2221 /* only when things are bad */
2222 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2223 {
2224 	unsigned int entry, last, count, released;
2225 	int cluster;
2226 	cas_page_t **page = cp->rx_pages[ring];
2227 
2228 	entry = cp->rx_old[ring];
2229 
2230 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2231 		     "rxd[%d] interrupt, done: %d\n", ring, entry);
2232 
2233 	cluster = -1;
2234 	count = entry & 0x3;
2235 	last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2236 	released = 0;
2237 	while (entry != last) {
2238 		/* make a new buffer if it's still in use */
2239 		if (page_count(page[entry]->buffer) > 1) {
2240 			cas_page_t *new = cas_page_dequeue(cp);
2241 			if (!new) {
2242 				/* let the timer know that we need to
2243 				 * do this again
2244 				 */
2245 				cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2246 				if (!timer_pending(&cp->link_timer))
2247 					mod_timer(&cp->link_timer, jiffies +
2248 						  CAS_LINK_FAST_TIMEOUT);
2249 				cp->rx_old[ring]  = entry;
2250 				cp->rx_last[ring] = num ? num - released : 0;
2251 				return -ENOMEM;
2252 			}
2253 			spin_lock(&cp->rx_inuse_lock);
2254 			list_add(&page[entry]->list, &cp->rx_inuse_list);
2255 			spin_unlock(&cp->rx_inuse_lock);
2256 			cp->init_rxds[ring][entry].buffer =
2257 				cpu_to_le64(new->dma_addr);
2258 			page[entry] = new;
2259 
2260 		}
2261 
2262 		if (++count == 4) {
2263 			cluster = entry;
2264 			count = 0;
2265 		}
2266 		released++;
2267 		entry = RX_DESC_ENTRY(ring, entry + 1);
2268 	}
2269 	cp->rx_old[ring] = entry;
2270 
2271 	if (cluster < 0)
2272 		return 0;
2273 
2274 	if (ring == 0)
2275 		writel(cluster, cp->regs + REG_RX_KICK);
2276 	else if ((N_RX_DESC_RINGS > 1) &&
2277 		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2278 		writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2279 	return 0;
2280 }
2281 
2282 
2283 /* process a completion ring. packets are set up in three basic ways:
2284  * small packets: should be copied header + data in single buffer.
2285  * large packets: header and data in a single buffer.
2286  * split packets: header in a separate buffer from data.
2287  *                data may be in multiple pages. data may be > 256
2288  *                bytes but in a single page.
2289  *
2290  * NOTE: RX page posting is done in this routine as well. while there's
2291  *       the capability of using multiple RX completion rings, it isn't
2292  *       really worthwhile due to the fact that the page posting will
2293  *       force serialization on the single descriptor ring.
2294  */
2295 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2296 {
2297 	struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2298 	int entry, drops;
2299 	int npackets = 0;
2300 
2301 	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2302 		     "rx[%d] interrupt, done: %d/%d\n",
2303 		     ring,
2304 		     readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2305 
2306 	entry = cp->rx_new[ring];
2307 	drops = 0;
2308 	while (1) {
2309 		struct cas_rx_comp *rxc = rxcs + entry;
2310 		struct sk_buff *uninitialized_var(skb);
2311 		int type, len;
2312 		u64 words[4];
2313 		int i, dring;
2314 
2315 		words[0] = le64_to_cpu(rxc->word1);
2316 		words[1] = le64_to_cpu(rxc->word2);
2317 		words[2] = le64_to_cpu(rxc->word3);
2318 		words[3] = le64_to_cpu(rxc->word4);
2319 
2320 		/* don't touch if still owned by hw */
2321 		type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2322 		if (type == 0)
2323 			break;
2324 
2325 		/* hw hasn't cleared the zero bit yet */
2326 		if (words[3] & RX_COMP4_ZERO) {
2327 			break;
2328 		}
2329 
2330 		/* get info on the packet */
2331 		if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2332 			spin_lock(&cp->stat_lock[ring]);
2333 			cp->net_stats[ring].rx_errors++;
2334 			if (words[3] & RX_COMP4_LEN_MISMATCH)
2335 				cp->net_stats[ring].rx_length_errors++;
2336 			if (words[3] & RX_COMP4_BAD)
2337 				cp->net_stats[ring].rx_crc_errors++;
2338 			spin_unlock(&cp->stat_lock[ring]);
2339 
2340 			/* We'll just return it to Cassini. */
2341 		drop_it:
2342 			spin_lock(&cp->stat_lock[ring]);
2343 			++cp->net_stats[ring].rx_dropped;
2344 			spin_unlock(&cp->stat_lock[ring]);
2345 			goto next;
2346 		}
2347 
2348 		len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2349 		if (len < 0) {
2350 			++drops;
2351 			goto drop_it;
2352 		}
2353 
2354 		/* see if it's a flow re-assembly or not. the driver
2355 		 * itself handles release back up.
2356 		 */
2357 		if (RX_DONT_BATCH || (type == 0x2)) {
2358 			/* non-reassm: these always get released */
2359 			cas_skb_release(skb);
2360 		} else {
2361 			cas_rx_flow_pkt(cp, words, skb);
2362 		}
2363 
2364 		spin_lock(&cp->stat_lock[ring]);
2365 		cp->net_stats[ring].rx_packets++;
2366 		cp->net_stats[ring].rx_bytes += len;
2367 		spin_unlock(&cp->stat_lock[ring]);
2368 
2369 	next:
2370 		npackets++;
2371 
2372 		/* should it be released? */
2373 		if (words[0] & RX_COMP1_RELEASE_HDR) {
2374 			i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2375 			dring = CAS_VAL(RX_INDEX_RING, i);
2376 			i = CAS_VAL(RX_INDEX_NUM, i);
2377 			cas_post_page(cp, dring, i);
2378 		}
2379 
2380 		if (words[0] & RX_COMP1_RELEASE_DATA) {
2381 			i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2382 			dring = CAS_VAL(RX_INDEX_RING, i);
2383 			i = CAS_VAL(RX_INDEX_NUM, i);
2384 			cas_post_page(cp, dring, i);
2385 		}
2386 
2387 		if (words[0] & RX_COMP1_RELEASE_NEXT) {
2388 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2389 			dring = CAS_VAL(RX_INDEX_RING, i);
2390 			i = CAS_VAL(RX_INDEX_NUM, i);
2391 			cas_post_page(cp, dring, i);
2392 		}
2393 
2394 		/* skip to the next entry */
2395 		entry = RX_COMP_ENTRY(ring, entry + 1 +
2396 				      CAS_VAL(RX_COMP1_SKIP, words[0]));
2397 #ifdef USE_NAPI
2398 		if (budget && (npackets >= budget))
2399 			break;
2400 #endif
2401 	}
2402 	cp->rx_new[ring] = entry;
2403 
2404 	if (drops)
2405 		netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2406 	return npackets;
2407 }
2408 
2409 
2410 /* put completion entries back on the ring */
2411 static void cas_post_rxcs_ringN(struct net_device *dev,
2412 				struct cas *cp, int ring)
2413 {
2414 	struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2415 	int last, entry;
2416 
2417 	last = cp->rx_cur[ring];
2418 	entry = cp->rx_new[ring];
2419 	netif_printk(cp, intr, KERN_DEBUG, dev,
2420 		     "rxc[%d] interrupt, done: %d/%d\n",
2421 		     ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2422 
2423 	/* zero and re-mark descriptors */
2424 	while (last != entry) {
2425 		cas_rxc_init(rxc + last);
2426 		last = RX_COMP_ENTRY(ring, last + 1);
2427 	}
2428 	cp->rx_cur[ring] = last;
2429 
2430 	if (ring == 0)
2431 		writel(last, cp->regs + REG_RX_COMP_TAIL);
2432 	else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2433 		writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2434 }
2435 
2436 
2437 
2438 /* cassini can use all four PCI interrupts for the completion ring.
2439  * rings 3 and 4 are identical
2440  */
2441 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2442 static inline void cas_handle_irqN(struct net_device *dev,
2443 				   struct cas *cp, const u32 status,
2444 				   const int ring)
2445 {
2446 	if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2447 		cas_post_rxcs_ringN(dev, cp, ring);
2448 }
2449 
2450 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2451 {
2452 	struct net_device *dev = dev_id;
2453 	struct cas *cp = netdev_priv(dev);
2454 	unsigned long flags;
2455 	int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2456 	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2457 
2458 	/* check for shared irq */
2459 	if (status == 0)
2460 		return IRQ_NONE;
2461 
2462 	spin_lock_irqsave(&cp->lock, flags);
2463 	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2464 #ifdef USE_NAPI
2465 		cas_mask_intr(cp);
2466 		napi_schedule(&cp->napi);
2467 #else
2468 		cas_rx_ringN(cp, ring, 0);
2469 #endif
2470 		status &= ~INTR_RX_DONE_ALT;
2471 	}
2472 
2473 	if (status)
2474 		cas_handle_irqN(dev, cp, status, ring);
2475 	spin_unlock_irqrestore(&cp->lock, flags);
2476 	return IRQ_HANDLED;
2477 }
2478 #endif
2479 
2480 #ifdef USE_PCI_INTB
2481 /* everything but rx packets */
2482 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2483 {
2484 	if (status & INTR_RX_BUF_UNAVAIL_1) {
2485 		/* Frame arrived, no free RX buffers available.
2486 		 * NOTE: we can get this on a link transition. */
2487 		cas_post_rxds_ringN(cp, 1, 0);
2488 		spin_lock(&cp->stat_lock[1]);
2489 		cp->net_stats[1].rx_dropped++;
2490 		spin_unlock(&cp->stat_lock[1]);
2491 	}
2492 
2493 	if (status & INTR_RX_BUF_AE_1)
2494 		cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2495 				    RX_AE_FREEN_VAL(1));
2496 
2497 	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2498 		cas_post_rxcs_ringN(cp, 1);
2499 }
2500 
2501 /* ring 2 handles a few more events than 3 and 4 */
2502 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2503 {
2504 	struct net_device *dev = dev_id;
2505 	struct cas *cp = netdev_priv(dev);
2506 	unsigned long flags;
2507 	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2508 
2509 	/* check for shared interrupt */
2510 	if (status == 0)
2511 		return IRQ_NONE;
2512 
2513 	spin_lock_irqsave(&cp->lock, flags);
2514 	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2515 #ifdef USE_NAPI
2516 		cas_mask_intr(cp);
2517 		napi_schedule(&cp->napi);
2518 #else
2519 		cas_rx_ringN(cp, 1, 0);
2520 #endif
2521 		status &= ~INTR_RX_DONE_ALT;
2522 	}
2523 	if (status)
2524 		cas_handle_irq1(cp, status);
2525 	spin_unlock_irqrestore(&cp->lock, flags);
2526 	return IRQ_HANDLED;
2527 }
2528 #endif
2529 
2530 static inline void cas_handle_irq(struct net_device *dev,
2531 				  struct cas *cp, const u32 status)
2532 {
2533 	/* housekeeping interrupts */
2534 	if (status & INTR_ERROR_MASK)
2535 		cas_abnormal_irq(dev, cp, status);
2536 
2537 	if (status & INTR_RX_BUF_UNAVAIL) {
2538 		/* Frame arrived, no free RX buffers available.
2539 		 * NOTE: we can get this on a link transition.
2540 		 */
2541 		cas_post_rxds_ringN(cp, 0, 0);
2542 		spin_lock(&cp->stat_lock[0]);
2543 		cp->net_stats[0].rx_dropped++;
2544 		spin_unlock(&cp->stat_lock[0]);
2545 	} else if (status & INTR_RX_BUF_AE) {
2546 		cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2547 				    RX_AE_FREEN_VAL(0));
2548 	}
2549 
2550 	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2551 		cas_post_rxcs_ringN(dev, cp, 0);
2552 }
2553 
2554 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2555 {
2556 	struct net_device *dev = dev_id;
2557 	struct cas *cp = netdev_priv(dev);
2558 	unsigned long flags;
2559 	u32 status = readl(cp->regs + REG_INTR_STATUS);
2560 
2561 	if (status == 0)
2562 		return IRQ_NONE;
2563 
2564 	spin_lock_irqsave(&cp->lock, flags);
2565 	if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2566 		cas_tx(dev, cp, status);
2567 		status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2568 	}
2569 
2570 	if (status & INTR_RX_DONE) {
2571 #ifdef USE_NAPI
2572 		cas_mask_intr(cp);
2573 		napi_schedule(&cp->napi);
2574 #else
2575 		cas_rx_ringN(cp, 0, 0);
2576 #endif
2577 		status &= ~INTR_RX_DONE;
2578 	}
2579 
2580 	if (status)
2581 		cas_handle_irq(dev, cp, status);
2582 	spin_unlock_irqrestore(&cp->lock, flags);
2583 	return IRQ_HANDLED;
2584 }
2585 
2586 
2587 #ifdef USE_NAPI
2588 static int cas_poll(struct napi_struct *napi, int budget)
2589 {
2590 	struct cas *cp = container_of(napi, struct cas, napi);
2591 	struct net_device *dev = cp->dev;
2592 	int i, enable_intr, credits;
2593 	u32 status = readl(cp->regs + REG_INTR_STATUS);
2594 	unsigned long flags;
2595 
2596 	spin_lock_irqsave(&cp->lock, flags);
2597 	cas_tx(dev, cp, status);
2598 	spin_unlock_irqrestore(&cp->lock, flags);
2599 
2600 	/* NAPI rx packets. we spread the credits across all of the
2601 	 * rxc rings
2602 	 *
2603 	 * to make sure we're fair with the work we loop through each
2604 	 * ring N_RX_COMP_RING times with a request of
2605 	 * budget / N_RX_COMP_RINGS
2606 	 */
2607 	enable_intr = 1;
2608 	credits = 0;
2609 	for (i = 0; i < N_RX_COMP_RINGS; i++) {
2610 		int j;
2611 		for (j = 0; j < N_RX_COMP_RINGS; j++) {
2612 			credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2613 			if (credits >= budget) {
2614 				enable_intr = 0;
2615 				goto rx_comp;
2616 			}
2617 		}
2618 	}
2619 
2620 rx_comp:
2621 	/* final rx completion */
2622 	spin_lock_irqsave(&cp->lock, flags);
2623 	if (status)
2624 		cas_handle_irq(dev, cp, status);
2625 
2626 #ifdef USE_PCI_INTB
2627 	if (N_RX_COMP_RINGS > 1) {
2628 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2629 		if (status)
2630 			cas_handle_irq1(dev, cp, status);
2631 	}
2632 #endif
2633 
2634 #ifdef USE_PCI_INTC
2635 	if (N_RX_COMP_RINGS > 2) {
2636 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2637 		if (status)
2638 			cas_handle_irqN(dev, cp, status, 2);
2639 	}
2640 #endif
2641 
2642 #ifdef USE_PCI_INTD
2643 	if (N_RX_COMP_RINGS > 3) {
2644 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2645 		if (status)
2646 			cas_handle_irqN(dev, cp, status, 3);
2647 	}
2648 #endif
2649 	spin_unlock_irqrestore(&cp->lock, flags);
2650 	if (enable_intr) {
2651 		napi_complete(napi);
2652 		cas_unmask_intr(cp);
2653 	}
2654 	return credits;
2655 }
2656 #endif
2657 
2658 #ifdef CONFIG_NET_POLL_CONTROLLER
2659 static void cas_netpoll(struct net_device *dev)
2660 {
2661 	struct cas *cp = netdev_priv(dev);
2662 
2663 	cas_disable_irq(cp, 0);
2664 	cas_interrupt(cp->pdev->irq, dev);
2665 	cas_enable_irq(cp, 0);
2666 
2667 #ifdef USE_PCI_INTB
2668 	if (N_RX_COMP_RINGS > 1) {
2669 		/* cas_interrupt1(); */
2670 	}
2671 #endif
2672 #ifdef USE_PCI_INTC
2673 	if (N_RX_COMP_RINGS > 2) {
2674 		/* cas_interruptN(); */
2675 	}
2676 #endif
2677 #ifdef USE_PCI_INTD
2678 	if (N_RX_COMP_RINGS > 3) {
2679 		/* cas_interruptN(); */
2680 	}
2681 #endif
2682 }
2683 #endif
2684 
2685 static void cas_tx_timeout(struct net_device *dev)
2686 {
2687 	struct cas *cp = netdev_priv(dev);
2688 
2689 	netdev_err(dev, "transmit timed out, resetting\n");
2690 	if (!cp->hw_running) {
2691 		netdev_err(dev, "hrm.. hw not running!\n");
2692 		return;
2693 	}
2694 
2695 	netdev_err(dev, "MIF_STATE[%08x]\n",
2696 		   readl(cp->regs + REG_MIF_STATE_MACHINE));
2697 
2698 	netdev_err(dev, "MAC_STATE[%08x]\n",
2699 		   readl(cp->regs + REG_MAC_STATE_MACHINE));
2700 
2701 	netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2702 		   readl(cp->regs + REG_TX_CFG),
2703 		   readl(cp->regs + REG_MAC_TX_STATUS),
2704 		   readl(cp->regs + REG_MAC_TX_CFG),
2705 		   readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2706 		   readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2707 		   readl(cp->regs + REG_TX_FIFO_READ_PTR),
2708 		   readl(cp->regs + REG_TX_SM_1),
2709 		   readl(cp->regs + REG_TX_SM_2));
2710 
2711 	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2712 		   readl(cp->regs + REG_RX_CFG),
2713 		   readl(cp->regs + REG_MAC_RX_STATUS),
2714 		   readl(cp->regs + REG_MAC_RX_CFG));
2715 
2716 	netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2717 		   readl(cp->regs + REG_HP_STATE_MACHINE),
2718 		   readl(cp->regs + REG_HP_STATUS0),
2719 		   readl(cp->regs + REG_HP_STATUS1),
2720 		   readl(cp->regs + REG_HP_STATUS2));
2721 
2722 #if 1
2723 	atomic_inc(&cp->reset_task_pending);
2724 	atomic_inc(&cp->reset_task_pending_all);
2725 	schedule_work(&cp->reset_task);
2726 #else
2727 	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2728 	schedule_work(&cp->reset_task);
2729 #endif
2730 }
2731 
2732 static inline int cas_intme(int ring, int entry)
2733 {
2734 	/* Algorithm: IRQ every 1/2 of descriptors. */
2735 	if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2736 		return 1;
2737 	return 0;
2738 }
2739 
2740 
2741 static void cas_write_txd(struct cas *cp, int ring, int entry,
2742 			  dma_addr_t mapping, int len, u64 ctrl, int last)
2743 {
2744 	struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2745 
2746 	ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2747 	if (cas_intme(ring, entry))
2748 		ctrl |= TX_DESC_INTME;
2749 	if (last)
2750 		ctrl |= TX_DESC_EOF;
2751 	txd->control = cpu_to_le64(ctrl);
2752 	txd->buffer = cpu_to_le64(mapping);
2753 }
2754 
2755 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2756 				const int entry)
2757 {
2758 	return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2759 }
2760 
2761 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2762 				     const int entry, const int tentry)
2763 {
2764 	cp->tx_tiny_use[ring][tentry].nbufs++;
2765 	cp->tx_tiny_use[ring][entry].used = 1;
2766 	return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2767 }
2768 
2769 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2770 				    struct sk_buff *skb)
2771 {
2772 	struct net_device *dev = cp->dev;
2773 	int entry, nr_frags, frag, tabort, tentry;
2774 	dma_addr_t mapping;
2775 	unsigned long flags;
2776 	u64 ctrl;
2777 	u32 len;
2778 
2779 	spin_lock_irqsave(&cp->tx_lock[ring], flags);
2780 
2781 	/* This is a hard error, log it. */
2782 	if (TX_BUFFS_AVAIL(cp, ring) <=
2783 	    CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2784 		netif_stop_queue(dev);
2785 		spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2786 		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2787 		return 1;
2788 	}
2789 
2790 	ctrl = 0;
2791 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2792 		const u64 csum_start_off = skb_checksum_start_offset(skb);
2793 		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2794 
2795 		ctrl =  TX_DESC_CSUM_EN |
2796 			CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2797 			CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2798 	}
2799 
2800 	entry = cp->tx_new[ring];
2801 	cp->tx_skbs[ring][entry] = skb;
2802 
2803 	nr_frags = skb_shinfo(skb)->nr_frags;
2804 	len = skb_headlen(skb);
2805 	mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2806 			       offset_in_page(skb->data), len,
2807 			       PCI_DMA_TODEVICE);
2808 
2809 	tentry = entry;
2810 	tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2811 	if (unlikely(tabort)) {
2812 		/* NOTE: len is always >  tabort */
2813 		cas_write_txd(cp, ring, entry, mapping, len - tabort,
2814 			      ctrl | TX_DESC_SOF, 0);
2815 		entry = TX_DESC_NEXT(ring, entry);
2816 
2817 		skb_copy_from_linear_data_offset(skb, len - tabort,
2818 			      tx_tiny_buf(cp, ring, entry), tabort);
2819 		mapping = tx_tiny_map(cp, ring, entry, tentry);
2820 		cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2821 			      (nr_frags == 0));
2822 	} else {
2823 		cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2824 			      TX_DESC_SOF, (nr_frags == 0));
2825 	}
2826 	entry = TX_DESC_NEXT(ring, entry);
2827 
2828 	for (frag = 0; frag < nr_frags; frag++) {
2829 		const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2830 
2831 		len = skb_frag_size(fragp);
2832 		mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2833 					   DMA_TO_DEVICE);
2834 
2835 		tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2836 		if (unlikely(tabort)) {
2837 			void *addr;
2838 
2839 			/* NOTE: len is always > tabort */
2840 			cas_write_txd(cp, ring, entry, mapping, len - tabort,
2841 				      ctrl, 0);
2842 			entry = TX_DESC_NEXT(ring, entry);
2843 
2844 			addr = cas_page_map(skb_frag_page(fragp));
2845 			memcpy(tx_tiny_buf(cp, ring, entry),
2846 			       addr + fragp->page_offset + len - tabort,
2847 			       tabort);
2848 			cas_page_unmap(addr);
2849 			mapping = tx_tiny_map(cp, ring, entry, tentry);
2850 			len     = tabort;
2851 		}
2852 
2853 		cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2854 			      (frag + 1 == nr_frags));
2855 		entry = TX_DESC_NEXT(ring, entry);
2856 	}
2857 
2858 	cp->tx_new[ring] = entry;
2859 	if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2860 		netif_stop_queue(dev);
2861 
2862 	netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2863 		     "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2864 		     ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2865 	writel(entry, cp->regs + REG_TX_KICKN(ring));
2866 	spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2867 	return 0;
2868 }
2869 
2870 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2871 {
2872 	struct cas *cp = netdev_priv(dev);
2873 
2874 	/* this is only used as a load-balancing hint, so it doesn't
2875 	 * need to be SMP safe
2876 	 */
2877 	static int ring;
2878 
2879 	if (skb_padto(skb, cp->min_frame_size))
2880 		return NETDEV_TX_OK;
2881 
2882 	/* XXX: we need some higher-level QoS hooks to steer packets to
2883 	 *      individual queues.
2884 	 */
2885 	if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2886 		return NETDEV_TX_BUSY;
2887 	return NETDEV_TX_OK;
2888 }
2889 
2890 static void cas_init_tx_dma(struct cas *cp)
2891 {
2892 	u64 desc_dma = cp->block_dvma;
2893 	unsigned long off;
2894 	u32 val;
2895 	int i;
2896 
2897 	/* set up tx completion writeback registers. must be 8-byte aligned */
2898 #ifdef USE_TX_COMPWB
2899 	off = offsetof(struct cas_init_block, tx_compwb);
2900 	writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2901 	writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2902 #endif
2903 
2904 	/* enable completion writebacks, enable paced mode,
2905 	 * disable read pipe, and disable pre-interrupt compwbs
2906 	 */
2907 	val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2908 		TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2909 		TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2910 		TX_CFG_INTR_COMPWB_DIS;
2911 
2912 	/* write out tx ring info and tx desc bases */
2913 	for (i = 0; i < MAX_TX_RINGS; i++) {
2914 		off = (unsigned long) cp->init_txds[i] -
2915 			(unsigned long) cp->init_block;
2916 
2917 		val |= CAS_TX_RINGN_BASE(i);
2918 		writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2919 		writel((desc_dma + off) & 0xffffffff, cp->regs +
2920 		       REG_TX_DBN_LOW(i));
2921 		/* don't zero out the kick register here as the system
2922 		 * will wedge
2923 		 */
2924 	}
2925 	writel(val, cp->regs + REG_TX_CFG);
2926 
2927 	/* program max burst sizes. these numbers should be different
2928 	 * if doing QoS.
2929 	 */
2930 #ifdef USE_QOS
2931 	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2932 	writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2933 	writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2934 	writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2935 #else
2936 	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2937 	writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2938 	writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2939 	writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2940 #endif
2941 }
2942 
2943 /* Must be invoked under cp->lock. */
2944 static inline void cas_init_dma(struct cas *cp)
2945 {
2946 	cas_init_tx_dma(cp);
2947 	cas_init_rx_dma(cp);
2948 }
2949 
2950 static void cas_process_mc_list(struct cas *cp)
2951 {
2952 	u16 hash_table[16];
2953 	u32 crc;
2954 	struct netdev_hw_addr *ha;
2955 	int i = 1;
2956 
2957 	memset(hash_table, 0, sizeof(hash_table));
2958 	netdev_for_each_mc_addr(ha, cp->dev) {
2959 		if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2960 			/* use the alternate mac address registers for the
2961 			 * first 15 multicast addresses
2962 			 */
2963 			writel((ha->addr[4] << 8) | ha->addr[5],
2964 			       cp->regs + REG_MAC_ADDRN(i*3 + 0));
2965 			writel((ha->addr[2] << 8) | ha->addr[3],
2966 			       cp->regs + REG_MAC_ADDRN(i*3 + 1));
2967 			writel((ha->addr[0] << 8) | ha->addr[1],
2968 			       cp->regs + REG_MAC_ADDRN(i*3 + 2));
2969 			i++;
2970 		}
2971 		else {
2972 			/* use hw hash table for the next series of
2973 			 * multicast addresses
2974 			 */
2975 			crc = ether_crc_le(ETH_ALEN, ha->addr);
2976 			crc >>= 24;
2977 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2978 		}
2979 	}
2980 	for (i = 0; i < 16; i++)
2981 		writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2982 }
2983 
2984 /* Must be invoked under cp->lock. */
2985 static u32 cas_setup_multicast(struct cas *cp)
2986 {
2987 	u32 rxcfg = 0;
2988 	int i;
2989 
2990 	if (cp->dev->flags & IFF_PROMISC) {
2991 		rxcfg |= MAC_RX_CFG_PROMISC_EN;
2992 
2993 	} else if (cp->dev->flags & IFF_ALLMULTI) {
2994 	    	for (i=0; i < 16; i++)
2995 			writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2996 		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2997 
2998 	} else {
2999 		cas_process_mc_list(cp);
3000 		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3001 	}
3002 
3003 	return rxcfg;
3004 }
3005 
3006 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3007 static void cas_clear_mac_err(struct cas *cp)
3008 {
3009 	writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3010 	writel(0, cp->regs + REG_MAC_COLL_FIRST);
3011 	writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3012 	writel(0, cp->regs + REG_MAC_COLL_LATE);
3013 	writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3014 	writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3015 	writel(0, cp->regs + REG_MAC_RECV_FRAME);
3016 	writel(0, cp->regs + REG_MAC_LEN_ERR);
3017 	writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3018 	writel(0, cp->regs + REG_MAC_FCS_ERR);
3019 	writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3020 }
3021 
3022 
3023 static void cas_mac_reset(struct cas *cp)
3024 {
3025 	int i;
3026 
3027 	/* do both TX and RX reset */
3028 	writel(0x1, cp->regs + REG_MAC_TX_RESET);
3029 	writel(0x1, cp->regs + REG_MAC_RX_RESET);
3030 
3031 	/* wait for TX */
3032 	i = STOP_TRIES;
3033 	while (i-- > 0) {
3034 		if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3035 			break;
3036 		udelay(10);
3037 	}
3038 
3039 	/* wait for RX */
3040 	i = STOP_TRIES;
3041 	while (i-- > 0) {
3042 		if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3043 			break;
3044 		udelay(10);
3045 	}
3046 
3047 	if (readl(cp->regs + REG_MAC_TX_RESET) |
3048 	    readl(cp->regs + REG_MAC_RX_RESET))
3049 		netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3050 			   readl(cp->regs + REG_MAC_TX_RESET),
3051 			   readl(cp->regs + REG_MAC_RX_RESET),
3052 			   readl(cp->regs + REG_MAC_STATE_MACHINE));
3053 }
3054 
3055 
3056 /* Must be invoked under cp->lock. */
3057 static void cas_init_mac(struct cas *cp)
3058 {
3059 	unsigned char *e = &cp->dev->dev_addr[0];
3060 	int i;
3061 	cas_mac_reset(cp);
3062 
3063 	/* setup core arbitration weight register */
3064 	writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3065 
3066 	/* XXX Use pci_dma_burst_advice() */
3067 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3068 	/* set the infinite burst register for chips that don't have
3069 	 * pci issues.
3070 	 */
3071 	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3072 		writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3073 #endif
3074 
3075 	writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3076 
3077 	writel(0x00, cp->regs + REG_MAC_IPG0);
3078 	writel(0x08, cp->regs + REG_MAC_IPG1);
3079 	writel(0x04, cp->regs + REG_MAC_IPG2);
3080 
3081 	/* change later for 802.3z */
3082 	writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3083 
3084 	/* min frame + FCS */
3085 	writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3086 
3087 	/* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3088 	 * specify the maximum frame size to prevent RX tag errors on
3089 	 * oversized frames.
3090 	 */
3091 	writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3092 	       CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3093 			(CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3094 	       cp->regs + REG_MAC_FRAMESIZE_MAX);
3095 
3096 	/* NOTE: crc_size is used as a surrogate for half-duplex.
3097 	 * workaround saturn half-duplex issue by increasing preamble
3098 	 * size to 65 bytes.
3099 	 */
3100 	if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3101 		writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3102 	else
3103 		writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3104 	writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3105 	writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3106 	writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3107 
3108 	writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3109 
3110 	writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3111 	writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3112 	writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3113 	writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3114 	writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3115 
3116 	/* setup mac address in perfect filter array */
3117 	for (i = 0; i < 45; i++)
3118 		writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3119 
3120 	writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3121 	writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3122 	writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3123 
3124 	writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3125 	writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3126 	writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3127 
3128 	cp->mac_rx_cfg = cas_setup_multicast(cp);
3129 
3130 	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3131 	cas_clear_mac_err(cp);
3132 	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3133 
3134 	/* Setup MAC interrupts.  We want to get all of the interesting
3135 	 * counter expiration events, but we do not want to hear about
3136 	 * normal rx/tx as the DMA engine tells us that.
3137 	 */
3138 	writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3139 	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3140 
3141 	/* Don't enable even the PAUSE interrupts for now, we
3142 	 * make no use of those events other than to record them.
3143 	 */
3144 	writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3145 }
3146 
3147 /* Must be invoked under cp->lock. */
3148 static void cas_init_pause_thresholds(struct cas *cp)
3149 {
3150 	/* Calculate pause thresholds.  Setting the OFF threshold to the
3151 	 * full RX fifo size effectively disables PAUSE generation
3152 	 */
3153 	if (cp->rx_fifo_size <= (2 * 1024)) {
3154 		cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3155 	} else {
3156 		int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3157 		if (max_frame * 3 > cp->rx_fifo_size) {
3158 			cp->rx_pause_off = 7104;
3159 			cp->rx_pause_on  = 960;
3160 		} else {
3161 			int off = (cp->rx_fifo_size - (max_frame * 2));
3162 			int on = off - max_frame;
3163 			cp->rx_pause_off = off;
3164 			cp->rx_pause_on = on;
3165 		}
3166 	}
3167 }
3168 
3169 static int cas_vpd_match(const void __iomem *p, const char *str)
3170 {
3171 	int len = strlen(str) + 1;
3172 	int i;
3173 
3174 	for (i = 0; i < len; i++) {
3175 		if (readb(p + i) != str[i])
3176 			return 0;
3177 	}
3178 	return 1;
3179 }
3180 
3181 
3182 /* get the mac address by reading the vpd information in the rom.
3183  * also get the phy type and determine if there's an entropy generator.
3184  * NOTE: this is a bit convoluted for the following reasons:
3185  *  1) vpd info has order-dependent mac addresses for multinic cards
3186  *  2) the only way to determine the nic order is to use the slot
3187  *     number.
3188  *  3) fiber cards don't have bridges, so their slot numbers don't
3189  *     mean anything.
3190  *  4) we don't actually know we have a fiber card until after
3191  *     the mac addresses are parsed.
3192  */
3193 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3194 			    const int offset)
3195 {
3196 	void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3197 	void __iomem *base, *kstart;
3198 	int i, len;
3199 	int found = 0;
3200 #define VPD_FOUND_MAC        0x01
3201 #define VPD_FOUND_PHY        0x02
3202 
3203 	int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3204 	int mac_off  = 0;
3205 
3206 #if defined(CONFIG_SPARC)
3207 	const unsigned char *addr;
3208 #endif
3209 
3210 	/* give us access to the PROM */
3211 	writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3212 	       cp->regs + REG_BIM_LOCAL_DEV_EN);
3213 
3214 	/* check for an expansion rom */
3215 	if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3216 		goto use_random_mac_addr;
3217 
3218 	/* search for beginning of vpd */
3219 	base = NULL;
3220 	for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3221 		/* check for PCIR */
3222 		if ((readb(p + i + 0) == 0x50) &&
3223 		    (readb(p + i + 1) == 0x43) &&
3224 		    (readb(p + i + 2) == 0x49) &&
3225 		    (readb(p + i + 3) == 0x52)) {
3226 			base = p + (readb(p + i + 8) |
3227 				    (readb(p + i + 9) << 8));
3228 			break;
3229 		}
3230 	}
3231 
3232 	if (!base || (readb(base) != 0x82))
3233 		goto use_random_mac_addr;
3234 
3235 	i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3236 	while (i < EXPANSION_ROM_SIZE) {
3237 		if (readb(base + i) != 0x90) /* no vpd found */
3238 			goto use_random_mac_addr;
3239 
3240 		/* found a vpd field */
3241 		len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3242 
3243 		/* extract keywords */
3244 		kstart = base + i + 3;
3245 		p = kstart;
3246 		while ((p - kstart) < len) {
3247 			int klen = readb(p + 2);
3248 			int j;
3249 			char type;
3250 
3251 			p += 3;
3252 
3253 			/* look for the following things:
3254 			 * -- correct length == 29
3255 			 * 3 (type) + 2 (size) +
3256 			 * 18 (strlen("local-mac-address") + 1) +
3257 			 * 6 (mac addr)
3258 			 * -- VPD Instance 'I'
3259 			 * -- VPD Type Bytes 'B'
3260 			 * -- VPD data length == 6
3261 			 * -- property string == local-mac-address
3262 			 *
3263 			 * -- correct length == 24
3264 			 * 3 (type) + 2 (size) +
3265 			 * 12 (strlen("entropy-dev") + 1) +
3266 			 * 7 (strlen("vms110") + 1)
3267 			 * -- VPD Instance 'I'
3268 			 * -- VPD Type String 'B'
3269 			 * -- VPD data length == 7
3270 			 * -- property string == entropy-dev
3271 			 *
3272 			 * -- correct length == 18
3273 			 * 3 (type) + 2 (size) +
3274 			 * 9 (strlen("phy-type") + 1) +
3275 			 * 4 (strlen("pcs") + 1)
3276 			 * -- VPD Instance 'I'
3277 			 * -- VPD Type String 'S'
3278 			 * -- VPD data length == 4
3279 			 * -- property string == phy-type
3280 			 *
3281 			 * -- correct length == 23
3282 			 * 3 (type) + 2 (size) +
3283 			 * 14 (strlen("phy-interface") + 1) +
3284 			 * 4 (strlen("pcs") + 1)
3285 			 * -- VPD Instance 'I'
3286 			 * -- VPD Type String 'S'
3287 			 * -- VPD data length == 4
3288 			 * -- property string == phy-interface
3289 			 */
3290 			if (readb(p) != 'I')
3291 				goto next;
3292 
3293 			/* finally, check string and length */
3294 			type = readb(p + 3);
3295 			if (type == 'B') {
3296 				if ((klen == 29) && readb(p + 4) == 6 &&
3297 				    cas_vpd_match(p + 5,
3298 						  "local-mac-address")) {
3299 					if (mac_off++ > offset)
3300 						goto next;
3301 
3302 					/* set mac address */
3303 					for (j = 0; j < 6; j++)
3304 						dev_addr[j] =
3305 							readb(p + 23 + j);
3306 					goto found_mac;
3307 				}
3308 			}
3309 
3310 			if (type != 'S')
3311 				goto next;
3312 
3313 #ifdef USE_ENTROPY_DEV
3314 			if ((klen == 24) &&
3315 			    cas_vpd_match(p + 5, "entropy-dev") &&
3316 			    cas_vpd_match(p + 17, "vms110")) {
3317 				cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3318 				goto next;
3319 			}
3320 #endif
3321 
3322 			if (found & VPD_FOUND_PHY)
3323 				goto next;
3324 
3325 			if ((klen == 18) && readb(p + 4) == 4 &&
3326 			    cas_vpd_match(p + 5, "phy-type")) {
3327 				if (cas_vpd_match(p + 14, "pcs")) {
3328 					phy_type = CAS_PHY_SERDES;
3329 					goto found_phy;
3330 				}
3331 			}
3332 
3333 			if ((klen == 23) && readb(p + 4) == 4 &&
3334 			    cas_vpd_match(p + 5, "phy-interface")) {
3335 				if (cas_vpd_match(p + 19, "pcs")) {
3336 					phy_type = CAS_PHY_SERDES;
3337 					goto found_phy;
3338 				}
3339 			}
3340 found_mac:
3341 			found |= VPD_FOUND_MAC;
3342 			goto next;
3343 
3344 found_phy:
3345 			found |= VPD_FOUND_PHY;
3346 
3347 next:
3348 			p += klen;
3349 		}
3350 		i += len + 3;
3351 	}
3352 
3353 use_random_mac_addr:
3354 	if (found & VPD_FOUND_MAC)
3355 		goto done;
3356 
3357 #if defined(CONFIG_SPARC)
3358 	addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3359 	if (addr != NULL) {
3360 		memcpy(dev_addr, addr, 6);
3361 		goto done;
3362 	}
3363 #endif
3364 
3365 	/* Sun MAC prefix then 3 random bytes. */
3366 	pr_info("MAC address not found in ROM VPD\n");
3367 	dev_addr[0] = 0x08;
3368 	dev_addr[1] = 0x00;
3369 	dev_addr[2] = 0x20;
3370 	get_random_bytes(dev_addr + 3, 3);
3371 
3372 done:
3373 	writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3374 	return phy_type;
3375 }
3376 
3377 /* check pci invariants */
3378 static void cas_check_pci_invariants(struct cas *cp)
3379 {
3380 	struct pci_dev *pdev = cp->pdev;
3381 
3382 	cp->cas_flags = 0;
3383 	if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3384 	    (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3385 		if (pdev->revision >= CAS_ID_REVPLUS)
3386 			cp->cas_flags |= CAS_FLAG_REG_PLUS;
3387 		if (pdev->revision < CAS_ID_REVPLUS02u)
3388 			cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3389 
3390 		/* Original Cassini supports HW CSUM, but it's not
3391 		 * enabled by default as it can trigger TX hangs.
3392 		 */
3393 		if (pdev->revision < CAS_ID_REV2)
3394 			cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3395 	} else {
3396 		/* Only sun has original cassini chips.  */
3397 		cp->cas_flags |= CAS_FLAG_REG_PLUS;
3398 
3399 		/* We use a flag because the same phy might be externally
3400 		 * connected.
3401 		 */
3402 		if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3403 		    (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3404 			cp->cas_flags |= CAS_FLAG_SATURN;
3405 	}
3406 }
3407 
3408 
3409 static int cas_check_invariants(struct cas *cp)
3410 {
3411 	struct pci_dev *pdev = cp->pdev;
3412 	u32 cfg;
3413 	int i;
3414 
3415 	/* get page size for rx buffers. */
3416 	cp->page_order = 0;
3417 #ifdef USE_PAGE_ORDER
3418 	if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3419 		/* see if we can allocate larger pages */
3420 		struct page *page = alloc_pages(GFP_ATOMIC,
3421 						CAS_JUMBO_PAGE_SHIFT -
3422 						PAGE_SHIFT);
3423 		if (page) {
3424 			__free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3425 			cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3426 		} else {
3427 			printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3428 		}
3429 	}
3430 #endif
3431 	cp->page_size = (PAGE_SIZE << cp->page_order);
3432 
3433 	/* Fetch the FIFO configurations. */
3434 	cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3435 	cp->rx_fifo_size = RX_FIFO_SIZE;
3436 
3437 	/* finish phy determination. MDIO1 takes precedence over MDIO0 if
3438 	 * they're both connected.
3439 	 */
3440 	cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3441 					PCI_SLOT(pdev->devfn));
3442 	if (cp->phy_type & CAS_PHY_SERDES) {
3443 		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3444 		return 0; /* no more checking needed */
3445 	}
3446 
3447 	/* MII */
3448 	cfg = readl(cp->regs + REG_MIF_CFG);
3449 	if (cfg & MIF_CFG_MDIO_1) {
3450 		cp->phy_type = CAS_PHY_MII_MDIO1;
3451 	} else if (cfg & MIF_CFG_MDIO_0) {
3452 		cp->phy_type = CAS_PHY_MII_MDIO0;
3453 	}
3454 
3455 	cas_mif_poll(cp, 0);
3456 	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3457 
3458 	for (i = 0; i < 32; i++) {
3459 		u32 phy_id;
3460 		int j;
3461 
3462 		for (j = 0; j < 3; j++) {
3463 			cp->phy_addr = i;
3464 			phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3465 			phy_id |= cas_phy_read(cp, MII_PHYSID2);
3466 			if (phy_id && (phy_id != 0xFFFFFFFF)) {
3467 				cp->phy_id = phy_id;
3468 				goto done;
3469 			}
3470 		}
3471 	}
3472 	pr_err("MII phy did not respond [%08x]\n",
3473 	       readl(cp->regs + REG_MIF_STATE_MACHINE));
3474 	return -1;
3475 
3476 done:
3477 	/* see if we can do gigabit */
3478 	cfg = cas_phy_read(cp, MII_BMSR);
3479 	if ((cfg & CAS_BMSR_1000_EXTEND) &&
3480 	    cas_phy_read(cp, CAS_MII_1000_EXTEND))
3481 		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3482 	return 0;
3483 }
3484 
3485 /* Must be invoked under cp->lock. */
3486 static inline void cas_start_dma(struct cas *cp)
3487 {
3488 	int i;
3489 	u32 val;
3490 	int txfailed = 0;
3491 
3492 	/* enable dma */
3493 	val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3494 	writel(val, cp->regs + REG_TX_CFG);
3495 	val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3496 	writel(val, cp->regs + REG_RX_CFG);
3497 
3498 	/* enable the mac */
3499 	val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3500 	writel(val, cp->regs + REG_MAC_TX_CFG);
3501 	val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3502 	writel(val, cp->regs + REG_MAC_RX_CFG);
3503 
3504 	i = STOP_TRIES;
3505 	while (i-- > 0) {
3506 		val = readl(cp->regs + REG_MAC_TX_CFG);
3507 		if ((val & MAC_TX_CFG_EN))
3508 			break;
3509 		udelay(10);
3510 	}
3511 	if (i < 0) txfailed = 1;
3512 	i = STOP_TRIES;
3513 	while (i-- > 0) {
3514 		val = readl(cp->regs + REG_MAC_RX_CFG);
3515 		if ((val & MAC_RX_CFG_EN)) {
3516 			if (txfailed) {
3517 				netdev_err(cp->dev,
3518 					   "enabling mac failed [tx:%08x:%08x]\n",
3519 					   readl(cp->regs + REG_MIF_STATE_MACHINE),
3520 					   readl(cp->regs + REG_MAC_STATE_MACHINE));
3521 			}
3522 			goto enable_rx_done;
3523 		}
3524 		udelay(10);
3525 	}
3526 	netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3527 		   (txfailed ? "tx,rx" : "rx"),
3528 		   readl(cp->regs + REG_MIF_STATE_MACHINE),
3529 		   readl(cp->regs + REG_MAC_STATE_MACHINE));
3530 
3531 enable_rx_done:
3532 	cas_unmask_intr(cp); /* enable interrupts */
3533 	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3534 	writel(0, cp->regs + REG_RX_COMP_TAIL);
3535 
3536 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3537 		if (N_RX_DESC_RINGS > 1)
3538 			writel(RX_DESC_RINGN_SIZE(1) - 4,
3539 			       cp->regs + REG_PLUS_RX_KICK1);
3540 
3541 		for (i = 1; i < N_RX_COMP_RINGS; i++)
3542 			writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3543 	}
3544 }
3545 
3546 /* Must be invoked under cp->lock. */
3547 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3548 				   int *pause)
3549 {
3550 	u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3551 	*fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3552 	*pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3553 	if (val & PCS_MII_LPA_ASYM_PAUSE)
3554 		*pause |= 0x10;
3555 	*spd = 1000;
3556 }
3557 
3558 /* Must be invoked under cp->lock. */
3559 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3560 				   int *pause)
3561 {
3562 	u32 val;
3563 
3564 	*fd = 0;
3565 	*spd = 10;
3566 	*pause = 0;
3567 
3568 	/* use GMII registers */
3569 	val = cas_phy_read(cp, MII_LPA);
3570 	if (val & CAS_LPA_PAUSE)
3571 		*pause = 0x01;
3572 
3573 	if (val & CAS_LPA_ASYM_PAUSE)
3574 		*pause |= 0x10;
3575 
3576 	if (val & LPA_DUPLEX)
3577 		*fd = 1;
3578 	if (val & LPA_100)
3579 		*spd = 100;
3580 
3581 	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3582 		val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3583 		if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3584 			*spd = 1000;
3585 		if (val & CAS_LPA_1000FULL)
3586 			*fd = 1;
3587 	}
3588 }
3589 
3590 /* A link-up condition has occurred, initialize and enable the
3591  * rest of the chip.
3592  *
3593  * Must be invoked under cp->lock.
3594  */
3595 static void cas_set_link_modes(struct cas *cp)
3596 {
3597 	u32 val;
3598 	int full_duplex, speed, pause;
3599 
3600 	full_duplex = 0;
3601 	speed = 10;
3602 	pause = 0;
3603 
3604 	if (CAS_PHY_MII(cp->phy_type)) {
3605 		cas_mif_poll(cp, 0);
3606 		val = cas_phy_read(cp, MII_BMCR);
3607 		if (val & BMCR_ANENABLE) {
3608 			cas_read_mii_link_mode(cp, &full_duplex, &speed,
3609 					       &pause);
3610 		} else {
3611 			if (val & BMCR_FULLDPLX)
3612 				full_duplex = 1;
3613 
3614 			if (val & BMCR_SPEED100)
3615 				speed = 100;
3616 			else if (val & CAS_BMCR_SPEED1000)
3617 				speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3618 					1000 : 100;
3619 		}
3620 		cas_mif_poll(cp, 1);
3621 
3622 	} else {
3623 		val = readl(cp->regs + REG_PCS_MII_CTRL);
3624 		cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3625 		if ((val & PCS_MII_AUTONEG_EN) == 0) {
3626 			if (val & PCS_MII_CTRL_DUPLEX)
3627 				full_duplex = 1;
3628 		}
3629 	}
3630 
3631 	netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3632 		   speed, full_duplex ? "full" : "half");
3633 
3634 	val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3635 	if (CAS_PHY_MII(cp->phy_type)) {
3636 		val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3637 		if (!full_duplex)
3638 			val |= MAC_XIF_DISABLE_ECHO;
3639 	}
3640 	if (full_duplex)
3641 		val |= MAC_XIF_FDPLX_LED;
3642 	if (speed == 1000)
3643 		val |= MAC_XIF_GMII_MODE;
3644 	writel(val, cp->regs + REG_MAC_XIF_CFG);
3645 
3646 	/* deal with carrier and collision detect. */
3647 	val = MAC_TX_CFG_IPG_EN;
3648 	if (full_duplex) {
3649 		val |= MAC_TX_CFG_IGNORE_CARRIER;
3650 		val |= MAC_TX_CFG_IGNORE_COLL;
3651 	} else {
3652 #ifndef USE_CSMA_CD_PROTO
3653 		val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3654 		val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3655 #endif
3656 	}
3657 	/* val now set up for REG_MAC_TX_CFG */
3658 
3659 	/* If gigabit and half-duplex, enable carrier extension
3660 	 * mode.  increase slot time to 512 bytes as well.
3661 	 * else, disable it and make sure slot time is 64 bytes.
3662 	 * also activate checksum bug workaround
3663 	 */
3664 	if ((speed == 1000) && !full_duplex) {
3665 		writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3666 		       cp->regs + REG_MAC_TX_CFG);
3667 
3668 		val = readl(cp->regs + REG_MAC_RX_CFG);
3669 		val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3670 		writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3671 		       cp->regs + REG_MAC_RX_CFG);
3672 
3673 		writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3674 
3675 		cp->crc_size = 4;
3676 		/* minimum size gigabit frame at half duplex */
3677 		cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3678 
3679 	} else {
3680 		writel(val, cp->regs + REG_MAC_TX_CFG);
3681 
3682 		/* checksum bug workaround. don't strip FCS when in
3683 		 * half-duplex mode
3684 		 */
3685 		val = readl(cp->regs + REG_MAC_RX_CFG);
3686 		if (full_duplex) {
3687 			val |= MAC_RX_CFG_STRIP_FCS;
3688 			cp->crc_size = 0;
3689 			cp->min_frame_size = CAS_MIN_MTU;
3690 		} else {
3691 			val &= ~MAC_RX_CFG_STRIP_FCS;
3692 			cp->crc_size = 4;
3693 			cp->min_frame_size = CAS_MIN_FRAME;
3694 		}
3695 		writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3696 		       cp->regs + REG_MAC_RX_CFG);
3697 		writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3698 	}
3699 
3700 	if (netif_msg_link(cp)) {
3701 		if (pause & 0x01) {
3702 			netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3703 				    cp->rx_fifo_size,
3704 				    cp->rx_pause_off,
3705 				    cp->rx_pause_on);
3706 		} else if (pause & 0x10) {
3707 			netdev_info(cp->dev, "TX pause enabled\n");
3708 		} else {
3709 			netdev_info(cp->dev, "Pause is disabled\n");
3710 		}
3711 	}
3712 
3713 	val = readl(cp->regs + REG_MAC_CTRL_CFG);
3714 	val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3715 	if (pause) { /* symmetric or asymmetric pause */
3716 		val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3717 		if (pause & 0x01) { /* symmetric pause */
3718 			val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3719 		}
3720 	}
3721 	writel(val, cp->regs + REG_MAC_CTRL_CFG);
3722 	cas_start_dma(cp);
3723 }
3724 
3725 /* Must be invoked under cp->lock. */
3726 static void cas_init_hw(struct cas *cp, int restart_link)
3727 {
3728 	if (restart_link)
3729 		cas_phy_init(cp);
3730 
3731 	cas_init_pause_thresholds(cp);
3732 	cas_init_mac(cp);
3733 	cas_init_dma(cp);
3734 
3735 	if (restart_link) {
3736 		/* Default aneg parameters */
3737 		cp->timer_ticks = 0;
3738 		cas_begin_auto_negotiation(cp, NULL);
3739 	} else if (cp->lstate == link_up) {
3740 		cas_set_link_modes(cp);
3741 		netif_carrier_on(cp->dev);
3742 	}
3743 }
3744 
3745 /* Must be invoked under cp->lock. on earlier cassini boards,
3746  * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3747  * let it settle out, and then restore pci state.
3748  */
3749 static void cas_hard_reset(struct cas *cp)
3750 {
3751 	writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3752 	udelay(20);
3753 	pci_restore_state(cp->pdev);
3754 }
3755 
3756 
3757 static void cas_global_reset(struct cas *cp, int blkflag)
3758 {
3759 	int limit;
3760 
3761 	/* issue a global reset. don't use RSTOUT. */
3762 	if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3763 		/* For PCS, when the blkflag is set, we should set the
3764 		 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3765 		 * the last autonegotiation from being cleared.  We'll
3766 		 * need some special handling if the chip is set into a
3767 		 * loopback mode.
3768 		 */
3769 		writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3770 		       cp->regs + REG_SW_RESET);
3771 	} else {
3772 		writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3773 	}
3774 
3775 	/* need to wait at least 3ms before polling register */
3776 	mdelay(3);
3777 
3778 	limit = STOP_TRIES;
3779 	while (limit-- > 0) {
3780 		u32 val = readl(cp->regs + REG_SW_RESET);
3781 		if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3782 			goto done;
3783 		udelay(10);
3784 	}
3785 	netdev_err(cp->dev, "sw reset failed\n");
3786 
3787 done:
3788 	/* enable various BIM interrupts */
3789 	writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3790 	       BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3791 
3792 	/* clear out pci error status mask for handled errors.
3793 	 * we don't deal with DMA counter overflows as they happen
3794 	 * all the time.
3795 	 */
3796 	writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3797 			       PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3798 			       PCI_ERR_BIM_DMA_READ), cp->regs +
3799 	       REG_PCI_ERR_STATUS_MASK);
3800 
3801 	/* set up for MII by default to address mac rx reset timeout
3802 	 * issue
3803 	 */
3804 	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3805 }
3806 
3807 static void cas_reset(struct cas *cp, int blkflag)
3808 {
3809 	u32 val;
3810 
3811 	cas_mask_intr(cp);
3812 	cas_global_reset(cp, blkflag);
3813 	cas_mac_reset(cp);
3814 	cas_entropy_reset(cp);
3815 
3816 	/* disable dma engines. */
3817 	val = readl(cp->regs + REG_TX_CFG);
3818 	val &= ~TX_CFG_DMA_EN;
3819 	writel(val, cp->regs + REG_TX_CFG);
3820 
3821 	val = readl(cp->regs + REG_RX_CFG);
3822 	val &= ~RX_CFG_DMA_EN;
3823 	writel(val, cp->regs + REG_RX_CFG);
3824 
3825 	/* program header parser */
3826 	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3827 	    (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3828 		cas_load_firmware(cp, CAS_HP_FIRMWARE);
3829 	} else {
3830 		cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3831 	}
3832 
3833 	/* clear out error registers */
3834 	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3835 	cas_clear_mac_err(cp);
3836 	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3837 }
3838 
3839 /* Shut down the chip, must be called with pm_mutex held.  */
3840 static void cas_shutdown(struct cas *cp)
3841 {
3842 	unsigned long flags;
3843 
3844 	/* Make us not-running to avoid timers respawning */
3845 	cp->hw_running = 0;
3846 
3847 	del_timer_sync(&cp->link_timer);
3848 
3849 	/* Stop the reset task */
3850 #if 0
3851 	while (atomic_read(&cp->reset_task_pending_mtu) ||
3852 	       atomic_read(&cp->reset_task_pending_spare) ||
3853 	       atomic_read(&cp->reset_task_pending_all))
3854 		schedule();
3855 
3856 #else
3857 	while (atomic_read(&cp->reset_task_pending))
3858 		schedule();
3859 #endif
3860 	/* Actually stop the chip */
3861 	cas_lock_all_save(cp, flags);
3862 	cas_reset(cp, 0);
3863 	if (cp->cas_flags & CAS_FLAG_SATURN)
3864 		cas_phy_powerdown(cp);
3865 	cas_unlock_all_restore(cp, flags);
3866 }
3867 
3868 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3869 {
3870 	struct cas *cp = netdev_priv(dev);
3871 
3872 	if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3873 		return -EINVAL;
3874 
3875 	dev->mtu = new_mtu;
3876 	if (!netif_running(dev) || !netif_device_present(dev))
3877 		return 0;
3878 
3879 	/* let the reset task handle it */
3880 #if 1
3881 	atomic_inc(&cp->reset_task_pending);
3882 	if ((cp->phy_type & CAS_PHY_SERDES)) {
3883 		atomic_inc(&cp->reset_task_pending_all);
3884 	} else {
3885 		atomic_inc(&cp->reset_task_pending_mtu);
3886 	}
3887 	schedule_work(&cp->reset_task);
3888 #else
3889 	atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3890 		   CAS_RESET_ALL : CAS_RESET_MTU);
3891 	pr_err("reset called in cas_change_mtu\n");
3892 	schedule_work(&cp->reset_task);
3893 #endif
3894 
3895 	flush_work_sync(&cp->reset_task);
3896 	return 0;
3897 }
3898 
3899 static void cas_clean_txd(struct cas *cp, int ring)
3900 {
3901 	struct cas_tx_desc *txd = cp->init_txds[ring];
3902 	struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3903 	u64 daddr, dlen;
3904 	int i, size;
3905 
3906 	size = TX_DESC_RINGN_SIZE(ring);
3907 	for (i = 0; i < size; i++) {
3908 		int frag;
3909 
3910 		if (skbs[i] == NULL)
3911 			continue;
3912 
3913 		skb = skbs[i];
3914 		skbs[i] = NULL;
3915 
3916 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3917 			int ent = i & (size - 1);
3918 
3919 			/* first buffer is never a tiny buffer and so
3920 			 * needs to be unmapped.
3921 			 */
3922 			daddr = le64_to_cpu(txd[ent].buffer);
3923 			dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3924 					 le64_to_cpu(txd[ent].control));
3925 			pci_unmap_page(cp->pdev, daddr, dlen,
3926 				       PCI_DMA_TODEVICE);
3927 
3928 			if (frag != skb_shinfo(skb)->nr_frags) {
3929 				i++;
3930 
3931 				/* next buffer might by a tiny buffer.
3932 				 * skip past it.
3933 				 */
3934 				ent = i & (size - 1);
3935 				if (cp->tx_tiny_use[ring][ent].used)
3936 					i++;
3937 			}
3938 		}
3939 		dev_kfree_skb_any(skb);
3940 	}
3941 
3942 	/* zero out tiny buf usage */
3943 	memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3944 }
3945 
3946 /* freed on close */
3947 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3948 {
3949 	cas_page_t **page = cp->rx_pages[ring];
3950 	int i, size;
3951 
3952 	size = RX_DESC_RINGN_SIZE(ring);
3953 	for (i = 0; i < size; i++) {
3954 		if (page[i]) {
3955 			cas_page_free(cp, page[i]);
3956 			page[i] = NULL;
3957 		}
3958 	}
3959 }
3960 
3961 static void cas_free_rxds(struct cas *cp)
3962 {
3963 	int i;
3964 
3965 	for (i = 0; i < N_RX_DESC_RINGS; i++)
3966 		cas_free_rx_desc(cp, i);
3967 }
3968 
3969 /* Must be invoked under cp->lock. */
3970 static void cas_clean_rings(struct cas *cp)
3971 {
3972 	int i;
3973 
3974 	/* need to clean all tx rings */
3975 	memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3976 	memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3977 	for (i = 0; i < N_TX_RINGS; i++)
3978 		cas_clean_txd(cp, i);
3979 
3980 	/* zero out init block */
3981 	memset(cp->init_block, 0, sizeof(struct cas_init_block));
3982 	cas_clean_rxds(cp);
3983 	cas_clean_rxcs(cp);
3984 }
3985 
3986 /* allocated on open */
3987 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3988 {
3989 	cas_page_t **page = cp->rx_pages[ring];
3990 	int size, i = 0;
3991 
3992 	size = RX_DESC_RINGN_SIZE(ring);
3993 	for (i = 0; i < size; i++) {
3994 		if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3995 			return -1;
3996 	}
3997 	return 0;
3998 }
3999 
4000 static int cas_alloc_rxds(struct cas *cp)
4001 {
4002 	int i;
4003 
4004 	for (i = 0; i < N_RX_DESC_RINGS; i++) {
4005 		if (cas_alloc_rx_desc(cp, i) < 0) {
4006 			cas_free_rxds(cp);
4007 			return -1;
4008 		}
4009 	}
4010 	return 0;
4011 }
4012 
4013 static void cas_reset_task(struct work_struct *work)
4014 {
4015 	struct cas *cp = container_of(work, struct cas, reset_task);
4016 #if 0
4017 	int pending = atomic_read(&cp->reset_task_pending);
4018 #else
4019 	int pending_all = atomic_read(&cp->reset_task_pending_all);
4020 	int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4021 	int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4022 
4023 	if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4024 		/* We can have more tasks scheduled than actually
4025 		 * needed.
4026 		 */
4027 		atomic_dec(&cp->reset_task_pending);
4028 		return;
4029 	}
4030 #endif
4031 	/* The link went down, we reset the ring, but keep
4032 	 * DMA stopped. Use this function for reset
4033 	 * on error as well.
4034 	 */
4035 	if (cp->hw_running) {
4036 		unsigned long flags;
4037 
4038 		/* Make sure we don't get interrupts or tx packets */
4039 		netif_device_detach(cp->dev);
4040 		cas_lock_all_save(cp, flags);
4041 
4042 		if (cp->opened) {
4043 			/* We call cas_spare_recover when we call cas_open.
4044 			 * but we do not initialize the lists cas_spare_recover
4045 			 * uses until cas_open is called.
4046 			 */
4047 			cas_spare_recover(cp, GFP_ATOMIC);
4048 		}
4049 #if 1
4050 		/* test => only pending_spare set */
4051 		if (!pending_all && !pending_mtu)
4052 			goto done;
4053 #else
4054 		if (pending == CAS_RESET_SPARE)
4055 			goto done;
4056 #endif
4057 		/* when pending == CAS_RESET_ALL, the following
4058 		 * call to cas_init_hw will restart auto negotiation.
4059 		 * Setting the second argument of cas_reset to
4060 		 * !(pending == CAS_RESET_ALL) will set this argument
4061 		 * to 1 (avoiding reinitializing the PHY for the normal
4062 		 * PCS case) when auto negotiation is not restarted.
4063 		 */
4064 #if 1
4065 		cas_reset(cp, !(pending_all > 0));
4066 		if (cp->opened)
4067 			cas_clean_rings(cp);
4068 		cas_init_hw(cp, (pending_all > 0));
4069 #else
4070 		cas_reset(cp, !(pending == CAS_RESET_ALL));
4071 		if (cp->opened)
4072 			cas_clean_rings(cp);
4073 		cas_init_hw(cp, pending == CAS_RESET_ALL);
4074 #endif
4075 
4076 done:
4077 		cas_unlock_all_restore(cp, flags);
4078 		netif_device_attach(cp->dev);
4079 	}
4080 #if 1
4081 	atomic_sub(pending_all, &cp->reset_task_pending_all);
4082 	atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4083 	atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4084 	atomic_dec(&cp->reset_task_pending);
4085 #else
4086 	atomic_set(&cp->reset_task_pending, 0);
4087 #endif
4088 }
4089 
4090 static void cas_link_timer(unsigned long data)
4091 {
4092 	struct cas *cp = (struct cas *) data;
4093 	int mask, pending = 0, reset = 0;
4094 	unsigned long flags;
4095 
4096 	if (link_transition_timeout != 0 &&
4097 	    cp->link_transition_jiffies_valid &&
4098 	    ((jiffies - cp->link_transition_jiffies) >
4099 	      (link_transition_timeout))) {
4100 		/* One-second counter so link-down workaround doesn't
4101 		 * cause resets to occur so fast as to fool the switch
4102 		 * into thinking the link is down.
4103 		 */
4104 		cp->link_transition_jiffies_valid = 0;
4105 	}
4106 
4107 	if (!cp->hw_running)
4108 		return;
4109 
4110 	spin_lock_irqsave(&cp->lock, flags);
4111 	cas_lock_tx(cp);
4112 	cas_entropy_gather(cp);
4113 
4114 	/* If the link task is still pending, we just
4115 	 * reschedule the link timer
4116 	 */
4117 #if 1
4118 	if (atomic_read(&cp->reset_task_pending_all) ||
4119 	    atomic_read(&cp->reset_task_pending_spare) ||
4120 	    atomic_read(&cp->reset_task_pending_mtu))
4121 		goto done;
4122 #else
4123 	if (atomic_read(&cp->reset_task_pending))
4124 		goto done;
4125 #endif
4126 
4127 	/* check for rx cleaning */
4128 	if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4129 		int i, rmask;
4130 
4131 		for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4132 			rmask = CAS_FLAG_RXD_POST(i);
4133 			if ((mask & rmask) == 0)
4134 				continue;
4135 
4136 			/* post_rxds will do a mod_timer */
4137 			if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4138 				pending = 1;
4139 				continue;
4140 			}
4141 			cp->cas_flags &= ~rmask;
4142 		}
4143 	}
4144 
4145 	if (CAS_PHY_MII(cp->phy_type)) {
4146 		u16 bmsr;
4147 		cas_mif_poll(cp, 0);
4148 		bmsr = cas_phy_read(cp, MII_BMSR);
4149 		/* WTZ: Solaris driver reads this twice, but that
4150 		 * may be due to the PCS case and the use of a
4151 		 * common implementation. Read it twice here to be
4152 		 * safe.
4153 		 */
4154 		bmsr = cas_phy_read(cp, MII_BMSR);
4155 		cas_mif_poll(cp, 1);
4156 		readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4157 		reset = cas_mii_link_check(cp, bmsr);
4158 	} else {
4159 		reset = cas_pcs_link_check(cp);
4160 	}
4161 
4162 	if (reset)
4163 		goto done;
4164 
4165 	/* check for tx state machine confusion */
4166 	if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4167 		u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4168 		u32 wptr, rptr;
4169 		int tlm  = CAS_VAL(MAC_SM_TLM, val);
4170 
4171 		if (((tlm == 0x5) || (tlm == 0x3)) &&
4172 		    (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4173 			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4174 				     "tx err: MAC_STATE[%08x]\n", val);
4175 			reset = 1;
4176 			goto done;
4177 		}
4178 
4179 		val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4180 		wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4181 		rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4182 		if ((val == 0) && (wptr != rptr)) {
4183 			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4184 				     "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4185 				     val, wptr, rptr);
4186 			reset = 1;
4187 		}
4188 
4189 		if (reset)
4190 			cas_hard_reset(cp);
4191 	}
4192 
4193 done:
4194 	if (reset) {
4195 #if 1
4196 		atomic_inc(&cp->reset_task_pending);
4197 		atomic_inc(&cp->reset_task_pending_all);
4198 		schedule_work(&cp->reset_task);
4199 #else
4200 		atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4201 		pr_err("reset called in cas_link_timer\n");
4202 		schedule_work(&cp->reset_task);
4203 #endif
4204 	}
4205 
4206 	if (!pending)
4207 		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4208 	cas_unlock_tx(cp);
4209 	spin_unlock_irqrestore(&cp->lock, flags);
4210 }
4211 
4212 /* tiny buffers are used to avoid target abort issues with
4213  * older cassini's
4214  */
4215 static void cas_tx_tiny_free(struct cas *cp)
4216 {
4217 	struct pci_dev *pdev = cp->pdev;
4218 	int i;
4219 
4220 	for (i = 0; i < N_TX_RINGS; i++) {
4221 		if (!cp->tx_tiny_bufs[i])
4222 			continue;
4223 
4224 		pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4225 				    cp->tx_tiny_bufs[i],
4226 				    cp->tx_tiny_dvma[i]);
4227 		cp->tx_tiny_bufs[i] = NULL;
4228 	}
4229 }
4230 
4231 static int cas_tx_tiny_alloc(struct cas *cp)
4232 {
4233 	struct pci_dev *pdev = cp->pdev;
4234 	int i;
4235 
4236 	for (i = 0; i < N_TX_RINGS; i++) {
4237 		cp->tx_tiny_bufs[i] =
4238 			pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4239 					     &cp->tx_tiny_dvma[i]);
4240 		if (!cp->tx_tiny_bufs[i]) {
4241 			cas_tx_tiny_free(cp);
4242 			return -1;
4243 		}
4244 	}
4245 	return 0;
4246 }
4247 
4248 
4249 static int cas_open(struct net_device *dev)
4250 {
4251 	struct cas *cp = netdev_priv(dev);
4252 	int hw_was_up, err;
4253 	unsigned long flags;
4254 
4255 	mutex_lock(&cp->pm_mutex);
4256 
4257 	hw_was_up = cp->hw_running;
4258 
4259 	/* The power-management mutex protects the hw_running
4260 	 * etc. state so it is safe to do this bit without cp->lock
4261 	 */
4262 	if (!cp->hw_running) {
4263 		/* Reset the chip */
4264 		cas_lock_all_save(cp, flags);
4265 		/* We set the second arg to cas_reset to zero
4266 		 * because cas_init_hw below will have its second
4267 		 * argument set to non-zero, which will force
4268 		 * autonegotiation to start.
4269 		 */
4270 		cas_reset(cp, 0);
4271 		cp->hw_running = 1;
4272 		cas_unlock_all_restore(cp, flags);
4273 	}
4274 
4275 	err = -ENOMEM;
4276 	if (cas_tx_tiny_alloc(cp) < 0)
4277 		goto err_unlock;
4278 
4279 	/* alloc rx descriptors */
4280 	if (cas_alloc_rxds(cp) < 0)
4281 		goto err_tx_tiny;
4282 
4283 	/* allocate spares */
4284 	cas_spare_init(cp);
4285 	cas_spare_recover(cp, GFP_KERNEL);
4286 
4287 	/* We can now request the interrupt as we know it's masked
4288 	 * on the controller. cassini+ has up to 4 interrupts
4289 	 * that can be used, but you need to do explicit pci interrupt
4290 	 * mapping to expose them
4291 	 */
4292 	if (request_irq(cp->pdev->irq, cas_interrupt,
4293 			IRQF_SHARED, dev->name, (void *) dev)) {
4294 		netdev_err(cp->dev, "failed to request irq !\n");
4295 		err = -EAGAIN;
4296 		goto err_spare;
4297 	}
4298 
4299 #ifdef USE_NAPI
4300 	napi_enable(&cp->napi);
4301 #endif
4302 	/* init hw */
4303 	cas_lock_all_save(cp, flags);
4304 	cas_clean_rings(cp);
4305 	cas_init_hw(cp, !hw_was_up);
4306 	cp->opened = 1;
4307 	cas_unlock_all_restore(cp, flags);
4308 
4309 	netif_start_queue(dev);
4310 	mutex_unlock(&cp->pm_mutex);
4311 	return 0;
4312 
4313 err_spare:
4314 	cas_spare_free(cp);
4315 	cas_free_rxds(cp);
4316 err_tx_tiny:
4317 	cas_tx_tiny_free(cp);
4318 err_unlock:
4319 	mutex_unlock(&cp->pm_mutex);
4320 	return err;
4321 }
4322 
4323 static int cas_close(struct net_device *dev)
4324 {
4325 	unsigned long flags;
4326 	struct cas *cp = netdev_priv(dev);
4327 
4328 #ifdef USE_NAPI
4329 	napi_disable(&cp->napi);
4330 #endif
4331 	/* Make sure we don't get distracted by suspend/resume */
4332 	mutex_lock(&cp->pm_mutex);
4333 
4334 	netif_stop_queue(dev);
4335 
4336 	/* Stop traffic, mark us closed */
4337 	cas_lock_all_save(cp, flags);
4338 	cp->opened = 0;
4339 	cas_reset(cp, 0);
4340 	cas_phy_init(cp);
4341 	cas_begin_auto_negotiation(cp, NULL);
4342 	cas_clean_rings(cp);
4343 	cas_unlock_all_restore(cp, flags);
4344 
4345 	free_irq(cp->pdev->irq, (void *) dev);
4346 	cas_spare_free(cp);
4347 	cas_free_rxds(cp);
4348 	cas_tx_tiny_free(cp);
4349 	mutex_unlock(&cp->pm_mutex);
4350 	return 0;
4351 }
4352 
4353 static struct {
4354 	const char name[ETH_GSTRING_LEN];
4355 } ethtool_cassini_statnames[] = {
4356 	{"collisions"},
4357 	{"rx_bytes"},
4358 	{"rx_crc_errors"},
4359 	{"rx_dropped"},
4360 	{"rx_errors"},
4361 	{"rx_fifo_errors"},
4362 	{"rx_frame_errors"},
4363 	{"rx_length_errors"},
4364 	{"rx_over_errors"},
4365 	{"rx_packets"},
4366 	{"tx_aborted_errors"},
4367 	{"tx_bytes"},
4368 	{"tx_dropped"},
4369 	{"tx_errors"},
4370 	{"tx_fifo_errors"},
4371 	{"tx_packets"}
4372 };
4373 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4374 
4375 static struct {
4376 	const int offsets;	/* neg. values for 2nd arg to cas_read_phy */
4377 } ethtool_register_table[] = {
4378 	{-MII_BMSR},
4379 	{-MII_BMCR},
4380 	{REG_CAWR},
4381 	{REG_INF_BURST},
4382 	{REG_BIM_CFG},
4383 	{REG_RX_CFG},
4384 	{REG_HP_CFG},
4385 	{REG_MAC_TX_CFG},
4386 	{REG_MAC_RX_CFG},
4387 	{REG_MAC_CTRL_CFG},
4388 	{REG_MAC_XIF_CFG},
4389 	{REG_MIF_CFG},
4390 	{REG_PCS_CFG},
4391 	{REG_SATURN_PCFG},
4392 	{REG_PCS_MII_STATUS},
4393 	{REG_PCS_STATE_MACHINE},
4394 	{REG_MAC_COLL_EXCESS},
4395 	{REG_MAC_COLL_LATE}
4396 };
4397 #define CAS_REG_LEN 	ARRAY_SIZE(ethtool_register_table)
4398 #define CAS_MAX_REGS 	(sizeof (u32)*CAS_REG_LEN)
4399 
4400 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4401 {
4402 	u8 *p;
4403 	int i;
4404 	unsigned long flags;
4405 
4406 	spin_lock_irqsave(&cp->lock, flags);
4407 	for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4408 		u16 hval;
4409 		u32 val;
4410 		if (ethtool_register_table[i].offsets < 0) {
4411 			hval = cas_phy_read(cp,
4412 				    -ethtool_register_table[i].offsets);
4413 			val = hval;
4414 		} else {
4415 			val= readl(cp->regs+ethtool_register_table[i].offsets);
4416 		}
4417 		memcpy(p, (u8 *)&val, sizeof(u32));
4418 	}
4419 	spin_unlock_irqrestore(&cp->lock, flags);
4420 }
4421 
4422 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4423 {
4424 	struct cas *cp = netdev_priv(dev);
4425 	struct net_device_stats *stats = cp->net_stats;
4426 	unsigned long flags;
4427 	int i;
4428 	unsigned long tmp;
4429 
4430 	/* we collate all of the stats into net_stats[N_TX_RING] */
4431 	if (!cp->hw_running)
4432 		return stats + N_TX_RINGS;
4433 
4434 	/* collect outstanding stats */
4435 	/* WTZ: the Cassini spec gives these as 16 bit counters but
4436 	 * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4437 	 * in case the chip somehow puts any garbage in the other bits.
4438 	 * Also, counter usage didn't seem to mach what Adrian did
4439 	 * in the parts of the code that set these quantities. Made
4440 	 * that consistent.
4441 	 */
4442 	spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4443 	stats[N_TX_RINGS].rx_crc_errors +=
4444 	  readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4445 	stats[N_TX_RINGS].rx_frame_errors +=
4446 		readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4447 	stats[N_TX_RINGS].rx_length_errors +=
4448 		readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4449 #if 1
4450 	tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4451 		(readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4452 	stats[N_TX_RINGS].tx_aborted_errors += tmp;
4453 	stats[N_TX_RINGS].collisions +=
4454 	  tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4455 #else
4456 	stats[N_TX_RINGS].tx_aborted_errors +=
4457 		readl(cp->regs + REG_MAC_COLL_EXCESS);
4458 	stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4459 		readl(cp->regs + REG_MAC_COLL_LATE);
4460 #endif
4461 	cas_clear_mac_err(cp);
4462 
4463 	/* saved bits that are unique to ring 0 */
4464 	spin_lock(&cp->stat_lock[0]);
4465 	stats[N_TX_RINGS].collisions        += stats[0].collisions;
4466 	stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4467 	stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4468 	stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4469 	stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4470 	stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4471 	spin_unlock(&cp->stat_lock[0]);
4472 
4473 	for (i = 0; i < N_TX_RINGS; i++) {
4474 		spin_lock(&cp->stat_lock[i]);
4475 		stats[N_TX_RINGS].rx_length_errors +=
4476 			stats[i].rx_length_errors;
4477 		stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4478 		stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4479 		stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4480 		stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4481 		stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4482 		stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4483 		stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4484 		stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4485 		stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4486 		memset(stats + i, 0, sizeof(struct net_device_stats));
4487 		spin_unlock(&cp->stat_lock[i]);
4488 	}
4489 	spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4490 	return stats + N_TX_RINGS;
4491 }
4492 
4493 
4494 static void cas_set_multicast(struct net_device *dev)
4495 {
4496 	struct cas *cp = netdev_priv(dev);
4497 	u32 rxcfg, rxcfg_new;
4498 	unsigned long flags;
4499 	int limit = STOP_TRIES;
4500 
4501 	if (!cp->hw_running)
4502 		return;
4503 
4504 	spin_lock_irqsave(&cp->lock, flags);
4505 	rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4506 
4507 	/* disable RX MAC and wait for completion */
4508 	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4509 	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4510 		if (!limit--)
4511 			break;
4512 		udelay(10);
4513 	}
4514 
4515 	/* disable hash filter and wait for completion */
4516 	limit = STOP_TRIES;
4517 	rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4518 	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4519 	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4520 		if (!limit--)
4521 			break;
4522 		udelay(10);
4523 	}
4524 
4525 	/* program hash filters */
4526 	cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4527 	rxcfg |= rxcfg_new;
4528 	writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4529 	spin_unlock_irqrestore(&cp->lock, flags);
4530 }
4531 
4532 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4533 {
4534 	struct cas *cp = netdev_priv(dev);
4535 	strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4536 	strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4537 	strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4538 	info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4539 		cp->casreg_len : CAS_MAX_REGS;
4540 	info->n_stats = CAS_NUM_STAT_KEYS;
4541 }
4542 
4543 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4544 {
4545 	struct cas *cp = netdev_priv(dev);
4546 	u16 bmcr;
4547 	int full_duplex, speed, pause;
4548 	unsigned long flags;
4549 	enum link_state linkstate = link_up;
4550 
4551 	cmd->advertising = 0;
4552 	cmd->supported = SUPPORTED_Autoneg;
4553 	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4554 		cmd->supported |= SUPPORTED_1000baseT_Full;
4555 		cmd->advertising |= ADVERTISED_1000baseT_Full;
4556 	}
4557 
4558 	/* Record PHY settings if HW is on. */
4559 	spin_lock_irqsave(&cp->lock, flags);
4560 	bmcr = 0;
4561 	linkstate = cp->lstate;
4562 	if (CAS_PHY_MII(cp->phy_type)) {
4563 		cmd->port = PORT_MII;
4564 		cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4565 			XCVR_INTERNAL : XCVR_EXTERNAL;
4566 		cmd->phy_address = cp->phy_addr;
4567 		cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4568 			ADVERTISED_10baseT_Half |
4569 			ADVERTISED_10baseT_Full |
4570 			ADVERTISED_100baseT_Half |
4571 			ADVERTISED_100baseT_Full;
4572 
4573 		cmd->supported |=
4574 			(SUPPORTED_10baseT_Half |
4575 			 SUPPORTED_10baseT_Full |
4576 			 SUPPORTED_100baseT_Half |
4577 			 SUPPORTED_100baseT_Full |
4578 			 SUPPORTED_TP | SUPPORTED_MII);
4579 
4580 		if (cp->hw_running) {
4581 			cas_mif_poll(cp, 0);
4582 			bmcr = cas_phy_read(cp, MII_BMCR);
4583 			cas_read_mii_link_mode(cp, &full_duplex,
4584 					       &speed, &pause);
4585 			cas_mif_poll(cp, 1);
4586 		}
4587 
4588 	} else {
4589 		cmd->port = PORT_FIBRE;
4590 		cmd->transceiver = XCVR_INTERNAL;
4591 		cmd->phy_address = 0;
4592 		cmd->supported   |= SUPPORTED_FIBRE;
4593 		cmd->advertising |= ADVERTISED_FIBRE;
4594 
4595 		if (cp->hw_running) {
4596 			/* pcs uses the same bits as mii */
4597 			bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4598 			cas_read_pcs_link_mode(cp, &full_duplex,
4599 					       &speed, &pause);
4600 		}
4601 	}
4602 	spin_unlock_irqrestore(&cp->lock, flags);
4603 
4604 	if (bmcr & BMCR_ANENABLE) {
4605 		cmd->advertising |= ADVERTISED_Autoneg;
4606 		cmd->autoneg = AUTONEG_ENABLE;
4607 		ethtool_cmd_speed_set(cmd, ((speed == 10) ?
4608 					    SPEED_10 :
4609 					    ((speed == 1000) ?
4610 					     SPEED_1000 : SPEED_100)));
4611 		cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4612 	} else {
4613 		cmd->autoneg = AUTONEG_DISABLE;
4614 		ethtool_cmd_speed_set(cmd, ((bmcr & CAS_BMCR_SPEED1000) ?
4615 					    SPEED_1000 :
4616 					    ((bmcr & BMCR_SPEED100) ?
4617 					     SPEED_100 : SPEED_10)));
4618 		cmd->duplex =
4619 			(bmcr & BMCR_FULLDPLX) ?
4620 			DUPLEX_FULL : DUPLEX_HALF;
4621 	}
4622 	if (linkstate != link_up) {
4623 		/* Force these to "unknown" if the link is not up and
4624 		 * autonogotiation in enabled. We can set the link
4625 		 * speed to 0, but not cmd->duplex,
4626 		 * because its legal values are 0 and 1.  Ethtool will
4627 		 * print the value reported in parentheses after the
4628 		 * word "Unknown" for unrecognized values.
4629 		 *
4630 		 * If in forced mode, we report the speed and duplex
4631 		 * settings that we configured.
4632 		 */
4633 		if (cp->link_cntl & BMCR_ANENABLE) {
4634 			ethtool_cmd_speed_set(cmd, 0);
4635 			cmd->duplex = 0xff;
4636 		} else {
4637 			ethtool_cmd_speed_set(cmd, SPEED_10);
4638 			if (cp->link_cntl & BMCR_SPEED100) {
4639 				ethtool_cmd_speed_set(cmd, SPEED_100);
4640 			} else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4641 				ethtool_cmd_speed_set(cmd, SPEED_1000);
4642 			}
4643 			cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4644 				DUPLEX_FULL : DUPLEX_HALF;
4645 		}
4646 	}
4647 	return 0;
4648 }
4649 
4650 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4651 {
4652 	struct cas *cp = netdev_priv(dev);
4653 	unsigned long flags;
4654 	u32 speed = ethtool_cmd_speed(cmd);
4655 
4656 	/* Verify the settings we care about. */
4657 	if (cmd->autoneg != AUTONEG_ENABLE &&
4658 	    cmd->autoneg != AUTONEG_DISABLE)
4659 		return -EINVAL;
4660 
4661 	if (cmd->autoneg == AUTONEG_DISABLE &&
4662 	    ((speed != SPEED_1000 &&
4663 	      speed != SPEED_100 &&
4664 	      speed != SPEED_10) ||
4665 	     (cmd->duplex != DUPLEX_HALF &&
4666 	      cmd->duplex != DUPLEX_FULL)))
4667 		return -EINVAL;
4668 
4669 	/* Apply settings and restart link process. */
4670 	spin_lock_irqsave(&cp->lock, flags);
4671 	cas_begin_auto_negotiation(cp, cmd);
4672 	spin_unlock_irqrestore(&cp->lock, flags);
4673 	return 0;
4674 }
4675 
4676 static int cas_nway_reset(struct net_device *dev)
4677 {
4678 	struct cas *cp = netdev_priv(dev);
4679 	unsigned long flags;
4680 
4681 	if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4682 		return -EINVAL;
4683 
4684 	/* Restart link process. */
4685 	spin_lock_irqsave(&cp->lock, flags);
4686 	cas_begin_auto_negotiation(cp, NULL);
4687 	spin_unlock_irqrestore(&cp->lock, flags);
4688 
4689 	return 0;
4690 }
4691 
4692 static u32 cas_get_link(struct net_device *dev)
4693 {
4694 	struct cas *cp = netdev_priv(dev);
4695 	return cp->lstate == link_up;
4696 }
4697 
4698 static u32 cas_get_msglevel(struct net_device *dev)
4699 {
4700 	struct cas *cp = netdev_priv(dev);
4701 	return cp->msg_enable;
4702 }
4703 
4704 static void cas_set_msglevel(struct net_device *dev, u32 value)
4705 {
4706 	struct cas *cp = netdev_priv(dev);
4707 	cp->msg_enable = value;
4708 }
4709 
4710 static int cas_get_regs_len(struct net_device *dev)
4711 {
4712 	struct cas *cp = netdev_priv(dev);
4713 	return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4714 }
4715 
4716 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4717 			     void *p)
4718 {
4719 	struct cas *cp = netdev_priv(dev);
4720 	regs->version = 0;
4721 	/* cas_read_regs handles locks (cp->lock).  */
4722 	cas_read_regs(cp, p, regs->len / sizeof(u32));
4723 }
4724 
4725 static int cas_get_sset_count(struct net_device *dev, int sset)
4726 {
4727 	switch (sset) {
4728 	case ETH_SS_STATS:
4729 		return CAS_NUM_STAT_KEYS;
4730 	default:
4731 		return -EOPNOTSUPP;
4732 	}
4733 }
4734 
4735 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4736 {
4737 	 memcpy(data, &ethtool_cassini_statnames,
4738 					 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4739 }
4740 
4741 static void cas_get_ethtool_stats(struct net_device *dev,
4742 				      struct ethtool_stats *estats, u64 *data)
4743 {
4744 	struct cas *cp = netdev_priv(dev);
4745 	struct net_device_stats *stats = cas_get_stats(cp->dev);
4746 	int i = 0;
4747 	data[i++] = stats->collisions;
4748 	data[i++] = stats->rx_bytes;
4749 	data[i++] = stats->rx_crc_errors;
4750 	data[i++] = stats->rx_dropped;
4751 	data[i++] = stats->rx_errors;
4752 	data[i++] = stats->rx_fifo_errors;
4753 	data[i++] = stats->rx_frame_errors;
4754 	data[i++] = stats->rx_length_errors;
4755 	data[i++] = stats->rx_over_errors;
4756 	data[i++] = stats->rx_packets;
4757 	data[i++] = stats->tx_aborted_errors;
4758 	data[i++] = stats->tx_bytes;
4759 	data[i++] = stats->tx_dropped;
4760 	data[i++] = stats->tx_errors;
4761 	data[i++] = stats->tx_fifo_errors;
4762 	data[i++] = stats->tx_packets;
4763 	BUG_ON(i != CAS_NUM_STAT_KEYS);
4764 }
4765 
4766 static const struct ethtool_ops cas_ethtool_ops = {
4767 	.get_drvinfo		= cas_get_drvinfo,
4768 	.get_settings		= cas_get_settings,
4769 	.set_settings		= cas_set_settings,
4770 	.nway_reset		= cas_nway_reset,
4771 	.get_link		= cas_get_link,
4772 	.get_msglevel		= cas_get_msglevel,
4773 	.set_msglevel		= cas_set_msglevel,
4774 	.get_regs_len		= cas_get_regs_len,
4775 	.get_regs		= cas_get_regs,
4776 	.get_sset_count		= cas_get_sset_count,
4777 	.get_strings		= cas_get_strings,
4778 	.get_ethtool_stats	= cas_get_ethtool_stats,
4779 };
4780 
4781 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4782 {
4783 	struct cas *cp = netdev_priv(dev);
4784 	struct mii_ioctl_data *data = if_mii(ifr);
4785 	unsigned long flags;
4786 	int rc = -EOPNOTSUPP;
4787 
4788 	/* Hold the PM mutex while doing ioctl's or we may collide
4789 	 * with open/close and power management and oops.
4790 	 */
4791 	mutex_lock(&cp->pm_mutex);
4792 	switch (cmd) {
4793 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
4794 		data->phy_id = cp->phy_addr;
4795 		/* Fallthrough... */
4796 
4797 	case SIOCGMIIREG:		/* Read MII PHY register. */
4798 		spin_lock_irqsave(&cp->lock, flags);
4799 		cas_mif_poll(cp, 0);
4800 		data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4801 		cas_mif_poll(cp, 1);
4802 		spin_unlock_irqrestore(&cp->lock, flags);
4803 		rc = 0;
4804 		break;
4805 
4806 	case SIOCSMIIREG:		/* Write MII PHY register. */
4807 		spin_lock_irqsave(&cp->lock, flags);
4808 		cas_mif_poll(cp, 0);
4809 		rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4810 		cas_mif_poll(cp, 1);
4811 		spin_unlock_irqrestore(&cp->lock, flags);
4812 		break;
4813 	default:
4814 		break;
4815 	}
4816 
4817 	mutex_unlock(&cp->pm_mutex);
4818 	return rc;
4819 }
4820 
4821 /* When this chip sits underneath an Intel 31154 bridge, it is the
4822  * only subordinate device and we can tweak the bridge settings to
4823  * reflect that fact.
4824  */
4825 static void __devinit cas_program_bridge(struct pci_dev *cas_pdev)
4826 {
4827 	struct pci_dev *pdev = cas_pdev->bus->self;
4828 	u32 val;
4829 
4830 	if (!pdev)
4831 		return;
4832 
4833 	if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4834 		return;
4835 
4836 	/* Clear bit 10 (Bus Parking Control) in the Secondary
4837 	 * Arbiter Control/Status Register which lives at offset
4838 	 * 0x41.  Using a 32-bit word read/modify/write at 0x40
4839 	 * is much simpler so that's how we do this.
4840 	 */
4841 	pci_read_config_dword(pdev, 0x40, &val);
4842 	val &= ~0x00040000;
4843 	pci_write_config_dword(pdev, 0x40, val);
4844 
4845 	/* Max out the Multi-Transaction Timer settings since
4846 	 * Cassini is the only device present.
4847 	 *
4848 	 * The register is 16-bit and lives at 0x50.  When the
4849 	 * settings are enabled, it extends the GRANT# signal
4850 	 * for a requestor after a transaction is complete.  This
4851 	 * allows the next request to run without first needing
4852 	 * to negotiate the GRANT# signal back.
4853 	 *
4854 	 * Bits 12:10 define the grant duration:
4855 	 *
4856 	 *	1	--	16 clocks
4857 	 *	2	--	32 clocks
4858 	 *	3	--	64 clocks
4859 	 *	4	--	128 clocks
4860 	 *	5	--	256 clocks
4861 	 *
4862 	 * All other values are illegal.
4863 	 *
4864 	 * Bits 09:00 define which REQ/GNT signal pairs get the
4865 	 * GRANT# signal treatment.  We set them all.
4866 	 */
4867 	pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4868 
4869 	/* The Read Prefecth Policy register is 16-bit and sits at
4870 	 * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4871 	 * enable it and max out all of the settings since only one
4872 	 * device is sitting underneath and thus bandwidth sharing is
4873 	 * not an issue.
4874 	 *
4875 	 * The register has several 3 bit fields, which indicates a
4876 	 * multiplier applied to the base amount of prefetching the
4877 	 * chip would do.  These fields are at:
4878 	 *
4879 	 *	15:13	---	ReRead Primary Bus
4880 	 *	12:10	---	FirstRead Primary Bus
4881 	 *	09:07	---	ReRead Secondary Bus
4882 	 *	06:04	---	FirstRead Secondary Bus
4883 	 *
4884 	 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4885 	 * get enabled on.  Bit 3 is a grouped enabler which controls
4886 	 * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4887 	 * the individual REQ/GNT pairs [2:0].
4888 	 */
4889 	pci_write_config_word(pdev, 0x52,
4890 			      (0x7 << 13) |
4891 			      (0x7 << 10) |
4892 			      (0x7 <<  7) |
4893 			      (0x7 <<  4) |
4894 			      (0xf <<  0));
4895 
4896 	/* Force cacheline size to 0x8 */
4897 	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4898 
4899 	/* Force latency timer to maximum setting so Cassini can
4900 	 * sit on the bus as long as it likes.
4901 	 */
4902 	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4903 }
4904 
4905 static const struct net_device_ops cas_netdev_ops = {
4906 	.ndo_open		= cas_open,
4907 	.ndo_stop		= cas_close,
4908 	.ndo_start_xmit		= cas_start_xmit,
4909 	.ndo_get_stats 		= cas_get_stats,
4910 	.ndo_set_rx_mode	= cas_set_multicast,
4911 	.ndo_do_ioctl		= cas_ioctl,
4912 	.ndo_tx_timeout		= cas_tx_timeout,
4913 	.ndo_change_mtu		= cas_change_mtu,
4914 	.ndo_set_mac_address	= eth_mac_addr,
4915 	.ndo_validate_addr	= eth_validate_addr,
4916 #ifdef CONFIG_NET_POLL_CONTROLLER
4917 	.ndo_poll_controller	= cas_netpoll,
4918 #endif
4919 };
4920 
4921 static int __devinit cas_init_one(struct pci_dev *pdev,
4922 				  const struct pci_device_id *ent)
4923 {
4924 	static int cas_version_printed = 0;
4925 	unsigned long casreg_len;
4926 	struct net_device *dev;
4927 	struct cas *cp;
4928 	int i, err, pci_using_dac;
4929 	u16 pci_cmd;
4930 	u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4931 
4932 	if (cas_version_printed++ == 0)
4933 		pr_info("%s", version);
4934 
4935 	err = pci_enable_device(pdev);
4936 	if (err) {
4937 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4938 		return err;
4939 	}
4940 
4941 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4942 		dev_err(&pdev->dev, "Cannot find proper PCI device "
4943 		       "base address, aborting\n");
4944 		err = -ENODEV;
4945 		goto err_out_disable_pdev;
4946 	}
4947 
4948 	dev = alloc_etherdev(sizeof(*cp));
4949 	if (!dev) {
4950 		dev_err(&pdev->dev, "Etherdev alloc failed, aborting\n");
4951 		err = -ENOMEM;
4952 		goto err_out_disable_pdev;
4953 	}
4954 	SET_NETDEV_DEV(dev, &pdev->dev);
4955 
4956 	err = pci_request_regions(pdev, dev->name);
4957 	if (err) {
4958 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4959 		goto err_out_free_netdev;
4960 	}
4961 	pci_set_master(pdev);
4962 
4963 	/* we must always turn on parity response or else parity
4964 	 * doesn't get generated properly. disable SERR/PERR as well.
4965 	 * in addition, we want to turn MWI on.
4966 	 */
4967 	pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4968 	pci_cmd &= ~PCI_COMMAND_SERR;
4969 	pci_cmd |= PCI_COMMAND_PARITY;
4970 	pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4971 	if (pci_try_set_mwi(pdev))
4972 		pr_warning("Could not enable MWI for %s\n", pci_name(pdev));
4973 
4974 	cas_program_bridge(pdev);
4975 
4976 	/*
4977 	 * On some architectures, the default cache line size set
4978 	 * by pci_try_set_mwi reduces perforamnce.  We have to increase
4979 	 * it for this case.  To start, we'll print some configuration
4980 	 * data.
4981 	 */
4982 #if 1
4983 	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4984 			     &orig_cacheline_size);
4985 	if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4986 		cas_cacheline_size =
4987 			(CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4988 			CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4989 		if (pci_write_config_byte(pdev,
4990 					  PCI_CACHE_LINE_SIZE,
4991 					  cas_cacheline_size)) {
4992 			dev_err(&pdev->dev, "Could not set PCI cache "
4993 			       "line size\n");
4994 			goto err_write_cacheline;
4995 		}
4996 	}
4997 #endif
4998 
4999 
5000 	/* Configure DMA attributes. */
5001 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5002 		pci_using_dac = 1;
5003 		err = pci_set_consistent_dma_mask(pdev,
5004 						  DMA_BIT_MASK(64));
5005 		if (err < 0) {
5006 			dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5007 			       "for consistent allocations\n");
5008 			goto err_out_free_res;
5009 		}
5010 
5011 	} else {
5012 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5013 		if (err) {
5014 			dev_err(&pdev->dev, "No usable DMA configuration, "
5015 			       "aborting\n");
5016 			goto err_out_free_res;
5017 		}
5018 		pci_using_dac = 0;
5019 	}
5020 
5021 	casreg_len = pci_resource_len(pdev, 0);
5022 
5023 	cp = netdev_priv(dev);
5024 	cp->pdev = pdev;
5025 #if 1
5026 	/* A value of 0 indicates we never explicitly set it */
5027 	cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5028 #endif
5029 	cp->dev = dev;
5030 	cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5031 	  cassini_debug;
5032 
5033 #if defined(CONFIG_SPARC)
5034 	cp->of_node = pci_device_to_OF_node(pdev);
5035 #endif
5036 
5037 	cp->link_transition = LINK_TRANSITION_UNKNOWN;
5038 	cp->link_transition_jiffies_valid = 0;
5039 
5040 	spin_lock_init(&cp->lock);
5041 	spin_lock_init(&cp->rx_inuse_lock);
5042 	spin_lock_init(&cp->rx_spare_lock);
5043 	for (i = 0; i < N_TX_RINGS; i++) {
5044 		spin_lock_init(&cp->stat_lock[i]);
5045 		spin_lock_init(&cp->tx_lock[i]);
5046 	}
5047 	spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5048 	mutex_init(&cp->pm_mutex);
5049 
5050 	init_timer(&cp->link_timer);
5051 	cp->link_timer.function = cas_link_timer;
5052 	cp->link_timer.data = (unsigned long) cp;
5053 
5054 #if 1
5055 	/* Just in case the implementation of atomic operations
5056 	 * change so that an explicit initialization is necessary.
5057 	 */
5058 	atomic_set(&cp->reset_task_pending, 0);
5059 	atomic_set(&cp->reset_task_pending_all, 0);
5060 	atomic_set(&cp->reset_task_pending_spare, 0);
5061 	atomic_set(&cp->reset_task_pending_mtu, 0);
5062 #endif
5063 	INIT_WORK(&cp->reset_task, cas_reset_task);
5064 
5065 	/* Default link parameters */
5066 	if (link_mode >= 0 && link_mode < 6)
5067 		cp->link_cntl = link_modes[link_mode];
5068 	else
5069 		cp->link_cntl = BMCR_ANENABLE;
5070 	cp->lstate = link_down;
5071 	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5072 	netif_carrier_off(cp->dev);
5073 	cp->timer_ticks = 0;
5074 
5075 	/* give us access to cassini registers */
5076 	cp->regs = pci_iomap(pdev, 0, casreg_len);
5077 	if (!cp->regs) {
5078 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5079 		goto err_out_free_res;
5080 	}
5081 	cp->casreg_len = casreg_len;
5082 
5083 	pci_save_state(pdev);
5084 	cas_check_pci_invariants(cp);
5085 	cas_hard_reset(cp);
5086 	cas_reset(cp, 0);
5087 	if (cas_check_invariants(cp))
5088 		goto err_out_iounmap;
5089 	if (cp->cas_flags & CAS_FLAG_SATURN)
5090 		if (cas_saturn_firmware_init(cp))
5091 			goto err_out_iounmap;
5092 
5093 	cp->init_block = (struct cas_init_block *)
5094 		pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5095 				     &cp->block_dvma);
5096 	if (!cp->init_block) {
5097 		dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5098 		goto err_out_iounmap;
5099 	}
5100 
5101 	for (i = 0; i < N_TX_RINGS; i++)
5102 		cp->init_txds[i] = cp->init_block->txds[i];
5103 
5104 	for (i = 0; i < N_RX_DESC_RINGS; i++)
5105 		cp->init_rxds[i] = cp->init_block->rxds[i];
5106 
5107 	for (i = 0; i < N_RX_COMP_RINGS; i++)
5108 		cp->init_rxcs[i] = cp->init_block->rxcs[i];
5109 
5110 	for (i = 0; i < N_RX_FLOWS; i++)
5111 		skb_queue_head_init(&cp->rx_flows[i]);
5112 
5113 	dev->netdev_ops = &cas_netdev_ops;
5114 	dev->ethtool_ops = &cas_ethtool_ops;
5115 	dev->watchdog_timeo = CAS_TX_TIMEOUT;
5116 
5117 #ifdef USE_NAPI
5118 	netif_napi_add(dev, &cp->napi, cas_poll, 64);
5119 #endif
5120 	dev->irq = pdev->irq;
5121 	dev->dma = 0;
5122 
5123 	/* Cassini features. */
5124 	if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5125 		dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5126 
5127 	if (pci_using_dac)
5128 		dev->features |= NETIF_F_HIGHDMA;
5129 
5130 	if (register_netdev(dev)) {
5131 		dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5132 		goto err_out_free_consistent;
5133 	}
5134 
5135 	i = readl(cp->regs + REG_BIM_CFG);
5136 	netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5137 		    (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5138 		    (i & BIM_CFG_32BIT) ? "32" : "64",
5139 		    (i & BIM_CFG_66MHZ) ? "66" : "33",
5140 		    (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5141 		    dev->dev_addr);
5142 
5143 	pci_set_drvdata(pdev, dev);
5144 	cp->hw_running = 1;
5145 	cas_entropy_reset(cp);
5146 	cas_phy_init(cp);
5147 	cas_begin_auto_negotiation(cp, NULL);
5148 	return 0;
5149 
5150 err_out_free_consistent:
5151 	pci_free_consistent(pdev, sizeof(struct cas_init_block),
5152 			    cp->init_block, cp->block_dvma);
5153 
5154 err_out_iounmap:
5155 	mutex_lock(&cp->pm_mutex);
5156 	if (cp->hw_running)
5157 		cas_shutdown(cp);
5158 	mutex_unlock(&cp->pm_mutex);
5159 
5160 	pci_iounmap(pdev, cp->regs);
5161 
5162 
5163 err_out_free_res:
5164 	pci_release_regions(pdev);
5165 
5166 err_write_cacheline:
5167 	/* Try to restore it in case the error occurred after we
5168 	 * set it.
5169 	 */
5170 	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5171 
5172 err_out_free_netdev:
5173 	free_netdev(dev);
5174 
5175 err_out_disable_pdev:
5176 	pci_disable_device(pdev);
5177 	pci_set_drvdata(pdev, NULL);
5178 	return -ENODEV;
5179 }
5180 
5181 static void __devexit cas_remove_one(struct pci_dev *pdev)
5182 {
5183 	struct net_device *dev = pci_get_drvdata(pdev);
5184 	struct cas *cp;
5185 	if (!dev)
5186 		return;
5187 
5188 	cp = netdev_priv(dev);
5189 	unregister_netdev(dev);
5190 
5191 	if (cp->fw_data)
5192 		vfree(cp->fw_data);
5193 
5194 	mutex_lock(&cp->pm_mutex);
5195 	cancel_work_sync(&cp->reset_task);
5196 	if (cp->hw_running)
5197 		cas_shutdown(cp);
5198 	mutex_unlock(&cp->pm_mutex);
5199 
5200 #if 1
5201 	if (cp->orig_cacheline_size) {
5202 		/* Restore the cache line size if we had modified
5203 		 * it.
5204 		 */
5205 		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5206 				      cp->orig_cacheline_size);
5207 	}
5208 #endif
5209 	pci_free_consistent(pdev, sizeof(struct cas_init_block),
5210 			    cp->init_block, cp->block_dvma);
5211 	pci_iounmap(pdev, cp->regs);
5212 	free_netdev(dev);
5213 	pci_release_regions(pdev);
5214 	pci_disable_device(pdev);
5215 	pci_set_drvdata(pdev, NULL);
5216 }
5217 
5218 #ifdef CONFIG_PM
5219 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5220 {
5221 	struct net_device *dev = pci_get_drvdata(pdev);
5222 	struct cas *cp = netdev_priv(dev);
5223 	unsigned long flags;
5224 
5225 	mutex_lock(&cp->pm_mutex);
5226 
5227 	/* If the driver is opened, we stop the DMA */
5228 	if (cp->opened) {
5229 		netif_device_detach(dev);
5230 
5231 		cas_lock_all_save(cp, flags);
5232 
5233 		/* We can set the second arg of cas_reset to 0
5234 		 * because on resume, we'll call cas_init_hw with
5235 		 * its second arg set so that autonegotiation is
5236 		 * restarted.
5237 		 */
5238 		cas_reset(cp, 0);
5239 		cas_clean_rings(cp);
5240 		cas_unlock_all_restore(cp, flags);
5241 	}
5242 
5243 	if (cp->hw_running)
5244 		cas_shutdown(cp);
5245 	mutex_unlock(&cp->pm_mutex);
5246 
5247 	return 0;
5248 }
5249 
5250 static int cas_resume(struct pci_dev *pdev)
5251 {
5252 	struct net_device *dev = pci_get_drvdata(pdev);
5253 	struct cas *cp = netdev_priv(dev);
5254 
5255 	netdev_info(dev, "resuming\n");
5256 
5257 	mutex_lock(&cp->pm_mutex);
5258 	cas_hard_reset(cp);
5259 	if (cp->opened) {
5260 		unsigned long flags;
5261 		cas_lock_all_save(cp, flags);
5262 		cas_reset(cp, 0);
5263 		cp->hw_running = 1;
5264 		cas_clean_rings(cp);
5265 		cas_init_hw(cp, 1);
5266 		cas_unlock_all_restore(cp, flags);
5267 
5268 		netif_device_attach(dev);
5269 	}
5270 	mutex_unlock(&cp->pm_mutex);
5271 	return 0;
5272 }
5273 #endif /* CONFIG_PM */
5274 
5275 static struct pci_driver cas_driver = {
5276 	.name		= DRV_MODULE_NAME,
5277 	.id_table	= cas_pci_tbl,
5278 	.probe		= cas_init_one,
5279 	.remove		= __devexit_p(cas_remove_one),
5280 #ifdef CONFIG_PM
5281 	.suspend	= cas_suspend,
5282 	.resume		= cas_resume
5283 #endif
5284 };
5285 
5286 static int __init cas_init(void)
5287 {
5288 	if (linkdown_timeout > 0)
5289 		link_transition_timeout = linkdown_timeout * HZ;
5290 	else
5291 		link_transition_timeout = 0;
5292 
5293 	return pci_register_driver(&cas_driver);
5294 }
5295 
5296 static void __exit cas_cleanup(void)
5297 {
5298 	pci_unregister_driver(&cas_driver);
5299 }
5300 
5301 module_init(cas_init);
5302 module_exit(cas_cleanup);
5303