1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver. 2 * 3 * Copyright (C) 2004 Sun Microsystems Inc. 4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation; either version 2 of the 9 * License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 19 * 02111-1307, USA. 20 * 21 * This driver uses the sungem driver (c) David Miller 22 * (davem@redhat.com) as its basis. 23 * 24 * The cassini chip has a number of features that distinguish it from 25 * the gem chip: 26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or 27 * load balancing (non-VLAN mode) 28 * batching of multiple packets 29 * multiple CPU dispatching 30 * page-based RX descriptor engine with separate completion rings 31 * Gigabit support (GMII and PCS interface) 32 * MIF link up/down detection works 33 * 34 * RX is handled by page sized buffers that are attached as fragments to 35 * the skb. here's what's done: 36 * -- driver allocates pages at a time and keeps reference counts 37 * on them. 38 * -- the upper protocol layers assume that the header is in the skb 39 * itself. as a result, cassini will copy a small amount (64 bytes) 40 * to make them happy. 41 * -- driver appends the rest of the data pages as frags to skbuffs 42 * and increments the reference count 43 * -- on page reclamation, the driver swaps the page with a spare page. 44 * if that page is still in use, it frees its reference to that page, 45 * and allocates a new page for use. otherwise, it just recycles the 46 * the page. 47 * 48 * NOTE: cassini can parse the header. however, it's not worth it 49 * as long as the network stack requires a header copy. 50 * 51 * TX has 4 queues. currently these queues are used in a round-robin 52 * fashion for load balancing. They can also be used for QoS. for that 53 * to work, however, QoS information needs to be exposed down to the driver 54 * level so that subqueues get targeted to particular transmit rings. 55 * alternatively, the queues can be configured via use of the all-purpose 56 * ioctl. 57 * 58 * RX DATA: the rx completion ring has all the info, but the rx desc 59 * ring has all of the data. RX can conceivably come in under multiple 60 * interrupts, but the INT# assignment needs to be set up properly by 61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do 62 * that. also, the two descriptor rings are designed to distinguish between 63 * encrypted and non-encrypted packets, but we use them for buffering 64 * instead. 65 * 66 * by default, the selective clear mask is set up to process rx packets. 67 */ 68 69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 70 71 #include <linux/module.h> 72 #include <linux/kernel.h> 73 #include <linux/types.h> 74 #include <linux/compiler.h> 75 #include <linux/slab.h> 76 #include <linux/delay.h> 77 #include <linux/init.h> 78 #include <linux/interrupt.h> 79 #include <linux/vmalloc.h> 80 #include <linux/ioport.h> 81 #include <linux/pci.h> 82 #include <linux/mm.h> 83 #include <linux/highmem.h> 84 #include <linux/list.h> 85 #include <linux/dma-mapping.h> 86 87 #include <linux/netdevice.h> 88 #include <linux/etherdevice.h> 89 #include <linux/skbuff.h> 90 #include <linux/ethtool.h> 91 #include <linux/crc32.h> 92 #include <linux/random.h> 93 #include <linux/mii.h> 94 #include <linux/ip.h> 95 #include <linux/tcp.h> 96 #include <linux/mutex.h> 97 #include <linux/firmware.h> 98 99 #include <net/checksum.h> 100 101 #include <linux/atomic.h> 102 #include <asm/system.h> 103 #include <asm/io.h> 104 #include <asm/byteorder.h> 105 #include <asm/uaccess.h> 106 107 #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ) 108 #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ) 109 #define CAS_NCPUS num_online_cpus() 110 111 #define cas_skb_release(x) netif_rx(x) 112 113 /* select which firmware to use */ 114 #define USE_HP_WORKAROUND 115 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */ 116 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */ 117 118 #include "cassini.h" 119 120 #define USE_TX_COMPWB /* use completion writeback registers */ 121 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */ 122 #define USE_RX_BLANK /* hw interrupt mitigation */ 123 #undef USE_ENTROPY_DEV /* don't test for entropy device */ 124 125 /* NOTE: these aren't useable unless PCI interrupts can be assigned. 126 * also, we need to make cp->lock finer-grained. 127 */ 128 #undef USE_PCI_INTB 129 #undef USE_PCI_INTC 130 #undef USE_PCI_INTD 131 #undef USE_QOS 132 133 #undef USE_VPD_DEBUG /* debug vpd information if defined */ 134 135 /* rx processing options */ 136 #define USE_PAGE_ORDER /* specify to allocate large rx pages */ 137 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */ 138 #define RX_COPY_ALWAYS 0 /* if 0, use frags */ 139 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */ 140 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */ 141 142 #define DRV_MODULE_NAME "cassini" 143 #define DRV_MODULE_VERSION "1.6" 144 #define DRV_MODULE_RELDATE "21 May 2008" 145 146 #define CAS_DEF_MSG_ENABLE \ 147 (NETIF_MSG_DRV | \ 148 NETIF_MSG_PROBE | \ 149 NETIF_MSG_LINK | \ 150 NETIF_MSG_TIMER | \ 151 NETIF_MSG_IFDOWN | \ 152 NETIF_MSG_IFUP | \ 153 NETIF_MSG_RX_ERR | \ 154 NETIF_MSG_TX_ERR) 155 156 /* length of time before we decide the hardware is borked, 157 * and dev->tx_timeout() should be called to fix the problem 158 */ 159 #define CAS_TX_TIMEOUT (HZ) 160 #define CAS_LINK_TIMEOUT (22*HZ/10) 161 #define CAS_LINK_FAST_TIMEOUT (1) 162 163 /* timeout values for state changing. these specify the number 164 * of 10us delays to be used before giving up. 165 */ 166 #define STOP_TRIES_PHY 1000 167 #define STOP_TRIES 5000 168 169 /* specify a minimum frame size to deal with some fifo issues 170 * max mtu == 2 * page size - ethernet header - 64 - swivel = 171 * 2 * page_size - 0x50 172 */ 173 #define CAS_MIN_FRAME 97 174 #define CAS_1000MB_MIN_FRAME 255 175 #define CAS_MIN_MTU 60 176 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000) 177 178 #if 1 179 /* 180 * Eliminate these and use separate atomic counters for each, to 181 * avoid a race condition. 182 */ 183 #else 184 #define CAS_RESET_MTU 1 185 #define CAS_RESET_ALL 2 186 #define CAS_RESET_SPARE 3 187 #endif 188 189 static char version[] __devinitdata = 190 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 191 192 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */ 193 static int link_mode; 194 195 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)"); 196 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver"); 197 MODULE_LICENSE("GPL"); 198 MODULE_FIRMWARE("sun/cassini.bin"); 199 module_param(cassini_debug, int, 0); 200 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value"); 201 module_param(link_mode, int, 0); 202 MODULE_PARM_DESC(link_mode, "default link mode"); 203 204 /* 205 * Work around for a PCS bug in which the link goes down due to the chip 206 * being confused and never showing a link status of "up." 207 */ 208 #define DEFAULT_LINKDOWN_TIMEOUT 5 209 /* 210 * Value in seconds, for user input. 211 */ 212 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT; 213 module_param(linkdown_timeout, int, 0); 214 MODULE_PARM_DESC(linkdown_timeout, 215 "min reset interval in sec. for PCS linkdown issue; disabled if not positive"); 216 217 /* 218 * value in 'ticks' (units used by jiffies). Set when we init the 219 * module because 'HZ' in actually a function call on some flavors of 220 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ. 221 */ 222 static int link_transition_timeout; 223 224 225 226 static u16 link_modes[] __devinitdata = { 227 BMCR_ANENABLE, /* 0 : autoneg */ 228 0, /* 1 : 10bt half duplex */ 229 BMCR_SPEED100, /* 2 : 100bt half duplex */ 230 BMCR_FULLDPLX, /* 3 : 10bt full duplex */ 231 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */ 232 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */ 233 }; 234 235 static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl) = { 236 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI, 237 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 238 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN, 239 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 240 { 0, } 241 }; 242 243 MODULE_DEVICE_TABLE(pci, cas_pci_tbl); 244 245 static void cas_set_link_modes(struct cas *cp); 246 247 static inline void cas_lock_tx(struct cas *cp) 248 { 249 int i; 250 251 for (i = 0; i < N_TX_RINGS; i++) 252 spin_lock(&cp->tx_lock[i]); 253 } 254 255 static inline void cas_lock_all(struct cas *cp) 256 { 257 spin_lock_irq(&cp->lock); 258 cas_lock_tx(cp); 259 } 260 261 /* WTZ: QA was finding deadlock problems with the previous 262 * versions after long test runs with multiple cards per machine. 263 * See if replacing cas_lock_all with safer versions helps. The 264 * symptoms QA is reporting match those we'd expect if interrupts 265 * aren't being properly restored, and we fixed a previous deadlock 266 * with similar symptoms by using save/restore versions in other 267 * places. 268 */ 269 #define cas_lock_all_save(cp, flags) \ 270 do { \ 271 struct cas *xxxcp = (cp); \ 272 spin_lock_irqsave(&xxxcp->lock, flags); \ 273 cas_lock_tx(xxxcp); \ 274 } while (0) 275 276 static inline void cas_unlock_tx(struct cas *cp) 277 { 278 int i; 279 280 for (i = N_TX_RINGS; i > 0; i--) 281 spin_unlock(&cp->tx_lock[i - 1]); 282 } 283 284 static inline void cas_unlock_all(struct cas *cp) 285 { 286 cas_unlock_tx(cp); 287 spin_unlock_irq(&cp->lock); 288 } 289 290 #define cas_unlock_all_restore(cp, flags) \ 291 do { \ 292 struct cas *xxxcp = (cp); \ 293 cas_unlock_tx(xxxcp); \ 294 spin_unlock_irqrestore(&xxxcp->lock, flags); \ 295 } while (0) 296 297 static void cas_disable_irq(struct cas *cp, const int ring) 298 { 299 /* Make sure we won't get any more interrupts */ 300 if (ring == 0) { 301 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK); 302 return; 303 } 304 305 /* disable completion interrupts and selectively mask */ 306 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 307 switch (ring) { 308 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 309 #ifdef USE_PCI_INTB 310 case 1: 311 #endif 312 #ifdef USE_PCI_INTC 313 case 2: 314 #endif 315 #ifdef USE_PCI_INTD 316 case 3: 317 #endif 318 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN, 319 cp->regs + REG_PLUS_INTRN_MASK(ring)); 320 break; 321 #endif 322 default: 323 writel(INTRN_MASK_CLEAR_ALL, cp->regs + 324 REG_PLUS_INTRN_MASK(ring)); 325 break; 326 } 327 } 328 } 329 330 static inline void cas_mask_intr(struct cas *cp) 331 { 332 int i; 333 334 for (i = 0; i < N_RX_COMP_RINGS; i++) 335 cas_disable_irq(cp, i); 336 } 337 338 static void cas_enable_irq(struct cas *cp, const int ring) 339 { 340 if (ring == 0) { /* all but TX_DONE */ 341 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK); 342 return; 343 } 344 345 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 346 switch (ring) { 347 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 348 #ifdef USE_PCI_INTB 349 case 1: 350 #endif 351 #ifdef USE_PCI_INTC 352 case 2: 353 #endif 354 #ifdef USE_PCI_INTD 355 case 3: 356 #endif 357 writel(INTRN_MASK_RX_EN, cp->regs + 358 REG_PLUS_INTRN_MASK(ring)); 359 break; 360 #endif 361 default: 362 break; 363 } 364 } 365 } 366 367 static inline void cas_unmask_intr(struct cas *cp) 368 { 369 int i; 370 371 for (i = 0; i < N_RX_COMP_RINGS; i++) 372 cas_enable_irq(cp, i); 373 } 374 375 static inline void cas_entropy_gather(struct cas *cp) 376 { 377 #ifdef USE_ENTROPY_DEV 378 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) 379 return; 380 381 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV), 382 readl(cp->regs + REG_ENTROPY_IV), 383 sizeof(uint64_t)*8); 384 #endif 385 } 386 387 static inline void cas_entropy_reset(struct cas *cp) 388 { 389 #ifdef USE_ENTROPY_DEV 390 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) 391 return; 392 393 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT, 394 cp->regs + REG_BIM_LOCAL_DEV_EN); 395 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET); 396 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG); 397 398 /* if we read back 0x0, we don't have an entropy device */ 399 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0) 400 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV; 401 #endif 402 } 403 404 /* access to the phy. the following assumes that we've initialized the MIF to 405 * be in frame rather than bit-bang mode 406 */ 407 static u16 cas_phy_read(struct cas *cp, int reg) 408 { 409 u32 cmd; 410 int limit = STOP_TRIES_PHY; 411 412 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ; 413 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); 414 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); 415 cmd |= MIF_FRAME_TURN_AROUND_MSB; 416 writel(cmd, cp->regs + REG_MIF_FRAME); 417 418 /* poll for completion */ 419 while (limit-- > 0) { 420 udelay(10); 421 cmd = readl(cp->regs + REG_MIF_FRAME); 422 if (cmd & MIF_FRAME_TURN_AROUND_LSB) 423 return cmd & MIF_FRAME_DATA_MASK; 424 } 425 return 0xFFFF; /* -1 */ 426 } 427 428 static int cas_phy_write(struct cas *cp, int reg, u16 val) 429 { 430 int limit = STOP_TRIES_PHY; 431 u32 cmd; 432 433 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE; 434 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); 435 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); 436 cmd |= MIF_FRAME_TURN_AROUND_MSB; 437 cmd |= val & MIF_FRAME_DATA_MASK; 438 writel(cmd, cp->regs + REG_MIF_FRAME); 439 440 /* poll for completion */ 441 while (limit-- > 0) { 442 udelay(10); 443 cmd = readl(cp->regs + REG_MIF_FRAME); 444 if (cmd & MIF_FRAME_TURN_AROUND_LSB) 445 return 0; 446 } 447 return -1; 448 } 449 450 static void cas_phy_powerup(struct cas *cp) 451 { 452 u16 ctl = cas_phy_read(cp, MII_BMCR); 453 454 if ((ctl & BMCR_PDOWN) == 0) 455 return; 456 ctl &= ~BMCR_PDOWN; 457 cas_phy_write(cp, MII_BMCR, ctl); 458 } 459 460 static void cas_phy_powerdown(struct cas *cp) 461 { 462 u16 ctl = cas_phy_read(cp, MII_BMCR); 463 464 if (ctl & BMCR_PDOWN) 465 return; 466 ctl |= BMCR_PDOWN; 467 cas_phy_write(cp, MII_BMCR, ctl); 468 } 469 470 /* cp->lock held. note: the last put_page will free the buffer */ 471 static int cas_page_free(struct cas *cp, cas_page_t *page) 472 { 473 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size, 474 PCI_DMA_FROMDEVICE); 475 __free_pages(page->buffer, cp->page_order); 476 kfree(page); 477 return 0; 478 } 479 480 #ifdef RX_COUNT_BUFFERS 481 #define RX_USED_ADD(x, y) ((x)->used += (y)) 482 #define RX_USED_SET(x, y) ((x)->used = (y)) 483 #else 484 #define RX_USED_ADD(x, y) 485 #define RX_USED_SET(x, y) 486 #endif 487 488 /* local page allocation routines for the receive buffers. jumbo pages 489 * require at least 8K contiguous and 8K aligned buffers. 490 */ 491 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags) 492 { 493 cas_page_t *page; 494 495 page = kmalloc(sizeof(cas_page_t), flags); 496 if (!page) 497 return NULL; 498 499 INIT_LIST_HEAD(&page->list); 500 RX_USED_SET(page, 0); 501 page->buffer = alloc_pages(flags, cp->page_order); 502 if (!page->buffer) 503 goto page_err; 504 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0, 505 cp->page_size, PCI_DMA_FROMDEVICE); 506 return page; 507 508 page_err: 509 kfree(page); 510 return NULL; 511 } 512 513 /* initialize spare pool of rx buffers, but allocate during the open */ 514 static void cas_spare_init(struct cas *cp) 515 { 516 spin_lock(&cp->rx_inuse_lock); 517 INIT_LIST_HEAD(&cp->rx_inuse_list); 518 spin_unlock(&cp->rx_inuse_lock); 519 520 spin_lock(&cp->rx_spare_lock); 521 INIT_LIST_HEAD(&cp->rx_spare_list); 522 cp->rx_spares_needed = RX_SPARE_COUNT; 523 spin_unlock(&cp->rx_spare_lock); 524 } 525 526 /* used on close. free all the spare buffers. */ 527 static void cas_spare_free(struct cas *cp) 528 { 529 struct list_head list, *elem, *tmp; 530 531 /* free spare buffers */ 532 INIT_LIST_HEAD(&list); 533 spin_lock(&cp->rx_spare_lock); 534 list_splice_init(&cp->rx_spare_list, &list); 535 spin_unlock(&cp->rx_spare_lock); 536 list_for_each_safe(elem, tmp, &list) { 537 cas_page_free(cp, list_entry(elem, cas_page_t, list)); 538 } 539 540 INIT_LIST_HEAD(&list); 541 #if 1 542 /* 543 * Looks like Adrian had protected this with a different 544 * lock than used everywhere else to manipulate this list. 545 */ 546 spin_lock(&cp->rx_inuse_lock); 547 list_splice_init(&cp->rx_inuse_list, &list); 548 spin_unlock(&cp->rx_inuse_lock); 549 #else 550 spin_lock(&cp->rx_spare_lock); 551 list_splice_init(&cp->rx_inuse_list, &list); 552 spin_unlock(&cp->rx_spare_lock); 553 #endif 554 list_for_each_safe(elem, tmp, &list) { 555 cas_page_free(cp, list_entry(elem, cas_page_t, list)); 556 } 557 } 558 559 /* replenish spares if needed */ 560 static void cas_spare_recover(struct cas *cp, const gfp_t flags) 561 { 562 struct list_head list, *elem, *tmp; 563 int needed, i; 564 565 /* check inuse list. if we don't need any more free buffers, 566 * just free it 567 */ 568 569 /* make a local copy of the list */ 570 INIT_LIST_HEAD(&list); 571 spin_lock(&cp->rx_inuse_lock); 572 list_splice_init(&cp->rx_inuse_list, &list); 573 spin_unlock(&cp->rx_inuse_lock); 574 575 list_for_each_safe(elem, tmp, &list) { 576 cas_page_t *page = list_entry(elem, cas_page_t, list); 577 578 /* 579 * With the lockless pagecache, cassini buffering scheme gets 580 * slightly less accurate: we might find that a page has an 581 * elevated reference count here, due to a speculative ref, 582 * and skip it as in-use. Ideally we would be able to reclaim 583 * it. However this would be such a rare case, it doesn't 584 * matter too much as we should pick it up the next time round. 585 * 586 * Importantly, if we find that the page has a refcount of 1 587 * here (our refcount), then we know it is definitely not inuse 588 * so we can reuse it. 589 */ 590 if (page_count(page->buffer) > 1) 591 continue; 592 593 list_del(elem); 594 spin_lock(&cp->rx_spare_lock); 595 if (cp->rx_spares_needed > 0) { 596 list_add(elem, &cp->rx_spare_list); 597 cp->rx_spares_needed--; 598 spin_unlock(&cp->rx_spare_lock); 599 } else { 600 spin_unlock(&cp->rx_spare_lock); 601 cas_page_free(cp, page); 602 } 603 } 604 605 /* put any inuse buffers back on the list */ 606 if (!list_empty(&list)) { 607 spin_lock(&cp->rx_inuse_lock); 608 list_splice(&list, &cp->rx_inuse_list); 609 spin_unlock(&cp->rx_inuse_lock); 610 } 611 612 spin_lock(&cp->rx_spare_lock); 613 needed = cp->rx_spares_needed; 614 spin_unlock(&cp->rx_spare_lock); 615 if (!needed) 616 return; 617 618 /* we still need spares, so try to allocate some */ 619 INIT_LIST_HEAD(&list); 620 i = 0; 621 while (i < needed) { 622 cas_page_t *spare = cas_page_alloc(cp, flags); 623 if (!spare) 624 break; 625 list_add(&spare->list, &list); 626 i++; 627 } 628 629 spin_lock(&cp->rx_spare_lock); 630 list_splice(&list, &cp->rx_spare_list); 631 cp->rx_spares_needed -= i; 632 spin_unlock(&cp->rx_spare_lock); 633 } 634 635 /* pull a page from the list. */ 636 static cas_page_t *cas_page_dequeue(struct cas *cp) 637 { 638 struct list_head *entry; 639 int recover; 640 641 spin_lock(&cp->rx_spare_lock); 642 if (list_empty(&cp->rx_spare_list)) { 643 /* try to do a quick recovery */ 644 spin_unlock(&cp->rx_spare_lock); 645 cas_spare_recover(cp, GFP_ATOMIC); 646 spin_lock(&cp->rx_spare_lock); 647 if (list_empty(&cp->rx_spare_list)) { 648 netif_err(cp, rx_err, cp->dev, 649 "no spare buffers available\n"); 650 spin_unlock(&cp->rx_spare_lock); 651 return NULL; 652 } 653 } 654 655 entry = cp->rx_spare_list.next; 656 list_del(entry); 657 recover = ++cp->rx_spares_needed; 658 spin_unlock(&cp->rx_spare_lock); 659 660 /* trigger the timer to do the recovery */ 661 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) { 662 #if 1 663 atomic_inc(&cp->reset_task_pending); 664 atomic_inc(&cp->reset_task_pending_spare); 665 schedule_work(&cp->reset_task); 666 #else 667 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE); 668 schedule_work(&cp->reset_task); 669 #endif 670 } 671 return list_entry(entry, cas_page_t, list); 672 } 673 674 675 static void cas_mif_poll(struct cas *cp, const int enable) 676 { 677 u32 cfg; 678 679 cfg = readl(cp->regs + REG_MIF_CFG); 680 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1); 681 682 if (cp->phy_type & CAS_PHY_MII_MDIO1) 683 cfg |= MIF_CFG_PHY_SELECT; 684 685 /* poll and interrupt on link status change. */ 686 if (enable) { 687 cfg |= MIF_CFG_POLL_EN; 688 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR); 689 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr); 690 } 691 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF, 692 cp->regs + REG_MIF_MASK); 693 writel(cfg, cp->regs + REG_MIF_CFG); 694 } 695 696 /* Must be invoked under cp->lock */ 697 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep) 698 { 699 u16 ctl; 700 #if 1 701 int lcntl; 702 int changed = 0; 703 int oldstate = cp->lstate; 704 int link_was_not_down = !(oldstate == link_down); 705 #endif 706 /* Setup link parameters */ 707 if (!ep) 708 goto start_aneg; 709 lcntl = cp->link_cntl; 710 if (ep->autoneg == AUTONEG_ENABLE) 711 cp->link_cntl = BMCR_ANENABLE; 712 else { 713 u32 speed = ethtool_cmd_speed(ep); 714 cp->link_cntl = 0; 715 if (speed == SPEED_100) 716 cp->link_cntl |= BMCR_SPEED100; 717 else if (speed == SPEED_1000) 718 cp->link_cntl |= CAS_BMCR_SPEED1000; 719 if (ep->duplex == DUPLEX_FULL) 720 cp->link_cntl |= BMCR_FULLDPLX; 721 } 722 #if 1 723 changed = (lcntl != cp->link_cntl); 724 #endif 725 start_aneg: 726 if (cp->lstate == link_up) { 727 netdev_info(cp->dev, "PCS link down\n"); 728 } else { 729 if (changed) { 730 netdev_info(cp->dev, "link configuration changed\n"); 731 } 732 } 733 cp->lstate = link_down; 734 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 735 if (!cp->hw_running) 736 return; 737 #if 1 738 /* 739 * WTZ: If the old state was link_up, we turn off the carrier 740 * to replicate everything we do elsewhere on a link-down 741 * event when we were already in a link-up state.. 742 */ 743 if (oldstate == link_up) 744 netif_carrier_off(cp->dev); 745 if (changed && link_was_not_down) { 746 /* 747 * WTZ: This branch will simply schedule a full reset after 748 * we explicitly changed link modes in an ioctl. See if this 749 * fixes the link-problems we were having for forced mode. 750 */ 751 atomic_inc(&cp->reset_task_pending); 752 atomic_inc(&cp->reset_task_pending_all); 753 schedule_work(&cp->reset_task); 754 cp->timer_ticks = 0; 755 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 756 return; 757 } 758 #endif 759 if (cp->phy_type & CAS_PHY_SERDES) { 760 u32 val = readl(cp->regs + REG_PCS_MII_CTRL); 761 762 if (cp->link_cntl & BMCR_ANENABLE) { 763 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN); 764 cp->lstate = link_aneg; 765 } else { 766 if (cp->link_cntl & BMCR_FULLDPLX) 767 val |= PCS_MII_CTRL_DUPLEX; 768 val &= ~PCS_MII_AUTONEG_EN; 769 cp->lstate = link_force_ok; 770 } 771 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 772 writel(val, cp->regs + REG_PCS_MII_CTRL); 773 774 } else { 775 cas_mif_poll(cp, 0); 776 ctl = cas_phy_read(cp, MII_BMCR); 777 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | 778 CAS_BMCR_SPEED1000 | BMCR_ANENABLE); 779 ctl |= cp->link_cntl; 780 if (ctl & BMCR_ANENABLE) { 781 ctl |= BMCR_ANRESTART; 782 cp->lstate = link_aneg; 783 } else { 784 cp->lstate = link_force_ok; 785 } 786 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 787 cas_phy_write(cp, MII_BMCR, ctl); 788 cas_mif_poll(cp, 1); 789 } 790 791 cp->timer_ticks = 0; 792 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 793 } 794 795 /* Must be invoked under cp->lock. */ 796 static int cas_reset_mii_phy(struct cas *cp) 797 { 798 int limit = STOP_TRIES_PHY; 799 u16 val; 800 801 cas_phy_write(cp, MII_BMCR, BMCR_RESET); 802 udelay(100); 803 while (--limit) { 804 val = cas_phy_read(cp, MII_BMCR); 805 if ((val & BMCR_RESET) == 0) 806 break; 807 udelay(10); 808 } 809 return limit <= 0; 810 } 811 812 static int cas_saturn_firmware_init(struct cas *cp) 813 { 814 const struct firmware *fw; 815 const char fw_name[] = "sun/cassini.bin"; 816 int err; 817 818 if (PHY_NS_DP83065 != cp->phy_id) 819 return 0; 820 821 err = request_firmware(&fw, fw_name, &cp->pdev->dev); 822 if (err) { 823 pr_err("Failed to load firmware \"%s\"\n", 824 fw_name); 825 return err; 826 } 827 if (fw->size < 2) { 828 pr_err("bogus length %zu in \"%s\"\n", 829 fw->size, fw_name); 830 err = -EINVAL; 831 goto out; 832 } 833 cp->fw_load_addr= fw->data[1] << 8 | fw->data[0]; 834 cp->fw_size = fw->size - 2; 835 cp->fw_data = vmalloc(cp->fw_size); 836 if (!cp->fw_data) { 837 err = -ENOMEM; 838 pr_err("\"%s\" Failed %d\n", fw_name, err); 839 goto out; 840 } 841 memcpy(cp->fw_data, &fw->data[2], cp->fw_size); 842 out: 843 release_firmware(fw); 844 return err; 845 } 846 847 static void cas_saturn_firmware_load(struct cas *cp) 848 { 849 int i; 850 851 cas_phy_powerdown(cp); 852 853 /* expanded memory access mode */ 854 cas_phy_write(cp, DP83065_MII_MEM, 0x0); 855 856 /* pointer configuration for new firmware */ 857 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9); 858 cas_phy_write(cp, DP83065_MII_REGD, 0xbd); 859 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa); 860 cas_phy_write(cp, DP83065_MII_REGD, 0x82); 861 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb); 862 cas_phy_write(cp, DP83065_MII_REGD, 0x0); 863 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc); 864 cas_phy_write(cp, DP83065_MII_REGD, 0x39); 865 866 /* download new firmware */ 867 cas_phy_write(cp, DP83065_MII_MEM, 0x1); 868 cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr); 869 for (i = 0; i < cp->fw_size; i++) 870 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]); 871 872 /* enable firmware */ 873 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8); 874 cas_phy_write(cp, DP83065_MII_REGD, 0x1); 875 } 876 877 878 /* phy initialization */ 879 static void cas_phy_init(struct cas *cp) 880 { 881 u16 val; 882 883 /* if we're in MII/GMII mode, set up phy */ 884 if (CAS_PHY_MII(cp->phy_type)) { 885 writel(PCS_DATAPATH_MODE_MII, 886 cp->regs + REG_PCS_DATAPATH_MODE); 887 888 cas_mif_poll(cp, 0); 889 cas_reset_mii_phy(cp); /* take out of isolate mode */ 890 891 if (PHY_LUCENT_B0 == cp->phy_id) { 892 /* workaround link up/down issue with lucent */ 893 cas_phy_write(cp, LUCENT_MII_REG, 0x8000); 894 cas_phy_write(cp, MII_BMCR, 0x00f1); 895 cas_phy_write(cp, LUCENT_MII_REG, 0x0); 896 897 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) { 898 /* workarounds for broadcom phy */ 899 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20); 900 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012); 901 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804); 902 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013); 903 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204); 904 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); 905 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132); 906 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); 907 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232); 908 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F); 909 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20); 910 911 } else if (PHY_BROADCOM_5411 == cp->phy_id) { 912 val = cas_phy_read(cp, BROADCOM_MII_REG4); 913 val = cas_phy_read(cp, BROADCOM_MII_REG4); 914 if (val & 0x0080) { 915 /* link workaround */ 916 cas_phy_write(cp, BROADCOM_MII_REG4, 917 val & ~0x0080); 918 } 919 920 } else if (cp->cas_flags & CAS_FLAG_SATURN) { 921 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ? 922 SATURN_PCFG_FSI : 0x0, 923 cp->regs + REG_SATURN_PCFG); 924 925 /* load firmware to address 10Mbps auto-negotiation 926 * issue. NOTE: this will need to be changed if the 927 * default firmware gets fixed. 928 */ 929 if (PHY_NS_DP83065 == cp->phy_id) { 930 cas_saturn_firmware_load(cp); 931 } 932 cas_phy_powerup(cp); 933 } 934 935 /* advertise capabilities */ 936 val = cas_phy_read(cp, MII_BMCR); 937 val &= ~BMCR_ANENABLE; 938 cas_phy_write(cp, MII_BMCR, val); 939 udelay(10); 940 941 cas_phy_write(cp, MII_ADVERTISE, 942 cas_phy_read(cp, MII_ADVERTISE) | 943 (ADVERTISE_10HALF | ADVERTISE_10FULL | 944 ADVERTISE_100HALF | ADVERTISE_100FULL | 945 CAS_ADVERTISE_PAUSE | 946 CAS_ADVERTISE_ASYM_PAUSE)); 947 948 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 949 /* make sure that we don't advertise half 950 * duplex to avoid a chip issue 951 */ 952 val = cas_phy_read(cp, CAS_MII_1000_CTRL); 953 val &= ~CAS_ADVERTISE_1000HALF; 954 val |= CAS_ADVERTISE_1000FULL; 955 cas_phy_write(cp, CAS_MII_1000_CTRL, val); 956 } 957 958 } else { 959 /* reset pcs for serdes */ 960 u32 val; 961 int limit; 962 963 writel(PCS_DATAPATH_MODE_SERDES, 964 cp->regs + REG_PCS_DATAPATH_MODE); 965 966 /* enable serdes pins on saturn */ 967 if (cp->cas_flags & CAS_FLAG_SATURN) 968 writel(0, cp->regs + REG_SATURN_PCFG); 969 970 /* Reset PCS unit. */ 971 val = readl(cp->regs + REG_PCS_MII_CTRL); 972 val |= PCS_MII_RESET; 973 writel(val, cp->regs + REG_PCS_MII_CTRL); 974 975 limit = STOP_TRIES; 976 while (--limit > 0) { 977 udelay(10); 978 if ((readl(cp->regs + REG_PCS_MII_CTRL) & 979 PCS_MII_RESET) == 0) 980 break; 981 } 982 if (limit <= 0) 983 netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n", 984 readl(cp->regs + REG_PCS_STATE_MACHINE)); 985 986 /* Make sure PCS is disabled while changing advertisement 987 * configuration. 988 */ 989 writel(0x0, cp->regs + REG_PCS_CFG); 990 991 /* Advertise all capabilities except half-duplex. */ 992 val = readl(cp->regs + REG_PCS_MII_ADVERT); 993 val &= ~PCS_MII_ADVERT_HD; 994 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE | 995 PCS_MII_ADVERT_ASYM_PAUSE); 996 writel(val, cp->regs + REG_PCS_MII_ADVERT); 997 998 /* enable PCS */ 999 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG); 1000 1001 /* pcs workaround: enable sync detect */ 1002 writel(PCS_SERDES_CTRL_SYNCD_EN, 1003 cp->regs + REG_PCS_SERDES_CTRL); 1004 } 1005 } 1006 1007 1008 static int cas_pcs_link_check(struct cas *cp) 1009 { 1010 u32 stat, state_machine; 1011 int retval = 0; 1012 1013 /* The link status bit latches on zero, so you must 1014 * read it twice in such a case to see a transition 1015 * to the link being up. 1016 */ 1017 stat = readl(cp->regs + REG_PCS_MII_STATUS); 1018 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0) 1019 stat = readl(cp->regs + REG_PCS_MII_STATUS); 1020 1021 /* The remote-fault indication is only valid 1022 * when autoneg has completed. 1023 */ 1024 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP | 1025 PCS_MII_STATUS_REMOTE_FAULT)) == 1026 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) 1027 netif_info(cp, link, cp->dev, "PCS RemoteFault\n"); 1028 1029 /* work around link detection issue by querying the PCS state 1030 * machine directly. 1031 */ 1032 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE); 1033 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) { 1034 stat &= ~PCS_MII_STATUS_LINK_STATUS; 1035 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) { 1036 stat |= PCS_MII_STATUS_LINK_STATUS; 1037 } 1038 1039 if (stat & PCS_MII_STATUS_LINK_STATUS) { 1040 if (cp->lstate != link_up) { 1041 if (cp->opened) { 1042 cp->lstate = link_up; 1043 cp->link_transition = LINK_TRANSITION_LINK_UP; 1044 1045 cas_set_link_modes(cp); 1046 netif_carrier_on(cp->dev); 1047 } 1048 } 1049 } else if (cp->lstate == link_up) { 1050 cp->lstate = link_down; 1051 if (link_transition_timeout != 0 && 1052 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && 1053 !cp->link_transition_jiffies_valid) { 1054 /* 1055 * force a reset, as a workaround for the 1056 * link-failure problem. May want to move this to a 1057 * point a bit earlier in the sequence. If we had 1058 * generated a reset a short time ago, we'll wait for 1059 * the link timer to check the status until a 1060 * timer expires (link_transistion_jiffies_valid is 1061 * true when the timer is running.) Instead of using 1062 * a system timer, we just do a check whenever the 1063 * link timer is running - this clears the flag after 1064 * a suitable delay. 1065 */ 1066 retval = 1; 1067 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; 1068 cp->link_transition_jiffies = jiffies; 1069 cp->link_transition_jiffies_valid = 1; 1070 } else { 1071 cp->link_transition = LINK_TRANSITION_ON_FAILURE; 1072 } 1073 netif_carrier_off(cp->dev); 1074 if (cp->opened) 1075 netif_info(cp, link, cp->dev, "PCS link down\n"); 1076 1077 /* Cassini only: if you force a mode, there can be 1078 * sync problems on link down. to fix that, the following 1079 * things need to be checked: 1080 * 1) read serialink state register 1081 * 2) read pcs status register to verify link down. 1082 * 3) if link down and serial link == 0x03, then you need 1083 * to global reset the chip. 1084 */ 1085 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) { 1086 /* should check to see if we're in a forced mode */ 1087 stat = readl(cp->regs + REG_PCS_SERDES_STATE); 1088 if (stat == 0x03) 1089 return 1; 1090 } 1091 } else if (cp->lstate == link_down) { 1092 if (link_transition_timeout != 0 && 1093 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && 1094 !cp->link_transition_jiffies_valid) { 1095 /* force a reset, as a workaround for the 1096 * link-failure problem. May want to move 1097 * this to a point a bit earlier in the 1098 * sequence. 1099 */ 1100 retval = 1; 1101 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; 1102 cp->link_transition_jiffies = jiffies; 1103 cp->link_transition_jiffies_valid = 1; 1104 } else { 1105 cp->link_transition = LINK_TRANSITION_STILL_FAILED; 1106 } 1107 } 1108 1109 return retval; 1110 } 1111 1112 static int cas_pcs_interrupt(struct net_device *dev, 1113 struct cas *cp, u32 status) 1114 { 1115 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS); 1116 1117 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0) 1118 return 0; 1119 return cas_pcs_link_check(cp); 1120 } 1121 1122 static int cas_txmac_interrupt(struct net_device *dev, 1123 struct cas *cp, u32 status) 1124 { 1125 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS); 1126 1127 if (!txmac_stat) 1128 return 0; 1129 1130 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1131 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat); 1132 1133 /* Defer timer expiration is quite normal, 1134 * don't even log the event. 1135 */ 1136 if ((txmac_stat & MAC_TX_DEFER_TIMER) && 1137 !(txmac_stat & ~MAC_TX_DEFER_TIMER)) 1138 return 0; 1139 1140 spin_lock(&cp->stat_lock[0]); 1141 if (txmac_stat & MAC_TX_UNDERRUN) { 1142 netdev_err(dev, "TX MAC xmit underrun\n"); 1143 cp->net_stats[0].tx_fifo_errors++; 1144 } 1145 1146 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) { 1147 netdev_err(dev, "TX MAC max packet size error\n"); 1148 cp->net_stats[0].tx_errors++; 1149 } 1150 1151 /* The rest are all cases of one of the 16-bit TX 1152 * counters expiring. 1153 */ 1154 if (txmac_stat & MAC_TX_COLL_NORMAL) 1155 cp->net_stats[0].collisions += 0x10000; 1156 1157 if (txmac_stat & MAC_TX_COLL_EXCESS) { 1158 cp->net_stats[0].tx_aborted_errors += 0x10000; 1159 cp->net_stats[0].collisions += 0x10000; 1160 } 1161 1162 if (txmac_stat & MAC_TX_COLL_LATE) { 1163 cp->net_stats[0].tx_aborted_errors += 0x10000; 1164 cp->net_stats[0].collisions += 0x10000; 1165 } 1166 spin_unlock(&cp->stat_lock[0]); 1167 1168 /* We do not keep track of MAC_TX_COLL_FIRST and 1169 * MAC_TX_PEAK_ATTEMPTS events. 1170 */ 1171 return 0; 1172 } 1173 1174 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware) 1175 { 1176 cas_hp_inst_t *inst; 1177 u32 val; 1178 int i; 1179 1180 i = 0; 1181 while ((inst = firmware) && inst->note) { 1182 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR); 1183 1184 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val); 1185 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask); 1186 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI); 1187 1188 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10); 1189 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop); 1190 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext); 1191 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff); 1192 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext); 1193 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff); 1194 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op); 1195 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID); 1196 1197 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask); 1198 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift); 1199 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab); 1200 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg); 1201 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW); 1202 ++firmware; 1203 ++i; 1204 } 1205 } 1206 1207 static void cas_init_rx_dma(struct cas *cp) 1208 { 1209 u64 desc_dma = cp->block_dvma; 1210 u32 val; 1211 int i, size; 1212 1213 /* rx free descriptors */ 1214 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL); 1215 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0)); 1216 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0)); 1217 if ((N_RX_DESC_RINGS > 1) && 1218 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */ 1219 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1)); 1220 writel(val, cp->regs + REG_RX_CFG); 1221 1222 val = (unsigned long) cp->init_rxds[0] - 1223 (unsigned long) cp->init_block; 1224 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI); 1225 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW); 1226 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); 1227 1228 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1229 /* rx desc 2 is for IPSEC packets. however, 1230 * we don't it that for that purpose. 1231 */ 1232 val = (unsigned long) cp->init_rxds[1] - 1233 (unsigned long) cp->init_block; 1234 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI); 1235 writel((desc_dma + val) & 0xffffffff, cp->regs + 1236 REG_PLUS_RX_DB1_LOW); 1237 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs + 1238 REG_PLUS_RX_KICK1); 1239 } 1240 1241 /* rx completion registers */ 1242 val = (unsigned long) cp->init_rxcs[0] - 1243 (unsigned long) cp->init_block; 1244 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI); 1245 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW); 1246 1247 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1248 /* rx comp 2-4 */ 1249 for (i = 1; i < MAX_RX_COMP_RINGS; i++) { 1250 val = (unsigned long) cp->init_rxcs[i] - 1251 (unsigned long) cp->init_block; 1252 writel((desc_dma + val) >> 32, cp->regs + 1253 REG_PLUS_RX_CBN_HI(i)); 1254 writel((desc_dma + val) & 0xffffffff, cp->regs + 1255 REG_PLUS_RX_CBN_LOW(i)); 1256 } 1257 } 1258 1259 /* read selective clear regs to prevent spurious interrupts 1260 * on reset because complete == kick. 1261 * selective clear set up to prevent interrupts on resets 1262 */ 1263 readl(cp->regs + REG_INTR_STATUS_ALIAS); 1264 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR); 1265 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1266 for (i = 1; i < N_RX_COMP_RINGS; i++) 1267 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i)); 1268 1269 /* 2 is different from 3 and 4 */ 1270 if (N_RX_COMP_RINGS > 1) 1271 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1, 1272 cp->regs + REG_PLUS_ALIASN_CLEAR(1)); 1273 1274 for (i = 2; i < N_RX_COMP_RINGS; i++) 1275 writel(INTR_RX_DONE_ALT, 1276 cp->regs + REG_PLUS_ALIASN_CLEAR(i)); 1277 } 1278 1279 /* set up pause thresholds */ 1280 val = CAS_BASE(RX_PAUSE_THRESH_OFF, 1281 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM); 1282 val |= CAS_BASE(RX_PAUSE_THRESH_ON, 1283 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM); 1284 writel(val, cp->regs + REG_RX_PAUSE_THRESH); 1285 1286 /* zero out dma reassembly buffers */ 1287 for (i = 0; i < 64; i++) { 1288 writel(i, cp->regs + REG_RX_TABLE_ADDR); 1289 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW); 1290 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID); 1291 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI); 1292 } 1293 1294 /* make sure address register is 0 for normal operation */ 1295 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR); 1296 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR); 1297 1298 /* interrupt mitigation */ 1299 #ifdef USE_RX_BLANK 1300 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL); 1301 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL); 1302 writel(val, cp->regs + REG_RX_BLANK); 1303 #else 1304 writel(0x0, cp->regs + REG_RX_BLANK); 1305 #endif 1306 1307 /* interrupt generation as a function of low water marks for 1308 * free desc and completion entries. these are used to trigger 1309 * housekeeping for rx descs. we don't use the free interrupt 1310 * as it's not very useful 1311 */ 1312 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */ 1313 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL); 1314 writel(val, cp->regs + REG_RX_AE_THRESH); 1315 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 1316 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1)); 1317 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH); 1318 } 1319 1320 /* Random early detect registers. useful for congestion avoidance. 1321 * this should be tunable. 1322 */ 1323 writel(0x0, cp->regs + REG_RX_RED); 1324 1325 /* receive page sizes. default == 2K (0x800) */ 1326 val = 0; 1327 if (cp->page_size == 0x1000) 1328 val = 0x1; 1329 else if (cp->page_size == 0x2000) 1330 val = 0x2; 1331 else if (cp->page_size == 0x4000) 1332 val = 0x3; 1333 1334 /* round mtu + offset. constrain to page size. */ 1335 size = cp->dev->mtu + 64; 1336 if (size > cp->page_size) 1337 size = cp->page_size; 1338 1339 if (size <= 0x400) 1340 i = 0x0; 1341 else if (size <= 0x800) 1342 i = 0x1; 1343 else if (size <= 0x1000) 1344 i = 0x2; 1345 else 1346 i = 0x3; 1347 1348 cp->mtu_stride = 1 << (i + 10); 1349 val = CAS_BASE(RX_PAGE_SIZE, val); 1350 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i); 1351 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10)); 1352 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1); 1353 writel(val, cp->regs + REG_RX_PAGE_SIZE); 1354 1355 /* enable the header parser if desired */ 1356 if (CAS_HP_FIRMWARE == cas_prog_null) 1357 return; 1358 1359 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS); 1360 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK; 1361 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL); 1362 writel(val, cp->regs + REG_HP_CFG); 1363 } 1364 1365 static inline void cas_rxc_init(struct cas_rx_comp *rxc) 1366 { 1367 memset(rxc, 0, sizeof(*rxc)); 1368 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO); 1369 } 1370 1371 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1] 1372 * flipping is protected by the fact that the chip will not 1373 * hand back the same page index while it's being processed. 1374 */ 1375 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index) 1376 { 1377 cas_page_t *page = cp->rx_pages[1][index]; 1378 cas_page_t *new; 1379 1380 if (page_count(page->buffer) == 1) 1381 return page; 1382 1383 new = cas_page_dequeue(cp); 1384 if (new) { 1385 spin_lock(&cp->rx_inuse_lock); 1386 list_add(&page->list, &cp->rx_inuse_list); 1387 spin_unlock(&cp->rx_inuse_lock); 1388 } 1389 return new; 1390 } 1391 1392 /* this needs to be changed if we actually use the ENC RX DESC ring */ 1393 static cas_page_t *cas_page_swap(struct cas *cp, const int ring, 1394 const int index) 1395 { 1396 cas_page_t **page0 = cp->rx_pages[0]; 1397 cas_page_t **page1 = cp->rx_pages[1]; 1398 1399 /* swap if buffer is in use */ 1400 if (page_count(page0[index]->buffer) > 1) { 1401 cas_page_t *new = cas_page_spare(cp, index); 1402 if (new) { 1403 page1[index] = page0[index]; 1404 page0[index] = new; 1405 } 1406 } 1407 RX_USED_SET(page0[index], 0); 1408 return page0[index]; 1409 } 1410 1411 static void cas_clean_rxds(struct cas *cp) 1412 { 1413 /* only clean ring 0 as ring 1 is used for spare buffers */ 1414 struct cas_rx_desc *rxd = cp->init_rxds[0]; 1415 int i, size; 1416 1417 /* release all rx flows */ 1418 for (i = 0; i < N_RX_FLOWS; i++) { 1419 struct sk_buff *skb; 1420 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) { 1421 cas_skb_release(skb); 1422 } 1423 } 1424 1425 /* initialize descriptors */ 1426 size = RX_DESC_RINGN_SIZE(0); 1427 for (i = 0; i < size; i++) { 1428 cas_page_t *page = cas_page_swap(cp, 0, i); 1429 rxd[i].buffer = cpu_to_le64(page->dma_addr); 1430 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) | 1431 CAS_BASE(RX_INDEX_RING, 0)); 1432 } 1433 1434 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4; 1435 cp->rx_last[0] = 0; 1436 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0); 1437 } 1438 1439 static void cas_clean_rxcs(struct cas *cp) 1440 { 1441 int i, j; 1442 1443 /* take ownership of rx comp descriptors */ 1444 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS); 1445 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS); 1446 for (i = 0; i < N_RX_COMP_RINGS; i++) { 1447 struct cas_rx_comp *rxc = cp->init_rxcs[i]; 1448 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) { 1449 cas_rxc_init(rxc + j); 1450 } 1451 } 1452 } 1453 1454 #if 0 1455 /* When we get a RX fifo overflow, the RX unit is probably hung 1456 * so we do the following. 1457 * 1458 * If any part of the reset goes wrong, we return 1 and that causes the 1459 * whole chip to be reset. 1460 */ 1461 static int cas_rxmac_reset(struct cas *cp) 1462 { 1463 struct net_device *dev = cp->dev; 1464 int limit; 1465 u32 val; 1466 1467 /* First, reset MAC RX. */ 1468 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 1469 for (limit = 0; limit < STOP_TRIES; limit++) { 1470 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN)) 1471 break; 1472 udelay(10); 1473 } 1474 if (limit == STOP_TRIES) { 1475 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n"); 1476 return 1; 1477 } 1478 1479 /* Second, disable RX DMA. */ 1480 writel(0, cp->regs + REG_RX_CFG); 1481 for (limit = 0; limit < STOP_TRIES; limit++) { 1482 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN)) 1483 break; 1484 udelay(10); 1485 } 1486 if (limit == STOP_TRIES) { 1487 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n"); 1488 return 1; 1489 } 1490 1491 mdelay(5); 1492 1493 /* Execute RX reset command. */ 1494 writel(SW_RESET_RX, cp->regs + REG_SW_RESET); 1495 for (limit = 0; limit < STOP_TRIES; limit++) { 1496 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX)) 1497 break; 1498 udelay(10); 1499 } 1500 if (limit == STOP_TRIES) { 1501 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n"); 1502 return 1; 1503 } 1504 1505 /* reset driver rx state */ 1506 cas_clean_rxds(cp); 1507 cas_clean_rxcs(cp); 1508 1509 /* Now, reprogram the rest of RX unit. */ 1510 cas_init_rx_dma(cp); 1511 1512 /* re-enable */ 1513 val = readl(cp->regs + REG_RX_CFG); 1514 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG); 1515 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); 1516 val = readl(cp->regs + REG_MAC_RX_CFG); 1517 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 1518 return 0; 1519 } 1520 #endif 1521 1522 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp, 1523 u32 status) 1524 { 1525 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS); 1526 1527 if (!stat) 1528 return 0; 1529 1530 netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat); 1531 1532 /* these are all rollovers */ 1533 spin_lock(&cp->stat_lock[0]); 1534 if (stat & MAC_RX_ALIGN_ERR) 1535 cp->net_stats[0].rx_frame_errors += 0x10000; 1536 1537 if (stat & MAC_RX_CRC_ERR) 1538 cp->net_stats[0].rx_crc_errors += 0x10000; 1539 1540 if (stat & MAC_RX_LEN_ERR) 1541 cp->net_stats[0].rx_length_errors += 0x10000; 1542 1543 if (stat & MAC_RX_OVERFLOW) { 1544 cp->net_stats[0].rx_over_errors++; 1545 cp->net_stats[0].rx_fifo_errors++; 1546 } 1547 1548 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR 1549 * events. 1550 */ 1551 spin_unlock(&cp->stat_lock[0]); 1552 return 0; 1553 } 1554 1555 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp, 1556 u32 status) 1557 { 1558 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS); 1559 1560 if (!stat) 1561 return 0; 1562 1563 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1564 "mac interrupt, stat: 0x%x\n", stat); 1565 1566 /* This interrupt is just for pause frame and pause 1567 * tracking. It is useful for diagnostics and debug 1568 * but probably by default we will mask these events. 1569 */ 1570 if (stat & MAC_CTRL_PAUSE_STATE) 1571 cp->pause_entered++; 1572 1573 if (stat & MAC_CTRL_PAUSE_RECEIVED) 1574 cp->pause_last_time_recvd = (stat >> 16); 1575 1576 return 0; 1577 } 1578 1579 1580 /* Must be invoked under cp->lock. */ 1581 static inline int cas_mdio_link_not_up(struct cas *cp) 1582 { 1583 u16 val; 1584 1585 switch (cp->lstate) { 1586 case link_force_ret: 1587 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n"); 1588 cas_phy_write(cp, MII_BMCR, cp->link_fcntl); 1589 cp->timer_ticks = 5; 1590 cp->lstate = link_force_ok; 1591 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1592 break; 1593 1594 case link_aneg: 1595 val = cas_phy_read(cp, MII_BMCR); 1596 1597 /* Try forced modes. we try things in the following order: 1598 * 1000 full -> 100 full/half -> 10 half 1599 */ 1600 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE); 1601 val |= BMCR_FULLDPLX; 1602 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? 1603 CAS_BMCR_SPEED1000 : BMCR_SPEED100; 1604 cas_phy_write(cp, MII_BMCR, val); 1605 cp->timer_ticks = 5; 1606 cp->lstate = link_force_try; 1607 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1608 break; 1609 1610 case link_force_try: 1611 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */ 1612 val = cas_phy_read(cp, MII_BMCR); 1613 cp->timer_ticks = 5; 1614 if (val & CAS_BMCR_SPEED1000) { /* gigabit */ 1615 val &= ~CAS_BMCR_SPEED1000; 1616 val |= (BMCR_SPEED100 | BMCR_FULLDPLX); 1617 cas_phy_write(cp, MII_BMCR, val); 1618 break; 1619 } 1620 1621 if (val & BMCR_SPEED100) { 1622 if (val & BMCR_FULLDPLX) /* fd failed */ 1623 val &= ~BMCR_FULLDPLX; 1624 else { /* 100Mbps failed */ 1625 val &= ~BMCR_SPEED100; 1626 } 1627 cas_phy_write(cp, MII_BMCR, val); 1628 break; 1629 } 1630 default: 1631 break; 1632 } 1633 return 0; 1634 } 1635 1636 1637 /* must be invoked with cp->lock held */ 1638 static int cas_mii_link_check(struct cas *cp, const u16 bmsr) 1639 { 1640 int restart; 1641 1642 if (bmsr & BMSR_LSTATUS) { 1643 /* Ok, here we got a link. If we had it due to a forced 1644 * fallback, and we were configured for autoneg, we 1645 * retry a short autoneg pass. If you know your hub is 1646 * broken, use ethtool ;) 1647 */ 1648 if ((cp->lstate == link_force_try) && 1649 (cp->link_cntl & BMCR_ANENABLE)) { 1650 cp->lstate = link_force_ret; 1651 cp->link_transition = LINK_TRANSITION_LINK_CONFIG; 1652 cas_mif_poll(cp, 0); 1653 cp->link_fcntl = cas_phy_read(cp, MII_BMCR); 1654 cp->timer_ticks = 5; 1655 if (cp->opened) 1656 netif_info(cp, link, cp->dev, 1657 "Got link after fallback, retrying autoneg once...\n"); 1658 cas_phy_write(cp, MII_BMCR, 1659 cp->link_fcntl | BMCR_ANENABLE | 1660 BMCR_ANRESTART); 1661 cas_mif_poll(cp, 1); 1662 1663 } else if (cp->lstate != link_up) { 1664 cp->lstate = link_up; 1665 cp->link_transition = LINK_TRANSITION_LINK_UP; 1666 1667 if (cp->opened) { 1668 cas_set_link_modes(cp); 1669 netif_carrier_on(cp->dev); 1670 } 1671 } 1672 return 0; 1673 } 1674 1675 /* link not up. if the link was previously up, we restart the 1676 * whole process 1677 */ 1678 restart = 0; 1679 if (cp->lstate == link_up) { 1680 cp->lstate = link_down; 1681 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 1682 1683 netif_carrier_off(cp->dev); 1684 if (cp->opened) 1685 netif_info(cp, link, cp->dev, "Link down\n"); 1686 restart = 1; 1687 1688 } else if (++cp->timer_ticks > 10) 1689 cas_mdio_link_not_up(cp); 1690 1691 return restart; 1692 } 1693 1694 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp, 1695 u32 status) 1696 { 1697 u32 stat = readl(cp->regs + REG_MIF_STATUS); 1698 u16 bmsr; 1699 1700 /* check for a link change */ 1701 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0) 1702 return 0; 1703 1704 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat); 1705 return cas_mii_link_check(cp, bmsr); 1706 } 1707 1708 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp, 1709 u32 status) 1710 { 1711 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS); 1712 1713 if (!stat) 1714 return 0; 1715 1716 netdev_err(dev, "PCI error [%04x:%04x]", 1717 stat, readl(cp->regs + REG_BIM_DIAG)); 1718 1719 /* cassini+ has this reserved */ 1720 if ((stat & PCI_ERR_BADACK) && 1721 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0)) 1722 pr_cont(" <No ACK64# during ABS64 cycle>"); 1723 1724 if (stat & PCI_ERR_DTRTO) 1725 pr_cont(" <Delayed transaction timeout>"); 1726 if (stat & PCI_ERR_OTHER) 1727 pr_cont(" <other>"); 1728 if (stat & PCI_ERR_BIM_DMA_WRITE) 1729 pr_cont(" <BIM DMA 0 write req>"); 1730 if (stat & PCI_ERR_BIM_DMA_READ) 1731 pr_cont(" <BIM DMA 0 read req>"); 1732 pr_cont("\n"); 1733 1734 if (stat & PCI_ERR_OTHER) { 1735 u16 cfg; 1736 1737 /* Interrogate PCI config space for the 1738 * true cause. 1739 */ 1740 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg); 1741 netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg); 1742 if (cfg & PCI_STATUS_PARITY) 1743 netdev_err(dev, "PCI parity error detected\n"); 1744 if (cfg & PCI_STATUS_SIG_TARGET_ABORT) 1745 netdev_err(dev, "PCI target abort\n"); 1746 if (cfg & PCI_STATUS_REC_TARGET_ABORT) 1747 netdev_err(dev, "PCI master acks target abort\n"); 1748 if (cfg & PCI_STATUS_REC_MASTER_ABORT) 1749 netdev_err(dev, "PCI master abort\n"); 1750 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR) 1751 netdev_err(dev, "PCI system error SERR#\n"); 1752 if (cfg & PCI_STATUS_DETECTED_PARITY) 1753 netdev_err(dev, "PCI parity error\n"); 1754 1755 /* Write the error bits back to clear them. */ 1756 cfg &= (PCI_STATUS_PARITY | 1757 PCI_STATUS_SIG_TARGET_ABORT | 1758 PCI_STATUS_REC_TARGET_ABORT | 1759 PCI_STATUS_REC_MASTER_ABORT | 1760 PCI_STATUS_SIG_SYSTEM_ERROR | 1761 PCI_STATUS_DETECTED_PARITY); 1762 pci_write_config_word(cp->pdev, PCI_STATUS, cfg); 1763 } 1764 1765 /* For all PCI errors, we should reset the chip. */ 1766 return 1; 1767 } 1768 1769 /* All non-normal interrupt conditions get serviced here. 1770 * Returns non-zero if we should just exit the interrupt 1771 * handler right now (ie. if we reset the card which invalidates 1772 * all of the other original irq status bits). 1773 */ 1774 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp, 1775 u32 status) 1776 { 1777 if (status & INTR_RX_TAG_ERROR) { 1778 /* corrupt RX tag framing */ 1779 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 1780 "corrupt rx tag framing\n"); 1781 spin_lock(&cp->stat_lock[0]); 1782 cp->net_stats[0].rx_errors++; 1783 spin_unlock(&cp->stat_lock[0]); 1784 goto do_reset; 1785 } 1786 1787 if (status & INTR_RX_LEN_MISMATCH) { 1788 /* length mismatch. */ 1789 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 1790 "length mismatch for rx frame\n"); 1791 spin_lock(&cp->stat_lock[0]); 1792 cp->net_stats[0].rx_errors++; 1793 spin_unlock(&cp->stat_lock[0]); 1794 goto do_reset; 1795 } 1796 1797 if (status & INTR_PCS_STATUS) { 1798 if (cas_pcs_interrupt(dev, cp, status)) 1799 goto do_reset; 1800 } 1801 1802 if (status & INTR_TX_MAC_STATUS) { 1803 if (cas_txmac_interrupt(dev, cp, status)) 1804 goto do_reset; 1805 } 1806 1807 if (status & INTR_RX_MAC_STATUS) { 1808 if (cas_rxmac_interrupt(dev, cp, status)) 1809 goto do_reset; 1810 } 1811 1812 if (status & INTR_MAC_CTRL_STATUS) { 1813 if (cas_mac_interrupt(dev, cp, status)) 1814 goto do_reset; 1815 } 1816 1817 if (status & INTR_MIF_STATUS) { 1818 if (cas_mif_interrupt(dev, cp, status)) 1819 goto do_reset; 1820 } 1821 1822 if (status & INTR_PCI_ERROR_STATUS) { 1823 if (cas_pci_interrupt(dev, cp, status)) 1824 goto do_reset; 1825 } 1826 return 0; 1827 1828 do_reset: 1829 #if 1 1830 atomic_inc(&cp->reset_task_pending); 1831 atomic_inc(&cp->reset_task_pending_all); 1832 netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status); 1833 schedule_work(&cp->reset_task); 1834 #else 1835 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 1836 netdev_err(dev, "reset called in cas_abnormal_irq\n"); 1837 schedule_work(&cp->reset_task); 1838 #endif 1839 return 1; 1840 } 1841 1842 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when 1843 * determining whether to do a netif_stop/wakeup 1844 */ 1845 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1) 1846 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK) 1847 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr, 1848 const int len) 1849 { 1850 unsigned long off = addr + len; 1851 1852 if (CAS_TABORT(cp) == 1) 1853 return 0; 1854 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN) 1855 return 0; 1856 return TX_TARGET_ABORT_LEN; 1857 } 1858 1859 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit) 1860 { 1861 struct cas_tx_desc *txds; 1862 struct sk_buff **skbs; 1863 struct net_device *dev = cp->dev; 1864 int entry, count; 1865 1866 spin_lock(&cp->tx_lock[ring]); 1867 txds = cp->init_txds[ring]; 1868 skbs = cp->tx_skbs[ring]; 1869 entry = cp->tx_old[ring]; 1870 1871 count = TX_BUFF_COUNT(ring, entry, limit); 1872 while (entry != limit) { 1873 struct sk_buff *skb = skbs[entry]; 1874 dma_addr_t daddr; 1875 u32 dlen; 1876 int frag; 1877 1878 if (!skb) { 1879 /* this should never occur */ 1880 entry = TX_DESC_NEXT(ring, entry); 1881 continue; 1882 } 1883 1884 /* however, we might get only a partial skb release. */ 1885 count -= skb_shinfo(skb)->nr_frags + 1886 + cp->tx_tiny_use[ring][entry].nbufs + 1; 1887 if (count < 0) 1888 break; 1889 1890 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev, 1891 "tx[%d] done, slot %d\n", ring, entry); 1892 1893 skbs[entry] = NULL; 1894 cp->tx_tiny_use[ring][entry].nbufs = 0; 1895 1896 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 1897 struct cas_tx_desc *txd = txds + entry; 1898 1899 daddr = le64_to_cpu(txd->buffer); 1900 dlen = CAS_VAL(TX_DESC_BUFLEN, 1901 le64_to_cpu(txd->control)); 1902 pci_unmap_page(cp->pdev, daddr, dlen, 1903 PCI_DMA_TODEVICE); 1904 entry = TX_DESC_NEXT(ring, entry); 1905 1906 /* tiny buffer may follow */ 1907 if (cp->tx_tiny_use[ring][entry].used) { 1908 cp->tx_tiny_use[ring][entry].used = 0; 1909 entry = TX_DESC_NEXT(ring, entry); 1910 } 1911 } 1912 1913 spin_lock(&cp->stat_lock[ring]); 1914 cp->net_stats[ring].tx_packets++; 1915 cp->net_stats[ring].tx_bytes += skb->len; 1916 spin_unlock(&cp->stat_lock[ring]); 1917 dev_kfree_skb_irq(skb); 1918 } 1919 cp->tx_old[ring] = entry; 1920 1921 /* this is wrong for multiple tx rings. the net device needs 1922 * multiple queues for this to do the right thing. we wait 1923 * for 2*packets to be available when using tiny buffers 1924 */ 1925 if (netif_queue_stopped(dev) && 1926 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))) 1927 netif_wake_queue(dev); 1928 spin_unlock(&cp->tx_lock[ring]); 1929 } 1930 1931 static void cas_tx(struct net_device *dev, struct cas *cp, 1932 u32 status) 1933 { 1934 int limit, ring; 1935 #ifdef USE_TX_COMPWB 1936 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb); 1937 #endif 1938 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 1939 "tx interrupt, status: 0x%x, %llx\n", 1940 status, (unsigned long long)compwb); 1941 /* process all the rings */ 1942 for (ring = 0; ring < N_TX_RINGS; ring++) { 1943 #ifdef USE_TX_COMPWB 1944 /* use the completion writeback registers */ 1945 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) | 1946 CAS_VAL(TX_COMPWB_LSB, compwb); 1947 compwb = TX_COMPWB_NEXT(compwb); 1948 #else 1949 limit = readl(cp->regs + REG_TX_COMPN(ring)); 1950 #endif 1951 if (cp->tx_old[ring] != limit) 1952 cas_tx_ringN(cp, ring, limit); 1953 } 1954 } 1955 1956 1957 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc, 1958 int entry, const u64 *words, 1959 struct sk_buff **skbref) 1960 { 1961 int dlen, hlen, len, i, alloclen; 1962 int off, swivel = RX_SWIVEL_OFF_VAL; 1963 struct cas_page *page; 1964 struct sk_buff *skb; 1965 void *addr, *crcaddr; 1966 __sum16 csum; 1967 char *p; 1968 1969 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]); 1970 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]); 1971 len = hlen + dlen; 1972 1973 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT)) 1974 alloclen = len; 1975 else 1976 alloclen = max(hlen, RX_COPY_MIN); 1977 1978 skb = dev_alloc_skb(alloclen + swivel + cp->crc_size); 1979 if (skb == NULL) 1980 return -1; 1981 1982 *skbref = skb; 1983 skb_reserve(skb, swivel); 1984 1985 p = skb->data; 1986 addr = crcaddr = NULL; 1987 if (hlen) { /* always copy header pages */ 1988 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); 1989 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 1990 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 + 1991 swivel; 1992 1993 i = hlen; 1994 if (!dlen) /* attach FCS */ 1995 i += cp->crc_size; 1996 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, 1997 PCI_DMA_FROMDEVICE); 1998 addr = cas_page_map(page->buffer); 1999 memcpy(p, addr + off, i); 2000 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, 2001 PCI_DMA_FROMDEVICE); 2002 cas_page_unmap(addr); 2003 RX_USED_ADD(page, 0x100); 2004 p += hlen; 2005 swivel = 0; 2006 } 2007 2008 2009 if (alloclen < (hlen + dlen)) { 2010 skb_frag_t *frag = skb_shinfo(skb)->frags; 2011 2012 /* normal or jumbo packets. we use frags */ 2013 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 2014 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2015 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; 2016 2017 hlen = min(cp->page_size - off, dlen); 2018 if (hlen < 0) { 2019 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 2020 "rx page overflow: %d\n", hlen); 2021 dev_kfree_skb_irq(skb); 2022 return -1; 2023 } 2024 i = hlen; 2025 if (i == dlen) /* attach FCS */ 2026 i += cp->crc_size; 2027 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, 2028 PCI_DMA_FROMDEVICE); 2029 2030 /* make sure we always copy a header */ 2031 swivel = 0; 2032 if (p == (char *) skb->data) { /* not split */ 2033 addr = cas_page_map(page->buffer); 2034 memcpy(p, addr + off, RX_COPY_MIN); 2035 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, 2036 PCI_DMA_FROMDEVICE); 2037 cas_page_unmap(addr); 2038 off += RX_COPY_MIN; 2039 swivel = RX_COPY_MIN; 2040 RX_USED_ADD(page, cp->mtu_stride); 2041 } else { 2042 RX_USED_ADD(page, hlen); 2043 } 2044 skb_put(skb, alloclen); 2045 2046 skb_shinfo(skb)->nr_frags++; 2047 skb->data_len += hlen - swivel; 2048 skb->truesize += hlen - swivel; 2049 skb->len += hlen - swivel; 2050 2051 __skb_frag_set_page(frag, page->buffer); 2052 __skb_frag_ref(frag); 2053 frag->page_offset = off; 2054 skb_frag_size_set(frag, hlen - swivel); 2055 2056 /* any more data? */ 2057 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { 2058 hlen = dlen; 2059 off = 0; 2060 2061 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2062 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2063 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, 2064 hlen + cp->crc_size, 2065 PCI_DMA_FROMDEVICE); 2066 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, 2067 hlen + cp->crc_size, 2068 PCI_DMA_FROMDEVICE); 2069 2070 skb_shinfo(skb)->nr_frags++; 2071 skb->data_len += hlen; 2072 skb->len += hlen; 2073 frag++; 2074 2075 __skb_frag_set_page(frag, page->buffer); 2076 __skb_frag_ref(frag); 2077 frag->page_offset = 0; 2078 skb_frag_size_set(frag, hlen); 2079 RX_USED_ADD(page, hlen + cp->crc_size); 2080 } 2081 2082 if (cp->crc_size) { 2083 addr = cas_page_map(page->buffer); 2084 crcaddr = addr + off + hlen; 2085 } 2086 2087 } else { 2088 /* copying packet */ 2089 if (!dlen) 2090 goto end_copy_pkt; 2091 2092 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 2093 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2094 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; 2095 hlen = min(cp->page_size - off, dlen); 2096 if (hlen < 0) { 2097 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, 2098 "rx page overflow: %d\n", hlen); 2099 dev_kfree_skb_irq(skb); 2100 return -1; 2101 } 2102 i = hlen; 2103 if (i == dlen) /* attach FCS */ 2104 i += cp->crc_size; 2105 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, 2106 PCI_DMA_FROMDEVICE); 2107 addr = cas_page_map(page->buffer); 2108 memcpy(p, addr + off, i); 2109 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, 2110 PCI_DMA_FROMDEVICE); 2111 cas_page_unmap(addr); 2112 if (p == (char *) skb->data) /* not split */ 2113 RX_USED_ADD(page, cp->mtu_stride); 2114 else 2115 RX_USED_ADD(page, i); 2116 2117 /* any more data? */ 2118 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { 2119 p += hlen; 2120 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2121 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; 2122 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, 2123 dlen + cp->crc_size, 2124 PCI_DMA_FROMDEVICE); 2125 addr = cas_page_map(page->buffer); 2126 memcpy(p, addr, dlen + cp->crc_size); 2127 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, 2128 dlen + cp->crc_size, 2129 PCI_DMA_FROMDEVICE); 2130 cas_page_unmap(addr); 2131 RX_USED_ADD(page, dlen + cp->crc_size); 2132 } 2133 end_copy_pkt: 2134 if (cp->crc_size) { 2135 addr = NULL; 2136 crcaddr = skb->data + alloclen; 2137 } 2138 skb_put(skb, alloclen); 2139 } 2140 2141 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3])); 2142 if (cp->crc_size) { 2143 /* checksum includes FCS. strip it out. */ 2144 csum = csum_fold(csum_partial(crcaddr, cp->crc_size, 2145 csum_unfold(csum))); 2146 if (addr) 2147 cas_page_unmap(addr); 2148 } 2149 skb->protocol = eth_type_trans(skb, cp->dev); 2150 if (skb->protocol == htons(ETH_P_IP)) { 2151 skb->csum = csum_unfold(~csum); 2152 skb->ip_summed = CHECKSUM_COMPLETE; 2153 } else 2154 skb_checksum_none_assert(skb); 2155 return len; 2156 } 2157 2158 2159 /* we can handle up to 64 rx flows at a time. we do the same thing 2160 * as nonreassm except that we batch up the buffers. 2161 * NOTE: we currently just treat each flow as a bunch of packets that 2162 * we pass up. a better way would be to coalesce the packets 2163 * into a jumbo packet. to do that, we need to do the following: 2164 * 1) the first packet will have a clean split between header and 2165 * data. save both. 2166 * 2) each time the next flow packet comes in, extend the 2167 * data length and merge the checksums. 2168 * 3) on flow release, fix up the header. 2169 * 4) make sure the higher layer doesn't care. 2170 * because packets get coalesced, we shouldn't run into fragment count 2171 * issues. 2172 */ 2173 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words, 2174 struct sk_buff *skb) 2175 { 2176 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1); 2177 struct sk_buff_head *flow = &cp->rx_flows[flowid]; 2178 2179 /* this is protected at a higher layer, so no need to 2180 * do any additional locking here. stick the buffer 2181 * at the end. 2182 */ 2183 __skb_queue_tail(flow, skb); 2184 if (words[0] & RX_COMP1_RELEASE_FLOW) { 2185 while ((skb = __skb_dequeue(flow))) { 2186 cas_skb_release(skb); 2187 } 2188 } 2189 } 2190 2191 /* put rx descriptor back on ring. if a buffer is in use by a higher 2192 * layer, this will need to put in a replacement. 2193 */ 2194 static void cas_post_page(struct cas *cp, const int ring, const int index) 2195 { 2196 cas_page_t *new; 2197 int entry; 2198 2199 entry = cp->rx_old[ring]; 2200 2201 new = cas_page_swap(cp, ring, index); 2202 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr); 2203 cp->init_rxds[ring][entry].index = 2204 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) | 2205 CAS_BASE(RX_INDEX_RING, ring)); 2206 2207 entry = RX_DESC_ENTRY(ring, entry + 1); 2208 cp->rx_old[ring] = entry; 2209 2210 if (entry % 4) 2211 return; 2212 2213 if (ring == 0) 2214 writel(entry, cp->regs + REG_RX_KICK); 2215 else if ((N_RX_DESC_RINGS > 1) && 2216 (cp->cas_flags & CAS_FLAG_REG_PLUS)) 2217 writel(entry, cp->regs + REG_PLUS_RX_KICK1); 2218 } 2219 2220 2221 /* only when things are bad */ 2222 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num) 2223 { 2224 unsigned int entry, last, count, released; 2225 int cluster; 2226 cas_page_t **page = cp->rx_pages[ring]; 2227 2228 entry = cp->rx_old[ring]; 2229 2230 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 2231 "rxd[%d] interrupt, done: %d\n", ring, entry); 2232 2233 cluster = -1; 2234 count = entry & 0x3; 2235 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4); 2236 released = 0; 2237 while (entry != last) { 2238 /* make a new buffer if it's still in use */ 2239 if (page_count(page[entry]->buffer) > 1) { 2240 cas_page_t *new = cas_page_dequeue(cp); 2241 if (!new) { 2242 /* let the timer know that we need to 2243 * do this again 2244 */ 2245 cp->cas_flags |= CAS_FLAG_RXD_POST(ring); 2246 if (!timer_pending(&cp->link_timer)) 2247 mod_timer(&cp->link_timer, jiffies + 2248 CAS_LINK_FAST_TIMEOUT); 2249 cp->rx_old[ring] = entry; 2250 cp->rx_last[ring] = num ? num - released : 0; 2251 return -ENOMEM; 2252 } 2253 spin_lock(&cp->rx_inuse_lock); 2254 list_add(&page[entry]->list, &cp->rx_inuse_list); 2255 spin_unlock(&cp->rx_inuse_lock); 2256 cp->init_rxds[ring][entry].buffer = 2257 cpu_to_le64(new->dma_addr); 2258 page[entry] = new; 2259 2260 } 2261 2262 if (++count == 4) { 2263 cluster = entry; 2264 count = 0; 2265 } 2266 released++; 2267 entry = RX_DESC_ENTRY(ring, entry + 1); 2268 } 2269 cp->rx_old[ring] = entry; 2270 2271 if (cluster < 0) 2272 return 0; 2273 2274 if (ring == 0) 2275 writel(cluster, cp->regs + REG_RX_KICK); 2276 else if ((N_RX_DESC_RINGS > 1) && 2277 (cp->cas_flags & CAS_FLAG_REG_PLUS)) 2278 writel(cluster, cp->regs + REG_PLUS_RX_KICK1); 2279 return 0; 2280 } 2281 2282 2283 /* process a completion ring. packets are set up in three basic ways: 2284 * small packets: should be copied header + data in single buffer. 2285 * large packets: header and data in a single buffer. 2286 * split packets: header in a separate buffer from data. 2287 * data may be in multiple pages. data may be > 256 2288 * bytes but in a single page. 2289 * 2290 * NOTE: RX page posting is done in this routine as well. while there's 2291 * the capability of using multiple RX completion rings, it isn't 2292 * really worthwhile due to the fact that the page posting will 2293 * force serialization on the single descriptor ring. 2294 */ 2295 static int cas_rx_ringN(struct cas *cp, int ring, int budget) 2296 { 2297 struct cas_rx_comp *rxcs = cp->init_rxcs[ring]; 2298 int entry, drops; 2299 int npackets = 0; 2300 2301 netif_printk(cp, intr, KERN_DEBUG, cp->dev, 2302 "rx[%d] interrupt, done: %d/%d\n", 2303 ring, 2304 readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]); 2305 2306 entry = cp->rx_new[ring]; 2307 drops = 0; 2308 while (1) { 2309 struct cas_rx_comp *rxc = rxcs + entry; 2310 struct sk_buff *uninitialized_var(skb); 2311 int type, len; 2312 u64 words[4]; 2313 int i, dring; 2314 2315 words[0] = le64_to_cpu(rxc->word1); 2316 words[1] = le64_to_cpu(rxc->word2); 2317 words[2] = le64_to_cpu(rxc->word3); 2318 words[3] = le64_to_cpu(rxc->word4); 2319 2320 /* don't touch if still owned by hw */ 2321 type = CAS_VAL(RX_COMP1_TYPE, words[0]); 2322 if (type == 0) 2323 break; 2324 2325 /* hw hasn't cleared the zero bit yet */ 2326 if (words[3] & RX_COMP4_ZERO) { 2327 break; 2328 } 2329 2330 /* get info on the packet */ 2331 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) { 2332 spin_lock(&cp->stat_lock[ring]); 2333 cp->net_stats[ring].rx_errors++; 2334 if (words[3] & RX_COMP4_LEN_MISMATCH) 2335 cp->net_stats[ring].rx_length_errors++; 2336 if (words[3] & RX_COMP4_BAD) 2337 cp->net_stats[ring].rx_crc_errors++; 2338 spin_unlock(&cp->stat_lock[ring]); 2339 2340 /* We'll just return it to Cassini. */ 2341 drop_it: 2342 spin_lock(&cp->stat_lock[ring]); 2343 ++cp->net_stats[ring].rx_dropped; 2344 spin_unlock(&cp->stat_lock[ring]); 2345 goto next; 2346 } 2347 2348 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb); 2349 if (len < 0) { 2350 ++drops; 2351 goto drop_it; 2352 } 2353 2354 /* see if it's a flow re-assembly or not. the driver 2355 * itself handles release back up. 2356 */ 2357 if (RX_DONT_BATCH || (type == 0x2)) { 2358 /* non-reassm: these always get released */ 2359 cas_skb_release(skb); 2360 } else { 2361 cas_rx_flow_pkt(cp, words, skb); 2362 } 2363 2364 spin_lock(&cp->stat_lock[ring]); 2365 cp->net_stats[ring].rx_packets++; 2366 cp->net_stats[ring].rx_bytes += len; 2367 spin_unlock(&cp->stat_lock[ring]); 2368 2369 next: 2370 npackets++; 2371 2372 /* should it be released? */ 2373 if (words[0] & RX_COMP1_RELEASE_HDR) { 2374 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); 2375 dring = CAS_VAL(RX_INDEX_RING, i); 2376 i = CAS_VAL(RX_INDEX_NUM, i); 2377 cas_post_page(cp, dring, i); 2378 } 2379 2380 if (words[0] & RX_COMP1_RELEASE_DATA) { 2381 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); 2382 dring = CAS_VAL(RX_INDEX_RING, i); 2383 i = CAS_VAL(RX_INDEX_NUM, i); 2384 cas_post_page(cp, dring, i); 2385 } 2386 2387 if (words[0] & RX_COMP1_RELEASE_NEXT) { 2388 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); 2389 dring = CAS_VAL(RX_INDEX_RING, i); 2390 i = CAS_VAL(RX_INDEX_NUM, i); 2391 cas_post_page(cp, dring, i); 2392 } 2393 2394 /* skip to the next entry */ 2395 entry = RX_COMP_ENTRY(ring, entry + 1 + 2396 CAS_VAL(RX_COMP1_SKIP, words[0])); 2397 #ifdef USE_NAPI 2398 if (budget && (npackets >= budget)) 2399 break; 2400 #endif 2401 } 2402 cp->rx_new[ring] = entry; 2403 2404 if (drops) 2405 netdev_info(cp->dev, "Memory squeeze, deferring packet\n"); 2406 return npackets; 2407 } 2408 2409 2410 /* put completion entries back on the ring */ 2411 static void cas_post_rxcs_ringN(struct net_device *dev, 2412 struct cas *cp, int ring) 2413 { 2414 struct cas_rx_comp *rxc = cp->init_rxcs[ring]; 2415 int last, entry; 2416 2417 last = cp->rx_cur[ring]; 2418 entry = cp->rx_new[ring]; 2419 netif_printk(cp, intr, KERN_DEBUG, dev, 2420 "rxc[%d] interrupt, done: %d/%d\n", 2421 ring, readl(cp->regs + REG_RX_COMP_HEAD), entry); 2422 2423 /* zero and re-mark descriptors */ 2424 while (last != entry) { 2425 cas_rxc_init(rxc + last); 2426 last = RX_COMP_ENTRY(ring, last + 1); 2427 } 2428 cp->rx_cur[ring] = last; 2429 2430 if (ring == 0) 2431 writel(last, cp->regs + REG_RX_COMP_TAIL); 2432 else if (cp->cas_flags & CAS_FLAG_REG_PLUS) 2433 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring)); 2434 } 2435 2436 2437 2438 /* cassini can use all four PCI interrupts for the completion ring. 2439 * rings 3 and 4 are identical 2440 */ 2441 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD) 2442 static inline void cas_handle_irqN(struct net_device *dev, 2443 struct cas *cp, const u32 status, 2444 const int ring) 2445 { 2446 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT)) 2447 cas_post_rxcs_ringN(dev, cp, ring); 2448 } 2449 2450 static irqreturn_t cas_interruptN(int irq, void *dev_id) 2451 { 2452 struct net_device *dev = dev_id; 2453 struct cas *cp = netdev_priv(dev); 2454 unsigned long flags; 2455 int ring = (irq == cp->pci_irq_INTC) ? 2 : 3; 2456 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring)); 2457 2458 /* check for shared irq */ 2459 if (status == 0) 2460 return IRQ_NONE; 2461 2462 spin_lock_irqsave(&cp->lock, flags); 2463 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ 2464 #ifdef USE_NAPI 2465 cas_mask_intr(cp); 2466 napi_schedule(&cp->napi); 2467 #else 2468 cas_rx_ringN(cp, ring, 0); 2469 #endif 2470 status &= ~INTR_RX_DONE_ALT; 2471 } 2472 2473 if (status) 2474 cas_handle_irqN(dev, cp, status, ring); 2475 spin_unlock_irqrestore(&cp->lock, flags); 2476 return IRQ_HANDLED; 2477 } 2478 #endif 2479 2480 #ifdef USE_PCI_INTB 2481 /* everything but rx packets */ 2482 static inline void cas_handle_irq1(struct cas *cp, const u32 status) 2483 { 2484 if (status & INTR_RX_BUF_UNAVAIL_1) { 2485 /* Frame arrived, no free RX buffers available. 2486 * NOTE: we can get this on a link transition. */ 2487 cas_post_rxds_ringN(cp, 1, 0); 2488 spin_lock(&cp->stat_lock[1]); 2489 cp->net_stats[1].rx_dropped++; 2490 spin_unlock(&cp->stat_lock[1]); 2491 } 2492 2493 if (status & INTR_RX_BUF_AE_1) 2494 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) - 2495 RX_AE_FREEN_VAL(1)); 2496 2497 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) 2498 cas_post_rxcs_ringN(cp, 1); 2499 } 2500 2501 /* ring 2 handles a few more events than 3 and 4 */ 2502 static irqreturn_t cas_interrupt1(int irq, void *dev_id) 2503 { 2504 struct net_device *dev = dev_id; 2505 struct cas *cp = netdev_priv(dev); 2506 unsigned long flags; 2507 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); 2508 2509 /* check for shared interrupt */ 2510 if (status == 0) 2511 return IRQ_NONE; 2512 2513 spin_lock_irqsave(&cp->lock, flags); 2514 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ 2515 #ifdef USE_NAPI 2516 cas_mask_intr(cp); 2517 napi_schedule(&cp->napi); 2518 #else 2519 cas_rx_ringN(cp, 1, 0); 2520 #endif 2521 status &= ~INTR_RX_DONE_ALT; 2522 } 2523 if (status) 2524 cas_handle_irq1(cp, status); 2525 spin_unlock_irqrestore(&cp->lock, flags); 2526 return IRQ_HANDLED; 2527 } 2528 #endif 2529 2530 static inline void cas_handle_irq(struct net_device *dev, 2531 struct cas *cp, const u32 status) 2532 { 2533 /* housekeeping interrupts */ 2534 if (status & INTR_ERROR_MASK) 2535 cas_abnormal_irq(dev, cp, status); 2536 2537 if (status & INTR_RX_BUF_UNAVAIL) { 2538 /* Frame arrived, no free RX buffers available. 2539 * NOTE: we can get this on a link transition. 2540 */ 2541 cas_post_rxds_ringN(cp, 0, 0); 2542 spin_lock(&cp->stat_lock[0]); 2543 cp->net_stats[0].rx_dropped++; 2544 spin_unlock(&cp->stat_lock[0]); 2545 } else if (status & INTR_RX_BUF_AE) { 2546 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) - 2547 RX_AE_FREEN_VAL(0)); 2548 } 2549 2550 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) 2551 cas_post_rxcs_ringN(dev, cp, 0); 2552 } 2553 2554 static irqreturn_t cas_interrupt(int irq, void *dev_id) 2555 { 2556 struct net_device *dev = dev_id; 2557 struct cas *cp = netdev_priv(dev); 2558 unsigned long flags; 2559 u32 status = readl(cp->regs + REG_INTR_STATUS); 2560 2561 if (status == 0) 2562 return IRQ_NONE; 2563 2564 spin_lock_irqsave(&cp->lock, flags); 2565 if (status & (INTR_TX_ALL | INTR_TX_INTME)) { 2566 cas_tx(dev, cp, status); 2567 status &= ~(INTR_TX_ALL | INTR_TX_INTME); 2568 } 2569 2570 if (status & INTR_RX_DONE) { 2571 #ifdef USE_NAPI 2572 cas_mask_intr(cp); 2573 napi_schedule(&cp->napi); 2574 #else 2575 cas_rx_ringN(cp, 0, 0); 2576 #endif 2577 status &= ~INTR_RX_DONE; 2578 } 2579 2580 if (status) 2581 cas_handle_irq(dev, cp, status); 2582 spin_unlock_irqrestore(&cp->lock, flags); 2583 return IRQ_HANDLED; 2584 } 2585 2586 2587 #ifdef USE_NAPI 2588 static int cas_poll(struct napi_struct *napi, int budget) 2589 { 2590 struct cas *cp = container_of(napi, struct cas, napi); 2591 struct net_device *dev = cp->dev; 2592 int i, enable_intr, credits; 2593 u32 status = readl(cp->regs + REG_INTR_STATUS); 2594 unsigned long flags; 2595 2596 spin_lock_irqsave(&cp->lock, flags); 2597 cas_tx(dev, cp, status); 2598 spin_unlock_irqrestore(&cp->lock, flags); 2599 2600 /* NAPI rx packets. we spread the credits across all of the 2601 * rxc rings 2602 * 2603 * to make sure we're fair with the work we loop through each 2604 * ring N_RX_COMP_RING times with a request of 2605 * budget / N_RX_COMP_RINGS 2606 */ 2607 enable_intr = 1; 2608 credits = 0; 2609 for (i = 0; i < N_RX_COMP_RINGS; i++) { 2610 int j; 2611 for (j = 0; j < N_RX_COMP_RINGS; j++) { 2612 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS); 2613 if (credits >= budget) { 2614 enable_intr = 0; 2615 goto rx_comp; 2616 } 2617 } 2618 } 2619 2620 rx_comp: 2621 /* final rx completion */ 2622 spin_lock_irqsave(&cp->lock, flags); 2623 if (status) 2624 cas_handle_irq(dev, cp, status); 2625 2626 #ifdef USE_PCI_INTB 2627 if (N_RX_COMP_RINGS > 1) { 2628 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); 2629 if (status) 2630 cas_handle_irq1(dev, cp, status); 2631 } 2632 #endif 2633 2634 #ifdef USE_PCI_INTC 2635 if (N_RX_COMP_RINGS > 2) { 2636 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2)); 2637 if (status) 2638 cas_handle_irqN(dev, cp, status, 2); 2639 } 2640 #endif 2641 2642 #ifdef USE_PCI_INTD 2643 if (N_RX_COMP_RINGS > 3) { 2644 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3)); 2645 if (status) 2646 cas_handle_irqN(dev, cp, status, 3); 2647 } 2648 #endif 2649 spin_unlock_irqrestore(&cp->lock, flags); 2650 if (enable_intr) { 2651 napi_complete(napi); 2652 cas_unmask_intr(cp); 2653 } 2654 return credits; 2655 } 2656 #endif 2657 2658 #ifdef CONFIG_NET_POLL_CONTROLLER 2659 static void cas_netpoll(struct net_device *dev) 2660 { 2661 struct cas *cp = netdev_priv(dev); 2662 2663 cas_disable_irq(cp, 0); 2664 cas_interrupt(cp->pdev->irq, dev); 2665 cas_enable_irq(cp, 0); 2666 2667 #ifdef USE_PCI_INTB 2668 if (N_RX_COMP_RINGS > 1) { 2669 /* cas_interrupt1(); */ 2670 } 2671 #endif 2672 #ifdef USE_PCI_INTC 2673 if (N_RX_COMP_RINGS > 2) { 2674 /* cas_interruptN(); */ 2675 } 2676 #endif 2677 #ifdef USE_PCI_INTD 2678 if (N_RX_COMP_RINGS > 3) { 2679 /* cas_interruptN(); */ 2680 } 2681 #endif 2682 } 2683 #endif 2684 2685 static void cas_tx_timeout(struct net_device *dev) 2686 { 2687 struct cas *cp = netdev_priv(dev); 2688 2689 netdev_err(dev, "transmit timed out, resetting\n"); 2690 if (!cp->hw_running) { 2691 netdev_err(dev, "hrm.. hw not running!\n"); 2692 return; 2693 } 2694 2695 netdev_err(dev, "MIF_STATE[%08x]\n", 2696 readl(cp->regs + REG_MIF_STATE_MACHINE)); 2697 2698 netdev_err(dev, "MAC_STATE[%08x]\n", 2699 readl(cp->regs + REG_MAC_STATE_MACHINE)); 2700 2701 netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n", 2702 readl(cp->regs + REG_TX_CFG), 2703 readl(cp->regs + REG_MAC_TX_STATUS), 2704 readl(cp->regs + REG_MAC_TX_CFG), 2705 readl(cp->regs + REG_TX_FIFO_PKT_CNT), 2706 readl(cp->regs + REG_TX_FIFO_WRITE_PTR), 2707 readl(cp->regs + REG_TX_FIFO_READ_PTR), 2708 readl(cp->regs + REG_TX_SM_1), 2709 readl(cp->regs + REG_TX_SM_2)); 2710 2711 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n", 2712 readl(cp->regs + REG_RX_CFG), 2713 readl(cp->regs + REG_MAC_RX_STATUS), 2714 readl(cp->regs + REG_MAC_RX_CFG)); 2715 2716 netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n", 2717 readl(cp->regs + REG_HP_STATE_MACHINE), 2718 readl(cp->regs + REG_HP_STATUS0), 2719 readl(cp->regs + REG_HP_STATUS1), 2720 readl(cp->regs + REG_HP_STATUS2)); 2721 2722 #if 1 2723 atomic_inc(&cp->reset_task_pending); 2724 atomic_inc(&cp->reset_task_pending_all); 2725 schedule_work(&cp->reset_task); 2726 #else 2727 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 2728 schedule_work(&cp->reset_task); 2729 #endif 2730 } 2731 2732 static inline int cas_intme(int ring, int entry) 2733 { 2734 /* Algorithm: IRQ every 1/2 of descriptors. */ 2735 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1))) 2736 return 1; 2737 return 0; 2738 } 2739 2740 2741 static void cas_write_txd(struct cas *cp, int ring, int entry, 2742 dma_addr_t mapping, int len, u64 ctrl, int last) 2743 { 2744 struct cas_tx_desc *txd = cp->init_txds[ring] + entry; 2745 2746 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len); 2747 if (cas_intme(ring, entry)) 2748 ctrl |= TX_DESC_INTME; 2749 if (last) 2750 ctrl |= TX_DESC_EOF; 2751 txd->control = cpu_to_le64(ctrl); 2752 txd->buffer = cpu_to_le64(mapping); 2753 } 2754 2755 static inline void *tx_tiny_buf(struct cas *cp, const int ring, 2756 const int entry) 2757 { 2758 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry; 2759 } 2760 2761 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring, 2762 const int entry, const int tentry) 2763 { 2764 cp->tx_tiny_use[ring][tentry].nbufs++; 2765 cp->tx_tiny_use[ring][entry].used = 1; 2766 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry; 2767 } 2768 2769 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring, 2770 struct sk_buff *skb) 2771 { 2772 struct net_device *dev = cp->dev; 2773 int entry, nr_frags, frag, tabort, tentry; 2774 dma_addr_t mapping; 2775 unsigned long flags; 2776 u64 ctrl; 2777 u32 len; 2778 2779 spin_lock_irqsave(&cp->tx_lock[ring], flags); 2780 2781 /* This is a hard error, log it. */ 2782 if (TX_BUFFS_AVAIL(cp, ring) <= 2783 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) { 2784 netif_stop_queue(dev); 2785 spin_unlock_irqrestore(&cp->tx_lock[ring], flags); 2786 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); 2787 return 1; 2788 } 2789 2790 ctrl = 0; 2791 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2792 const u64 csum_start_off = skb_checksum_start_offset(skb); 2793 const u64 csum_stuff_off = csum_start_off + skb->csum_offset; 2794 2795 ctrl = TX_DESC_CSUM_EN | 2796 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) | 2797 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off); 2798 } 2799 2800 entry = cp->tx_new[ring]; 2801 cp->tx_skbs[ring][entry] = skb; 2802 2803 nr_frags = skb_shinfo(skb)->nr_frags; 2804 len = skb_headlen(skb); 2805 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data), 2806 offset_in_page(skb->data), len, 2807 PCI_DMA_TODEVICE); 2808 2809 tentry = entry; 2810 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len); 2811 if (unlikely(tabort)) { 2812 /* NOTE: len is always > tabort */ 2813 cas_write_txd(cp, ring, entry, mapping, len - tabort, 2814 ctrl | TX_DESC_SOF, 0); 2815 entry = TX_DESC_NEXT(ring, entry); 2816 2817 skb_copy_from_linear_data_offset(skb, len - tabort, 2818 tx_tiny_buf(cp, ring, entry), tabort); 2819 mapping = tx_tiny_map(cp, ring, entry, tentry); 2820 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl, 2821 (nr_frags == 0)); 2822 } else { 2823 cas_write_txd(cp, ring, entry, mapping, len, ctrl | 2824 TX_DESC_SOF, (nr_frags == 0)); 2825 } 2826 entry = TX_DESC_NEXT(ring, entry); 2827 2828 for (frag = 0; frag < nr_frags; frag++) { 2829 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag]; 2830 2831 len = skb_frag_size(fragp); 2832 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len, 2833 DMA_TO_DEVICE); 2834 2835 tabort = cas_calc_tabort(cp, fragp->page_offset, len); 2836 if (unlikely(tabort)) { 2837 void *addr; 2838 2839 /* NOTE: len is always > tabort */ 2840 cas_write_txd(cp, ring, entry, mapping, len - tabort, 2841 ctrl, 0); 2842 entry = TX_DESC_NEXT(ring, entry); 2843 2844 addr = cas_page_map(skb_frag_page(fragp)); 2845 memcpy(tx_tiny_buf(cp, ring, entry), 2846 addr + fragp->page_offset + len - tabort, 2847 tabort); 2848 cas_page_unmap(addr); 2849 mapping = tx_tiny_map(cp, ring, entry, tentry); 2850 len = tabort; 2851 } 2852 2853 cas_write_txd(cp, ring, entry, mapping, len, ctrl, 2854 (frag + 1 == nr_frags)); 2855 entry = TX_DESC_NEXT(ring, entry); 2856 } 2857 2858 cp->tx_new[ring] = entry; 2859 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)) 2860 netif_stop_queue(dev); 2861 2862 netif_printk(cp, tx_queued, KERN_DEBUG, dev, 2863 "tx[%d] queued, slot %d, skblen %d, avail %d\n", 2864 ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring)); 2865 writel(entry, cp->regs + REG_TX_KICKN(ring)); 2866 spin_unlock_irqrestore(&cp->tx_lock[ring], flags); 2867 return 0; 2868 } 2869 2870 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev) 2871 { 2872 struct cas *cp = netdev_priv(dev); 2873 2874 /* this is only used as a load-balancing hint, so it doesn't 2875 * need to be SMP safe 2876 */ 2877 static int ring; 2878 2879 if (skb_padto(skb, cp->min_frame_size)) 2880 return NETDEV_TX_OK; 2881 2882 /* XXX: we need some higher-level QoS hooks to steer packets to 2883 * individual queues. 2884 */ 2885 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb)) 2886 return NETDEV_TX_BUSY; 2887 return NETDEV_TX_OK; 2888 } 2889 2890 static void cas_init_tx_dma(struct cas *cp) 2891 { 2892 u64 desc_dma = cp->block_dvma; 2893 unsigned long off; 2894 u32 val; 2895 int i; 2896 2897 /* set up tx completion writeback registers. must be 8-byte aligned */ 2898 #ifdef USE_TX_COMPWB 2899 off = offsetof(struct cas_init_block, tx_compwb); 2900 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI); 2901 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW); 2902 #endif 2903 2904 /* enable completion writebacks, enable paced mode, 2905 * disable read pipe, and disable pre-interrupt compwbs 2906 */ 2907 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 | 2908 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 | 2909 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE | 2910 TX_CFG_INTR_COMPWB_DIS; 2911 2912 /* write out tx ring info and tx desc bases */ 2913 for (i = 0; i < MAX_TX_RINGS; i++) { 2914 off = (unsigned long) cp->init_txds[i] - 2915 (unsigned long) cp->init_block; 2916 2917 val |= CAS_TX_RINGN_BASE(i); 2918 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i)); 2919 writel((desc_dma + off) & 0xffffffff, cp->regs + 2920 REG_TX_DBN_LOW(i)); 2921 /* don't zero out the kick register here as the system 2922 * will wedge 2923 */ 2924 } 2925 writel(val, cp->regs + REG_TX_CFG); 2926 2927 /* program max burst sizes. these numbers should be different 2928 * if doing QoS. 2929 */ 2930 #ifdef USE_QOS 2931 writel(0x800, cp->regs + REG_TX_MAXBURST_0); 2932 writel(0x1600, cp->regs + REG_TX_MAXBURST_1); 2933 writel(0x2400, cp->regs + REG_TX_MAXBURST_2); 2934 writel(0x4800, cp->regs + REG_TX_MAXBURST_3); 2935 #else 2936 writel(0x800, cp->regs + REG_TX_MAXBURST_0); 2937 writel(0x800, cp->regs + REG_TX_MAXBURST_1); 2938 writel(0x800, cp->regs + REG_TX_MAXBURST_2); 2939 writel(0x800, cp->regs + REG_TX_MAXBURST_3); 2940 #endif 2941 } 2942 2943 /* Must be invoked under cp->lock. */ 2944 static inline void cas_init_dma(struct cas *cp) 2945 { 2946 cas_init_tx_dma(cp); 2947 cas_init_rx_dma(cp); 2948 } 2949 2950 static void cas_process_mc_list(struct cas *cp) 2951 { 2952 u16 hash_table[16]; 2953 u32 crc; 2954 struct netdev_hw_addr *ha; 2955 int i = 1; 2956 2957 memset(hash_table, 0, sizeof(hash_table)); 2958 netdev_for_each_mc_addr(ha, cp->dev) { 2959 if (i <= CAS_MC_EXACT_MATCH_SIZE) { 2960 /* use the alternate mac address registers for the 2961 * first 15 multicast addresses 2962 */ 2963 writel((ha->addr[4] << 8) | ha->addr[5], 2964 cp->regs + REG_MAC_ADDRN(i*3 + 0)); 2965 writel((ha->addr[2] << 8) | ha->addr[3], 2966 cp->regs + REG_MAC_ADDRN(i*3 + 1)); 2967 writel((ha->addr[0] << 8) | ha->addr[1], 2968 cp->regs + REG_MAC_ADDRN(i*3 + 2)); 2969 i++; 2970 } 2971 else { 2972 /* use hw hash table for the next series of 2973 * multicast addresses 2974 */ 2975 crc = ether_crc_le(ETH_ALEN, ha->addr); 2976 crc >>= 24; 2977 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); 2978 } 2979 } 2980 for (i = 0; i < 16; i++) 2981 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i)); 2982 } 2983 2984 /* Must be invoked under cp->lock. */ 2985 static u32 cas_setup_multicast(struct cas *cp) 2986 { 2987 u32 rxcfg = 0; 2988 int i; 2989 2990 if (cp->dev->flags & IFF_PROMISC) { 2991 rxcfg |= MAC_RX_CFG_PROMISC_EN; 2992 2993 } else if (cp->dev->flags & IFF_ALLMULTI) { 2994 for (i=0; i < 16; i++) 2995 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i)); 2996 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; 2997 2998 } else { 2999 cas_process_mc_list(cp); 3000 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; 3001 } 3002 3003 return rxcfg; 3004 } 3005 3006 /* must be invoked under cp->stat_lock[N_TX_RINGS] */ 3007 static void cas_clear_mac_err(struct cas *cp) 3008 { 3009 writel(0, cp->regs + REG_MAC_COLL_NORMAL); 3010 writel(0, cp->regs + REG_MAC_COLL_FIRST); 3011 writel(0, cp->regs + REG_MAC_COLL_EXCESS); 3012 writel(0, cp->regs + REG_MAC_COLL_LATE); 3013 writel(0, cp->regs + REG_MAC_TIMER_DEFER); 3014 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK); 3015 writel(0, cp->regs + REG_MAC_RECV_FRAME); 3016 writel(0, cp->regs + REG_MAC_LEN_ERR); 3017 writel(0, cp->regs + REG_MAC_ALIGN_ERR); 3018 writel(0, cp->regs + REG_MAC_FCS_ERR); 3019 writel(0, cp->regs + REG_MAC_RX_CODE_ERR); 3020 } 3021 3022 3023 static void cas_mac_reset(struct cas *cp) 3024 { 3025 int i; 3026 3027 /* do both TX and RX reset */ 3028 writel(0x1, cp->regs + REG_MAC_TX_RESET); 3029 writel(0x1, cp->regs + REG_MAC_RX_RESET); 3030 3031 /* wait for TX */ 3032 i = STOP_TRIES; 3033 while (i-- > 0) { 3034 if (readl(cp->regs + REG_MAC_TX_RESET) == 0) 3035 break; 3036 udelay(10); 3037 } 3038 3039 /* wait for RX */ 3040 i = STOP_TRIES; 3041 while (i-- > 0) { 3042 if (readl(cp->regs + REG_MAC_RX_RESET) == 0) 3043 break; 3044 udelay(10); 3045 } 3046 3047 if (readl(cp->regs + REG_MAC_TX_RESET) | 3048 readl(cp->regs + REG_MAC_RX_RESET)) 3049 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n", 3050 readl(cp->regs + REG_MAC_TX_RESET), 3051 readl(cp->regs + REG_MAC_RX_RESET), 3052 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3053 } 3054 3055 3056 /* Must be invoked under cp->lock. */ 3057 static void cas_init_mac(struct cas *cp) 3058 { 3059 unsigned char *e = &cp->dev->dev_addr[0]; 3060 int i; 3061 cas_mac_reset(cp); 3062 3063 /* setup core arbitration weight register */ 3064 writel(CAWR_RR_DIS, cp->regs + REG_CAWR); 3065 3066 /* XXX Use pci_dma_burst_advice() */ 3067 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) 3068 /* set the infinite burst register for chips that don't have 3069 * pci issues. 3070 */ 3071 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0) 3072 writel(INF_BURST_EN, cp->regs + REG_INF_BURST); 3073 #endif 3074 3075 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE); 3076 3077 writel(0x00, cp->regs + REG_MAC_IPG0); 3078 writel(0x08, cp->regs + REG_MAC_IPG1); 3079 writel(0x04, cp->regs + REG_MAC_IPG2); 3080 3081 /* change later for 802.3z */ 3082 writel(0x40, cp->regs + REG_MAC_SLOT_TIME); 3083 3084 /* min frame + FCS */ 3085 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN); 3086 3087 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we 3088 * specify the maximum frame size to prevent RX tag errors on 3089 * oversized frames. 3090 */ 3091 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) | 3092 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME, 3093 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)), 3094 cp->regs + REG_MAC_FRAMESIZE_MAX); 3095 3096 /* NOTE: crc_size is used as a surrogate for half-duplex. 3097 * workaround saturn half-duplex issue by increasing preamble 3098 * size to 65 bytes. 3099 */ 3100 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size) 3101 writel(0x41, cp->regs + REG_MAC_PA_SIZE); 3102 else 3103 writel(0x07, cp->regs + REG_MAC_PA_SIZE); 3104 writel(0x04, cp->regs + REG_MAC_JAM_SIZE); 3105 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT); 3106 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE); 3107 3108 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED); 3109 3110 writel(0, cp->regs + REG_MAC_ADDR_FILTER0); 3111 writel(0, cp->regs + REG_MAC_ADDR_FILTER1); 3112 writel(0, cp->regs + REG_MAC_ADDR_FILTER2); 3113 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK); 3114 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK); 3115 3116 /* setup mac address in perfect filter array */ 3117 for (i = 0; i < 45; i++) 3118 writel(0x0, cp->regs + REG_MAC_ADDRN(i)); 3119 3120 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0)); 3121 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1)); 3122 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2)); 3123 3124 writel(0x0001, cp->regs + REG_MAC_ADDRN(42)); 3125 writel(0xc200, cp->regs + REG_MAC_ADDRN(43)); 3126 writel(0x0180, cp->regs + REG_MAC_ADDRN(44)); 3127 3128 cp->mac_rx_cfg = cas_setup_multicast(cp); 3129 3130 spin_lock(&cp->stat_lock[N_TX_RINGS]); 3131 cas_clear_mac_err(cp); 3132 spin_unlock(&cp->stat_lock[N_TX_RINGS]); 3133 3134 /* Setup MAC interrupts. We want to get all of the interesting 3135 * counter expiration events, but we do not want to hear about 3136 * normal rx/tx as the DMA engine tells us that. 3137 */ 3138 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK); 3139 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); 3140 3141 /* Don't enable even the PAUSE interrupts for now, we 3142 * make no use of those events other than to record them. 3143 */ 3144 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK); 3145 } 3146 3147 /* Must be invoked under cp->lock. */ 3148 static void cas_init_pause_thresholds(struct cas *cp) 3149 { 3150 /* Calculate pause thresholds. Setting the OFF threshold to the 3151 * full RX fifo size effectively disables PAUSE generation 3152 */ 3153 if (cp->rx_fifo_size <= (2 * 1024)) { 3154 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size; 3155 } else { 3156 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63; 3157 if (max_frame * 3 > cp->rx_fifo_size) { 3158 cp->rx_pause_off = 7104; 3159 cp->rx_pause_on = 960; 3160 } else { 3161 int off = (cp->rx_fifo_size - (max_frame * 2)); 3162 int on = off - max_frame; 3163 cp->rx_pause_off = off; 3164 cp->rx_pause_on = on; 3165 } 3166 } 3167 } 3168 3169 static int cas_vpd_match(const void __iomem *p, const char *str) 3170 { 3171 int len = strlen(str) + 1; 3172 int i; 3173 3174 for (i = 0; i < len; i++) { 3175 if (readb(p + i) != str[i]) 3176 return 0; 3177 } 3178 return 1; 3179 } 3180 3181 3182 /* get the mac address by reading the vpd information in the rom. 3183 * also get the phy type and determine if there's an entropy generator. 3184 * NOTE: this is a bit convoluted for the following reasons: 3185 * 1) vpd info has order-dependent mac addresses for multinic cards 3186 * 2) the only way to determine the nic order is to use the slot 3187 * number. 3188 * 3) fiber cards don't have bridges, so their slot numbers don't 3189 * mean anything. 3190 * 4) we don't actually know we have a fiber card until after 3191 * the mac addresses are parsed. 3192 */ 3193 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr, 3194 const int offset) 3195 { 3196 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START; 3197 void __iomem *base, *kstart; 3198 int i, len; 3199 int found = 0; 3200 #define VPD_FOUND_MAC 0x01 3201 #define VPD_FOUND_PHY 0x02 3202 3203 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */ 3204 int mac_off = 0; 3205 3206 #if defined(CONFIG_SPARC) 3207 const unsigned char *addr; 3208 #endif 3209 3210 /* give us access to the PROM */ 3211 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD, 3212 cp->regs + REG_BIM_LOCAL_DEV_EN); 3213 3214 /* check for an expansion rom */ 3215 if (readb(p) != 0x55 || readb(p + 1) != 0xaa) 3216 goto use_random_mac_addr; 3217 3218 /* search for beginning of vpd */ 3219 base = NULL; 3220 for (i = 2; i < EXPANSION_ROM_SIZE; i++) { 3221 /* check for PCIR */ 3222 if ((readb(p + i + 0) == 0x50) && 3223 (readb(p + i + 1) == 0x43) && 3224 (readb(p + i + 2) == 0x49) && 3225 (readb(p + i + 3) == 0x52)) { 3226 base = p + (readb(p + i + 8) | 3227 (readb(p + i + 9) << 8)); 3228 break; 3229 } 3230 } 3231 3232 if (!base || (readb(base) != 0x82)) 3233 goto use_random_mac_addr; 3234 3235 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3; 3236 while (i < EXPANSION_ROM_SIZE) { 3237 if (readb(base + i) != 0x90) /* no vpd found */ 3238 goto use_random_mac_addr; 3239 3240 /* found a vpd field */ 3241 len = readb(base + i + 1) | (readb(base + i + 2) << 8); 3242 3243 /* extract keywords */ 3244 kstart = base + i + 3; 3245 p = kstart; 3246 while ((p - kstart) < len) { 3247 int klen = readb(p + 2); 3248 int j; 3249 char type; 3250 3251 p += 3; 3252 3253 /* look for the following things: 3254 * -- correct length == 29 3255 * 3 (type) + 2 (size) + 3256 * 18 (strlen("local-mac-address") + 1) + 3257 * 6 (mac addr) 3258 * -- VPD Instance 'I' 3259 * -- VPD Type Bytes 'B' 3260 * -- VPD data length == 6 3261 * -- property string == local-mac-address 3262 * 3263 * -- correct length == 24 3264 * 3 (type) + 2 (size) + 3265 * 12 (strlen("entropy-dev") + 1) + 3266 * 7 (strlen("vms110") + 1) 3267 * -- VPD Instance 'I' 3268 * -- VPD Type String 'B' 3269 * -- VPD data length == 7 3270 * -- property string == entropy-dev 3271 * 3272 * -- correct length == 18 3273 * 3 (type) + 2 (size) + 3274 * 9 (strlen("phy-type") + 1) + 3275 * 4 (strlen("pcs") + 1) 3276 * -- VPD Instance 'I' 3277 * -- VPD Type String 'S' 3278 * -- VPD data length == 4 3279 * -- property string == phy-type 3280 * 3281 * -- correct length == 23 3282 * 3 (type) + 2 (size) + 3283 * 14 (strlen("phy-interface") + 1) + 3284 * 4 (strlen("pcs") + 1) 3285 * -- VPD Instance 'I' 3286 * -- VPD Type String 'S' 3287 * -- VPD data length == 4 3288 * -- property string == phy-interface 3289 */ 3290 if (readb(p) != 'I') 3291 goto next; 3292 3293 /* finally, check string and length */ 3294 type = readb(p + 3); 3295 if (type == 'B') { 3296 if ((klen == 29) && readb(p + 4) == 6 && 3297 cas_vpd_match(p + 5, 3298 "local-mac-address")) { 3299 if (mac_off++ > offset) 3300 goto next; 3301 3302 /* set mac address */ 3303 for (j = 0; j < 6; j++) 3304 dev_addr[j] = 3305 readb(p + 23 + j); 3306 goto found_mac; 3307 } 3308 } 3309 3310 if (type != 'S') 3311 goto next; 3312 3313 #ifdef USE_ENTROPY_DEV 3314 if ((klen == 24) && 3315 cas_vpd_match(p + 5, "entropy-dev") && 3316 cas_vpd_match(p + 17, "vms110")) { 3317 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV; 3318 goto next; 3319 } 3320 #endif 3321 3322 if (found & VPD_FOUND_PHY) 3323 goto next; 3324 3325 if ((klen == 18) && readb(p + 4) == 4 && 3326 cas_vpd_match(p + 5, "phy-type")) { 3327 if (cas_vpd_match(p + 14, "pcs")) { 3328 phy_type = CAS_PHY_SERDES; 3329 goto found_phy; 3330 } 3331 } 3332 3333 if ((klen == 23) && readb(p + 4) == 4 && 3334 cas_vpd_match(p + 5, "phy-interface")) { 3335 if (cas_vpd_match(p + 19, "pcs")) { 3336 phy_type = CAS_PHY_SERDES; 3337 goto found_phy; 3338 } 3339 } 3340 found_mac: 3341 found |= VPD_FOUND_MAC; 3342 goto next; 3343 3344 found_phy: 3345 found |= VPD_FOUND_PHY; 3346 3347 next: 3348 p += klen; 3349 } 3350 i += len + 3; 3351 } 3352 3353 use_random_mac_addr: 3354 if (found & VPD_FOUND_MAC) 3355 goto done; 3356 3357 #if defined(CONFIG_SPARC) 3358 addr = of_get_property(cp->of_node, "local-mac-address", NULL); 3359 if (addr != NULL) { 3360 memcpy(dev_addr, addr, 6); 3361 goto done; 3362 } 3363 #endif 3364 3365 /* Sun MAC prefix then 3 random bytes. */ 3366 pr_info("MAC address not found in ROM VPD\n"); 3367 dev_addr[0] = 0x08; 3368 dev_addr[1] = 0x00; 3369 dev_addr[2] = 0x20; 3370 get_random_bytes(dev_addr + 3, 3); 3371 3372 done: 3373 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN); 3374 return phy_type; 3375 } 3376 3377 /* check pci invariants */ 3378 static void cas_check_pci_invariants(struct cas *cp) 3379 { 3380 struct pci_dev *pdev = cp->pdev; 3381 3382 cp->cas_flags = 0; 3383 if ((pdev->vendor == PCI_VENDOR_ID_SUN) && 3384 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) { 3385 if (pdev->revision >= CAS_ID_REVPLUS) 3386 cp->cas_flags |= CAS_FLAG_REG_PLUS; 3387 if (pdev->revision < CAS_ID_REVPLUS02u) 3388 cp->cas_flags |= CAS_FLAG_TARGET_ABORT; 3389 3390 /* Original Cassini supports HW CSUM, but it's not 3391 * enabled by default as it can trigger TX hangs. 3392 */ 3393 if (pdev->revision < CAS_ID_REV2) 3394 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM; 3395 } else { 3396 /* Only sun has original cassini chips. */ 3397 cp->cas_flags |= CAS_FLAG_REG_PLUS; 3398 3399 /* We use a flag because the same phy might be externally 3400 * connected. 3401 */ 3402 if ((pdev->vendor == PCI_VENDOR_ID_NS) && 3403 (pdev->device == PCI_DEVICE_ID_NS_SATURN)) 3404 cp->cas_flags |= CAS_FLAG_SATURN; 3405 } 3406 } 3407 3408 3409 static int cas_check_invariants(struct cas *cp) 3410 { 3411 struct pci_dev *pdev = cp->pdev; 3412 u32 cfg; 3413 int i; 3414 3415 /* get page size for rx buffers. */ 3416 cp->page_order = 0; 3417 #ifdef USE_PAGE_ORDER 3418 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) { 3419 /* see if we can allocate larger pages */ 3420 struct page *page = alloc_pages(GFP_ATOMIC, 3421 CAS_JUMBO_PAGE_SHIFT - 3422 PAGE_SHIFT); 3423 if (page) { 3424 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT); 3425 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT; 3426 } else { 3427 printk("MTU limited to %d bytes\n", CAS_MAX_MTU); 3428 } 3429 } 3430 #endif 3431 cp->page_size = (PAGE_SIZE << cp->page_order); 3432 3433 /* Fetch the FIFO configurations. */ 3434 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64; 3435 cp->rx_fifo_size = RX_FIFO_SIZE; 3436 3437 /* finish phy determination. MDIO1 takes precedence over MDIO0 if 3438 * they're both connected. 3439 */ 3440 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr, 3441 PCI_SLOT(pdev->devfn)); 3442 if (cp->phy_type & CAS_PHY_SERDES) { 3443 cp->cas_flags |= CAS_FLAG_1000MB_CAP; 3444 return 0; /* no more checking needed */ 3445 } 3446 3447 /* MII */ 3448 cfg = readl(cp->regs + REG_MIF_CFG); 3449 if (cfg & MIF_CFG_MDIO_1) { 3450 cp->phy_type = CAS_PHY_MII_MDIO1; 3451 } else if (cfg & MIF_CFG_MDIO_0) { 3452 cp->phy_type = CAS_PHY_MII_MDIO0; 3453 } 3454 3455 cas_mif_poll(cp, 0); 3456 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); 3457 3458 for (i = 0; i < 32; i++) { 3459 u32 phy_id; 3460 int j; 3461 3462 for (j = 0; j < 3; j++) { 3463 cp->phy_addr = i; 3464 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16; 3465 phy_id |= cas_phy_read(cp, MII_PHYSID2); 3466 if (phy_id && (phy_id != 0xFFFFFFFF)) { 3467 cp->phy_id = phy_id; 3468 goto done; 3469 } 3470 } 3471 } 3472 pr_err("MII phy did not respond [%08x]\n", 3473 readl(cp->regs + REG_MIF_STATE_MACHINE)); 3474 return -1; 3475 3476 done: 3477 /* see if we can do gigabit */ 3478 cfg = cas_phy_read(cp, MII_BMSR); 3479 if ((cfg & CAS_BMSR_1000_EXTEND) && 3480 cas_phy_read(cp, CAS_MII_1000_EXTEND)) 3481 cp->cas_flags |= CAS_FLAG_1000MB_CAP; 3482 return 0; 3483 } 3484 3485 /* Must be invoked under cp->lock. */ 3486 static inline void cas_start_dma(struct cas *cp) 3487 { 3488 int i; 3489 u32 val; 3490 int txfailed = 0; 3491 3492 /* enable dma */ 3493 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN; 3494 writel(val, cp->regs + REG_TX_CFG); 3495 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN; 3496 writel(val, cp->regs + REG_RX_CFG); 3497 3498 /* enable the mac */ 3499 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN; 3500 writel(val, cp->regs + REG_MAC_TX_CFG); 3501 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN; 3502 writel(val, cp->regs + REG_MAC_RX_CFG); 3503 3504 i = STOP_TRIES; 3505 while (i-- > 0) { 3506 val = readl(cp->regs + REG_MAC_TX_CFG); 3507 if ((val & MAC_TX_CFG_EN)) 3508 break; 3509 udelay(10); 3510 } 3511 if (i < 0) txfailed = 1; 3512 i = STOP_TRIES; 3513 while (i-- > 0) { 3514 val = readl(cp->regs + REG_MAC_RX_CFG); 3515 if ((val & MAC_RX_CFG_EN)) { 3516 if (txfailed) { 3517 netdev_err(cp->dev, 3518 "enabling mac failed [tx:%08x:%08x]\n", 3519 readl(cp->regs + REG_MIF_STATE_MACHINE), 3520 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3521 } 3522 goto enable_rx_done; 3523 } 3524 udelay(10); 3525 } 3526 netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n", 3527 (txfailed ? "tx,rx" : "rx"), 3528 readl(cp->regs + REG_MIF_STATE_MACHINE), 3529 readl(cp->regs + REG_MAC_STATE_MACHINE)); 3530 3531 enable_rx_done: 3532 cas_unmask_intr(cp); /* enable interrupts */ 3533 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); 3534 writel(0, cp->regs + REG_RX_COMP_TAIL); 3535 3536 if (cp->cas_flags & CAS_FLAG_REG_PLUS) { 3537 if (N_RX_DESC_RINGS > 1) 3538 writel(RX_DESC_RINGN_SIZE(1) - 4, 3539 cp->regs + REG_PLUS_RX_KICK1); 3540 3541 for (i = 1; i < N_RX_COMP_RINGS; i++) 3542 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i)); 3543 } 3544 } 3545 3546 /* Must be invoked under cp->lock. */ 3547 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd, 3548 int *pause) 3549 { 3550 u32 val = readl(cp->regs + REG_PCS_MII_LPA); 3551 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0; 3552 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00; 3553 if (val & PCS_MII_LPA_ASYM_PAUSE) 3554 *pause |= 0x10; 3555 *spd = 1000; 3556 } 3557 3558 /* Must be invoked under cp->lock. */ 3559 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd, 3560 int *pause) 3561 { 3562 u32 val; 3563 3564 *fd = 0; 3565 *spd = 10; 3566 *pause = 0; 3567 3568 /* use GMII registers */ 3569 val = cas_phy_read(cp, MII_LPA); 3570 if (val & CAS_LPA_PAUSE) 3571 *pause = 0x01; 3572 3573 if (val & CAS_LPA_ASYM_PAUSE) 3574 *pause |= 0x10; 3575 3576 if (val & LPA_DUPLEX) 3577 *fd = 1; 3578 if (val & LPA_100) 3579 *spd = 100; 3580 3581 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 3582 val = cas_phy_read(cp, CAS_MII_1000_STATUS); 3583 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF)) 3584 *spd = 1000; 3585 if (val & CAS_LPA_1000FULL) 3586 *fd = 1; 3587 } 3588 } 3589 3590 /* A link-up condition has occurred, initialize and enable the 3591 * rest of the chip. 3592 * 3593 * Must be invoked under cp->lock. 3594 */ 3595 static void cas_set_link_modes(struct cas *cp) 3596 { 3597 u32 val; 3598 int full_duplex, speed, pause; 3599 3600 full_duplex = 0; 3601 speed = 10; 3602 pause = 0; 3603 3604 if (CAS_PHY_MII(cp->phy_type)) { 3605 cas_mif_poll(cp, 0); 3606 val = cas_phy_read(cp, MII_BMCR); 3607 if (val & BMCR_ANENABLE) { 3608 cas_read_mii_link_mode(cp, &full_duplex, &speed, 3609 &pause); 3610 } else { 3611 if (val & BMCR_FULLDPLX) 3612 full_duplex = 1; 3613 3614 if (val & BMCR_SPEED100) 3615 speed = 100; 3616 else if (val & CAS_BMCR_SPEED1000) 3617 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? 3618 1000 : 100; 3619 } 3620 cas_mif_poll(cp, 1); 3621 3622 } else { 3623 val = readl(cp->regs + REG_PCS_MII_CTRL); 3624 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause); 3625 if ((val & PCS_MII_AUTONEG_EN) == 0) { 3626 if (val & PCS_MII_CTRL_DUPLEX) 3627 full_duplex = 1; 3628 } 3629 } 3630 3631 netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n", 3632 speed, full_duplex ? "full" : "half"); 3633 3634 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED; 3635 if (CAS_PHY_MII(cp->phy_type)) { 3636 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN; 3637 if (!full_duplex) 3638 val |= MAC_XIF_DISABLE_ECHO; 3639 } 3640 if (full_duplex) 3641 val |= MAC_XIF_FDPLX_LED; 3642 if (speed == 1000) 3643 val |= MAC_XIF_GMII_MODE; 3644 writel(val, cp->regs + REG_MAC_XIF_CFG); 3645 3646 /* deal with carrier and collision detect. */ 3647 val = MAC_TX_CFG_IPG_EN; 3648 if (full_duplex) { 3649 val |= MAC_TX_CFG_IGNORE_CARRIER; 3650 val |= MAC_TX_CFG_IGNORE_COLL; 3651 } else { 3652 #ifndef USE_CSMA_CD_PROTO 3653 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN; 3654 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM; 3655 #endif 3656 } 3657 /* val now set up for REG_MAC_TX_CFG */ 3658 3659 /* If gigabit and half-duplex, enable carrier extension 3660 * mode. increase slot time to 512 bytes as well. 3661 * else, disable it and make sure slot time is 64 bytes. 3662 * also activate checksum bug workaround 3663 */ 3664 if ((speed == 1000) && !full_duplex) { 3665 writel(val | MAC_TX_CFG_CARRIER_EXTEND, 3666 cp->regs + REG_MAC_TX_CFG); 3667 3668 val = readl(cp->regs + REG_MAC_RX_CFG); 3669 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */ 3670 writel(val | MAC_RX_CFG_CARRIER_EXTEND, 3671 cp->regs + REG_MAC_RX_CFG); 3672 3673 writel(0x200, cp->regs + REG_MAC_SLOT_TIME); 3674 3675 cp->crc_size = 4; 3676 /* minimum size gigabit frame at half duplex */ 3677 cp->min_frame_size = CAS_1000MB_MIN_FRAME; 3678 3679 } else { 3680 writel(val, cp->regs + REG_MAC_TX_CFG); 3681 3682 /* checksum bug workaround. don't strip FCS when in 3683 * half-duplex mode 3684 */ 3685 val = readl(cp->regs + REG_MAC_RX_CFG); 3686 if (full_duplex) { 3687 val |= MAC_RX_CFG_STRIP_FCS; 3688 cp->crc_size = 0; 3689 cp->min_frame_size = CAS_MIN_MTU; 3690 } else { 3691 val &= ~MAC_RX_CFG_STRIP_FCS; 3692 cp->crc_size = 4; 3693 cp->min_frame_size = CAS_MIN_FRAME; 3694 } 3695 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND, 3696 cp->regs + REG_MAC_RX_CFG); 3697 writel(0x40, cp->regs + REG_MAC_SLOT_TIME); 3698 } 3699 3700 if (netif_msg_link(cp)) { 3701 if (pause & 0x01) { 3702 netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n", 3703 cp->rx_fifo_size, 3704 cp->rx_pause_off, 3705 cp->rx_pause_on); 3706 } else if (pause & 0x10) { 3707 netdev_info(cp->dev, "TX pause enabled\n"); 3708 } else { 3709 netdev_info(cp->dev, "Pause is disabled\n"); 3710 } 3711 } 3712 3713 val = readl(cp->regs + REG_MAC_CTRL_CFG); 3714 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN); 3715 if (pause) { /* symmetric or asymmetric pause */ 3716 val |= MAC_CTRL_CFG_SEND_PAUSE_EN; 3717 if (pause & 0x01) { /* symmetric pause */ 3718 val |= MAC_CTRL_CFG_RECV_PAUSE_EN; 3719 } 3720 } 3721 writel(val, cp->regs + REG_MAC_CTRL_CFG); 3722 cas_start_dma(cp); 3723 } 3724 3725 /* Must be invoked under cp->lock. */ 3726 static void cas_init_hw(struct cas *cp, int restart_link) 3727 { 3728 if (restart_link) 3729 cas_phy_init(cp); 3730 3731 cas_init_pause_thresholds(cp); 3732 cas_init_mac(cp); 3733 cas_init_dma(cp); 3734 3735 if (restart_link) { 3736 /* Default aneg parameters */ 3737 cp->timer_ticks = 0; 3738 cas_begin_auto_negotiation(cp, NULL); 3739 } else if (cp->lstate == link_up) { 3740 cas_set_link_modes(cp); 3741 netif_carrier_on(cp->dev); 3742 } 3743 } 3744 3745 /* Must be invoked under cp->lock. on earlier cassini boards, 3746 * SOFT_0 is tied to PCI reset. we use this to force a pci reset, 3747 * let it settle out, and then restore pci state. 3748 */ 3749 static void cas_hard_reset(struct cas *cp) 3750 { 3751 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN); 3752 udelay(20); 3753 pci_restore_state(cp->pdev); 3754 } 3755 3756 3757 static void cas_global_reset(struct cas *cp, int blkflag) 3758 { 3759 int limit; 3760 3761 /* issue a global reset. don't use RSTOUT. */ 3762 if (blkflag && !CAS_PHY_MII(cp->phy_type)) { 3763 /* For PCS, when the blkflag is set, we should set the 3764 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of 3765 * the last autonegotiation from being cleared. We'll 3766 * need some special handling if the chip is set into a 3767 * loopback mode. 3768 */ 3769 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK), 3770 cp->regs + REG_SW_RESET); 3771 } else { 3772 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET); 3773 } 3774 3775 /* need to wait at least 3ms before polling register */ 3776 mdelay(3); 3777 3778 limit = STOP_TRIES; 3779 while (limit-- > 0) { 3780 u32 val = readl(cp->regs + REG_SW_RESET); 3781 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0) 3782 goto done; 3783 udelay(10); 3784 } 3785 netdev_err(cp->dev, "sw reset failed\n"); 3786 3787 done: 3788 /* enable various BIM interrupts */ 3789 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE | 3790 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG); 3791 3792 /* clear out pci error status mask for handled errors. 3793 * we don't deal with DMA counter overflows as they happen 3794 * all the time. 3795 */ 3796 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO | 3797 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE | 3798 PCI_ERR_BIM_DMA_READ), cp->regs + 3799 REG_PCI_ERR_STATUS_MASK); 3800 3801 /* set up for MII by default to address mac rx reset timeout 3802 * issue 3803 */ 3804 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); 3805 } 3806 3807 static void cas_reset(struct cas *cp, int blkflag) 3808 { 3809 u32 val; 3810 3811 cas_mask_intr(cp); 3812 cas_global_reset(cp, blkflag); 3813 cas_mac_reset(cp); 3814 cas_entropy_reset(cp); 3815 3816 /* disable dma engines. */ 3817 val = readl(cp->regs + REG_TX_CFG); 3818 val &= ~TX_CFG_DMA_EN; 3819 writel(val, cp->regs + REG_TX_CFG); 3820 3821 val = readl(cp->regs + REG_RX_CFG); 3822 val &= ~RX_CFG_DMA_EN; 3823 writel(val, cp->regs + REG_RX_CFG); 3824 3825 /* program header parser */ 3826 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) || 3827 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) { 3828 cas_load_firmware(cp, CAS_HP_FIRMWARE); 3829 } else { 3830 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE); 3831 } 3832 3833 /* clear out error registers */ 3834 spin_lock(&cp->stat_lock[N_TX_RINGS]); 3835 cas_clear_mac_err(cp); 3836 spin_unlock(&cp->stat_lock[N_TX_RINGS]); 3837 } 3838 3839 /* Shut down the chip, must be called with pm_mutex held. */ 3840 static void cas_shutdown(struct cas *cp) 3841 { 3842 unsigned long flags; 3843 3844 /* Make us not-running to avoid timers respawning */ 3845 cp->hw_running = 0; 3846 3847 del_timer_sync(&cp->link_timer); 3848 3849 /* Stop the reset task */ 3850 #if 0 3851 while (atomic_read(&cp->reset_task_pending_mtu) || 3852 atomic_read(&cp->reset_task_pending_spare) || 3853 atomic_read(&cp->reset_task_pending_all)) 3854 schedule(); 3855 3856 #else 3857 while (atomic_read(&cp->reset_task_pending)) 3858 schedule(); 3859 #endif 3860 /* Actually stop the chip */ 3861 cas_lock_all_save(cp, flags); 3862 cas_reset(cp, 0); 3863 if (cp->cas_flags & CAS_FLAG_SATURN) 3864 cas_phy_powerdown(cp); 3865 cas_unlock_all_restore(cp, flags); 3866 } 3867 3868 static int cas_change_mtu(struct net_device *dev, int new_mtu) 3869 { 3870 struct cas *cp = netdev_priv(dev); 3871 3872 if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU) 3873 return -EINVAL; 3874 3875 dev->mtu = new_mtu; 3876 if (!netif_running(dev) || !netif_device_present(dev)) 3877 return 0; 3878 3879 /* let the reset task handle it */ 3880 #if 1 3881 atomic_inc(&cp->reset_task_pending); 3882 if ((cp->phy_type & CAS_PHY_SERDES)) { 3883 atomic_inc(&cp->reset_task_pending_all); 3884 } else { 3885 atomic_inc(&cp->reset_task_pending_mtu); 3886 } 3887 schedule_work(&cp->reset_task); 3888 #else 3889 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ? 3890 CAS_RESET_ALL : CAS_RESET_MTU); 3891 pr_err("reset called in cas_change_mtu\n"); 3892 schedule_work(&cp->reset_task); 3893 #endif 3894 3895 flush_work_sync(&cp->reset_task); 3896 return 0; 3897 } 3898 3899 static void cas_clean_txd(struct cas *cp, int ring) 3900 { 3901 struct cas_tx_desc *txd = cp->init_txds[ring]; 3902 struct sk_buff *skb, **skbs = cp->tx_skbs[ring]; 3903 u64 daddr, dlen; 3904 int i, size; 3905 3906 size = TX_DESC_RINGN_SIZE(ring); 3907 for (i = 0; i < size; i++) { 3908 int frag; 3909 3910 if (skbs[i] == NULL) 3911 continue; 3912 3913 skb = skbs[i]; 3914 skbs[i] = NULL; 3915 3916 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { 3917 int ent = i & (size - 1); 3918 3919 /* first buffer is never a tiny buffer and so 3920 * needs to be unmapped. 3921 */ 3922 daddr = le64_to_cpu(txd[ent].buffer); 3923 dlen = CAS_VAL(TX_DESC_BUFLEN, 3924 le64_to_cpu(txd[ent].control)); 3925 pci_unmap_page(cp->pdev, daddr, dlen, 3926 PCI_DMA_TODEVICE); 3927 3928 if (frag != skb_shinfo(skb)->nr_frags) { 3929 i++; 3930 3931 /* next buffer might by a tiny buffer. 3932 * skip past it. 3933 */ 3934 ent = i & (size - 1); 3935 if (cp->tx_tiny_use[ring][ent].used) 3936 i++; 3937 } 3938 } 3939 dev_kfree_skb_any(skb); 3940 } 3941 3942 /* zero out tiny buf usage */ 3943 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring])); 3944 } 3945 3946 /* freed on close */ 3947 static inline void cas_free_rx_desc(struct cas *cp, int ring) 3948 { 3949 cas_page_t **page = cp->rx_pages[ring]; 3950 int i, size; 3951 3952 size = RX_DESC_RINGN_SIZE(ring); 3953 for (i = 0; i < size; i++) { 3954 if (page[i]) { 3955 cas_page_free(cp, page[i]); 3956 page[i] = NULL; 3957 } 3958 } 3959 } 3960 3961 static void cas_free_rxds(struct cas *cp) 3962 { 3963 int i; 3964 3965 for (i = 0; i < N_RX_DESC_RINGS; i++) 3966 cas_free_rx_desc(cp, i); 3967 } 3968 3969 /* Must be invoked under cp->lock. */ 3970 static void cas_clean_rings(struct cas *cp) 3971 { 3972 int i; 3973 3974 /* need to clean all tx rings */ 3975 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS); 3976 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS); 3977 for (i = 0; i < N_TX_RINGS; i++) 3978 cas_clean_txd(cp, i); 3979 3980 /* zero out init block */ 3981 memset(cp->init_block, 0, sizeof(struct cas_init_block)); 3982 cas_clean_rxds(cp); 3983 cas_clean_rxcs(cp); 3984 } 3985 3986 /* allocated on open */ 3987 static inline int cas_alloc_rx_desc(struct cas *cp, int ring) 3988 { 3989 cas_page_t **page = cp->rx_pages[ring]; 3990 int size, i = 0; 3991 3992 size = RX_DESC_RINGN_SIZE(ring); 3993 for (i = 0; i < size; i++) { 3994 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL) 3995 return -1; 3996 } 3997 return 0; 3998 } 3999 4000 static int cas_alloc_rxds(struct cas *cp) 4001 { 4002 int i; 4003 4004 for (i = 0; i < N_RX_DESC_RINGS; i++) { 4005 if (cas_alloc_rx_desc(cp, i) < 0) { 4006 cas_free_rxds(cp); 4007 return -1; 4008 } 4009 } 4010 return 0; 4011 } 4012 4013 static void cas_reset_task(struct work_struct *work) 4014 { 4015 struct cas *cp = container_of(work, struct cas, reset_task); 4016 #if 0 4017 int pending = atomic_read(&cp->reset_task_pending); 4018 #else 4019 int pending_all = atomic_read(&cp->reset_task_pending_all); 4020 int pending_spare = atomic_read(&cp->reset_task_pending_spare); 4021 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu); 4022 4023 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) { 4024 /* We can have more tasks scheduled than actually 4025 * needed. 4026 */ 4027 atomic_dec(&cp->reset_task_pending); 4028 return; 4029 } 4030 #endif 4031 /* The link went down, we reset the ring, but keep 4032 * DMA stopped. Use this function for reset 4033 * on error as well. 4034 */ 4035 if (cp->hw_running) { 4036 unsigned long flags; 4037 4038 /* Make sure we don't get interrupts or tx packets */ 4039 netif_device_detach(cp->dev); 4040 cas_lock_all_save(cp, flags); 4041 4042 if (cp->opened) { 4043 /* We call cas_spare_recover when we call cas_open. 4044 * but we do not initialize the lists cas_spare_recover 4045 * uses until cas_open is called. 4046 */ 4047 cas_spare_recover(cp, GFP_ATOMIC); 4048 } 4049 #if 1 4050 /* test => only pending_spare set */ 4051 if (!pending_all && !pending_mtu) 4052 goto done; 4053 #else 4054 if (pending == CAS_RESET_SPARE) 4055 goto done; 4056 #endif 4057 /* when pending == CAS_RESET_ALL, the following 4058 * call to cas_init_hw will restart auto negotiation. 4059 * Setting the second argument of cas_reset to 4060 * !(pending == CAS_RESET_ALL) will set this argument 4061 * to 1 (avoiding reinitializing the PHY for the normal 4062 * PCS case) when auto negotiation is not restarted. 4063 */ 4064 #if 1 4065 cas_reset(cp, !(pending_all > 0)); 4066 if (cp->opened) 4067 cas_clean_rings(cp); 4068 cas_init_hw(cp, (pending_all > 0)); 4069 #else 4070 cas_reset(cp, !(pending == CAS_RESET_ALL)); 4071 if (cp->opened) 4072 cas_clean_rings(cp); 4073 cas_init_hw(cp, pending == CAS_RESET_ALL); 4074 #endif 4075 4076 done: 4077 cas_unlock_all_restore(cp, flags); 4078 netif_device_attach(cp->dev); 4079 } 4080 #if 1 4081 atomic_sub(pending_all, &cp->reset_task_pending_all); 4082 atomic_sub(pending_spare, &cp->reset_task_pending_spare); 4083 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu); 4084 atomic_dec(&cp->reset_task_pending); 4085 #else 4086 atomic_set(&cp->reset_task_pending, 0); 4087 #endif 4088 } 4089 4090 static void cas_link_timer(unsigned long data) 4091 { 4092 struct cas *cp = (struct cas *) data; 4093 int mask, pending = 0, reset = 0; 4094 unsigned long flags; 4095 4096 if (link_transition_timeout != 0 && 4097 cp->link_transition_jiffies_valid && 4098 ((jiffies - cp->link_transition_jiffies) > 4099 (link_transition_timeout))) { 4100 /* One-second counter so link-down workaround doesn't 4101 * cause resets to occur so fast as to fool the switch 4102 * into thinking the link is down. 4103 */ 4104 cp->link_transition_jiffies_valid = 0; 4105 } 4106 4107 if (!cp->hw_running) 4108 return; 4109 4110 spin_lock_irqsave(&cp->lock, flags); 4111 cas_lock_tx(cp); 4112 cas_entropy_gather(cp); 4113 4114 /* If the link task is still pending, we just 4115 * reschedule the link timer 4116 */ 4117 #if 1 4118 if (atomic_read(&cp->reset_task_pending_all) || 4119 atomic_read(&cp->reset_task_pending_spare) || 4120 atomic_read(&cp->reset_task_pending_mtu)) 4121 goto done; 4122 #else 4123 if (atomic_read(&cp->reset_task_pending)) 4124 goto done; 4125 #endif 4126 4127 /* check for rx cleaning */ 4128 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) { 4129 int i, rmask; 4130 4131 for (i = 0; i < MAX_RX_DESC_RINGS; i++) { 4132 rmask = CAS_FLAG_RXD_POST(i); 4133 if ((mask & rmask) == 0) 4134 continue; 4135 4136 /* post_rxds will do a mod_timer */ 4137 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) { 4138 pending = 1; 4139 continue; 4140 } 4141 cp->cas_flags &= ~rmask; 4142 } 4143 } 4144 4145 if (CAS_PHY_MII(cp->phy_type)) { 4146 u16 bmsr; 4147 cas_mif_poll(cp, 0); 4148 bmsr = cas_phy_read(cp, MII_BMSR); 4149 /* WTZ: Solaris driver reads this twice, but that 4150 * may be due to the PCS case and the use of a 4151 * common implementation. Read it twice here to be 4152 * safe. 4153 */ 4154 bmsr = cas_phy_read(cp, MII_BMSR); 4155 cas_mif_poll(cp, 1); 4156 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */ 4157 reset = cas_mii_link_check(cp, bmsr); 4158 } else { 4159 reset = cas_pcs_link_check(cp); 4160 } 4161 4162 if (reset) 4163 goto done; 4164 4165 /* check for tx state machine confusion */ 4166 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) { 4167 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE); 4168 u32 wptr, rptr; 4169 int tlm = CAS_VAL(MAC_SM_TLM, val); 4170 4171 if (((tlm == 0x5) || (tlm == 0x3)) && 4172 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) { 4173 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev, 4174 "tx err: MAC_STATE[%08x]\n", val); 4175 reset = 1; 4176 goto done; 4177 } 4178 4179 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT); 4180 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR); 4181 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR); 4182 if ((val == 0) && (wptr != rptr)) { 4183 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev, 4184 "tx err: TX_FIFO[%08x:%08x:%08x]\n", 4185 val, wptr, rptr); 4186 reset = 1; 4187 } 4188 4189 if (reset) 4190 cas_hard_reset(cp); 4191 } 4192 4193 done: 4194 if (reset) { 4195 #if 1 4196 atomic_inc(&cp->reset_task_pending); 4197 atomic_inc(&cp->reset_task_pending_all); 4198 schedule_work(&cp->reset_task); 4199 #else 4200 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); 4201 pr_err("reset called in cas_link_timer\n"); 4202 schedule_work(&cp->reset_task); 4203 #endif 4204 } 4205 4206 if (!pending) 4207 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); 4208 cas_unlock_tx(cp); 4209 spin_unlock_irqrestore(&cp->lock, flags); 4210 } 4211 4212 /* tiny buffers are used to avoid target abort issues with 4213 * older cassini's 4214 */ 4215 static void cas_tx_tiny_free(struct cas *cp) 4216 { 4217 struct pci_dev *pdev = cp->pdev; 4218 int i; 4219 4220 for (i = 0; i < N_TX_RINGS; i++) { 4221 if (!cp->tx_tiny_bufs[i]) 4222 continue; 4223 4224 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK, 4225 cp->tx_tiny_bufs[i], 4226 cp->tx_tiny_dvma[i]); 4227 cp->tx_tiny_bufs[i] = NULL; 4228 } 4229 } 4230 4231 static int cas_tx_tiny_alloc(struct cas *cp) 4232 { 4233 struct pci_dev *pdev = cp->pdev; 4234 int i; 4235 4236 for (i = 0; i < N_TX_RINGS; i++) { 4237 cp->tx_tiny_bufs[i] = 4238 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK, 4239 &cp->tx_tiny_dvma[i]); 4240 if (!cp->tx_tiny_bufs[i]) { 4241 cas_tx_tiny_free(cp); 4242 return -1; 4243 } 4244 } 4245 return 0; 4246 } 4247 4248 4249 static int cas_open(struct net_device *dev) 4250 { 4251 struct cas *cp = netdev_priv(dev); 4252 int hw_was_up, err; 4253 unsigned long flags; 4254 4255 mutex_lock(&cp->pm_mutex); 4256 4257 hw_was_up = cp->hw_running; 4258 4259 /* The power-management mutex protects the hw_running 4260 * etc. state so it is safe to do this bit without cp->lock 4261 */ 4262 if (!cp->hw_running) { 4263 /* Reset the chip */ 4264 cas_lock_all_save(cp, flags); 4265 /* We set the second arg to cas_reset to zero 4266 * because cas_init_hw below will have its second 4267 * argument set to non-zero, which will force 4268 * autonegotiation to start. 4269 */ 4270 cas_reset(cp, 0); 4271 cp->hw_running = 1; 4272 cas_unlock_all_restore(cp, flags); 4273 } 4274 4275 err = -ENOMEM; 4276 if (cas_tx_tiny_alloc(cp) < 0) 4277 goto err_unlock; 4278 4279 /* alloc rx descriptors */ 4280 if (cas_alloc_rxds(cp) < 0) 4281 goto err_tx_tiny; 4282 4283 /* allocate spares */ 4284 cas_spare_init(cp); 4285 cas_spare_recover(cp, GFP_KERNEL); 4286 4287 /* We can now request the interrupt as we know it's masked 4288 * on the controller. cassini+ has up to 4 interrupts 4289 * that can be used, but you need to do explicit pci interrupt 4290 * mapping to expose them 4291 */ 4292 if (request_irq(cp->pdev->irq, cas_interrupt, 4293 IRQF_SHARED, dev->name, (void *) dev)) { 4294 netdev_err(cp->dev, "failed to request irq !\n"); 4295 err = -EAGAIN; 4296 goto err_spare; 4297 } 4298 4299 #ifdef USE_NAPI 4300 napi_enable(&cp->napi); 4301 #endif 4302 /* init hw */ 4303 cas_lock_all_save(cp, flags); 4304 cas_clean_rings(cp); 4305 cas_init_hw(cp, !hw_was_up); 4306 cp->opened = 1; 4307 cas_unlock_all_restore(cp, flags); 4308 4309 netif_start_queue(dev); 4310 mutex_unlock(&cp->pm_mutex); 4311 return 0; 4312 4313 err_spare: 4314 cas_spare_free(cp); 4315 cas_free_rxds(cp); 4316 err_tx_tiny: 4317 cas_tx_tiny_free(cp); 4318 err_unlock: 4319 mutex_unlock(&cp->pm_mutex); 4320 return err; 4321 } 4322 4323 static int cas_close(struct net_device *dev) 4324 { 4325 unsigned long flags; 4326 struct cas *cp = netdev_priv(dev); 4327 4328 #ifdef USE_NAPI 4329 napi_disable(&cp->napi); 4330 #endif 4331 /* Make sure we don't get distracted by suspend/resume */ 4332 mutex_lock(&cp->pm_mutex); 4333 4334 netif_stop_queue(dev); 4335 4336 /* Stop traffic, mark us closed */ 4337 cas_lock_all_save(cp, flags); 4338 cp->opened = 0; 4339 cas_reset(cp, 0); 4340 cas_phy_init(cp); 4341 cas_begin_auto_negotiation(cp, NULL); 4342 cas_clean_rings(cp); 4343 cas_unlock_all_restore(cp, flags); 4344 4345 free_irq(cp->pdev->irq, (void *) dev); 4346 cas_spare_free(cp); 4347 cas_free_rxds(cp); 4348 cas_tx_tiny_free(cp); 4349 mutex_unlock(&cp->pm_mutex); 4350 return 0; 4351 } 4352 4353 static struct { 4354 const char name[ETH_GSTRING_LEN]; 4355 } ethtool_cassini_statnames[] = { 4356 {"collisions"}, 4357 {"rx_bytes"}, 4358 {"rx_crc_errors"}, 4359 {"rx_dropped"}, 4360 {"rx_errors"}, 4361 {"rx_fifo_errors"}, 4362 {"rx_frame_errors"}, 4363 {"rx_length_errors"}, 4364 {"rx_over_errors"}, 4365 {"rx_packets"}, 4366 {"tx_aborted_errors"}, 4367 {"tx_bytes"}, 4368 {"tx_dropped"}, 4369 {"tx_errors"}, 4370 {"tx_fifo_errors"}, 4371 {"tx_packets"} 4372 }; 4373 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames) 4374 4375 static struct { 4376 const int offsets; /* neg. values for 2nd arg to cas_read_phy */ 4377 } ethtool_register_table[] = { 4378 {-MII_BMSR}, 4379 {-MII_BMCR}, 4380 {REG_CAWR}, 4381 {REG_INF_BURST}, 4382 {REG_BIM_CFG}, 4383 {REG_RX_CFG}, 4384 {REG_HP_CFG}, 4385 {REG_MAC_TX_CFG}, 4386 {REG_MAC_RX_CFG}, 4387 {REG_MAC_CTRL_CFG}, 4388 {REG_MAC_XIF_CFG}, 4389 {REG_MIF_CFG}, 4390 {REG_PCS_CFG}, 4391 {REG_SATURN_PCFG}, 4392 {REG_PCS_MII_STATUS}, 4393 {REG_PCS_STATE_MACHINE}, 4394 {REG_MAC_COLL_EXCESS}, 4395 {REG_MAC_COLL_LATE} 4396 }; 4397 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table) 4398 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN) 4399 4400 static void cas_read_regs(struct cas *cp, u8 *ptr, int len) 4401 { 4402 u8 *p; 4403 int i; 4404 unsigned long flags; 4405 4406 spin_lock_irqsave(&cp->lock, flags); 4407 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) { 4408 u16 hval; 4409 u32 val; 4410 if (ethtool_register_table[i].offsets < 0) { 4411 hval = cas_phy_read(cp, 4412 -ethtool_register_table[i].offsets); 4413 val = hval; 4414 } else { 4415 val= readl(cp->regs+ethtool_register_table[i].offsets); 4416 } 4417 memcpy(p, (u8 *)&val, sizeof(u32)); 4418 } 4419 spin_unlock_irqrestore(&cp->lock, flags); 4420 } 4421 4422 static struct net_device_stats *cas_get_stats(struct net_device *dev) 4423 { 4424 struct cas *cp = netdev_priv(dev); 4425 struct net_device_stats *stats = cp->net_stats; 4426 unsigned long flags; 4427 int i; 4428 unsigned long tmp; 4429 4430 /* we collate all of the stats into net_stats[N_TX_RING] */ 4431 if (!cp->hw_running) 4432 return stats + N_TX_RINGS; 4433 4434 /* collect outstanding stats */ 4435 /* WTZ: the Cassini spec gives these as 16 bit counters but 4436 * stored in 32-bit words. Added a mask of 0xffff to be safe, 4437 * in case the chip somehow puts any garbage in the other bits. 4438 * Also, counter usage didn't seem to mach what Adrian did 4439 * in the parts of the code that set these quantities. Made 4440 * that consistent. 4441 */ 4442 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags); 4443 stats[N_TX_RINGS].rx_crc_errors += 4444 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff; 4445 stats[N_TX_RINGS].rx_frame_errors += 4446 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff; 4447 stats[N_TX_RINGS].rx_length_errors += 4448 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff; 4449 #if 1 4450 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) + 4451 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff); 4452 stats[N_TX_RINGS].tx_aborted_errors += tmp; 4453 stats[N_TX_RINGS].collisions += 4454 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff); 4455 #else 4456 stats[N_TX_RINGS].tx_aborted_errors += 4457 readl(cp->regs + REG_MAC_COLL_EXCESS); 4458 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) + 4459 readl(cp->regs + REG_MAC_COLL_LATE); 4460 #endif 4461 cas_clear_mac_err(cp); 4462 4463 /* saved bits that are unique to ring 0 */ 4464 spin_lock(&cp->stat_lock[0]); 4465 stats[N_TX_RINGS].collisions += stats[0].collisions; 4466 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors; 4467 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors; 4468 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors; 4469 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors; 4470 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors; 4471 spin_unlock(&cp->stat_lock[0]); 4472 4473 for (i = 0; i < N_TX_RINGS; i++) { 4474 spin_lock(&cp->stat_lock[i]); 4475 stats[N_TX_RINGS].rx_length_errors += 4476 stats[i].rx_length_errors; 4477 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors; 4478 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets; 4479 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets; 4480 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes; 4481 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes; 4482 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors; 4483 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors; 4484 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped; 4485 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped; 4486 memset(stats + i, 0, sizeof(struct net_device_stats)); 4487 spin_unlock(&cp->stat_lock[i]); 4488 } 4489 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags); 4490 return stats + N_TX_RINGS; 4491 } 4492 4493 4494 static void cas_set_multicast(struct net_device *dev) 4495 { 4496 struct cas *cp = netdev_priv(dev); 4497 u32 rxcfg, rxcfg_new; 4498 unsigned long flags; 4499 int limit = STOP_TRIES; 4500 4501 if (!cp->hw_running) 4502 return; 4503 4504 spin_lock_irqsave(&cp->lock, flags); 4505 rxcfg = readl(cp->regs + REG_MAC_RX_CFG); 4506 4507 /* disable RX MAC and wait for completion */ 4508 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 4509 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) { 4510 if (!limit--) 4511 break; 4512 udelay(10); 4513 } 4514 4515 /* disable hash filter and wait for completion */ 4516 limit = STOP_TRIES; 4517 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN); 4518 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); 4519 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) { 4520 if (!limit--) 4521 break; 4522 udelay(10); 4523 } 4524 4525 /* program hash filters */ 4526 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp); 4527 rxcfg |= rxcfg_new; 4528 writel(rxcfg, cp->regs + REG_MAC_RX_CFG); 4529 spin_unlock_irqrestore(&cp->lock, flags); 4530 } 4531 4532 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 4533 { 4534 struct cas *cp = netdev_priv(dev); 4535 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); 4536 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version)); 4537 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info)); 4538 info->regdump_len = cp->casreg_len < CAS_MAX_REGS ? 4539 cp->casreg_len : CAS_MAX_REGS; 4540 info->n_stats = CAS_NUM_STAT_KEYS; 4541 } 4542 4543 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 4544 { 4545 struct cas *cp = netdev_priv(dev); 4546 u16 bmcr; 4547 int full_duplex, speed, pause; 4548 unsigned long flags; 4549 enum link_state linkstate = link_up; 4550 4551 cmd->advertising = 0; 4552 cmd->supported = SUPPORTED_Autoneg; 4553 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { 4554 cmd->supported |= SUPPORTED_1000baseT_Full; 4555 cmd->advertising |= ADVERTISED_1000baseT_Full; 4556 } 4557 4558 /* Record PHY settings if HW is on. */ 4559 spin_lock_irqsave(&cp->lock, flags); 4560 bmcr = 0; 4561 linkstate = cp->lstate; 4562 if (CAS_PHY_MII(cp->phy_type)) { 4563 cmd->port = PORT_MII; 4564 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ? 4565 XCVR_INTERNAL : XCVR_EXTERNAL; 4566 cmd->phy_address = cp->phy_addr; 4567 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII | 4568 ADVERTISED_10baseT_Half | 4569 ADVERTISED_10baseT_Full | 4570 ADVERTISED_100baseT_Half | 4571 ADVERTISED_100baseT_Full; 4572 4573 cmd->supported |= 4574 (SUPPORTED_10baseT_Half | 4575 SUPPORTED_10baseT_Full | 4576 SUPPORTED_100baseT_Half | 4577 SUPPORTED_100baseT_Full | 4578 SUPPORTED_TP | SUPPORTED_MII); 4579 4580 if (cp->hw_running) { 4581 cas_mif_poll(cp, 0); 4582 bmcr = cas_phy_read(cp, MII_BMCR); 4583 cas_read_mii_link_mode(cp, &full_duplex, 4584 &speed, &pause); 4585 cas_mif_poll(cp, 1); 4586 } 4587 4588 } else { 4589 cmd->port = PORT_FIBRE; 4590 cmd->transceiver = XCVR_INTERNAL; 4591 cmd->phy_address = 0; 4592 cmd->supported |= SUPPORTED_FIBRE; 4593 cmd->advertising |= ADVERTISED_FIBRE; 4594 4595 if (cp->hw_running) { 4596 /* pcs uses the same bits as mii */ 4597 bmcr = readl(cp->regs + REG_PCS_MII_CTRL); 4598 cas_read_pcs_link_mode(cp, &full_duplex, 4599 &speed, &pause); 4600 } 4601 } 4602 spin_unlock_irqrestore(&cp->lock, flags); 4603 4604 if (bmcr & BMCR_ANENABLE) { 4605 cmd->advertising |= ADVERTISED_Autoneg; 4606 cmd->autoneg = AUTONEG_ENABLE; 4607 ethtool_cmd_speed_set(cmd, ((speed == 10) ? 4608 SPEED_10 : 4609 ((speed == 1000) ? 4610 SPEED_1000 : SPEED_100))); 4611 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF; 4612 } else { 4613 cmd->autoneg = AUTONEG_DISABLE; 4614 ethtool_cmd_speed_set(cmd, ((bmcr & CAS_BMCR_SPEED1000) ? 4615 SPEED_1000 : 4616 ((bmcr & BMCR_SPEED100) ? 4617 SPEED_100 : SPEED_10))); 4618 cmd->duplex = 4619 (bmcr & BMCR_FULLDPLX) ? 4620 DUPLEX_FULL : DUPLEX_HALF; 4621 } 4622 if (linkstate != link_up) { 4623 /* Force these to "unknown" if the link is not up and 4624 * autonogotiation in enabled. We can set the link 4625 * speed to 0, but not cmd->duplex, 4626 * because its legal values are 0 and 1. Ethtool will 4627 * print the value reported in parentheses after the 4628 * word "Unknown" for unrecognized values. 4629 * 4630 * If in forced mode, we report the speed and duplex 4631 * settings that we configured. 4632 */ 4633 if (cp->link_cntl & BMCR_ANENABLE) { 4634 ethtool_cmd_speed_set(cmd, 0); 4635 cmd->duplex = 0xff; 4636 } else { 4637 ethtool_cmd_speed_set(cmd, SPEED_10); 4638 if (cp->link_cntl & BMCR_SPEED100) { 4639 ethtool_cmd_speed_set(cmd, SPEED_100); 4640 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) { 4641 ethtool_cmd_speed_set(cmd, SPEED_1000); 4642 } 4643 cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)? 4644 DUPLEX_FULL : DUPLEX_HALF; 4645 } 4646 } 4647 return 0; 4648 } 4649 4650 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 4651 { 4652 struct cas *cp = netdev_priv(dev); 4653 unsigned long flags; 4654 u32 speed = ethtool_cmd_speed(cmd); 4655 4656 /* Verify the settings we care about. */ 4657 if (cmd->autoneg != AUTONEG_ENABLE && 4658 cmd->autoneg != AUTONEG_DISABLE) 4659 return -EINVAL; 4660 4661 if (cmd->autoneg == AUTONEG_DISABLE && 4662 ((speed != SPEED_1000 && 4663 speed != SPEED_100 && 4664 speed != SPEED_10) || 4665 (cmd->duplex != DUPLEX_HALF && 4666 cmd->duplex != DUPLEX_FULL))) 4667 return -EINVAL; 4668 4669 /* Apply settings and restart link process. */ 4670 spin_lock_irqsave(&cp->lock, flags); 4671 cas_begin_auto_negotiation(cp, cmd); 4672 spin_unlock_irqrestore(&cp->lock, flags); 4673 return 0; 4674 } 4675 4676 static int cas_nway_reset(struct net_device *dev) 4677 { 4678 struct cas *cp = netdev_priv(dev); 4679 unsigned long flags; 4680 4681 if ((cp->link_cntl & BMCR_ANENABLE) == 0) 4682 return -EINVAL; 4683 4684 /* Restart link process. */ 4685 spin_lock_irqsave(&cp->lock, flags); 4686 cas_begin_auto_negotiation(cp, NULL); 4687 spin_unlock_irqrestore(&cp->lock, flags); 4688 4689 return 0; 4690 } 4691 4692 static u32 cas_get_link(struct net_device *dev) 4693 { 4694 struct cas *cp = netdev_priv(dev); 4695 return cp->lstate == link_up; 4696 } 4697 4698 static u32 cas_get_msglevel(struct net_device *dev) 4699 { 4700 struct cas *cp = netdev_priv(dev); 4701 return cp->msg_enable; 4702 } 4703 4704 static void cas_set_msglevel(struct net_device *dev, u32 value) 4705 { 4706 struct cas *cp = netdev_priv(dev); 4707 cp->msg_enable = value; 4708 } 4709 4710 static int cas_get_regs_len(struct net_device *dev) 4711 { 4712 struct cas *cp = netdev_priv(dev); 4713 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS; 4714 } 4715 4716 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs, 4717 void *p) 4718 { 4719 struct cas *cp = netdev_priv(dev); 4720 regs->version = 0; 4721 /* cas_read_regs handles locks (cp->lock). */ 4722 cas_read_regs(cp, p, regs->len / sizeof(u32)); 4723 } 4724 4725 static int cas_get_sset_count(struct net_device *dev, int sset) 4726 { 4727 switch (sset) { 4728 case ETH_SS_STATS: 4729 return CAS_NUM_STAT_KEYS; 4730 default: 4731 return -EOPNOTSUPP; 4732 } 4733 } 4734 4735 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data) 4736 { 4737 memcpy(data, ðtool_cassini_statnames, 4738 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN); 4739 } 4740 4741 static void cas_get_ethtool_stats(struct net_device *dev, 4742 struct ethtool_stats *estats, u64 *data) 4743 { 4744 struct cas *cp = netdev_priv(dev); 4745 struct net_device_stats *stats = cas_get_stats(cp->dev); 4746 int i = 0; 4747 data[i++] = stats->collisions; 4748 data[i++] = stats->rx_bytes; 4749 data[i++] = stats->rx_crc_errors; 4750 data[i++] = stats->rx_dropped; 4751 data[i++] = stats->rx_errors; 4752 data[i++] = stats->rx_fifo_errors; 4753 data[i++] = stats->rx_frame_errors; 4754 data[i++] = stats->rx_length_errors; 4755 data[i++] = stats->rx_over_errors; 4756 data[i++] = stats->rx_packets; 4757 data[i++] = stats->tx_aborted_errors; 4758 data[i++] = stats->tx_bytes; 4759 data[i++] = stats->tx_dropped; 4760 data[i++] = stats->tx_errors; 4761 data[i++] = stats->tx_fifo_errors; 4762 data[i++] = stats->tx_packets; 4763 BUG_ON(i != CAS_NUM_STAT_KEYS); 4764 } 4765 4766 static const struct ethtool_ops cas_ethtool_ops = { 4767 .get_drvinfo = cas_get_drvinfo, 4768 .get_settings = cas_get_settings, 4769 .set_settings = cas_set_settings, 4770 .nway_reset = cas_nway_reset, 4771 .get_link = cas_get_link, 4772 .get_msglevel = cas_get_msglevel, 4773 .set_msglevel = cas_set_msglevel, 4774 .get_regs_len = cas_get_regs_len, 4775 .get_regs = cas_get_regs, 4776 .get_sset_count = cas_get_sset_count, 4777 .get_strings = cas_get_strings, 4778 .get_ethtool_stats = cas_get_ethtool_stats, 4779 }; 4780 4781 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 4782 { 4783 struct cas *cp = netdev_priv(dev); 4784 struct mii_ioctl_data *data = if_mii(ifr); 4785 unsigned long flags; 4786 int rc = -EOPNOTSUPP; 4787 4788 /* Hold the PM mutex while doing ioctl's or we may collide 4789 * with open/close and power management and oops. 4790 */ 4791 mutex_lock(&cp->pm_mutex); 4792 switch (cmd) { 4793 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 4794 data->phy_id = cp->phy_addr; 4795 /* Fallthrough... */ 4796 4797 case SIOCGMIIREG: /* Read MII PHY register. */ 4798 spin_lock_irqsave(&cp->lock, flags); 4799 cas_mif_poll(cp, 0); 4800 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f); 4801 cas_mif_poll(cp, 1); 4802 spin_unlock_irqrestore(&cp->lock, flags); 4803 rc = 0; 4804 break; 4805 4806 case SIOCSMIIREG: /* Write MII PHY register. */ 4807 spin_lock_irqsave(&cp->lock, flags); 4808 cas_mif_poll(cp, 0); 4809 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in); 4810 cas_mif_poll(cp, 1); 4811 spin_unlock_irqrestore(&cp->lock, flags); 4812 break; 4813 default: 4814 break; 4815 } 4816 4817 mutex_unlock(&cp->pm_mutex); 4818 return rc; 4819 } 4820 4821 /* When this chip sits underneath an Intel 31154 bridge, it is the 4822 * only subordinate device and we can tweak the bridge settings to 4823 * reflect that fact. 4824 */ 4825 static void __devinit cas_program_bridge(struct pci_dev *cas_pdev) 4826 { 4827 struct pci_dev *pdev = cas_pdev->bus->self; 4828 u32 val; 4829 4830 if (!pdev) 4831 return; 4832 4833 if (pdev->vendor != 0x8086 || pdev->device != 0x537c) 4834 return; 4835 4836 /* Clear bit 10 (Bus Parking Control) in the Secondary 4837 * Arbiter Control/Status Register which lives at offset 4838 * 0x41. Using a 32-bit word read/modify/write at 0x40 4839 * is much simpler so that's how we do this. 4840 */ 4841 pci_read_config_dword(pdev, 0x40, &val); 4842 val &= ~0x00040000; 4843 pci_write_config_dword(pdev, 0x40, val); 4844 4845 /* Max out the Multi-Transaction Timer settings since 4846 * Cassini is the only device present. 4847 * 4848 * The register is 16-bit and lives at 0x50. When the 4849 * settings are enabled, it extends the GRANT# signal 4850 * for a requestor after a transaction is complete. This 4851 * allows the next request to run without first needing 4852 * to negotiate the GRANT# signal back. 4853 * 4854 * Bits 12:10 define the grant duration: 4855 * 4856 * 1 -- 16 clocks 4857 * 2 -- 32 clocks 4858 * 3 -- 64 clocks 4859 * 4 -- 128 clocks 4860 * 5 -- 256 clocks 4861 * 4862 * All other values are illegal. 4863 * 4864 * Bits 09:00 define which REQ/GNT signal pairs get the 4865 * GRANT# signal treatment. We set them all. 4866 */ 4867 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff); 4868 4869 /* The Read Prefecth Policy register is 16-bit and sits at 4870 * offset 0x52. It enables a "smart" pre-fetch policy. We 4871 * enable it and max out all of the settings since only one 4872 * device is sitting underneath and thus bandwidth sharing is 4873 * not an issue. 4874 * 4875 * The register has several 3 bit fields, which indicates a 4876 * multiplier applied to the base amount of prefetching the 4877 * chip would do. These fields are at: 4878 * 4879 * 15:13 --- ReRead Primary Bus 4880 * 12:10 --- FirstRead Primary Bus 4881 * 09:07 --- ReRead Secondary Bus 4882 * 06:04 --- FirstRead Secondary Bus 4883 * 4884 * Bits 03:00 control which REQ/GNT pairs the prefetch settings 4885 * get enabled on. Bit 3 is a grouped enabler which controls 4886 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control 4887 * the individual REQ/GNT pairs [2:0]. 4888 */ 4889 pci_write_config_word(pdev, 0x52, 4890 (0x7 << 13) | 4891 (0x7 << 10) | 4892 (0x7 << 7) | 4893 (0x7 << 4) | 4894 (0xf << 0)); 4895 4896 /* Force cacheline size to 0x8 */ 4897 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08); 4898 4899 /* Force latency timer to maximum setting so Cassini can 4900 * sit on the bus as long as it likes. 4901 */ 4902 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff); 4903 } 4904 4905 static const struct net_device_ops cas_netdev_ops = { 4906 .ndo_open = cas_open, 4907 .ndo_stop = cas_close, 4908 .ndo_start_xmit = cas_start_xmit, 4909 .ndo_get_stats = cas_get_stats, 4910 .ndo_set_rx_mode = cas_set_multicast, 4911 .ndo_do_ioctl = cas_ioctl, 4912 .ndo_tx_timeout = cas_tx_timeout, 4913 .ndo_change_mtu = cas_change_mtu, 4914 .ndo_set_mac_address = eth_mac_addr, 4915 .ndo_validate_addr = eth_validate_addr, 4916 #ifdef CONFIG_NET_POLL_CONTROLLER 4917 .ndo_poll_controller = cas_netpoll, 4918 #endif 4919 }; 4920 4921 static int __devinit cas_init_one(struct pci_dev *pdev, 4922 const struct pci_device_id *ent) 4923 { 4924 static int cas_version_printed = 0; 4925 unsigned long casreg_len; 4926 struct net_device *dev; 4927 struct cas *cp; 4928 int i, err, pci_using_dac; 4929 u16 pci_cmd; 4930 u8 orig_cacheline_size = 0, cas_cacheline_size = 0; 4931 4932 if (cas_version_printed++ == 0) 4933 pr_info("%s", version); 4934 4935 err = pci_enable_device(pdev); 4936 if (err) { 4937 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 4938 return err; 4939 } 4940 4941 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 4942 dev_err(&pdev->dev, "Cannot find proper PCI device " 4943 "base address, aborting\n"); 4944 err = -ENODEV; 4945 goto err_out_disable_pdev; 4946 } 4947 4948 dev = alloc_etherdev(sizeof(*cp)); 4949 if (!dev) { 4950 dev_err(&pdev->dev, "Etherdev alloc failed, aborting\n"); 4951 err = -ENOMEM; 4952 goto err_out_disable_pdev; 4953 } 4954 SET_NETDEV_DEV(dev, &pdev->dev); 4955 4956 err = pci_request_regions(pdev, dev->name); 4957 if (err) { 4958 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 4959 goto err_out_free_netdev; 4960 } 4961 pci_set_master(pdev); 4962 4963 /* we must always turn on parity response or else parity 4964 * doesn't get generated properly. disable SERR/PERR as well. 4965 * in addition, we want to turn MWI on. 4966 */ 4967 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); 4968 pci_cmd &= ~PCI_COMMAND_SERR; 4969 pci_cmd |= PCI_COMMAND_PARITY; 4970 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); 4971 if (pci_try_set_mwi(pdev)) 4972 pr_warning("Could not enable MWI for %s\n", pci_name(pdev)); 4973 4974 cas_program_bridge(pdev); 4975 4976 /* 4977 * On some architectures, the default cache line size set 4978 * by pci_try_set_mwi reduces perforamnce. We have to increase 4979 * it for this case. To start, we'll print some configuration 4980 * data. 4981 */ 4982 #if 1 4983 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, 4984 &orig_cacheline_size); 4985 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) { 4986 cas_cacheline_size = 4987 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ? 4988 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES; 4989 if (pci_write_config_byte(pdev, 4990 PCI_CACHE_LINE_SIZE, 4991 cas_cacheline_size)) { 4992 dev_err(&pdev->dev, "Could not set PCI cache " 4993 "line size\n"); 4994 goto err_write_cacheline; 4995 } 4996 } 4997 #endif 4998 4999 5000 /* Configure DMA attributes. */ 5001 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 5002 pci_using_dac = 1; 5003 err = pci_set_consistent_dma_mask(pdev, 5004 DMA_BIT_MASK(64)); 5005 if (err < 0) { 5006 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA " 5007 "for consistent allocations\n"); 5008 goto err_out_free_res; 5009 } 5010 5011 } else { 5012 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 5013 if (err) { 5014 dev_err(&pdev->dev, "No usable DMA configuration, " 5015 "aborting\n"); 5016 goto err_out_free_res; 5017 } 5018 pci_using_dac = 0; 5019 } 5020 5021 casreg_len = pci_resource_len(pdev, 0); 5022 5023 cp = netdev_priv(dev); 5024 cp->pdev = pdev; 5025 #if 1 5026 /* A value of 0 indicates we never explicitly set it */ 5027 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0; 5028 #endif 5029 cp->dev = dev; 5030 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE : 5031 cassini_debug; 5032 5033 #if defined(CONFIG_SPARC) 5034 cp->of_node = pci_device_to_OF_node(pdev); 5035 #endif 5036 5037 cp->link_transition = LINK_TRANSITION_UNKNOWN; 5038 cp->link_transition_jiffies_valid = 0; 5039 5040 spin_lock_init(&cp->lock); 5041 spin_lock_init(&cp->rx_inuse_lock); 5042 spin_lock_init(&cp->rx_spare_lock); 5043 for (i = 0; i < N_TX_RINGS; i++) { 5044 spin_lock_init(&cp->stat_lock[i]); 5045 spin_lock_init(&cp->tx_lock[i]); 5046 } 5047 spin_lock_init(&cp->stat_lock[N_TX_RINGS]); 5048 mutex_init(&cp->pm_mutex); 5049 5050 init_timer(&cp->link_timer); 5051 cp->link_timer.function = cas_link_timer; 5052 cp->link_timer.data = (unsigned long) cp; 5053 5054 #if 1 5055 /* Just in case the implementation of atomic operations 5056 * change so that an explicit initialization is necessary. 5057 */ 5058 atomic_set(&cp->reset_task_pending, 0); 5059 atomic_set(&cp->reset_task_pending_all, 0); 5060 atomic_set(&cp->reset_task_pending_spare, 0); 5061 atomic_set(&cp->reset_task_pending_mtu, 0); 5062 #endif 5063 INIT_WORK(&cp->reset_task, cas_reset_task); 5064 5065 /* Default link parameters */ 5066 if (link_mode >= 0 && link_mode < 6) 5067 cp->link_cntl = link_modes[link_mode]; 5068 else 5069 cp->link_cntl = BMCR_ANENABLE; 5070 cp->lstate = link_down; 5071 cp->link_transition = LINK_TRANSITION_LINK_DOWN; 5072 netif_carrier_off(cp->dev); 5073 cp->timer_ticks = 0; 5074 5075 /* give us access to cassini registers */ 5076 cp->regs = pci_iomap(pdev, 0, casreg_len); 5077 if (!cp->regs) { 5078 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 5079 goto err_out_free_res; 5080 } 5081 cp->casreg_len = casreg_len; 5082 5083 pci_save_state(pdev); 5084 cas_check_pci_invariants(cp); 5085 cas_hard_reset(cp); 5086 cas_reset(cp, 0); 5087 if (cas_check_invariants(cp)) 5088 goto err_out_iounmap; 5089 if (cp->cas_flags & CAS_FLAG_SATURN) 5090 if (cas_saturn_firmware_init(cp)) 5091 goto err_out_iounmap; 5092 5093 cp->init_block = (struct cas_init_block *) 5094 pci_alloc_consistent(pdev, sizeof(struct cas_init_block), 5095 &cp->block_dvma); 5096 if (!cp->init_block) { 5097 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n"); 5098 goto err_out_iounmap; 5099 } 5100 5101 for (i = 0; i < N_TX_RINGS; i++) 5102 cp->init_txds[i] = cp->init_block->txds[i]; 5103 5104 for (i = 0; i < N_RX_DESC_RINGS; i++) 5105 cp->init_rxds[i] = cp->init_block->rxds[i]; 5106 5107 for (i = 0; i < N_RX_COMP_RINGS; i++) 5108 cp->init_rxcs[i] = cp->init_block->rxcs[i]; 5109 5110 for (i = 0; i < N_RX_FLOWS; i++) 5111 skb_queue_head_init(&cp->rx_flows[i]); 5112 5113 dev->netdev_ops = &cas_netdev_ops; 5114 dev->ethtool_ops = &cas_ethtool_ops; 5115 dev->watchdog_timeo = CAS_TX_TIMEOUT; 5116 5117 #ifdef USE_NAPI 5118 netif_napi_add(dev, &cp->napi, cas_poll, 64); 5119 #endif 5120 dev->irq = pdev->irq; 5121 dev->dma = 0; 5122 5123 /* Cassini features. */ 5124 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0) 5125 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG; 5126 5127 if (pci_using_dac) 5128 dev->features |= NETIF_F_HIGHDMA; 5129 5130 if (register_netdev(dev)) { 5131 dev_err(&pdev->dev, "Cannot register net device, aborting\n"); 5132 goto err_out_free_consistent; 5133 } 5134 5135 i = readl(cp->regs + REG_BIM_CFG); 5136 netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n", 5137 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "", 5138 (i & BIM_CFG_32BIT) ? "32" : "64", 5139 (i & BIM_CFG_66MHZ) ? "66" : "33", 5140 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq, 5141 dev->dev_addr); 5142 5143 pci_set_drvdata(pdev, dev); 5144 cp->hw_running = 1; 5145 cas_entropy_reset(cp); 5146 cas_phy_init(cp); 5147 cas_begin_auto_negotiation(cp, NULL); 5148 return 0; 5149 5150 err_out_free_consistent: 5151 pci_free_consistent(pdev, sizeof(struct cas_init_block), 5152 cp->init_block, cp->block_dvma); 5153 5154 err_out_iounmap: 5155 mutex_lock(&cp->pm_mutex); 5156 if (cp->hw_running) 5157 cas_shutdown(cp); 5158 mutex_unlock(&cp->pm_mutex); 5159 5160 pci_iounmap(pdev, cp->regs); 5161 5162 5163 err_out_free_res: 5164 pci_release_regions(pdev); 5165 5166 err_write_cacheline: 5167 /* Try to restore it in case the error occurred after we 5168 * set it. 5169 */ 5170 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size); 5171 5172 err_out_free_netdev: 5173 free_netdev(dev); 5174 5175 err_out_disable_pdev: 5176 pci_disable_device(pdev); 5177 pci_set_drvdata(pdev, NULL); 5178 return -ENODEV; 5179 } 5180 5181 static void __devexit cas_remove_one(struct pci_dev *pdev) 5182 { 5183 struct net_device *dev = pci_get_drvdata(pdev); 5184 struct cas *cp; 5185 if (!dev) 5186 return; 5187 5188 cp = netdev_priv(dev); 5189 unregister_netdev(dev); 5190 5191 if (cp->fw_data) 5192 vfree(cp->fw_data); 5193 5194 mutex_lock(&cp->pm_mutex); 5195 cancel_work_sync(&cp->reset_task); 5196 if (cp->hw_running) 5197 cas_shutdown(cp); 5198 mutex_unlock(&cp->pm_mutex); 5199 5200 #if 1 5201 if (cp->orig_cacheline_size) { 5202 /* Restore the cache line size if we had modified 5203 * it. 5204 */ 5205 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 5206 cp->orig_cacheline_size); 5207 } 5208 #endif 5209 pci_free_consistent(pdev, sizeof(struct cas_init_block), 5210 cp->init_block, cp->block_dvma); 5211 pci_iounmap(pdev, cp->regs); 5212 free_netdev(dev); 5213 pci_release_regions(pdev); 5214 pci_disable_device(pdev); 5215 pci_set_drvdata(pdev, NULL); 5216 } 5217 5218 #ifdef CONFIG_PM 5219 static int cas_suspend(struct pci_dev *pdev, pm_message_t state) 5220 { 5221 struct net_device *dev = pci_get_drvdata(pdev); 5222 struct cas *cp = netdev_priv(dev); 5223 unsigned long flags; 5224 5225 mutex_lock(&cp->pm_mutex); 5226 5227 /* If the driver is opened, we stop the DMA */ 5228 if (cp->opened) { 5229 netif_device_detach(dev); 5230 5231 cas_lock_all_save(cp, flags); 5232 5233 /* We can set the second arg of cas_reset to 0 5234 * because on resume, we'll call cas_init_hw with 5235 * its second arg set so that autonegotiation is 5236 * restarted. 5237 */ 5238 cas_reset(cp, 0); 5239 cas_clean_rings(cp); 5240 cas_unlock_all_restore(cp, flags); 5241 } 5242 5243 if (cp->hw_running) 5244 cas_shutdown(cp); 5245 mutex_unlock(&cp->pm_mutex); 5246 5247 return 0; 5248 } 5249 5250 static int cas_resume(struct pci_dev *pdev) 5251 { 5252 struct net_device *dev = pci_get_drvdata(pdev); 5253 struct cas *cp = netdev_priv(dev); 5254 5255 netdev_info(dev, "resuming\n"); 5256 5257 mutex_lock(&cp->pm_mutex); 5258 cas_hard_reset(cp); 5259 if (cp->opened) { 5260 unsigned long flags; 5261 cas_lock_all_save(cp, flags); 5262 cas_reset(cp, 0); 5263 cp->hw_running = 1; 5264 cas_clean_rings(cp); 5265 cas_init_hw(cp, 1); 5266 cas_unlock_all_restore(cp, flags); 5267 5268 netif_device_attach(dev); 5269 } 5270 mutex_unlock(&cp->pm_mutex); 5271 return 0; 5272 } 5273 #endif /* CONFIG_PM */ 5274 5275 static struct pci_driver cas_driver = { 5276 .name = DRV_MODULE_NAME, 5277 .id_table = cas_pci_tbl, 5278 .probe = cas_init_one, 5279 .remove = __devexit_p(cas_remove_one), 5280 #ifdef CONFIG_PM 5281 .suspend = cas_suspend, 5282 .resume = cas_resume 5283 #endif 5284 }; 5285 5286 static int __init cas_init(void) 5287 { 5288 if (linkdown_timeout > 0) 5289 link_transition_timeout = linkdown_timeout * HZ; 5290 else 5291 link_transition_timeout = 0; 5292 5293 return pci_register_driver(&cas_driver); 5294 } 5295 5296 static void __exit cas_cleanup(void) 5297 { 5298 pci_unregister_driver(&cas_driver); 5299 } 5300 5301 module_init(cas_init); 5302 module_exit(cas_cleanup); 5303